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Preface

Bonded composite repairs are efficient and cost-effective means of repairing cracks

and corrosion grind-out cavity in metallic structures, and composite structures sustained

impact and ballistic damages, especially in aircraft structures. Currently there are two

edited books available on this topic (Bonded Repair of Aircraft Structures, ed. Baker
and Jones, 1988, Martinus Nijhoff Publisher; Advances in Bonded Composite Repair
of Metallic Structure, Baker et al., 2002, Elsevier). However, none has been dedicated

to the comprehensive mathematical analysis of the fundamentals of bonded composite

repair technology. Our objective in this book is therefore to fill in that gap.

This book devotes entirely its content to the design and analysis of bonded repairs,

focusing on the mathematical techniques and analysis approaches that are critical to the

successful implementation of bonded repairs. It grew out of recent research we con-

ducted at the Boeing Company and the Defence Science and Technology Organisation

(DSTO, Australia) over the past ten years. The topics addressed herein are developed to

the extent that the presentation is sufficiently self-explanatory, and hence it could serve

as a state-of-the-art reference guide to engineers, scientists, researchers, and practition-

ers interested in the underpinning design methodology and the modeling of composite

repairs. Furthermore, it can be used as a companion reference book to the United States

Air Force (USAF) bonded repair guidelines (Guidelines for Composite Repair of Metal-

lic Structure-CRMS, AFRL-WP-TR-1998-4113) and the Royal Australian Air Force

(RAAF) Design Standard DEF(AUST)9005 that are currently used by most practitioners

and field repair engineers throughout the world, as well as for the new software called

CRAS (Composite Repair of Aircraft Structures) developed by the Boeing Company

and funded by the USAF.

We have organized the book into 14 chapters. An introduction to the composite repair

process is presented in Chapter 1. To set the scene for the latter development, Chapter 2

provides some background information and basic concepts and characteristics of bonded

joints and bonded doublers. Chapter 3 presents the foundation of the mechanics of crack-

patching technology, focusing particularly on elliptical patches and geometrically linear

analyses. Chapters 4 and 5 deal respectively with the stress and fracture analysis of

polygonal patches in fully supported one-sided or two-sided repairs and an unsupported

one-sided repair. Extension of the crack-patching model developed in Chapters 3 and

4 to corrosion repairs is described in Chapter 6. In Chapter 7, a stress analysis of the

peel and shear deformation of adhesive near patch ends is presented for both untapered

and tapered patches. Chapter 8 outlines a crack-closure-based methodology to model

xi



xii Preface

the growth behavior of repaired cracks. Design algorithms for repairs to cracks and

corrosion damage are described respectively in Chapters 9 and 10, with experimental

verifications of the analytical methods presented in Chapter 11. Application of the

composite repairs to sonic fatigue cracks is discussed in Chapter 12. Chapter 13 deals

with some miscellaneous issues concerning secondary effects, such as multiple patches

in proximity, thick composite patch, and tapered patch. The book finally ends with

concluding remarks in Chapter 14.

We would like to express our thanks to a number of colleagues. In 1999, the Boeing

Company was awarded a multiple-million contract by the United States Air Force

Research Laboratory (AFRL) to develop new technologies for Composite Repair of

Aircraft Structures (CRAS) including a software application. A bulk of the first author

research on the composite repairs would have been impossible without the financial

support from the CRAS program. He is, therefore, grateful to the financial support by

the AFRL through the CRAS program under the management of Dr David Stargel and

to the permission of AFRL to include selective materials from the CRAS final reports in

this book. He is also indebted to his colleagues for their contributions and supports to the

composite repair researches. In particular, he would like to thank Drs John Hart-Smith,

Jin Yu, and John Tracy, the rest of the CRAS team and the management of the Boeing
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and Caltech under the guidance of Professors John Dugundji and Wolfgang Knauss. He,

therefore, would like to take this opportunity to thank his two former advisors for their

generous financial support and their hospitality during his time at these two institutions.
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Rose and Alan Baker, both widely recognized as the leading pioneers in the field of
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CHAPTER 1

Introduction

When today’s aircraft reach the end of their service life, fatigue cracks are found

to have developed along rivet holes and other highly stressed regions of the aircraft.

In order to extend the life of these aircraft, repairs have been made to arrest these

cracks. Composite doublers or repair patches provide an innovative repair technique,

which can enhance the way aircraft are maintained. Instead of riveting multiple steel or

aluminum plates to facilitate an aircraft repair, a single composite doubler is bonded to

the damaged structure. Adhesively bonded composite repairs have many advantages over

mechanically fastened repairs (Baker and Jones, 1988): (i) no new stress concentration

created by new rivet holes; (ii) high stiffness-to-weight and strength-to-weight ratios

of the patch, thus reducing drag; (iii) patches are readily formed into complex shapes,

permitting the repair of irregular components; (iv) high fatigue and corrosion resistance

of the composite; and (v) potential time savings in installation. This repair technique has

been primarily used in the area of military aviation. Examples of military application

(CRMS Guidelines, 1998) are the repairs of the cracked weep-holes on the C-141 fleet,

cracked fuel-vent holes on F16, cracked splices of the upper wing of B-52G/H models,

cracked fuel-access doorframe of B-52, cracked upper (crown) section of the fuselage

on C-5A fleet, and F-111 lower-wing skin crack. In this chapter, the objectives of the

bonded repairs and an overview of their repair process will be given in Section 1.1. The

objectives of this book are stated in Section 1.2. This follows by a review of the past and

current work on the design and analysis of bonded repairs in Section 1.3. The chapter

is finally concluded by a brief review of the basic elements of the fracture mechanics

theory in Section 1.4.

1.1 Objectives of Bonded Repairs and an Overview of the Repair Process

Bonded repair of metallic aircraft structure is used to extend the life of flawed or

under-designed components at reasonable cost. Such repairs generally have one of three

objectives: fatigue enhancement, crack patching or corrosion repair (Composite Repair

of Aircraft Structures [CRAS] Design Manual, 2003).

1



2 Composite Repair

(1) Fatigue enhancement: Under-designed metallic structure does not necessarily dis-

play cracking or other damage at the time a repair action is desired. The concern

may stem from observed damage in fleet-leading aircraft or from insufficient

analytical crack growth life in the presence of an assumed 1.27mm flaw, required

by United States Air Force (USAF) durability criteria (Joint Service Specifica-

tion Guide [JSSG], 1998). However, the remedy for such conditions are costly

in that they may require either re-design or performance of costly inspections,

necessitating the removal of skin panels, at intervals more frequent than desired.

Fatigue enhancement refers to the application of composite doublers to such under-

designed components to reduce the stress levels, enhancing fatigue life and/or

minimizing repeated inspections.

(2) Crack patching: Repair of cracked structure may be performed, by bonding an

external patch to the structure, to either stop or slow crack growth.

(3) Corrosion repair: Corrosion damage is removed by grinding out material in the

area of the damage. Grind-out areas may be reinforced with fill material and a

bonded patch to restore the original load-carrying capability.

The process for repair of damage to aircraft structure is divided into three phases:

(1) Structural assessment of the damage

(2) Repair design and analysis

(3) Installation and inspection of the repair.

Assessment of the flawed structure is required before designing the repair. The flaw can

be either under-design or actual damage, such as cracking or corrosion. Such assessment

takes into account not only the structural design details but also an understanding of the

natural and induced environments to which the structure is subjected during its lifetime

and of the cause of the damage. A repair should satisfy all the expected conditions

that the original structure must satisfy. These conditions include, but are not limited to,

ultimate loads, durability, damage tolerance, environment, fit, function and aerodynamic

and electromagnetic performance. However, a repair may be used to get a part to some

limited life based on an upcoming retirement. In that case, reduced capability from the

original life requirement might be acceptable. This information is essential to design a

repair that will have the appropriate performance characteristics.

Once knowledge of the structure is obtained, the design of the repair can start. The

design of the repair must address all the expected conditions that the original structure

must satisfy. Two additional areas of consideration during repair design are the source

of the damage and installation of the repair. If installation of the repair, as well as

inspection requirements, were considered part of the design process, problems with

installation should be minimized. A properly designed repair, if not installed properly, is

unlikely to meet performance criteria. The final step in the process is inspection of the

installation.
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1.1.1 Structural assessment

The starting point for repair design is knowledge of the structure, i.e., understanding load

paths, stresses, geometry, environment and function, as well as the flaw to be repaired.

The following list includes information that may be needed to design a proper repair:

• Material type and geometry of the structure being repaired

• Aerodynamic and/or electromagnetic constraints

• Size constraints

• Additional structure or systems present

• Location constraints

• Flammability requirements

• Weight and balance

• Thermodynamic constraints

• Avionics or electronic constraints

• Environment

• Stress levels

• Loading

• Surface preparation constraints

• Availability and compatibility of repair materials, equipment and facilities

Structural flaws can be either basic under-design conditions or actual damage. Under-

designed structure necessitates more frequent inspections and/or re-design or repair to

meet life criteria. Damage can occur as the structure ages, resulting in fatigue cracks

and corrosion pitting, or can be induced by specific events such as acid spills, lightning

strikes, bird strikes, miss-drilled holes and tool marks.

The cause of the damage must be addressed or subsequent damage may occur. For

example, a corrosive environment may create additional damage to the repair or the

surrounding structure. The cause must be determined. If the damage can occur on any

aircraft in the fleet, it may be beneficial to survey other aircraft. Once the cause of

damage is known, steps can be taken to prevent the damage from recurring in the

same area.

1.1.2 Repair design

The repair design must address static strength, durability, function, fit and inspection,

as well as satisfy any applicable damage tolerance considerations. Structural and non-

structural constraints must also be addressed.
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Structural constraints include items like how the repair fits or if there is existing structure

that must be accounted for during the design. The initial patch design must conform

to geometry of the structure to be repaired. If possible, the patch should not cover

existing fasteners that may require future removal. The location of fasteners (rivets)

should be considered. Fasteners should not be partially covered or just outside the

patch. The USAF Composite Repair to Metallic Structure (CRMS) Guidelines (1998)

recommends that the patch edge be at least three times the fastener diameter away from

the uncovered fasteners, to avoid stress concentration at the patch edge. The location

of the patch relative to substructure should be considered. Locating a single-sided patch

over substructure reduces out-of-plane bending. However, the patch should not end just

outside the substructure, resulting in a discontinuity in the neutral axis and potential for

more bending in that area. Extending a patch over a joint should be avoided as bending

at joints is a concern.

Non-structural constraints may deal with the avionics systems or aerodynamic perfor-

mance. Additional factors that are pertinent to the design of a repair are time constraints

for accomplishing the repair, available repair facilities and available materials.

The foundations of the design process for repairs over flawed skin structure are basic

design criteria. Patch design criteria, in their simplest form, are to minimize stress in

the structure near the defect and at the edge of the patch and to maximize load carried

by the patch, decreasing that carried by the structure. Minimizing stress, near a crack,

stops or impedes further growth. Detailed design criteria account for operational loads

and environments to which the repaired structure will be subjected.

(a) Bonded vs mechanically fastened repairs

Once the decision has been made that a defective structure may be repaired rather than

replaced, the next choice is the method of repair. The two primary methods for attaching

a repair patch to the damaged structure are mechanical fasteners and adhesive bonding.

The method of attachment must be capable of transferring stresses into the repair material

from the original structure to retard crack growth and to minimize stress concentration.

A key difference between mechanically fastened and adhesively bonded patches for

crack repair is that the former is so flexibly attached that the crack continues to grow

under the patch, unless it is first cleaned out by removal of sufficient material to reduce

stress concentration at the crack tip. This may entail removal of large amounts of intact

structure, converting sharp cracks into round holes. When bonded repairs can be applied,

however, the interface between patch and structure is so stiff that it is possible to remove

little or no material. Even a hole drilled through the crack tips may not be desirable

because it would remove the zone of cold-worked material that itself impedes further

crack growth.

The repair must be designed such that stress concentrations, from the method of attach-

ment, are kept to a minimum. Bonded repairs introduce stress concentration from load

attraction to the stiffened area. Mechanically fastened repairs introduce stress concentra-

tions from the fastener hole as well as from load attraction. Bonded repairs offer several

advantages over mechanically fastened – riveted or bolted – repairs. Adhesive bonding
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provides more uniform and efficient load transfer into the repair patch and less stress

concentration than mechanical fastening.

In some situations, bonded repairs may not be recommended. The USAF only permits

bonded repairs to primary or flight critical components when cracks are not critical

at limit load (CRMS Guidelines, 1998). Similarly, for cutouts and grind-outs, bonded

repairs are only allowed if the skin stress in the remaining structure is below the material

ultimate strength at limit load.

The major disadvantage of bonded repairs is their complexity. Installation process

controls are very stringent; advanced materials and processes are required; and the

design itself is more complex. Technicians generally do not need special training

or experience to install mechanically fastened repairs. Such training and experience

is a requisite for bonded repairs. Consequently, bonded repairs are not generally

recommended when

• Stringent cleaning and processing steps cannot be adhered to, within a controlled

environment.

• The structure to be repaired cannot withstand the high cure temperatures required

for bonded repairs.

• The structure to be repaired is subjected to very high loads for which mechanical

joints may be more efficient.

• The repair will be exposed to high humidity that can prevent achievement and

maintenance of a good quality bond.

There are exceptions to these guidelines. For example, Warner Robin Air Logistic

Center (WR-ALC) has considerable experience installing bonded repairs in high humidity

conditions.

(b) Size and shape of the bonded patch

The size of the repair is governed by the required space for proper load transfer through

the adhesive into the composite patch, and the physical limitations of the area to be

repaired. The termination point of the repair patch, with respect to existing structure,

can influence the durability of the repaired area. A check for possible interference, from

patch overlap with adjacent structure and systems, is required to ensure their continued

proper operation. The plan shape of the repair patch is typically octagonal, although

other shapes are utilized. Deviations to simple shapes are used to account for changes

in the shape of the damaged structure and for specific design elements of a repair, such

as the need to keep the high stress at the edge of the patch away from other structural

details. The patch may need to wrap around an opening in the structure or another

structural member. The thickness of the patch must account for the required strength,

stiffness, fit, and functional constraints. The patch is usually tapered to reduce stress

concentrations induced by load transfer at the edge of the patch.
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(c) Choice of repair material

The selected material must be able to withstand the expected conditions in the damaged

area and to withstand ultimate and fatigue stresses. Fatigue stresses will determine the

durability of the repair from a strength standpoint. The operating environment will

determine the longevity of the repair. The repair material must be able to withstand

applicable natural and induced environments. Heat, vibration, cold, hydraulic fluid,

moisture, fuel, and oil can cause degradation of the material. The repair configuration

itself must not create an adverse environment. For example, the repair should not create

a situation for galvanic corrosion. The material should also be selected on the basis

of any damage tolerance requirements and the potential need for through-the-patch

inspections using eddy current, ultrasonic or thermographic non-destructive inspection

(NDI) techniques.

Coefficient of thermal expansion (CTE) compatibility between the repair material and

the structure to be repaired is an essential consideration. Differences in CTE can create

patch disbond or structural failure outside the repair. Repair design should account for

thermally induced stresses from heating during the adhesive cure process and from

temperature variances associated with aircraft flight operations.

The material generally used for composite patches is Boron/epoxy (B/ep) because it has

high stiffness (Young’s modulus about three times that of aluminum) and strength, is

fatigue-resistant and immune to corrosion. It also has low electrical conductivity, unlike

carbon materials. However, in cases where the patch is required to follow significant

curvature, use of carbon materials may be desirable. Modified epoxy film adhesives,

such as FM-73, are most commonly used to bond the patch to metallic structure.

Special pre-bonding surface treatments, based on use of silane coupling agents, ensure

durable bonds.

(d) Analysis of the repair design

The repair should be evaluated against all criteria during the design phase of the repair.

Analysis should only provide the final check that the design of the repair is adequate. The

analyses required might include consideration of static ultimate load, fatigue, fail-safe,

damage tolerance, durability, heat transfer, vibration, aerodynamics, aesthetics, fit and

function. Finite element (FE) and/or appropriate closed-form analyses must be performed

for that purpose.

(e) Pre-installation check

A check to determine if the repair can be installed is required. This check is necessary

to ensure that the repair, as designed, can be installed. The initial design process should

account for how the repair will be installed. Considerations should, as a minimum,

include heating and temperature distribution methods, temperature measurement and

control techniques, pressurization methods, the cure process, and quality control and

inspection aspects. Prior to attempting the repair installation, a thermal survey must be

conducted, during which the vicinity of the repair is brought to and maintained at the

required cure temperature. For cracked structure, leak checks should also be made and
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the crack sealed. If both sides of the crack are accessible, the backside is dammed

and the crack flooded with solvent. A vacuum is pulled, the backside surface cleaned

and sealant applied under vacuum.

1.1.3 Installation of the repair

Primary considerations for bonded repair installation are surface preparation, heating

methods, pressurization methods, the cure process and inspections. The CRMS Guide-

lines (1998) should be consulted to determine further details of the installation process.

Good adhesion of a bonded patch to the structural surface is critical to the durability

of a repair and surface preparation, compatible with the repair materials and installation

procedures, is essential. Phosphoric acid anodizing (PAA) and grit blast silane (GBS),

or grit blast solgell, are aluminum surface preparations that are most effective. Prior to

either method, surface contaminants (sealants, paint, grease, etc.) are removed by use

of abrasives and cleaning agents. PAA consists of an electrical current-induced surface

electro-chemical change to increase the adhesive surface area and to increase moisture

resistance. GBS involves a light blasting with aluminum oxide grit and an application

of a water-soluble silane-coupling agent that bonds to both the metal and the adhesive

primer.

Temperatures required during cure cycles are generally developed by heater blanket,

heating blocks, oven, autoclave, forced air, or infrared lamp systems. The most common

source is the heater blanket in which resistance-heating wires are imbedded in a flexible

heat-resistant medium, which is placed over the repair area. Choosing a heating method

is based on several considerations:

• Power requirements dependent on the emissivity of the materials, area to be heated,

thickness of heated zone and required temperature.

• Location of heat source, usually determined by thermal surveys.

• Required temperature distribution, as determined by thermocouples, prior to and

during the repair.

• Temperature measurement and control.

Pressure, applied during curing, minimizes voids in the bond line and ensures contact

between the patch, adhesive, and structure. Vacuum bags, mechanical devices or auto-

claves develop pressure. The most common pressurization technique is the vacuum bag

method in which an airtight bag is placed over the repair and evacuated.

Patches are either pre-cured or co-cured. Pre-cured patches are laid up on molds of

the component, allowing for high quality control and pre-installation inspections. These

patches are cured independently and then bonded to the structure in a separate operation,

usually at a somewhat lower temperature. Lower cure temperature equates to lower

thermal stress due to CTE mismatch. The alternative is to cure the patch and adhesive in

place over the area to be repaired. These co-cured patches require compatible adhesive

and patch materials.
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Non-destructive inspection of the completed repair is used to ensure that the repair does

not contain any unexpected anomalies and the damage in the structure has not grown.

NDI techniques include eddy current, dye penetrant, ultrasonic, x-ray, and thermographic

inspections.

1.2 Objectives of This Book

This book deals primarily with the analysis and design aspect of the bonded repair

process. As mentioned in Section 1.1, the repair process requires assessment of the

damage or under-design condition, design of repair details and installation of the repair.

In this book, it is assumed that the defect or design flaw has been detected, classified and

identified as a candidate for a bonded repair. No information on this pre-repair structural

evaluation is presented in this book. Furthermore, the installation procedures are also

omitted since the primary purpose of this book is to provide engineers, practitioners,

researchers, and scientists the theoretical foundations of the design and analysis of bonded

repairs. In the last several decades, new advances in analytical methods for designing

and analyzing a composite patch have been made. Simple and explicit results of some of

these methods have been incorporated into the engineering guidelines or standards such

as the USAF CRMS Guidelines (1998) and the Royal Australian Air Force (RAAF)

Engineering Standard C5003 (Davis, 1995) for use by practitioners and depot repair

engineers. In contrast, more complex analytical models as well as the iterative patch

design process have been implemented in various software formats. Among these, the

USAF Composite Repair of Aircraft Structures (CRAS) software is considered to be

the most capable bonded repair code, which integrates various simple and complex

analytical models for the design and analysis of a composite patch together with a very-

easy-to-use graphical user interface (GUI) (CRAS Software User Manual, 2003). The

analysis methods and design process described in this book are generally consistent with

those of the CRAS software as well as the engineering guidelines mentioned above. This

book therefore can also be used as a good reference to the CRAS software as well as

to the USAF CRMS Guidelines and RAAF C5003 Engineering Standard. In addition,

engineers, scientists, and researchers can also learn from this book many powerful

mathematical techniques or methods that can be developed into a design and analysis

software tool for a composite patch repair.

1.3 Review of Past and Current Work on Design
and Analysis of Bonded Repair

There are several methods for the analysis of crack patching and corrosion repair. They

can be broadly classified as either analytical or numerical. Numerical analysis such as

the conventional FE analysis requires a considerable amount of modeling and computing

efforts since a very fined mesh must be used near the two crack tips due to the stress

singularity there. The numerical method is therefore too laborious for parametric studies

in design calculations and for crack growth analysis. On the other hand, the analytical

method uses basic elasticity solutions, which provides accurate solutions with minimum
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inputs from the user, and the values of these inputs can be easily changed without

any major modeling effort. For that reason, only analytical work will be discussed in

this book.

Analytical work has been done in both academia and industry. In the earliest work, the

analysis involved an infinite composite patch adhesively bonded to an infinite cracked

plate (Erdogan and Arin, 1972; Ratwani, 1974; Keer et al., 1976). The adhesive was

treated as a two-dimensional shear spring. The problem was reduced to a pair of integral

equations that were solved by numerical integration with the discretization of the bonded

interface. The effect of the finite size of the patch was ignored in that analysis. However,

that analysis included the effects of disbond and the out-of-plane bending due to load

path eccentricity near the crack on the crack-tip behavior. The size of the disbond was

determined by calculating the shear strain in the adhesive and comparing these values

to the shear strain allowable in the adhesive. Those regions surpassing the allowable

were considered to be debonded. Nevertheless, the bending analysis considered by

Ratwani (1974) has been found later to be deficient (Arendt and Sun, 1994). Extension

of this early approach to complex repair configurations such as repairs on a stiffened

sheet or thin strip repairs had also been considered by Ratwani (1980) and Ratwani

and Kan (1982). However, he did not solve these problems through exact analyses.

He used the compounding technique for the analysis of repairs on a stiffened sheet.

Since the load transfers between the patch and the sheet and between the sheet and the

stiffeners depend on the relative stiffnesses of these three components, the compounding

technique may not be appropriate for this problem. Furthermore, his account for an

infinite strip patch also may be inaccurate since the strip was treated as a one-dimensional

elastic rod.

The effect of a finite two-dimensional patch is first treated analytically by Rose (1981,

1982, 1988). By dividing the crack patching analysis into two stages, each with different

simplified assumptions, simple formula for estimating physical field quantities critical

to the repair can be derived. Rose’s analysis was based on the linear superposition

of two problems, each problem corresponding to one stage of the analysis. The first

problem involved an elliptical composite patch rigidly bonded to an uncracked metallic

sheet. The stresses at the prospective location of the crack for the second problem were

calculated. In the second problem, a semi-infinite crack in an infinite patched sheet

was considered. The semi-infinite crack was loaded on its surfaces by the same stresses

found in the first problem but in a reversed fashion. Rose’s analysis included the effect

of thermal stresses because of the thermal mismatch between the patch and the damaged

structures due to either low operating temperature or curing of the adhesive. The effect

of finite crack length and the influence of debonding were examined in Rose (1987a,b)

via a simple distributed spring model. No mention was made as to the incorporation of

stiffener and crack asymmetry. The bending analysis given by Rose (1988) was also

found subsequently to be incorrect (Arendt and Sun, 1994). Since these original works,

Rose and his colleagues at Defense Science and Technology Organization (DSTO)

in Australia, especially Wang, had expanded the analysis capabilities to include the

effect of structural constraint on thermal stresses due to curing (Wang and Erjavec,

2000; Wang et al., 2000), and the effect of the out-of-plane bending on the crack-tip

behavior (Wang and Rose, 1999). However, most of these works were limited to either

plane stress analysis or geometrically linear analysis. The Rose’s analytical model was
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later incorporated into a Windows-based repair program entitled CALCUREP (2001)

by Fredell (1994) of the U.S. Air Force Academy. Other contributions to the design

and analysis of bonded repairs were made by Atluri (1992), Bottega and Loia (1996,

1997). Atluri (1992) solved the problem of a cracked sheet reinforced by an infinite

composite strip parallel to a crack by using the Fourier integral transform method. His

work, however, did not include the effects of a disbond, thermal stresses, and stiffeners.

In contrast, Bottega and Loia (1996, 1997) addressed the issue of debonding at the patch

edge, which may compromise the performance of repairs on flat and cylindrical panels.

Even though this edge debonding issue is important when considering a bonded repair,

it is beyond the scope of this book. Parallel efforts in the development of analytical

methods for composite repairs to composite structures also have been conducted in the

past decades. Among them, the works by Soutis and Hu (1997), Soutis et al. (1999),

Engels and Becker (2002), Barut et al. (2002), Oterkus et al. (2005) for repairs of a

composite panel with a cutout are worthy to mention.

Under the sponsorship of the U.S. Air Force Research Laboratory (AFRL), Duong and

his colleagues at the Boeing Company have expanded the design and analysis capabili-

ties for bonded composite repairs beyond the existing capabilities and incorporated these

new developments along with those developed at DSTO into a software called CRAS

(2003). Under this sponsorship, they have made five major contributions to the field of

bonded technology (Duong, 2003a,b; Duong et al., 2003). First, robust algorithms have

been developed for the initial patch designs of cracking and corrosion repairs. In the past,

an initial patch design capability existed; however, that capability was available only

for crack patching and it was relatively primitive (Jones, 1988). Secondly, theoretical

analysis of a non-elliptical patch has been made possible using inclusion model with

eigenstrain theory. Thirdly, the analytical method for crack patching analysis has been

extended to the analyses of corrosion pits repaired with a polygon-shaped patch. Fourthly,

the analysis of the out-of-plane bending for thermal stresses and thermo-mechanical

stresses has been significantly improved by including the effects of geometrically non-

linearity and non-elliptical shaped patch. Finally, a new bond-line analysis for tapered

patches and doublers has been developed, which includes the coupling effects between

the peel and the shear behavior of the adhesive as well as the effect of the geometrical

and material nonlinearity.

1.4 Basic Elements of Fracture Mechanics Theory

The stresses distribution near the crack tip of a repaired structure is singular, i.e., the

crack-tip stress fast reaches infinity. Therefore, unlike the case of holes or cutouts, the

stress concentration approach is not applicable for measuring the severity of a cracked

structure. In an elastically cracked structure, the amplitude of the singularity of the

crack-tip stress, widely known as the stress intensity factor, is used to measure the

structure’s residual strength and the structure’s capability to resist fatigue crack growth.

Since the main basic assumption underlying the stress intensity factor approach is that

the structure remains elastic during the whole fracture process, the approach is often

referred to as the linear elastic fracture mechanics (LEFM) approach. According to
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LEFM theory, the stress field near a crack tip is governed by the following expression

(Broek, 1987):
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whereKI
 KII, andKIII are the stress intensity factors for three respective modes: opening,

sliding or shear and tearing modes. These three modes describe three independent

kinematic movements of the upper and lower crack surfaces with respect to each other

as shown in Figure 1.1 for all possible modes of crack propagation in an elastic material.

Depending on the loading and geometry of the cracked structure, one, two or all three

modes of fracture can be operated simultaneously. Mode I is the most common mode

found in practical applications. For reference, the crack-tip displacements for modes I

and II are also given here as
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(a) (c)(b)

Fig. 1.1. Three basic modes of fracture: (a) mode I or opening mode, (b) mode II or shear mode;

and (c) mode III or tearing mode.
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where

� =
{
�3−�s�/�1+�s� for plane stress

3−4�s for plane strain
(1.3)

Es and �s are the Young’s modulus and Poisson’s ratio of the cracked structure, respec-

tively. Another important parameter which can also be used to characterize fracture of a

cracked structure is the so-called ‘energy release rate’. It is the energy released per unit

extension of crack front per unit thickness of the structure, defined by

G=−d�

da
=−d �UE−W�

da
(1.4)

which for a linearly elastic structure reduces to G = 1

2

dUE

da
, where W is the external

work done on the structure, UE is the strain energy stored in the structure, and � is the

potential energy. For elastic structure and for mode I fracture, G is related to the stress

intensity factors by

G=

⎧⎪⎪⎨
⎪⎪⎩
K2

I

Es

plane stress

K2
I

Es

(
1−�2s
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G is also referred to as the crack driving force. It remains now to show how to determine

the residual strength and the fatigue crack growth of a cracked structure using the linear

elastic fracture mechanics approach.

(a) Crack growth under static load or residual strength of a cracked structure

The principle of the linear elastic fracture mechanics approach is that at the onset

of fracture the crack-tip stress intensity factor or the strain energy release rate of a

given fracture mode is constant. In other words, for all different geometries and loading

configurations, the stress intensity factors or strain energy release rates of all different

specimens are the same at fracture. Thus, at fracture KI or G of a cracked structure

reaches a unique value for a given material. This critical stress intensity factor or strain

energy release rate is a material property and often referred to as the fracture toughness.

For metallic materials, fracture toughness is a function of material thickness, orientation,

alloy, temper and form, as well as temperature. Figure 1.2 shows schematically the typical

effect of thickness or stress state (plane stress vs plane strain) on fracture toughness. This

variation of the fracture toughness with respect to the material thickness is attributed

in part due to the crack-tip plasticity, which inevitably always exists at the crack tip in

metals. Values of plane-strain fracture toughness for opening mode (mode I) denoted

by KIC for various aluminum alloys can be obtained from MIL-HNBK 5 and they are

listed in Table 1.1 for reference.

Most, if not all, metallic materials used on aircraft structures exhibit elastic-plastic

behavior. In order to use the LEFM approach for metallic cracked structure with thin
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Fig. 1.2. Typical effect of skin thickness on fracture toughness in ductile materials.

Table 1.1. Plane-strain fracture toughness �KIC� for selective skin aluminum materials.

Material Thickness (mm) Orientation Plain Strain
KIC�MPa

√
m�

2014-T651 Plate 12.7–25.4 L-T 24�2
T-L 23�1

2014-T652 Hand forging 20.3–50.8 L-T 34�1
T-L 23�1

2024-T351 Plate 20.3–50.8 L-T 34�1
35.6–76.2 L-S 27�5

2024-T851 Plate ≥12�7 L-T 25�3
10.2–101.6 T-L 24�2

2124-T851 Plate ≥20�3 L-T 31�9
15.2–152.4 T-L 27�5

≥12�7 S-L 23�1

7050-T7351 Plate 25.4–152.4 L-T 38�5
50.8–152.4 T-L 36�3
20.3–38.1 S-L 30�8

7050-T74 Die forging 15.2–180.3 S-L 26�4

7050-T7451 Plate L-T 35�2
≥25�4 T-L 30�8

17.8–50.8 S-L 25�3

7050-T7452 Hand forging 88.9–139.7 L-T 34�1
88.9–190.5 T-L 23�1
88.9–190.5 S-L 20�9

7050-T76511 Extrusion L-T 34�1

7075-T651 Plate ≥15�2 L-T 28�6
≥12�7 T-L 24�2

S-L 19�8

7075-T7351 Plate ≥25�4 L-T 33
≥12�7 T-L 29�7
≥12�7 S-L 24�2

7075-T73511 Extrusion ≥22�9 L-T 38�5
25.4–177.8 T-L 22

≥17�8 T-L 25�3
≥12�7 S-L 22

(Continued)
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Table 1.1. (Continued)

Material Thickness (mm) Orientation Plain Strain
KIC�MPa

√
m�

7075-T7352 Hand forging L-T 36�3
≥20�3 T-L 28�6

7075-T7651 Plate ≥20�3 L-T 31�9
≥12�7 T-L 25�3
≥12�7 S-L 19�8

7075-T7651 Clad plate 12.7–15.2 L-T 27�5
12.7–15.2 T-L 26�4

7075-T76511 Extrusion 33–177.8 L-T 38�5
30.5 T-L 25�3

7175-T651 Plate L-T 28�6
T-L 24�2

7175-T7351 Plate L-T 36�3
T-L 29�7

7175-T73511 Extrusion ≥17�8 L-T 36�3
≥12�7 T-L 27�5

7175-T7651 Clad plate L-T 35�2
T-L 29�7

7175-T7651 Plate L-T 35�2
T-L 27�5

7475-T651 Plate L-T 41�8
15.2–50.8 T-L 37�4
≥15�2 S-L 30�8

7475-T7351 Plate 33–101.6 L-T 51�6
≥33 T-L 40�6
≥17�8 S-L 33

7475-T7651 Plate 25.4–50.8 L-T 45�1
≥25�4 T-L 39�6

sheet thickness, an engineering concept of apparent plane stress fracture toughness will

be used. Fracture of thin metallic structure involves a stable tearing phase before an

unstable crack growth leading to the final catastrophic failure. As the crack grows, the

material becomes tougher due to a requirement of higher plastic energy dissipation at

the crack tip. As a result, the applied load and thus the applied stress intensity factor

must be increased to continue to drive the fracture beyond the initial onset of fracture. If

the applied load or stress intensity remains the same beyond the initial onset of fracture,

the crack propagation will be stopped. The apparent fracture toughness is determined

as the critical stress intensity factor at the final failure load (or the load when the crack

becomes unstable) and based on the original crack length.

(b) Fatigue crack growth

Crack growth under cyclic fatigue loads can be also predicted by using the stress intensity

factor. Two different cracks will have equal rate of growth if they experience the same

stress and environmental conditions at the crack tip. Thus, besides the environmental
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effect, cracks of the same stress intensity factor history will grow in the same manner.

In general, the fatigue crack growth rate is a function of both the stress intensity factor

range �K and the cyclic stress ratio R, i.e.,

da

dN
= f ��K
 R� (1.6)

In Equation (1.6), �K is defined as the difference of the stress intensity factors at the

maximum (or peak) and the minimum (or valley) of the loading cycle while R is the

ratio of the minimum stress intensity factor to the maximum stress intensity factor.

For an un-patched crack or a patched crack without thermally induced residual stress,

R = Kmin-load

Kmax-load

= ��−max load

��−min load

. The effect of R-ratio can be explained by a phenomenon

called the plasticity-induced closure. Even though there are other forms of crack closure

such as roughness and oxide-induced closure, the plasticity-induced closure appears to

be more relevant to the R-ratio effect. As the crack grows under cyclic loading, residual

plastic deformed material (sometimes also called residual plastic stretch) is left on the

crack surfaces. During unloading, these surfaces contact each other at the minimum

applied load. As the result of this contact (closure), during reloading, the crack will not

fully open at the minimum load even when this minimum load is tension. The crack

will start to fully open at a higher load than the minimum load during reloading. Since

only the crack-opening portion of the loading cycle will contribute to the fatigue crack

growth and if the crack opening during reloading accounts for the closure effect, the

stress intensity factor range based on the stresses at the maximum loading and at the

first crack opening during reloading, but not the actual stress intensity factor range,

should be used in the da/dN relation. This newly defined stress intensity factor range

is commonly referred to as the effective stress intensity factor range, i.e., �Keff . When

the plasticity-induced closure is accounted for in the crack growth model, da/dN data

for different R-ratios can be collapsed onto a unique da/dN vs �Keff curve.

Analytical models for crack closure were developed first by Dill and Saff (1976),

Budiansky and Hutchinson (1978), and Newman (1981, 1982, 1992). These models

were all based on the Dugdale model for the crack-tip plasticity (Dugdale, 1960). These

models were used to calculate the load at the first crack opening during reloading. It is

beyond the scope of this book to discuss these models in details. Only an extension of

the Budiansky and Hutchinson’s crack closure model to large-scale yielding is briefly

reviewed in Chapter 8, in relevance to the topic of fatigue crack growth in a repaired

structure.



CHAPTER 2

Theory of Bonded Doublers and Bonded Joints

2.1 Introduction

One of the keys to understanding the analysis and design of patches is the relative

displacements between the patch and the skin in the immediate vicinity of a damage

and around the edge of the patch. In many instances, these relative displacements

are calculated approximately using the conventional one-dimensional theory of bonded

doublers or joints for reasons of simplicity or another. The theories of bonded doublers

and joints are therefore presented in this chapter.

Since a bonded doubler or joint represents a multiplayer structure involving two

substrates and a thin adhesive layer, the stress states that exist at various levels in a bonded

doubler or joint are very complex. Considerable effort has been devoted to develop

simple yet accurate analytical estimates for bonded doublers and joints. Consequently,

many theories exist. However, in this chapter, theories that provide the same level of

fidelity in the models as have been employed by Volkensen (1938) and Goland and

Reissner (1944) for bonded joints are presented. These theories are essentially based on

the work of Hart-Smith (1973a,b,c, 1974, 1982, 1999, 2005b), and they are applied to

doubler and joint configurations that are representative of a bonded repair. They also

include an elastic-plastic representation for the adhesive. Using these relatively simple

theories, explicit solutions can be derived and all features of prime importance can be

studied. Other important effects that are not considered in these theories, except for the

coupling effect between peel and shear behavior in an unbalanced doubler or joint which

will be covered separately in Chapter 7 when dealing with tapered joint and doubler,

will be augmented in the second part of the chapter. As a final note, all analyses in this

chapter are conducted for plane strain condition, which results will be used extensively

in some latter chapters.

16
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2.2 Stress Analysis of Two-Sided Doublers and Double-Strap Joints

As mentioned in Section 2.1, the analysis presented in this section follows that

provided by Volkensen (1938) and Hart-Smith (1973b). The analysis with the elastic

adhesive representation is delineated first and followed by the one with elastic-plastic

characterization of the adhesive.

2.2.1 Elastic analysis of two-sided doublers and double-strap joints

Referring to Figure 2.1, the basic differential equations are

Horizontal force equilibrium

dNp

dx
− ��A� = 0

dNs

dx
+ ��A� = 0

(2.1)

Adherend stress–strain relations

dup

dx
= Np

E′
ptp

+�p�T

dus
dx

= Ns

E′
sts

+�s�T (2.2)

E′
s
p =

Es
p

1−�2s
p
Adhesive elastic stress–strain relation

��A� =GA�
�A� =−GA

tA

(
us−up

)
(2.3)

where u is the longitudinal displacement of the adherend; N is the load per unit width;

� and � are the shear stress and strain; E
 �
 t, and G are the extensional modulus,

thermal expansion coefficient, thickness and shear modulus, respectively; the subscripts

and superscripts s, p and A denote the skin, patch (doubler or strap) and adhesive,

respectively; �T is the temperature change measured from the stress free temperature.

Differentiating Equation (2.3) once and substituting (2.2) into the resulting equation yield

d��A�

dx
=−GA

tA

(
dus
dx

− dup

dx

)

=−GA

tA

[
Ns

E′
sts

− Np

E′
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+ (�s−�p

)
�T

]
(2.4)
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Fig. 2.1. Geometry of a two-sided doubler and a double strap joint, and terminologies used in

their analyses.

The differential equation governing the adhesive shear–strain distribution follows by

differentiation of Equation (2.4) and elimination of
dNs

dx
and

dNp

dx
from the resulting

equation using (2.1).

d2��A�

dx2
−�2

A�
�A� = 0 (2.5)

where

�2
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+ 1

E′
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1+S
S

)
1

E′
sts

(2.6)
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and S is the ratio of the patch (doubler or strap) stiffness to the skin stiffness, i.e.,

S = E′
ptp

E′
sts

(2.7)

The general solution of Equation (2.5) is

��A� = A sinh ��Ax�+B cosh ��Ax� (2.8)

The constants A and B are evaluated from the boundary conditions on d��A�

dx
and ��A�.

Choosing the origin of the x-coordinate as the middle of the doubler or joint, it is clear

that for a doubler

��A� �0�= 0 (2.9)

Ns ���= P
Np ���= 0

(2.10)

Condition (2.9) implies B = 0. Evaluating Equation (2.4) at x = �, invoking condition

(2.10), and utilizing the results B = 0 and ��A� given by (2.8) provide

A=− GA

�AtA cosh ��A��

[
P

E′
sts

+ (�s−�p

)
�T

]

=− GA

�AtA cosh ��A��

[
��
E′

s

+ (�s−�p

)
�T

]
(2.11)

noting that P = ��ts. Hence, Equation (2.8) becomes

��A� =− GA sinh ��Ax�

�AtA cosh ��A��

[
��
E′

s

+ (�s−�p

)
�T

]
(2.12)

The negative sign on the right-hand side of (2.12) signifies that the adhesive shear stress

��A� is in opposite direction to that shown in Figure 2.1, as expected.

In contrast, for a double-strap joint, the boundary conditions will be given by

Ns �0�= 0

Np �0�= P
(2.13)

Ns ���= P

Np ���= 0

(2.14)
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Evaluating Equation (2.4) at x = 0 and x = �, respectively, noting ��A� given by (2.8),

and making use of Equations (2.13)–(2.14) yield

A=− GA

�AtA

[
− P

E′
ptp

+ (�s−�p

)
�T

]

=− GA

�AtA

[
−��ts
E′

ptp
+ (�s−�p

)
�T

]

=− GA

�AtA

[
− ��
E′

sS
+ (�s−�p

)
�T

]
(2.15)

B =− GA

�AtA sinh ��A��

[
��
E′

s

+ (�s−�p

)
�T

]
−Acosh ��A��

sinh ��A��

=− GA

�AtA sinh ��A��

[
��
E′

s

+ (�s−�p

)
�T + ��

E′
sS

cosh ��A��

− (�s−�p

)
�T cosh ��A��

]

or

B =− GA

�AtA sinh ��A��

{
��
E′

s

[
1+ cosh ��A��

S

]
+ (�s−�p

)
�T �1− cosh ��A��	

}

(2.16)

where S is again the doubler or strap stiffness to skin stiffness ratio.

Thus,

��A� =−GA sinh ��Ax�

�AtA

[
− ��
S ·E′

s

+ (�s−�p

)
�T

]

− GA cosh ��Ax�

�AtA sinh ��A��

{
��
E′

s

[
1+ cosh ��A��

S

]
+ (�s−�p

)
�T �1− cosh ��A��	

}
(2.17)

for a double-strap joint.

For a long overlap bonded doubler or strap joint, �A�� 1. In that case, Equations (2.12)

and (2.17) reduce to the same following equation for points near the end of the doubler

or strap, i.e., for x = �−��� and ��� � 1,

��A� =−GAe
−�A�

�AtA

[
��
E′

s

+ (�s−�p

)
�T

]
(2.18)
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In deriving Equation (2.18), the following approximations had been used in the

simplification

sinh ��A��≈ cosh ��A��≈
e�A�

2

1

sinh ��A��
≈ 1

cosh ��A��
≈ 0

(2.19)

for �A�� 1.

Several conclusions can be made from examination of this special case �A�� 1. First,

the solutions near the end of the doubler or strap are the same for both doubler and joint

configurations, provided that their overlaps are sufficiently long. The interruption of the

skin in the joint configuration has no effect to the solution near the end of the strap in

a long overlap joint. In a similar manner, the adhesive shear–stress distribution near the

break of the skin in the long overlap joint can be obtained from Equation (2.17) as

��A� ≈−GA sinh ��Ax�

�AtA

[
− ��
S ·E′

s

+ (�s−�p

)
�T

]

− GA cosh ��Ax�

�AtA

[
��
S ·E′

s

− (�s−�p

)
�T

]

≈−GAe
−�A �x�

�AtA

[
��
S ·E′

s

− (�s−�p

)
�T

]
(2.20)

for �x� � 1 and � � 1, and noting that �A� � 1 so that Equation (2.19) holds.

Equations (2.18) and (2.20) suggest that the doubler or strap and skin strain together

throughout the interior of the doubler or strap, except for load transfer zones near the

break of the skin in the joint configuration and near the end of the overlap in both joint

and doubler configurations. This is because the adhesive shear stress ��A� decays expo-
nentially within these transfer zones and becomes zero outside them. The load transfer

between the skin and the doubler or strap effectively occurs over a length of order �−1
A .

A second conclusion drawn from the special case �A�� 1 is that an adhesively bonded

skin and a rigidly bonded skin will have approximately the same overall stiffness with

the percentage difference proportional to the order of 1/�A� (Rose, 1981, 1982, 1988).
Consequently, the redistribution of stress due to a bonded patch can be computed using

a rigid bond assumption. This inclusion analogy for such stress computation was first

exploited by Rose (1981, 1982, 1988). Thirdly, from Equations (2.18) and (2.20), the

maximum shear adhesive stress �
�A�
max at the end of the doubler or strap is given by

− GA

�AtA

[
��
E′
s
− (�s−�p

)
�T
]
and it is equal to − GA

�AtA

[
��
S·E′

s
− (�s−�p

)
�T
]
at the break of

the skin in the joint configuration. Thus, the maximum adhesive shear stress is inversely

proportional to the square root of the adhesive thickness, i.e., �
�A�
max ∝ 1√

tA
, recalling that �A

is given by Equation (2.6). Finally, by noting that the thermal terms in Equations (2.18)

and (2.20) are equal and opposite, it is clear that the net adhesive shear stress ��A� for
the case of purely thermal loading will be zero, as expected.
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It will be shown in Chapter 3 that the skin stress in the overlap of a rigidly bonded

doubler configuration and the displacement of the skin at the break point in a joint

configuration are also of interest. The skin stress in the overlap of a doubler configuration

can be determined from the same strain condition between the doubler and the skin,

and from the horizontal force equilibrium equation. In the absence of thermal loading,

i.e., �T = 0, this skin stress denoted by �0 is derived as follows

s = p
E′

ssts+E′
pptp = ��ts

(2.21)

Thus,

s =
��ts

E′
sts+E′

ptp

�0 = �s �0�= E′
ss =

��E′
sts

E′
sts+E′

ptp
= ��

1+S

(2.22)

On the other hand, the displacement of the skin at the break point of a double-strap joint

can be evaluated from Equation (2.3) for x = 0, using the result of Equation (2.20) and

noting that up = 0 at x = 0 due to symmetry. Hence,

us�x = 0�=−��A� �x = 0� · tA
GA

= 1

�A

[
��
S ·E′

s

− (�s−�p

)
�T

]
(2.23)

For the special case �T = 0, Equation (2.23) can be rewritten as

us�x = 0�= 1

�A

(
��
S ·E′

s

)

= �A

�2
A

(
��
S ·E′

s

)

= �AtAts
GA

· ��
1+S (2.24)

where the term �2
A in the denominator has been substituted by Equation (2.6). The above

equation can also be expressed in terms of �0 as

us�x = 0�= �AtAts
GA

�0 (2.25)

by virtue of Equation (2.22).
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2.2.2 Elastic-plastic analysis of two-sided doublers and double-strap joints

In this case, the adhesive stress–strain relation (2.3) must be modified. As before, the

adhesive shear strain is given by

��A� =−us−up
tA

(2.26)

while the adhesive shear stress within the elastic region (of length d of Figure 2.2)

is given by Equation (2.3). However, through the remaining plastic region, the adhesive

shear stress is taken as

��A� =−��A�Y = constant (2.27)

where �
�A�
Y is the yield strength of the adhesive and the adhesive is characterized by an

elastic-perfectly-plastic model (Figure 2.3). In Equation (2.27), ��A� has been set equal to
negative �

�A�
Y since ��A� as found in Section 2.2.1 will be in opposite direction with that

shown in Figure 2.1. The equilibrium equation and the adherend stress–strain relations

for this case of elastic-plastic adhesive are still specified by Equations (2.1)–(2.2).

Differentiating Equation (2.26) once and substituting Equation (2.2) into the resulting

equation yield

d��A�

dx
=− 1

tA

[
Ns

E′
sts

− Np

E′
ptp

+ (�s−�p

)
�T

]
(2.28)

The differential equation governing the adhesive shear–strain distribution follows by

differentiation of Equation (2.28) and elimination of
dNs

dx
and

dNp

dx
from the resulting

equation using (2.1).

τ(A)

0

2

Elastic region d for doubler

Plastic region 

x

y ς
2P 2P

2ts xx2ts

Fig. 2.2. Geometry for elastic-plastic analysis of a two-sided doubler.
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x
Failure

Shear
stress

Shear strain

Equal area

GA =

τ(A)

Y Y
τ(A)/γ 

(A)

Y
γ 

(A)
max

γ 
(A)

P
γ 

(A)

Fig. 2.3. A typical shear stress–strain curve for an adhesive. For simplicity, the adhesive is

idealized as an elastic-perfectly-plastic material as shown.

d2��A�

dx2
− ��A�

tA

(
1

E′
sts

− 1

E′
ptp

)
= 0

d2��A�

dx2
− GA

tA

(
1

E′
sts

− 1

E′
ptp

)
��A�

GA

= 0

d2��A�

dx2
−�2

A

��A�

GA

= 0

(2.29)

It should be noted that Equation (2.29) will be the same as (2.4) when the adhesive

remains elastic since the latter equation can be obtained from the former by multiplying

both sides of the equation by a constant GA. Equation (2.29) has the general solution

��A� = A sinh ��Ax�+B cosh ��Ax� if
∣∣��A�∣∣< ��A�Y

��A� =−�
2
A�

�A�
Y

2GA

x2+Cx+F if
∣∣��A�∣∣= ��A�Y

(2.30)

As in Section 2.2.1, the solution of a double-sided bonded doubler will be derived first

due to its simplicity. In the case of bonded doubler, all high load transfer zone will occur

near the end of the overlap. Referring to Figure 2.2, the plastic region is assumed to

occur near the end of the overlap, i.e., �x�> d, while the elastic region is within length

d where d is also part of the sought solution. For algebraic manipulation, the general

solution (2.30) will be rewritten as following for the doubler configuration

��A� = A sinh ��Ax� �x� ≤ d (2.31)
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and

��A� =−�
2
A�

�A�
Y

2GA

�2+C�+F �x�> d or 0 ≤ � < �−d (2.32)

where � = x− d from Figure 2.2, and the constant B has been set to zero due to

anti-symmetry requirement for the elastic adhesive shear stress. The boundary conditions

are expressible in the form

��A� =− �
�A�
Y

GA
=−��A�Y at x = d and � = 0 (2.33)

d��A�

dx
= d��A�

d�
at x = d and � = 0 (2.34)

and

d��A�

d�
=− 1

tA

[
��
E′

s

+ (�s−�p

)
�T

]
at � = �−d (2.35)

via Equation (2.28) with Ns �� = �−d�= P = ��ts and Np �� = �−d�= 0. From this

A=− �
�A�
Y

sinh ��Ad�
(2.36)

F =−��A�Y (2.37)

C =− �A�
�A�
Y

tanh ��Ad�
(2.38)

�A ·d · tanh ��Ad�−1

tanh ��Ad�
= �A�−

1

�AtA�
�A�
Y

[
��
E′

s

+ (�s−�p

)
�T

]
(2.39)

Thus,

��A� =− �
�A�
Y

sinh ��Ad�
sinh ��Ax� �x� ≤ d (2.40)

��A� =−��A�Y

[
1+ �A

tanh ��Ad�
�+ �2

A

2
�2
]

0 ≤ � < �−d (2.41)

where d is determined from the transcendental Equation (2.39). When d as determined

from Equation (2.39) for a given applied stress �� is negative, what it means is that
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the far-field-applied stress is not high enough to induce plastic deformation at the end

of doubler or strap. For a sufficiently long overlap, tanh ��Ad�→ 1 since �Ad� 1,

and the maximum load per unit width which can be applied to the structure before

bond failure can be evaluated from Equation (2.41) at the peak end of the adhesive

shear strain distribution, i.e., � = �− d, which can be expressed in terms of the

adhesive shear strain allowable as

Pmax�A

�
�A�
Y

=
(
1+ 1

S

)⎡⎢⎣
√√√√1+ 2�

�A�
p

�
�A�
Y

+ �A

(
�p−�s

)
�T

�
�A�
Y

(
1

E′
sts
+ 1

E′
ptp

)
⎤
⎥⎦ (2.42)

where �
�A�
p is the maximum allowable plastic strain of the adhesive as defined in

Figure 2.3.

The solution of a double-strap joint can be derived in a similar manner as that for a

doubler configuration. However, new boundary conditions must be employed and they

are given by (Figure 2.4)

��A� =−��A�Y at x =−d

2
or �1 = 0 (2.43)

��A� =−��A�Y at x =+d

2
or �2 = 0 (2.44)

d��A�

dx
=−d��A�

d�1
at x =−d

2
or �1 = 0 (2.45)

d��A�

dx
= d��A�

d�2
at x =+d

2
or �2 = 0 (2.46)

τ(A)

0

2

Elastic region d for joint

Plastic region b

x

yς1

Plastic region c

2P 2P

2t xx2ts

ς2

Fig. 2.4. Geometry for elastic-plastic analysis of a double strap joint.
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−d��A�

d�1
=− 1

tA

[
−��ts
E′

ptp
+ (�s−�p

)
�T

]
�1 = c (2.47)

d��A�

d�2
=− 1

tA

[
��ts
E′

sts
+ (�s−�p

)
�T

]
�2 = b (2.48)

c+d+b = � (2.49)

From Equation (2.30), the solution of the adhesive shear strain in these zones of

Figure 2.4 can be expressed as

��A� = A sinh ��Ax�+B cosh ��Ax� − d

2
≤ x ≤ d

2
(2.50)

��A� =−�
2
A�

�A�
Y

2GA

�21 +C�1+F 0 ≤ �1 < c (2.51)

��A� =−�
2
A�

�A�
Y

2GA

�22 +H�2+ J 0 ≤ �2 < b (2.52)

where �
�A�
Y = �

�A�
Y

GA
has been used in the simplification. From this

F =−��A�Y (2.53)

J =−��A�Y (2.54)

B =− �
�A�
Y

cosh
(
�Ad

2

) (2.55)

A= 0 (2.56)

C =−�A�
�A�
Y tanh

(
�Ad

2

)
(2.57)

H =−�A�
�A�
Y tanh

(
�Ad

2

)
(2.58)

c = 1

tA�
2
A�

�A�
Y

[
��ts
E′

ptp
+ (�p−�s

)
�T

]
−

tanh
[
�A��−b−c�

2

]
�A

(2.59)

b = 1

tA�
2
A�

�A�
Y

[
��
E′

s

− (�p−�s

)
�T

]
−

tanh
[
�A��−b−c�

2

]
�A

(2.60)
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It is clear from Equations (2.53)–(2.60) that in order to have the explicit solution one

must first solve iteratively (2.59) and (2.60) simultaneously for the plastic zone sizes

b and c since some of the unknown coefficients in (2.50)–(2.52) are given in terms

of d which in turn depends on b and c via (2.49). Depending on the level of the far-field-
applied stress ��
 c and b as determined from (2.59) and (2.60) may be both positive,

both negative, or one positive and the other negative. A negative value of b and c
means that �� is not sufficiently high to induce the plastic deformation in the adhesive

at these two ends of the overlap. For a long overlap, there is no interaction between

the overlap end and the skin interruption end. In that case, the solution near the end of

the overlap of a joint configuration is given by the same formula as that for a doubler

configuration. However, the solution near the skin interruption end must be determined

from Equation (2.51) with the constants C
 F and c given by (2.57), (2.53) and (2.59),

respectively. Since tanh
[
�A��−b−c�

2

]
= tanh

(
�Ad

2

)
→ 1 for �� b
 c and for �Ad� 1,

therefore, from Equation (2.59), c = 1

tA�
2
A�

�A�
Y

[
��ts
E′
ptp

+ (�p−�s

)
�T
]
− 1

�A
. Similarly, for

large �, Equation (2.57) is simplified to C =−�A�
�A�
Y . Hence, from Equation (2.26) with

up = 0 (due to the symmetry) and from (2.51) with c and C given above while F given

by (2.53), a straightforward algebraic manipulation yields the displacement of the skin

at the interruption end when �T = 0 as

us ��1 = c�=
tA�

�A�
Y

2

⎡
⎣1+

(
��ts

tA�AE
′
ptp�

�A�
Y

)2
⎤
⎦ (2.61)

By noting from Equation (2.6) that �2
A = GA

tA

(
1+S
S

)
1

E′
sts
, Equation (2.61) can also be cast

into the following form

us ��1 = c�=
tA�

�A�
Y

2GA

[
1+
(
�0

�0Y

)2
]

(2.62)

where �0 is defined previously by (2.22) as �0 = ��
1+S 
 �oY = �

�A�
Y

�Ats
, and �

�A�
Y is again the

yield strength of the adhesive. The result of Equation (2.62) will be utilized in Chapter 3

for computing the stress intensity factor of a crack after patching.

2.2.3 Peel stresses in two-sided doublers and double-strap joints

For thick patches the bond may fail in peel before its shear strength potential could be

reached. This section therefore presents an analysis that deals with the peel stresses in the

bond line. The geometry and nomenclature for this analysis are illustrated in Figure 2.5.

The differential equations for the outer patch are

Moment equilibrium

dMp

dx
= Vp−

��A�tp

2
(2.63)
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σ 
(A)

Adhesive

Mp

CL

CL

x

τ 
(A)

Vp τ 
(A)

σ 
(A)

Vp + dVp

Mp + dMp

Fig. 2.5. Geometry for analysis of peel stress in a two-sided doubler.

Force equilibrium

dVp

dx
= ��A� (2.64)

Moment–curvature relation

d2wp

dx2
=−Mp

Dp

(2.65)

Adhesive stress–strain relation

�A� = ��A�

EA

= wp−ws

tA
= wp

tA
(2.66)

where ws is set equal to zero since the doubler or joint configuration is symmetric

with respect to the middle plane of the skin, EA is the extensional modulus of the

adhesive, Dp is the bending rigidity of the patch, i.e., Dp = E′
pt

3
p

12

 Vp is the vertical shear

force acting on the cross section plane of the patch, and the rest are previously defined.

To uncouple the differential equations governing the peel and shear stress, the shear

stress ��A� in Equation (2.63) is set constant. This simplification is justified whenever

the loads are so high as to induce plastic deformation and thus constant shear stress �
�A�
Y

in the adhesive over significant distance from the critical end at which the peel stress

peaks. From Equations (2.63)–(2.66), differentiation and elimination yield the governing

differential for the transverse deflection of the patch as

d4wp

dx4
+ EA

DptA
wp = 0 (2.67)
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It should be emphasized that since (2.67) has been derived approximately, the peel stress

solution obtained in this section may not satisfy all the required boundary conditions

exactly.

To simplify the algebraic manipulation, it is appropriate to assume that the overlap is

long since it is always the case in practice to preclude inadequate shear strength. For a

sufficiently long overlap, the peel stresses at the end of the overlap are identical to

those at the interruption end of the skin, provided that the adhesive undergoes plastic

deformation at these both ends due to shears. The peel solution therefore will be derived

particularly for points near the end of the overlap. Under the long overlap assumption,

the solution of Equation (2.67) is given by

wp = Ae−�̂x cos ��̂x�+Be−�̂x sin ��̂x� (2.68)

where

�̂ =
(

EA

4DptA

)1/4

(2.69)

and x is now measured from the end of the overlap as shown in Figure 2.5. The boundary

conditions defining the constants A and B are

Mp =−Dp

d2wp

dx2
= 0 at x = 0 (2.70)

and Vp = 0 at x = 0, whence from Equations (2.63) and (2.65)

dMp

dx
=−�

�A�
Y tp

2
=−Dp

d3wp

dx3
at x = 0 (2.71)

where ��A� in Equation (2.63) has been set equal to the adhesive yield strength �
�A�
Y due to

plastic deformation occurring at the overlap end. Of these, condition (2.70) requires that

d2wp

dx2

∣∣∣∣
x=0

= 2�̂2e−�̂x �A sin ��̂x�−B cos ��̂x�	∣∣
x=0

= 0 (2.72)

or

B = 0 (2.73)

In contrast, condition (2.71) provides

d3wp

dx3

∣∣∣∣
x=0

= 2A�̂3 �− sin ��̂x�+ cos ��̂x�	 e−�̂x+2B�̂3 �cos ��̂x�+ sin ��̂x�	 e−�̂x
∣∣
x=0

= �
�A�
Y tp

2Dp

= 2�̂3 �A+B� (2.74)
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Substituting (2.73) into (2.74) yields

A= �
�A�
Y tp

4Dp�̂
3

(2.75)

and from Equation (2.68)

wp =
�
�A�
Y tp

4Dp�̂
3
cos ��̂x� e−�̂x (2.76)

Hence, the maximum peel stress in the adhesive can be determined by evaluating

Equation (2.66) at x = 0 with wp given by (2.76) as

��A�max =
�
�A�
Y tp

4Dp�̂
3
· EA

tA

= ��A�Y

(
3EAtp

E′
ptA

)1/4

(2.77)

Even though Equation (2.77) has been derived under the assumption that significant

plastic deformation occurs at the ends of the overlap, it is also used by Hart-Smith for

the case that the adhesive shear stress is still below its yield strength as

��A�max = ��A�max

(
3EAtp

E′
ptA

)1/4

(2.78)

where �
�A�
max is the maximum shear stress in the adhesive at the end of the overlap which

is equal to �
�A�
Y if the adhesive undergoes plastic deformation there.

2.3 Stress Analysis of One-Sided Bonded Doublers and Single-Strap Joints

The analysis of the one-sided bonded doublers and single-strap joints proceeds in three

stages, followed the Hart-Smith approach (1999, 2005b), which can be considered as an

extension of the Goland–Reissner solution of a single-lap joint to the present doubler and

joint configurations. The typical configurations of these doublers and joints are shown

schematically in Figure 2.6(a). The first is the establishment of the bending moment in

the adherends at the end of the overlap and also at the skin interruption end in the case

of joint configuration. The second is the derivation of an expression for the peel stresses

induced in the adhesive by the out-of-plane deflection (bending) due to the eccentricity

in the load path. The third solution is for the adhesive shear stress distribution associated

with transferring the load from one adherend to the other. Various approximations

have been used in each stage so that the proposed solution process is analytically

simple to apply. The analysis conducted here is rather limited to the case of uniform

cooling and with tensile loads. Under such thermo-mechanical loading, the structure will
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Fig. 2.6. Terminologies for analyses of a one-sided doubler and a single strap joint: (a) geometry

of a doubler and joint; (b) deformed shape of a doubler in moment analysis; (c) moment distribution

at the skin interruption end in stage I analysis of a strap joint; and (d) differential elements for

analysis of adhesive shear and peel stresses.
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exhibit geometrically nonlinear response but without experiencing buckling or global

instability.

The Hart-Smith three-stage analysis approach will be described in Sections 2.3.1–2.3.3.

It is worthy to note that the response of a patched beam subjected to a variety of

thermo-mechanical loading (uniform heating/cooling with tensile/compressive loads)

and support conditions (clamped or hinged ends) have been considered by Karlsson

and Bottega (2000a,b). They employed a variational formulation which results in a

self-consistent set of equations and conditions governing the response of the structural

system. However, since the latter approach will yield identical results to those presented

here for the combined uniform cooling and tensile loading and since it is much more

complicated than the former Hart-Smith approach, that approach will not be discussed

in this chapter. Furthermore, it is also found from their work and the Hart-Smith’s work

that the current solution will become indeterminate for a vanishing small tensile load.

This degenerated solution for a case of purely thermal load will be treated separately

in Section 5.3.1(a) of Chapter 5.

2.3.1 Stage I: Solution for bending moment at ends and middle of overlap

The equations governing the adhesive stresses require knowledge of the bending moment

at the ends of the overlap as boundary conditions. Therefore, the analysis starts with

a solution for these quantities (Figure 2.6(b)). It was shown in Section 2.1 that for a

sufficiently long overlap, the load transfer between adherends are confined to narrow

zones at the ends of the overlap and for joints also at the skin interruption end in joints,

with only negligible adhesive shear stress throughout the elastic trough in between these

load transfer zones. It is therefore appropriate to assume in this analysis portion for the

adherend bending moments (except for the mentioned narrow load transfer zones) that

the doubler or strap is rigidly bonded to the skin plate. As before, for simplicity, the

bending moments are derived first for the doubler configuration. The bending moment

MH in the skin, outside the overlap, is expressed by

MH =−PwH �x�> � (2.80)

where wH is the transverse deflection outside the overlap and P is the applied longitudinal

load per unit width. In contrast, the bending momentMI in the overlap is given as follows.

MI =−P �wI+ ê�+M therm =−P
(
wI+ ê−

M therm

P

)
�x� ≤ �

ê=
(
ts+tp
2

)
S

1+S

M therm = F therm ·
(
ts+ tp
2

)

F therm = E′
stsE

′
ptp
(
�p−�s

)
�T

E′
sts+E′

ptp

(2.81)
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where wI is defined as the transverse deflection inside the overlap, ê is the eccentricity,

S is the patch stiffness ratio, and the rest are previously defined. ê is defined as the

distance between the centroid of the skin layer alone and the centroid of the patch–skin

combination in the rigidly bonded overlap. Similar to Equation (2.65), the classical

plate-bending theory relate the curvature to the bending moment via the relation

MH =−Ds

d2wH

dx2
(2.82)

MI =−DI

d2wI

dx2
(2.83)

in which

Ds =
E′

st
3
s

12

DI = IM ·Ds

(2.84)

IM = 1+ E′
st

3
s

E′
pt

3
p

+
(
1+ ts

tp

)2
(
1+ E′

ptp

E′
sts

) (2.85)

Ds and DI are the bending stiffnesses of the skin and of the rigidly bonded overlap,

respectively. Substituting Equation (2.82) into (2.80), and (2.83) into (2.81) yields

d2wH

dx2
− P

Ds

wH = 0 (2.86)

d2wI

dx2
− P

DI

wI =
P ·
(
ê− M therm

P

)
DI

(2.87)

The respective solutions of (2.86) and (2.87) are

wH = A cosh ��Hx�+B sinh ��Hx� �x�> � (2.88)

wI = C cosh ��Ix�+F sinh ��Ix�− ê+
M therm

P
�x� ≤ � (2.89)

where

�H =
√
P

Ds

(2.90)

�I =
√
P

DI

(2.91)
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The four integration constants are determined from the following four boundary

conditions

dwI

dx

∣∣∣∣
x=0

= 0 (symmetry) (2.92)

wH ���= wI ��� (displacement continuity) (2.93)

dwH

dx
���= dwI

dx
��� (slope continuity) (2.94)

wH �L�= 0 (simply supported at the ends) (2.95)

Condition (2.92) requires that

F = 0 (2.96)

On the other hand, condition (2.95) provides

A=−B tanh ��HL� (2.97)

The displacement compatibility (2.93) requires that

B �− tanh ��HL� cosh ��H��+ sinh ��H��	= C cosh ��I��−
(
ê−M therm

P

)
(2.98)

whence

C = B�− tanh ��HL� cosh ��H��+ sinh ��H��	

cosh ��I��
+
(
ê− M therm

P

)
cosh ��I��

(2.99)

and the continuity of slope (2.94) requires that

�IC sinh ��I��= B�H �− tanh ��HL� sinh ��H��+ cosh ��H��	 (2.100)

Substitution of (2.99) into (2.100) gives

B =−
(
ê−M therm

P

)
cosh ��H�� �tanh ��H��− tanh ��HL�	

{
1− �H �1− tanh ��HL� tanh ��H��	

�I tanh ��I�� �tanh ��H��− tanh ��HL�	

}

(2.101)
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From Equation (2.99) with B given by (2.101), C is found to be

C =
(
ê− M therm

P

)
cosh ��I��

⎧⎪⎪⎨
⎪⎪⎩

1

1− �I tanh ��I�� �tanh ��H��− tanh ��HL�	

�H �1− tanh ��HL� tanh ��H��	

⎫⎪⎪⎬
⎪⎪⎭ (2.102)

With the constants of integration A
 B
 C and F having been explicitly derived, the

analysis of the adherend bending moment for a doubler configuration is completed. It is

interesting to note from Equation (2.89) that the deflection at the center of the doubler

is given by

wI �x = 0�= C−
(
ê−M therm

P

)

=
(
ê− M therm

P

)
cosh ��I��

⎧⎪⎪⎨
⎪⎪⎩

1

1− �I tanh ��I�� �tanh ��H��− tanh ��HL�	

�H �1− tanh ��HL� tanh ��H��	

− cosh ��I��

⎫⎪⎪⎬
⎪⎪⎭

(2.103)

This solution has been verified for a particular doubler configuration specified in

Table 2.1, when �T = 0 (and thus M therm = 0� by comparing it to the corresponding FE

result in Figure 2.7. Furthermore, for L� 1, it is very easy to show that tanh ��HL�→ 1,

and C→
(
ê−Mtherm

P

)
cosh��I��+ �I

�H
sinh��I��

so that wI from (2.89) is reduced to the following simple form

wI �x�=
(
ê− M therm

P

)
cosh ��Ix�

cosh ��I��+ �I
�H
sinh ��I��

−
(
ê−M therm

P

)
for L� 1 (2.104)

The form of wI given by Equation (2.104) will be exploited in the next portion of this

analysis as well as in the next two sections.

Table 2.1. Dimensions and material properties of a typical repair.

Layer Young’s
modulus (GPa)

Poisson’s
ratio

Thickness
(mm)

Skin 71 0�3 3�0
Patch 207 0�3 1�0
Adhesive 1�89 0�3 0�2



Theory of Bonded Doublers and Bonded Joints 37

–1.0

–0.8

–0.6

–0.4

–0.2

0

0 100 200 300 400

0 1 2 3

FE results (non-linear)

Analytical solution

Applied stress, σ∞ (MPa)

D
ef

le
ct

io
n 

at
 c

en
te

r 
of

 jo
in

t, 
w

I/ê

Normalized overlap length, ξI

Fig. 2.7. Deflection of the one-sided doubler accounting for geometrically nonlinear deformation

at the center of the overlap.

The bending moment inside the overlap follows from Equations (2.104) and (2.83) as

MI �x�=−
P ·
(
ê−M therm

P

)

cosh ��I��+
�I
�H

sinh ��I��

cosh ��Ix� for L� 1 (2.105)

It is interesting to note from Equation (2.105) that for a combination of a long overlap

and high load P, the bending moment vanishes at the middle of the doubler since

cosh ��4c�� 1
 sinh ��4c�� 1 for �I�� 1. Physically, for a high load P, the skin/patch
combination tries to deflect sufficiently to align its centroid with the line of action of

the applied load.

On the other hand, the bending moment outside the overlap is evaluated from

Equations (2.82), (2.88) and (2.97) as

MH �x�=−Ds

d2wH

dx2
=−Ds�

2
HB �− tanh ��HL� cosh ��Hx�+ sinh ��Hx�	 (2.106)

where B is given by (2.101). Again, by limiting to the case L� 1, Equation (2.106) can

be re-expressed as

MH�x�=−
P ·
(
ê−M therm

P

)
· �sinh ��Hx�− cosh ��Hx�	

cosh ��H�� �1− tanh ��H��	

[
1+ �H

�I tanh ��I��

] (2.107)
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Thus, the bending moment at the end of doubler is found to be equal to

MH���=
P ·
(
ê−M therm

P

)
· �I
�H

tanh ��I��

1+ �I
�H

tanh ��I��

(2.108)

The next portion of the analysis deals with the single-strap joint configuration. As long as

the gap under the middle of the strap is close to zero extent parallel to the applied load and

the overlap is sufficiently long, the presence of this gap has no effect on the derivation

of expressions for the bending moments in the adherends, except for the existence of

a locally concentrated bending moment of magnitude of −P
(
tp+ts
2

− ê+ M therm

P

)
in the

strap directly over the gap due to the shift in neutral axis of the applied load as shown

in Figure 2.6(c). However, the curvature associated with this concentrated bending

moment cannot be predicted accurately by the classical Kirchoff theory as presently

assumed and this curvature is claimed to be insignificant by Hart-Smith. Thus, in the

case of a single-strap joint, there would be a different bending moment in the continuous

member (strap) at x = 0 than that for a doubler configuration. The magnitude of this

moment can be deduced as a simple modification of the previous solution for the doubler

configuration at x = 0. It should be remembered that the bending moment at x = 0 for

a doubler configuration can be obtained from Equation (2.105) as

MI �x = 0�=−
P ·
(
ê−M therm

P

)

cosh ��I��+
�I
�H

sinh ��I��

Thus, the bending moment at x = 0 for a strap joint configuration can be deduced as

M
p

I �x = 0�=−
P ·
(
ê−M therm

P

)

cosh ��I��+
�I
�H

sinh ��I��

−P
(
tp+ ts
2

− ê+M therm

P

)

M s
I �x = 0�= 0

(2.109)

2.3.2 Stage II: Solution for induced adhesive peel stresses

The analysis technique of Section 2.2.3 will be used here, but for a one-sided

bonded doubler or a single-strap joint, and with different boundary conditions. As in

Section 2.2.3, it is assumed that the peel stresses are uncoupled from any effects of

the adhesive shear stresses developed as the doubler or strap is strained to match the

stretching of the skin. The coupling effect will be investigated by a method given in

Chapter 7. The geometry and terminology for the peel stress analysis are identified in
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Figure 2.6(d). In contrast to the preceding stage I analysis, the present analysis accounts

for a thin layer of adhesive. Moment equilibrium requires that

dMp

dx
= Vp−

��A�tp

2
(2.110)

dMs

dx
= Vs−

��A�ts
2

(2.111)

where the subscripts p and s denote the patch (doubler or strap) and skin, respectively.

Longitudinal force equilibrium requires that

dNp

dx
− ��A� = 0 (2.112)

dNs

dx
+ ��A� = 0 (2.113)

while transverse force equilibrium requires that

dVp

dx
−��A� = 0 (2.114)

dVs

dx
+��A� = 0 (2.115)

Plate-bending theory provides the equations

d2wp

dx
=−Mp

Dp

(2.116)

d2ws

dx
=−Ms

Ds

(2.117)

The adhesive peel and shear strains and stresses were established in Sections 2.2.3

and 2.2.1 via Equations (2.66) and (2.3) and they are repeated here for convenience

�A� = ��A�

EA

= wp−ws

tA
(2.118)

��A� = ��A�

GA

= up−us
tA

(2.119)

In contrast to the case of no bending outlined in Section 2.2.1, the longitudinal

displacements of the adherends are not uniform through their thickness. The longitudinal

displacements up and us of the doubler or strap and skin defined as those on each side
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of the bond line are related to the longitudinal forces and bending moments, all per unit

width, by

dup

dx
= Np

E′
ptp

−Mptp

2Dp

+�p�T (2.120)

dus
dx

= Ns

E′
sts

+Msts
2Ds

+�s�T (2.121)

The first term in the right-hand side of Equation (2.120) or (2.121) is the average

longitudinal strain due to the axial load �= �/E′ = N/tE′� while the second term is

the longitudinal strain due to the bending moment at the bottom of the doubler or top

of the skin
[= d2w/dx2 · �±t/2�=−M

D
· �±t/2�], and the last term represents thermal

strain.

As in Section 2.2.3, to uncouple the differential equations governing the adhesive peel

and shear stresses, the adhesive shear stresses in Equations (2.110) and (2.111) are again

set constant. Thus, (2.110) and (2.111) can be differentiated once and subtracted from

each other to produce

d2Ms

dx2
− d2Mp

dx2
= dVs

dx
− dVp

dx
(2.122)

The transverse displacements wp and ws can be expressed alternately as, assuming that

the overall length L� 1,

ws =
1

2

(
ws−wp

)+ 1

2

(
ws+wp

)= 1

2

(
ws−wp

)+wI

wp =−1

2

(
ws−wp

)+ 1

2

(
ws+wp

)=−1

2

(
ws−wp

)+wI

(2.123)

where wI is the average displacement of the skin and doubler which is given by

Equation (2.104). It should be noted that wI is obtained from stage I analysis, which

includes the effect of geometrical nonlinearity. On the other hand, the difference
1

2

(
wp−ws

)
will be obtained from this stage II analysis portion which is strictly speaking

geometrically linear. Such technique is verified by Hart-Smith (2005a,b) to be appropriate

for analyzing bonded repairs. Using (2.114) and (2.115) to eliminate the transverse shear

forces and introducing the moment–curvature relations (2.116)–(2.117) allow (2.122) to

be re-expressed in the form

−Ds

d4ws

dx4
+Dp

d4wp

dx4
+2��A� = 0 (2.124)

From which, in light of Equations (2.123) and (2.118), one finally arrives at(
Ds+Dp

)
2

d4

dx4

(
ws−wp

)+ 2EA

tA

(
ws−wp

)=− (Ds−Dp

) d4wI

dx4
(2.125)

d4

dx4

(ws−wp

2

)
+ 4EA

tA
(
Ds+Dp

) (ws−wp

2

)
=−
(
Ds−Dp

)
(
Ds+Dp

) d4wI

dx4
(2.126)



Theory of Bonded Doublers and Bonded Joints 41

The complementary solution of (2.126) is

ws−wp

2
= A cosh ��x� cos ��x�+B sinh ��x� sin ��x�

+G sinh ��x� cos ��x�+H cosh ��x� sin ��x� (2.127)

where

�4 = EA

tA
(
Ds+Dp

) (2.128)

It is worthy to note that � is different from �̂ defined in Section 2.2.3. The particular

solution of Equation (2.126) can be found by expressing the right-hand side of (2.126)

explicitly using Equation (2.104) as

−
(
Ds−Dp

)
(
Ds+Dp

) d4wI

dx4
=−

(
Ds−Dp

)(
ê− M therm

P

)
�4I cosh ��Ix�(

Ds+Dp

) [
cosh ��I��+ �I

�H
sinh ��I��

] (2.129)

Upon substitution of (2.129) into (2.126), it is then clear that the particular solution of

(2.126) can be determined as

ws−wp

2
= J cosh ��Ix� (2.130)

with the coefficient J given by

J
(
�4I +4�4

)=−
(
Ds−Dp

) ·(ê− M therm

P

)
�4I(

Ds+Dp

) [
cosh ��I��+ �I

�H
sinh ��I��

] (2.131)

or

J =−
(
Ds−Dp

) ·(ê− M therm

P

)
(
Ds+Dp

)(
1+ 4�4

�4I

)[
cosh ��I��+ �I

�H
sinh ��I��

]

=−
(
Ds−Dp

) ·(ê− M therm

P

)
[(
Ds+Dp

)+ 4EA
tA�

4
I

][
cosh ��I��+ �I

�H
sinh ��I��

] (2.132)

As before, the solution for a doubler configuration will be proceeded first. To simplify

the algebraic manipulation, only solution for all long doubler lengths 2 ·� will be derived
here. For a sufficiently long doubler and for points inside the overlap near the end of

the doubler, Equation (2.130) can be simplified as

ws−wp

2
≈−

(
Ds−Dp

) ·(ê− M therm

P

)
[(
Ds+Dp

)+ 4EA
tA�

4
I

](
1+ �I

�H

)e−�I�

= Cce
−�I� (2.133)
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where � = �−x,

Cc =−
(
Ds−Dp

) (
ê− M therm

P

)
[(
Ds+Dp

)+ 4EA
tA�

4
I

](
1+ �I

�H

) (2.134)

On the other hand, the complementary solution (2.127) is approximated by

ws−wp

2
≈ e−�� �A cos ����+B sin ����	 (2.135)

Thus the general solution in this long overlap case is given by

ws−wp

2
= e−�� �A cos ����+B sin ����	+Cce

−�I� (2.136)

One boundary condition for determining the constants A and B is that the integral of the

peel stress over the bonded area must be zero since the peel stresses cannot exert any

net normal (vertical) force across the bond layer. Consequently, from (2.118),∫ �

0

��A�dx =−EA

tA

∫ �

0

(
ws−wp

)
dx = 0 (2.137)

which upon substitution (2.136) yields

A+B+ 2�Cc

�I
= 0 (2.138)

The other boundary condition involves the bending moment in the skin and doubler just

inside the end of the overlap. They must be equal to the values just outside the overlap,

where the moment in the doubler equals to zero while the moment in the skin equals

to MH �x = ��, and MH �x = �� is given by (2.108). From Equations (2.116), (2.117)

and (2.136),

Mp

Dp

−Ms

Ds

∣∣∣∣
x=� or �=0

= d2

d�2
(
ws−wp

)∣∣∣∣
x=� or �=0

= 4�2e−�� �A sin ����+B cos ����	+2�2I Cce
−�I�∣∣

�=0

= 4�2B+2�2I Cc

=−MH ���

Ds

(2.139)

The coefficients A and B then follow as

B =−MH ���

4Ds�
2
− �2I Cc

2�2

A= MH ���

4Ds�
2
+ �2I Cc

2�2
− 2�Cc

�I

(2.140)
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which after appropriate substitutions produce

B =−
P
(
ê− M therm

P

)
�I
�H
tanh ��I��

4Ds�
2

[
1+ �I

�H
tanh ��I��

] +
�2I
(
Ds−Dp

) (
ê− M therm

P

)
2�2
[(
Ds+Dp

)+ 4EA
tA�

4
I

](
1+ �I

�H

) (2.141)

A=
P
(
ê− M therm

P

)
�I
�H
tanh ��I��

4Ds�
2

[
1+ �I

�H
tanh ��I��

] −
(
�2I
2�2

− 2�

�I

) (
Ds−Dp

) (
ê− M therm

P

)
[(
Ds+Dp

)+ 4EA
tA�

4
I

](
1+ �I

�H

) (2.142)

The maximum peel stress is then calculated from Equations (2.118) and (2.136) at �= 0

with coefficients A
B and Cc defined above as

��A�max = −EA

tA

(
ws−wp

)∣∣∣∣
�=0

= −2
EA

tA

{
e−�� �A cos ��x�+B sin ��x�	+Cce

−�I�}∣∣∣∣
�=0

=−
P
(
ê− M therm

P

)
EA

�I
�H
tanh ��I��

2Ds�
2tA

[
1+ �I

�H
tanh ��I��

]

+ EA

tA

(
�2I
�2

− 4�

�I
+2

) (
Ds−Dp

) (
ê− M therm

P

)
[(
Ds+Dp

) + 4EA
tA�

4
I

](
1+ �I

�H

) (2.143)

It should be noted that for balanced adherends, i.e., Es =Ep andDs =Dp, the second term

in the right-hand side of the last equation of (2.143) is identically zero. The maximum

adhesive peel stress in this case is inversely proportional to the square of the adhesive

thickness since �
�A�
max ∝ 1

�2tA
∝ 1√

tA
. Also, if numerical substitutions of patch and skin

properties into (2.143) yield a negative value value of �
�A�
max, what it means is that the

peel stress is in opposite direction with the one shown in Figure 2.6.

As mentioned throughout previous sections, since the solutions near the end of the

overlap will be nearly the same for both doubler and joint configuration as long as

the overlap is sufficiently long, it remains now to derive the peel stresses near the

interruption end of the skin in the single-strap joint configuration with long overlap.

In Section 2.3.1, it was discussed that within the classical plate theory, the transverse

deflections and curvatures of the doubler and joint configuration are also the same at

the middle of the doubler or strap. This is because the net moments across the middle

sections of these two configurations differ only by a concentrated moment of a magnitude

of −P
(
tp+ts
2

− ê+ M therm

P

)
, and this concentrated moment does not produce any additional

curvature. In other words, the right-hand side of Equation (2.126) is still given by (2.129)

even for the joint configuration. Since only the solution near the middle of the strap is

considered now and since the particular solution (2.130) of Equation (2.126) with the

constant coefficient J given by Equation (2.132) will be vanishing small for x→ 0 in

a long overlap joint, this particular solution therefore will be ignored from the general

solution in the present joint analysis. It should be emphasized that the particular solution
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was retained in the previous derivation but not in the present one since in the former

case J ∝ 1

cosh��I��
or 1

sinh��I��
for �I�� 1, thus J · cosh��Ix� is finite as x approaches �,

while in the present case, even though J is still given by the same expression as above

for a long overlap but cosh��Ix�→ 1 as x goes to zero, whence J · cosh��Ix�→ 0.

Thus, the complete solution near the skin interruption of a joint configuration will be

represented by Equation (2.135). The constants A and B of Equation (2.135) in the joint

case can be found from the similar boundary conditions (2.137) and (2.139), but with

Mp =Mp

I �x= 0� andMs = 0 at the skin interruption end as indicated in Equation (2.109),

and similar to (2.140), they are given by

B=M
I
p�0�

4�2Dp

=− 1

4�2Dp

⎡
⎣ P

(
ê− M therm

P

)
cosh��I��+ �I

�H
sinh��I��

+P
(
tp+ts
2

− ê+M
therm

P

)⎤⎦

A=−B=−M
I
p�0�

4�2Dp

= 1

4�2Dp

⎡
⎣ P

(
ê− M therm

P

)
cosh��I��+ �I

�H
sinh��I��

+P
(
tp+ts
2

− ê+M
therm

P

)⎤⎦
(2.144)

Thus,

��A�max =−2A
EA

tA

=− EA

2�2DptA

⎡
⎣ P

(
ê− M therm

P

)
cosh ��I��+ �I

�H
sinh ��I��

+P
(
tp+ ts
2

− ê+M therm

P

)⎤⎦ (2.145)

Equation (2.145) indicates that the peak peel stress at the skin interruption end is also

inversely proportional to the adhesive thickness tA, i.e., �
�A�
max ∝ 1√

tA
.

We conclude this section by noting that the governing equation for the adhesive peel

stress commonly takes a rather different form than (2.124). By again setting ��A� to be

constant, this alternate form can be derived from Equations (2.110)–(2.117) as follows:

d4wp

dx4
=− 1

Dp

d2Mp

dx2
=− 1

Dp

dVp

dx
=−�

�A�

Dp

=−EA

(
wp−ws

)
DptA

(2.146)

d4ws

dx4
=− 1

Ds

d2Ms

dx2
=− 1

Ds

dVs

dx
= ��A�

Ds

= EA

(
wp−ws

)
DstA

(2.147)

Hence,

d4

dx4

(
wp−ws

)+ EA

tA

(
1

Dp

+ 1

Ds

)(
wp−ws

)= 0 (2.148)

or

d4�A�

dx4
+ EA

tA

(
1

Dp

+ 1

Ds

)
�A� = 0 (2.149)
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since
wp−ws

tA
= �A�. Equation (2.149) will be used in Chapter 5 for deriving the spring

constants of the crack-bridging model.

2.3.3 Stage III: Solution for induced adhesive shear stresses

The differential equation governing the adhesive shear behavior follows from

Equations (2.120), (2.121), (2.112), (2.113), (2.110) and (2.111).

d2up

dx2
= 1

E′
ptp

dNp

dx
− tp

2Dp

dMp

dx

= ��A�

E′
ptp

− tp

2Dp

(
Vp−

��A�tp

2

)
(2.150)

d2us
dx2

= 1

E′
sts

dNs

dx
+ ts

2Ds

dMs

dx

=−�
�A�

E′
sts

+
(
Vs−

��A�ts
2

)(
ts
2Ds

)
(2.151)

Subtracting Equation (2.151) from (2.150) and making use of (2.119) provide

d2up

dx2
− d2us

dx2
= tA
GA

d2��A�

dx2

=
(

1

E′
ptp

+ 1

E′
sts

)
��A�− Vptp

2Dp

− Vsts
2Ds

+
(
t2p

4Dp

+ t2s
4Ds

)
��A�

=
(

4

E′
ptp

+ 4

E′
sts

)
��A�−

(
Vptp

2Dp

+ Vsts
2Ds

)
(2.152)

Differentiating (2.152) once and substituting (2.114) and (2.115) respectively for
dVp
dx

and
dVs
dx

yield

tA
GA

d3��A�

dx3
= 4

(
1

E′
ptp

+ 1

E′
sts

)
d��A�

dx
−
(
tp

2Dp

dVp

dx
+ ts

2Ds

dVs

dx

)

= 4

(
1

E′
ptp

+ 1

E′
sts

)
d��A�

dx
−��A�

(
tp

2Dp

− ts
2Ds

)
(2.153)

or

d3��A�

dx3
− 4GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
d��A�

dx
=−GA

tA

(
tp

2Dp

− ts
2Ds

)
��A� (2.154)
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From (2.154), the right-hand side will be identically equal to zero for balance adherends.

Otherwise, for simplicity, Equation (2.154) will be approximated as

d3��A�

dx3
− 4GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
d��A�

dx
≈ 0 (2.155)

Equation (2.155) can also be rewritten as

d

dx

[
d2��A�

dx2
− 4GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
��A�

]
= 0 (2.156)

or

d2��A�

dx2
− 4GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
��A� = constant (2.157)

Thus the general solution of (2.155) is given by

��A� = A cosh �2�Ax�+B sinh �2�Ax�+C (2.158)

where �A =
√

GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
as defined in Equation (2.6). As in Section 2.2.1, the

constant coefficients A
 B and C are determined from the boundary conditions on d��A�

dx

and ��A�. Differentiating (2.158) once and utilizing the results from (2.119)–(2.121) give

d��A�

dx
= 2�A �A sinh �2�Ax�+B cosh �2�Ax�	=

GA

tA

(
dup

dx
− dus

dx

)

= GA

tA

[
Np

E′
ptp

−Mptp

2Dp

− Ns

E′
sts

−Msts
2Ds

+ (�p−�s

)
�T

]
(2.159)

As in all previous analyses, the analysis for the bonded doubler will be completed

first. The boundary conditions for the doubler configurations are given by (similar to

Equations (2.9) and (2.10))

��A� �0�= 0 (2.160)

Ns ���= P (2.161)

Np ���= 0 (2.162)

In addition,

Ms ���=MH ���

Mp ���= 0

(2.163)
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where MH��� is obtained from the stage I analysis, and given by Equation (2.108).

Furthermore, the load in the doubler at x = 0 also must be equal to the integral of the

shear stresses transferred through the adhesive, i.e.,

∫ �

0

��A�dx = Np �0� (2.164)

For a long overlap doubler, it was shown in Section 2.3.1 that the overall bending

moment will vanish at the middle of the doubler. In that case, Np�0� can be calculated

by the simple method presented in Section 2.2.1 as follows. In Section 2.2.1, the stress

in the skin at the middle of the doubler was calculated from the same strain condition

between the doubler and the skin there and from the horizontal force equilibrium, and it

is given by (2.22). From Equation (2.22),

�s �0�=
��
1+S

Ns �0�= ts�s �0�=
��ts
1+S

s �0�=
�s �0�

E′
s

= �0

E′
s

= ��
E′

s �1+S�
and by noting p�0�= s�0� (same strain condition at the middle of the doubler), it then

follows that

Np �0�= tp�p �0�= E′
ptpp �0�= E′

ptps �0�=
E′

ptp��
E′

s �1+S�
= S��ts
�1+S�

The above results for Ns�0� and Np�0� do not account for the effect of thermal mismatch

between two adherends. When this thermal mismatch effect is included, the expressions

for Ns�0� and Np�0� will finally take the following form:

Ns �0�=
��ts
�1+S� +F

therm

Np �0�=
S��ts
�1+S� −F

therm

(2.165)

where F therm is defined in Equation (2.81). Thus, (2.164) becomes

∫ �

0

��A�dx = S��ts
�1+S� −F

therm (2.166)

It is very easy to show that for a long overlap doubler, i.e., �A�� 1, the adhesive shear

stress ��A� near the end of the doubler can be approximated from Equation (2.158) as

��A� = Be−2�A�+C (2.167)
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where the coordinate � is measured from the doubler’s end. The constants B and C are

determined as follows. From Equation (2.166) with ��A� defined by (2.167) and noting

that e−2�s� ≈ 0 for �A�� 1, one obtains

∫ �

0

��A�dx =
∫ �

0

��A�d� =− B

2�A

e−2�A�

∣∣∣∣
�

0

+C�

=− B

2�A

e−2�A�+ B

2�A

+C�≈ B

2�A

+C�

= S

1+S��ts−F therm (2.168)

Evaluations of d��A�

dx
at x = � or � = 0 via (2.159) with Np
 Ns, etc. given by conditions

(2.161)–(2.163) and also via Equation (2.167), and equating the results yield

d��A�

dx

∣∣∣∣
x=� or �=0

=
[
− P

E′
sts

− ts ·MH ���

Ds

+ (�p−�s

)
�T

]
GA

tA
=−2�AB (2.169)

It then follows that

B = GA

2�AtA

[
ts ·MH ���

2Ds

+ ��
E′

s

+ (�s−�p

)
�T

]

(2.170)

C = S
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(��ts
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− 1

4�2
A�

[
ts ·MH ���

2Ds

+ ��
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)
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Thus,

��A�max =
S

1+S
(��ts
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)

+ GA

2�AtA

[
tsMH ���

2Ds

+ ��
E′

s

+ (�s−�p

)
�T

](
1− 1

2�A�

)
− F therm

�
(2.171)

provided that �A�� 1.

On the other hand, for the long overlap bonded splice, the adhesive shear stress near

the interruption end of the skin is given similarly by Equation (2.167) but with the

coordinate � being replaced by the coordinate x measured from the middle of the strap.

The constants B and C are now determined from the boundary conditions

∫ �

0

��A�dx = ��ts
�1+S� +F

therm (2.172)



Theory of Bonded Doublers and Bonded Joints 49

Np �0�= P

Ns �0�= 0

Mp �0�=Mp

I �0�

Ms �0�= 0
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(2.174)

where M
p

I �0� is the bending moment in the patch at its middle and it is given by the

first equation of (2.109). Equation (2.172) corresponds to the condition that the integral

of the shear stress through the adhesive near the skin interruption end is equal to the

constant load in the skin throughout most of the skin interior as the skin and strap strain

together. With constants B and C determined, the maximum adhesive shear stress at the

skin interruption end is finally given by

��A�max =
1

1+S
(��ts
�

)

+ GA

2�AtA

[
tpM

p

I �0�

2Dp

− ��ts
E′

ptp
+ (�s−�p

)
�T

](
1− 1

2�A�

)
+ F therm

�
(2.175)

The reader is reminded that since the overlap is assumed to be sufficiently long in the

present analysis so that there is no interaction between the interruption end of the skin

and the doubler end, the shear stress in the adhesive near the strap end of a splice joint

configuration, therefore, will be the same as that of the bonded doubler. This latter

solution is already delineated in the preceding bonded doubler analysis, and therefore

it will not be repeated here. It is evident from Equations (2.171) and (2.175) that

�
�A�
max ∝ 1√

tA
.
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It is interesting to note that, unlike in the case of a two-sided bonded doubler or a

double-strap joint, both the peel stress and the shear stress in a one-sided configuration

are proportional to the reciprocal of the square root of the bond-line thickness for long

overlap length, i.e., �A�� 1 and ��� 1.

2.4 Consideration of Other Important Effects in Bonded Doublers and Joints

The theories presented in Sections 2.2 and 2.3 treat the adhesive layer as infinite,

unconnected shear and tensile springs. In these theories both the shear stress and the

peel stress in the adhesive layer vary strongly over the length of the overlap, and attain

their maximum values at the end of overlap or at the skin interruption end. Assuming

the overlap length is sufficiently large as compared to the load transfer length, the

maximum shear and peel stresses become independent of the length of overlap; see

for instances Equations (2.18), (2.20) and (2.78) for two-sided bonded doublers and

double-strap joints, Equations (2.171), (2.175) and (2.145), all with �→�, for one-sided

configurations.

As a consequence, these theories suffer from three major deficiencies. First, the adhesive

shear stress solution does not satisfy the exact boundary condition of zero shear stress

at the ends of the adhesive layer (Adams and Peppiatt, 1974; Gilbert and Rigolot, 1988;

Roberts, 1989; Wang et al., 1998a). Secondly, these solutions do not capture the complex

stress singularity at the termini of the adhesive layer (Hein and Erdogan, 1971; Groth,

1988; Reedy, 1990, 1993; Akisanya and Fleck, 1997; Wang and Rose, 2000). The third

problem is that the stress state in the adherends is inevitably assumed to be uniform in

the thickness direction, and hence stress concentrations are ignored (Wang et al., 1998a).

Attempts have been made to eradicate the first deficiency of the plate-spring approach

by treating the adhesive layer as a two-dimensional continuum (Allman, 1977), while

retaining the plate-theory approximation for the substrates. Although these refined

theories permit satisfaction of the stress-free surface condition at the ends of a

square-edged adhesive layer, the distance over which the adhesive shear stress attains

its peak value appears to scale with the substrate thickness, instead of the adhesive layer

thickness as indicated by FE analysis (Wang et al., 1998a).

Recent progresses in addressing the above-mentioned three major deficiencies will be

presented in this section. First, a simple correction to the shear stress distribution

along the mid-plane of the adhesive layer has been obtained using an eigen-function

expansion method, which captured the boundary layer effect near the end of an adhesive

layer. Secondly, the corner singularity will be determined using an asymptotic matching

method. It will be shown that this corner singularity offers a very promising failure

criteria of bonded joints under both static and fatigue loading conditions. The improved

adhesive shear stress solution then permits determination of the stress concentration

in adherends. In addition to addressing the three mentioned deficiencies, the triaxial

stress-state in the adhesive layer and the implications on adhesive plastic yielding are

also discussed.
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2.4.1 Stress-free condition at the adhesive ends

According to the plate-spring theories for bonded joints, the adhesive shear stress dis-

tribution near the ends of adhesive layer can be expressed as follows, assuming that the

overlap is sufficiently long so that the peaks at the two ends are isolated:

��A��x�= ��A�maxe
−�Ax (2.176)

The reason that the plate-spring models predict a finite shear stress at the ends of

adhesive layer stems from the assumption of spring laws being position independent,

i.e., the shear stress is proportional to the relative longitudinal displacement between

two substrates, even at a stress-free surface. Nevertheless, despite this deficiency and

the large number of assumptions involved in the plate-spring models, solutions of the

adhesive shear and peel stresses have been shown to correlate well with FE analysis

except very close to the ends of adhesive layer.

Since the ends of the adhesive layer are stress-free, the shear stress near the ends

must change from this simple distribution so as to satisfy the traction-free boundary

conditions. According to St Venant’s principle, the perturbation in the stress field is

confined to a region near the ends (within a distance comparable in extent to the layer’s

thickness). This means that for the case of square edge the finite shear stress predicted

by the plate-spring theories can be considered as residual stresses. It then follows that

the problem with stress-free edge condition can be solved by superposing on the stress

field derived based on plate-spring analogy a second stress field that just negates the

traction on the ends.

Since the adhesive layer generally has a Young’s modulus much lower than the

substrates, it is not unreasonable to model the substrates as rigid clamps. Consequently

the problem can be considered as a strip clamped at two long edges and subjected to

a uniform shear traction and zero normal traction at x = 0, as depicted in Figure 2.8.

From a theoretical viewpoint, rigorous calculation of the shear stress near the square

ends of an adhesive layer requires a consideration of stress singularities at the corners of

the interface between the adhesive layer and the substrates. However, since the field in

which the stresses are dominated by a corner singularity is normally very small (Wang

and Rose, 2000), the effect of corner singularity can be ignored when determining the

shear stress at the mid-plane of the adhesive layer.

max–τ 
(A)

x

y

tA

Fig. 2.8. A strip rigidly clamped along two long edges.
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Table 2.2. First eigen root for different adhesive Poisson’s ratio.

Root n Poisson’s ratio �A

0.25 0.3 0.35

1 2.1752+ 0.74371i 2.1650+ 0.8032i 2.1535+ 0.8687i

Using an eigen-function expansionmethod, the shear stress at themid-plane of the adhesive

layerhasbeen found tobewell approximatedby the first-order solution (Wanget al., 1998a),

��A��x
0�=−��A�maxe
−2�x/tA cos�2�x/tA� (2.177)

where� denotes the real part of the first eigen root (Table 2.2), which is equal to 2.1535

for a Poisson’s ratio of 0.35.

Combining Equations (2.176) and (2.177) leads to the following improved solution of

adhesive shear stress distribution in a bonded joint:

��A��x�= ��A�max

[
e−�Ax− e−2� x/tA cos�2�x/tA�

]
(2.178)

which obviously satisfies the zero shear stress boundary condition at the end of adhesive

layer �x= 0�. This stress distribution is shown in Figure 2.9 together with the results of

FE analysis detailed later, indicating a good agreement. This solution will be utilized in

Section 2.4.3 to determine the stress concentration in adherend.
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Fig. 2.9. Adhesive shear stress distribution including the end effect.
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2.4.2 Corner singularity

Square edge

It is well recognized that stress singularity exists at a corner between the adhesive and

the adherend (Williams, 1952; Hein and Erdogan, 1971; Groth, 1988; Akisanya and

Fleck, 1997; Tong and Steven, 1999). Studies have also shown that for joints bonded

with brittle adhesives the intensity of the stress singularity at the interface corner may

be used to predict failure of bonded joints (Groth, 1988; Reedy, 1990).

For the adhesive joint shown in Figure 2.10, there are two corner singularities at points

A and B. To apply the fracture mechanics approach, both the order and the intensity

of the corner singularity must be quantified in terms of joint geometry and the applied

load. While the order of singularity can be obtained from an asymptotic analysis

(Williams, 1952; Bogy, 1971; Hein and Erdogan, 1971), the magnitude of the stress

intensity factors requires matching the asymptotic solution with the outer solution.

An efficient method of carrying out this asymptotic matching analysis is to employ the

FE method.

Distributions of the three stress components, �xx, �yy and �xy are shown in Figure 2.11,

indicating clearly the high stress elevations near the two corners.

In the case of square ends shown in Figure 2.12, the stress intensity factor K is defined

as follows in terms of the stress component normal to the interface, ���:

����� = ��=
K

r�
(2.179)
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∞
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Fig. 2.10. Finite element mesh for a double-lap joint.
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Fig. 2.11. Contour plots of normalized stresses: (a) axial stress �xx; (b) peel stress �yy; and (c)

shear stress �xy.
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Fig. 2.12. Ends of adhesive layer, showing a square edge.

In this case, the shear stress distribution along the interface is (Wang and Rose, 2000)

�r��� = ��=−K
r�
�A (2.180)

where the parameter � denotes the order of corner singularity, which is shown in

Figure 2.13 for a square end, and �A is the Poisson’s ratio of the adhesive layer.

The order of singularity at square end can be expressed as

�= 1�29�A�1−0�768�A� (2.181)

while the stress intensity factor is given by

K = �Â��A���A�max+ B̂��A���A�max	t
�
A (2.182)
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Fig. 2.13. Order of singularity at square end for various Poisson’s ratios.
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where �
�A�
max and �

�A�
max are the maximum peel and shear stresses of the adhesive, which can

be obtained by methods outlined in Sections 2.2 and 2.3 for a linear elastic adhesive.

The parameters Â and B̂ depend solely on the Poisson’s ratio of the adhesive via the

following equations (Wang and Rose, 2000),

Â��A�= 0�836−2�23�A+6�29�2A−9�64�3A (2.183)

B̂��A�= 3�12−15�8�A+40�1�2A−37�6�3A (2.184)

The stress intensity factors at two corner points shown by the insert of Figure 2.14(a)

therefore can be expressed as follows, noting the difference in the sign of shear stress

as indicated in the insert of Figure 2.14(b):

KC1
= ��A�maxB̂��A�t

�
A (2.185)

KC4
= �Â��A���A�max− B̂��A���A�max	t

�
A (2.186)

Comparisons between FE results and predictions based on Equations (2.185) and (2.186)

are shown in Figure 2.14. It is seen that there is a good agreement between the predictions

and the FE results. It is also clear from Figure 2.14 that the corner singularity dominates

a reasonably large region. For brittle adhesives whose process zone at failure is smaller

than the singularity field, the strength of the joint would be entirely characterized by the

stress intensity factors discussed above.

Spew fillet

Studies have shown that spew fillets formed during bonding at the ends of overlap

may have an important influence on the joint strength (Adams and Harris, 1987; Groth,

1988; Kairouz and Matthews, 1993; Adams et al., 1997). Formation of the spew fillet

not only modifies the stress distribution along the mid-plane of the adhesive layer

(Adams and Peppiatt, 1974), but may also eliminate the corner singularity. Referring

to Figure 2.15, while the stresses at corner C are singular, the stress-state at point A

depends strongly on the angle �. In the following these two points will be examined

in turn.

Assuming that the Young’s modulus of the adhesive is far smaller than the modulus of

the adherend, the order of the stress singularity at corner A under plane-strain conditions

can be obtained from the solution of Williams (1952), and the results are shown in

Figure 2.16. It is clear that spew corners would be free of singularities when the fillet

angle is less than a critical angle, which is dependent on the Poisson’s ratio of the

adhesive. The value of this critical angle is shown in Figure 2.17. The absolute maximum

angle at which no corner singularity would exist for any Poisson’s ratio is 45 degrees.

Therefore, if the spew fillet angle can be controlled to be equal or less than 45 degrees,

stresses at corners A and B in Figure 2.15 would be regular.

To verify the singularity associated with a spew fillet, a FE analysis has been carried

out using the FE mesh shown in Figure 2.10, with a spew fillet shown in Figure 2.18.
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The spew fillet angle at both points A and B is equal to 45 degrees. Contours of the

resulting stress components �xx
 �yy, and �xy are shown in Figure 2.18, confirming that

the stresses at points A and B are no long singular. Consequently, corner singularity

exists only at corner C. Solutions of the order of singularity and the stress intensity factor

for this corner can be found in Wang and Rose (2000). It is worth pointing out that this

corner singularity can be removed by rounding of corner C (see Adams et al., 1997).

It is clear in Figure 2.18 that corner singularity exists only at point C of Figure 2.15.

It has been found that there are two singular terms for the stresses at corner C

(Wang and Rose, 2000). The order of the stronger singular term is approximately equal

to 0.41 for typical Poisson’s ratio of 0.35.

From the preceding analysis it is clear that corner singularities can be completely

removed if the end of adhesive layer can be shaped so that all interface angles are less

than 45 degrees. An example of such an end that would be free of corner singularity is

shown in Figure 2.19. Further work is required to clarify the influence of adhesive layer

thickness on the joint strength.

2.4.3 Stress concentration in adherends

Since the adhesive shear stress peaks at the end of adhesive layer, significant through-

thickness stress concentrations exists in the loaded adherend (Cornell, 1953; Adams

et al., 1986; Kairouz and Matthews, 1993; Wang et al., 1998a). This is schematically

shown in Figure 2.20 for a double-strap joint. Such a stress concentration can be

extremely detrimental to joint strength, especially when the overlap terminates near

another stress concentration site, such as a fastener hole.

Quantitative methods for evaluating the stress concentration in adherends are often

critical to the design and assessment of bonded joints. For example, to avoid adhesive

failure and achieve the maximum strength, bonded joints are mostly designed so that the

bonding strength is greater than the substrate strength (Hart-Smith, 1973b). In this case,

it is paramount to be able to determine the strength of the substrates, taking into account

the stress concentrations. Kairouz and Matthews (1993) reported that the load-carrying

capacity of adhesively bonded joints with cross-ply substrates having 90 surface layer

would be dictated by the maximum longitudinal stress occurring near the ends of overlap.

There have been instances where unexpected fatigue failures of metallic substrates

occurred immediately outside the end of a reinforcement patch, possibly caused by the

interaction between the high stress concentration induced by bonded reinforcement and

fastener holes situated near the ends of overlap.

According to Wang et al. (1998a), a first-order estimate of the maximum longitudinal

stress (in the loaded adherend) at the end of overlap is given by the following integration,

noting Equation (2.178):

�xx
max =
∫ �

0

��A��x�

x
dx = 2

�
��A�max

∫ �

0

e−�AtAx− e−2�x cos�2�x�

x
dx (2.187)
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Fig. 2.20. Through-thickness stress concentrations in adherends of a double-strap joint.

For a typical Poisson’s ratio of 0.35, the parameter � is equal to 2.1535. In this case, the

maximum longitudinal stress is dependent only on the value of �AtA. Equation (2.187)

can be readily evaluated numerically, and the results are shown in Figure 2.21. It is clear

that a considerable stress concentration exists in the loaded adherend as a result of the

shear deformation in the adhesive layer.

As an example consider a double-strap joint representative of a unidirectional boron

patch bonded to an aluminium plate. The thicknesses of the inner adherend, the outer

adherend and the adhesive layer are respectively 6, 1.3 and 0.1mm. The Young’s moduli

of the inner adherend and the outer adherend are 72 and 210GPA, while the shear

modulus and the Poisson’s ratio of the adhesive layer are 700MPa and 0.3, respec-

tively. The load transfer parameter �A is equal to 0�18mm−1, thus giving rise to a stress

elevation of 3�27�
�A�
max. The normalized longitudinal stress along the adherend–adhesive

interface from a FE analysis (with spew fillet) is shown in Figure 2.22, indicating a

maximum stress concentration factor of 1.42. According to Equation (2.18), noting that
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Fig. 2.22. Longitudinal stress along the plate–adhesive interface of a double-strap joint with a spew
fillet. The coordinate x is measured from the square end of the adherend as shown in the insert.

�T = 0, the maximum shear stress �
�A�
max = 0�536��. Consequently the stress concentra-

tion �= �xx
max/��� is estimated to be 1.75 from the theory, which is higher than the FE

results. The first-order solution can be improved if the effect of spew fillet is taken into

account. Assuming that the presence of spew fillet would reduce the peak shear stress

by 20%, the analytical estimate would come very close to the FE solution.

2.4.4 Triaxial stresses and plastic yielding

In analyzing the stresses in bonded doublers or joints, often only two stress components,

the peel stress and the shear stress, are considered. However, due to the constraint
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Fig. 2.23. A unit cell representing an adhesive layer sandwiched between substrates.

imparted by the stiff adherends, the stress state in an adhesive layer is truly triaxial

(Adams et al., 1997; Wang and Rose, 1997a). The lateral stress components parallel to

the interface give rise to a high hydrostatic tension. This hydrostatic stress is important in

determining the plastic yield behavior of polymers (Wang and Chalkley, 2000), affecting

both the crazing mechanism and also the glass transition temperature (Losi and Knauss,

1992; Duong and Knauss, 1995). In this section the triaxial stress state within an adhesive

layer is first examined, and then the plastic yielding behavior of adhesive under triaxial

stresses is discussed.

Referring to Figure 2.23 which shows a unit cell representing an adhesive layer

sandwiched between two stiff adherends, the two lateral stress components, ��A�xx and

��A�zz , can be expressed in terms of the peel stress ��A� ≡ ��A�yy (Adams et al., 1997;

Wang and Rose, 1997a),

��A�xx ≡ ��A�zz = �A
1−�A

��A�yy = �A
1−�A

��A� (2.188)

Consequently the hydrostatic stress is

p= 1

3
���A�xx +��A�yy +��A�zz �=

1+�A
3�1−�A�

��A� (2.189)

To quantify the influence of hydrostatic stress on the plastic yielding behavior of

polymer adhesive, a series of experiments have been carried out on a film adhesive

(FM73), under various combination of tension, compression and shear loading (Wang

and Chalkley, 2000). The results are shown in Figure 2.24, where the equivalent shear

stress is defined as

6�2eq =
(
��A�xx −��A�yy

)2+ (��A�yy −��A�zz

)2+ (��A�zz −��A�xx

)2+6��A�
2

xy (2.190)

It can be seen that when the hydrostatic stress is negative (in compression), the equivalent

shear stress is approximately constant, indicating that the conventional von Mises yield

criterion is applicable. However, under tensile hydrostatic stress, the equivalent shear
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Fig. 2.24. Influence of hydrostatic stress on yield stress of FM73 adhesive.

stress decreases rapidly as the hydrostatic stress increases. These data suggest that the

modified von Mises yield criterion (Bowden and Jukes, 1972) is applicable for positive

hydrostatic stress:

�eq− �̃p= ��A�Y (2.191)

where �
�A�
Y denotes the yield stress under shear (zero hydrostatic stress), and the

experimental data shown in Figure 2.24 suggest that the coefficient �̃ is approximately

1.13 for FM73 adhesive.

One important implication of the triaxial stress state in an adhesive layer is that it would

have a significant effect on the onset of plastic yielding. Denoting the shear stress and

the peel stress as ��A� and ��A�, and recalling Equation (2.188), the equivalent shear

stress from Equation (2.190) can be written as

�eq = ��A�
[
1+ 1

3

(
1−2�A
1−�A

��A�

��A�

)2
]1/2

(2.192)

where ��A� and ��A�, thus the ratio ��A�/��A�, can be obtained by the conventional theories
outlined in Sections 2.2 and 2.3 for bonded doublers and joints. Then the modified von

Mises yield criterion can be expressed as

��A�

⎧⎨
⎩
[
1+ 1

3

(
1−2�A
1−�A

��A�

��A�

)2
]1/2

+ 1+�A
3�1−�A�

�̃
��A�

��A�

⎫⎬
⎭= ��A�Y (2.193)
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Fig. 2.25. Effect of triaxial stress on the value of shear stress at yielding.

which is shown by the solid curve in Figure 2.25 for FM73 adhesive ��̃ = 1�13�.
For comparison purposes, two other cases corresponding to the original von Mises yield

criterion �̃ = 0 and an adhesive of lower pressure sensitivity are also plotted in the

figure. It is clear that there is a substantial reduction of the shear stress at yielding due

to the effect of hydrostatic tensile stress. This implies that if the design limit of a lap

joint is the onset of plastic yielding, the effect of peel stress on the allowable shear

stress has to be considered. Likewise, if the peel strength turns out to be the limiting

factor, the design allowables for the peel stress should also take into account the effect

of hydrostatic tension.

2.5 Failure Criteria for Bonded Doublers and Joints

Adhesive failure within a joint is usually assumed to be governed by a critical stress,

or a critical strain, sometimes coupled with a characteristic length (Kinloch, 1987).

Some examples include Hart-Smith (1973a,b), Adams (1989, 1992), and Bigwood and

Crocombe (1990). Strain energy density (Hart-Smith, 1973b; Jones et al., 1993) and

stress over a zone (Clark and Mcgregor, 1993) have also been suggested for predicting

joint strength. However, it has long been noted (Adams and Peppiatt, 1974) that there is

a large discrepancy between theoretical predictions and experimental data. As discussed

in Sections 2.2 and 2.3, both the maximum adhesive shear and the peel stresses at

the ends of a long overlap joint are inversely proportional to the square root of the

adhesive thickness. Therefore, for a given applied load, the thicker the adhesive, the

lower the stresses are. This means that the conventional strain- or stress-based failure

criteria would predict an increase in joint strength (total failure load) with the increase in

bond-line thickness. In other words, the remote applied stress at failure is proportional

to the square root of the adhesive thickness,

�ult
� ∝√

tA (2.194)
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Fig. 2.26. Comparison of experimental results of joint strength and theoretical predictions. The

variable t0 denotes a baseline adhesive thickness.

Experimental results, however, exhibited exactly the opposite trend: the load-carrying

capacity of joints decreases with bond-line thickness (Bennett, 1972; Hylands and

Sidwell, 1980; Crocombe and Moult, 1988; Harris and Fay, 1992).

Five sets of experimental results on single-lap joints (Bennett, 1972; Crocombe and

Moult, 1988; Harris and Fay, 1992) and one set of data on single-strap joints

(Wang and Rose, 1997b) are shown in Figure 2.26, together with the predictions of

stress-based failure criteria. It can be seen that with the increase in bond-line thickness,

joint strengths decreased, contrary to the expectations of stress-based failure criteria.

Also shown in the figure are predictions based on fracture mechanics approaches

(strain-energy release rate and corner stress-intensity factor), which will be discussed in

detail later.

Under fatigue loading, it has also been observed that fatigue crack growth rates and

fatigue endurance (Imanaka et al., 1988; Harris and Fay, 1992; Krenk et al., 1996) also

exhibited anomalous behavior with respect to adhesive thickness. These results showed

that on the basis of the maximum (shear or normal) stress in the adhesive, joints with

thinner adhesive lasted longer than joints with thicker adhesive. For a given applied

load, although joints with thicker adhesive exhibited longer fatigue lives than joints of

thinner adhesive, the increase in fatigue load is much less than what would be expected

on the basis of constant stress. Therefore it is clear that the conventional failure criteria,

be it stress-, strain-, or strain-energy-density-based, are not geometry independent, hence

the data obtained from one configuration are not readily transferable to other types of

joint, or the same joint with different bond-line thicknesses.

Fracture mechanics concepts have also been introduced for characterizing bonded joints

(Mall et al., 1982; Johnson and Mall, 1985; Kinloch, 1987; Wang, 1997, 1998), but

mainly to joints with crack-like defects, such as butt joints, edge-cracked cantilever beam
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and cracked-lap-shear specimens (Johnson, 1986; Kinloch, 1987). The thickness of the

adhesive is basically ignored and the disbond is treated as a crack, thus permitting the use

of linear elastic fracture mechanics parameters. FE analysis and compliance approaches

are the two main methods used in evaluating the energy release rate. An alternative

method of calculating the strain energy release rate is through the J -integral (Fernlund
and Spelt, 1991a,b; Edde and Verreman, 1992; Wang and Rose, 1997b), leading to

expressions of the strain-energy release rate in terms of the maximum adhesive shear

and peel stresses obtained from plate-spring theories of lap joints:

GI =
�
�A�2
max

2EA

tA

GII =
�
�A�2
max

2GA

tA

(2.195)

and the total strain-energy release rate is the sum of the above two components.

Since the maximum adhesive shear and peel stresses are proportional to the reciprocal

of the square root of the bond-line thickness, it can be readily shown that the strain-

energy release rates given by (2.195) are independent of bond-line thickness, and are

dependent only on the dimensions of the adherends and the applied load. Consequently,

fracture mechanics–based failure criteria would predict that joint strength is independent

of bond-line thickness, as indicated in Figure 2.26. When compared to the stress/strain-

based failure criteria, this represents a considerable improvement, considering that joint

strength has been observed to decrease with bond-line thickness. However, the fracture

mechanics methods are applicable only to joints with large disbond of length greater than

or comparable to substrate thickness. Since virtually all bonded joints are manufactured

to be free of large disbonds, the physical basis of the above-mentioned fracture mechanics

methods as applied to bonded joints is not clear.

For disbond-free bonded joints, the corner stress-intensity factor has been found to

be a promising criterion that can unify the failure loads of butt joints of varying

bond-line thicknesses (Reedy and Guess, 1997) and the failure loads of single-lap

joints (Groth, 1988). Since the corner stress-intensity factor uniquely characterizes the

deformation at an interface corner, it would serve as a failure criterion for bonded joints

provided that the size of the process zone is comparable to the corner singularity zone.

According to this failure criterion, failure will occur when the corner stress-intensity

factor attains a critical value. Accordingly the joint strength would decrease as the

adhesive thickness increases, i.e.,

�ult
� ∝ t�−0�5

A (2.196)

where � is given by Equation (2.181), consistent with the various experimental findings

shown in Figure 2.26. For Poisson’s ratio of 0.35, the order of singularity � is equal

to 0.32. In this case, prediction of the corner stress-intensity factor criterion is shown

in Figure 2.26. This prediction seems to provide a lower bound to all the experimental

results. This is most likely due to the ignorance of the spew fillet.
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It was found in Section 2.4.2 that for a spew fillet configurations shown in Figure 2.15,

there are two singular terms for the stresses at corner C. The order of the stronger singular

term is approximately equal to 0.41 for a typical Poisson’s ratio of 0.35. Consequently

the critical corner stress-intensity factor criterion would predict the joint strength to

decrease with adhesive thickness via the following relation,

�ult
� ∝ t−0�1

A (2.197)

which is also shown in Figure 2.26, indicating a good agreement with the experimental

results.

2.6 Summary

This chapter presents various analytical models for determining stresses in bonded joints

and doublers that are relevant to the repair geometries. The presented analytical models

account for various important effects such as elastic-plastic adhesive, geometrically

nonlinear deformation, triaxial stresses on plastic yielding, adherend stress concentration,

and corner singularity at the termini of the adhesive layer. Several criteria for failure

assessment of bonded joints and doublers are also discussed.



CHAPTER 3

Fundamental Concept of Crack Patching

3.1 Introduction

As discussed in Chapter 1, bonded repairs can be applied either as a precaution to

reinforce undamaged structures or as a remedy to cracked structures so that the stress

intensity factor of the crack being repaired has been significantly reduced to an appro-

priate level. The multiplayer nature of a bonded repair, which comprises three different

layers of materials with vastly different properties, gives rise to very complicated stress

states. Although in principal the problem can be analyzed by using numerical tools, such

as the finite element method or the boundary element method, in many cases such an

approach is not only cumbersome but also unnecessary. This is because inevitably stress

transfer between the host structure and the patch occurs in two relatively small regions,

one close to the outside boundary of the patch and one near the cracked region in the

host structure; consequently, the problem can be more efficiently resolved analytically

by using a boundary layer approach. Furthermore, the theoretical analyses presented in

this chapter will provide a good conceptual understanding of the fundamental mechanics

of bonded repairs and the associated key parameters that are important to design of

repairs.

To focus on theoretical modeling of bonded repairs, we shall consider a relatively simple

yet representative repair configuration, namely a centre-cracked plate (denoted as skin)

being repaired by an elliptical patch, as illustrated in Figure 3.1. It is assumed that

the repaired structure experiences no out-of-plane deformation, either because the skin

is fully supported against out-of-plane deflection or because the skin is repaired with

two identical patches bonded on both sides. The case of one-sided repairs that is not

supported against out-of-plane deformation will be briefly introduced in this chapter

within a context of geometrically linear analysis with a key stress intensity factor being

simply estimated, as its formal analysis will be discussed in Chapter 5. It is worth noting

that the primary function of a bonded repair is to sufficiently reduce the stress intensity

factor of the crack being repaired so that the residual strength has been restored to an

acceptable level, and the growth rate of the crack under fatigue condition is sufficiently

slow to ensure an acceptable inspection interval. Therefore it is important to determine
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Fig. 3.1. Repair configurations and coordinates. (a) Plan view; (b) cross section along centre line

�x = 0� with no bending deflection allowed, representing two-sided repair; (c) cross section of

a one-sided repair along the centre line; (d) cross section at x→ � for one-sided repair; and

(e) near crack region.

the stress intensity factor of a repaired crack, as well as the stresses in the patch and the

adhesive layer for given mechanical or thermal loading.

One very important concept in the analysis of bonded repairs for crack patching is the

two-stage approach first employed by Rose (1981, 1982, 1988), which allows each stage

to be solved by employing different theoretical methods with appropriate simplifying

assumptions. In stage I, which is referred to as the load attraction problem, the redistri-

bution of the stresses or strains in an un-cracked skin due to the presence of a patch is

determined, assuming that the skin and the patch are rigidly bonded upon curing. This

assumption is appropriate because the length of the load transfer zone around the edge

of the patch is usually small compared to the overall dimension of the patch. Then in
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stage II, the crack-tip stress intensity factor and the stresses in the patch and the adhe-

sive layer close to the cracked region are determined by appealing to the superposition

principle. This is achieved by pressurizing the crack faces with the prospective stresses

(the stresses that would exist along the crack path) already determined in stage I. This

two-stage approach will be used extensively in Chapters 4 and 5 in the development of

generic algorithms for analyzing irregular-shaped repairs to supported and un-supported

plate-like structures. Extension of this two-stage analysis approach to the repairs of

corrosive damages will be presented in Chapter 6.

3.2 Formulation and Notation

Referring to Figure 3.1, the problem to be considered is a cracked skin plate with

a patch adhesively bonded on one-side. The plate, which has a thickness of ts for a

one-sided repair and 2ts for a symmetric repair, contains a through-thickness crack of

length 2a. The thickness of the patch and the adhesive layer are respectively tp and tA.
The cross sections in the yz are depicted in Figure 3.1(b)–(d). The Young’s modulus

and the Poisson’s ratio of each individual layer are denoted as E and �; here and in

the following, subscripts s, p, and A will be used to distinguish properties pertaining,

respectively, to the skin plate, the patch, and the adhesive layer. In addition, the shear

modulus of the adhesive will be denoted as GA. The crack is along the line segment

�x� ≤ a
 y = 0, and the patch is over an elliptical region defined by

( x
A

)2+( y
B

)2 ≤ 1 (3.1)

which completely covers the crack �A > a�. After this repair, the plate is subjected to a

remote stress specified by

� s
yy = �� � s

xx = � ·�� �sxy = �� �x2+y2 →�� (3.2)

By using the superposition principle, it is easy to demonstrate that the above problem

can be decomposed into a tensile mode ��� = 0� and a shear mode ��� = 0�. In this

chapter we will focus on the tensile mode, while the shear mode (Wang and Rose, 1998)

will be briefly discussed in Section 3.3.5.

From a geometrical consideration, bonded repairs, as illustrated in Figure 3.1, fall into

two categories: two-sided (symmetric) and one-sided (asymmetric). In the former case,

two identical reinforcements are bonded on the two surfaces of a cracked plate. This

symmetric arrangement ensures that there is no out-of-plane deflection over the repaired

region (see Figure 3.1(b)), provided the cracked plate is subjected to extensional loads

given by Equation (3.2). In actual repairs, however, one-sided repair is often adopted

in which composite patches are applied to only one side of the panel. This is because

most often, only one face of a structure to be repaired is accessible and sometimes only

one side of a structure is allowed to be patched, e.g., aircraft fuselage or wing sections.

Provided the structure to be repaired is well supported against out-of-plane deflection,

for instance, by stiffeners attached to one side, it is acceptable to ignore the out-of-plane

bending, thus permitting the problem to be treated as being symmetric. However, in the
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case of un-supported, one-sided repairs, the out-of-plane bending caused by the shift of

the neutral plane away from that of the plate may considerably lower the repair efficiency.

By using the superposition principle it is easy to demonstrate that the problem depicted

in Figure 3.1 is equivalent to solving the following perturbation problem: a patched

crack subjected to an internal pressure, −�0, acting on the crack faces, as depicted in

Figure 3.2. This allows the analysis to be divided into two stages (Rose, 1981, 1982).

To determine the prospective stress �0, first we consider the re-distribution of stress

which would be caused by the patch if it were bonded to an uncracked plate (Figure 3.3).
The quantity of interest is the normal stress �0 along the prospective crack path in

y

x
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Plate

a–a
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Aσ0
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y

Fig. 3.2. A patched crack subjected to internal pressure.
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Fig. 3.3. Inclusion analogy for stage I analysis. (a) Flow of load lines into reinforced portions;

(b) cross section along centre line.
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the uncracked plate. For the case of symmetric repairs or fully supported one-sided

repair (no out-of-plane bending), this prospective stress �0 is uniform through the plate

thickness, whereas in the case of un-supported one-sided repairs, the prospective stress

distributes linearly through the plate thickness (Wang et al., 1998b), as illustrated in

Figure 3.2(b,c). At the second stage, we determine the stress distribution around the

crack subjected to an internal pressure of −�0. Due to the presence of the crack, a stress

singularity exists at the two crack tips at x =±a. Here the stress intensity factor KI at

the crack tip x = a is defined as,

KI�z�= lim
x→a+

√
2��x−a�� s

yy�x
 y = 0
 z� (3.3)

where the stress � s
yy�x
 y = 0
 z� is yet to be determined in terms of the internal stress

�0 and the repair dimensions and constituent properties. Depending whether the repair

is supported against out-of-plane bending, the stress intensity factor may vary through

the plate thickness; details will be presented in Section 3.4.

In the absence of a reinforcing patch, the normal stress � s
xx parallel to the crack would

not affect the stress intensity factor, but this is no longer true for the repaired plate. After

the repair, KI will depend on the applied stress ratio � defined by Equation (3.2) and

also on the aspect ratio B/A of the patch. Provided the adhesive layer remains elastic,

the main unknowns KI
�
�A�
max
 �

�A�
max
� s

max, and �
p
max will depend linearly on the principal

applied stress �� of Equation (3.2). The analytical results which will be derived in

Sections 3.3 and 3.4 will show clearly the parametric dependence of these unknowns on

the dimensions and material properties of a repair configuration.

Since a bonded repair represents a multiple layered structure with a crack being present

in one layer only, an exact, analytical solution of this three-dimensional problem is

an almost intractable task. Hence it is imperative to make appropriate simplifications

to enable the derivation of analytical solutions. It should be noted that there is no

fundamental difficulty in employing a fully three-dimensional FE method to estimate the

stresses and stress intensity factors in a patched structure. It is, however, often impractical

nor necessary to rely solely on time-consuming FE computations for routine engineering

designs, especially if parametric analysis is required to optimize a design and to study

the sensitivities of repairs to varying geometry dimensions and material properties. In

this regard, analytical solutions would be preferred over numerical solutions.

3.3 Symmetric or Fully Supported One-Sided Repairs

The solution of the problem formulated in Section 3.2 will be derived, assuming the

repaired structure is supported against out-of-plane bending or the cracked skin plate is

repaired with two patched bonded on the two sides. The analysis will be divided into

two stages as indicated in Section 3.2.

3.3.1 Stage I: Load attraction by patch

Consider first the re-distribution of stress in an uncracked skin plate due to the local

stiffening produced by the bonded reinforcement. As illustrated in Figure 3.3(a), the
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reinforced region will attract more load due to the increased stiffness, leading to a higher

prospective stress than that predicted by one-dimensional analysis. The repair geometry

that corresponds to a one-dimensional analysis is a patch spanning across the entire

width of the skin plate. The one-dimensional theory of bonded joints and doublers (see

Chapter 2) estimates the skin stress underneath the patch as

�0 =
��

�1+S� (3.4)

where S is the patch stiffness to skin stiffness ratio, i.e., S = E′
ptp

E′
sts

= Eptp
Ests

when �p = �s.

This one-dimensional theory also provides an estimate of the load-transfer length �−1
A

for load transfer from the skin to the patch. If that transfer length is much less than

the in-plane dimensions A and B of the patch, we may view the reinforced region

as an inhomogeneity of higher stiffness than the surrounding skin, and proceed in the

following three steps.

(i) Determine the elastic constants of the equivalent inhomogeneity in terms of those

of the skin and the reinforcing patch.

(ii) Determine the stress in the equivalent inhomogeneity.

(iii) Determine how the load which is transmitted through the inhomogeneity is shared

between the skin and the patch, from which the prospective stress �0 can be

calculated.

Steps (i) and (iii) can be readily performed using classical composite plate theory. In the

case of symmetric or fully supported one-sided repairs, the patch and skin have identical

strains.

Step (ii) is greatly facilitated by the known results of ellipsoidal inhomogeneity (Eshelby,

1957; Mura, 1998) in an infinite sheet under uniform far-field-applied stress: the stress

and strain within an ellipsoidal inhomogeneity is uniform, as indicated schematically

in Figure 3.3(a). The uniform stress state can be determined analytically with the help

of imaginary cutting, straining and welding operations. General solution methods were

derived by Rose (1981) for the case where both the skin and the reinforcing patch are

taken to be orthotropic, with their principal axes parallel to the x−y axes. However, that
method employed by Rose (1981) requires modification for the special case of isotropic
skin, the case of most interest for repairs to metallic structures, because the resulting

characteristic equation has coincident roots.

In the following we will present a simpler solution for the special case of isotropic

skin repaired with an orthotropic patch. Although the following analysis is derived

for a supported one-sided repair, pertinent solutions for a symmetric repair shown

in Figure 3.1(c) will be the same by noting that the same symbol ts will now represent

the half thickness of the skin in the symmetric repair. The patch, the adhesive layer,

and the reinforced portion of the skin can be replaced by an equivalent orthotropic

plate, which can now be viewed as an “inhomogeneity” having different constitutive

properties from the surrounding “matrix”. For an isotropic skin and an orthotropic patch,
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the stiffness matrix of the equivalent inhomogeneity, denoted as
[
CI
]
, is given by Rose

(1981) for a supported one-sided repair,[
CI
]= �Cs	+ tp

ts
�Cp	 (3.5)

with

�Cs	= Es

1−�2s

[
1 �s
�s 1

]
�Cp	= E

p

11

1−�p12�p21

[
1 �

p

12E
p

22/E
p

11

�
p

12E
p

22/E
p

11 E
p

22/E
p

11

]

and
[
CI
]= EI

11

1−�I12�I21

[
1 �I12E

I
22/E

I
11

�I12E
I
22/E

I
11 EI

22/E
I
11

] (3.6)

The elastic compliance matrix of the inhomogeneity is
[
CI
]−1

.

According to the Eshelby inhomogeneity result, the stresses and strains inside an ellip-

tical inhomogeneity are uniform. The x- and y-components of the stresses inside the

inhomogeneity are denoted as p and q, respectively. Because of the traction continuity

across the interface, the tractions at the boundary between the inhomogeneity and the

surrounding skin plate along the x and y direction are related to the constant stresses p
and q as illustrated in Figure 3.4.

The unknown stresses p and q are to be determined from the displacement continuity

conditions along the interface between the inhomogeneity and the surround skin plate.

Since the strains in the inhomogeneity are constant (independent of x and y), the

displacement continuity implies that the y-strain is continuous at point A, and the x-strain
is continuous at point B. This can be expressed as

Ixx
B = sxx
B
Iyy
A = syy
A

(3.7)

y
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Fig. 3.4. Inclusion analogy approach for stage I analysis.



76 Composite Repair

Within the inhomogeneity, referring to Figure 3.4(a), the strains at an arbitrary point

�x
 y� inside the inhomogeneity are given by{
Ixx
Iyy

}
= [CI

]−1

{
p
q

}
(3.8)

For the plate with an elliptical cut-out as shown in Figure 3.4(b), the stresses can be

determined by linear superposition of two problems: (i) an infinite plate without a hole

under the stresses p and q applied at infinity; and (ii) an infinite plate with an elliptical

hole under the far-field-applied stresses � s
xx = � ·��−p and � s

yy = ��−q. By noting

that the solution of the first problem is trivial while the solution of the second problem

is available and can be found in Timoshenko and Goodier (1970), the stresses for a plate

with an elliptical cut-out as shown in Figure 3.4(b) can be derived as{
� s
xx

� s
yy

}
A

=
{

p
p−2A

B
q−��xx+��yy�1+2A/B�

}
(3.9)

for point A and {
� s
xx

� s
yy

}
B

=
{−2 B

A
p+q−��yy+��xx�1+2B/A�

q

}
(3.10)

for point B, respectively.

Therefore the strains at points A and B are{
sxx
B
syy
A

}
=− �m1	

{
p
q

}
+ �m2	

{
��xx
��yy

}
(3.11)

where

�m1	=
1

Es

[
2 B/A − �1−�s�− �1−�s� 2 A/B

]
(3.12)

�m2	=
1

Es

[
1+2 B/A −1

−1 1+2 A/B

]
(3.13)

Inserting Equations (3.8) and (3.11) into (3.7) leads to the unknown stresses p
and q, {

p
q

}
=
[[
CI
]−1+ �m1	

]−1

�m2	

{
��xx
��yy

}
(3.14)

which involves only elementary matrix algebra. The prospective stresses in the plate,

along y = 0 ��x�< A�, are, {
� s
xx

� s
yy

}
= �Cs	

[
CI
]−1

{
p
q

}
(3.15)
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Another quantity which is also the primary interest in assessing the efficiency and the

viability of the repair is the skin stress near the termination of the patch. For an elliptical

patch, the skin stress around the patch is peaked at the tip of the patch. This peak skin

stress is given in terms of q as

� s
yy

(
B+
0

)= q (3.16)

For simplicity, explicit results for the particular case where both the plate and patch are

isotropic and have the same Poisson’s ratio, �p = �s, will be presented here first. The

prospective stress in the plate along y = 0 within the patched region ��x�< A� is
�0 = ��� (3.17)

where

�= 1

Z

[
4+2

B

A
+2

A

B
+S
(
3+�s+2

B

A

)
+S ·�

(
1−�s−2�s

B

A

)]
(3.18)

with

Z = 3�1+S�2+2�1+S��B/A+A/B+�sS�+1−�2s S2 (3.19)

It is clear that the stress-reduction factor � depends on three non-dimensional parameters:

(i) the stiffness ratio S; (ii) the aspect ratio B/A; and (iii) the applied stress biaxiality �.
The parameters characterizing the adhesive layer do not affect �0, but we recall that the

idealization used to derive Equations (3.17) and (3.18) relies on �−1
A � A
 B, and �−1

A

is dependent on adhesive parameters as evident from Equation (2.6) of Chapter 2.

To illustrate the important features of Equation (3.18), we show in Figure 3.5(a) the

variation of the stress-reduction factor � with aspect ratio for three loading configura-

tions: (i) uniaxial tension ��= 0�; (ii) equal biaxial tension ��= 1�; and (iii) pure shear

�� = −1�, setting S = 1 and �s = 1/3 for all cases. It can be seen that there is little

variation for aspects ratio ranging from B/A= 0 (horizontal strip) to B/A= 1 (circular

patch), so that for preliminary design calculations, one can conveniently assume the patch

to be circular, to reduce the number of independent parameters. It is also noted from

Equation (3.18) that for �s = 1/3 and a circular patch �A/B = 1�, the stress-reduction

factor � becomes independent of the biaxiality ratio �. As illustrated in Figure 3.5(a)

the curves for �= 0 and �=−1 cross over for B/A= 1, indicating that, for a circular

patch, the transverse stress ��x =� ·�� does not contribute to the prospective stress, so

that this parameter can also be ignored in preliminary design estimates. In this particular

case, the stress-reduction factor � depends only on the stiffness ratio S, as depicted

in Figure 3.5(b), together with the one-dimensional result given by Equation (3.4) as

� = ��
/
�1+S�. It can be seen that the one-dimensional solution ignoring the load

attraction effect of composite patch overestimates the reduction in skin stress. For the

special case of circular patch and Poisson’s ratio being equal to 1/3, Equation (3.18) can

be simplified to become,

�= 3

3+2S
�B/A= 1
 �s = 1/3� (3.20)
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Fig. 3.5. Variation of stress reduction factor with (a) aspect ratio for an elliptical patch of semi-

axes A and B under uniaxial tension, biaxial tension, and pure shear; (b) stiffness ratio S for a

circular patch.

On the other hand, when both the skin and the patch are isotropic and have the same

Poisson’s ratio, the peak stress in the skin outside the patch can be expressed in terms

of �0 as

� s
yy

(
B+
0

)= �1+S��0

Kt =
� s
yy �B

+
0�

��
= �1+S� �0

��

(3.21)

The results given above for an isotropic patch are explicit and simple, making it easy to

perform parametric studies of the effects of patch stiffening ratio and the aspect ratio of

elliptical patches. Equations (3.17) and (3.21) for a special case of uniaxial tensile load

��= 0� have been plotted in the form of a design chart in Figure 3.6. Curves of constant

Kt and constant S loci are shown in the figure. This chart, presented in Figure 3.6, makes

it easy to understand the effects of various design variables. It is clear from Figure 3.6

that excessive stiffening ratios or long, skinny patches with high B/A ratios would result

in high skin stress at the patch tip. Long patches are also shown to be less effective

than wide patches in reducing the skin stress underneath the patch. Furthermore, there

is no universal “best” point design. It appears that all possibly acceptable patch designs,

i.e., 1 ≤ S ≤ 2 and 1

5
≤ B

A
≤ 7, are confined to a region marked by the heavy line as

indicated in the same figure.

It remains now is to show the effect of patch orthotropy
(
E
p
22

/
E
p
11

)
on skin stresses

underneath the patch and at the patch tip, i.e., �0 and Kt , based on implicit results

derived above. It turns out that the patch’s orthotropy has only very minor influence

on the stress-reduction factor � and Kt . To illustrate that effect, particular results for a
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Fig. 3.6. Design chart for isotropic patches with �p = �s under uniaxial tension.

repair under a uniaxial tensile load with orthotropic patches of a zero transverse stiffness

are plotted in a chart form (Figure 3.7) similar to Figure 3.6. It is evident from a

comparison between Figures 3.7 and 3.6 that, for close-to-circular patches, the solution

for orthotropic patches predicts much the same stress level in the skin under the patch
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as is predicted by formulas (3.17) and (3.18) for isotropic patches. The same is true for

any configurations associated with high skin stresses under the patch. Only in the lower

corner of Figure 3.7, for impractically wide and lightly stressed patch, is the difference

significant. Moreover, even then, the use of equations for the isotropic analysis would

always be conservative.

3.3.2 Stage II: Stress intensity factor

Once the stress at the prospective crack location is known, one can proceed to the second

stage of the analysis in which the plate is cut along the line segment ��x�< a
 y = 0�,
and pressure equal to �0 is applied internally to the faces of this cut to make these

faces stress-free. Provided that the load transfer to the reinforcement during this second

stage takes place in the immediate neighbourhood of the crack, the reinforcement may

be assumed to be of infinite extent. Thus the problem at this stage is to determine the

stress intensity factor KI for the configuration shown in Figure 3.2(a).

Without the patch, the stress intensity factor would have the value KI0 given by the

well-known formula (Broek, 1987),

KI0 = �0

√
�a (3.22)

This provides an upper bound for KI, since the restraining action of the patch would

reduce the stress intensity factor. However, KI0 increases indefinitely as the crack length

increases, whereas the crucial property of the reinforced plate of Figure 3.2(a) is that

KI does not increase beyond a limiting value, denoted by KI�, as will be confirmed

later. That limiting value is the value of the stress intensity factor for a semi-infinite

crack. It can be determined by deriving first the corresponding strain-energy release rate

as follows. Before we proceed, let us first determine the deformation of the reinforced

strips shown in Figure 3.2(b). In Chapter 2, the distribution of the adhesive shear

stress ��A� near the skin interruption end of a long overlap double-strap joint takes the

following form:

��A��y�= ��A�maxe
−�Ay (3.23)

where �
�A�
max can be determined from the simple equilibrium condition, �0ts =∫ �

0
��A��y�dy,

��A�max = �Ats�0 (3.24)

Recalling Equation (2.25), the opening displacement of the plate at y = 0 can be readily

determined,

us �0�=
�A tstA
GA

�0 (3.25)

Let us denote the total opening as �= 2us�0�. The above equation can be rewritten as,

�0 =
1

2
�Es� (3.26)
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Fig. 3.8. A patched crack subjected to internal pressure.

with

�= GA

�AtAtsEs

≡ S�A

�1+S� �1−�2s �
(3.27)

Consider the configuration shown in Figure 3.8. If the semi-infinite crack extends by

a distance “da”, the stress and displacement fields are simply shifted to the right by

“da”. The change in the strain energy UE is that involved in converting a strip of width

“da” from the state shown as section AA′ in Figure 3.8 to that shown in section BB′, as
depicted in Figure 3.8. Consequently the change in the potential energy � for a crack

advancement �a, which is defined as the difference between the strain energy change

UE�= 1

2
�0ts�� and the work performed by the external load W �= �0ts�= 2UE�,

�= UE−W =−1

2
�0ts� (3.28)

The crack extension force, i.e., the strain-energy release rate GI� is given by

GI�ts =−��
�a

= 1

2
�0ts� (3.29)

which can be re-written as, recalling Equation (3.26)

GI� = �2
0

�Es

(3.30)

From the above equation, assuming that the usual relation holds between the strain-

energy release rate GI and the stress intensity factor KI (Broek, 1987), we obtain,

KI� = �0√
�

(3.31)

It is clear from this derivation that KI� is an upper-bound for KI. The validity of this

formula will be substantiated by an independent FE analysis to be discussed later.
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3.3.3 The effect of plastic adhesive

The stress intensity factor solution derived in Section 3.3.2 is valid only if the adhesive

remains elastic. If the maximum adhesive shear stress does exceed the shear yield stress,

the relationship between �0 and the crack-opening displacement � will become non-

linear, as illustrated in Figure 3.9(b), which also shows the correct area corresponding to

GI�. For an adhesive that is elastic-perfectly-plastic with a shear yield-stress �
�A�
Y , from

Equation (3.24), the adhesive begins to yield at the following stress,

�0Y = �
�A�
Y

�A ts
(3.32)

It was shown in Chapter 2 that for �0 ≥ �0Y the crack opening-displacement � is given

by (see Equation (2.62)),

�= �
�A�
Y tA
GA

[
1+
(
�0

�0Y

)2
]
≡ �0Y

�Es

[
1+
(
�0

�0Y

)2
]

��0 ≥ �0Y� (3.33)

where
�
�A�
Y tA
GA

has been expressed in terms of � and �0Y via Equations (3.32) and (3.27).

Following the method outlined in the previous section, the strain-energy release rate GI�
can be determined,

GI� = �0�−
∫ �

0

�0d�=
∫ �0Y

0

�d�0+
∫ �0

�0Y

�d�0

= �2
0

�Es

[
��0/�0Y�

3+3 ��0/�0Y�−1

3 ��0/�0Y�
2

]
��0 ≥ �0Y� (3.34)

Then, the stress intensity factor for
(
�0

/
�0Y

)≥ 1 can be expressed as

KI� = �0√
�

[
��0/�0Y�

3+3 ��0/�0Y�−1

3 ��0/�0Y�
2

]1/2
���0/�0Y�≥ 1	 (3.35)

σ0  ΛEsδσ0 =
2
1

UE

–Π

σ0

–Π
σ0Y

(a) (b) 

UE

δ δ

Fig. 3.9. Illustration of the interpretation of GI� as a complementary energy. (a) Elastic adhesive;

and (b) elastic-plastic adhesive.
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Fig. 3.10. Increase in stress intensity factor due to adhesive yielding.

where
�0√
�

is the corresponding stress intensity factor when the plastic yielding in

the adhesive is ignored. As can be seen from Equation (3.35) the increase in KI�
due to adhesive yielding depends only on the plasticity ratio

(
�0

/
�0Y

)
as shown in

Figure 3.10.

3.3.4 The effect of finite crack size

For cracks of finite size, stress intensity factor KI is apparently dependent on the crack

length. For a small crack length, a≤1/
√
�, K I0<KI�, and the stress intensity factor

varies between the lower bound KI0 = �0

√
�a and the upper bound KI� = �0/

√
�. It

becomes independent of crack length and equals to KI� for a > 1/
√
�. In general the

stress intensity factor KI can be expressed as

KI = F�0

√
�a (3.36)

where F denotes the reduction in the stress intensity factor after repair. An exact solu-

tion of the function KI�a� or F can be obtained using the method developed by Keer

et al. (1976) for the special case of an isotropic plate and reinforcement having iden-

tical Poisson’s ratio. By idealizing the adhesive layer as shear springs and treating

the stresses in the adhesive layer as body forces acting on the mid-plane of the plate

and the reinforcement, the problem can be reduced to a single integral equation. An

extensive parametric study (Wang and Rose, 1998) revealed that the reduction fac-

tor F depends strongly on the parameter � given by Equation (3.27) and to a lesser

extent on the stiffness ratio S, as shown by the symbols in Figure 3.11. Based on
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Fig. 3.11. Reduction in stress intensity factor for various patch configurations. Symbols denote

the exact solutions by the Keer method, solid curves denote the interpolating function given by

Equation (3.37), and dashed curve denotes the solution of crack bridging model for S = 1 as

represented by Equation (3.42).

the solutions of the integral equation, the following interpolating function can be

constructed,

F��a�=
[

1

��a
tanh

(
��a

1+���a

)]1/2
(3.37)

where constant � has been determined by curve fitting the numerical solution of the

integral equation, which gives � = 0�3 for balanced repairs �S = 1�0� and � = 0�1 for

infinitely-rigid patch �S → ��. Plots of Equation (3.37) for S = 1�0 and S → � are

denoted by solid curves in Figure 3.11. It is very easy to show from Equation (3.37)

that F ��a� ≈ 1/
√
��a for all a > 1/�. In other words, the stress intensity factor

of a patched crack rapidly approaches the upper bound limit KI� = �0/
√
� and thus

independent on the crack length for a > 1/�.

A simple yet more versatile method of determining the reduction in stress intensity

factor after repair is the crack bridging model (Rose, 1987a), which has been recently

extended to analyze the coupled in-plane stretching and out-of-plane bending of one-

sided repairs (Wang and Rose, 1999). From the previous analysis it is clear that the

essential reinforcing action at the second stage is the restraint on the crack opening due

to the bonded reinforcements. The basic idea underlying the crack bridging model is

that this restraining action can be represented by a continuous distribution of springs

acting between the crack faces, as illustrated in Figure 3.12. This idealization reduces

the problem at stage II to two parts: (i) determine the appropriate constitutive relation

(i.e., stress–displacement relation) for the springs; and (ii) solve a one-dimensional

integral equation for the crack opening,

��x�= usy�x
 y→ 0+�−usy�x
 y→ 0−�= 2usy�x
 y→ 0+� �x�< a (3.38)
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Fig. 3.12. Schematic representation of a centre-crack reinforced by distributed springs.

It is assumed that distributed linear springs act between the crack faces over the crack

region so that the boundary conditions on y = 0 are

�yy�x�=�Esuy�x� �x�< a

uy�x�= 0 �x� ≥ a
(3.39)

where � denotes a normalized spring constant which has dimension length−1. It is

worth noting that this normalized spring constant � has already been determined in

Section 3.3.2 and is given by Equation (3.27). With these assumptions, the problem of

determining the crack opening displacement uy�x� can be reduced to that of solving the

following integral equation (Rose, 1987a; Wang and Rose, 1999),

Es

2�

∫ a

−a
= uy�t�

�x− t�2 dt =−�0+�Esuy�x� (3.40)

The integral in the above equation is interpreted as a Hadamard finite part (1952) which

can be viewed as the derivative, a Cauchy principal value integral. The above equation

can be efficiently solved using either Galerkin’s method or collocation methods. Once

the crack-opening displacement uy�x� is determined, the stress intensity factor KI can

be calculated by

KI = lim
x→a

Es

√
2�

4

uy�x�√
a−x (3.41)

Detailed numerical results for KI are available in Rose (1987a), which also provided the

following interpolating function constructed based on the numerical results,

F��a�=
[

1+2�23�a

1+4�776�a+7��a�2

]1/2
(3.42)
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Plot of Equation (3.42) for S= 1 is also shown in Figure 3.11 as a dashed curve. As com-

pared to the exact solutions by the Keer formulation (as represented by Equation (3.37)),

the crack-bridging model (as represented by Equation (3.42)) slightly over-estimates the

reduction in stress intensity factor for balanced repair �S = 1� in the short crack limit.

Both the two interpolating formulas, Equations (3.37) and (3.42) recover the asymptotic

solution of (3.31) in the long crack limit as a→�.

3.3.5 The effect of mixed mode loading

Although cracks that are likely to be encountered in practice are generally aligned in a

direction perpendicular to the principal tensile stress (or strain), giving rise to mode I

cracking, there are at least two circumstances where mixed mode cracking is a major

concern in the context of bonded repair. First, application of bonded reinforcements,

which are frequently anisotropic, may alter the local stress-state near the crack region

so that the maximum principal stress may no longer remain perpendicular to the crack

plane. Secondly, structures are frequently subjected to non-proportional loading in which

the principal stress/strain axes rotate with time, thus cracks may experience a time-

dependent mixed mode loading. If the bonded repair technique is used to repair mode II

cracks, one important question remaining to be resolved is whether this method is still

effective.

For simplicity let us consider the particular case of an isotropic circular patch �A/B= 1�
with a Poisson’s ratio �s = 1/3. In this case, the prospective stress in the plate after

repair can be determined using the general solution for biaxial tension presented in

Section 3.3.1, namely Equation (3.20):

�0 =
3

3+2S
�� �B/A= 1
 �s = 1/3� (3.43)

Detailed solution of the mode-II stress intensity factor KII can be found in Wang and

Rose (1998). We shall not repeat here the intermediate details of the analysis but simply

recall the results for the upper-bound and the interpolating function. The upper-bound

solution of KII is given by an equation similar to that for tensile mode:

KII =
�0√
�II

(3.44)

where the normalized shear spring constant �II is given by

�II =
�II
A S

2�1+S��1+�s�
(3.45)

with

�II
A =
√
GA

tA

(
1

�sts
+ 1

�ptp

)
(3.46)
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It is evident that �II is lower than the spring constant for that for mode I crack. For

instance, in the case of isotropic patch, �II is related to the spring constant � for mode

I crack by

�II =
√
1−�s
2

�= �√
3

�s = 1/3 (3.47)

An important implication arising from this difference is that when strongly anisotropic

reinforcements with low in-plane shear moduli, such as unidirectional plastic reinforced

composites, are used to repair a crack under shear loading (with the fibers being per-

pendicular to the crack), the repair efficiency will be much lower than that could be

expected on the basis of mode I analysis.

For finite crack size, the stress intensity factor KII can also be expressed as (Wang and

Rose, 1998)

KI = F��IIa��0
√
�a (3.48)

with F��IIa� being given by Equation (3.37) or Equation (3.42).

3.4 One-Sided Repairs

So far, we have ignored the tendency for out-of-plane bending that would result from

bonding a reinforcing patch to only one face of an un-supported skin plate, so that,

strictly speaking, the preceding analysis is more appropriate for the case of two-sided

reinforcement in which patches bonded to both faces and to one-sided repairs which are

supported against out-of-plane deflection. In the present analysis we shall consider the

particular case where the patch covers the entire cracked plate. It is again convenient to

divide the analysis into two stages. For simplicity, the stress reduction due to stage I will

be analyzed within the framework of geometrically linear elasticity in this section. The

stage I geometrically nonlinear analysis will be discussed later in Chapter 5. However,

stage II is adequately analyzed using geometrically linear elasticity.

Consider first the effect of one-sided patch on an un-cracked skin plate which is subjected
to a uniaxial tension. Assuming that the patch is far greater than the shear stress transfer

length, we treat the patched region as a composite plate with a rigid bond line. The stress

distribution in the plate and the reinforcement can be determined using the conventional

theory of cylindrical bending of plates, i.e., we shall assume that the bending deformation

of the reinforced portion satisfies the usual kinematic condition that plane sections remain

plane. However, the stress intensity factor will be assumed to vary linearly through

the plate thickness in accordance to the shear deformation (Reissner) plate theory as

discussed later in Chapter 5, i.e.,

KI�z�= Kmean+Kb

2z

ts
(3.49)

where Kmean and Kb denote respectively the membrane and bending stress intensity

factors.
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Fig. 3.13. Stress distribution in an un-cracked plate reinforced with a patch. (a) Composite plate

subjected to uniaxial tension; and (b) stress distribution in the plate.

The position of the neutral plane of the composite skin consisting of the base skin and

rigidly bonded patch is denoted by z̄, referring to Figure 3.13,

z̄= S�ts+ tp+2tA�

2�1+S� (3.50)

The moment of inertia of the reinforced region It is

It = Is+ Ip
E′

p

E′
s

(3.51)

where

Is =
t3s
12

+ tsz̄2 (3.52)

Ip =
t3p

12
+ tp�ts+ tp−2z̄�2

4
(3.53)

The stress distribution in the patched plate is assumed to be linear in the thickness

direction, so that it can be specified in terms of the membrane force N0 and a bending

moment M0 per unit length in the x-direction, as depicted in Figure 3.13 (Wang et al.,

1998b; Wang and Rose, 1999),

N0 =
∫ tP/2

−tP/2
�yy�y = 0
 z�dz≡ ��ts

1+S + ��t2s z̄
2

It
(3.54)
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M0 =−
∫ tP/2

−tP/2
�yy�y = 0
 z�zdz≡ ��t4s z̄

12It
(3.55)

Comparison between Equations (3.54) and (3.4), noting that N0 = �0ts in a symmetric

repair, clearly shows that the plate in a one-sided repair is transferring more membrane

stress than in an equivalent two-sided repairs. Therefore, due to out-of-plane bending

induced by load eccentricity, the stress distribution along the prospective crack path

before the crack appears is higher than for a corresponding two-sided reinforcement. In

addition, there is a bending moment acting on the prospective crack faces. Consequently,

due to the shift of neutral plane, one-sided repairs would experience not only an increase

in the net force that the plate is transmitting, but also a secondary bending moment.

The strain-energy release rate can be determined following the method outlined in

Section 3.3.2. For an elastic adhesive, the change in the potential energy is still given by

Equation (3.28) as �=UE−W where W = 2UE or UE =W/2, and therefore �=−W/2.
However, the work done and thus the change in the potential energy now consist of two

terms: work done by the membrane force and the bending moment (Wang et al., 1998b),

tsGI� = N0u0+M0�0 (3.56)

where u0 and �0 denote the opening displacement and the angle of rotation of the crack

face faces, which are related to the membrane force N0 andM0 via the following relation,{
u0
�0

}
=
[
c11 c12
c21 c22

]{
N0

M0

}
(3.57)

with

c11 =
ts�ts+ tp�
4�̃Dp

+
[

1

E′
ptp

+ 1

E′
sts

+ tp�tp+ ts�
4Dp

] [
1

2�A

− GAts
16�̃2�AtA

(
tp

Dp

− ts
Ds

)]

c12 =
ts

2�̃Dp

(
1+ Dp

Ds

)
+
(
tp

2Dp

− ts
2Ds

) [
1

2�A

− GAts
16�̃2�AtA

(
tp

Dp

− ts
Ds

)]

c21 =
tp+ ts
2�̃Dp

− GA

8�̃2�AtA

(
tp

Dp

− ts
Ds

) [
1

E′
ptp

+ 1

E′
sts

+ tp�ts+ tp�
4Dp

]
(3.58)

c22 =
1

�̃Dp

(
1+ Dp

Ds

)
− GA

16�̃2�AtA

(
tp

Dp

− ts
Ds

)2

Ds =
E′

st
3
s

12
Dp =

E′
pt

3
p

12
(3.59)

�̃4 = E′
A

4tA

[
1

Ds

+ 1

Dp

]
(3.60)
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It is worthy to note that the first term in the right-hand side of Equation (3.56) is the

same as the right-hand-side term of Equation (3.29) derived for a symmetric repair since

N0 = �0ts for a symmetric repair and � is defined there to be 2us�0�≡ 2u0. Furthermore,

the constant c11
 c12, etc. can be considered as the compliances of the springs bridging

the crack surfaces, and their detailed derivations will be given in Chapter 5 in connection

to the crack bridging model.

Therefore the total strain-energy release rate can be expressed as

GI� = 1

ts

[
c11N

2
0 + �c12+ c21�N0M0+ c22M2

0

]
(3.61)

which can be simplified to become

GI� = ����2

�1+S�2
 2

�
(3.62)

where � is given by Equation (3.27), and the term  is well approximated by the

following expression (Wang et al., 1998b)

 2 ≈ 2+ 3ts
2tp

+ 3�Ats
�̃tp

(
1+ ts

tp

)
+ �1+S�

(
2+ 3ts

2tp

)
z̄2ts
It

+ �1+S��A

�̃

(
1+ ts

tp

)
z̄t3s
tpIt

(
3z̄

ts
−1

)
(3.63)

Consequently, the root-mean-square stress intensity factor KI�
rms for one-sided repair

can be expressed as

Krms
� = ��
1+S

 √
�

(3.64)

It is now possible to define a spring constant for one-sided repairs:

�b =
�

 2
(3.65)

With this spring constant, the stress intensity factor for a one-sided repair can be

expressed in a similar form as for two-sided repairs,

Krms�a�=
��
1+S

√
�aF��b ·a� (3.66)

where F again is given by either Equation (3.37) or (3.42). Figure 3.14 shows a

comparison between Equation (3.66) and the results of three-dimensional FE analyses.

The dimensions and material properties of the repair configuration being considered

are summarized in Table 3.1. For this repair, we have the shear stress transfer length

�−1
A = 5�634mm, and the normalized spring constant �= 0�096mm−1. In the FE anal-

yses, three constituents – the patch, the adhesive, and the skin – are assumed to deform
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Fig. 3.14. Comparison between analytical solution and finite element results for one-sided repairs.

Symbols denote the results of three-dimensional finite element analysis and the curves indicate

the theoretical formulas.

Table 3.1. Dimensions and material properties of a typical repair.

Layer Young’s modulus
(GPa)

Poisson’s
ratio

Thickness
(mm)

Skin 71 0�3 3�0
Patch 207 0�3 1�0
Adhesive 1.89 0�3 0�2

elastically only, and are each modeled by 20-noded isoparametric brick elements. The

same problem has been analyzed using two different FE codes, namely ABAQUS (1997)

and PAFEC (1995); both yielded approximately the same results. It can be seen that the

above formula is in good correlation with the FE results. For comparison, results from

the corresponding symmetric repair are also obtained and presented in Figure 3.14. It

is also worth noting that the results confirm that the stress intensity factor Krms for a

one-sided repair is much higher than that for an equivalent two-sided repair, indicating

the importance of out-of-plane bending.

The root-mean-square stress intensity factor Krms is related to the membrane and bending

stress intensity factors (Wang et al., 1998b),

K2
rms = K2

mean+
1

3
K2

b (3.67)

Although the root-mean-square of the stress intensity factor has been derived, the

maximum and minimum stress intensity factors (through skin thickness) still remain
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unresolved. It is apparent that the energy method alone is insufficient to determine the

membrane and bending stress intensity factors, as an additional equation is required

to partition Krms into membrane and bending components. Therefore a crack-bridging

model which is capable of analyzing the combined tensile-stretching and bending of

one-sided repairs must be used. This model will be discussed in detail in Chapter 5.

3.5 Thermal Stresses

For the sake of simplicity the thermal stresses resulting from cure and service temperature

fluctuations have not been considered so far. Often the resulting thermal residual stresses

in the skin are tensile, owing to the increase in the stiffness of the patched region and the

lower coefficient of thermal expansion of the composite patches. This tensile residual

stress will increase the maximum stress intensity factor of the crack after repair, hence

may enhance fatigue crack growth rate (see Chapters 8 and 11). Therefore thermal

residual stresses represent a major factor in the design of repairs.

The process of adhesive bonding using high-strength structural adhesives (thermal-

plastics) generally requires curing the adhesive above the ambient temperature. For

instance, in a typical repair applied to an aircraft structure the reinforced region is initially

heated to the curing temperature of the adhesive for certain duration. During this heating

process, the patch is free to expand, hence experiences no thermal stress. The skin,

however, may experience thermal stresses due to the localized heating. Once the adhesive

is fully cured, the patch is bonded to the parent structure. The subsequent cooling to the

ambient temperature will induce additional thermal stresses both in the patch and the

skin, because the repaired region has a different thermal expansion coefficient. Thermal

stresses may also arise when the patched structure experiences thermal cycling in service.

Solutions of the thermal residual stresses in symmetric repairs and one-sided repairs

due to either curing of adhesive or low operating temperature with various degree of

complexity will be derived in Chapters 4 and 5, respectively. In the following, as an intro-

ductory to the subject, only the results pertaining to supported repairs in an infinite skin

due to low operating temperatures will be presented. Consider an isotropic plate that is

reinforced by a circular “isotropic” patch of radius Ri and subjected to uniform tempera-

ture field of Toper. The thermal expansion coefficient, the modulus, and Poisson’s ratio of

the patch are denoted by �p
 �p, and Ep, respectively. The objective here is to determine

the thermal stresses in the patch and in the skin both outside and underneath the patch.

Changes in operating temperature will result in thermal stresses. In this case, the temper-

ature distribution is essentially uniform. However, since the repaired region has a higher

stiffness than the surrounding area, thermal stress would occur. As in Section 3.3.1, the

x- and y- components of the thermal residual stress in the inhomogeneity are denoted

as poper and qoper. The displacement continuity condition at the boundary between the

inhomogeneity and the surrounding skin plate can be expressed as

Ir �r = Ri�= sr �r = Ri� (3.68)

Because of the axisymmetry of the problem, sr �r = Ri� = syy
B�y = Ri� = sxx
A�y =
Ri� and p

oper = qoper. Thus, from Equation (3.10), noting that A/B = 1
 �� = 0, and
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poper = qoper, and by expressing stresses in terms of strains using the thermo-elastic

constitutive relation (to account for thermal strains) for an isotropic skin,1 the radial

strain in the skin just outside the patch is determined to be

sr �r = Ri�= syy �y = Ri�=−1+�s
Es

poper +�s

(
Toper −Troom

)
(3.69)

In contrast, the strain of the inhomogeneity at r = Ri is derived from Equation (3.8),

after appropriate modification to account for the thermal strain,2 as

Ir �r = Ri�=
1−�I
EI

poper +�I

(
Toper −Troom

)
(3.70)

where EI
 �I and �I are the equivalent elastic constants and equivalent thermal expan-

sion coefficient of the patch–skin combination (inhomogeneity). By noting that EI
 �I,
and �I are defined respectively by Equation (3.5) in Section 3.3.1 and Equation (4.99)

of Chapter 4, poper then can be readily determined from Equations (3.68), (3.69),

and (3.70) as,

poper =−EsS �1−�s�
(
�p−�s

)
2
(
1−�p

)+ �1−�2s � S
(
Toper −Troom

)[(1−�p) �1+�s�+ (1−�2s ) S(
1−�2p

)+ �1−�2s � S
]

(3.71)

Since skin stress just outside the repair is given by (3.16) and since poper = qoper in the

present case, this skin stress is therefore also given by Equation (3.71).

The thermal residual stresses inside the repaired region resulting from the uniform

temperature loading are

�oper
s = �oper

xx
s = �oper
yy
s

=−�sEs

(
Toper −Troom

) (
1−�p

/
�s

)
S

2
(
1−�p

)+ �1−�2s � S
[(

1−�p
)
�1+�s�+

(
1−�2s

)
S(

1−�2p
)+ �1−�2s � S

]

(3.72)

for the skin, and

�oper
p = �oper

xx
p = �oper
yy
p

= �sEp

(
Toper −Troom

) �2−�s� (1−�p

/
�s

)
2
(
1−�p

)+ �1−�2s � S
[(

1−�p
)
�1+�s�+

(
1−�2s

)
S(

1−�2p
)+ �1−�2s � S

]

(3.73)

1The general thermo-elastic constitutive relation is given by ij = C−1
ijkl�kl+�ij�T .

2 In general, the thermal strain can be accounted for in the results presented in Section 3.3.1 by replacing the

strain term ij there with ij−�ij�T .
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for the patch. It is interesting to note from Equations (3.71) and (3.72) that the skin

stress is compressive outside the repair and tensile under the patch when Toper < Troom
(for low operating temperature) since in general �p < �s. In addition, as shown later in

Section 4.5 of Chapter 4, the above result of thermal stresses due to changes in operating

temperature can also be used to evaluate thermal stresses due to adhesive curing of the

repaired structure in a uniform temperature field. This is because curing of the repaired

structure involves a heating phase followed by a cooling phase and the repaired structure

will remain stress free during the heating phase if the curing takes place in a uniform

temperature field. The curing of the repaired structure in a uniform temperature field

therefore will have the same effect as changes in operating temperature. Consequently,

thermal stresses due to a uniform temperature curing can be determined using the same

Equations as (3.71)–(3.73), except that
(
Toper −Troom

)
is now replaced by

(
Troom −Tcuring

)
in those equations.

3.6 Summary

In this chapter, a fundamental concept of crack patching is introduced. The so-called

two-stage solution procedure proposed by Rose that will be used throughout the book

is described. Analytical solutions for determining load attraction and the crack-tip stress

intensity factor of both symmetric and one-sided repairs are delineated. The effects of

the nonlinear adhesive, out-of-plane bending, mixed mode loading and thermal stresses

on the repair efficiency are also discussed.



CHAPTER 4

Mathematical Theory of Supported One-Sided
Crack Patching or Two-Sided Crack Patching

4.1 Introduction

Analytical method for analyzing crack patching using the inclusion analogy was first

proposed by Rose (1981, 1982, 1988) for an elliptical patch as mentioned in Chapter 3.

Rose’s fundamental idea is to divide the analysis into two stages (Figure 4.1). The merit

of dividing the analysis into two stages is that each stage can be solved by a different

analytical method employing a different set of appropriate simplifying assumptions. In

stage I, the redistribution of stress in an uncracked skin due to the presence of the patch is
determined, assuming that the skin and the patch are rigidly bonded. This assumption is

appropriate in practice because the length of the load transfer zone around the edge of the

patch is usually small compared with the overall dimension of the patch. Stage I problem

is commonly referred to as a load attraction problem. For stage II, a problem of an infinite

sandwiched plate consisting of a centered-cracked skin plate adhesively bonded to an

uncracked patch is considered. This two-stage analytical procedure provides a practical

method to estimate quantities of primary interests such as the stress concentration factors

near the edge of the patch, the patch stresses, the crack-tip stress intensity factor, and

the adhesive shear stresses.

In the following, we will present the analysis for a supported one-sided repair. Pertinent

solutions for a two-sided repair can be readily obtained by taking ts to be the half

thickness of the skin when considering a latter repair case.

4.2 Stage I: Load Attraction

In Chapter 3, stage I analysis had been carried out only for certain simple shapes such

as ellipses or circles. An approximate algorithmic solution is therefore derived in this

section for the elastic fields in an infinite isotropic skin sheet rigidly bonded with an

orthotropic, polygon-shaped patch. The approach presented here combines the equivalent

95
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Patch

Crack

= +.

Local
debond

No crack 

σ0(ς) = −σ  
s (x, 0)

Local
debond

σ∞ij

Stage I Stage II

σ 
s (x, 0)yy

yy

σ∞ij

Fig. 4.1. The Rose’s two-stage analysis procedure for crack patching: stage I, load attraction; and

stage II, fracture analysis. In the figure, � s
yy �x
0� is the skin stress underneath the patch at the

prospective crack location.

inclusion method by Eshelby (1957; Mura, 1998) and the algorithmic solutions for a

polygonal inclusion (1996) with constant and polynomial eigenstrains (Rodin, 1996;

Duong et al., 2001a).

The terminology “inclusion”, which is mentioned throughout this book, may have been

used in a slightly different context in the literature on the subject of bonded repairs

so that perhaps it needs a clarification. When a finite subdomain ! in a homogeneous

material D is prescribed by an initial strain (or eigenstrain) field and this initial strain

field is zero outside !, then ! is called an inclusion. If a subdomain ! in a material D

has elastic moduli different from those outside !, then ! is called an inhomogeneity.

The present patching problem is therefore classified as an inhomogeneity problem. The

solution of the load attraction problem in a bonded (patched) sheet will be solved

by the Eshelby equivalent inclusion method combining with the algorithmic solutions

for polygonal inclusions developed by Rodin (1996) and Duong et al. (2001a). This

approach is preferred to other methods such as Muskhelishvili complex variable method

since literature contains numerous solutions for inclusion problems. In contrast, the latter

method requires a complex mapping for a non-elliptical patch and also an integration of

a strain field resulting in multiple-valued functions.

As mentioned earlier, the elastic fields due to inclusions in an infinitely extended media

have been investigated by many authors, following the pioneering work by Eshelby

(1957). Since a list of references on this subject is extensive and can be found in a book

by Mura (1998), not all of those works will be discussed here. Only references most

relevant to the present development will be cited. Elastic fields due to an ellipsoidal

inclusion with eigenstrain given in the form of polynomials of coordinates were obtained

by Sendeckyj (1967) and Moschovidis (1975). Using these results, Moschovidis (1975;

Moschovidis and Mura, 1975) employed the equivalent inclusion method to formulate the
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solution for a number of ellipsoidal inhomogeneities in an infinitely extended isotropic

material. Johnson et al. (1980a,b) used the same approach to study the stress field in

cuboidal precipitates. On the other hand, elastic fields in a polygon-shaped inclusion

with uniform eigenstrains in an infinitely extended isotropic media were studied by

Rodin (1996) and Nozaki and Taya (1997). Duong et al. (2001a) extended the Rodin’s

approach to the case of polynomial eigenstrain and applied the obtained solution to

the load attraction problem in a rigidly bonded sheet. Their approach for a general

shaped inhomogeneity is foremost robust and therefore will be presented in the next

section. It should be emphasized that the approach employed by Duong et al. gives

only an approximate solution to the presently patched problem since the condition for

equivalency, as shown later in the next section, can only be satisfied approximately

using the first few terms of the Taylor’s series.

4.2.1 Equivalent inclusion method

In this section, the equivalent inclusion method is briefly reviewed for latter discussion. In

the equivalent inclusion method, the stress and strain fields induced by an inhogomeneity-

occupied region ! will be the same as those induced by the eigenstrain field ∗ij in

the same region of a homogeneous material C0
ijkl when 

∗
ij is selected appropriately as

shown in Figure 4.2. The second problem in Figure 4.2 is an inclusion problem. The

equivalency condition between the two problems requires that

Iij = Hij
� I
ij = �H

ij

(4.1)

at each point in subregion !. For problem B, i.e., the inclusion problem, the induced

strain field is commonly expressed in terms of the eigenstrain ∗ij and the far-field-applied
strain �ij as (Mura, 1998)

Hij =Hijkl∗kl+�ij (4.2)

Ω Ω

(a) (b)

=

σ∞ij
Cijkl

0 σ∞ij

εij*

Cijkl
I

Fig. 4.2. An illustration of the equivalent inclusion method: (a) an inhomogeneity problem

(problem A); and (b) an inclusion problem with eigenstrains ∗ij (problem B).
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where Hijkl is called Eshelby tensor. The next section of this chapter will be devoted to

the calculation of this Eshelby tensor for a polygon-shaped domain ! with eigenstrains

given in the form of polynomials of position coordinates. Similar to the thermal or initial

strain, the resulting stress inside ! for problem B from Hook’s law is

�H
ij = C0

ijkl

(
Hkl−∗kl

)
(4.3)

while the corresponding stress for the first problem, i.e., problem A, equals

� I
ij = CI

ijkl
I
kl (4.4)

where CI
ijkl is the elastic moduli of the inhomogeneity, C0

ijkl is the elastic moduli of

the material outside subregion ! in problem A and also the elastic moduli of the

homogeneous material in problem B. In Equations (4.1)–(4.4), the superscripts H and I

denote the homogeneity (or inclusion) and inhomogeneity problems, respectively.

Substituting Equations (4.2)–(4.4) into Equation (4.1) yields the following equation for

the eigenstrain ∗ij:

�CijklHklmn
∗
mn− C0

ijkl
∗
kl =−�Cijkl�kl

�Cijkl = C0
ijkl− CI

ijkl

(4.5)

It should be noted that the above equation is nonlinear because Hijkl is an implicit

function of ∗ij .

Equation (4.5) will be solved approximately by the following procedure (Moschovidis,

1975; Moschovidis and Mura, 1975). First, ∗ij is assumed to be polynomials of the

position coordinates with yet to be determined coefficients, i.e.,

∗ij = Fij+Fijkxk+Fijklxkxl+· · · (4.6)

In Equation (4.6), Fij
 Fijk
 Fijkl " " " , etc., are constants symmetric with respect to the

free indices i
 j and having value independent of the order in which the summa-

tion indices appear; i.e., Fijkl = Fjikl
 Fijkl = Fijlk. As shown in the next section, the

strain fields induced by each term of the polynomial eigenstrain are given respectively

by SijklFkl
 SijklmFklm, and SijklmnFklmn, where Sijkl�x�
 Sijklm�x�, and Sijklmn�x� are the

Eshelby tensors that correspond to a constant, linear, and quadratic eigenstrains, respec-

tively. It should be noted that these tensors in general are not constant tensors, even for

the case with uniform eigenstrains. These Eshelby tensors for a polygonal inclusion !
will be computed using the algorithmic approach developed by Rodin (1996) and Duong

et al. (2001a). The details of these computations will be given in the next section, and

let us assume for now that these Eshelby tensors are already obtained. With these in

mind, Equation (4.2) then becomes

Hij = �ij+Hijkl∗kl = �ij+SijklFkl+SijklmFklm+SijklmnFklmn+· · · (4.7)

and therefore

Hijkl
∗
kl = SijklFkl+SijklmFklm+SijklmnFklmn+· · · (4.8)
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The next two steps are to expand the Eshelby tensors S’s in Equation (4.8) into Taylor

series, and to substitute the expanded form of Equation (4.8) into Equation (4.5) together

with Equation (4.6). By setting the coefficient of each polynomial term of the resulting

equation to zero, one obtains a system of algebraic equations with the unknowns Fij
 Fijk,
and Fijkl.

To illustrate the above procedure, the solution for a polygon-shaped inhomogeneity that

is symmetric with respect to two coordinate axes in an infinitely extended isotropic media

with uniform applied normal strains at infinity will be formulated. The elastic moduli

of the inhomogeneity are also assumed to be orthotropic with the material principal

directions parallel to the coordinate axes. The double symmetry condition of this problem

imposes that the normal component of the eigenstrains must be an even function of

the coordinates while the shear component is an odd function. If the eigenstrain ∗ij is
approximated by a second degree polynomial, then ∗ij , after taking into consideration

the double symmetry condition, must presume the following form:

∗11 = F11+x21F1111+x22F1122
∗22 = F22+x21F2211+x22F2222
∗12 = x1x2F1212

(4.9)

Furthermore, by observing the symmetric and anti-symmetric property of the normal and

shear components of the induced strain field and by invoking the material orthotropy and

isotropy, one can deduct from Equation (4.5) the following set of algebraic equations

for the unknown coefficients F ’s (without summation on the subscript �):

�C��11L11�0�+�C��22L22�0�−C0
��11F11−C0

��22F22 =−�C��11�11−�C��22�22

1

2
�C��11

�2

�x21
L11�0�+

1

2
�C��22

�2

�x21
L22�0�−C0

��11F1111−C0
��22F2211 = 0

1

2
�C��11

�2

�x22
L11�0�+

1

2
�C��22

�2

�x22
L22�0�−C0

��11F1122−C0
��22F2222 = 0

�C1212

�2

�x1�x2
L12�0�−C0

1212F1212 = 0

(4.10)

where

L���x�=S��11�x�F11+S��22�x�F22+S��1111�x�F1111+S��1122�x�F1122
+S��2211�x�F2211+S��2222�x�F2222+S��1212�x�F1212 ��
 �= 1
 2�

(4.11)

and the notation L���0� and
�2

�x21
L���0�, etc., means that the L’s and their second deriva-

tives are evaluated at point (0, 0), i.e., the origin of the coordinate system.
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Once the coefficients F ’s, thus ∗ij , are determined, the elastic fields in the inhomo-

geneity problem (problem A) can be obtained from the corresponding results of the

equivalent inclusion problem (problem B). In particular, the strain and stress fields in

the inhomogeneity problem are given by

Iij = Hij = �ij+SijklFkl+SijklmnFklmn+· · · (4.12)

� I
ij�x�=

{
C0
ijkl

(
Hkl−∗kl

)
inside !

C0
ijkl

H
kl outside !

(4.13)

It should be emphasized that throughout this chapter and also throughout this book,

within a context of the equivalent inclusion method, CI
ijkl denotes the moduli of the

inhomogeneity and therefore the moduli of the inhomogeneous region !, while Iij
and � I

ij indicate the strain and the stress fields in the inhomogeneity problem. In other

words, while CI
ijkl only defines the moduli of points inside the inhomogeneous region,

Iij and �
I
ij describe the strain and the stress fields of points both inside and outside the

inhomogeneous region.

4.2.2 Inclusion problem with polynomial eigenstrains

The Eshelby tensors S’s mentioned in Section 4.2.1 for a polygon-shaped inclusion

with polynomial eigenstrains and the complete elastic fields of the “equivalent” inclu-

sion problem will be derived here, following the work of Rodin (1996) and Duong

et al. (2001a).

(a) Formulation

Consider an infinite, elastic, homogeneous, and isotropic media having an inclusion !
with an eigenstrain ∗ij , and stress free at the infinity, i.e., �ij = 0. The eigenstrain is so

defined that it assumes some functional value in ! but vanishes outside !. The induced

strain Hij and the resulting stress �H
ij are given by Mura (1998)

Hij�x�=
1

8� �1−��
[
#kl
klij−2�$kk
ij−2 �1−�� ($ik
kj+$jk
ki

)]
(4.14)

�H
ij �x�=

{
C0
ijkl�

H
kl−∗kl� inside !

C0
ijkl

H
kl outside !

(4.15)

where

#ij =
∫∫
!

∗ij �x−x′�dx′

$ij =
∫∫
!

∗ij
�x−x′�dx

′
(4.16)
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dx′ = dx′1 · dx′2 · dx′3
 �x−x′� =√�x1−x′1�2+ �x2−x′2�2+ �x3−x′3�2, while the comma

indicates partial differentiation, and � is the Poisson’s ratio of the homogeneous material.

The functions # s and $s are known as the bi-harmonic and harmonic potentials,

respectively. It should be noted that the induced strain field given by Equation (4.14) is

valid for both interior and exterior points of !.

Now, assuming that the eigenstrain ∗ij is given in the form of Equation (4.6), substitution

of (4.6) into (4.16) yields

#ij = Fij%+Fijk%k+Fijkl%kl+· · ·

$ij = Fij�+Fijk�k+Fijkl�kl+· · ·

% =
∫∫
!

�x−x′�dx′

%k" " " l =
∫∫
!

x′k" " " x
′
l �x−x′�dx′

�=
∫∫
!

1

�x−x′�dx
′

�k" " " l =
∫∫
!

x′k" " " x
′
l

�x−x′� dx
′

(4.17)

Substitution of (4.17) into (4.14) gives

Hij�x�= Sijkl�x�Fkl+Sijklm�x�Fklm+Sijklmn�x�Fklmn+· · · (4.18)

where

8��1−��Sijklm " " " n = %m" " " n
klij−2��kl�m" " " n
ij− �1−����il�m" " " n
kj+�jl�m" " " n
ki
+�ik�m" " " n
lj+�jk�m" " " n
li� (4.19)

� is again the Poisson’s ratio of the elastic homogeneous material, and �kl is the

Kronecker delta, and the comma indicates partial differentiation. From Equation (4.18),

it is clear that Sijkl
 Sijklm, and Sijklmn are the Eshelby tensors for an inclusion with eigen-

strains given by constant, linear, and quadratic functions of the coordinates, respectively.

In order to determine these tensors, %
%m" " " n
�
�m" " " n and their derivatives need to be

evaluated. Rodin (1996) and Duong et al. (2001a) have proposed a simple algorithm to

compute these quantities. A brief description of that algorithm will be presented in part

(b) of this section.

So far all formulas are given for an infinite 3-D media. In relevance to the present

load attraction problem, these formulas must be specialized to a two-dimensional elas-

ticity. Since most of these formulas are quite general, they also apply well to the
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two-dimensional case without any change, except for the expressions given in Equations

(4.16) and (4.17). By considering the inclusion ! as an infinite cylinder with a

polygon-shaped cross-section, one can obtain formulas corresponding to Equations (4.16)

and (4.17) for a plane strain case by integrating those equations in the third direction

(Rodin, 1996; MacMillan, 1958; Duong et al., 2001a). These new formulas will be given

explicitly in part (b).

(b) Computational algorithm

As before, the presentation will be restricted to the case of a polygon-shaped inclusion

symmetric with respect to both coordinate axes and with eigenstrain given by Equation

(4.9). For simplicity, all formulations presented in this part will be derived for plane

strain condition. The formulation can be easily modified for the plane stress case by

replacing the Young’s modulus E with E�1+2��/�1+��2 and the Poisson’s ratio � with
�/�1+�� while keeping the shear modulus � unchanged.

The algorithm is implemented in three stages (Rodin, 1996; Duong et al., 2001a). First,

the inclusion domain ! is decomposed into a set of triangular elements (subregions) in

such a way that x, the point where the solution is evaluated, is a common vertex of all the

elements (Figure 4.3). Second, %
%m" " " n
�
�m" " " n and their derivatives are calculated

for each element in its local coordinate system. Third, tensors S’s are assembled from

the elemental contributions after appropriate coordinate transformation from local to a

common, global coordinate system. The triangular elements made up of domain ! are

called duplexes and they are referred to as simplexes for the case of right triangles.

Since a duplex can be formed from two simplexes and the computation for the latter is

more efficient than that for the former, only the elemental Eshelby tensors for a simplex

in the local coordinate system will be derived here (Rodin, 1996; Duong et al., 2001a).

In all previous sections, only one coordinate system is kept referred to, i.e., the global

coordinate x1–x2 system X with an origin at the center of ! as shown in Figure 4.3.

Referring to Figure 4.3, let us define the element coordinate system mentioned in the

above paragraph as follows. It has the origin at x, basis vectors (n, t) where n is a unit

vector outward normal to the edge and t is the tangent vector, and the corresponding

coordinates �&
 '�. In these coordinates, the positions of vertices are represented by the

pairs �b
 c+� and �b
 c−�. For a convex polygon, b is positive when x is an interior point

of ! and becomes negative for otherwise.

Rodin (1996) showed that computations of the Eshelby tensors are simpler if they are

carried out in this local coordinate system. In fact, all results given in the cited reference

for a simplex with uniform eigenstrains are obtained in the local coordinate system.

However, for inclusion with polynomial eigenstrains, computations along these lines for

a simplex requires introducing a second local coordinate system y1–y2, i.e., Y, which
is parallel to the element coordinate system but shares the same origin as that of the

global coordinate system (see Figure 4.3). In the Y-coordinate system, point x where the

solution is evaluated will be denoted as y. It should be remembered that the eigenstrains

given in (4.9), however, are expressed in the form of polynomials of global coordinates.
From the work of Rodin (1996) and Duong et al. (2001a), for a two-dimensional
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x

o

A duplex of inclusion Ω
x2

(a)

n, ηt, ζ

b

c+

–c–

x or y

b

(b) (c)0

x1

x2

x1

y2
y1

t, ζ c–

c+

x or y

n, η

Fig. 4.3. Two-dimensional construction of duplexes used in the Rodin’s and Duong et al.’s

algorithms. Global, local, and elemental coordinate systems for a typical duplex are also defined

in the figure: (a) shows inclusion !; (b) and (c) show typical duplexes, with vertices shown as

filled circles. In the �&
 '� coordinate system, for duplex (b) add the simplex with vertices (0, 0),

�b
 c−�
 �b
0� to the simplex with vertices (0, 0), �b
0�
 �b
 c+�, while for duplex (c) subtract the

simplex with vertices (0, 0), �b
0�
 �b
 c−� from the simplex with vertices (0, 0), �b
0�
 �b
 c+�.
The minus sign in front of c− emphasizes that in this particular geometry c− < 0.

(plane strain) simplex with one of the vertices defined by �b
 c�
 %
%m" " " n
�
�m" " " n in
Equation (4.17) can be rewritten as

% =−1

2

b∫
0

d&

c&/b∫
0

(
&2+ '2) ln (&2+ '2)d'

%m" " " n =−1

2

b∫
0

d&

c&/b∫
0

�x′m" " " x
′
n� ·
(
&2+ '2) ln (&2+ '2)d'

(4.20)
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�=−
b∫

0

d&

c&/b∫
0

ln
(
&2+ '2)d'

�m" " " n =−
b∫

0

d&

c&/b∫
0

�x′m" " " x
′
n� ln
(
&2+ '2)d'

where

x′1 ≡ x′1 �&
 '�= �y1+&� cos�− �y2+ '� sin �

x′2 ≡ x′2 �&
 '�= �y1+&� sin �+ �y2+ '� cos�
(4.21)

x′1 and x
′
2 are global coordinates of a point �&
 '� in the simplex, while y1 and y2 are the

coordinates (in the Y-coordinate system) of the point x where Sijkl is evaluated and it is

also the origin of the elemental coordinate system. Angle � and y� are independent of &
and ' . The logarithmic terms appear in Equation (4.20) as a result of the integration of

Equation (4.17) in the third direction as mentioned in part (a) of this section.

For the eigenstrains given by Equation (4.9), it needs to evaluate four potential pairs

��
%�
 ��11
%11�
 ��22
%22�, and ��12
%12�, which correspond to the eigenstrains

Fij
 x
2
1 ·Fij11
 x22 ·Fij22, and x1 ·x2 ·Fij12, respectively. It can be shown, after some lengthy

algebra, that these potential pairs are given by (Rodin, 1996; Duong et al., 2001a)

��b
 c�=b
2

[
3c−2b tan−1

( c
b

)
− c ln (b2+ c2)]

% �b
 c�= b

144

[
33b2c+7c3−24b3 tan−1

( c
b

)
−18b2c ln

(
b2+ c2)

−6c3 ln
(
b2+ c2)]

−�11�y
 b
 c�=
(
y21 cos

2 �+y22 sin2 �−2y1y2 cos� sin �
)
I00 + I20 cos2 �+ I02 sin2 �

+ �2y1 cos2 �−2y2 cos� sin ��I
1
0 + �2y2 sin2 �−2y1 cos� sin ��I

0
1

−2 cos� sin �I11

−2%11�y
 b
 c�=
(
y21 cos

2 �+y22 sin2 �−2y1y2 cos� sin �
)
�I20 + I02 �+ �I22 + I40 � cos2 �

+ �I04 + I22 � sin2 �+ �2y1 cos2 �−2y2 cos� sin ���I
1
2 + I30 �

+ �2y2 sin2 �−2y1 cos� sin ���I
2
1 + I03 �−2 cos� sin ��I13 + I31 �

−�22�y
 b
 c�=
(
y21 sin

2 �+y22 cos2 �+2y1y2 cos� sin �
)
I00 + I20 sin2 �+ I02 cos2 �

+ �2y1 sin2 �+2y2 cos� sin ��I
1
0 + �2y2 cos2 �+2y1 cos� sin ��I

0
1

+2 cos� sin �I11

(4.22)
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−2%22�y
 b
 c�=
(
y21 sin

2 �+y22 cos2 �+2y1y2 cos� sin �
)
�I20 + I02 �

+ �I22 + I40 � sin2 �+ �I04 + I22 � cos2 �+ �2y1 sin2 �+2y2 cos� sin ���I
1
2 + I30 �

+ �2y2 cos2 �+2y1 cos� sin ���I
2
1 + I03 �+2 cos� sin ��I13 + I31 �

−�12�y
 b
 c�=
[
y21 cos� sin �−y22 cos� sin �+y1y2

(
cos2 �− sin2 �

)]
I00 + I20 cos� sin �

− I02 cos� sin �+
[
2y1 cos� sin �+y2

(
cos2 �− sin2 �

)]
I10

− [2y2 cos� sin �−y1 (cos2 �− sin2 �
)]
I01 +
(
cos2 �− sin2 �

)
I11

−%12�y
 b
 c�=
[
y21 cos� sin �−y22 cos� sin �+y1y2

(
cos2 �− sin2 �

)] (
I20 + I02

)
+ (I22 + I40 ) cos� sin �− (I04 + I22 ) cos� sin �
+ [2y1 cos� sin �+y2 (cos2 �− sin2 �

)] (
I12 + I30

)
− [2y2 cos� sin �−y1 (cos2 �− sin2 �

)] (
I21 + I03

)
+ (cos2 �− sin2 �

) (
I13 + I31

)
where

Iqp �b
 c�=
b∫

0

c&/b∫
0

&q'p ln
(
'2+&2

)
d' d& �q = 0
1
 " " " 
 4( p= 0
1
 " " " 
 4� (4.23)

The integral Iqp �b
 c� is straightforward to evaluate; however, its explicit form will be

omitted here as it can be found in Gradshteyn and Ryzhik (1965). It is worthy to note

that the potential pair ��
 %� for constant eigenstrain is only a function of b and c.

To obtain the Eshelby tensors S’s in global coordinate system, the potentials must be

differentiated with respect to x as indicated in Equation (4.19). However, as mentioned in

the beginning of this part, it is more convenient to obtain these tensors in the y1–y2 local
coordinate system, i.e., Y. By denoting the Eshelby tensors S’s in the local Y-coordinate
system as S’s, S’s are still defined by Equation (4.19); however, they must be obtained

by differentiating the potentials appropriately with respect to y. Since b and c are implicit

functions of either x (and thus y) or �&
 '�, their differentiations with respect to y or

�&
 '� must be obtained. By observing that �b
�&
= �c

�'
=−1 and �b

�'
= �c

�&
= 0 (Rodin, 1996),

it follows that

�b

�y1
= �c

�y2
=−1

�b

�y2
= �c

�y1
= 0

(4.24)
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since the Y-coordinate system is parallel to the elemental �&
 '� coordinate system.

Therefore, for any scalar function f(y, b, c),

�

�y1
f�y
 b
 c�= �f

�y1
+ �f

�b
· �b
�y1

+ �f

�c
· �c
�y1

= �f

�y1
− �f

�b

�

�y2
f�y
 b
 c�= �f

�y2
+ �f

�b
· �b
�y2

+ �f

�c
· �c
�y2

= �f

�y2
− �f

�c

(4.25)

It is then clear that the differentiation of the potentials with respect to the local coordinates

will be greatly simplified. That explains why the Eshelby tensors have been derived in

the local coordinate system. Nevertheless, this task still involves extremely laborious

calculation, except for the case of uniform eigenstrain. One therefore should rely on

symbolic computations to carry out that task. In fact, all explicit expressions for S’s have
been derived with the aid of Mathematica (Wolfram, 1991). For the case of a constant

eigenstrain, the Eshelby tensors S’s (in the local coordinates) are given explicitly as

follows (Rodin, 1996):

S&&&& =
1

8� �1−��
[
4 �1−�� �̂− 1−2�

2
sin 2�̂− 1

8
sin 4�̂

]

S&&'' =
1

8� �1−��
[
4��̂− �1+2��

2
sin 2�̂+ 1

8
sin 4�̂

]

S&&&' =
1

8� �1−��
[
−3

2
−� cos2�̂+ 1

8
cos4�̂+ 1−4�

2
ln �sec �̂�

]

S''&& =
1

8� �1−��
[
−1−2�

2
sin 2�̂+ 1

8
sin 4�̂

]

S'''' =
1

8� �1−��
[
3−2�

2
sin 2�̂− 1

8
sin 4�̂

]

S''&' =
1

8� �1−��
[
−1

2
+ �1−�� cos2�̂− 1

8
cos4�̂+ 3−4�

2
ln �sec �̂�

]

S&'&& =
1

8� �1−��
[
−3

2
+ 1

8
cos4�̂+ 1

2
ln �sec �̂�

]

S&''' =
1

8� �1−��
[
−1

2
+ cos2�̂− 1

8
cos4�̂+ 3

2
ln �sec �̂�

]

S&'&' =
1

8� �1−��
[
2 �1−�� �̂− 1

2
sin 2�̂+ 1

8
sin 4�̂

]

(4.26)

where �̂= tan−1
(
c
b

)
. On the other hand, the expressions of S’s for quadratic eigenstrains

are too lengthy to be included in this book due to space limitation.
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So far only the algorithm to compute Eshelby tensors S�y� and S�x� have been outlined.

However, as indicated in Equation (4.10) of Section 4.2.1, it is also necessary to compute

the second derivative of S�x�’s with respect to x. Two different methods can be been

used to evaluate the second derivatives of S�x�’s. The first method involves numerical

differentiation of S�x�’s using central-difference scheme with error of order h4 where h
is the spacing between grid points (James et al., 1977). In this method, S�x�’s must be

computed at a number of points in a rectangular grid surrounding the point of interest. The

second method is to use Mathematica (Wolfram, 1991) to derive �S
/
�y’s and �2S

/
�y2’s

analytically and then to transform these derivatives into �2S
/
�x2’s through appropriate

coordinate transformation. It turns out that both methods yield almost identical results

for all illustrative examples considered in Section 4.4. However, the implementation of

the former method is much simpler.

Stresses near the vertex of ! are of practical importance in design and analysis of

bonded repairs and therefore needed to be addressed. As pointed out by Rodin (1996),

the stress field near the vertex of ! under constant eigenstrain takes the following

asymptotic form:

� ≈ 1

8� �1−��
(
M̂1−M̂2

)
F ln

(
�

r

)
(4.27)

where

� =
⎧⎨
⎩
�11

�22

�12

⎫⎬
⎭ F=

⎧⎨
⎩
F11
F22
F12

⎫⎬
⎭ (4.28)

subscripts 1 and 2 of M̂ denote the edges forming the vertex; � is a representative edge
length (Figure 4.4); r is the distance from the vertex; M̂1 and M̂2 are represented by the

same matrix in the basis �n1
 t1� and �n2
 t2�, respectively. That matrix is

M̂= 1

2

⎡
⎣ 0 0 −1+4�

0 0 −3+4�
−1−3 0

⎤
⎦ (4.29)

It can be shown that the stress field near the vertices of ! with eigenstrains prescribed

by Equation (4.9) also takes the same asymptotic form of Equation (4.27), except that

F is now defined as (Duong et al., 2001a):

F=
⎧⎨
⎩
F11 + x21F1111 + x22F1122
F22 + x21F2211 + x22F2222

x1x2F1212

⎫⎬
⎭ (4.30)

4.2.3 Solution of the load attraction problem

The load attraction problem will be solved implicitly in this section using the equivalent

inclusion method mentioned in Section 4.2.1 and the results for polygonal inclusions in

Section 4.2.2.
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Fig. 4.4. Geometrical parameters of the duplexes for evaluating the asymptotic form of the vertex

singularity (Rodin, 1996).

Consider an infinite isotropic skin sheet reinforced with a polygon-shaped, bonded

patch and the sheet is subjected to remote biaxial stresses similar to that shown in

Figure 4.2. This problem can be analyzed by the equivalent inclusion method mentioned

in Section 4.2.1 with the following simplifying assumptions:

• All material behavior is linearly elastic.

• All sheet and patch materials are in a state of generalized plane stress.

• The patch is modeled as an integral part of the skin using inclusion analogy.

The effect of thermal stresses associated with the curing processing and the variation

of operating temperatures can be superimposed on the results obtained from this basic

model. However, for clarity, this effect will be treated later in Section 4.2.4 in a separate

analysis.

In Section 4.2.1, a problem of an infinite isotropic sheet containing an inhomogeneity

under remote biaxial stresses is considered. In order to apply the results obtained from

that section to the present load attraction problem, one needs to establish the material

properties of the inhomogeneity, which are equivalent to those of the patched skin. This

had been done by Rose (1981, 1982, 1988) and also by Fredell (1994) with key results

in matrix formulation summarized below for plane stress condition:

CI
11 =

Cs
11ts+Cp

11tp

tI

CI
22 =

Cs
22ts+Cp

22tp

tI
(4.31)
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�I12 =
�s12C

s
22ts+�p12Cp

22tp

Cs
22ts+Cp

22tp

�I = �sts+�ptp

tI

where

Cs
11 = Cs

22 ≡
Es

1−�2s
�s12 = �s21 = �s

�s =
Es

2 �1+�s�

C
p

11 ≡
E

p

11

1−�p12�p21
C

p

22 ≡
E

p

22

1−�p12�p21

(4.32)

E
 �
 �, and t are the extensional modulus, Poisson’s ratio, shear modulus, and thickness,

respectively, while the superscripts or subscripts I, s, and p signify the inhomogeneity,

skin, and patch. It should be remembered that the stress–strain relation for the isotropic

or orthotropic material in a matrix form is given by (Jones, 1975)⎧⎨
⎩
�11

�22

�12

⎫⎬
⎭=

⎡
⎣ C11 �12C22 0

�12C22 C22 0

0 0 �

⎤
⎦
⎧⎨
⎩
11
22
�12

⎫⎬
⎭= �C	

⎧⎨
⎩
11
22
�12

⎫⎬
⎭ (4.33)

Also, in deriving Equation (4.31), the following two conditions have been used (Rose,

1981):

� I
ijtI = � s

ijts+�p

ijtp

Iij = sij = pij
(4.34)

The inhomogeneity thickness tI can be chosen arbitrarily; however, tI has been chosen

to be the same as ts to enable to apply directly the results established in Section 4.2.1.

The stress field in the load attraction problem now can be determined by following the

procedure outlined in Section 4.2.1, using constant or quadratic eigenstrain distribution

approximation. However, to put C0
ijkl and � defined in Sections 4.2.1 and 4.2.2 in the

present context, they should be identified with Cs
ijkl and �s, respectively. The stress field

in the patched region is calculated by first solving, for instance, Equation (4.10) for

the eigenstrains, then by computing the strains and stresses in the inclusion problem

according to Equations (4.7) and (4.15), respectively, with the Eshelby tensors S’s being
evaluated using the computational algorithm discussed in part (b) of Section 4.2.2. These

obtained stresses are also the stresses in the inhomogeneity problem as indicated by

Equation (4.1). When the material at the point of evaluation is homogeneous through the

thickness such as in the region outside !, the stresses obtained from the inhomogeneity
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problem will be the final stresses at that point. On the other hand, if the material at the

evaluated point is not homogeneous through the thickness, a further step is needed to

distribute the obtained stresses to its material constituents using the conditions similar

to Equation (4.34). For example, once � I
ij has been calculated, the stresses in the skin

and patch inside the reinforced area can be determined from the conditions prescribed

in Equation (4.34) as � s
ij = Cs

ijkl

(
CI
klmn

)−1
� I
mn and �

p

ij = C
p

ijkl

(
CI
klmn

)−1
� I
mn since sij =


p

ij = Iij =
(
CI
ijkl

)−1
� I
kl, while the stress in the skin outside the patch is equal to � I

ij .

4.2.4 Load attraction with thermal effects

Repaired structures are usually subjected to two types of thermal loading: heating and

cooling cycles associated with the curing process of the adhesive and the low operating

temperature of the aircraft during high altitude cruising. Since the thermal expansion

coefficients of the repaired skin and the patch are significantly different, these thermal

loads may induce large residual thermal stresses and therefore affect the efficiency of the

repair. The solution approach employed in Section 4.2.1 will be extended in this section

to evaluate these thermal stresses. Even though the adhesive during bond formation is

better characterized by a constitutive description which incorporates its dependence on

the rate of mechanical deformation and on the thermal history (Duong and Knauss,

1995), for simplicity, the adhesive is modeled here as a linear elastic material with a

zero stiffness and a glassy modulus at temperatures above and below its glass transition

temperature, respectively.

For a two-sided bonded repair or a supported one-sided repair, no out-of-plane displace-

ment will be induced when the repair is subjected to the thermo-mechanical loading.

In the absence of the out-of-plane bending, since the skin and patch assume to behave

as linearly elastic materials, the repair problem considered in this chapter will be lin-

ear. Thus, the total stress solution of the thermo-mechanical problem can be found by

summing the individual contributions from the mechanical and thermal loads. Since the

solution of the mechanical problem is already delineated in Section 4.2.3, this section

therefore will be devoted entirely to the thermal stress problem.

It will be shown first that the thermal stress problem associated with a uniform cooling

can be reformulated as an initial strain problem, in which the patch is subjected to a

prescribed initial strain field (Duong and Yu, 2002a). Even though this equivalency is

only demonstrated for the case of uniform cooling, it can be shown that the equiva-

lency is also held for the case of curing of the adhesive. This way will allow us to

solve the thermal stress problem directly within the context of the equivalent inclusion

method.

(a) Determining the equivalent initial strain field prescribed in the patch

The equivalent initial strain field prescribed in the patch will be derived for two cases:

uniform low operating temperature and the thermal cycle associated with adhesive

curing.
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Case 1: Uniform low operating temperature

In this case, the whole patched skin is cooled uniformly. Since the solution of this

thermal stress problem within the framework of linear elasticity is independent of the

cooling path, the cooling process can be arbitrarily assumed to take place in two steps.

In the first step, the skin is cooled first to a low operating temperature while the patch

is still at a stress-free (ambient) temperature. Furthermore, the patch is also subjected

simultaneously to a fictitious uniform strain field of �s�T�ij where �s is the thermal

expansion coefficient of the skin, �T = (Toperating−Tambient

)
, and �ij is the Kronecker

delta. Since the patch is subjected to a uniform strain field of �s�T�ij that is compatible

with the thermal strain of the skin, the skin will contract freely during this cooling phase

without experiencing any exerted forces from the patch, resulting in a stress-free skin.

Thus, the strain field in the skin and patch at the end of the first step of cooling will be

given by


s�step1�
ij �x�= p�step1�ij �x�= �s�T�ij (4.35)

In the second step of cooling, the patch is allowed to cool to a low operating temperature

and also to relieve simultaneously the fictitious strain field �s�T�ij imposed previously

on it. The problem of the second-step cooling is then a problem of a patched skin with

the following strain prescribed in the patch:1


�T��p�
ij = (�p

ij�T −�s�T�ij
)= ��ij ·�T (4.36)

where �
p

ij is the thermal expansion coefficient tensor of the patch in the principal material

directions, and the rest are previously defined. For the present discussion purpose, let

us assume that the solution of this second-step cooling problem is already obtained with

the strain solutions for the skin and patch denoted as


s�step2�
ij �x�= p�step2�ij �x�= fij �x� (4.37)

The total strains in the skin and patch at the end of the cooling process are then equal to

the sum of individual contributions from the first and second steps of cooling, and they

are given by

sij �x�= pij �x�= fij �x�+�s�T�ij (4.38)

1This problem is similar but not exactly an initial strain problem, since the patch in this problem assumes to

be stress-free when its total strain is equal to 0. In contrast, in a truly initial strain problem, the patch will be

stress-free when its total strain is equal to 
�T��p�
ij .
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On the other hand, the thermal stresses in the skin and patch after cooling are determined

from the thermo-elastic constitutive relation as

� s
ij �x�= Cs

ijkl

[
skl �x�−�s�T�kl

]= Cs
ijkl

f
kl �x�

�
p

ij �x�= Cp

ijkl

[

p

kl �x�−�p

kl�T
]= Cp

ijkl

[
fkl �x�−

(
�
p

kl�T −�s�T�kl
)]

= Cp

ijkl

[
fkl �x�−��kl�T

]
= Cp

ijkl�
f
kl �x�−�T��p�kl 	

(4.39)

Let us consider now a truly initial strain problem in which the patch is prescribed by an

initial strain field 
�T��p�
ij given by Equation (4.36). The strain solution of the latter initial

strain problem will be the same as that of the second-step cooling problem mentioned

above due to their similarity, i.e., sij = 
p

ij = fij . However, the stresses in the skin

and patch of the initial strain problem will be given, respectively, by � s
ij = Cs

ijkl
f
kl and

�
p

ij = Cp

ijkl

(
fkl−�T��p�kl

)
, which are in turn equal to the thermal stresses in the skin and

patch of the original thermal stress problem after cooling as indicated by Equation (4.39).

Thus, the considered thermal stress problem can be solved equivalently by an initial strain

problem with an initial strain 
�T��p�
ij = ��ij ·�T prescribed in the patch, as postulated

earlier, since the stress fields in both the problems are the same. However, since the

strain fields of these two problems differ by a constant amount of �s�T�ij over the whole
domain (recalling that the strain fields of the initial strain problem and of the original

thermal stress problem are given by fij and Equation (4.38), respectively), this uniform

strain field �s�T�ij must be added to the strain field fij of the initial strain problem in

order to obtain the corresponding strain solution of the original thermal stress problem.

Case 2: Thermal cycle associated with adhesive curing

Adhesive curing usually involves heating the reinforced region using a heater blanket

to a high temperature above the adhesive’s glass transition temperature under pressure

for a few hours and then allowing the adhesive and adherends to cool to the ambient

temperature. For simplicity, the temperature distribution around the heater blanket is

assumed to be a step function with the inside region held at one constant temperature

while the outside being held at a constant ambient temperature. This assumption for the

temperature field may not be realistic due to the heat conduction; nevertheless, it still

can be used in the analysis to provide a first-ordered estimate of the effect of curing

on crack patching efficiency in the preliminary design phase. The effect of non-uniform

thermal field has been addressed before by Rose (1988) and Wang et al. (2000) for

a circular patch, the results of which can be used as correction factors for the results

presented in this section. The Rose and Wang et al.’s models will be discussed in detail

in Section 4.5.

During heating, the adhesive is assumed to be very soft so that the patch undergoes a

free expansion while the skin is under thermal stresses because the skin material outside

of the heated region is still cool. The thermal stresses in the skin during the heating

phase can be easily calculated by using the algorithmic solution given in Section 4.2.2
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for a polygon-shaped inclusion with a constant eigenstrain �s ·�Theating where �Theating =
Tcuring−Tambient > 0. The skin’s total strain inside the heated region associated with these

thermal stresses can then be calculated, which is smaller than �s ·�Theating and will be

denoted here by 
s�heating�
ij . It should be noted that 

s�heating�
ij computed by the inclusion

model will be independent of the size of the heated region.

The next step is to cool the whole repair down to the ambient temperature. This cooling

step will be divided further into two substeps: (i) the patch is first held at a constant curing

temperature and simultaneously subjected to a fictitious initial strain field −s�heating�ij

while the skin is cooled, and (ii) the patch is then allowed to cool and to relieve

simultaneously the fictitious initial strain −s�heating�ij imposed in (i). Since the patch is

subjected to an initial strain −s�heating�ij in substep (i), the skin will contract back to its

original shape without experiencing any exerted forces from the patch, resulting in a

stress-free skin at the end of substep (i). It is then clear that the described thermal stress

problem is now reduced to an initial strain problem with the following initial strain

prescribed in the patch:


�T��p�
ij =−�p

ij�Theating+s�heating�ij (4.40)

(b) Solution of thermal stresses

With the equivalent initial strain prescribed in the patch having been determined for

the two common types of thermal loading, the next step is to formulate a mathematical

model for the thermal stress analysis. Since the patch is assumed to bond rigidly to a

repaired skin over a polygonal region!, the patch is considered as an integral part of the

skin inside !, and the skin with a patch incorporated is modeled as an inhomogeneity.

The (thermo-elastic) constitutive relation for this inhomogeneity is given by

� I
ij = CI

ijkl

(
Ikl−�T�kl

)


�T�
ij = tp

ts
CI−1
ijkl C

p

klmn
�T��p�
mn

(4.41)

where CI
ijkl is the stiffness of the inhomogeneity given by Equations (4.31) and (4.33)

in Section 4.2.3, and 
�T��p�
ij is already defined in part (a). Equation (4.41) obviously

accounts for the initial strain field prescribed in the patch. With the above discussion in

mind, the thermal stress problem then reduces to a problem of an infinite isotropic, linear

elastic sheet (skin) with a stiffness Cs
ijkl containing a polygon-shaped inhomogeneity !

with a stiffness CI
ijkl and subjected to an initial strain field 

�T�
ij , and this latter problem

will be solved by the equivalent inclusion method outlined in Section 4.2.1.

As in Section 4.2.1, the stress and strain fields induced by an inhomogeneity-occupied

region ! will be the same as those induced by the eigenstrain field ∗ij in the same

region of a homogeneous material Cs
ijkl when 

∗
ij is selected appropriately. Following the

procedure given in 4.2.1 for an inhomogeneity symmetric with respect to both coordinate
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axes, by approximating ∗ij as a second-ordered polynomial of the position coordinates

with yet to be determined coefficients, i.e.,

∗ij = Fij+Fijklxkxl (4.42)

and by expanding the prescribed initial strain field 
�T�
ij into a Taylor series, the equiv-

alency condition requires that Fij and Fijkl must satisfy the following system of linear

equations (without summation on subscript �):

�C��11L11�0�+�C��22L22�0�−Cs
��11F

′
11−Cs

��22F
′
22 =−CI

��11
�T�
110−CI

��22
�T�
220

1

2
�C��11

�2

�x21
L11�0�+

1

2
�C��22

�2

�x21
L22�0�−Cs

��11F
′
1111−Cs

��22F
′
2211

=−CI
��11

�T�
1111−CI

��22
�T�
2211

1

2
�C��11

�2

�x22
L11�0�+

1

2
�C��22

�2

�x22
L22�0�−Cs

��11F
′
1122−Cs

��22F
′
2222

=−CI
��11

�T�
1122−CI

��22
�T�
2222

�C1212

�2

�x1�x2
L12�0�−Cs

1212F
′
1212 =−CI

1212
�T�
1212

(4.43)

where

�Cijkl = Cs
ijkl−CI

ijkl

L���x�= S��11�x�F ′
11+S��22�x�F ′

22+S��1111�x�F ′
1111+S��1122�x�F ′

1122

+S��2211�x�F ′
2211+S��2222�x�F ′

2222+S��1212�x�F ′
1212

F ′
ij = Fij+�T�ij0

F ′
ijkl = Fijkl+�T�ijkl
��
 �= 1
2�

(4.44)


�T�
ij0 and 

�T�
ijkl are the constant and the quadratic terms, respectively, in the Taylor series

of 
�T�
ij ; and the rest have been previously defined in Section 4.2.1.

Once the coefficients F ′’s, thus F ’s and ∗ij , are determined, the elastic fields in the

inhomogeneity problem can be obtained from the corresponding results of the equivalent

inclusion problem as

Iij = Hij = SijklFkl+SijklmnFklmn (4.45)
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� I
ij�x�=

{
Cs
ijkl

(
Hkl−∗kl−�T�kl

)
inside !

Cs
ijkl

H
kl outside !

(4.46)

The stresses in the skin and in the patch inside the reinforced region can then be

determined from �Iij as

� s
ij = Cs

ijkl

[(
CI
klmn

)−1
� I
mn+�T�kl

]

�
p

ij = Cp

ijkl

[(
CI
klmn

)−1
� I
mn+�T�kl −�T��p�kl

] (4.47)

while the stress in the skin outside ! is equal to � I
ij as given before in Section 4.2.3. It

is worthy to note that
(
CI
klmn

)−1
� I
mn+�T�kl is equal to Ikl via the first equation of (4.41),

and Equation (4.47) is the same as Equation (4.39) if Ikl is identified with fkl.

4.3 Stage II: Fracture Analysis

In Section 4.2, the stresses in the repaired skin and patch due to mechanical and thermal

loads are determined first as if the patch is bonded rigidly to an uncracked skin, by

using the equivalent inclusion method. Among them, stresses at the prospective crack

location are of interest since they will be used in the present fracture analysis. The stress

intensity factor will be estimated in this section by using the displacement compatibility

method for a sandwich plate with a part through and a debonding crack.

Consider a patched cracked sheet shown in Figure 4.5(a) subjected to a crack surface

pressure �0 ��� which is the negative of the skin normal stress component �yy found in

the stage I analysis (see Section 4.2). In the fracture model, both the skin and the patch

(a)
(b) (c)

X

Y

Composite patch

Skin

Cracked skin
Composite patch

–P1

Cell of
constant
body
force

=

σ0(ς)

P1

PnPnσ0(ς)

Fig. 4.5. Free body diagram of a patched cracked sheet under a crack surface pressure �0���.
For illustration purpose, P1
 P2
 " " " Pn are the y-components of the transmitted shear body forces

distributed uniformly over a discretized area (cell) of the bonded interface (Duong and Yu, 1997).
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are infinite extent. The thicknesses of the cracked sheet and the composite patch are small

relative to the other in-plane dimensions, so that each component can be considered to be

under a generalized plane stress condition with the surface shears transmitted through the

adhesive acting as body forces. These body forces are unknowns and only pertinent near

the crack. The adhesive layer is treated as a two-dimensional shear spring. This problem

is solved by the displacement compatibility method developed by Duong and Yu (1997),

and Erdogan and Arin (1972). First, the bonded interfacial area between the patch and

the cracked skin is divided into a number of small cells, as shown in Figure 4.5(b,c). The

unknown shear body forces are then assumed to be constant in each cell. The shear body

forces, therefore, have been approximated by a number of constant shear body forces.

Due to the double symmetry of the problem considered, these constant shear body forces

are symmetric with respect to the two coordinate axes. Even though the outer boundary

of the patch is unbounded in stage II analysis, for numerical integration purposes, the

bonded interfacial area assumes to be finite and equal to R, and R is chosen such that

the stress intensity factor solution does not change appreciably for any larger area.

Let us denote the x- and y-components of the shear body force located at the ith cell

that is centered at �xi
 yi� as P1i and P2i. P1i and P2i have the same unit as stresses. The

components of the constant shear body forces are then determined from the displacement

compatibility requirement between the cracked sheet and the patch over the bonded

interface. The patch–skin displacement compatibility equations in the y-direction are

given by

M∑
m=1

{
2∑
�=1

[
v
P�m=1

skin �xn
 yn( xm
 ym�− v
P�m=1

patch �xn
 yn( xm
 ym�−
tA

GAhmdm
�2��nm

]
P�m

}

=−v�0�'�skin �xn
 yn� (4.48)

for n = 1
2
 " " " 
 M . In the above equations, M is the number of cells making up

the bonded interface; tA and GA are the thickness and shear modulus of the adhesive,

respectively; P1m and P2m correspond to the x- and y-components of the constant shear

body force applied to themth cell which has a center at �xm
 ym�( hm and dm are the length

and the width of the mth cell, respectively; vP�m=1�xn
 yn( xm
 ym� is the y-displacement

at the point �xn
 yn� due to a unit �- (x or y) component of the shear body force acting

over the mth cell with a center at �xm
 ym�( v
�0�'�
skin �xn
 yn� is the displacement in the skin

at �xn
 yn� due to the crack surface pressure; �ij is defined similarly to the Kronecker

delta which is equal to 0 when i �= j, and 1 when i = j. The appropriate expressions

for vP�m=1�xn
 yn( xm
 ym� of the cracked skin and the patch, and v�0�'�skin �xn
 yn� are given

in Sections 4.3.1 and 4.3.2.

Similar equations for the displacement compatibility in the x-direction can also be

derived. A total of 2M simultaneous equations will result for the determination

of P�m.

With the shear body forces known, the total stress intensity factors at each crack tip

due to these constant shear body forces and due to the crack surface pressure �0���
can be calculated in a straightforward manner as illustrated in Section 4.3.3. In the
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stage II–fracture analysis, the shear strain in the adhesive near the crack surface and the

additional stresses in the patch due to the presence of the skin crack also need to be

determined. The shear stresses in the adhesive are obviously equal to the obtained shear

body forces. In contrast, the additional stresses in the patch due to the presence of the

skin crack are computed using the complex variable approach outlined in Section 4.3.2

and then added to the results from the stage I analysis of Section 4.2 for the total patch

stresses.

It should be noted that the method outlined in this section allows modeling the effects

of the pre-existing disbond and the elastic-plastic behavior of the adhesive on the crack

tip’s stress intensity factor. To account for the former effect, the bonded interfacial area

needs to be discretized in such a way that it will not include any pre-existing disbond

region in its domain. For the latter effect, an iterative procedure must be employed in the

analysis. For simplicity, the adhesive is modeled as an elastic-perfectly-plastic material.

The shear body forces are first assumed to be unknown and the adhesive is assumed

to behave linearly elastic. These unknown shear body forces are then determined by

solving 2M simultaneous equations. If the shear body force in any cell exceeds the

adhesive yield strength, its value will be set to the yield strength and that shear body

force will no longer be a sought solution in the next iteration. The coefficient matrix and

the right-hand side of the 2M simultaneous equations are then modified accordingly.

In the next iteration, the relative displacement between the skin and the patch per

unit adhesive thickness in cells with their shear body force being set to the adhesive

yield strength must be checked to see if they are larger than the adhesive yield strain.

If not, the prior settings of the values of the shear body forces in these cells to the

adhesive yield strength are incorrect and therefore must be removed. Another iteration

is then carried out, and the whole process is repeated until all prescribed requirements

are met.

The solution procedure outlined in this section is general so that it can also be applied to

the analysis of an infinite strip patch as well, where the effect of the finite patch width on

the stress intensity factor can be properly accounted for. In that case, appropriate expres-

sions for the displacements of an infinite strip patch must be used in Equation (4.48).

The displacements of an infinite strip patch due to two symmetrical pairs of constant

shear body forces are also given in Section 4.3.2.

As a final remark, an alternative approach to the above fracture analysis is by the crack-

bridging model (Rose, 1987a; Cox and Rose, 1994). This latter approach can account

for delamination in a self-consistent manner and yields explicit and accurate analytical

estimate for the stress intensity factor. However, the approach presented here is more

generic because additional effects such as the effects of stiffeners, asymmetric crack with

respect to a patch, and cracks approaching to or growing out of the patching boundary

can be included in the approach without much difficulty (Duong and Yu, 1997). With

regard to the crack-bridging model, this model has been introduced in Chapter 3 and

it will be discussed further in detail in Chapter 5 for the analysis of the un-supported

one-sided patches.



118 Composite Repair

4.3.1 Cracked sheet displacements and stresses

In the fracture problem, there are two types of loads applied to the cracked metallic sheet:

the crack surface pressure �0��� and the constant shear body force with components

of Px �x
 y� and Py�x
 y�. Due to the double symmetry of the stage II problem, the

shear body forces are symmetric with respect to the two coordinate axes. The constant

shear body forces therefore always come into the analysis in double pairs as shown in

Figure 4.6(a). The displacement solutions for the cracked skin due to these two types of

loading will be given here briefly.

(a) Displacements due to an arbitrary crack surface pressure

Let �0��� be any arbitrary pressure acting on the crack surfaces; the displacements for

this problem are given by (Tada et al., 1985)

u�x
 y�=
∫ a

−a
u∗�x
 y
 '� ·�0�'�d' (4.49)

v�x
 y�=
∫ a

−a
v∗�x
 y
 '� ·�0�'�d' (4.50)

u∗�x
 y
 '�= 1

�Es

{
�1−�� arg�)�− �1+��y Im

[ √
a2− '2

�z− '�√z2−a2
]}

v∗�x
 y
 '�= 1

�Es

{
−2 ln�)�− �1+�s�y Re

[ √
a2− '2

�z− '�√z2−a2
]}

(4.51)

)= i�'z−a2�+√�a2− '2� �z2−a2�
a �z− '�

(a) (b) (c)

Py Py

Γ(ς)

= +

(–x0, y0)
Px Px–Px (x0, y0)

–Px
Px

(x0, –y0)(–x0, –y0)

–Py –Py

Py Py

–Px

–Px

–Py –Py

Px

Γ(ς)

Fig. 4.6. A superposition method for analyzing an infinite cracked sheet under two symmetrical

pairs of interfacial shear body forces: (a) the original problem; (b) an infinite sheet under shear

body forces; and (c) an infinite cracked sheet under crack surface pressure caused by the shear

body forces.
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where a is the half crack length; u and v are displacements in the x- and y-directions,
respectively; i=√−1, is a imaginary number; z= x+ iy; Re and Im denote the real and

the imaginary parts of a complex number, respectively, and arg indicates the argument

of a complex number. It should be noted that the real and the imaginary parts of the

complex function sin−1
[
'z−a2
a�z−'�

]
reported in the cited reference are given here explicitly

in the above equation as arg�)� and ln�)�, respectively, for FORTRAN coding purpose.

(b) Displacements and stresses due to two symmetrical pairs
of constant shear body forces

The displacements due to two symmetrical pairs of constant shear body force are

determined by the superposition of two parts as shown in Figures 4.6(b) and 4.6(c): (1)

an uncracked sheet subjected to symmetrical pairs of constant shear body forces, and

(2) a cracked sheet with tractions applied to the crack faces as caused by these constant

shear body forces.

The displacements in an uncracked sheet due to the constant shear body forces are

determined based on the complex stress function approach. For plane stress, the dis-

placements in the body due to a single constant shear body force, distributed uniformly

over a cell with an area h by d, are given in terms of the stress functions !’s and  ’s as

2�su�x
 y�= Re
[
�s!1�z
 z0�− z!′

1�z
 z0�− 1�z
 z0�
]

2�sv�x
 y�= Im
[
�s!2�z
 z0�− z!′

2�z
 z0�− 2�z
 z0�
] (4.52)

!1 =−Px*1+ iPy*2

2��1+��ts

!2 =−Px*2+ iPy*1

2��1+��ts

 1 =
��Px*1− iPy*2�

2��1+��ts
+ Px�̂1+ iPy�̂2

2��1+��ts

 2 =
��Px*2− iPy*1�

2��1+��ts
+ Px�̂2+ iPy�̂1

2��1+��ts

(4.53)

� =
3−�s
1+�s (4.54)

where Px and Py are the components of the constant shear body force in the x- and

y- directions, respectively; ts
 �s, and �s are the thickness, Poisson’s ratio, and shear

modulus of the cracked sheet, respectively; i is the imaginary number, i.e., i = √−1;

z0 = x0+ iy0 is the center position of the cell in the complex plane over which the

constant shear body acts; z = x+ iy is the position of a point at which the displace-

ments are evaluated in the complex plane; a bar indicates a complex conjugate, and
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a prime indicates differentiation with respect to the complex variable z. *j �z
 z0� and

�̂j �z
 z0� 
 j = 1
2, are defined by

Case 1: Im�z− z0−B1� · Im�z− z0+B1� > 0,

*1�z
 z0�= *a�z
 z0�

*2�z
 z0�= *b�z
 z0�

�̂1�z
 z0�= �̂a�z
 z0�

�̂2�z
 z0�= �̂b�z
 z0�

(4.55)

Case 2: Im�z− z0−B1� · Im�z− z0+B1� < 0,

*2�z
 z0�= *1�z
 z0�= *b�z
 z0�

�̂2�z
 z0�= �̂1�z
 z0�= �̂b�z
 z0�
(4.56)

where

*a�z
 z0�=
i

2

[−�z− z0−B1�
2 log�z− z0−B1� − �z− z0+B1�

2 log�z− z0+B1�

+ �z− z0−B1�
2 log�z− z0−B1� +�z− z0+B1�

2 log�z− z0+B1�−3ihd
]

*b�z
 z0�=
i

2

{
�z− z0�2 log

[
�z− z0−B1��z− z0+B1�

�z− z0−B1��z− z0+B1�

]

+B2

1 log
[
�z− z0−B1��z− z0+B1�

]

−B2
1 log ��z− z0−B1��z− z0+B1�	+2B1�z− z0� log

[
z− z0+B1

z− z0−B1

]

−2 B1�z− z0� log
[
z− z0+B1

z− z0−B1

]
+3ihd

}

�̂a�z
 z0�= i
[−�z− z0−B1��z0+B1� log�z− z0−B1�

− �z− z0+B1��z0−B1� log�z− z0+B1�

+ �z− z0−B1��z0+B1� log�z− z0−B1�

+�z− z0+B1��z0−B1� log�z− z0+B1�
]

(4.57)
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�̂b�z
 z0�= i

{
�z− z0�z0 log

[
�z− z0−B1��z− z0+B1�

�z− z0−B1��z− z0+B1�

]

+B1�z− z0� log
[
z− z0+B1

z− z0−B1

]
−B1z0 log

[
z− z0+B1

z− z0−B1

]

−B1B1 log

[
�z− z0−B1��z− z0+B1�

�z− z0−B1��z− z0+B1�

]

−B1�z− z0� log
[
z− z0+B1

z− z0−B1

]
+B1z0 log

[
z− z0+B1

z− z0−B1

]}

and the complex number B1 is defined by

B1 =−�d/2+ ih/2� (4.58)

In these equations, the principal branch must be used in the evaluation of the logarithmic

functions. It should be emphasized that the stress functions for these cases are much

more complicated than those given for a point load, in which different branches of the

multiple-valued stress functions must be chosen for the different combinations of �z
 z0�.
For the constant shear body forces symmetric with respect to the two axes, *j �z
 z0� and

�̂j �z
 z0� 
 j = 1
2, given by the above equations will yield displacements that satisfy

the imposed symmetric conditions. In order to assure that the multiplicity of values of the

stress functions is properly treated, a similar procedure is used to select the appropriate

branches of the stress functions for an infinite orthotropic sheet under a constant shear

body force, which results in displacements nearly identical to those obtained from

Equation (4.52) for nearly isotropic materials. For two symmetrical pairs of shear body

forces as shown in Figure 4.6(a), one must evaluate the above equations four times for

the shear body forces with x- and y-components of �Px
Py�
 �Px
−Py�
 �−Px
Py�,
and �−Px
−Py�, which are applied respectively at �x0
 y0�
 �x0
−y0�
 �−x0
 y0�, and
�−x0
−y0�, and superimpose the results.

On the other hand, under plane stress condition, the stresses in an uncracked sheet due

to a single constant shear body force are given in terms of the stress functions !’ s and

 ’s as

�yy�x
 y�= Re
[
!′

3�z
 z0�+!′
3�z
 z0�+ z!′′

3�z
 z0�+ ′
3�z
 z0�

]

�xy�x
 y�=−Im
[
!′

4�z
 z0�+!′
4�z
 z0�+ z!′′

4�z
 z0�+ ′
4�z
 z0�

] (4.59)
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where

!3 =−Px*1+ iPy*a

2��1+��ts

!4 =−Px*a + iPy*1

2��1+��ts

 3 =
��Px*1− iPy*a�

2��1+��ts
+ Px�̂1+ iPy�̂a

2��1+��ts

 4 =
��Px*a − iPy*1�

2��1+��ts
+ Px�̂a + iPy�̂1

2��1+��ts

(4.60)

*1
*a
 �̂1
 �̂a, etc., have been defined previously, and the notations of prime and double

primes again denote the differentiation of the complex function with respect to the

complex variable z. The normal component +�'� of the traction along the prospective

crack location of the uncracked sheet due to two symmetrical pairs of constant shear

body forces, i.e., +�'� = −�yy�'
0�
−a ≤ ' ≤ a, is also of interest since it is needed

in the second part of the displacement evaluation. Since �yy�x
0� due to a single shear

body force can be determined from Equation (4.59), +�'� due to two symmetrical pairs

of constant shear body forces can be obtained by superimposing the results of −�yy�x
0�
due to individual shear body forces.

As shown in Figure 4.6, for a complete displacement solution, one must now con-

sider the problem depicted in 4.6(c). For this problem, the stresses applied to the

surfaces of the crack are determined from the uncracked solution described above.

Due to the symmetry with respect to the x-axis, �xy is zero on the crack faces. The

displacements for problem 4.6(c) clearly can be obtained by numerical integrations of

Equations (4.49) and (4.50) with �0���, being replaced by +�'�
 where + �'� is equal to
the negative of the skin normal stresses along the crack line of the problem shown in

Figure 4.6(b).

4.3.2 Composite patch displacements and stresses

The displacements and stresses in the composite patch will be derived in this section for

two different models: the infinite sheet patch and the infinite strip patch.

(a) Infinite sheet patch

The notation and development of the complex representation of the solution of plane

stress problem for orthotropic elastic materials follow closely that of Lekhnitskii (1968).

From Lekhnitskii (1968), the stress and displacement solutions of the orthotropic sheet

in terms of the complex potentials *̃1�z1� and *̃2�z2� are given by
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u�x
 y�= 2 Re �p1*̃1�z1�+p2*̃2�z2�	

v�x
 y�= 2 Re �q1*̃1�z1�+q2*̃2�z2�	

�xx = 2 Re
[
s21*̃

′
1�z1�+ s22*̃′

2�z2�
]

(4.61)

�yy = 2 Re �*̃′
1�z1�+ *̃′

2�z2�	

�xy =−2 Re �s1*̃
′
1�z1�+ s2*̃′

2�z2�	

where

zk = x+ sky

pk =
1

E
y
x

(
s2k−�pxy

)
(4.62)

qk =
1

skE
p
y

(
1−�pyxs2k

)
k = 1
2( Ep

x
E
p
y 
 �

p
xy
 �

p
yx, and �

p are extensional moduli, Poisson’s ratios, and shear

modulus of the orthotropic patch, respectively, while s1 and s2 are the roots of

s4+
(
Ep
x

�p
−2�pxy

)
s2+ Ep

x

E
p
y

= 0 (4.63)

for which Im�sk� > 0. In Equation (4.61), the prime denotes differentiation with respect

to the complex variable z1 or z2.

For a concentrated load with its components of Tx and Ty acting at point �x0
 y0� in an

infinite patch sheet, *̃1�z1� and *̃2�z2� are given by (Erdogan and Arin 1972):

*̃1�z1�=
(
c11Tx+ c12Ty

)
tp

log �z1− z01�

*̃2�z2�=
(
c21Tx+ c22Ty

)
tp

log �z2− z02�
(4.64)

z0k = x0+ sky0 �k= 1
2� (4.65)

c11 =
1

2�i

(
s2+ s2+ s1+ s1s2s2

�pxyE
p
y

E
p
x

)
[
�s1− s2� �s1− s1�

(
1− s2

s1

)]

c12 =
1

2�i

(
s2s2+ s1s2+ s1s2+�pxy

)
[
�s1− s2� �s1− s1�

(
1− s2

s1

)]
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c21 =
1

2�i

(
s1+ s1+ s2+ s2s1s1

�pxyE
p
y

E
p
x

)
[
�s2− s1� �s2− s2�

(
1− s1

s2

)]

c22 =
1

2�i

(
s1s1+ s2s1+ s2s1+�pxy

)
[
�s2− s1� �s2− s2�

(
1− s1

s2

)]
(4.66)

and tp is the thickness of the composite patch.

The complex potentials for an interfacial shear body force with its components of Px
and Py, distributed uniformly over a cell that has a center at �x0
 y0� and an area of

h by d, are obtained by integrating Equation (4.64) over the cell area. Because of the

multiplicity of the values of the resulting expression for *̃k�zk�
 k = 1
2, in order to

obtain the correct displacements under symmetric and anti-symmetric loads and also

for very nearly isotropic materials, in this case, one must express the displacements in

Equation (4.61) as follows:

u�x
 y�= 2 Re
[
p1*̃

�1�
1 �z1�+p2*̃�1�2 �z2�

]

v�x
 y�= 2 Re
[
q1*̃

�2�
1 �z1�+q2*̃�2�2 �z2�

] (4.67)

where *̃
�1�
k �zk� and *̃

�2�
k �zk� are defined by

For Im�zk− z0k−Bk1� · Im�zk− z0k+Bk1� > 0:

*̃
�1�
k �zk�= ck1Px*̃a

k�zk
 z0k�+ ck2Py*̃b
k�zk
 z0k�

*̃
�2�
k �zk�= ck1Px*̃b

k�zk
 z0k�+ ck2Py*̃a
k�zk
 z0k�

(4.68)

For Im�zk− z0k−Bk1� · Im�zk− z0k+Bk1� < 0:

*̃
�2�
k �zk�=*̃�1�k �zk�= �ck1Px+ ck2Py�*̃b

k�zk
 z0k� (4.69)

*̃a
k�zk
 z0k�=

1

2sktp

[
�zk− z0k−Bk1�2 log �zk− z0k−Bk1�

+ �zk− z0k+Bk1�2 log�zk− z0k+Bk1�

− �zk− z0k−Bk2�2 log�zk− z0k−Bk2�

− �zk− z0k+Bk2�2 log�zk− z0k+Bk2�−3hdsk	
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*̃b
k�zk
 z0k�=

1

2sktp

{
�zk− z0k�

2 log

[
�zk− z0k−Bk1� �zk− z0k+Bk1�
�zk− z0k−Bk2� �zk− z0k+Bk2�

]

+B2
k1 log ��zk− z0k−Bk1� �zk− z0k+Bk1�	

−B2
k2 log ��zk− z0k−Bk2� �zk− z0k+Bk2�	

+2 �zk− z0k�Bk1 log
[
�zk− z0k+Bk1�
�zk− z0k−Bk1�

]

−2 �zk− z0k�Bk2 log
[
�zk− z0k+Bk2�
�zk− z0k−Bk2�

]
−3hdsk

}
(4.70)

Bk1 =
d

2
+ sk

h

2

Bk2 =−d
2
+ sk

h

2

(4.71)

Again, the principal branch of the logarithm function must be used in the evaluation

of *̃a
k�zk� and *̃

b
k�zk� and k = 1
2. The displacement solution due to two symmetrical

pairs of constant shear body forces is then obtained by superimposing the results due to

individual shear body forces.

The stresses due to two symmetrical pairs of constant shear body forces can be obtained

as follows, after resolving the multiple-valued problem of the derivatives of the stress

functions. Similar to Equation (4.59), the stresses due to a single interfacial shear body

force are given by

�xx = 2 Re
[
s21*̃

′�3�
1 �z1�+ s22*̃′�3�

2 �z2�
]

�yy = 2 Re
[
*̃
′�3�
1 �z1�+ *̃′�3�

2 �z2�
]

�xy =−2 Re
[
s1*̃

′�4�
1 �z1�+ s2*̃′�4�

2 �z2�
]

(4.72)

where *̃
�3�
k �zk� and *̃

�4�
k �zk� �k= 1
2� are defined by

For Im�zk− z0k−Bk1� · Im�zk− z0k+Bk1� > 0:

*̃
�3�
k �zk�= *̃�4�k �zk�=

(
ck1Px+ ck2Py

)
*̃a
k�zk
 z0k� (4.73)

For Im�zk− z0k−Bk1� · Im�zk− z0k+Bk1� < 0:

*̃
�3�
k �zk�= �ck1Px*̃b

k�zk
 z0k�+ ck2Py*̃a
k�zk
 z0k�	

*̃
�4�
k �zk�= �ck1Px*̃a

k�zk
 z0k�+ ck2Py*̃b
k�zk
 z0k�	

(4.74)
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*̃a
k and *̃

b
k �k= 1
2� have been defined previously. The stresses due to two symmetrical

pairs of shear body forces are again obtained by linear superposition of the individual

contributions.

(b) Infinite strip patch

So far, only the solution for an infinite composite sheet has been given. For an infinite

composite strip, one must superimpose another solution on the “infinite sheet” solution

as indicated in Figure 4.7. The displacement solution of problem 4.7(c) is determined

by using the Fourier integral transform method described below.

Referring to Figure 4.8, the displacement solution of a composite strip subjected to point

loads can be obtained by the linear superposition of the infinite patch solution under

point loads and the strip solution under tractions acting on the vertical boundaries. The

former solutions can be easily obtained since that solution for a single point load with its

components of Tx and Ty acting at �x0
 y0� in an infinite sheet patch has been derived in

part (a). The corresponding stresses �x and �xy along the lines x=±W/2 due to a single

point load can also be evaluated by using Equations (4.61)–(4.66) in that part. These

evaluations are straightforward since the derivatives of the stress functions for a single

point load are single-valued. For the symmetrical loads shown in Figure 4.8, one must

evaluate stresses �xx and �xy along the lines x=±W/2 four times due to point loads with

x- and y-components of
(
Tx
Ty

)


(
Tx
−Ty

)


(−Tx
Ty), and (−Tx
−Ty), which are

applied respectively at �x0
 y0� 
 �x0
−y0� 
 �−x0
 y0�, and �−x0
−y0�, and superimpose

the results. For the present discussion, these stresses assume to be already calculated and

denoted by �v�y� and �v�y�, respectively. The solutions of a composite strip subjected

to vertical boundary tractions caused by four point loads symmetric with respect to

two coordinate axes will be sought. As mentioned earlier, the displacement solutions of

the latter problem are determined by using the Fourier integral transform method. The

(a) (b) (c)

= +

Py

y

x

Py

–Px Px

–Px

–Py –Py

Px

Py Py

y

x

–Px Px

Px–Px

–Py –Py

τ*(y)

nσ *(y)

Fig. 4.7. A superposition method for analyzing an infinite strip patch under two symmetrical pairs

of interfacial shear body forces.
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= +

(a)

Ty Ty

y

x

(–x0, y0)

–Tx
(x0, y0) Tx

(–x0, –y0)
–Tx (x0, –y0)Tx

–Ty –Ty

(b)

y

x

Ty Ty

–Tx Tx

–Tx Tx

–Ty –Ty

(c)

τ 
ν(y)

σ 
ν(y)

Fig. 4.8. A superposition for analyzing an infinite strip patch under two symmetrical pairs of

point loads.

pertinent results from the general theory for an infinite orthotropic strip (Atluri, 1992)

are summarized below. According to the Fourier transform theory, the displacement

fields in an orthotropic strip patch can be expressed as

u�x
 y�= 2

�

�∫
0

U��
x� cos �y d�

v�x
 y�= 2

�

�∫
0

V��
x� sin �y d�

(4.75)

where U ��
x� and V ��
x� are the transformed displacements defined by

U��
x�= A1���ẽ1 cosh
(
�̂1x
)
+A2���ẽ2 cosh

(
�̂2x
)
+A3���ẽ1 sinh

(
�̂1x
)

+A4���ẽ2 sinh
(
�̂2x
)

(4.76)

V��
x�= A1��� sinh
(
�̂1x
)
+A2��� sinh

(
�̂2x
)
+A3��� cosh

(
�̂1x
)
+A4��� cosh

(
�̂2x
)

ẽk =
�p�̂k

(
1−�pxy�pyx

)−�2Ep
y

��̂k
[
�
p
xyE

p
y +�p

(
1−�pxy�pyx)] (4.77)

�̂1 and �̂2 are two roots (out of four) of the following characteristic equation, which

have a positive real part:

�̂4+�2

[
2�pyx−

Ep
y

�p

]
�̂2+ Ep

y

E
p
x

�4 = 0 (4.78)
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A1
 A2
 A3, and A4 are constants, which depend only on � and must be determined

from the loading and the boundary conditions.

On the other hand, the transformed stress components �x��
x� and �xy ��
x� are given by

�xx��
x�=
(

,

M1�̂1ẽ1+
,

M2�
)[
A1 sinh

(
�̂1x
)
+A3 cosh

(
�̂1x
)]

+
(

,

M1�̂2ẽ2+
,

M2�
)[
A2 sinh

(
�̂2x
)
+A4 cosh

(
�̂2x
)]

�xy��
x�= �p
[(
�̂1− ẽ1�

)(
A1 cosh

(
�̂1x
)
+A3 sinh

(
�̂1x
))

+
(
�̂2− ẽ2�

)(
A2 cosh

(
�̂2x
)
+A4 sinh

(
�̂2x
))]

(4.79)

,

M1 =
Ep
x

1−�pxy�pyx
,

M2 =
Ep
y�

p
xy

1−�pxy�pyx

(4.80)

The constants A1
 A2
 A3, and A4 will be determined from the boundary conditions as

follows. First, due to the symmetric condition with respect to the y-axis, A1 = A2 = 0.

Secondly, defining P̂ ��� and Q̂ ��� as

P̂���=
�∫

0

�v�y� cos��y�dy

Q̂���=
�∫

0

�v�y� cos��y�dy

(4.81)

A3 and A4 are then determined from the boundary conditions at x =W/2, i.e.,

�xx��
 W/2�=
(

,

M1�̂1ẽ1+
,

M2�
)
A3 cosh

(
�̂1W/2

)

+
(

,

M1�̂2ẽ2+
,

M2�
)
A4 cosh

(
�̂2W/2

)

=−P̂���

�xy��
 W/2�= �p
[(
�̂1− ẽ1�

)
A3 sinh

(
�̂1W/2

)
+
(
�̂2− ẽ2�

)
A4 sinh

(
�̂2W/2

)]

=−Q̂���

(4.82)

Thus, if P̂ ��� and Q̂ ��� are known, one can determine A3 and A4 from Equation (4.82).
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Following the work of Atluri (1992) and Duong and Yu (1997), P̂ ��� and Q̂ ��� are

found to be

P̂���=−�
4∑
j=1

Re
(
s1
(
c11Txj+ c12Tyj

)
ie�-−�&1�W/2−x0j �−y0j	i+.1�W/2−x0j�0

+s2
(
c21Txj+ c22Tyj

)
ie�-−�&2�W/2−x0j �−y0j	i+.2�W/2−x0j�0

)

Q̂���= �
4∑
j=1

Re
((
c11Txj+ c12Tyj

)
e�-−�&1�W/2−x0j �−y0j	i+.1�W/2−x0j�0

+ (c21Txj+ c22Tyj) e�-−�&2�W/2−x0j �−y0j	i+.2�W/2−x0j�0)

(4.83)

where &k and .k
 k = 1
 2, are defined by &k + i.k = 1

sk
; Txj and Tyj , j = 1, 4,

are the x- and y-components of the jth concentrated load applied at �x0j
 y0j� cor-

responding to loading configuration shown in Figure 4.8; and the rest are defined

previously. Substituting Equation (4.76) into (4.75) and noting that A1 = A2 = 0

yield

u�x
 y�= 2

�

�∫
0

[
A3ẽ1 sinh

(
�̂1x
)
+A4ẽ2 sinh

(
�̂2x
)]

cos ��y�d�

v�x
 y�= 2

�

�∫
0

[
A3 cosh

(
�̂1x
)
+A4 cosh

(
�̂2x
)]

sin ��y�d�

(4.84)

where A3 and A4 are determined by solving Equation (4.82) with P̂ ��� and Q̂ ���

given by (4.83). These Fourier integrals given by Equation (4.84) can be evalu-

ated numerically by calling the appropriate subroutines of the mathematical pack-

age QUADPACK (Piessens and de Doncker, 1983), which is available free from the

Internet.

So far the results have been derived for the point loads. For a similar loading configura-

tion but with the constant shear body forces as shown in Figure 4.7, the same results still

apply except for the formula of P̂ ��� and Q̂ ���. P̂ ��� and Q̂ ��� due to these constant

shear body forces are obtained by integrating the corresponding “point load” formula

over the cell area. In particular, P̂ ��� and Q̂ ��� for the shear body forces symmetric

with respect to the two coordinate axes are derived as
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P̂���=−�
4∑
j=1

Im

[
s1

2
(
c11Pxj+ c12Pyj

)
�2

Ê1��
x0j
 y0j�

+ s
2
2

(
c21Pxj+ c22Pyj

)
�2

Ê2��
x0j
 y0j�

]

Q̂���=−�
4∑
j=1

Re

[
s1
(
c11Pxj+ c12Pyj

)
�2

Ê1��
x0j
 y0j�

+ s2
(
c21Pxj+ c22Pyj

)
�2

Ê2��
x0j
 y0j�

]

(4.85)

where

Êk��
 x0j
 y0j�= e�-−�&k�W/2−x0j−dj/2�−y0j−hj/2	i+.k�W/2−x0j−dj/2�0

− e�-−�&k�W/2−x0j−di/2�−y0j+hj/2	i+.k�W/2−x0j−dj/2�0

− e�-−�&k�W/2−x0j+di/2�−y0j−hj/2	i+.k�W/2−x0j+dj/2�0

+ e�-−�&k�W/2−x0j+di/2�−y0j+hj/2	i+.k�W/2−x0j+dj/2�0 (4.86)

�k= 1
 2�; Pxj and Pyj , j = 1, 4, are the x- and y-components of the jth shear body force
acting over jth cell corresponding to the loading configuration shown in Figure 4.7; hj
and dj are the length and width of the jth cell centered at �x0j
 y0j�, respectively.

4.3.3 Stress intensity factor evaluation

There are two types of loads applied to the cracked sheet: shear body forces and the crack

surface pressure �0 ���. As mentioned in Section 4.3.1, the solution of a cracked sheet

subjected to the interfacial shear forces can be determined from the linear superposition

of the solution of an uncracked sheet under the prescribed loads with that of the cracked

sheet under crack surface pressure caused by these loads (see Figure 4.6). It then becomes

clear that only the latter solution will contribute to the stress intensity factor, and the

crack surface pressure +��� caused by the interfacial shear loads can be determined

from Equations (4.59)–(4.60) of Section 4.3.1. Thus, it remains here to derive the stress

intensity factors for a cracked sheet under a pressure loading +��� and �0 ��� on the

crack faces. The stress intensity factors at the two tips of a crack with a length of 2a
due to the crack surface loading of +��� are given by (Tada et al., 1985)

KI�±a�=
a∫

−a

+�'�√
�a

√
a± '
a∓ ' d' (4.87)
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Using Chebyshev quadrature formula (Krylov, 1962), the above integral is evaluated

numerically as

KI�±a�=
4
√
�a

2n+1

n∑
k=1

sin2
(

k�

2n+1

)
+

(
±a cos

(
2k�

2n+1

))
(4.88)

where n is the number of quadrature points, and a is the half crack length. In the above

numerical integration for KI
 n is determined by increasing its (integer) value until the

change in the estimates of the integral from the two consecutive values for n are within

a prescribed percentage tolerance of 0.01. Finally, the stress intensity factors due to the

pressure loading �0 ��� obviously can be obtained by the same manner.

4.4 Numerical Illustrations

To illustrate the analytical methods described in this chapter and to assess the accuracy

of those methods, two example problems are considered in this section. These examples

are those taken out from the papers by Duong et al. (2001a) and Duong and Yu (2002a).

In the first example, the stress field in an uncracked sheet reinforced with a composite

patch as shown in Figure 4.9 is obtained and compared with results from the FE method.

The length and width of the patch are 15.24 and 10.16 cm, respectively. The material

properties and thickness of the skin and the patch as well as the far-field stresses are

given below:

σ∞yy

x

y

A

B45°

6.35 cm

11.43 cm
15.24 cm

10.16 cm

C (5.08 + d, 5.71)

d

D (4.95, 5.89)

E (3.23 + d, 7.57)

F (3.17, 7.62 + d )

Vertex 2 (1.25, 3.0)

Vertex 1 (2.0, 2.25)
0.051 < d < 0.127

Fig. 4.9. Geometry of the first example problem. The coordinates of the points where the stresses

are evaluated and compared are also listed.
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Skin: Aluminum

E = 72�4GPa
 � = 0�33
 ts = 1�6mm.

Patch: Boron/Epoxy

Ey = 193�6GPa
 Ex = 18�7GPa
 �yx = 0�21
 �= 5�5GPa
 tp = 0�635mm

��x = 0
 ��y = 86�2MPa.

This problem has been solved approximately by the analytical method outlined in

Section 4.2.3 when eigenstrains are assumed to be polynomials of degree zero (con-

stant) and polynomials of degree two (quadratic) in the global position coordinates

(Duong et al., 2001a). The stresses along the line y = 0 are of special interest, since

they are needed for stage II analysis of the Rose’s approach. The normalized stress

component �yy in the skin along the line y = 0 is plotted and compared with FE results

in Figure 4.10. FE results are obtained by using FRANC2D/L code with eight-node

isoparametric elements (Swenson and James, 1997). In the FE analysis, the adhesive is

modeled as two-dimensional linear springs. Both typical and arbitrarily stiff adhesives

are considered in the FE analysis. Typical values for shear modulus and thickness of an

adhesive are 869.5MPa and 0.127mm, respectively. FE results for both cases of typical

and stiff adhesives are presented in Figure 4.10, along with the analytical predictions.

A small oscillation in FE results near the edge of the patch is probably due to the

discontinuity in skin stresses at the patch edge and also due to severe straining in the

adhesive. From Figure 4.10, analytical results are in excellent agreement with those from

the FE method. In general, analytical results based on the higher-ordered eigenstrains are

in better agreement with FE solutions. As the adhesive becomes stiffer, the difference

in stresses between the analytical and the FE methods becomes smaller, as expected.

For reference, the normalized stress �yy/��yy in the patch near the central region of !
is also calculated and equals 2.3 and 2.1 according to constant and quadratic eigenstrain
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FEM – with typical adhesive
FEM – with stiff adhesive
Analytical – zero order eigen strain
Analytical – 2nd order eigen strain
Elliptical patch solution

Fig. 4.10. Skin stress �yy/��yy underneath the patch and along the line y = 0.
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Table 4.1. A comparison of the skin stress �yy/��yy at various locations just outside the patched
region by different methods. The exact locations of these points are given in Figure 4.9. For points

C, E, and F, the first number indicates the skin stress when d= 1�27mm while the number given

in parenthesis is for d = 0�51mm.

Method Point
A

Point
B

Point
C

Point
D

Point
E

Point
F

Analytical Zeroth 0�662 1�303 0�690 0�961 1�304 1�415
ordered �0�629� �1�346� �1�479�

Analytical Second 0�644 1�278 0�680 0�998 1�330 1�435
ordered �0�612� �1�372� �1�500�

FE based on stiff 0�620 1�240 0�804 0�922 1�278 1�376
adhesive �0�820� �1�324� �1�356�

FE based on 0�620 1�235 0�837 0�929 1�261 1�308
typical adhesive �0�850� �1�288� �1�322�

approximations, respectively, while the FE analysis using typical adhesive properties

yields a result of 2.13.

The stresses in the skin just outside the patched area are also of practical interest due

to possible high stress concentration or singularity there. These stresses are listed in

Table 4.1 for various locations. The positions of these locations are defined in Figure 4.9.

It was shown in Section 4.2.2 that the stresses at the vertices were weakly singular and

of the logarithmic nature. Stress comparisons between analytical and FE results at the

vertices are thus difficult unless a very fined mesh is employed in those local regions. To

avoid this difficulty and just for a qualitative comparison, stresses at small distance away

from the vertices are reported in Table 4.1 (see Figure 4.9 for positions of the reported

points). The discrepancy between the analytical and the FE methods at points close to the

vertices tends to be larger as their distance to the vertex decreases. It signifies the inability

of the FE analysis in capturing the singularity with the presently employed mesh. For

points adjacent to vertex 2, the agreement between two methods is fair for d= 0�51mm

(within 14%) and good for d = 1�27mm (less than 10% difference). However, a much

larger discrepancy is found for stresses at point C near vertex 1. It should be noted that the

stress �yy is lower than the remote stress near vertex 1 but higher than the remote stress

near vertex 2. As explained by Duong et al. (2001a), the amplitudes of the logarithmic

singularity at vertices 1 and 2 obtained from the analytical method are in opposite signs

as indicated in Table 4.2. The negative amplitude of the singularity near vertex 1 makes

Table 4.2. Amplitudes of the logarithmic singularity at vertices 1 and 2.

Method Amplitude Mxx in
�xx ≈Mxx log r

Amplitude Myy in
�yy ≈Myy log r

Vertex 1 Vertex 2 Vertex 1 Vertex 2

Analytical Zeroth
ordered

−123�2 123�2 −851�3 851�3

Analytical Second
ordered

−152�1 139�6 −980�6 851�3
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the stress field there very complicated, resulting in a rapid stress oscillation in FE results

(which have not been shown here). This may attribute in part to the observed large

discrepancy. Nevertheless, since stresses at point C near vertex 1 are not critical from

the design viewpoint, this large discrepancy will not be resolved any further.

Finally, since the solution for an elliptical patch is relatively simple to obtain and avail-

able (Rose, 1981), it is therefore of practical interest to compare the present results with

those for an elliptical patch of the same aspect ratio A/B. This comparison would pro-

vide a basis for assessing whether or not elliptical patch solution provides a sufficiently

accurate estimate of the effect of patch aspect ratio for design purposes. The stress in

the skin underneath an elliptical patch with the same aspect ratio A/B is uniform and

also plotted in Figure 4.10 along with the FE and analytical results obtained previously

for an octagonal patch. The elliptical patch solution is about 7% higher than FE result

near the center. The normalized stresses in the skin at points A and B for the elliptical

patch are found to be 0.55 and 1.39, respectively. The stress at point B in this case is

approximately 12% higher than the corresponding FE result.

In the second example, a problem of a cracked repair with an octagonal patch under a

uniform low operating temperature is considered. The repair configuration is shown in

Figure 4.11. The effects of disbond and elastic-plastic adhesive (if any) will be ignored

in the analysis. The material properties of the skin, patch, and adhesive as well as the

temperature change used in the stage I and stage II analyses are given below:

Skin: Aluminum

E = 72�4GPa
 � = 0�33
 �= 22�5 1per C
 ts = 1�6mm.

x

y

A

B45°

6.35 cm

8.89 cm
17.78 cm

12.7 cm

Fig. 4.11. Geometry of the second example problem.
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Patch: Boron/Epoxy

Ey = 193�6GPa
 Ex = 18�7GPa
 �yx = 0�21
 �= 5�5GPa
 tp = 0�79mm,

�y = 4�31per C
 �x = 21�41per C.

Adhesive: FM-73

GA = 0�46GPa
 tA = 0�127mm.

Temperature change: �T =−75 C.

The sensitivity of the length of the repair cracks relative to the patch width is studied.

Four crack lengths of 1.27, 2.54, 3.81, and 5.08 cm are considered in the analysis

while the patch geometry is held constant. The thermal stress in the uncracked skin

underneath the patch and along the line y = 0, resulting from stage I analysis, is plotted

and compared with the FE solution in Figure 4.12. Stage I analysis is carried out using

the method outlined in Section 4.2.4. FE results are obtained by using the commercial

MSC/NASTRAN code (2001). The skin is modeled as a single layer of solid elements

while the patch is modeled as six layers of solid elements, one for each ply. All elements

are eight-node isoparametric solid elements. In the FE model, all nodes at the bottom

of the skin surface are restrained from the out-of-plane displacement. The adhesive is

modeled as one layer of anisotropic solids with very small extensional moduli. Stresses

from FE analysis are those reported at the centroids of the solid elements and therefore

are thickness-average stresses. From Figure 4.12, it appears that the analytical result is

in general lower than the FE prediction, except near the edge of the patch, and they are

in good agreement.

The crack-tip stress intensity factors are evaluated in stage II analysis using the method

presented in Section 4.3. Their values are reported in Table 4.3 along with FE results.

30

35
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50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/A

σ y
y 

(M
P

a)

FE

Analytical

Fig. 4.12. Thermally induced skin stress �yy underneath the patch and along the line y = 0 for an

uncracked patched skin subjected to a uniform temperature change of −75 C.
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Table 4.3. The stress intensity factors for a cracked skin repaired with an octagonal patch and

being subjected to a uniform temperature change of −75 C.

Half crack length, a (mm) Analytical, KI �MPa
√
m� FE, KI �MPa

√
m�

1.27 3�740 4�304
2.54 3�796 4�298
3.81 3�807 4�214
5.08 3�772 4�024

Typical telescopic grids used in the theoretical analysis are given in Figure 4.13. FE

results are again obtained by using MSC/NASTRAN code (2001) with the crack actually

being modeled. The skin, patch, and adhesive are modeled in a similar manner as for

the case without a crack, but with a much finer mesh around the crack. A special 3-D

crack-tip element is used in the MSC/NASTRAN analysis to compute the stress intensity

factor. This crack-tip element is based on the hybrid assumed stress approach and is

compatible with the regular displacement-based elements. Since the skin is modeled

as a single layer of solid elements, the stress intensity factor obtained from the FE

analysis is the mid-plane value. From Table 4.3, results from the two methods are in

good agreement within 13%. However, the analytical results show a different trend

when compared with the one predicted by the FE method. According to Duong and Yu

(2002a), several factors might attribute to such discrepancy. First, the analytical method

underestimates both the thermal stresses and their gradients in an uncracked skin (see

Figure 4.12). Secondly, as shown in Section 3.3.4, the stress intensity factor for a patched

cracked sheet with a uniform pressure acting on the crack surfaces will be nearly constant

Fig. 4.13. Typical telescopic grids used in stage II analysis for evaluating the stress intensity

factor.
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and thus independent of the crack length when the crack exceeds a critical length �,
provided that there is no edge boundary effect. Using Equation (3.27) for � together with

appropriate material properties of the present skin, patch, and adhesive, this critical crack

length is computed to be about 2.5mm. Since all crack lengths considered in the present

analyses exceed that critical length, the stress intensity factors are therefore expected to

be nearly constant and probably (based on intuition) slightly higher for a longer crack in

the uniform thermal stress field. This is what we observe from Table 4.3 for the crack

length ratio a/A < 0�4. However, since the thermal stress field is a decreasing function

of the x-coordinate which is more pronounced for x/A > 0�4
 KI may decrease with an

increase in crack length for a/A > 0�4. Furthermore, since quite different meshes have

been employed for different crack lengths in the FE analyses, this variation of meshes

will definitely contribute partially to the mentioned discrepancy. For reference, the skin

stress near the patch edge at x = 0 (point B of Figure 4.11) is found to be compressive

with a value equal to −35�2MPa from both analytical and FE methods.

To assess the effect of these thermal stresses on crack patching efficiency, the second

example problem is reanalyzed for the case of far-field-mechanical loading only. The

far-field stress is assumed to be 103.4MPa, a typical fatigue stress range in transport

aircraft fuselage. The stress in the uncracked skin along the line y = 0, resulting from

stage I analysis, is plotted in Figure 4.14 for comparison with that from the case of

thermal loading only. Figure 4.14 also includes parallel results from the FE method. The

skin stress near the patch edge at point B is found to be tensile and close to 131MPa

from both methods. The crack-tip stress intensity factors for the latter loading case are

reported in Table 4.4. From Tables 4.3 and 4.4, it appears that (a) analytical prediction

for the mechanical loading case is more accurate than the former thermal loading, and

(b) the thermal effect on the stress intensity factor can be very significant. For the same

repair configuration, the thermal stress intensity factor can be more than 65% of that
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Fig. 4.14. Skin stress �yy underneath the patch and along the line y = 0 for an uncracked patched

skin subjected to a far-field stress of 103.4MPa.
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Table 4.4. The stress intensity factors for a cracked skin repaired with an octagonal patch and

being subjected to a far-field stress of 103.4MPa.

Half crack length, a (mm) Analytical, KI �MPa
√
m� FE, KI �MPa

√
m�

1.27 4�973 5�154
2.54 5�211 5�260
3.81 5�522 5�403
5.08 5�952 5�655

resulting from the fatigue load. Thus, the effect of thermal stresses is to increase the

crack-tip stress intensity factor while reducing the load attraction.

4.5 Thermal Constraints

In Section 4.2.4, for simplicity, the residual thermal stresses associated with curing of the

adhesive have been obtained approximately by assuming that the skin is infinite and the

steady state temperature distribution is a step function. However, in practice, structures

to be reinforced may be finite in size or constrained by the surrounding structure. In

addition, in reality the steady state temperature distribution is not represented by a

step function. A method to quantify the effects of the structure’s finite size and of the

realistic temperature distribution on the thermal stresses is therefore given in this section,

following the work of Wang et al. (2000).

Consider the configuration shown in Figure 4.15, in which an isotropic skin plate is

reinforced by a circular patch of radius Ri. The coordinate system x1–x2 is chosen so

Ro

o

θ
Ri

X2

r

X1

Fig. 4.15. Geometry of an infinite plate reinforced with a circular composite patch (Wang

et al., 2000).
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that the principal axes of the orthotropic patch are aligned and parallel to the x1
 x2
axes. During the first step of bonding, suppose that the inner portion �r < Ri� is heated
to a temperature Ti during the curing process, while the outer portion �r ≥ Ro� is heated
to To, with the usual convention that the ambient temperature is taken as the zero of

temperature. The temperature field satisfies the Laplacian equation:

22T = 0 (4.89)

which has the following solution:

TH�r�=

⎧⎪⎨
⎪⎩
Ti r < Ri
To+ �Ti−To� ln�r/Ro�

ln�Ri/Ro�
Ri < r < Ro

To Ro < r

(4.90)

where the superscript H denotes the temperature change corresponding to the first step:

heating. A schematic of the temperature distribution is shown in Figure 4.16. Due to

this non-uniform temperature distribution, thermal stresses (equal biaxial) develop in the

skin, which can be readily derived (Timoshenko and Goodier, 1970):

�
s�H�
ij =−1

2
�sEs �Ti−To��ij (4.91)

where �s and Es denote the thermal expansion coefficient and Young’s modulus of the

skin. Since Ti−To > 0 during heating, the above thermal initial stress is compressive, as

expected. It should be noted that this thermal stress arises only in the case of localized

heating of a large structure; for the case of a finite size specimen being uniformly heated

to Ti, no thermal stress will develop. This stress distribution serves as the initial stress

that will be added to the thermal stress induced by cooling the patched region down to

the ambient temperature. On the other hand, it will be assumed that there is no shear

stress in the adhesive layer during curing, so that the reinforcing patch expands freely

without developing any stresses.

r

T

Ti
Heating

Cooling

To

–To

–Ti

Ri Ro

Fig. 4.16. Temperature distribution during heating and cooling (Wang et al., 2000).
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After the adhesive is fully cured, the patched skin is cooled down to the ambient

temperature. Thus, in the second step of adhesive bonding, the temperature change

over the entire patched skin is subjected to the following temperature field, referring to

Figure 4.16:

TC�r�=−TH�r� (4.92)

where the superscript C denotes the temperature change corresponding to the second

step: cooling. Now the problem is to determine the thermal stress �
s�C�
ij on cooling

to ambient temperature after curing. The final stress in the skin plate is thus equal to

� s
ij = � s�H�

ij +� s�C�
ij (4.93)

During this cooling process, it is assumed that the adhesive bond between the composite

patch and the metal skin is absolutely rigid, so that the same strain-state prevails in both

the patch and the skin directly beneath the patch. To quantify the finite size effect, Wang

et al. used the model shown in Figure 4.17 to estimate thermal stresses in the skin and

patch for various degree of constraints. The model shown in Figure 4.17 is an uncracked

circular skin plate of radius R0 reinforced with a concentric patch of radius Ri. The
outer edge r = Ro is constrained by a continuous distribution of springs according to the

following relation:

�rr�r = Ro�=−ksEsur�r = Ro� (4.94)

For an infinite plate, ks must set to

ks =
1

�1+�s�Ro

(4.95)

x2

o

θ

r
Ri

x1

Ro

Fig. 4.17. Spring representation for simulating finite size effect (Wang et al., 2000).
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On the other hand, the cases of free edge and a clamped edge at r = Ro correspond to

setting ks = 0 and ks →�, respectively. To determine the thermal stresses developed in

the patch and skin, the patched region is first cut out from the plate, and then surface

tractions of equal magnitude but opposite in sign are applied, respectively, around the

outer edge of the cut region and the hole of the skin plate. The unknown tractions are

determined by closing the “gap” between the patch and the hole; in doing so, continuity

in both the tractions and the displacement across the imaginary cut has to be satisfied

simultaneously. Using that approach, Wang et al. (2000) derived explicitly the following

stress results for the skin and patch during the cooling step:

{
�

s�C�
11

�
s�C�
22

}
= �Cs	

{
I11+�sTi
I22+�sTi

}
(4.96)

{
�

p�C�
11

�
p�C�
22

}
= �Cp	

{
I11+�p

11Ti
I22+�p

22Ti

}
(4.97)

where

{
I11
I22

}
= [CI

]−1

{
l1
l2

}
+
{
�I
11

�I
22

}
�−Ti� (4.98)

{
�I
11

�I
22

}
= [CI

]−1
�Cs	

{
�s

�s

}
+ tp

ts

[
CI
]−1
�Cp	

{
�
p

11

�
p

22

}
(4.99)

{
l1
l2

}
=
⎧⎨
⎩
��I11−bT�d22−��I22−bT�d12

d11d22−d212
Ti

��I22−bT�d11−��I11−bT�d21
d11d22−d212

Ti

⎫⎬
⎭ (4.100)

bT =
�s3T

1−3TR2
i /R

2
o

{
To
Ti

− R2
i

R2
o

− �1−R2
i /R

2
o��1−To/Ti�

2 ln�Ri/Ro�

}
(4.101)

3T =
1− �1+�s�ksRo

1+ �1−�s�ksRo

(4.102)

d11 =
1

EI
11

+ �T
1

Es

d12 = d21 =− �
I
12

EI
11

− �T
2

Es

(4.103)

d22 =
1

EI
22

+ �T
1

Es
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�T
1 = �3−�s�&T+ �1+�s��T

2
(4.104)

�T
2 = �3−�s�&T− �1+�s��T

2

&T =
3−�s+ �7+3�s�R

2
i /R

2
0+ �1−3�s�R

4
i /R

4
0+ �1+�s�R6

i /R
6
o

�3−�s�
(
1−R2

i /R
2
0

)3 (4.105)

�T =
1+�s+3T �1−�s�R2

i /R
2
0

�1+�s�
(
1−3TR2

i /R
2
0

) (4.106)

�Cs	 
 �Cp	, and
[
CI
]
are defined by Equations (4.31), and (4.32) of Section 4.2.3 and

choosing tI = ts(
[
CI
]−1

is the inverse of
[
CI
]
( EI

11
 E
I
22
 �

I
12 can be found from the

following relation:

⎡
⎢⎢⎢⎢⎢⎢⎣

1

EI
11

− �
I
12

EI
11

0

− �
I
21

EI
22

1

EI
22

0

0 0
1

GI
12

⎤
⎥⎥⎥⎥⎥⎥⎦
= [CI

]−1
(4.107)

The results given by Equations (4.96)–(4.106) are not exact as pointed out by Wang

et al. (2000), since the stresses in the patch and in the skin underneath the patch assume

to be uniform in the derivation. In general, due to the finite size of the plate, these

stresses are not constant. However, the error arising from this assumption will be small

provided that the outer radius is reasonably greater than the inner radius. As a matter of

fact, for R0

/
Ri ≥ 3, this error is anticipated to be less than 1%.

It is interesting to note that when the patch is isotropic, the thermal residual stresses

�
s�C�
11 and �

s�C�
22 are given by the following simple expression, assuming that the thermal

expansion coefficient, the Poisson’s ratio, and the modulus of the patch are �p
 �p, and
Ep, respectively:

�
s�C�
11 = � s�C�

22 = ��C�0 = �sEsTi
�1−�s��1−bT/�s�+ �1−�p/�s��1+�s�S�T

�1−�p��1+�T+�T�s−�s�+ �1−�2s �S�T

(4.108)

When the skin is also infinite, i.e., ks = 1/�1+ �s�R0, and T0 = 0, Equation (4.108) is

reduced to

�
�C�
0 = �sEsTi

1−�p+ �1−�p/�s��1+�s�S
2�1−�p�+ �1−�2s �S

(4.109)

where S is the patch stiffness ratio, i.e., S = Eptp
Ests

.
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The total thermal stress from heating and cooling phases of the curing cycle for this

particular case of infinite skin and isotropic patch is finally given by

�s =− EsS �1+�s�
2
(
1−�p

)+ �1−�2s � S
[
�p−

�s �1+�s�
2

]
Ti (4.110)

for the skin under patch.

To validate the present theory and to examine the accuracy of the solution for finite size

plate, a detailed FE analysis is carried out for both an isotropic patch and an orthotropic

patch, simulating a cross-ply laminate composite patch. The properties and dimensions

of the isotropic patch and the orthotropic patch are summarized in Tables 4.5 and 4.6,

respectively. The ratios of the outer radius to inner radius, Ro/Ri, will be varied to

investigate the size effect. Comparisons of the stresses in the skin plate as obtained

using the FE method and the analytical solutions are shown in Figure 4.18 and 4.19.

It is seen that the closed-form solution is in very good agreement with the FE results.

More importantly the solution based on an equivalent isotropic reinforcement, which

takes the major properties of the orthotropic reinforcement, provides a reasonably good

correlation with the FE results. Thus, for an orthotropic patch, the maximum thermal

residual stress in skin is well approximated by the solution for isotropic patch, which

takes the major properties of the orthotropic patch.

It remains now to show how the curing model developed in Section 4.2.4 using a

simplified (step) temperature distribution compares with the present results. A cursory

example taken out from the paper by Duong and Yu (2002a) is, therefore, presented

here. The thermal residual stresses are obtained and compared for one specific repair

configuration using the simple curing model outlined in Section 4.2.4 and the present

model. In these analyses, the patch is assumed to be circular and isotropic. The radius

of the patch is 12.7 cm. The patch and skin properties are given below.

Table 4.5. Properties and dimensions of isotropic patch used in thermal stress analyses for a

comparison between Wang and Rose’s closed-form and FE solutions.

Material Young’s modulus
(GPa)

Poisson’s
ratio

Thickness
(mm)

Thermal
coefficient

Skin 71 0�3 1�0 23×10−6

Patch 156 0�3 0�5 6�24×10−6

Table 4.6. Properties and dimensions of orthotropic patch used in thermal stress analyses for a

comparison between Wang and Rose’s closed-form and FE solutions.

Material Young’s modulus
(GPa)

Poisson’s
ratio

Thickness
(mm)

Thermal
coefficient

Skin 71 0.3 3�0 23×10−6

Patch E1 = 156 �21 = 0�1097 1�5 �1 = 6�24×10−6

E2 = 29�7 �12 = 0�5762 �2 = 16�96×10−6
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Fig. 4.18. Thermal residual stress resulting from cooling a circular isotropic patch over a concentric

plate with outer edge being clamped.
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Fig. 4.19. Thermal residual stress resulting from cooling a circular orthotropic patch over a

concentric plate with outer edge being clamped.

Skin: Aluminum

Es = 72�4GPa
 �s = 0�33
 �s = 22�51 per C
 ts = 1�6mm.

Patch: Boron/Epoxy

Ep = 193�6GPa
 �p = 0�21
 tp = 0�79mm
 �p = 4�31 per C

Temperature change: �T =−75 C.
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Table 4.7. A comparison of y-component thermal stresses between Wang and Rose’s and Duong

and Yu’s curing models for a circular isotropic patch.

R0/Ri Wang and Rose’s model Duong and Yu’s model

�s (MPa) �p (MPa) �s (MPa) �p (MPa)

3 48�8 −140�5 – –
4 46�4 −136�7 – –
7 43�6 −131�1 – –
Infinite plate 36�8 −111�8 36�8 −111�8

In order to use the curing model developed in Section 4.2.4, the shape of the heated

region, but not its size, must be specified, since thermal stresses are only affected by

shape of the heated region provided that this region is large enough to fully cover the

patch. The heated region is thus specified to be circular as well.

To quantify the size effect, analyses using the present curing model are performed for

different R0 with a free edge condition as well as for the case of an infinite plate. Results

from these analyses are then compared with the result from the simple curing model in

Table 4.7 for Ti−T0 =−75 C. From Table 4.7, it is clear that the previous model agree

very well with the present model for an infinite plate.

It should be emphasized that while the previous curing model accounts for the effect

of the patch shape, it does not account for the realistic temperature distribution and the

structure finite size effect. Vice versa, the present model accounts for these latter effects

but not the effect of the patch shape. However, through this cursory example, since two

models give the same result for an infinite plate reinforced with a circular patch, one can

improve the previous curing model via an engineering approach by introducing a “finite

size” correction factor which is determined by performing the thermal stress analysis

using the present curing model for a circular patch twice for a finite and infinite skin

and computing the ratio of these two results.

4.6 Summary

This chapter presents an analytical method for analyzing a bonded repair with a polygon-

shaped patch using Rose’s two-stage analysis procedure. Different methods are employed

for different stages of the analysis. The equivalent inclusion method by Eshelby combin-

ing with the computational algorithm for a polygonal inclusion are used for the stage I

analysis. On the other hand, the stage II fracture analysis employs the displacement com-

patibility method. These methods are robust and versatile. In general, accurate results

can be obtained from the developed analytical method without recourse to the FE method

where it requires a substantial effort of modeling or meshing.



CHAPTER 5

Approximate Theory of Unsupported One-Sided
Crack Patching

5.1 Introduction

In Chapter 4, the mathematical theory of either two-sided crack patching or supported

one-sided patching was presented. When the structure is bonded symmetrically with

one patch on each side, there is no secondary bending. Since most often only one

face of a structure to be repaired is accessible and sometimes only one side of the

structure is allowed to be patched for other reasons, one-sided repairs are often adopted

in practical applications. In this case, if the structure is well supported against out-of-

plane deflection, for example, by stiffeners attached to one side of the structure, then

the analytical methods developed in Chapter 4 still can be used to assess the structural

integrity of these one-sided repairs. Otherwise, new analytical models must be developed

to address the effect of out-of-plane deflection associated with one-sided patching, and

they will be presented in this chapter.

A two-stage analysis method similar to that considered in Chapter 4 will be employed

in this chapter for solving a one-sided repair subjected to remote stresses and to a

temperature excursion. In the first stage, a problem of an uncracked structure rigidly

bonded with a patch is solved, as before. The stress distribution along the prospective

crack path is determined. Due to the out-of-plane deflection, at any point in the plate, the

stress varies through the plate thickness, resulting in membrane and bending components.

In stage II, the problem of a crack pressurized by a combination of membrane force

and bending moment is solved using a crack bridging model. In a geometrically linear

analysis of a one-sided repair, both stage I and stage II will be performed within

a geometrically linear analysis, and the mentioned two-stage procedure is merely a

demonstration of the linear superposition method. On the other hand, in a geometrically

nonlinear analysis of a repair, for simplicity, stage I will be solved within the framework

of geometrically nonlinear elasticity while in stage II it is assumed the repaired region

deforms geometrically linearly. This method is referred by Wang and Rose (1999) as the

hybrid method. Wang and Rose (1999) had shown that the hybrid method will provide

146
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reasonable results for the stress intensity factors when compared with those obtained

from the full geometrically nonlinear FE analysis.

Before proceeding to the analyses of one-sided crack patching, the reader is reminded

of the notations used in this chapter. As in Chapter 4 and throughout this book, within

a topic of the equivalent inclusion method, CI
ijkl denotes the moduli of the inhomo-

geneity and therefore of the inhomogeneous (patching) region ! while � I
ij and Iij

indicate the stress and strain fields in the inhomogeneity problem, respectively, and

they describe stresses and strains of points both inside and outside !. In contrast, the

superscript I when it is used within the context of a one-dimensional analysis will

always denote the overlap or the patching region. Thus, within the context of a 1-D

analysis, � I
ij and Iij will indicate the stress and the strain solutions in the overlap,

respectively.

5.2 Stage I: Geometrically Linear Analysis

As in Chapter 4, stage I will be solved in this section by using the equivalent inclusion

method. However, as shown later in Section 5.2.2, that method when extended to the

problem of a bending plate will require a solution of an inclusion with a constant

eigencurvature. The eigencurvature is defined here as the initial, thermal, or inelastic

curvature which is prescribed in a finite subdomain ! of an infinite plate and vanishes

outside !, in the same spirit as the eigenstrain discussed in Chapter 4.

5.2.1 Inclusion with constant eigencurvature

Closed-form solution for an inclusion problem with a constant eigencurvature is pre-

sented in this section. While most existing works on inclusion problems are concerned

with a plane or three-dimensional solid containing eigenstrains, only few deal with a

plate containing eigencurvatures. Beom (1998) was the first one to derive the solu-

tion for the elastic fields in a plate containing an elliptical inclusion with a uniform

eigencurvature. Beom’s approach (1998) was later extended by Duong and Yu (2003a)

to include analyses of polygonal inclusions. In Duong and Yu’s approach, the curva-

ture and the resultant moment are obtained by performing the integrations according to

the algorithmic solution procedure given in Chapter 4 for a 2-D planar inclusion with

eigenstrains.

(a) Polygonal inclusion

Consider a deformation of an infinite isotropic plate with moduli Cs
ijkl and thickness of ts,

containing a polygonal subregion ! in which a uniform eigencurvature �∗ij is prescribed.
Following Beom (1998), the curvature �ij�x� and the eigencurvature �∗ij are related by

an Eshelby-type tensor Kijkl such that

�ij�x�= Kijkl�x��∗kl (5.1)
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where

�ij �x�=− �2w

�xi�xj

�i
 j
 k
 l= 1
 2� (5.2)

Kijkl�x�=−
⎡
⎣∫
!

M̃kl�x
′
x�dx′

⎤
⎦

ij

M̃kl�x
′
x�=− 1

4�

[
�1+�s� ln. �kl+ �1−�s�

�x′k− xk� �x
′
l−xl�

.2

]

.= �x′−x� =
√
�x′1−x1�2+ �x′2−x2�2

(5.3)

where w is the transverse displacement, dx′ = dx′1 ·dx′2
 �ij is the Kronecker delta, �s is
the Poisson’s ratio, and the subscript comma denotes a partial differentiation with respect

to the in-plane coordinates x1 and x2.

Introducing integrals Ĥ and Ĥkl defined, respectively, by

Ĥ�x�=
∫
!

�ln.�dx′1dx
′
2

Ĥkl�x�=
∫
!

�x′k−xk� �x′l−xl�
.2

dx′1dx
′
2

(5.4)

then Kijkl�x� in the second equation of (5.2) can be rewritten as

Kijkl�x�=
1

4�

[
�1+�s� Ĥ
ij�kl+ �1−�s� Ĥkl
ij

]
(5.5)

An algorithm to evaluate Kijkl as prescribed by Equation (5.5) for an arbitrarily polygonal
region will be outlined in the next part of this section. Once Kijkl and �ij are determined,

respectively, from Equations (5.5) and (5.1), the resultant moment is then computed

from the curvature similar to the case of eigenstrain as

Mij =
{
Ds
ijkl ��kl−�∗kl� inside !

Ds
ijkl �kl outside !

(5.6)

where Ds
ijkl is the bending stiffness tensor, i.e., Ds

ijkl =
ts∫
0

Cs
ijkl�x3−h0�2 dx3 and h0 is the

x3-coordinate of the reference plane of the skin plate.
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Solution algorithm for Polygonal inclusion Kijkl is evaluated by using the computational

algorithm given in part (b) of Section 4.2.2. This algorithm will be briefly summarized

here. The reader should refer to Section 4.2.2(b) for more details. This algorithm is

implemented in three stages. First, the inclusion domain ! is decomposed into a set of

triangular elements in such a way that x, the point where the solution is evaluated is a

common vertex of all the elements (see Figure 4.3). Second, Ĥ�x�
 Ĥkl�x�, and thus Kijkl
are calculated for each element in its element coordinate system and the components

of Kijkl transformed to global coordinates. Third, Kijkl is assembled from the elemental

contributions. The elemental tensor Kijkl will be derived here for a simplex in its element

coordinate system.

Referring to Figure 4.3 of Chapter 4, the element coordinate system can be described

as follows. It has the origin at x, basis vector (n, t), and the corresponding coordinates

�&
 '�. In these coordinates, the positions of vertices are represented by the pairs �b
 c+�
and �b
 c−�. For a convex polygon, b is positive when x is an interior point of !
and becomes negative for otherwise. For a simplex with one of the vertices defined by

�b
 c�
 Ĥ�x� and Ĥkl�x� in Equation (5.4) can be rewritten as

Ĥ�x�= 1

2

b∫
0

c&/b∫
0

ln
(
&2+ '2)d' d&

Ĥ''�x�=
b∫

0

c&/b∫
0

'2

&2+ '2 d' d&

Ĥ'&�x�=H&'�x�=
b∫

0

c&/b∫
0

'&

&2+ '2 d' d&

Ĥ&&�x�=
b∫

0

c&/b∫
0

&2

&2+ '2 d' d&

(5.7)

which, upon integration, will yield the following results:

Ĥ�b
 c�=−b
4

[
3c−2b tan−1

( c
b

)
− c ln (b2+ c2)]

Ĥ''�b
 c�=
b2

2

[ c
b
− tan−1

( c
b

)]

Ĥ'&�b
 c�=H&'�b
 c�=
b2

4

[
ln
(
b2+ c2)− ln b2

]

Ĥ&&�b
 c�=
b2

2
tan−1

( c
b

)

(5.8)
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To obtain the tensor Kijkl in the global coordinate system, Ĥ and Ĥkl must be differen-

tiated with respect to x as indicated in (5.5). However, as mentioned in Section 4.2.3, it

is more convenient to obtain Kijkl in the element coordinate system since (i) b = b�x�

c= c�x� and (ii) in the latter coordinates �b

�&
= �c

�'
=−1 and �b

�'
= �c

�&
= 0. It can be shown

that Kijkl in the element coordinate system, i.e., Kijkl, is represented by a 3×3 matrix as

K&&&& =
1

4�

[
2�̂− �2−�s�

2
sin 2�̂+ �1−�s�

8
sin 4�̂

]

K&&'' =
1

4�

[
2�s�̂+

�1−2�s�

2
sin 2�̂− �1−�s�

8
sin 4�̂

]

K&&&' =
��s−1�

32�

[
5−6cos2�̂+ cos4�̂−4 log

(
sec2 �̂

)]

K''&& =
1

16�
�2�s− �1−�s� cos2�̂	 sin 2�̂

K'''' =
1

16�
�2+ �1−�s� cos2�̂	 sin 2�̂ (5.9)

K''&' =
1

8�

[
�1−�s� cos2 �̂ cos2�̂

]

K&'&& =
1

32�

[
3 ��s−1�+4cos2�̂− �1−�s� cos4�̂+2 �1+�s� log

(
sec2 �̂

)]

K&''' =
1

32�

[
�1−�s�+4�s cos 2�̂+ �1−�s� cos4�̂+2 �1+�s� log

(
sec2 �̂

)]

K&'&' =
1

4�

[
�1−�s� cos �̂ sin3 �̂

]

�̂= tan−1
( c
b

)
Similar to the strain solution derived in Chapter 4 for a “planar” inclusion with a uniform

eigenstrain, the present curvature solution has a logarithmic singularity near the vertex

and it is not constant inside subregion !. This vertex singularity can be addressed in a

similar manner as in Section 4.2.2. By assigning the subscripts 1 and 2 to the edges that

form the vertex (see Figure 4.4) and denoting lengths of these edges by �1 and �2, from
Figure 4.4, the following relations hold for a point x close to the vertex:

b1 = r sin�∗
1
 c+1 = r cos�∗

1
 c−1 =−�1+ r cos�∗
1 ≈−�1

b2 = r sin�∗
2
 c+2 = �2− r cos�∗

2 ≈ �2
 c−2 =−r cos�∗
2

(5.10)

where r is the distance from x to the vertex and it approaches 0. By evaluating Kijkl at x
(via Equation 5.9) using the results given by Equation (5.10) for b and c, and discarding
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all non-singular terms, Kijkl in matrix form, i.e., K, takes the following asymptotic

form:

K ≈ 1

16�

(
M̂1−M̂2

)
ln
�

r
(5.11)

where � is a representative edge length, tensors M̂1 and M̂2 are represented by the same

matrix in the basis �n1
 t1� and �n2
 t2�, and that matrix is defined by

M̂=
⎡
⎣ 0 0 2 �1−�s�

0 0 0

1+�s 1+�s 0

⎤
⎦ (5.12)

(b) Elliptical inclusion

For an elliptical inclusion, Ĥ�x� and Ĥkl�x� for x ∈ ! can be evaluated from

Equation (5.4) explicitly as

Ĥ �x�= 1

2
H∗
ijxixj

Ĥkl �x�=
1

2
H∗
klijxixj

(5.13)

where

H∗
12 =H∗

21 = 0

H∗
11 = 2�

a2
a1+a2

H∗
22 = 2�

a1
a1+a2

(5.14)

H∗
1111 =−H∗

2211 = 2�
a22

�a1+a2�2

H∗
2222 =−H∗

1122 = 2�
a21

�a1+a2�2

H∗
1212 = 2�

a1a2

�a1+a2�2

(5.15)

It then follows from Equation (5.5) that

Kijkl =
1

4�

[
�1+�s�H∗

ij�kl+ �1−�s�H∗
ijkl

]
x ∈! (5.16)

The formula for exterior points of the inclusion is different from Equation (5.16), and it

is much more involved. The reader who is interested in that formula should refer to the

work by Beom (1998).
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(c) Illustrative examples

Numerical examples of the curvature given by Equation (5.1) are shown in this section.

The curvatures �ij are computed for a family of regular polygons inscribed into a unit

circle centered at the origin O of the coordinate system as shown in Figure 5.1. The

Poisson’s ratio of the plate is assumed to be 0.3 throughout the computation. The vertices

of the polygon in polar coordinates are prescribed by

rk = 1 and �k = 2�
�k−1�

p
( k= 1
2
 " " " 
 p

where p is the number of sides of the polygon. Computational results of �11 and �22 along
the x1-axis for �

∗
ij = �1
 0
 0� and for various values of p are plotted in Figures 5.2(a)

and Figure 5.2(b), respectively. It should be noted that �12 are equal to 0 in this case. The
result from part (b) for a circular inclusion is also included in the figure for comparison.

Similarly, the results of �12 along the x1-axis for �
∗
ij = �0
 0
 1� are plotted in Figure 5.3

while �11 and �22 are determined to be zero. In Figures 5.2 and 5.3, �11
 �22, and �12
are evaluated along the x1-axis using 20 points at equal spaces over the half polygonal

domain and these points correspond to those chosen on the plots. From Figures 5.2

and 5.3, the curvature distributions are not uniform inside the inclusion but approach to

the circular inclusion solutions with the increasing number of sides.

5.2.2 Geometrically linear analysis of polygonal patch

Consider an infinite, elastic, isotropic (skin) plate containing an orthotropic patch with

a polygonal shape ! (Figure 5.4). For simplicity, the patch is assumed to be orthotropic

and rigidly bonded to the infinite plate. The bonded plate is subjected to a uniform

temperature change �T and remote applied stresses ��ij . The thermal effect associated

with curing, where structural constraint from the surrounding still cool structure must be

accounted for, will be discussed separately in Section 5.5. The just stated problem then

will be solved within the framework of geometrically linear analysis using the equivalent

inclusion method. Since the patch is rigidly bonded to the plate, the reinforced region of

p = 4

p = 8

Fig. 5.1. Regular polygon-shaped inclusions.
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Fig. 5.2. Curvatures �11 and �22 in regular polygon-shaped inclusion along the x1-axis for an

eigencurvature �∗ij = �1
0
0�: (a) �11; (b) �22.

the plate is treated as an inhomogeneity. The constitutive relation of the inhomogeneity

problem is given by

N I
ij =
{
AI
ijkl̄

I
kl+BI

ijkl�
I
kl−N�T�

ij inside !

As
ijkl̄

I
kl outside !

M I
ij =
{
BI
ijkl̄

I
kl+DI

ijkl�
I
kl−M�T�

ij inside!

Ds
ijkl�

I
kl outside !

(5.17)
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Fig. 5.3. Curvatures �12 in regular polygon-shaped inclusion along the x1-axis for an eigencurva-

ture �∗ij = �0
0
1�.

σ∞ijPatch

Uniform ΔT

2Wp

2Lp

Cijkl, ts

Cijkl, tp

s

p

Fig. 5.4. Geometry of a repaired plate.

where Aijkl
 Bijkl, and Dijkl are the extensional, coupling, and bending stiffness tensors,

respectively; Nij and Mij are the stress and moment resultants; ̄ij and �ij are the

in-plane strain tensors measured at some reference plane and curvature, respectively.

The superscripts I and s that appear in a quantity denote the inhomogeneity and the
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isotropic skin plate, respectively. Aijkl
 Bijkl
 Dijkl
 Nij , and Mij in Equation (5.17), are

defined by (Jones, 1975):

Aijkl =
∫ t

0

Cijkldx3( Bijkl =
∫ t

0

Cijkl�x3−h0�dx3( Dijkl =
∫ t

0

Cijkl�x3−h0�2dx3
(5.18)

Nij =
∫ t

0

Cijklkldx3( Mij =
∫ t

0

Cijklkl �x3−h0� dx3
where Cijkl and t are the elasticity tensor and thickness, respectively, and h0 is the

x3-coordinate of the reference plane. In particular, for the inhomogeneity,

AI
ijkl =

∫ ts

0

Cs
ijkldx3+

∫ ts+tp

ts

C
p

ijkldx3

BI
ijkl =

∫ ts

0

Cs
ijkl �x3−h0� dx3+

∫ ts+tp

ts

C
p

ijkl �x3−h0�dx3 (5.19)

DI
ijkl =

∫ ts

0

Cs
ijkl �x3−h0�2 dx3+

∫ ts+tp

ts

C
p

ijkl �x3−h0�2 dx3

In Equation (5.19), the subscript or superscript p signifies the patch. For convenience, the

reference plane is chosen to be at the mid-plane of the skin in the evaluation of Bijkl
 Dijkl,

in-plane strains, and moment resultants of the skin and also of the inhomogeneity. It

was shown in Section 4.2.4 of Chapter 4 that the problem of a bonded plate subjected

to uniform cooling can be formulated as an initial strain problem in which the patch is

prescribed with an initial strain given by


�T��p�
ij = ��ij ·�T (5.20)

where ��ij = �
p

ij −�s�ij . �
p

ij
 �s are the thermal expansion coefficient tensors; �ij is
the Kronecker delta, and the superscript p again signifies the patch. It then follows from

Jones (1975) and Duong and Yu (2003b) that N
�T�
ij and M

�T�
ij in Equation (5.17) are

given by

N
�T�
11 =

(
E

p

11��11

1−�p12�p21
+ �

p

12E
p

22��22

1−�p12�p21

)
�T · tp

N
�T�
22 =

(
�
p

21E
p

11��11

1−�p12�p21
+ E

p

22��22

1−�p12�p21

)
�T · tp

N
�T�
12 = 0

M
�T�
ij =

(
ts+ tp−h0

)2− �ts−h0�2
2 · tp

N
�T�
ij

(5.21)

where h0 is defined earlier as the x3-coordinate of the reference plane, and it equals

to
ts
2
in the present case. This inhomogeneity problem will be solved by the equivalent

inclusion method outlined in the next part of this section.
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(a) Equivalent inclusion method for a bending plate

In Chapter 4, the equivalent inclusion method by Eshelby was presented for a 2-D

elasticity. This method was extended to the problem of an inhomogeneous plate with

bending by Beom and Earmme (1999). In the extended form, the equivalent inclusion

method can be stated as follows: The stress, reference strain, and curvature fields

induced by the inhomogeneity-occupied region ! will be the same as those induced

by eigenstrain field ∗ij and eigencurvature �∗ij prescribed over the same region ! in

a homogeneous problem when ∗ij and �
∗
ij are selected appropriately (Figure 5.5). The

constitutive relations of the latter homogeneous (inclusion) problem are given by

NH
ij =
{
As
ijkl

(
̄Hkl−∗kl

)
for x inside !

As
ijkl̄

H
kl for x outside !

(5.22)

MH
ij =
{
Ds
ijkl

(
�Hkl−�∗kl

)
for x inside !

Ds
ijkl�

H
kl for x outside !

(5.23)

In the above equations, the superscript H denotes a homogeneous problem, As
ijkl and

Ds
ijkl are previously defined. For a constant (or uniform) ∗ij and �

∗
ij , from Sections 4.2.2

and 5.2.1, the elastic solutions of the homogeneous problem can be expressed as

̄Hij�x�= Sijkl�x�∗kl+�ij
�Hij�x�= Kijkl�x��∗kl

(5.24)

where Sijkl and Kijkl are Eshelby and Eshelby-type tensors for eigenstrain and eigencur-

vature, respectively. Algorithms for evaluating these tensors are detailed in Section 4.2.2

σ∞ij
σ∞ij

Ω Ω

Cs
ijkl

C I
ijkl

(a) (b)

ε*ij

κ*ij
ΔT

Fig. 5.5. An illustration of the equivalent inclusion method: (a) an inhomogeneity problem; and

(b) an inclusion problem with a uniform eigenstrain ∗ij and a uniform eigencurvature �∗ij .
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for Sijkl and in Section 5.2.1 for Kijkl. ̄
H
ij and �

H
ij are in general not uniform inside !

except for an elliptical region !. The equivalency condition between the inhomogeneity

and the homogeneous problem requires that the strain (measured at the reference plane),

curvature, stress, and moment resultant fields inside ! of the two problems must be the

same, i.e.,

̄Iij = ̄Hij
�Iij = �Hij
N I
ij = NH

ij

M I
ij =MH

ij

(5.25)

Since Hij and �
H
ij are in general not uniform inside ! as mentioned above, the equiv-

alency condition given by Equation (5.25) can only be satisfied approximately when

∗ij and �
∗
ij are approximated by a (unknown) constant tensor. By enforcing condition

(5.25) at point (0, 0), i.e., the origin of the coordinate system, and by substituting results

from Equations (5.17) and (5.22)–(5.24) into (5.25), one finally obtains the follow-

ing linear algebraic equations for the unknown ∗ij and �
∗
ij (without summation on the

subscript �):

�A��11 �S1111�0�
∗
11+S1122�0�∗22�+�A��22 �S2211�0�∗11+S2222�0�∗22�

+As
��11

∗
11+As

��22
∗
22+BI

��11 �K1111�0��
∗
11+K1122�0��

∗
22�

+BI
��22 �K2211�0��

∗
11+K2222�0��

∗
22�= N�T�

�� +�A��11�11+�A��22�22
(5.26)

BI
��11 �S1111�0� 

∗
11+S1122�0� ∗22�+BI

��22 �S2211�0� 
∗
11+S2222�0�∗22�

+�D��11 �K1111�0��
∗
11+K1122�0��

∗
22�+�D��22 �K2211�0��

∗
11+K2222�0��

∗
22�

+Ds
��11�

∗
11+Ds

��22�
∗
22 =M�T�

�� +BI

��11
�11+BI

��22
�22

�ij = Cs−1
ijkl ��kl

�Aijkl = AI
ijkl−As

ijkl

�Dijkl =DI
ijkl−Ds

ijkl

for �= 1
 2

(5.27)

In deriving Equation (5.26), all in-plane shear components of the stress and moment

resultant have been assumed to be zero. This assumption is appropriate for the present

problem in the absence of the applied shear loads.
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Once ∗ij and �
∗
ij are determined, the in-plane strain and curvature fields of the homo-

geneous problem can be calculated from Equations (5.24) while the stress and moment

resultants are evaluated using Equations (5.22) and (5.23), respectively. The strain, cur-

vature, stress and moment resultant fields of the inclusion problem are also those of the

inhomogeneity problem via the equivalency condition given by Equation (5.25). Similar

to those given in Chapter 4, the stress distribution in the skin and in the patch across

their thickness inside ! are finally given by

� s
ij = Cs

ijkl

[
̄Ikl+ �x3−h0� �Ikl

]
�

p

ij = Cp

ijkl

[
̄Ikl−�T� �p�kl + �x3−h0� �Ikl

] (5.28)

where from Equation (5.17) and noting N I
ij = NH

ij and M
I
ij =MH

ij with N
H
ij and M

H
ij given

respectively by (5.22) and (5.23),

{
̄Iij
�Iij

}
=
[
AI
ijkl BI

ijkl

BI
ijkl DI

ijkl

]−1{[
As
klmn 0

0 Ds
klmn

]{
̄Hmn−∗mn
�Hmn−�∗mn

}
+
{
N
�T�
kl

M
�T�
kl

}}
(5.29)

while the stress distribution in the skin across its thickness outside ! is equal to

Cs
ijkl�̄

H
kl+ �x3−h0��Hkl	.

(b) Illustrative examples

To illustrate the analytical method presented in this section, the thermal stresses in a

bonded patched skin shown in Figure 5.6 are obtained and compared with the results

from the FE analyses. The bonded plate is subjected to uniform temperature change of

−75 C from a stress-free temperature. The material properties of the skin and the patch

are given below:

x

y

A

B45°

63.5 mm

114.3 mm
177.8 mm

127 mm

Fig. 5.6. Geometry of a bonded patched skin considered for thermal stresses.
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Skin plate: isotropic

Es = 72�4GPa
 �s = 0�33
 �s = 22�5E-06per C.

Patch: orthotropic

Ex = 18�7GPa
 Ep = Ey = 193�1GPa
 �xy = 0�21


� = 5�5GPa
 �x = 21�4E−06per C
 �p = �y = 4�3E−06per C

The thickness of the skin is kept constant at 1.6mm while the thickness of the patch

varies from four to eight plies with the thickness per ply equal to 0.132mm. Since

the thermal stresses in the patch are compressive and they will be negated under a

far-field-tensile stress, we therefore concentrate our effort to the skin’s thermal stresses.

The thermal stresses in the skin at the patch’s center in the x2-component are of special

interest since they are needed for fracture analysis using Wang and Rose’s crack-bridging

model. These stresses are plotted in Figure 5.7 as a function of the patch stiffness ratio
Eptp
Ests

, along with FE results. Stresses near the top and the bottom surfaces of the skin are

presented in that figure to show the effect of the out-of-plane bending. FE results are

obtained by using MSC/NASTRAN code (2001). In the FE analysis, the skin is modeled

as three layers of solid elements while each ply of the patch is modeled individually as

one layer of solid elements. All elements are eight-node (linear) solid elements. From

Figure 5.7, it is found that the analytical results are in very good agreement with FE

predictions.

So far only one particular octagonal shape has been considered. Examples of patches of

rectangular shapes therefore will be presented next. In these examples, material properties

of the skin and the patch will be the same as those given in the previous example. The

thickness of the skin is again kept constant at 1.6mm. The thickness and width of the

patch are also kept constant at 0.66 and 25.4mm, respectively. The uniform temperature

change is −75 C. As before, the thermal stresses in the skin at the patch’s center in the

x2-component are of interest and they are presented in Figure 5.8 for rectangular patches

with different patch length to patch width ratios �Lp/Wp�. Corresponding 3-D FE results

are also shown there for comparison. From Figure 5.8, the same good agreement is

found between analytical predictions and FE results.

5.3 Geometrically Nonlinear Analysis of Stage I

An infinite isotropic skin plate with a finite patch made of a different material will

develop thermal stresses during temperature excursions. When a plate is bonded unsym-

metrically with a patch on one of its two sides, the thermal load will induce both in-plane

deformations and the out-of-plane deflection in the plate. Moreover, the effect of large

deflection is found to be significant on the thermally induced stresses. These nonlinear

thermal stresses had been addressed by Duong and Yu (2003c) in a simplified approach

for a composite repair under a uniform low operating temperature and/or curing. Even

though their approach lacks the scientific rigor, it appears technically sound and provides

quite good estimates of thermal stresses in all specific example problems considered by

them. Their approach therefore will be reviewed in Section 5.3.1.
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Fig. 5.7. x2-component thermal stresses in the skin plate at the patch’s center for different patch

stiffness ratios Eptp/Ests: (a) near the top surface; and (b) near the bottom surface.

A patched plate subjected to a purely tensile load will also experience an out-of-plane

bending, even when the patch is made of the same material as the skin, mainly due

to the load path eccentricity. However, the mechanically induced deflection opposes

the thermally induced deflection mentioned earlier. As before, it is also necessarily to

determine the mechanically induced stresses within a large deflection theory. However,

analytical solutions for this mechanical problem have been limited to the analysis of
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Fig. 5.8. x2-component thermal stresses in the skin plate at the patch’s center for different patch

aspect ratios Lp/Wp: (a) near the top surface; and (b) near the bottom surface.

a patch that spans across the entire width of the plate. This analytical solution will be

extended in Section 5.3.2 to include the “initial stress” effect (Duong, 2004) for latter

use in the analysis of a repair under a combined thermo-mechanical loading.

An application of a tensile load will alleviate greatly the initial bending associated

with curing of the adhesive and low operating temperature. However, in contrast to
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a geometrically linear problem, the total stresses in a one-sided bonded repair under

combined thermo-mechanical loading would not be simply a sum of the nonlinear

thermal stresses associated with curing or low operating temperature and the nonlinear

mechanical stresses associated with the mechanical loading as if these stresses are

obtained separately. An approximated solution method proposed by Duong (2004) is

therefore introduced in Section 5.3.3 to address the effect of the combined thermo-

mechanical loading in a one-sided bonded repair. This solution method is based on an

engineering approach, which combines methods developed in Sections 5.3.1 and 5.3.2,

respectively, for a polygonal patch and for a patch spanning across the entire width of

the plate in a one-sided repair under purely thermal loads and purely mechanical loads.

5.3.1 Thermal stresses in polygonal patch

(a) Preliminary analysis

Consider a patch that spans across the entire width of the skin plate, so that the stresses

in the patch and the skin within the reinforced region are uniform along the skin’s width

as shown in Figure 5.9 and therefore they can be solved by a one-dimensional analysis.

The patch and skin are assumed to be fused together with no relative sliding at the

(a) (b) (c)

HN∞22

HN∞22

HN∞22

∞2⋅
2⋅

HN∞22

HH
22 NN ∞22 = 

HH
22

I
22 NNN ∞22 =  = 

eNL

I
22N

I
22Mdue to offset = −N ⋅eNL

ΔT ≠ 0

HN∞22

x1

x2

Fig. 5.9. Plate reinforced with a patch spanning across the entire width’s plate: (a) plan view;

(b) side view; (c) free body diagram used to explain the effects of shifting the reference plane’s

position. Note that for the case of purely thermal loading, NH
�22 = 0.
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interface. The whole patched skin is subjected to a uniform temperature excursion. This

problem will be solved exactly within a large deflection theory. In the absence of the

transverse load, the equilibrium equations based on the von Karman plate theory are

given by (Timoshenko and Woinowsky-Krieger, 1959)

N22
2 = 0 (5.30)

M22
22+N22w
22 = 0 (5.31)

where N22 and M22 are the stress and moment resultants, respectively, and the comma

indicates partial differentiation. It then follows from Equation (5.30) upon integration that

N22 = constant = C (5.32)

On the other hand, the kinematics and constitutive relations for a laminated plate are

given by (Sun and Chin, 1988)

22 = 22+NL22 +�22 �x3−h0�

̄22 = v
2 (5.33)

NL22 = 1

2
w2

2

N22 = A22

(
v
2+

1

2
w2

2−�22�T

)
−B22w
22

M22 = B22

(
v
2+

1

2
w2

2−�22�T

)
−D22w
22

(5.34)

where A22
 B22, and D22 are extensional, coupling, and bending stiffnesses, respectively

(in Voight notation), defined previously by Equation (5.18); v and w are the longitudinal

and transverse displacements, respectively; �22 is the thermal expansion coefficient;

NL22 is the nonlinear strain; h0 is the x3-coordinate of the reference plane; and �22 is the
curvature. As before, the reference plane is chosen to be at the mid-plane of the skin

plate, i.e., h0 = ts
2
, for regions both inside and outside the overlap.

Applying Equations (5.31), (5.32), and (5.34) to the region outside the overlap (see

Figure 5.9) and enforcing the boundary condition at infinity, i.e., NH
�22 = 0, yield

NH
22 = 0

MH
22
22 = 0

(5.35)

NH
22 = As

22

(
vH
2+

1

2
wH2

2 −�s�T

)
= 0

MH
22 =−Ds

22w
H

22

(5.36)
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where the superscript H denotes the homogeneous skin region outside the overlap,

s indicates the skin, and Bs
22 of the skin plate outside the overlap is equal to zero

because the skin is a single layer of homogeneous material and thus symmetric with

respect to the reference plane, resulting in no stretching-bending coupling stiffness.

Substituting the second equation of (5.36) forMH
22 into the second equation of (5.35) gives

wH

2222 = 0 (5.37)

By integrating Equation (5.37) and enforcing the simply supported conditions at the

ends, i.e., MH
22�l�� = wH�l�� = VH

22�l�� = 0, where VH
22 is the transverse shear force

defined as VH
22 = dMH

22

dx2
, the transverse displacement and curvature outside the overlap are

then found to be

wH �x2�= C1 �l�−x2�

wH

22 �x2�= 0

(5.38)

where C1 is an unknown constant which must be determined from the displacement,

slope, and traction continuity at end of the overlap. For latter use, the first equation of

(5.36) is also rewritten as (
vH
2+

1

2
w
2

H2

)
= �s�T (5.39)

Similarly, the region inside the overlap also has N I
22 = constant = 0 from consideration

of the force equilibrium. With that, applying Equations (5.31), (5.32), and (5.34) to the

region inside the overlap yields

N I
22 = 0

M I
22
22 = 0

(5.40)

N I
22 = AI

22

(
vI
2+

1

2
wI2

2−�I

22�T

)
−BI

22w
I

22 = 0

M I
22 = BI

22

(
vI
2+

1

2
wI2

2−�I

22�T

)
−DI

22w
I

22

(5.41)

where the superscript I indicates the inhomogeneous region inside the overlap. Equa-

tion (5.41) can also be rewritten as(
vI
2+

1

2
wI2

2

)
= BI

22

AI
22

wI

22+�I

22�T

M I
22 =
(
BI 2
22

AI
22

−DI
22

)
wI

22

(5.42)
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Substituting the second equation of (5.42) into the second equation of (5.40) gives:

wI

2222 = 0 (5.43)

Upon integrating Equation (5.43) and enforcing the symmetry conditions at the center

of the reinforced skin, one finally obtains

wI �x2�= C2−
�

2
x22 (5.44)

where C2 and � are new constants yet to be determined. From this

wI

2 �x2�=−� ·x2
wI

22 �x2�=−�= constant

(5.45)

Thus, the constant � is the curvature of the patched skin inside the overlap, i.e., �I22 = �.
Substituting Equation (5.45) into the first equation of (5.42) yields

vI
2 �x2�=−B
I
22

AI
22

�+�I
22�T − �2

2
x22 (5.46)

The fist two conditions for determining the three constants C1
 C2, and � in (5.38) and

(5.44) are the displacement and slope continuity conditions at the end of the overlap, i.e.,

wH ���−��= wI ���

wH

2 ���−��= wI


2 ���
(5.47)

The third condition is derived from the continuity of the normal stress resultant of the

skin across the overlap interface, i.e.,

N
I�s�
22 ���= As

22 ·
(
vI
2 ���+

1

2
wI2

2 ���−�s�T

)
= NH

22 ���−��= 0 (5.48)

where N
I�s�
22 ��� is the stress resultant in the skin of the patch–skin combination at the end

of the overlap. N
I�s�
22 in the above equation has been derived based on the condition that

the strains of the skin and of the patch–skin combination are the same in the overlap

and by using the first equation of (5.34) with B22 = 0. It is worthy to note that N
I�s�
22 ���

is also equal to N I
22��� since the patch is stress-free at the end of the overlap. It then

follows from Equation (5.48) that

vI
2 ���= �s�T − �2

2
·�2 (5.49)

where the result wI

2���=−�� from the first equation of (5.45) has been utilized in the

derivation. However, vI
2��� can also be obtained by evaluating equation of (5.46) at

x2 = � as

vI
2 ���=−B
I
22

AI
22

�+�I
22�T − �2

2
·�2 (5.50)
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Thus, the constant � can be determined from Equations (5.49) and (5.50) as

�= AI
22

BI
22

(
�s−�I

22

)
�T (5.51)

Once � is found, then C1 and C2 can be determined from the conditions given by

Equation (5.47). For future discussion, the average nonlinear strain inside the overlap,

i.e., −�≤ x2 ≤ � over the patch length, is also calculated to be

̄NL22 =

∫ �

−�
1

2
wI2

2 dx2

2 ·� =

∫ �

−�
1

2
��x2�

2
dx2

2 ·� = 1

6
�2 �2 (5.52)

since wI

2 =−�x2 by virtue of Equation (5.45).

In summary, under purely thermal loading, this preliminary analysis predicts that the

curvature of the patched skin is constant inside the overlap as indicated by Equation (5.45)

and equals zero outside the overlap via second equation of (5.38). Furthermore, since

the curvature of the plate is zero outside the overlap, the term N22w
22 associated with

the large transverse deflection in the moment equilibrium Equation (5.31) also equals

zero in that region.

For future discussion, it is also of interest to show an approximate geometrically nonlin-

ear solution for the above thermal stress problem of a patched skin in the presence of an

additionally small tensile load. When the patched skin is subjected additionally to the

remote tensile stress, i.e., NH
�22 > 0, the curvatures of the patched skin inside and outside

the overlap are not necessarily constant and zero, respectively. However, if NH
�22 is suffi-

ciently small, i.e., NH
�22 � 1, the previous results for the curvature and for the nonlinear

term N22w
22 of the case of purely thermal loading may still hold approximately for this

latter case. In particular, the curvature is still approximately constant and zero inside and

outside the overlap while the nonlinear term N22w
22 can be assumed to be zero outside

the overlap. Furthermore, the average nonlinear strain inside the overlap over the patch

length is represented by the same equation as (5.52). In that case, the average moment

inside the overlap over the patch length is derived from Equation (5.31) as follows:

M I
22
22−NH

�22�= 0

M I
22 =

NH
�22� ·x22

2
(5.53)

M
I

22 =
∫ �
−� M

I
22

2 ·� = 1

6
��2NH

�22

since N I
22 = NH

22 = NH
�22, and w

I

22�x2�≈−� via the second equation of (5.45).

In contrast, a geometrically linear analysis of the latter thermo-mechanical problem

will significantly over-predict the bending stresses inside the overlap. This is because

the geometrically linear analysis ignores the nonlinear term N22w
22 in the moment
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equilibrium Equation (5.31) and the nonlinear strain term NLij in the kinematics relation

(5.33). However, if in the geometrically linear analysis the reference plane of the overlap

is purportedly shifted from x3 = h0 = ts
2
to x3 = h0− eNL = ts

2
− eNL, where eNL = 1

6
��2

and � is the sought curvature, then the effect of the geometrically nonlinearity will

be accounted for approximately in average sense as explained later in the paragraph

below. In that case, the kinematics relation for regions inside and outside the overlap

are given by

22 = v
2+�22 �x3−h0+ eNL� �x2� ≤ �

22 = v
2+�22 �x3−h0� �x2�> �
(5.54)

It is worthy to note that in a geometrically linear analysis, both inside and outside regions

of the overlap have the kinematics relations prescribed by the second equation of (5.54).

From Equation (5.54), it is clear that there is no explicitly nonlinear strain term NLij
in the kinematics relation (5.54) as that in (5.33). However, since the first equation of

(5.54) contains the extra term �22eNL that is equal to �2�2

6
(when compared to the linear

kinematics relation) and since the average over the patch length of the nonlinear strain

NLij is also equal to �2�2

6
as given by Equation (5.52), the effect of the shift of the reference

plane’s position inside the overlap is to raise the linear strains there by an amount equal

to the average nonlinear strain predicted by the corresponding nonlinear analysis. In

addition, from Figure 5.9 (c), this positional shift of the reference plane will also induce

a constant moment of NH
�22eNL = 1

6
��2NH

�22 that in turn equals M
I

22, the average moment

over the patch length from the nonlinear analysis, since M
I

22 = 1

6
��2NH

�22 by the third

equation of (5.53). However, both the present geometrically linear analysis with the

mentioned shift of the reference plane’s position and the approximated geometrically

nonlinear analysis (for the thermo-mechanical loading case with a small tensile load

NH
�22) described earlier before the preceding paragraph assume the nonlinear term N22w
22

to be equal to 0 for the region outside the overlap. Thus, the modified geometrically

linear analysis in average sense seems to be equivalent to the approximate nonlinear

analysis. In other words, it appears that any geometrically nonlinear thermo-mechanical

problem can be solved approximately by the geometrically linear analysis but with the

appropriate shift of the reference plane’s position inside the overlap, providing that

the stress resultant remains small at every point in the patched skin. Even though this

“modified geometrically linear analysis” approach to the nonlinear problem may lack the

scientific rigor, however, it appears technically sound from the engineering viewpoint.

This simplified approach was used by Duong and Yu (2003c) in their analysis of thermal

stresses of a repaired plate with a polygonal patch, and it will be presented in the next

part of this section.

(b) Formulation for a polygonal patch

Consider an infinite isotropic skin plate bonded rigidly with a polygon-shaped patch !.

The patch is either isotropic or orthotropic with its material principal axes parallel to

the global coordinate axes. Let us also assume that the patch when it is orthotropic will

have a larger mismatch in the thermal expansion coefficient with the skin along the
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x2-direction. The patched skin assumes to be subjected to a uniform temperature change

�T as in Figure 5.4 but in the absence of the remote stresses. For simplicity, all shear

components are also assumed to be zero. Since the patch is rigidly bonded to a skin,

the patched region of the skin is treated as an inhomogeneity. An approximate solution

based on the engineering approach similar to that outlined in part (a) will be presented

here. However, the approach mentioned there will be extended to the 2-D analysis in

this part with details shown below, and its results will be compared later with the FE

solutions for a wide range of patch’s configurations in part (d).

In contrast to the results of patching across the entire width of the skin, the stress

resultants inside the skin reinforced with a polygonal patch due to a uniform temperature

change will not necessarily be equal to zero even without remote applied stresses.

It should be remembered that except at infinity only the average stress resultant across

the skin width is required to equal zero, and therefore the stress resultant may not

necessarily equal zero at every point in the patched skin. However, if these stress

resultants are assumed to be small, then the thermal stresses in the latter problem can be

solved approximately by a geometrically linear analysis with the reference plane of the

patched region being shifted purportedly from x3 = h0 = ts
2
to x3 = h0− eNL = ts

2
− eNL

as mentioned in part (a) of this section. Thus, the considered patched skin is divided into

two regions; each will be modeled using different kinematics and constitutive relations.

The region outside the patch is a homogeneous infinite isotropic plate. On the other

hand, the inhomogeneous region is a finite asymmetric laminated plate that is composed

of two layers corresponding to the skin and the patch. The kinematics relations used to

describe the inhomogeneity and the homogeneous region are summarized below, which

are the 2-D generalization of Equation (5.54).

Iij =
{
̄Iij+ �x3−h0− eNL��Iij inside !

̄Iij+ �x3−h0��Iij outside !

̄Iij =
1

2

(
uIi
j+uIj
i

) (5.55)

eNL =
1

6
�0�

2

�Iij =− �2wI

�xi�xj

(5.56)

where �0 is a representative curvature in the x2 direction inside region!
 � is the longest
half length of the polygonal patch measured from its center, Iij (or � I

ij as discussed

later) is the strain (or stress) field of the inhomogeneity problem that describes strain

(or stress) of both interior and exterior points of the inhomogeneous region !, and the

rest are previously defined. The above conjecture will then be tested for its validity for

a wide range of patch’s configurations. As shown later in part (d), the above conjecture

will yield sufficiently accurate results for stresses in the skin near the center of the patch

and thus at the prospective crack location in the bonded repair when these results are

compared with FE solutions.
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Once the kinematics relations are established, the constitutive relations can be derived

using the classical plate theory (Jones, 1975; Duong and Yu, 2003b) as

N I
ij =
{
AI
ijkl̄

I
kl+BI

ijkl�
I
kl−N�T�

ij inside !

As
ijkl̄

I
kl outside !

M I
ij =
{
BI
ijkl̄

I
kl+DI

ijkl�
I
kl−M�T�

ij inside !

Ds
ijkl�

I
kl outside !

(5.57)

where Aijkl
 Bijkl
 Dijkl
 N
�T�
ij 
 M

�T�
ij , etc are defined previously by Equations (5.19) and

(5.21) in Section 5.2.2. Equation (5.57) seems to be exactly the same as Equation (5.17)

of Section 5.2.2 for a geometrically linear analysis. However, since the x3-position of

the reference plane of the inhomogeneity has been shifted down to �h0 − eNL� in the

present formulation, AI
ijkl
 B

I
ijkl
 A

I
ijkl
 M

�T�
ij , etc must be evaluated with respect to this

new position of the reference plane.

(c) Solution method

In part (b), a problem of an infinite isotropic plate with a polygon-shaped patch under

uniform cooling was formulated as an inhomogeneity problem with the kinematics

and constitutive relations prescribed by Equations (5.55) and (5.57), respectively. This

inhomogeneity problem then will be solved by the equivalent inclusion method. When

eNL in Equation (5.56) is prescribed as a known constant, the solution of the present

inhomogeneity problem can be obtained in an exact manner as in Section 5.2.2 since all

governing equations will be the same, providing that AI
ijkl
 B

I
ijkl
 A

I
ijkl
 M

�T�
ij , etc must

be evaluated with respect to the reference plane located at x3 = h0−eNL. Like before in
Section 5.2.2, one first solves for ∗ij and �

∗
ij via Equation (5.27), and then calculates the

strain, curvature, stress and moment resultants from Equations (5.24), (5.22), and (5.23),

respectively. Similar to Equations (5.28) and (5.29), the stresses in the skin plate and in

the patch inside ! are finally given by:

� s
ij = Cs

ijkl

[
̄Ikl+ �x3−h0+ eNL� �Ikl

]
�

p

ij = Cp

ijkl

[
̄Ikl−�T� �p�kl + �x3−h0+ eNL� �Ikl

] (5.58)

{
̄Iij
�Iij

}
=
[
AI
ijkl BI

ijkl

BI
ijkl DI

ijkl

]−1{[
As
klmn 0

0 Ds
klmn

]{
̄Hmn−∗mn
�Hmn−�∗mn

}
+
{
N
�T�
kl

M
�T�
kl

}}
(5.59)

So far eNL has been assumed to be known a priori. However, in reality, eNL is also part

of the sought solutions since it depends on the x2-component of the curvature inside

! as defined in Equation (5.56). Since the curvature field inside ! in general is not

uniform, the curvature at any point inside ! can be used as �0 in the evaluation of eNL.
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However, it is found that the following definition of �0 will yield sufficiently accurate

solutions for a skin plate repaired with patches of different shapes’ aspect ratios:

�0 = �I22 �0
 ȳ�

ȳ =minimum of -�
W0
(5.60)

In the above equation, the notation �I22�0
 ȳ� means that �I22 is evaluated at a point �0
 ȳ�
on the x2-axis, where ȳ is either the half-length � or the half-width W of the patch,

whichever is smaller.

With the solution procedure for a fixed value of eNL described and �0 defined, the

solution of the geometrically nonlinear problem can be obtained by the following simple

iterative procedure. First, �0 and thus eNL are assumed to be zero, and the elastic solutions

for stress, strain, and curvature field are obtained in a usual manner using the prescribed

value of eNL. Second, the newly obtained curvature field �I22 is evaluated at point �0
 ȳ�
and compared with the value of �0 assumed at the beginning of the iterative cycle. If their

values are the same, then the just obtained solution has converged to the true solution of

the problem. Otherwise, another value of �0, thus eNL, will be assumed and the above

steps are repeated until convergence. A new trial value for �0 will be calculated using

the following recursive formula (Carnahan et al., 1969):

�
�i+1�
0 = �1−kc���i−1�

0 +kc�
I�i�
22 �0
 ȳ� (5.61)

where �
�i+1�
0 and �

�i−1�
0 are values of �0 in the next and previous iterative cycles,

respectively; �
I�i�
ij is the elastic solution for the curvature field obtained from current

iterative cycle that is based on eNL = 1

6
�
�i−1�
0 �2; and kc is a scalar factor which takes

values between 0 and 1. It should be noted that a normal direct substitution method

corresponds to a case of kc = 1.

(d) Illustrative examples

To illustrate the method presented in this section for nonlinear thermal stresses in a

skin repaired with polygonal patches, particular cases corresponding to typical repair

configurations considered in the paper by Duong and Yu (2003c) are analyzed in this part.

All computations in this section unless noted otherwise are carried out for a temperature

excursion of −75 C, corresponding to a typical temperature change experienced by the

aircraft during high altitude cruising. The first case is an infinite skin repaired with a

square patch �Lp/W = 1�. A patch is bonded rigidly to a plate. The material properties

and thickness of the skin and the patch are given below:

Skin: Aluminum

Es = 72�4GPa
 �s = 0�33
 �s = 22�5E-06per C
 ts = 1�6mm.

Patch: Boron/Epoxy

Ex = 18�7GPa
 Ep = Ey = 193�6GPa
 �yx = 0�21


�= 5�5GPa
 �x = 21�4E-06per C
 �p = �y = 4�3E-06per C
 tp = 0�66mm.
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The patch stiffness ratio Eptp/Ests (S) is 1.1. The sensitivity of the length of the patch

relative to the skin thickness is studied. Four patch lengths
(
2 ·Lp

)
of 10.16, 20.32, 30.48,

and 40.64 cm are considered in the analysis. Since the thermal stresses in the patch are

compressive and they will be negated under far-field tensile as found in Chapter 4 and

Section 5.2.2, only the skin’s thermal stresses will be reported here.

Thermal stresses in the skin at a patch’s center in the x2-component are of special interest,

as they are needed for fracture analysis using Wang–Rose’s crack-bridging model. Since

the stress distributions in the plate and patch are linear through their thickness, it will be

more meaningful to report these stresses in terms of the mean and bending values. These

values of thermal stresses are plotted in Figure 5.10 as the functions of the normalized
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Fig. 5.10. Thermal stresses in the middle of a skin reinforced with a square patch for different

normalized half patch lengths: (a) the mean stresses; and (b) the bending stresses.
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half patch length Lp/ts, where ts is the skin thickness. The mean and bending stresses

are defined as half of the sum and difference of stresses near the top and bottom surfaces

of the skin. All analytical solutions are obtained using kc in the recursive formula given

in Equation (5.61) equal to 0.1, and they converge within about 30 iterations. To assess

the accuracy of the analytical method, results from the FE analysis are also obtained

and compared with the analytical predictions in Figure 5.10. FE analyses are carried out

using ABAQUS (1997) with the skin and each ply of the patch modeled separately. The

skin is modeled as three layers of 20-node solid elements while each ply of the patch by

one layer of solid elements. To avoid the adverse effect of the small thickness-to-length

ratio on the solution, stiffness matrices of all solid elements are evaluated using reduced

integration. In the FE model, the skin was restrained from the out-of-plane deflection

along its periphery. Similar results but for different patch’s aspect ratios are presented in

Figure 5.11 for Lp/Wp = 2 and in Figure 5.12 for Lp/Wp = 1/2. In contrast to the results

from the plane-stress and linear bending analyses, from Figures 5.10–5.12, thermal

stresses in the skin are affected by the patch size. For a same patch’s aspect ratio, the

mean components of the thermal stresses in the plate increase with patch sizes while the

bending components show a reverse trend. These bending stresses will eventually vanish

for large values of Lp/ts as expected. In general, analytical predictions are in quite good

agreement with the FE results (within 12%) for all aspect ratios Lp/Wp considered.

To show the effect of a patch’s thickness on the thermal stresses, analyses of a few

selective patch configurations above but with a thickness of 1.057mm are performed and

their results are summarized in Table 5.1. For reference, corresponding results previously

presented in Figures 5.10–5.12 are repeated in the table. It follows from Table 5.1 that a

thicker patch will induce higher thermal stresses in the skin as expected and a same good

agreement is observed between the analytical and the FE results. Additional results, but

not shown here, indicate that repaired skins with a same patch stiffness ratio Eptp/Ests,
same aspect ratio Lp/Wp, and same parameter Lp/ts will have the same thermal stresses.

Thus, for a given temperature change, the nonlinear thermal stresses can be characterized

in terms of three non-dimensional parameters Eptp/Ests
 Lp/Wp, and Lp/ts.

So far only patches of rectangular or square shapes have been considered. Another

common shape of the patch is therefore selected for presentation. An octagonal patch

sometimes is preferred to a rectangular patch because of its superior performance in

preventing peeling near the corner of the patch. An analysis of an octagonal patch

therefore will be demonstrated next. The geometry of the octagonal patch is the same as

that shown in Figure 5.6. Material properties and thickness of the patch and the skin are

identical to those given earlier in the beginning of this section. Analytical predictions as

well as FE results for the thermal stresses in the skin are given below:

Analytical predictions, �m = 32�1MPa
 �b = 36�4MPa.

FE results, �m = 35�1MPa
 �b = 34�7MPa.

Again the analytical method predicts well the nonlinear thermal stresses.

As a final example, an infinite skin rigidly bonded with a square Boron/Epoxy patch

�Lp/Wp = 1
 S = 1�1
 Lp/ts = 128� under a wide range of temperature excursions is
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Fig. 5.11. Thermal stresses in the middle of a skin reinforced with a rectangular patch �Lp/Wp = 2�
for different normalized half patch lengths: (a) the mean stresses; and (b) the bending stresses.

considered. The mean and bending components of the thermal stresses in a middle of the

skin are plotted in Figures 5.13(a) and 5.13(b), respectively, for different cooling tem-

perature ranges ��T �. For a future discussion, the normalized bending stresses ��b/�m�
are also plotted versus ��T � in Figure 5.14. From Figure 5.13, it seems that analytical

predictions for the mean stresses are in excellent agreement with FE results for all

��T � while the analytical predictions for the bending stresses show a larger discrepancy

with FE solutions. The deviation between analytical and FE results for the bending
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Fig. 5.12. Thermal stresses in the middle of a skin reinforced with a rectangular patch

�Lp/Wp = 1/2� for different normalized half patch lengths: (a) the mean stresses; and (b) the

bending stresses.

stresses may exceed 20% for ��T � > 100 C and attains a largest value of 30% when

��T � = 138 C. However, since the contribution of the bending component to the total

stress is significantly smaller for ��T �> 100 C as illustrated in Figure 5.14 via �b/�m,

this discrepancy may not be significant as it appears in Figure 5.13. For example, the

analytical method predicts that the bending stress is 21% of the mean stresses when

��T � = 138 C while the FE method yields a ratio of 28%. Thus, the agreement between

two methods is considered to be satisfactory, in view of the approximate nature of the

analytical model.
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Table 5.1. Comparison of thermal stresses in the middle of a patched plate with different patch

thicknesses.

Lp/ts Lp/Wp tp/ts Analytical method FE method

�0
m (MPa) �0

b (MPa) �0
m (MPa) �0

b (MPa)

128 1 0�416 45�6 17�6 45�1 15�7
128 1 0�666 49�8 20�1 49�3 18�5
128 2 0�416 44�4 18�4 47�3 17�8
128 2 0�666 49�9 20�2 53�0 20�0
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Fig. 5.13. Thermal stresses in the middle of a skin reinforced with a square patch for different

temperature excursions: (a) the mean stresses; and (b) the bending stresses.
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Fig. 5.14. Normalized bending stresses in the middle of a skin reinforced with a square patch for

different temperature excursions.

5.3.2 Patch spanning across the entire plate’s width under purely mechanical
loading

The derivation presented here will be based on the approach given in Chapter 2 as

employed by Rose (1988) and Hart-Smith (1999; Hart-Smith and Wilkins, 2000), which

is different from the one considered earlier in part (a) of Section 5.3.1. The patched

skin is initially flat before the external load per unit width P is applied (Figure 5.15).

However, to make this solution generic for latter use in Section 5.3.3, the skin assumes

to be pre-stressed with an initial stress of �
�init�
0 while the patch remains stress free.

It should be emphasized that the initial load per unit width P0 associated with �
�init�
0 ,

i.e., �
�init�
0 ts, is different from the external load P. This problem may appear to be

hypothetical; however, it will be shown to be relevant to the real physical problem of a

bonded repair at the end of this section.

The development begins by writing the moment equilibrium equation for the region

outside the overlap as

MH
22 =−Ds

22

d2wH

dy2
=− �P+P0�w

H for 0 ≤ y ≤ l�−� (5.62)

or

d2wH

dy2
− P+P0

Ds
22

wH = 0 (5.63)

The solution of Equation (5.63) is

wH =WH
1 cosh ��Hy�+WH

2 sinh ��Hy� (5.64)
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Fig. 5.15. Geometry for a one-dimensional analysis of a skin plate reinforced with a patch

spanning across entire plate width under purely mechanical loading.

where

�H =
√
P+P0

Ds
22

(5.65)

The coefficient WH
1 must set equal to zero since there is no displacement at the support

point y = 0. If the length of the skin plate is much longer than the overlap length, then

Equation (5.64) together with WH
1 = 0 will yield the following approximations for the

displacement and slope at y = l�−�:

wH �y = l�−��≈ WH
2

2
e�H�l�−��

dwH

dy
�y = l�−��≈ WH

2

2'H
e�H�l�−��

(5.66)

Similarly, the moment equilibrium equation for the region inside the overlap can be

expressed as

M I
22 =−DI

22

d2wI

ds2
=−P (wI− ê)−P0w

I for 0 ≤ s ≤ � (5.67)

where ê is the eccentricity between the centroid of the skin and that of the skin–patch

combination; DI
22 is the bending stiffness with respect to the centroid of the skin–patch

combination.1 The solution of this is

wI =W I
1 cosh ��Is�+W I

2 sinh ��Is�−
Pê

P+P0

(5.68)

1 It is defined here differently from those given earlier in the previous sections. In the previous sections, DI
ijkl

was calculated with respect to the mid-plane of the skin.
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where

�I =
√
P+P0

DI
22

(5.69)

Enforcing the symmetry condition about the location s = 0 yields W I
2 = 0, thus

wI =W I
1 cosh ��Is�−

Pê

P+P0

(5.70)

Completing the bending solution requires that the deflections and slopes match at the

junction, y = �l�−�� 
 s =−�. These conditions determine the unknown constants W I
1

and WH
2 as

W I
1 =

Pê

P+P0

⎡
⎢⎢⎣ 1

cosh ��I��+
�I
�H

sinh ��I��

⎤
⎥⎥⎦

WH
2 =−2

�I
�H
W I

1 sinh ��I�� · e−�H�l�−��

(5.71)

recalling that wH �y = l�−�� and dwH

dy
�y = l�−�� are given by Equation (5.66). Sub-

stituting Equation (5.70) for wI and the first equation of (5.71) for W I
1 into (5.67) and

evaluating the resulting expression of M I
22 at s = 0 yield the bending moment at the

middle of the plate as

M I
22 �0�=− Pê

cosh ��I��+
�I
�H

sinh ��I��

(5.72)

Once the bending moment is calculated, the bending stresses in the patch and skin at

their middle can be determined by first obtaining the curvature via Equation (5.67), then

the linear strain distribution across the thickness, and finally applying the constitutive

relation, i.e.,

�I22 �0�=−d2wI

ds2
= M I

22 �0�

DI
22

I22 �0
 x3�=
(
x3−

,

h0

)
�I22 �0�

(5.73)
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�̂ s
22 �0�=− P · ê · ts ·E′

s

2 ·
[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

�̄ s
22 �0�=

P · ê2 ·E′
s[

cosh ��I��+
�I
�H

sinh ��I��

]
DI

22

�̂
p

22 �0�=− P · ê · tp ·E′
p

2 ·
[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

�̄
p

22 �0�=
P · ê ·

(
ê− tp+ts

2

)
·E′

p[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

(5.74)

where h̆0 is the x3-coordinate of the neutral plane of the patch–plate combination,

i.e., h̆0 = ts
2
+ ê( E′

s = Es
1−�2s ( E

′
p = E

p
22

1−�p12·�p21
( �̂ s

22
 �̄
s
22
 �̂

p

22, and �̄
p

22 are the bending and

the mean components of the stresses in the skin and patch, respectively; the bending

and mean stresses in a skin or patch are defined as half of the difference and sum of

stresses near the top and the bottom surfaces of the skin or patch. It is interesting to

note that the bending moment at the middle of the overlap also contribute to the mean

stresses of the patch and skin since the centroids of the individual skin and patch are

offset from the centroid of the patch–skin combination.

So far only the bending solution of the patched plate is considered. For the complete

solution, one must add the axial solution due to the axial load to the previous bending

solution. The axial solution for this problem due to load P without the prescribed “initial

stress” is thus sought since the initial stress has no effect on the axial behavior and that

initial stress can be simply added to the sought solution later. This axial stress solution

is derived from the force equilibrium equation and the strain compatibility condition as

follows. At any cross section, the net force must be equal to P. Thus, at the middle of

the patched skin,

� s
22ts+�p

22tp = P(
E′

sts+E′
ptp
)
I22 = P

(5.75)

where the strain compatibility condition s22 = p22 = I22 and the stress–strain relation of

the skin and patch have been used in the derivation. It is then very easy to show from

Equation (5.75) that the axial stresses in the skin and in the patch are given by

� s
22 =

P

�1+S� ts

�
p

22 =
P ·S

�1+S� tp

(5.76)
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where

S = E′
ptp

E′
sts

(5.77)

The total mean stresses in the skin or patch then can be derived by linear superposition

of the initial stress, bending and axial solutions as

�̄ s
22 �0�= ��init�0 + P

�1+S� ts
+ P · ê2 ·E′

s[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

�̄
p

22 �0�=
P ·S

�1+S� tp
+

P · ê ·E′
p

(
ê− tp+ ts

2

)
[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

(5.78)

It is clear from Equations (5.74) and (5.78) that load P causes the following additional

mean and bending stresses in the skin and the patch near their middle besides the

prescribed initial stress �
�init�
0 :

��̄ s
22 �0�=

P

�1+S� ts
+ P · ê2 ·E′

s[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

��̂ s
22 �0�=− P · ê · ts ·E′

s

2 ·
[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

��̄
p

22 �0�=
P ·S

�1+S� tp
+

P · ê ·
(
ê− ts+ tp

2

)
·E′

p[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

��̂
p

22 �0�=− P · ê · tp ·E′
p

2 ·
[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

(5.79)

On the other hand, the corresponding increases in the mean and the bending stresses of the

skin and the patch due to P based on the geometrically linear analysis2 and plane stress

analysis (without considering the out-of-plane deflection) are given, respectively, by

2 It is easy to show that the only difference between the geometrically linear and nonlinear analyses is that the

bending moment at the middle of the overlap in the former analysis is equal to Pê instead of that given by

Equation (5.72). In fact, the bending moment in the linear analysis is constant inside the overlap.
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��̄22
s−LN �0�= P

�1+S� ts
+ P · ê2 ·E′

s

DI
22

��̂22
s−LN �0�=−P · ê · ts ·E′

s

2 ·DI
22

��̄22
s−PLANE �0�= P

�1+S� ts
��̂22

s−PLANE �0�= 0

��̄
p−LN

22 �0�= P ·S
�1+S� tp

+
P · ê
(
ê− ts+ tp

2

)
·E′

p

DI
22

��̂
p−LN

22 �0�=−P · ê · tp ·E′
p

2 ·DI
22

��̄22
p−PLANE �0�= P ·S

�1+S� tp
��̂22

p−PLANE �0�= 0

(5.80)

From Equations (5.79) and (5.80), and by noting that �I =
√

P0+P
DI
22

, it is clear that for low

load levels of P and P0
 ��̄
s
22 �0� 
 ��̂

s
22 �0� 
 ��̄

p

22 �0�, and ��̂
p

22 �0� are approximately

equal to the geometrically linear solutions ��̄ s−LN
22 �0� 
 ��̂ s−LN

22 �0� 
 ��̄
p−LN

22 �0�, and
��̂

p−LN

22 �0�, respectively, and they approach the plane stress solutions ��̄ s−PLANE
22 �0�,

��̂ s−PLANE
22 �0�, ��̄

p−PLANE

22 �0�, and ��̂
p−PLANE

22 �0� for a combination of long over-

lap and high load P since cosh ��I�� ≈ 1
 sinh ��I�� ≈ 0 for �4c � 1, and

cosh ��4c�� 1
 sinh ��4c�� 1 for �I�� 1. Physically, for a high load P, the skin/patch
combination tries to deflect sufficiently to align its centroid with the line of action of

the applied load. Moreover, since �I =
√

P+P0
DI
22

, the effect of the initial load P0 is to

make this alignment of the centroid to occur earlier at the lower load P for a given

overlapped length. For future development, it is very easy to show from Equations (5.79)

and (5.80) that ��̄ s
22 �0�, ��̂

s
22 �0�, ��̄

p

22 �0�, and ��̂
p

22 �0� can be expressed in terms of

��̄ s−LN
22 �0� 
 ��̂ s−LN

22 �0� 
 ��̄ s−PLANE
22 �0� 
 ��̂ s−PLANE

22 �0� 
 ��̄
p−LN

22 �0� 
 ��̂
p−LN

22 �0� 

��̄

p−PLANE

22 �0�, and ��̂
p−PLANE

22 �0� as

��̄ s
ij �0�= 3b ·3s

m−1 ·��̄ s−LN
ij �0�+ �1−3b� ·3s

m−2 ·��̄ s−PLANE
ij �0�

��̂ s
ij �0�= 3b ·��̂ s−LN

ij �0� (5.81)

��̄
p

ij �0�= 3b ·3p

m−1 ·��̄p−LN

ij �0�+ �1−3b� ·3p

m−2 ·��̄p−PLANE

ij �0�

��̂
p

ij �0�= 3b ·��̂p−LN

ij �0�
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where 3s
m−1
 3

s
m−2
 3

p

m−1
 3
p

m−2, and 3b defined by

3s
m−1 =

��̄ s
22 �0�

��̄ s−LN
22 �0�

=

1

�1+S� ts
+ ê2 ·E′

s[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

1

�1+S� ts
+ ê2 ·E′

s

DI
22

3s
m−2 =

��̄ s
22 �0�

��̄ s−PLANE
22 �0�

=

1

�1+S� ts
+ ê2 ·E′

s[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

1

�1+S� ts

3b =
��̂ s

22 �0�

��̂ s−LN
22 �0�

= ��̂
p

22 �0�

��̂
p−LN

22 �0�
= 1[

cosh ��I��+
�I
�H

sinh ��I��

] (5.82)

3
p

m−1 =
��̄

p

22 �0�

��̄
p−LN

22 �0�
=

S

�1+S� tp
+

ê

(
ê− ts+ tp

2

)
·E′

p[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

S

�1+S� tp
+
ê

(
ê− ts+ tp

2

)
·E′

p

DI
22

3
p

m−2 =
��̄

p

22 �0�

��̄
p−PLANE

22 �0�
=

S

�1+S� tp
+

ê

(
ê− ts+ tp

2

)
·E′

p[
cosh ��I��+

�I
�H

sinh ��I��

]
DI

22

S

�1+S� tp
It remains now to show how the solution of the hypothetical problem posed above can

be applied to the real physical problem of a repair. Consider a problem of a skin plate

reinforced with a patch spanning across the entire width of the skin subjected to the

temperature change of �T and the remote stress ��22 = E′
s

(
�
p

22−�s

)
�T . When one

writes ��22 = E′
s

(
�
p

22−�s

)
�T , it only means that the magnitude of the remote stress

��22 is specified to be equal to the numerical value of E′
s

(
�
p

22−�s

)
�T . The stress and

strain solutions of this problem will be given by

s22 = p22 = �p

22�T

� s
22 = E′

s �
s
22−�s�T�= E′

s

(
�
p

22−�s

)
�T = ��22 (5.83)

�
p

22 = E′
p

(

p

22−�p

22�T
)= E′

p

(
�
p

22�T −�p

22�T
)= 0
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These above solutions for stresses and strains clearly satisfy the equilibrium equation,

i.e., the net force per unit width at any cross section in the skin is equal to ��22ts, the strain
compatibility condition between the plate and the patch inside the overlap, the traction

continuity at the end of the overlap, and the constitutive relations. Since the strains in the

skin and the patch are not only equal to each other but they are also uniformly distributed

across their thickness, the repaired skin must be flat under the prescribed thermo-

mechanical loads. Let us assume now that instead of applying the remote stress ��22 =
E′

s

(
�
p

22−�s

)
�T , one applies the higher remote stress � ′

�22 = E′
s

(
�
p

22−�s

)
�T+���22,

where ���22 > 0. It is then clear that the solution of the latter problem will be the same

as that of the hypothetical problem posed in the beginning of this section if P and �
�init�
0

are defined as P = ���22ts and �
�init�
0 = E′

s

(
�
p

22−�s

)
�T , respectively. This is because

the initial state of the hypothetical problem, i.e., a flat skin with an initial stress in the

skin but a zero stress in the patch, is the same as the deformed state of the present

thermo-mechanical problem at the remote stress level of E′
s

(
�
p

22−�s

)
�T . Thus, as the

load increases from ��22 = E′
s

(
�
p

22−�s

)
�T to E′

s

(
�
p

22−�s

)
�T +���22, the patched

skin in the thermo-mechanical problem will behave the same as that of the hypothetical

problem.

5.3.3 Polygonal patch under combined thermo-mechanical loading

Consider an infinite isotropic skin plate bonded rigidly with a polygon-shaped patch

! as in Section 5.3.1. However, the repaired skin assumes to be subjected to uniform

stresses at infinity in addition to the uniform temperature change �T (see Figure 5.4).

For simplicity, all shear components are assumed to be zero. Again, the patched region

of the skin is treated as an inhomogeneity.

It is rather unwieldy to solve the stated problem using a rigorous geometrically nonlinear

analysis. An approximate solution based on an engineering approach developed by

Duong (2004) therefore will be presented in this section. Since all materials involved

are assumed to be linear elastic and no geometrically nonlinear instability is assumed

to occur, the loading sequence of the thermal and mechanical loads will not affect the

final results. Thus, in the solution procedure, the repaired skin assumes to be subjected

to the thermal load first and subsequently to the mechanical load, instead of applying

these two loads simultaneously. The solution procedure proposed by Duong (2004) for

the thermo-mechanical problem of a polygonal patch involves three steps. Depending

on the magnitudes of the far-field-applied stresses relative to the thermal stresses, as

explained later, the solution of the thermo-mechanical problem may be achieved after

only the first step, first two steps or all three steps of the procedure.

Step 1

In the first step of the solution procedure, the mechanical load is set equal to zero

and the solution of the problem of nonlinear thermal stress is obtained by the method

described in Section 5.3.1. The purpose of this step is to determine the purely thermal

stresses in the repair and the nonlinear parameter eNL (see Section 5.3.1). It should be

emphasized that this step involves an iterative process. It is clear that when there is no

mechanical load involved in the solving problem, the solution of this step will also be

the final solution. On the other hand, when there is no thermal load involved in the
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solving problem, the solution of this step is trivial, i.e., thermal stresses and eNL are

equal to zero.

Step 2

In the second step of the solution procedure, fictitious stresses � f
ij proportional to

the prescribed remote stresses ��ij are applied to the repaired skin in addition to the

prescribed temperature change. Thus, stresses � f
ij are defined by � f

ij = ���ij , where � is

a scalar number. The purpose of the second step is to determine the minimum fictitious

applied stresses � f
ij , denoted by � f∗

ij , that will nullify the initial curvature caused by

thermal loads. For 0 ≤ � f
ij ≤ � f∗

ij , the response of the repaired skin is dominated by the

thermal loading. The stresses � f∗
ij are in general determined by trial and error. Solutions

of the thermo-mechanical problem for different trial values of � f
ij are obtained, and the

bending stresses at the middle of the repaired skin are evaluated for these cases. The

applied stress � f∗
ij is then determined as the smallest of � f

ij among its trial values that

results in zero bending stresses at the middle of the repaired skin for the very first time.

In order to determine � f∗
ij mentioned above, the solution of the thermo-mechanical prob-

lem for a given � f
ij must be obtained. The solution method for this thermo-mechanical

problem is therefore outlined next. Since the response of the repaired skin is dominated

by the thermal loading for 0 ≤ � f
ij ≤ � f∗

ij , the incremental displacement field caused by

� f
ij assumes to be a linear perturbation of the principal displacement field due to purely

thermal loading. However, the reader is reminded that the principal displacement field

due to purely thermal loading is geometrically nonlinear and corresponds to � f
ij = 0. As

shown in Section 5.3.1, since the geometrical nonlinearity enters into the formulation

only through the parameter eNL, the implication of the above assumption for the incre-

mental displacement field caused by � f
ij is that for 0≤ � f

ij ≤ � f∗
ij the thermo-mechanical

can be solved using the solution approach developed earlier in Section 5.2 (for geometri-

cally linear analysis) with the following changes similar to those given in Section 5.3.1:

(i) stiffness tensors AI
ijkl
 B

I
ijkl, and D

I
ijkl, thermal stress and moment resultants N

�T�
ij and

M
�T�
ij of the inhomogeneity are evaluated with respect to the reference plane x3 = h0−eNL

while stiffness tensors As
ijkl
 B

s
ijkl, and D

s
ijkl of the region outside the inhomogeneity or of

the homogeneous problem are evaluated with respect to the reference plane x3 = h0, and
(ii) h0 in Equation (5.28) is replaced by �h0−eNL�, where eNL in (i) and (ii) is a known

constant determined previously from step 1, which represents the effect of geometrical

nonlinearity on the displacement field of the repaired skin under purely thermal loading.

Once stresses � f∗
ij are determined, they will be compared with prescribed remote stresses

��ij . If ��ij ≤ � f∗
ij , the response of the repaired skin under a combined far-field-applied

stresses ��ij and temperature excursion will be still dominated by the thermal loading.

The solution of the thermo-mechanical problem posed originally at the beginning of this

section, therefore, can be obtained by the process given in the preceding paragraph using

the actual remote stresses ��ij since 0≤ ��ij ≤ � f∗
ij in this case, and step 3 below will be

omitted. On the other hand, when ��ij > � f∗
ij , it is necessary to divide the prescribed far-

field-applied stresses ��ij into two portions: � f∗
ij and ���ij−� f∗

ij �. This is because as the
applied stresses ��ij increase from zero to their final values, the curvature of the repaired

skin will first reduce from its initial value associated with the thermal bending to zero
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and then will reverse in sign as the remote stresses ��ij increase beyond the � f∗
ij values.

The response of the repaired skin due to the first portion of ��ij , i.e., � f∗
ij , is dominated by

the thermal loading, and therefore it can be obtained by following the process described

in the preceding paragraph with remote stresses equal to � f∗
ij . In contrast, the response of

the repaired skin due to the second portion ���ij−� f∗
ij � of the applied far-field stresses

is dominated by the mechanical loading, which must be determined by a new solution

method. This new solution method for the mechanically dominated regime is described in

step 3 below. It should be noted that the response of the repaired skin is flat at � f∗
ij so that

there is no bending stresses in the repaired skin at that applied stress level. However, at the

applied stress � f∗
ij , the skin will have highmean tensile stresses while the patch will be vir-

tually stress-free. For the future development, these mean stresses in the skin at the center

of the patch due to the combined thermal load and � f∗
ij will be denoted by �

s−step2

ij �0�
while the patch stresses are approximately zero there. It is obvious that in the absence

of the thermal load, � f∗
ij and �

s−step2

ij �0� are equal to zero so that step 2 can be omitted.

Step 3

In step 3, the response of a pre-stressed flat skin repaired with a polygonal patch and

subjected to the far-field-applied stresses ���ij−� f∗
ij � is determined. As mentioned in the

preceding paragraph, even though the repaired skin becomes flat at � f∗
ij , however, the

repaired skin is not stress-free. The repaired plate has a mean stress of �
s−step2

ij �0� locked
in the skin. Thus, stresses �

s−step2

ij �0� are modeled as the “initial stresses” in this step. It

should be emphasized that the thermal loads will not be considered in this step since their

effect is already accounted for in the formulation indirectly through the initial stresses

�
s−step2

ij �0�. The solution of the problem considered in this step is available for a patch

spanning across the entire width of the skin, and it is given in Section 5.3.2. It should

be noted that P and P0 defined in that section are related to ���ij−� f∗
ij � and �

s−step2

ij �0�
described here by P = ���22−� f∗

22� · ts and P0 = ts ·� s−step2

22 �0�.

Similar to the analysis given in Section 5.3.2, the final mean and bending stresses in the

skin and the patch at their middle of the thermo-mechanical problem with a polygonal

patch will be expressed as

�̄ s
ij �0�= � s−step2

ij �0�+��̄ s
ij �0�

�̂ s
ij �0�= ��̂ s

ij �0�

�̄
p

ij �0�= ��̄p

ij �0�

�̂
p

ij �0�= ��̂p

ij �0�

(5.84)

where ��̄ s
ij
 ��̂

s
ij
 ��̄

p

ij , and ��̂
p

ij are the additional mean and bending stresses in the

skin and the patch, respectively, due to the remote stresses ���ij −� f∗
ij �. It should be

noted that the bending stresses in Equation (5.84) have no corresponding contributions

from step 2 since the response of the repaired skin is flat at � f∗
ij . Also, the mean stress

in the patch at its middle has only arisen from step 3. By generalizing the results given

in Section 5.3.2 for a patch spanning across the skin width to the polygonal patch,
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the geometrically nonlinear solutions ��̄ s
ij�0�
 ��̂

s
ij�0�
 ��̄

p

ij�0�, and ��̂
p

ij�0� of the

polygonal patch problem can be determined approximately as

��̄ s
ij �0�= 3b ·3s

m−1 ·��̄ s−LN
ij �0�+ �1−3b� ·3s

m−2 ·��̄ s−PLANE
ij �0�

��̂ s
ij �0�= 3b ·��̂ s−LN

ij �0�

��̄
p

ij �0�= 3b ·3p

m−1 ·��̄p−LN

ij �0�+ �1−3b� ·3p

m−2 ·��̄p−PLANE

ij �0�

��̂
p

ij �0�= 3b ·��̂p−LN

ij �0�

(5.85)

where ��̄ s−LN
ij �0�, ��̂ s−LN

ij �0�
 ��̄p−LN

ij �0�, and ��̂p−LN

ij �0� are the corresponding solu-

tions obtained from a geometrically linear analysis of a polygonal patch; ��̄ s−PLANE
ij �0�

and ��̄
p−PLANE

ij �0� are the corresponding plane stress solutions (without considering

the out-of-plane bending); 3s
m−1
 3

s
m−2
 3

p

m−1
 3
p

m−2, and 3b are defined in Equa-

tion (5.82) based on a one-dimensional analysis. ��̄ s−LN
ij �0�
 ��̂ s−LN

ij �0�
 ��̄p−LN

ij �0�,
and ��̂

p−LN

ij �0� can be easily obtained by following the process given in Section 5.2.2

while the plane stress solutions ��̄ s−PLANE
ij �0� and ��̄

p−PLANE

ij �0� can be found by

the method outlined in Chapter 4. Since there is no interaction effect between

the initial stresses and the far-field-applied stresses in a geometrically linear analy-

sis or plane stress analysis, ��̄ s−LN
ij �0�
 ��̂ s−LN

ij �0�
 ��̄p−LN

ij �0�, and ��̂p−LN

ij �0� or

��̄ s−PLANE
ij �0� and ��̄p−PLANE

ij �0� are determined from these analyses for a plate repaired

with a polygonal patch subjected to remote stresses ���ij −� f∗
ij � alone without con-

sidering the “initial stresses” �
s−step2

ij �0�. On the other hand, the nonlinear correction

factors 3s
m−1
 3

s
m−2
 3

p

m−1
 3
p

m−2, and 3b are calculated by Equation (5.82), noting

that P and P0 appearing implicitly in that equation through �H and �I are defined by

P = ���22−� f∗
22� · t0 and P0 = ts ·� s−step2

22 �0� while the bending stiffness DI
22 defined

there (in Section 5.3.2) must be evaluated with respect to the centroid of the patch–

skin combination, not the mid-plane of the skin as done in Section 5.2 and the rest of

Section 5.3 including this sub-Section 5.3.3.

Illustrative examples

To illustrate the analytical method presented in this section, a problem of an infinite

skin repaired with a rigidly bonded square patch �Lp/Wp = 1� is considered. The length
of the patch �2 ·Lp� is 10.16 cm while the material properties and thickness of the skin

and patch are given below:

Skin plate: Aluminum, Es = 72�4GPa
 �s = 0�33
 �s = 22�5E-06per C, ts = 1�6mm.

Patch: Boron/Epoxy, Ex = 18�7GPa
 Ep = Ey = 193�6GPa
 �yx = 0�21


�= 5�5GPa
 �x = 21�4E-06per C
 �p = �y = 4�3E-06per C
 tp = 0�66mm.

The analyses are performed for two loading cases. In the first loading case, the repaired

skin is subjected to purely mechanical loading. A stress ��22 is applied to the repaired

skin, which increases monotonically from 0 to 137.9MPa. On the other hand, the second
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Fig. 5.16. Normalized stresses in the skin of a repair with a 10�16×10�16cm square patch under

purely mechanical loading: (a) normalized mean stress; and (b) normalized bending stresses.

loading case involves a uniform temperature excursion of−75 C in addition to the above

mechanical load. As mentioned throughout this chapter, stresses in the skin at the patch’s

center in the x2-component are of special interest since they are needed to determine

the crack-tip stress intensity factor using Wang–Rose’s crack-bridging model (1999).

Since the stress distribution in the skin is linear through its thickness, both mean and

bending value of the skin’s stress component �22 therefore will be presented here. These

mean and bending stresses are plotted as the functions of the far-field-applied stress

��22 in Figures 5.16(a) and 5.16(b) for purely mechanical loading and in Figures 5.17(a)

and 5.17(b) for thermo-mechanical loading. In Figure 5.16, the bending and the mean
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Fig. 5.17. Normalized stresses in the skin of a repair with a 10�16×10�16cm square patch under

thermo-mechanical loading: (a) normalized mean stress; and (b) normalized bending stresses.

stresses in the skin are normalized with respect to the far-field-applied stress while in

Figure 5.17 these stresses are normalized with respect to the initially thermal bending

stress that is found to be 44.44MPa. For purely mechanical loading, analytical results

are obtained directly from step 3 without going through the first two steps since the
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thermal stresses, eNL
 �
f∗
ij , and �

s−step2

ij �0� are identical to zero. In contrast, the procedure
for determining the stress in the skin under thermo-mechanical loading is much more

involved. First, eNL must be determined from step 1. Second, � f∗
22 and �

s−step2

22 �0� are
determined from step 2 as 74.95 and 87.01MPa, respectively. For ��22 ≤ 74�95MPa, the

thermo-elastic stress in the skin is determined from step 2 with eNL equal to a constant

value found in step 1. Otherwise, step 3 must be performed and the result of �
s−step2

ij �0�
from step 2 is utilized.

To assess the accuracy of the analytical method, results from the FE analysis are

also obtained and compared with the analytical predictions in Figures 5.16 and 5.17.

The FE analysis is carried out using ABAQUS (1997) with the skin and each ply

of the patch modeled separately. The skin is modeled as three layers of 20-node

solid elements while each ply of the patch as one layer of solid elements. To

avoid the adverse effect of the small thickness-to-length ratio on the solution, stiff-

ness matrices of all solid elements are evaluated using reduced integration. In the

FE model, the skin was restrained from the out-of-plane deflection along its periph-

ery. From Figures 5.16 and 5.17, the bending stresses decrease with the applied

stresses and they will eventually vanish for large values of applied stresses, as

expected. In general, the analytical predictions agree reasonably well with the FE

results.

To show the effect of a patch’s size on the stresses, the above thermo-mechanical analysis

is repeated for a patch length of 40.64 cm and its results are presented in Figure 5.18.

Again, the mean and the bending stresses in Figure 5.18 are normalized with respect

to the initially thermal bending stress that is found to be 17.57MPa. The agreement

between the analytical and the FE results is considered to be satisfactory. It follows

from Figure 5.18 that a larger patch will result in lower bending stresses in the skin as

expected.

5.4 Stage II: Fracture Analysis Using Crack-bridging Model

The purpose of stage II analysis is to estimate the crack-tip stress intensity factor,

shear and peel stresses in the adhesive near the middle of the crack surfaces as well

as the patch’s stress there. It should be emphasized that in order to obtain the total

stress in the patch, one needs to add the contribution determined from this stage II

analysis to that from the stage I analysis as given in either Section 5.2 or 5.3. To

retain the results obtained by Wang and Rose (1999) and to follow closely with their

work, new and different positive sign conventions for the bending moment, moment–

curvature relation, and transverse shear will be adopted in this section, as depicted in

Figure 5.19.

In the previous sections, the stress distribution � s
ij along the prospective crack path in the

uncracked skin (with patch) is determined. At any point in the skin, � s
ij varies through

the skin thickness. � s
ij was also presented in terms of the mean and bending components

�̄ s
ij and �̂

s
ij . In the fracture analysis, for simplicity, �̄ s

ij and �̂
s
ij will be assumed to be

constant along the crack line and equal to those values at the center of the skin plate.

Let us denote these mean and bending stresses as �0
m and �0

b , i.e., �
0
m = �̄ s

22�0� and
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Fig. 5.18. Normalized stresses in the skin of a repair with a 40�64×40�64cm square patch under

thermo-mechanical loading: (a) normalized mean stress; and (b) normalized bending stresses.

�0
b = −�̂ s

22�0� (a negative sign is due to a different positive sign convention for the

bending moment in this section). By treating the cracked skin and the patch as thin

plates, the stress distribution on the crack faces can be considered as the superposition of

a membrane force −N0 and a bending moment −M0, with the stress distribution being
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Fig. 5.19. Perturbation problem of a repaired cracked skin subjected to tension (Wang and

Rose, 1999).
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Fig. 5.20. A skin plate with a through crack reinforced with tension and bending springs (Wang and

Rose, 1999).

given by � s
22�x1
 x2 = 0
 x3�=−�N0/ts−12M0x3/t

3
s �, for �x1� ≤ a, where N0 = �0

mts and

M0 = �0
b
t2s
6
, and a is the half crack length. In this section, the perturbation problem of

a crack pressurized by a combination of membrane force and bending moment as

shown in Figure 5.19 is solved using a crack-bridging model, within the framework

of geometrically linear elasticity. The basic idea underlying the crack-bridging model

to be described below is that (i) by representing the effect of the patch by an infinite

number of tension and bending springs bridging the crack faces, and (ii) by deriving

the spring constants of these springs from the analysis of a single-strap joint in plane

strain, one can model the problem depicted in Figure 5.19 as a plate containing a

through crack reinforced by distributed tension and bending springs (Figure 5.20). Thus

a complicated three-dimensional problem is reduced to a two-dimensional problem of a
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bridged crack, and a one-dimensional problem to determine the crack-bridging traction

law. The resulting hyper-singular integral equations are then solved using the Galerkin

method.

5.4.1 Determination of spring constants

In order to formulate a crack-bridging model, it is essential to determine first the spring

constants. As depicted in Figure 5.21, let us denote the crack face displacement and

rotation as v and �, in relation to the mid-plane of the skin, caused by the application of

a membrane force n0 and bending moment m0. The relationship between �n0
m0� and
�v
 �� can be determined by analyzing the single-strap joint under plane strain conditions

as follows.

The governing equations for the adhesive shear and peel strains, which are assumed to

be constant throughout the adhesive thickness, are respectively (see Equations (2.155)

and (2.149)),

d3��A�

dy3
−4�2

A

d��A�

dy
= 0 (5.86)

2θ

2u

n0

m0

(a)

n0

m1 = m0 + n0(ts + tp)/2

m0

Patch

Skin

Adhesive

n0
θ

−γmax

(b)

Fig. 5.21. (a) Single-strap joint representing one-sided repairs subjected to membrane tension and

bending moment; and (b) notations and boundary conditions.
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d4�A�

dy4
+4�̃4�A� = 0 (5.87)

where

��A� = ��A�

GA

�2
A = GA

tA

[
1

E′
sts

+ 1

E′
ptp

] (5.88)

�̃4 = E′
A

4tA

[
1

Ds

+ 1

Dp

]
(5.89)

GA and tA represent the shear modulus and the thickness of the adhesive layer,

respectively; Ds and Dp refer to the bending stiffness of the skin plate and patch,

Ds
p = E′
s
pt

3
s
p/12; E

′
s
p = Es
p

1−�2s
p ; and E
′
A = 2GA/�1−�A� is the Young’s modulus of the

adhesive under plane strain condition. The differential Equation (5.86) has the following

solution in the domain y > 0,

��A� = ��A�maxe
−2�Ay (5.90)

where �
�A�
max represents the maximum shear strain at y= 0. Similarly the relevant solution

for the adhesive peel stress in the case of semi-infinite overlap in the domain y > 0 is

�A� = �A cos �̃y+B sin �̃y� e−�̃y (5.91)

The three unknowns �
�A�
max and constants A and B need to be determined from the

appropriate boundary conditions.

For future development, it should be noted from Figure 5.21(a) that the stress and the

moment resultants in the skin and patch are given by

M s �y = 0�=−m0

Mp �y = 0�=m1 =m0+n0
(
ts+ tp
2

)

N s �y = 0�=−n0
N p �y = 0�= n0

(5.92)

It is also worthy to note the following relevant results from the theory of one-sided

bonded doublers and joints developed in Chapter 2. First, similar to Equations (2.120)
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and (2.121), and noting the different sign conventions for the shear and moment in this

Section 5.4, the strain on each side of the bond line is given by

p �x3 = ts/2+ tA
 y = 0�= dvp �y = 0�

dy

= N p �y = 0�

E′
ptp

+ tpM
p �y = 0�

2Dp

= n0
E′

ptp
+ m1 · tp

2Dp

s �x3 = ts/2
 y = 0�= dvs �y = 0�

dy

= N s �y = 0�

E′
sts

− tsM
s �y = 0�

2Ds

=− n0
E′

sts
+ m0 · ts

2Ds

(5.93)

Secondly, from Equations (2.110) and (2.111) after accounting for the different sign

conventions for moment, moment–curvature relation, and transverse shear,

dMp

dy

∣∣∣∣
y=0

= Dp

d3wp

dy3

∣∣∣∣
y=0

= Vp+
��A�tp

2

∣∣∣∣
y=0

= Vp �y = 0�+ �
�A�
maxGAtp

2

dM s

dy

∣∣∣∣
y=0

= Ds

d3w0

dy3

∣∣∣∣
y=0

= Vs+
��A�ts
2

∣∣∣∣
y=0

= Vs �y = 0�+ �
�A�
maxGAts

2

(5.94)

With the results from Equations (5.92)–(5.94) in mind and noting ��A� =
vp�x3=ts/2+tA�−vs�x3=ts/2�

tA
, the boundary condition for the shear strain is

d��A�

dy

∣∣∣∣
y=0

= p�x3 = ts/2+ tA�−s�x3 = ts/2�
tA

= 1

tA

[
1

E′
ptp

+ 1

E′
sts

+ 3�tp+ ts�
E′

pt
2
p

]
n0+

6

tA

[
1

E′
pt

2
p

− 1

E′
st

2
s

]
m0

(5.95)

The relevant boundary conditions for the adhesive peel strain at y = 0 are

d2�A�

dy2

∣∣∣∣
y=0

= 1

tA

d2�wp−ws�

dy2
= 1

tA

[
Mp�y = 0�

Dp

−M s�y = 0�

Ds

]

= 1

tA

(
m1

Dp

+ m0

Ds

)
= 1

tADp

tp+ ts
2

n0+
1

tADp

(
1+ Dp

Ds

)
m0

(5.96)

and

d3�A�

dy3

∣∣∣∣
y=0

= 1

tA

d3�wp−ws�

dy3
= 1

tA

(
Vp+��A�maxtp/2

Dp

− Vs+��A�maxts/2

Ds

)

= GA

2tA

(
tp

Dp

− ts
Ds

)
��A�max

(5.97)
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where the conditions that the shear force Vs and Vp are both zero at y = 0 have been

used. From condition (5.95) one obtains

��A�max =− 1

2�AtA

[
1

E′
ptp

+ 1

E′
sts

+ 3�tp+ ts�
E′

pt
2
p

]
n0−

6

2�AtA

[
1

E′
pt

2
p

− 1

E′
st

2
s

]
m0 (5.98)

and referring to Equations (5.96) and (5.97) one has

−2�̃2B = 1

tADp

tp+ ts
2

n0+
1

tADp

(
1+ Dp

Ds

)
m0 (5.99)

2�̃3�A+B�= GA

2tA

(
tp

Dp

− ts
Ds

)
��A�max (5.100)

thus

�̃�A−B�= GAts
4�̃2tA

(
tp

Dp

− ts
Ds

)
��A�max+

tp+ ts
2�̃tADp

n0+
1

�̃tADp

(
1+ Dp

Ds

)
m0 (5.101)

Denote the rotation of the skin at y= 0 as �̃0, since �wp/�y�y=0 = 0 because of symmetry,

and �A� = �wp−ws�/tA, one has, by definition,

�̃0 =
�ws

�y

∣∣∣∣
y=0

= �
(
ws−wp

)
�y

∣∣∣∣∣
y=0

=−tA
��A�

�y

∣∣∣∣
y=0

= �̃tA�A−B�

=
{
ts+ tp
2�̃Dp

− GA

8�2�AtA

(
tp

Dp

− ts
Ds

) [
1

E′
ptp

+ 1

E′
sts

+ tp�tp+ ts�
4Dp

]}
n0 (5.102)

+
[

1

�̃Dp

(
1+ Dp

Ds

)
− GA

16�̃2�AtA

(
tp

Dp

− ts
Ds

)2
]
m0

The opening displacement at the mid-surface of the skin is

ṽ0 =−��A�maxtA+ �̃sts/2

=
[
ts�tp+ ts�
4�̃Dp

+
[

1

E′
ptp

+ 1

E′
sts

+ tp�tp+ ts�
4Dp

][
1

2�A

− GAts
16�̃2�AtA

(
tp

Dp

− ts
Ds

)]]
n0

+
{

ts
2�̃Dp

(
1+ Dp

Ds

)
+
(
tp

2Dp

− ts
2Ds

)[
1

2�A

− GAts
16�̃2�AtA

(
tp

Dp

− ts
Ds

)]}
m0

(5.103)

It is now possible to express the crack opening displacement and crack face rotation in

terms of the membrane force and the bending moment in a matrix form,{
ṽ0
�̃0

}
=
[
ctt ctb
cbt cbb

]{
n0
m0

}
(5.104)
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where

ctt =
ts�ts+ tp�
4�̃Dp

+
[

1

E′
ptp

+ 1

E′
sts

+ tp�tp+ ts�
4Dp

][
1

2�s

− GAts
16�̃2�AtA

(
tp

Dp

− ts
Ds

)]

ctb =
ts

2�̃Dp

(
1+ Dp

Ds

)
+
(
tp

2Dp

− ts
2Ds

)[
1

2�A

− GAts
16�̃2�AtA

(
tp

Dp

− ts
Ds

)]

(5.105)

cbt =
tp+ ts
2�̃Dp

− GA

8�̃2�AtA

(
tp

Dp

− ts
Ds

)[
1

E′
ptp

+ 1

E′
sts

+ tp�ts+ tp�
4Dp

]

cbb =
1

�̃Dp

(
1+ Dp

Ds

)
− GA

16�̃2�AtA

(
tp

Dp

− ts
Ds

)2

It is evident that the cross terms, ctb and cbt, are non-zero, indicative of the coupling

between in-plane and out-of-plane deformation. According to the Maxwell’s reciprocal

relation, the matrix of spring compliance should be symmetric, i.e., ctb = cbt. However,
due to the approximate nature of the plate theory, the resulting matrix is not exactly

symmetric, but the deviation from symmetry is small. From Equation (5.104) one can

obtain the stiffness matrix: {
n0
m0

}
=
[
dtt dtb
dbt dbb

]{
ṽ0
�̃0

}
(5.106)

where

dtt = cbb/�
 dtb =−ctb/�

dbt =−cbt/�
 dbb = ctt/� (5.107)

�= cttcbb− ctbcbt
To facilitate the following analysis it is advantageous to express the spring traction

law in terms of the generalized displacements corresponding to the membrane stress

�̃0
m�= n0/ts� and the maximum bending stress �̃0

b �= 6m0/t
2
s �. Since the total strain

energy release rate per unit thickness is given by

G= �̃0
mṽ0+

1

6
�̃0
b �̃0 ts (5.108)

it is clear that the associated generalized placements are, respectively, ṽ0 and �̃0 ts/6.
From Equation (5.106) we can express the relationship between ��̃0

m
 �̃0
b � and

�ṽ0
 �̃0ts/6� as {
�̃0
m
�̃0
b

}
= Es

[
ktt ktb
kbt kbb

]{
ṽ0
1

6
�̃0 ts

}
(5.109)
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where kij represent spring constants which have a unit of length−1:

ktt =
1

Ests
dtt ≡

cbb
Ests�

ktb =
6

Est
2
s

dtb ≡− 6ctb
Est

2
s�

(5.110)

kbt =
6

Est
2
s

dbt ≡− 6cbt
Est

2
s�

kbb =
36

Est
3
s

dbb ≡
36ctt
Est

3
s�

(5.111)

According to elastic reciprocity we should have ktb = kbt. However, due to the approx-

imate nature of the plate theory employed in the present work, the cross terms ctb and

cbt are not exactly identical but the numerical difference is relatively small. It is also

possible to symmetrize the spring stiffness matrix if required:

k∗tb = k∗bt =
ktb+kbt

2
(5.112)

which is the only permissible symmetrization to ensure the equivalence in the total

energy release rate.

5.4.2 Fracture analysis by crack-bridging model

The basic idea of crack-bridging model is to model the patching problem as a single

plate with a through crack reinforced by distributed tension and bending springs sprung

over the crack faces, where the spring constant matrix has already been obtained in

Section 5.4.1. As mentioned in the introduction of Section 5.4, a crack pressurized by

a combination of −N0 and −M0 is solved in the stage II analysis. Under the action of

−N0 and −M0, the crack surfaces will open and rotate. However, the crack opening

displacement and rotation will be restrained partially by the patch that is represented in

the crack-bridging model by distributed springs. Thus, the internal forces and moments

in these springs physically represent the force and moments exerted by the patch on the

cracked skin. Since the crack opening displacement and rotation vary along the crack

surfaces, the spring forces and moments also vary along the crack surfaces. However,

the spring forces and moments at any point along the crack surface are still related to

the crack opening displacements and rotation there by the same stiffnesses given by

Equations (5.110) and (5.111). The boundary conditions of the present fracture problem

along y = 0, therefore, can be expressed in terms of the yet unknown displacement and

rotation as

Nyy�x
0
+�=−N0+dtt ṽ�x�+dtb�̃�x� −a < x < a (5.113)

Myy�x
0
+�=−M0+dbt ṽ�x�+dbb�̃�x�

where a is a half crack length.

Making use of the solution of the in-plane displacement of a bridged crack under tension

(see Joseph and Erdogan, 1987, 1989; Nemat-Nasser and Hori, 1987), the unknown crack

face displacement (one half of the total crack opening displacement) can be expressed as,

Ests
2�

∫ a

−a

ṽ���

�x−��2 d� = Nyy�x
 0
+�≡−N0+dtt ṽ�x�+dtb�̃�x� (5.114)
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The integral in the above equation is interpreted as a Hadamard finite part (Hadamard,

1952), which can be viewed as the derivative of a Cauchy principal value integral.

Despite the higher order of singularity in the integrand, the present formulation has

many advantages over that based on the derivative of the displacement, or dislocation

density, mainly because the unknown displacement function is bounded unlike the density

function which is singular near the crack tip. Numerical methods and convergence for

this class of strongly singular integral equations have been investigated by a number

of authors (Frenkel, 1983; Golberg, 1983, 1985; Joseph and Erdogan, 1987; Kaya

and Erdogan, 1987; Ervin and Stephan, 1992) and it has been found that the hyper-

singular integral equations can be efficiently solved by using either Galerkin’s method

or collocation methods.

Since the cross terms dtb and dbt are non-zero, the membrane resistance of the distributed

springs is dependent on not only the crack face displacement but also the crack face

rotation. Therefore the tensile stretching of the crack is coupled with the bending,

and vice versa. To quantify the bending deformation of a plate, one needs to adopt a

plate theory. In this regard, Kirchhoff–Poisson plate bending theory (Timoshenko and

Woinowsky-Krieger, 1959) and Reissner’s shear deformation theory (Reissner, 1947)

are probably the most widely used plate theories. Both plate theories will be employed

in the following analyses.

Due to the use of higher-order differential equations, the analysis based on Reissner’s

plate theory is considerably more complicated than that based on the classical plate the-

ory. For a single plate containing a long through crack �a/ts →��, the expenses of using
a much more complicated Reissner’s plate theory may overweigh the gain of improved

accuracy. This is because the classical plate theory would correctly predict the strain

energy release rate in the long crack limit, identical to that obtained from Reissner’s plate

theory (Hui and Zehnder, 1993). Hence there exists a universal relationship between the

stress intensity factor from Reissner’s plate theory and that from the classical plate theory:

K
�R�
b =

√
1+�s
3+�s

K
�K�
b (5.115)

where K
�R�
b and K

�K�
b denote respectively the bending stress intensity factors determined

from Reissner’s plate theory and Kirchhoff–Poisson plate theory. However, it will be

shown later in Section 5.4.5 that this same relationship will not hold for a cracked plate

repaired on one side due to the coupling between the tensile and the bending springs

sprung between crack faces. Thus, both plate theories will be employed in this section.

(a) Kirchhoff–Poisson plate bending theory

Referring to the second equation of (5.113) and making use of the solutions for a single

plate with a through crack based on Kirchhoff–Poisson plate theory (Joseph and Erdogan,

1987), the following hyper-singular integral equation can be obtained:

3+�s
1+�s

Est
3
s

24�

∫ a

−a

�̃���

�x−��2 d� =Myy�x
0
+�≡−M0+dbt ṽ�x�+dbb�̃�x� 
 (5.116)

which, together with Equation (5.114), furnishes a set of coupled integral equations.
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For the purpose of computation, the following non-dimensional variables are introduced:

h̃1�x�= ṽ�x�/a (5.117)

h̃2 �x�=
1

6
�̃ �x� ts/a (5.118)

The integral Equations (5.114) and (5.116) can thus be normalized to become

− 1

2�

∫ 1

−1

h̃1�&�

�r−&�2 d&+ �ktta�h̃1�r�+ �ktba�h̃2�r�=
�0
m

Es

− 3+�s
1+�s

3

2�

∫ 1

−1

h̃2�&�

�r−&�2 d&+ �kbta� h̃1�r�+ �kbba� h̃2�r�=
�0
b

Es

(5.119)

where r = x/a
 &= �/a
 �0
m and �0

b are again the mean and the bending stresses of the

uncracked skin reinforced with a patch and measured at the center of the patch.

The coupled integral Equations (5.119) have no closed-form solutions. However, their

solutions can be readily obtained numerically using the Galerkin method: expand the

unknown functions in terms of Chebyshev polynomials and then determine the coeffi-

cients numerically, similar to the approach used by Nemat-Nasser and Hori (1987) for

the case of tension springs only. Details will be shown in Section 5.4.3. It may be shown

that the following functions are also bounded everywhere within �−1
1�:

h̄1
2�r�=
h̃1
2�r�√
1− r2 (5.120)

Furthermore, the left-hand sides in Equations (5.119) give the membrane and bending

stresses outside the cut �−1
 1�, which are singular near r → 1+ or r →−1−. Using
the following asymptotic behavior for r→ 1+,

lim
r→1+

1

2�

∫ 1

−1

f�&�
√
1−&2

�r−&�2 d&= lim
r→1+

f�1�

2
√
2�r−1�

(5.121)

where f denotes any bounded function within �−1
 1�. It is easily shown that the

membrane stress intensity factor is given by

Kmem = lim
r→1+

√
2�a�r−1��yy�r
 0�=

Es

√
�a

2
h̄1�1� (5.122)

Similarly, the bending stress intensity factors based on Kirchhoff–Poisson plate theory

(using stress definition) is

K
�K�
b = 3+�s

1+�s
3Es

√
�a

2
h̄2�1� (5.123)

It should be noted that when the Kirchhoff–Poisson plate theory is employed, the

displacement-based definition will lead to an answer different from Equation (5.123).

However, since Kirchhoff–Poisson plate theory is a stress-based formulation, the stress

definition of the bending stress intensity factor is perhaps the only valid definition.
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(b) Reissner’s plate theory

Similarly, the crack face rotation for a bridged crack subjected to bending is given by

Joseph and Erdogan (1989):

Est
3
s

24�

∫ a

−a

�̃���

�x−��2 d�+
5

1+�s
Ests
24�

∫ a

−a
L̂�s̃��̃���d� =Myy�x
 0

+� (5.124)

where

s̃ =√
10 �x−��/ts (5.125)

L̂�s̃�=−48

s̃4
+ 4

s̃2
+4
[
K̂2�s̃� − K̂0�s̃�

]
+ 24

s̃2
K̂2�s̃� (5.126)

and K̂0 and K̂2 are the modified Bessel functions of the second kind. It can be shown

(Joseph and Erdogan, 1987) that L̂�s̃� is a Fredholm kernel with only a logarithmic

singularity near s̃ = 0 as proved in Wang and Rose (1999).

By adopting the normalization introduced earlier, the integral Equations (5.114) and

(5.124) can be normalized to become

− 1

2�

∫ 1

−1

h̃1�&�

�r−&�2 d&+ �ktta�h̃1�r�+ �ktba�h̃2�r�=
�0
m

Es

− 3

2�

∫ 1

−1

h̃2�&�

�r−&�2 d&−
15

�1+�s�2�
(
a

ts

)2 ∫ 1

−1

L̂

(√
10
a

ts
�r−&�

)
h̃2�&�d& (5.127)

+ �kbta� h̃1�r�+ �kbba� h̃2�r�=
�0
b

Es

While the membrane stress intensity factor is still given by Equation (5.122), the bending

stress intensity factor can be derived using either stress-based definition or displacement-

based definition (which will yield identical answer) as

K
�R�
b = 3Es

√
�a

2
h̄2�1� (5.128)

Since Reissner’s plate theory yields the same angular distribution of the asymptotic stress

state as given by elasticity theory, we can define a stress intensity factor at coordinate z
through the skin thickness:

KI�x3�= Kmem − 2x3
ts
Kb (5.129)

whereas this is not the case for Kirchhoff–Poisson plate theory.
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5.4.3 Numerical solutions of integral equations

An effective way of solving the hyper-singular equations, numerically, is pro-

vided by expanding the unknowns using Chebyshev polynomials of the second

kind, Ûi:

h̃1�r�= Ŵ �r�h̄1�r�� Ŵ �r�
N∑
i=0

f̂iÛi�r� (5.130)

h̃2�r�= Ŵ �r�h̄2�r�� Ŵ �r�
N∑
i=0

ĝiÛi�r� (5.131)

where Ŵ �r� = √
1− r2
 Ûi�r� = sin��i+1� cos−1 r	

sin�cos−1 r�

 f̂i and ĝi �i = 0
1
2
 " " " 
N� are

coefficients yet to be determined. Here N is selected to be sufficiently large

to ensure convergence within an acceptable accuracy. The method is effec-

tive because, with this expansion, the hyper-singular integral can be evaluated

analytically, e.g.,

∫ 1

−1

Ŵ �r�Ûi�r�dr

�x− r�2 =−��i+1�Ûi�x� �−1< x < 1� (5.132)

One can now develop a Galerkin-type method to determine the unknown coefficients

(f̂i and ĝi).

(a) Classical plate theory

Making use of Equation (5.132), Equation (5.119) can be written as

N∑
i=0

�i+1�

2
f̂iÛi�r�+ Ŵ �r��ktta�

N∑
i=0

f̂iÛi�r�+ Ŵ �r��ktba�
N∑
i=0

ĝiÛi�r�=
�0
m

Es

3�3+�s�
1+�s

N∑
i=0

�i+1�

2
ĝiÛi�r�+ Ŵ �r��kbta�

N∑
i=0

f̂iÛi�r�+ Ŵ �r��kbba�
N∑
i=0

ĝiÛi�r�=
�0
b

Es

(5.133)

By exploiting the discrete orthogonality of Chebyshev polynomials of the second kind,

this equation can be rewritten as, after multiplying Equation (5.133) with Ŵ �r�Ûj�r�
then integrating from −1 to 1 (Wang and Rose, 1999),

⎧⎪⎪⎨
⎪⎪⎩
Âij f̂j+ B̂ij ĝj =

�

2

�0
m

Es

�0j �i
 j = 0
1
2
 " " " 
N�

Ĉij f̂j+ D̂ij ĝj =
�

2

�0
b

Es

�0j �i
 j = 0
1
2
 " " " 
N�

(5.134)
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where

Âij =
1

4
��i+1��ij+ �ktta��ij

B̂ij = �ktba��ij

Ĉij = �kbta��ij

D̂ij =
3�3+�s��
4�1+�s�

�i+1��ij+ �kbba��ij (5.135)

�ij =
∫ 1

−1

�Ŵ �r�	2Ûi�r�Ûj�r�dr

=

⎧⎪⎨
⎪⎩
0 i+ j is odd

4�i+1��j+1�

�i+ j+3��i+ j+1��i− j+1��j− i+1�
i+ j is even

and �ij being the Kronecker delta.

(b) Reissner’s plate theory

In a similar manner as described in part (a), the second equation of (5.127) can be

expressed as

3

2

N∑
i=0

�i+1�ĝiÛi�r�−
15

�1+�s�2�
(
a

ts

)2 N∑
i=0

ĝiL̄i�r�

+ Ŵ �r��kbta�
N∑
i=0

f̂iÛi�r�+ Ŵ �r��kbba�
N∑
i=0

ĝiÛi�r�=
�0
b

Es

(5.136)

where

L̄i�r�=
∫ 1

−1

L̂

(√
10
a

ts
�r−&�

)
Ŵ �&��Ûi�&�d& (5.137)

Multiplying Equation (5.136) with W�r�Uj�r� then integrating from −1 to 1, one obtains,

noting that the tensile stretching equation is identical to the first of Equation (5.134),

⎧⎪⎪⎨
⎪⎪⎩
Âij f̂j+ B̂ij ĝj =

�

2

�0
m

Es

�0j �i
 j = 0
1
2
 " " " 
N�

Ĉij f̂j+ F̂ij ĝj =
�

2

�0
b

Es

�0j �i
 j = 0
1
2
 " " " 
N�

(5.138)
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where

F̂ij =
3

4
��i+1��ij+ �kbba��ij−

15

�1+�s�2�
(
a

ts

)2

L̃ij (5.139)

L̃ij =
∫ 1

−1

L̄i�r�Ŵ �r�Ûj�r�dr

≡
∫ 1

−1

∫ 1

−1

L̂
(√

10 �r−&�a/ts
)
Ŵ �&� Ŵ �r� Ûi �&� Ûj �r�d&dr (5.140)

Âij
 B̂ij
 Ĉij , and�ij are given by Equation (5.135). Since the kernel L̂�s̃� has a logarithm
singularity, the above double integration presents a major time-consuming operation for
the numerical analysis. One way to attenuate this difficulty is to separate the logarithm
singularity, which can be calculated in closed form (Joseph and Erdogan, 1987):

L̃ij =
∫ 1

−1

∫ 1

−1

[
L̂
(√

10 �r−&�a/ts
)
− ln �r−&�+ ln �r−&�

]
Ŵ �&� Ŵ �r� Ûi �&� Ûj �r�d&dr

=
∫ 1

−1

∫ 1

−1

[
L̂
(√

10 �r−&�a/ts
)
− ln �r−&�

]
Ŵ �&� Ŵ �r� Ûi �&� Ûj �r�d&dr+ L̃R

ij

(5.141)

where

L̃R
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�
2

16
�1+4 ln 2	 i= j = 1

−�
2

8

(
1

j−1
+ 1

j+1

)
i= j > 1

�2

8�j−1�
j = i+2

�2

8�j+1�
j = i−2

0 otherwise

(5.142)

The remaining integrand in Equation (5.141) is a smooth function everywhere within the

integration interval, thus allowing the integral tobe evaluatedusing simplequadrature rules.

The coupled linear set of Equations (5.134) or (5.138) can be readily solved for the

unknown coefficients f̂ i and ĝi, from which the membrane and the bending stress

intensity factors can then be determined via Equations (5.122), (5.123), and (5.128),

noting

h̄1�1�=
N∑
i=0

�1+ i�f̂ i (5.143)

h̄2�1�=
N∑
i=0

�1+ i�ĝi (5.144)

since Ûi�1�= 1+ i.



204 Composite Repair

Table 5.2. Convergence of solution using Kirchhoff–Poisson plate theory.

N Km/�
0
m

√
�a Difference (%) K

�K�
b /�0

b

√
�a Difference (%)

�ktta= 1�0�
2 0�720183 3�096 1�6896 4�923
4 0�732071 1�497 1�65512 2�781
8 0�739196 0�538 1�62692 1�030

16 0�742024 0�157 1�61504 0�294
32 0�742885 0�042 1�61155 0�076
64 0�743123 0�0095 1�61061 0�017
128 0�743186 0�0011 1�61037 0�002
256 0�743194 1�61033

�ktta= 10�
2 0�301707 −16�542 0�831925 −5�417
4 0�329653 −8�8112 0�890410 1�2320
8 0�347698 −3�8196 0�906460 3�0567

16 0�356674 −1�3366 0�894024 1�6428
32 0�360270 −0�3419 0�883558 0�4529
64 0�361216 −0�0802 0�880411 0�0952
128 0�361472 −0�0094 0�879674 0�0114
256 0�361506 – 0�879574 –

Notes:

1. kbt/ktt =−3�4744
 kbb/ktt = 18�5263�

2. The difference is measured relative to the value of N = 256 and is used as a measure of convergence of

the series.

Table 5.2 illustrates the convergence of the solutions for intermediate and long crack

cases, based on Kirchhoff–Poisson plate theory. The Reissner’s plate theory formulation

exhibits a similar convergence. In this table the reduction in the stress intensity factor as

a result of repair is calculated for different numbers of leading terms in the expansion

in terms of the Chebyshev polynomials. From Table 5.2 it can be seen that as the crack

length increases more terms are required to achieve the same degree of accuracy. For

instance, for ktta= 1�0, a total of 32 terms is sufficient to achieve an accuracy better than

0.1%, whereas 64 terms are needed to achieve the same accuracy for ktta = 10�0. The
main reason for this is the boundary layer effect in the crack face opening displacement:

as the stiffness of the bridging springs increases, the crack-opening displacement becomes

essentially constant over the entire crack length, except in the vicinity of the crack tips,

where the crack-opening displacement sharply decreases to zero (Rose, 1987a; Nemat-

Nasser and Hori, 1987). However, as will be shown later, the stress intensity factors

obtained for a normalized crack length of ktta = 10�0 is sufficiently close to the long

crack limit, ktta→ �, so that no further calculations involving much higher order of

expansion is necessary.

It remains now to determine the stresses in the patch and in the adhesive from the

above normalized displacement and rotation solutions. Since these stresses are normally

critical at the middle of crack, their values there will be derived here. As mentioned

earlier, the internal forces and moments of the distributed tension and bending springs

represent the forces and moments exerted by the patch on the cracked skin. Conversely,

the cracked skin will exert the similar forces and moments on the patch. Since the sum
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of the forces and moments acting on the cracked plate due to the patch and those acting

on the patch due to the skin (about a common reference plane) must be equal to zero,

the stress and the moment resultants in the patch about its neutral plane will be given

by Equation (5.92) as

N
p

22 �y = 0( x = 0�= n0 = dtt ṽ �x = 0�+dtb�̃ �x = 0�

M
p

22 �y = 0( x = 0�=m0+n0
(
tp+ ts
2

)
(5.145)

= dbt ṽ �x = 0�+dbb�̃ �x = 0�

+
(
tp+ ts
2

)
·
[
dtt ṽ �x = 0�+dtb�̃ �x = 0�

]

where the relation (5.106) has been utilized in the derivation. It should be remembered

from Equations (5.117), (5.118), (5.130), and (5.131) that

ṽ �x = 0�= a · h̃1 �r = 0�= a ·
N∑
i=0

f̂iÛi �0�

�̃ �x = 0�= 6a

ts
· h̃2 �r = 0�= 6a

ts
·

N∑
i=0

ĝiÛi �0�

(5.146)

Since the stress distribution in the patch across its thickness is linear, the patch stress

distribution at the middle of the crack surface can be derived from the stress and

the moment resultants N
p

22 and M
p

22, respectively, given by Equation (5.145) via a

simple formula such as �
p

22 = N
p
22

tp
− M

p
22

Dp
x3. On the other hand, the shear strain in the

adhesive at the middle of the crack surface, i.e., ��A��x = 0
 y = 0�, can be determined

from Equation (5.98) with n0 and m0 defined in Equation (5.145). Since the analysis

in Section 5.4.1 is for a vertical strip along any line of constant x so that the result of

�
�A�
max given by Equation (5.98) is really ��A��y = 0
 x = constant�. Similarly, the peel

strain in the adhesive can be found by first solving Equations (5.99) and (5.100) for the

unknown constants B and A since n0
 m0, and �
�A�
max that appear in these equations are

already determined, and noting that from Equation (5.91) �A� = A at y = 0. Once the

shear and peel strains are obtained, the corresponding stresses are found by multiplying

strains with the appropriate moduli.

5.4.4 Illustrative examples

For illustration, the case of a repair with a patch spanning across the entire width of

the skin under remote tension is considered. The dimensions and material properties of

the cracked plate, patch, and the adhesive layer are summarized in Table 5.3, which

represents a typical repair that has been extensively used in practical applications (Baker

and Jones, 1988). Both geometrically linear and nonlinear analyses are performed.
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Table 5.3. Physical dimensions and material properties of a typical repair.

Layer Young’s modulus (GPa) Poisson’s ratio Thickness (mm)

Skin plate 71 0�3 3�0
Patch 207 0�3 1�0
Adhesive 1�89 0�33 0�2

However, the effect of geometrically nonlinear deformation will be analyzed using a

hybrid method.

Case 1: Geometrically linear analysis

The plate is assumed to be subjected to a uniform tension, ��, remotely. The prospective

membrane and the maximum bending stresses acting on the crack faces are given by

Equation (5.80), noting that the “initial” stress is zero in the present case. These stresses

are given, respectively, by

�0
m = P

�1+S� ts
+
P · ê2 · Es

1−�2s
DI

22

�0
b =+

P · ê · ts ·
Es

1−�2s
2 ·DI

22

(5.147)

noting a positive sign for �0
b since �0

b = −�̂ s−LN
22 �0� due to the difference in

sign convention for the bending moment between this section and the previous

sections.

With the material properties and dimensions given in Table 5.3, the coupled Equa-

tions (5.134) and (5.138), representing Kirchhoff–Poisson plate theory and Reissner’s

plate theory, are solved numerically. The results are plotted in Figure 5.22. It is clear

that the formulation-based Kirchhoff-Poisson plate theory significantly over-predicts

the bending stress intensity factor as compared to Reissner’s plate theory, while the

membrane stress intensity factor appears to be well predicted. Even when the Kirchhoff-

Poisson bending stress intensity factor is converted to an equivalent Reissner bending

stress intensity factor using Equation (5.115), Kirchhoff-Poisson plate theory predic-

tion still remains considerably higher than that predicted using Reissner’s plate theory.

The breakdown of the relationship (5.115) is due to the coupling between the tensile

and the bending springs sprung between crack faces, resulting in the inapplicability

of the path-independent integral used in deriving (5.115). Therefore in the follow-

ing analyses solutions based on Kirchhoff-Poisson plate theory will not be discussed

further.

The numerical results obtained from the formulation based on Reissner’s plate the-

ory, i.e., Equation (5.138), are plotted in Figure 5.23, together with the results of a
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Fig. 5.22. Comparison of models based on Kirchoff–Poisson plate theory and the Reissner’s plate

theory.
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Fig. 5.23. Theoretical predictions and finite element results for a plate repaired with a patch

spanning across the plate’s full width assuming geometrically linear deformation.

three-dimensional FE analysis (Callinan et al, 1997b). Considering the approximate

nature of the crack-bridging model and the FE method, the correlation between the

predictions and the FE results is reasonably good, except for the discrepancies in the

short crack regime.
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Case 2: Geometrically nonlinear analysis

As mentioned earlier in the Introduction of Section 5.4, the geometrically nonlinear

problem is solved approximately using the hybrid method, in which the prospective stress

distribution is solved using geometrically nonlinear elasticity but the spring constants and

the perturbed solution are derived from the linear analyses. The prospective membrane

and maximum bending stresses are obtained from Equation (5.78) with �
�init�
0 = 0. In this

example, the overlap length is assumed to be long so that these stresses are given,

respectively, by

�0
m = 1

1+S�
�

�0
b = 0

(5.148)

With this stress distribution, the coupled Equations (5.138) are then solved numerically

and the results are plotted in Figure 5.24. When compared with the geometrically linear

analysis, both the membrane and the bending stress intensity factors have reduced by

almost a factor of 2, suggesting a strong influence of the geometrically non-linear

deformation on the repair efficiency of one-sided repairs. Nevertheless, the results shown

in Figure 5.24 also reveal that the repair efficiency of a one-sided repair is still much

lower than the equivalent two-sided repairs, with the mean and the maximum stress

intensity factors being about twice and four times those of equivalent two-sided repairs

for the geometry being considered. It is interesting to note that although the prospective

maximum bending stress is zero, there is still a significant bending stress intensity factor,

resulting from the coupling between the tension and the bending springs.
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Fig. 5.24. Influence of geometrically nonlinear deformation on the repair efficiency.
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5.5 Thermal Residual Stresses Resulting from Bonding

In Sections 5.2 and 5.3, only thermal stresses resulting from a uniform temperature

change due to a low operating temperature were addressed. However, since curing of

the adhesive in a bonded repair involves first heating the local area to be repaired above

ambient temperature, and subsequently cooling the fully cured patch-adhesive system to

the ambient temperature, the above uniform temperature model unless being modified

cannot be used to predict the latter form of thermal stresses. This section is, therefore,

devoted to address residual thermal stresses associated with curing of the adhesive. Three

curing models with various degrees of complexity will be described here. Among them,

Wang and Erjavec’s model is most complicated.

5.5.1 Rose’s or Barneveld–Fredell’s curing model

In Rose’s (1988) or Barneveld–Fredell’s model (Barneveld, 1994; Fredell, 1994), the

curing process of the adhesive can be simulated as a uniform cooling process of a whole

bonded structure with the skin’s thermal expansion coefficient being approximated by

a (lower) “effective” value. For a circular heated region as depicted in Figure 4.15,

Barneveld and Fredell derived the following effective thermal expansion coefficient for

the skin, which can be used in the uniform temperature model to simulate residual

thermal stresses due to curing:

�effective
s = �s

2
�1+�s�

⎧⎪⎪⎨
⎪⎪⎩1−

To
Ti

+ Ri
Ro

(
To
Ti

−1

)
−

1− To
Ti

2 ln

(
Ri
Ro

) [Ri
Ro

−1−2
R2
i

R2
o

ln

(
Ri
Ro

)]⎫⎪⎪⎬
⎪⎪⎭

(5.149)

In deriving the above formula, they assumed that both the patch and the skin in the heat

transfer model for calculating the temperature distribution are circular with respective

radius of Ri and Ro, while the skin in the elasticity model for calculating thermal stresses

is infinite. Furthermore, Barneveld–Fredell’s model calculates the temperature at the

edge of the skin using the theory of heat transfer through extended surface instead of

setting this temperature equal to the ambient temperature. This model was originally

developed for a two-sided bonded repair. However, since the effect of the local heating

and the effect of elastic constraint due to the surrounding structure that is still at the

ambient temperature enter into the analysis only through the effective thermal expansion

of the skin, therefore, it will be deliberated here to assume that these effects can also

be accounted for in the analysis of a one-sided repair by the same way, for both

geometrically linear and nonlinear analyses.

5.5.2 Duong and Yu’s curing model

In Section 4.2.4, the residual thermal stress problem associated with curing was formu-

lated as an initial strain problem. The only difference between the curing problem and

the uniform cooling problem found from Section 4.2.4 is that the initial strain prescribed
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in the patch for the former problem is given by Equation (4.40) instead of (4.36). Thus,

by employing this model, the thermal effect due to curing can be addressed within geo-

metrically linear or nonlinear theory in a similar manner as that considered in Section 5.2

or 5.3 providing that the thermal force and moment defined by Equation (5.21) are

computed based on the appropriate expression of 
�T��p�
ij and used in the analysis (Duong,

2003a). It is worthy to note that the skin is assumed to be infinite in this model while the

temperature distribution during the heating and cooling phases of the bonding process

is represented by a step function.

5.5.3 Wang and Erjavec’s curing model

Here the Wang et al’s curing model (2000) developed in Section 4.5 is extended to

characterize bending deformation. As in Section 4.5, this model considers only a circular

patch, which has a radius Ri. The thermal stresses developed in the patched region are

determined with the help of a set of imaginary cutting, straining, and welding operations,

while continuities of extensional forces, bending moments, in-plane displacements, and

out-of-plane displacements along the imaginary cut are maintained. The solutions are

derived within a geometrically linear plate theory, i.e., Kirchhoff–Poisson plate theory

(Wang and Erjavec, 2000).

During the first step of bonding, suppose that the inner portion �r < Ri� is heated to

a temperature Ti during the curing process, while the outer portion �r ≥ Ro� is heated

to To, with the usual convention that the ambient temperature is taken as the zero of

temperature. The temperature field and the thermal stresses developed in the skin due to

this non-uniform temperature distribution are given respectively by Equations (4.90) and

(4.91) while the patch remains stress-free. It should be noted that the patch is stress-free

since during the heating step the adhesive is assumed to be very soft so that the patch

can expand freely under the temperature change without any restraint from the skin.

In contrast, thermal stress in the skin arises only in the case of localized heating of a

large structure; for the case of a finite-sized specimen being uniformly heated to Ti, no
thermal stress will develop. This stress distribution serves as the initial stress that will be

added to the thermal stress induced by cooling the patched region down to the ambient

temperature.

After the adhesive is fully cured, the patched skin is then cooled down to the ambient

temperature. The temperature change over the entire patched skin during the cooling

step is subjected to the temperature field which is opposite (in sign) to that of the

heating step. During this cooling process, it is assumed that the adhesive bond between

the composite patch and the metal skin is absolutely rigid, so that the patch–plate

combination in the circular patched area is treated as an inhomogeneity. The thermal

expansion coefficients, the bending stiffness, and the in-plane extensional stiffness of

the equivalent inhomogeneity are established using the classical laminate theory as in

Section 5.2.2. Since the thermal stresses resulting from a thermal loading may depend

on the nature of the constraint imparted by the surrounding structures, to incorporate

this size effect on the residual thermal stress, Wang and Erjavec (2000) used a model
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of a circular patch on a concentric circular skin plate which is constrained at radius Ro

by a continuous distribution of springs according to the following relation:

�rr =−ksEsur �r = Ro� (5.150)

As mentioned in Section 4.5, by selecting appropriate spring stiffness ks, various degrees
of in-plane constraint imparted by the surrounding structure can be represented. For

instance, the following spring stiffness will recover the case of an infinite skin:

ks =
1

�1+�s�Ro

(5.151)

Free edge and clamped edge conditions at r = Ro can be represented by ks = 0 and

ks →�, respectively. Provided the outer radius Ro is sufficiently large as compared to

the patch size Ri, the precise value of ks has no significant effect on the distribution of

the thermal residual stresses. Due to the finite size of the skin, the strains and bending

curvatures in the inclusion are not uniform. A rigorous analysis would involve the use of

“stretched coordinate”, rendering the analysis rather unwieldy, as the solutions need to

be represented by infinite series. For simplicity, Wang and Erjavec (2000) assumed that

the effect of finite size is entirely limited to the in-plane deformation. This simplification

will not result in any significant error since the bending moment in the skin plate

decreases at a rate proportional to the square of the radius so that the bending moment

at the outer radius is approximately zero, provided that the ratio of outer radius to inner

radius Ro/Ri is moderately greater than unity.

Following the work of Wang and Erjavec (2000), it can be shown that thermal stresses

in the skin and the patch at their middle due to the cooling step are given by{
�

s�C�
11 �x3�

�
s�C�
22 �x3�

}
= �Cs	

{
̄I11−�I11�x3−h01�+�sTi

̄I22−�I22�x3−h02�+�sTi

}
(5.152)

{
�

p�C�
11 �x3�

�
p�C�
22 �x3�

}
= �Cp	

{
̄I11−�I11�x3−h01�+�p

11Ti

̄I22−�I22�x3−h02�+�p

22Ti

}
(5.153)

h01 =
Sx�ts+ tp�
2�1+Sx�


 Sx = Ep

11tp�1−�2s �/Ests�1−�p12�p21� (5.154)

h02 =
Sy�ts+ tp�
2�1+Sy�


 Sy = Ep

22tp�1−�2s �/Ests�1−�p12�p21� (5.155)

where Iij denotes the mean strain in the overlap region at the neutral plane of the patch–

plate combination as shown in Figure 5.25,3 �Iij is the curvature, and the superscript C

3Unlike Sections 5.2 and 5.3, Iij is measured at the neutral plane of the skin–patch combination while in

Sections 5.2 and 5.3, except Section 5.3.2, Iij is measured at the mid-plane of the skin.
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Fig. 5.25. Inclusion representation of a rigidly bonded patch and plate showing (a) stress and

moment resultants and (b) strain distribution.

indicates the cooling step as used in Section 4.5. The parameters h01 and h02 denote

the x3-coordinates of the neutral axis in the x1–x3 plane and x2–x3 plane, respectively;

Ti > 0; and the rest have been defined previously. The curvatures and mean strains can

be calculated using the following explicit expressions:

{
̄I11

̄I22

}
= �L3	

−1 -R20 �−Ti�− �L3	
−1 �L4	

{
�I11

�I22

}
(5.156)

{
�I11

�I22

}
= (�L2	− �L1	 �L3	

−1 �L4	
)−1 (

-R10− �L1	 �L3	
−1 -R20

)
�−Ti� (5.157)

�L1	=− ts+ tp
6Ds�1−�s�

�GT	 �2 �h0	
[
CI
]−2

[
CI
]
�h0	+ tp �Cp	� (5.158)

�L2	=
[
1 1

1 −1
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+ 1

3Ds�1−�s�
�GT	 �

[
DI
]− �h0	 ��T	� (5.159)
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�GT	=
[
3 3

1 −1

]
(5.162)

�L3	=
[
1 0

0 1

]
+ ts+ tp

Ests
�HT	

[
CI
]

(5.163)
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�L4	= �h0	+
1

Ests
�HT	 ��T	 (5.164)
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]{�I
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0 h02

]
(5.166)
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3T =
1− �1+�s�ksRo

1+ �1−�s�ksRo

(5.174)

[
DI
]= t3s

12
�Cs	+ t3p

12
�Cp	+ ts �Cs	 �h0	

2+ tp

4
�Cp	

×
[
�ts+ tp−2h01�

2 0

0 �ts+ tp−2h02�
2

] (5.175)

where Ds is bending stiffness of the skin plate, i.e., Ds = Est
3
s

12�1−�2s �
( �C	 is the elasticity

matrix;
[
CI
]
is defined by Equations (4.31)–(4.33) but with the effective thickness of the

inhomogeneity chosen to be ts+ tp. It is worthy to note that bT
 �
T
1 
 �

T
2 
 �T
 &T, and

3T have been defined previously in Section 4.5; however, their definitions are repeated

here for convenience.
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As a special case, the solutions pertaining to two-sided repairs can be recovered by

equating the curvatures �I11 and �
I
22 in Equation (5.156) to zero, which yields{
̄I11

̄I22

}
= �L3	

−1 -R20 �−Ti� (5.176)

It can be shown that this solution is identical to that given by Equation (4.98). It is

worthy to note that even though this curing model accounts for the realistic temperature

distribution and the effect of structure finite size, however, it only deals with one

particular patch’s shape, a circular patch. In contrast, the Duong and Yu’s curing model

is developed for a general shaped patch in an infinite structure size and under a simple

temperature distribution. Thus, these two models certainly can be combined for better

predictions of the geometrically linear thermal stresses in a one-sided bonded repair by

using a “shape correction” factor approach as described in Section 4.5.

5.6 Characterization of Fatigue Crack Growth in One-Sided Patching

Due to the out-of-plane bending, the stress intensity factor varies across the plate thick-

ness. As common practices, either the maximum value or the root mean square (rms)

value of the stress intensity factor across the skin thickness is used to predict the fatigue

crack growth. Kmax and Krms are defined, respectively, by

Kmax = Kmem +Kb

Krms =
√
K2

mem + K2
b

3

(5.177)

where Kmem and Kb are the membrane and the bending components of the stress intensity

factor, respectively. However, it was found by Duong (2003b) and Duong and Wang

(2004) that the effective or equivalent stress intensity factor defined as

Keq = Kmax+
(
1−√

3
) Kb

Kmax

Krms (5.178)

will consistently yield best crack growth predictions when compared with the test data

generated under the Composite Repair of Aircraft Structure (CRAS) program. The

physical significance of Keq will be discussed in Chapter 11.

5.7 Summary

An approximate method has been presented for analyzing the tensile stretching and

bending of a cracked skin plate, which is repaired on one side, subjected to tension

and thermal excursion. The method employs a hybrid approach, in which, the stage I

analysis is performed within either geometrically linear or nonlinear theory while stage

II analysis is always within geometrically linear analysis. In addition, stage I problem
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has been solved approximately using the equivalent inclusion method that was extended

to include analysis of the bending plates. Even though the method employed for the

geometrically nonlinear analysis of stage I lacks scientific rigor, however, it predicts

reasonably well the thermo-mechanical stresses in the skin for a wide range of repair

configurations and thus provides practical way for analyzing a one-sided bonded repair.

On the other hand, stage II problem has been solved using the crack-bridging model

within both Kirchhoff–Poisson and Reissner plate theories. The repaired structure is

modeled as a plate containing a through thickness crack, bridged by tension and bending

springs, whose stiffness constants are determined from a one-dimensional analysis of a

single-strap joint. The results from the crack-bridging model show that the Kirchhoff–

Poisson plate theory would considerably overestimate the bending stress intensity factor,

while the formulation-based on the Reissner’s plate theory provides a reasonably good

estimate of both the membrane and the bending stress intensity factors, when compared

with results from a three-dimensional FE analysis. The results show that a one-sided

repair is still much less efficient in reducing the stress intensity factor than an equivalent

two-sided repair.



CHAPTER 6

Analytical Approach to Repairs of Corrosion
Grind-Outs

6.1 Introduction

Corrosive damage on the outer surfaces of aircraft is generally removed by grinding

during periodic, routine maintenance. Aircraft manufacturers provide maintenance spec-

ifications that allow a limited amount of material removal, but it is sometimes necessary

to exceed these limits in order to completely remove the corrosion. In these cases, the

structure must be replaced or repaired before further operation of the aircraft is permit-

ted. Whenever a repair is sought, bonded composite doublers may be preferred due to

high stiffness and high strength of the composite.

In the past, stress analysis of a bonded repair over a corrosion grind-out cavity was

normally done using the FE method. The corrosion repairs are thought to be too complex

to be analyzed by an analytical method. However, Duong et al. (2001b), and Duong

and Yu (2002b, 2003b) in a series of papers presented a procedure for solving this

repair problem analytically. This analytical procedure followed Rose’s original approach

(1981, 1982, 1988) for the analysis of crack patching, and it was used for analyzing

elliptical and polygon-shaped patch over an elliptical cut-out or grind-out cavity with a

uniform or spherical depth. It also accounted for the effects of thermal stresses due to

curing and/or cruising and the effects of the filler stiffness. The procedure had been used

successfully in estimating stresses and strains in a patch and skin analytically at various

critical locations such as near the patch edge, around the damage edge, and at the bottom

of a grind-out cavity. The analytical methods based on this procedure therefore will be

presented in this chapter.

6.2 Fundamental Concepts

To illustrate the fundamental concepts behind the analytical methods employed by Duong

et al. (2001b), and Duong and Yu (2002b, 2003b), the analysis of an isotropic skin with an

216
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Fig. 6.1. Two-stage analytical solution procedure for a bonded repair problem.

internal elliptical corrosion grind-out, or cut-out repaired with an elliptical isotropic patch,

is presented first in this section since it ismathematically simplest. For simplicity, the effect

of thermal stresses is also ignored in the present discussion. Analyses including this effect

together with other complexities such as polygon-shaped and orthotropic patches will be

given in Section 6.3. As mentioned in the Introduction of this chapter, the analysis of a

corrosion repair also follows the similar two-stage procedure originally proposed by Rose

(1981, 1988) for a crack patching analysis (Figure 6.1). In the first stage, an infinite skin

reinforced by an elliptical patch under prescribed far-field stresses ��ij is analyzed using
the inclusion analogy, without considering the grind-out or cut-out. The constant stresses

inside the patched area denoted by �
I�stage I�
ij �0� are then calculated and later used as the

far-field-boundary conditions for the second (stage II) problem. In the second stage, the

patch is assumed to be infinite and an integral part of the skin. Stage II analysis then

involves solving a problem of an infinite patched skin containing an elliptical grind-out

or cut-out under far-field stresses �
I�stage I�
ij �0�. The latter problem is also solved using the

inclusion analogy. Because the patch in a typical design is much larger than the damaged

area, the solutions of the first and the second problems are approximately the same as

the solutions of the original problem inside and outside the patched area, respectively. In

order to solve for these first- and the second-stage problems, the solutions of the elliptical

inclusions and inhomogeneities are required. These solutions obviously can be obtained

using the computational algorithm given in Sections 4.2.1 and 4.2.2 of Chapter 4 for a

regular polygon with a large number of sides. However, explicit solutions for elliptical

inclusions and inhomogeneities are available in literature through pioneered work by

Eshelby, and therefore they are summarized in the next subsection.

6.2.1 Eshelby solution for elliptical inhomogeneities

For simplicity, all formulas presented in this section are obtained directly from a book by

Mura (1998) for plane strain condition. These formulas can be modified for plane stress

case by replacing the Young’s modulus E with E�1+ 2��/�1+ ��2 and the Poisson’s

ratio � with �/�1+ �� while keeping the shear modulus � unchanged. Consider an

infinitely extended material with the elastic moduli C0
ijkl containing an elliptic cylindrical
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domain ! (minor and major axes are a1 and a2, respectively) with the elastic moduli

CI
ijkl and subjected to the applied stress ��ij at infinity. The solution of this problem will

be obtained by the equivalent inclusion method outlined in Section 4.2.1 of Chapter 4.

According to this method, the stress disturbance in an applied stress due to the presence

of an inhomogeneity can be simulated by the disturbance caused by an eigenstrain field

(or an initial strain filed) ∗ij occurring in the same region ! in an infinitely extended

homogenous material with the moduli C0
ijkl, where 

∗
ij is determined from the equivalency

conditions as (see Equation 4.5):

�Cijkl Sklmn 
∗
mn−C0

ijkl
∗
kl =−�Cijkl�kl

in ! (6.1)

�Cijkl = C0
ijkl−CI

ijkl

where Sijkl is the Eshelby tensor. For an elliptical domain, if ��ij is uniform, ∗ij as

determined from Equation (6.1) is also found to be uniform in ! since Sijkl, as shown
later, is a constant tensor which depends only on material constants and geometric

dimensions of! but not the spatial coordinates. Explicit formula for Sijkl for an elliptical
domain is well known (Mura, 1998), and it will be given in the next paragraph. Thus,

the only unknown in Equation (6.1) will be the eigenstrain ∗ij . Once the eigenstrain is

determined from Equation (6.1), the stress and strain inside the inhomogeneity can be

obtained from Equations (4.1)–(4.3) as

Iij = Hij = Sijkl∗kl+�ij
in ! (6.2)

� I
ij = �H

ij = C0
ijkl �

H
kl−∗kl�

where Hij and �
H
ij are defined in Chapter 4 as the strain and stress in the “equivalent”

inclusion (homogeneous) problem. It should be emphasized that the stress and strain

inside the inhomogeneity are uniform according to Equation (6.2) since both Sijkl and
∗ij are constant tensors. Thus, by denoting the stress and strain at point (0, 0), i.e., the

origin of the coordinate system, as � I
ij�0� and 

I
ij�0�, the stress and strain fields inside !

must also equal � I
ij�0� and 

I
ij�0�, respectively. For point exterior to !, the elastic fields

are not uniform. Even though the stress and the strain � I
ij and 

I
ij for point exterior to !

are still equal respectively to �H
ij and Hij , where �

H
ij = C0

ijkl
H
kl and 

H
ij = Sijkl

∗
kl+�ij;

however, another formula for Sijkl different than that given in the paragraph below must

be used since Sijkl as given later by Equation (6.4) applies only to points inside !.1

As pointed out by Mura (1998), the stress and strain fields outside ! are more conve-

niently determined by using a method proposed by Tanaka and Mura, which is illustrated

in Figure 6.2. In Figure 6.2, � I
ij�0� again denotes the stresses inside !. The Tanaka and

Mura method will be described later.

For computations, it is more convenient to represent a tensor by a matrix using Voight’s

convention. By assuming that all materials involved are isotropic and invoking the

1The Eshelby tensor Sijkl derived in Section 4.2.3, on the other hand, applies to both exterior and interior

points of !.
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0Cijkl
0Cijkl

0Cijkl
=Ω +=Ω Void +

σ∞ij
Inhomogeneity,Cijkl

I σ∞ij − σij (0)I
Iσij (0)

Fig. 6.2. Tanaka–Mura method for calculating the elastic field at a point outside !. � I
ij�0� is the

stress in the inhomogeneity at its center inside !.

double symmetry conditions of the problem, all shear components become zero so that

Equations (6.1) and (6.2) in matrix form are given by(
��C	 �S	+ [C0

])
-∗0=− ��C	 -�0{

I
}= {I �0�}= �S	 -∗0+ -�0 in ! (6.3)

{
� I
}= {� I �0�

}= [C0
] {
I−∗}

where

��C	= [CI
]− [C0

]
[
CI
]= 2�I

1−2�I

[
�1−�I� �I

�I �1−�I�
]

[
C0
]= 2�

1−2�

[
�1−�� �
� �1−��

]

�S	= 1

2�1−��

⎡
⎢⎢⎣
a22+2a1a2
�a1+a2�2

+ �1−2��
a2

a1+a2
a22

�a1+a2�2
− �1−2��

a2
a1+a2

a21
�a1+a2�2

− �1−2��
a1

a1+a2
a21+2a1a2
�a1+a2�2

+ �1−2��
a1

a1+a2

⎤
⎥⎥⎦

-∗0=
{
∗11
∗22

}
( -�0=

{
�11

�22

}
= [C0

]−1

{
��11

��22

}
( -0=

{
11
22

}
( -�0=

{
�11

�22

}

(6.4)

� and � are shear modulus and Poisson’s ratio, the superscripts I and 0 of the elasticity

tensor or elastic constants denote the inhomogeneity and the homogeneous material,

respectively, and
[
C0
]−1

is the inverse of C0
ijkl. It should be emphasized that, as in

Chapter 4, Iij and �
I
ij throughout this book indicate the strain and stress fields of the

inhomogeneity problem and they describe the strain and stress fields of points both

inside and outside the inhomogeneous region.
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On the other hand, using the Tanaka and Mura method (see Figure 6.2), the stresses

outside !, at the ends of the minor and major axes of the elliptical inhomogeneity, are

summarized below as they are of practical interest:

At �±a+1 
0�

� I
11

(±a+1 
0)= � I
11 �0� (6.5)

� I
22

(±a+1 
0)=− (� I
22 �0�−��22

)(
1+ 2a1

a2

)
+ (� I

11 �0�−��11

)+� I
22 �0�

At �0
 ±a+2 �

� I
11

(
0
 ±a+2

)=− (� I
11 �0�−��11

)(
1+ 2a2

a1

)
+ (� I

22 �0�−��22

)+� I
11 �0� (6.6)

� I
22

(
0
 ±a+2

)= � I
22 �0�

where �±a+1 
0� and �0
 ±a+2 � denote points outside! but infinitesimally close to points

�±a1
 0� and �0
 ±a2� while � I
ij�0� are stresses inside! at its center which are uniform

throughout ! for an elliptical inhomogeneity as in the present problem.

6.2.2 Analytical solution of elliptical patches

Consider an isotropic skin with an internal elliptical cut-out or corrosion grind-out

repaired with an elliptical isotropic patch and the skin is subjected to remote biaxial

stresses as shown in Figure 6.1(a). The elastic moduli of the skin and patch are denoted

respectively by Cs
ijkl and C

p

ijkl. Furthermore, the aspect ratio of the elliptical grind-out

is b/a while the patch has an aspect ratio of B/A. The remaining skin thickness in the

grind-out is denoted by tr . Since the size of the patch is usually much larger than

the size of the skin damaged area in typical repairs, it therefore assumes that being

the case in the present analysis. Furthermore, by limiting the application of the present

approach to the repair situation where the out-of-plane bending effect is insignificant,

the problem considered in Figure 6.1(a) can be analyzed by a basic model with the

following simplifying assumptions:

• All material behavior is linearly elastic and isotropic.

• All skin and patch materials are in a state of generalized plane stress.

• The presence of a grind-out will not disturb the stresses outside the patch.

• The patch is modeled as an integral part of the skin using inclusion analogy.

• The grind-out has a constant depth.

This basic model will bring out more clearly the essential features of the analytical

approach presented in this chapter. It should be noted that the third assumption listed
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above is a direct consequence of the underlying assumption that the size of the cut-out

or grind-out is much smaller than that of the patch.

In the analysis of bonded repairs, two regions of shear load transfer must be distinguished.

The first is the zone at the edge of the patch. Using 1-D bonded joint theory, it had been

shown (Rose, 1981, 1988) that in typical repairs the size of this zone is small compared

with overall patch dimensions to allow the modeling of a patch as an integral part of

the skin. The second load transfer zone is around the edge of the skin damage. While

the latter transfer zone definitely affects the stress distribution near the edge of the skin

damage, it in general has little influence on the stress concentration in the middle of

the damaged region. Since the stresses in the skin and in the patch are expected to be

highest near the middle of the damaged region, one may be concerned only about these

stresses in designing a patch. Thus, the analysis method developed in this section (to

solve for the basic problem) can be used for the preliminary design purpose. As a matter

of fact, explicit results obtained from this section will be used extensively in Chapter 10

when discussing the preliminary design approach for corrosion repairs.

Two-stage analytical solution

The analysis of a bonded repair over an elliptical cut-out or grind-out cavity is divided

into two stages similar to that originally proposed by Rose for crack patching problem,

as indicated in Figure 6.1.

Stage I analysis In the first stage, an infinite skin reinforced by an elliptical patch under

a prescribed far-field stress is analyzed using the inclusion analogy, without considering

the grind-out. The uniform stresses inside the patched area of the patch–skin combination

are then calculated and later used as the far-field-boundary conditions for the second

(stage II) problem. For clarity, the stresses of the skin–patch combination inside the

patched area from the present stage I analysis will be referred to as �
I�stage I�
ij �0�. Since

the patch is considered to be an integral part of the skin, the patched area is treated as

an elliptical inhomogeneity with an aspect ratio of B/A. The material properties of this

elliptical inhomogeneity, which are equivalent to those of the patched skin, are derived

in a similar manner as in Section 4.2.3 of Chapter 4, but for plane strain condition2 as

�I = �sts+�ptp

tI

�I = 1(
1− 1

�ItI
��

−1

)

�� =
�sts�1−�s�
1−2�s

+ �ptp�1−�p�
1−2�p

(6.7)

2 For uniformity purpose, the formulations for stage I and II analyses are also given under plane strain

conditions. For plane stress conditions, appropriate changes in the elastic constants E
 � and �, similar to

those described earlier in Section 6.2.1, must be made.
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where � and � denote the shear modulus and Poisson’s ratio, respectively, while the

superscript or subscript I and subscripts s and p signify the inhomogeneity, skin, and

patch, respectively. The inhomogeneity thickness tI can be chosen arbitrarily; however, as
in Section 4.2.3, tI has been chosen to be the same as ts in stage I for direct application of
the results derived in Section 6.2.1. The uniform stresses �

I�stage I�
ij �0� inside the patched

region are calculated by first solving for the eigenstrain, then computing the strains and

finally the stresses according to Equations (6.3) and (6.4), respectively. The stresses

in the skin and in the patch inside the reinforced area then can be computed from the

following equations, similar to those given at the end of Section 4.2.3:

-� s �0�0= �Cs	
[
CI
]−1 {

� I�stage I� �0�
}

in ! (6.8)

-�p �0�0= �Cp	
[
CI
]−1 {

� I�stage I� �0�
}

which is based on a condition that the bond allows no relative displacement between the

patch and the skin. In Equation (6.8), �C	 is again the elasticity matrix; the subscripts

or superscripts p, s, and I have been previously defined. It is worthy to note that by using

“composite” terminology, �
I�stage I�
ij �0� will be the “laminate” stresses while stresses in

the skin and patch are the “ply” stresses. On the other hand, the skin stresses and

strains outside the reinforced region at the ends of the minor and major axes of the

patch are determined from Equations (6.5) and (6.6). It is worthy to note that since

the inhomogeneity’s thickness was chosen to be ts in stage I, �
I�stage I�
ij �0� was therefore

defined based on the reference thickness of ts. In contrast, as discussed later, all stresses

in the second-stage analysis will be defined based on the reference thickness of �ts+ tp�.
Consequently, the stresses �

I�stage I�
ij �0� obtained from the stage I analysis must be scaled

by a factor ts/�ts+ tp� before they can be used as the far-field-applied stresses for the

second-stage problem.

Stage II analysis In the second stage, the patch is assumed to be infinite and an integral

part of the skin. Stage II analysis then involves solving a problem of an infinite fully

patched skin containing an elliptical cut-out or grind-out cavity with a uniform depth

under far-field stresses �
I�stage I�
ij �0� · ts

ts+tp . This problem is also solved using the inclusion

analogy. The equivalent elastic constants of the patched skin outside the elliptical cut-out

or grind-out cavity can be evaluated by using Equation (6.7) with tI = ts+ tp. Similar to

stage I analysis, the damaged region is now treated as an elliptical soft inhomogeneity

with an aspect ratio of b/a. The equivalent elastic constants for this soft inhomogeneity

again can be obtained from Equation (6.7) with ts appearing in the equation being

replaced by tr�tr can be equal to zero as in the case of a cut-out), and with tI chosen
to be equal to ts + tp. Stresses inside the (soft) inhomogeneity and their contributions

to the skin and patch can be determined by the same manner as in stage I analysis,

i.e., via Equations (6.3), (6.4), and (6.8), respectively. The stresses outside the damaged

area at the ends of its major and minor axes are still evaluated by Equations (6.5) and

(6.6). However, since the region outside the damaged area is now made of a laminate

of skin and patch materials, a further step is needed which calculates the skin and patch

components of these stresses via equations similar to (6.8).
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Illustrative example

The method outlined above will be illustrated via one example problem, which is taken

out from the paper by Duong et al. (2001b). The stress solution of the repair over

a circular damaged area shown in Figure 6.3 is obtained and compared with results

from the FE method. The radius of the damaged area is 12.7mm. For simplicity, the

patch is also assumed to be circular with a radius of 38.1mm. The material proper-

ties and thickness of the skin and the patch as well as the far-field stress are given

below:

Skin

�s = 27�2GPa
 �s = 0�33, full thickness ts = 2�0mm, remaining thickness in the

damaged area tr = 0�762mm.

Patch

�p = 75�2GPa
 �s = 0�33, thickness tp = 0�635mm.

��1 = 0
 ��2 = 68�95MPa

All analyses are carried out under plane stress condition. Stress comparisons between

analytical predictions and FE results at various locations are listed in Table 6.1. In

Table 6.1, all stresses are normalized with respect to the far-field stress. For reference, the

normalized stress in the skin near the middle of the damaged area of an un-patched skin

is also calculated using the Eshelby solution given in Section 6.2.1 with the grind-out

area modeled as an inhomogeneity, and it is found to be 1.7. FE results are obtained by

using FRANC2D/L code (Swenson and James, 1997). In the FE analysis, the adhesive is

modeled as two-dimensional linear shear springs. Both typical and arbitrarily stiff adhe-

sives are considered in the FE analysis. Typical values for shear modulus and thickness

of an adhesive are 0.66GPa and 0.15mm, respectively. The analytical predictions in

general agree well with the FE results except at point “1” where they are overestimated.

As explained by Duong et al. (2001b), this discrepancy is due to the effect of adhesive.

1
2

3

4

Circular grind-out

σ∞ = 68.95 MPa

1
2

3

4

Circular grind-out

Fig. 6.3. Geometry of a circular grind-out problem repaired with a circular isotropic patch.
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Table 6.1. Stress comparison between analytical predictions and FE results for an isotropic skin

containing a 1.238mm deep circular grind-out repaired with a circular isotropic patch of 0.636mm

thickness. All stresses are normalized with respect to far field stress.

Center Point 1 Point 2 Point 3 Point 4

Analytical
Skin 0�818 0�544 0�818 1�184 0�631
Patch 2�260 1�502 2�260

FEM (stiff adhesive)
Skin 0�813 0�477 0�803 1�139 0�645
Patch 2�247 1�695 2�201

FEM-(typical adhesive)
Skin 0�808 0�408 0�843 1�127 0�696
Patch 2�203 1�854 2�076

As the adhesive becomes stiffer, the difference in stresses between the two methods

becomes smaller as expected, especially at point “1”.

A good agreement between the two methods at point “3” but not at point “1” is also

explained by Duong et al. as follows. Based on the 1-D bonded joint theory (see

Chapter 2), using typical values for the adhesive parameters and the above material

properties and thicknesses for the skin and patch, the length of the load transfer zone in

this case is calculated to be about 4mm. The stresses near the load transfer load zone

could not be predicted with sufficient accuracy by the present analytical method unless

the overall dimensions of the patch and the damage size are much larger than the length

of the load transfer zone. With the dimension of the patch three times larger than the

damage size, the stress prediction at point “3” is therefore expected to be more accurate

than that at point “1”. It remains now to explain the high stress results of the analytical

method at point “1” in comparison with those from the FE method. The stiffness of the

structure inside the damaged area in the analytical model is stiffer than its actual state

since the damaged skin and patch are assumed to act as one piece. Thus, more loads

are attracted to the damaged area than in reality, and the resulting stresses at point “1”

higher than FE results. However, stresses near the middle of the damaged skin are only

slightly higher than the corresponding FE results, which are apparently unaffected by

the “edge” effect as expected.

6.2.3 Formulas for a special case of an elliptical isotropic patch
with a Poisson’s ratio same as skin

For elliptical patches with the Poisson’s ratio same as that of the skin, simple formulas

similar to those given by Hart-Smith and Duong (2005) can be deducted from the above

solution procedure. It should be remembered that the formulas given in the cited reference

were derived by a different method than the equivalent inclusion method. However, the

latter method is quite cumbersome since it requires the displacement solution of a skin

with an elliptical hole and that of an elliptical plate, and therefore it will not be discussed

in this book.
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Similar to the results derived in Chapter 3, the stresses �
I�stage I�
ij �0� in the inhomogene-

ity of the stage I problem and the corresponding skin stresses underneath the patch,

i.e., �
s�stage I�
ij �0� (denoted by �0x and �0 for the 11- and 22-stress components,

respectively), can be obtained from the equivalent inclusion method outlined in

Section 6.2.1 as

�
I�stage I�
11 �0�= ��22 �1+S�

Z

{
S

[
1−�s−2�s

A

B

]

+�
[
�1+S�

(
3+2

A

B

)
+1+�sS+2

B

A

]}

�
I�stage I�
22 �0�= ��22 �1+S�

Z

{
�1+S�

(
3+2

B

A

)
+1+�sS+2

A

B

+ � ·S
(
1−�s−2�s

B

A

)}

(6.9)

�0x = �
s�stage I�
11 �0�= ��22

Z

{
S

[
1−�s−2�s

A

B

]

+�
[
�1+S�

(
3+2

A

B

)
+1+�sS+2

B

A

]}

�0 = �
s�stage I�
22 �0�= ��22

Z

{
�1+S�

(
3+2

B

A

)
+1+�sS+2

A

B

+� ·S
(
1−�s−2�s

B

A

)}

(6.10)

where

�
I�stage I�
ij �0�= �1+S� � s�stage I�

ij �0� (6.11)

or

�
I�stage I�
11 �0�= �1+S��0x

�
I�stage I�
22 �0�= �1+S��0

(6.12)

where

Z = 3 �1+S�2 +2 �1+S�
(
B

A
+ A

B
+�sS

)
+1−�2s S2

�= ��11

��22

(6.13)
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S is the patch stiffness to skin stiffness ratio, i.e., S = E′
ptp

E′
sts

= Eptp
Ests
( E′

s
p = Es
p
1−�2s
p ( � is

again the Poisson’s ratio; A and B are minor and major axes of the elliptical patch; � is

the biaxial stress ratio; and the subscript p or s again denote patch and skin, respectively.

Furthermore, the skin stress concentration factor near the tip of the patch’s edge is

found to be

Kt =
�

s�stage I�
22 �0
 ±B+�

��22

= �1+S� �0

��22

(6.14)

In contrast, the skin stresses near the bottom of a grind-out cavity and around the

damage edge are obtained from a stage II analysis. Since stage II problem is itself

also an inhomogeneity problem, one can use the above explicit results but with minor

modifications for a stage II analysis by noting the similarities and differences between

stage I and II problems as follows. First, as indicated in Figure 6.1(c), the far-field stress

in the stage II problem is given by

�
�stage II�
�ij = � I �stage I�

ij �0� · ts
ts+ tp

(6.15)

which upon substitution of Equation (6.12) for �
I�stage I�
ij �0� results in

�
�stage II�
�11 = �1+S��0x ·

ts
ts+ tp

�
�stage II�
�22 = �1+S��0 ·

ts
ts+ tp

(6.16)

Second, since S is defined in the first stage problem as

S = E′
ptp

E′
sts

= E′
ptp+E′

sts

E′
sts

−1

= stiffness of inhomogeneity

stiffness of base material or stiffness of material outside inhomogeneity
−1

(6.17)

a similar but new stiffness ratio for the stage II problem will be defined as

Scorro =
E′

str +E′
ptp

E′
sts+E′

ptp
−1=− E′

s�ts− tr�
E′

sts+E′
ptp

=− ts− tr
�1+S� ts

(6.18)

where tr is the remaining or minimum skin thickness, �ts− tr� is the depth of a grind-out.

It is worthy to note from the above equation that Scorro has a negative value (Hart-Smith

and Duong, 2005). Finally, the aspect ratio of the inhomogeneity in a stage II analysis

is now the aspect ratio of a grind-out cavity, i.e., b/a.
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With the above similarities and differences in mind, the stresses of the corroded

skin–patch combination inside the grind-out cavity can be evaluated similarly using

Equation (6.9) with �
�stage II�
�ij 
 Scorro, and b/a in place of �

�stage I�
�ij 
 S, and B/A.

This evaluation leads to the following results:

�
I�stage II�
11 �0�= �

�stage II�
�22 �1+Scorro�

Zcorro

{
Scorro

[
1−�s−2�s

a

b

]

+�corro
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�1+Scorro�

(
3+2

a

b

)
+1+�sScorro+2

b

a

]}

�
I�stage II�
22 �0�= �

�stage II�
�22 �1+Scorro�

Zcorro

{
�1+Scorro�

(
3+2

b

a

)
+1+�sScorro

+2
a

b
+ �corro ·Scorro

(
1−�s−2�s

b

a
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(6.19)

where

Zcorro = 3 �1+Scorro�2+2 �1+Scorro�
(
b

a
+ a

b
+�sScorro

)
+1−�2s S2corro

�corro =
�
�stage II�
�11

�
�stage II�
�22

= �0x

�0

(6.20)

Due to the rigid bond assumption, strains of the skin, patch, and skin–patch combination

inside the grind-out cavity will be the same. The stresses �
s�stage II�
ij �0� in the skin inside

the grind-out cavity then can be obtained as

�
s�stage II�
ij �0�= E′

s ·sij �0�= E′
s ·I�stage II�

ij �0�= E′
s ·

�
I�stage II�
ij �0�(

E′
str +E′

ptp
)
/
(
ts+ tp

) (6.21)

where �E′
str+E′

ptp�/�ts+ tp� is the effective modulus of the corroded skin–patch combi-

nation inside a grind-out cavity. Substituting Equation (6.19) for �
I�stage II�
ij �0� into (6.21)

and subsequently (6.16) for �
�stage II�
�ij into the resulting equation and noting 1+Scorro =

�E′
str +E′

ptp�
/
�E′

sts+E′
ptp� and 1+S = �E′

sts+E′
ptp�
/
E′

sts yield

�cx = � s�stage II�
11 �0�= �0

Zcorro

{
�0x

�0

·
[
�1+Scorro�

(
3+2

a

b

)
+1+�sScorro+2

b

a

]

+Scorro
(
1−�s−2�s

b

a

)}
(6.22)

�c = � s�stage II�
22 �0�= �0

Zcorro

{
�1+Scorro�

(
3+2

b

a

)
+1+�sScorro

+ 2
a

b
+ �0x

�0

·Scorro
(
1−�s−2�s

b

a

)}
(6.23)
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The 22-component stress in the patch at its center then becomes

�
p

22 �0�= �c

(
E′

p

E′
s

)
(6.24)

where �c is given by Equation (6.23) above.

On the other hand, the stresses in the patch–skin combination near the damage edge are

determined from Equations (6.5) and (6.6) with �
�stage II�
�ij given by (6.16) as

�
I�stage II�
11

(
0
 ±b+)=(�0x �1+S�

ts
ts+ tp

−� I�stage II�
11 �0�

)
·
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1+2

b
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)
+� I�stage II�

11 �0�

−
(
�0 �1+S�
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ts+ tp

−� I�stage II�
22 �0�

)

�
I�stage II�
22

(±a+
 0)=(�0 �1+S�
ts

ts+ tp
−� I�stage II�

22 �0�
)
·
(
1+2

a

b

)
+� I�stage II�

22 �0�

−
(
�0x �1+S�

ts
ts+ tp

−� I�stage II�
11 �0�

)

(6.25)

where only the 22-component stress at the left or right edge of the grind-out cavity and

the 11-component stress at tip edge of the cavity are given since similar to the results of

stress concentrations for a hole, they are the only stress components which may become

critical at those locations. �
I�stage II�
ij �0� in Equation (6.25) can be expressed in terms of

skin stresses at the bottom of a grind-out cavity by rearranging Equation (6.21) and

noting �
s�stage II�
11 �0�≡ �cx and �

s�stage II�
22 �0�≡ �c, i.e.,

�
I�stage II�
11 �0�= �cx

E′
s

(
E′

str +E′
ptp
)

ts+ tp

�
I�stage II�
22 �0�= �c

E′
s

(
E′

str +E′
ptp
)

ts+ tp

(6.26)

The skin stresses near the damage edge are finally derived based on a rigid bond

assumption between skin and patch outside the cavity region as

� s
11

(
0
 ±b+)= E′

s ·s11
(
0
 ±b+)= E′

s ·I�stage II�
11

(
0
 ±b+)

= E′
s ·

�
I�stage II�
11 �0
 ±b+�(

E′
sts+E′

ptp
)
/
(
ts+ tp

)
� s
22

(±a+
0)= E′
s ·s22

(±a+
0)= E′
s ·I�stage II�

22

(±a+
 0)

= E′
s ·

�
I�stage II�
22 �±a+
 0�(

E′
sts+E′

ptp
)
/
(
ts+ tp

)

(6.27)
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which upon substitution of Equation (6.25) for �
I�stage II�
11 �0
 ±b+� and � I�stage II�

22 �±a+
 0�
and (6.26) for �

I�stage II�
ij �0� into the resulting Equation yield

� s
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0
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+ �cx

E′
s

(
E′

str +E′
ptp
)

ts+ tp

−
(
�0 �1+S�

ts
ts+ tp

− �c

E′
s

(
E′

str +E′
ptp
)

ts+ tp

)}
· E

′
s

(
ts+ tp

)
E′

sts+E′
ptp

� s
22

(±a+
 0)=
{(
�0 �1+S�

ts
ts+ tp

− �c

E′
s

(
E′

str +E′
ptp
)

ts+ tp

)
·
(
1+2

a

b

)

+ �c

E′
s

(
E′

str +E′
ptp
)

ts+ tp

−
(
�0x �1+S�

ts
ts+ tp

− �cx

E′
s

(
E′

str +E′
ptp
)

ts+ tp

)}
· E

′
s

(
ts+ tp

)
E′

sts+E′
ptp

(6.28)

6.3 General Solution of Polygon-Shaped Patches

In this section, the problem of an isotropic skin with an internal elliptical grind-out

repaired with a polygonal orthotropic patch is analyzed. The analytical method described

in Section 6.2 will be extended in this section to deal in particular with additional

complexities such as polygonal patch, a grind-out cavity with a spherical depth, and the

effects of thermal stresses due to curing and cruising. In addition, it was shown from

the 3-D FE study (Duong and Yu, 2002b) that the use of the inclusion analogy in a

stage II analysis as done in the solution procedure outlined in Section 6.2 may not yield

sufficiently accurate results for a repair problem of a very deep grind-out cavity in a

thick skin. It should be noted that the good agreement between analytical and FE results

was observed in Section 6.2.2 since the skin in the example illustrated in that section

is relatively thin (2mm) while the grind-out cavity is only 50% deep. The solution

procedure outlined in Section 6.2 is therefore modified here to improve the analyses of

deep cavities in a thick skin. However, as in Section 6.2, for simplicity, the analysis will

be conducted under plane stress assumption. As shown later in Section 6.3.2, the present

analysis will require a solution of a polygonal inhomogeneity with variable stiffness.

We therefore begin the development with the derivation of that solution.

6.3.1 Polygonal inhomogeneity with variable stiffness

Let us consider a problem of an infinite isotropic, linear elastic skin with the moduli C0
ijkl

containing a polygon-shaped inhomogeneity!with the elastic moduli CI
ijkl and subjected
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to an initial strain field 
�T�
ij . The infinite isotropic skin may be composed of two layers

of different isotropic materials. A strain field of �ij is applied to the skin at infinity.

When uniform stresses are prescribed at infinity, one can simply convert them to strains

using Hook’s law. To make this problem more generic than those already considered

in Chapter 4 (for the latter developments), both the skin and the inhomogeneity are

also subjected to an additional initial strain field 
�init�
ij . In contrast to 

�T�
ij , the latter

initial strain field is continuous across the inhomogeneity’s interface. Furthermore, the

present inhomogeneity is also (materially) inhomogeneous with its property varying as a

second-degree polynomial of spatial coordinates, i.e., the stiffness of the inhomogeneity

CI
ijkl can be represented by

CI
ijkl �x�= CI�min�

ijkl +CI�prime�
ijkl

(
x21+

x22
42

)
(6.29)

where C
I�min�
ijkl and C

I�prime�
ijkl are constant tensors, and4 is a constant scalar. For a materially

homogeneous inhomogeneity, i.e., an inhomogeneity with a spatially uniform material

property, C
I�prime�
ijkl = 0. The stresses in the inhomogeneity and in the region outside of

the inhomogeneity are given respectively by

� I
ij�x�=

⎧⎨
⎩
CI
ijkl

(
Ikl−�T�kl −�init�kl

)
inside !

C0
ijkl

(
Ikl−�init�kl

)
outside !

(6.30)

where Ikl is the strain field induced by the inhomogeneity and the far-field stresses, and

it will be determined by the equivalent inclusion method. To simplify the development

followed, the term CI
ijkl�

�T�
kl +�init�kl ) in Equation (6.30) will be expressed alternatively as

CI
ijkl

(

�T�
kl +�init�kl

)
= CI�min�

ijkl

(

�T��min�
kl +�init�kl

)
(6.31)

where 
�T��min�
ij is defined by


�T��min�
ij = CI�min�−1

ijkl CI
ijkl

(

�T�
kl +�init�kl

)
−�init�kl (6.32)

Substituting Equations (6.29) and (6.31) into Equation (6.30) yields

� I
ij�x�=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
I�min�
ijkl

(
Ikl−T�min�

kl −�init�kl

)
+CI�prime�

ijkl

(
x21+

x22
42

)
Ikl inside !

C0
ijkl

(
Ikl−�init�kl

)
outside !

(6.33)

As before, the stress and strain fields induced by an inhomogeneity-occupied region !
will be found from the solutions of an “equivalent” inclusion problem with a homoge-

neous material C0
ijkl and under the eigenstrain field ∗ij . Following the procedure given in
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Section 4.2.1 of Chapter 4 for a polygon-shaped inhomogeneity symmetric with respect

to both coordinate axes, by approximating ∗ij as a second-ordered polynomial of the

position coordinates with yet to be determined coefficients, i.e.,

∗ij = Fij+Fijklxkxl (6.34)

and by expanding the prescribed initial strain fields 
�T��min�
ij and 

�init�
ij into a Taylor

series, the equivalency condition requires that Fij and Fijkl must satisfy the following

system of linear equations (without summation on subscript �):
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��11F

′
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��22F
′
22 =−�C��11

(
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(
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)
−CI�min�

��11 
�T��min�
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��22 
�T��min�
220

1

2
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�2
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1

2
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�2
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��22 L22�0�
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1111−C0
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��22 �22 (6.35)
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where

�Cijkl = C0
ijkl−CI�min�

ijkl (6.36)

L���x�= S��11�x�F
′
11+S��22�x�F ′

22+S��1111�x�F ′
1111+S��1122�x�F ′

1122

+S��2211�x�F ′
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F ′
ij = Fij+�T��min�

ij0

F ′
ijkl = Fijkl+�T��min�

ijkl (6.38)

��
�= 1
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�T��min�
ij0 and 

�T��min�
ijkl are the constant and quadratic terms in the Taylor series of 

�T��min�
ij ,

respectively; similarly, 
�init�
ij0 and 

�init�
ijkl are the constant and quadratic terms in the Taylor

series of 
�init�
ij . In Equation (6.37), Sijkl�x� and Sijklmn�x� are again the Eshelby tensors

which can be evaluated for any polygon-shaped inclusion by using the algorithmic

approach outlined in Section 4.2.2, and all notations used in Section 4.2.1 are also

retained here. It is worthy to note that Equations (6.35) and (6.37) are quite similar to

Equations (4.10) and (4.11), and (4.43) and the second equation of (4.44).

Once the coefficients F ′’s, thus F ’s and ∗ij , are determined, the elastic fields in the

inhomogeneity problem can be obtained as

Iij = Hij = SijklFkl+SijklmnFklmn+�ij (6.39)

� I
ij�x�=

{
C0
ijkl�

H
kl−∗kl−Tkl−�init�kl � inside !

C0
ijkl

(
Hkl−�init�kl

)
outside !

(6.40)

which are similar to Equations (4.45) and (4.46) except for the additional terms 
�init�
kl and

�ij appearing, respectively, in Equations (6.39) and (6.40) due to the presence of the

far-field-applied strains and the continuous initial strain field as specified in the problem

statement. It should be remembered that Hkl is the strain solution of the homogeneous

(inclusion) problem.

6.3.2 Repair over an elliptical grind-out

Consider an isotropic skin with an internal elliptical grind-out cavity of a spherical

depth repaired with a polygonal composite patch. The skin is subjected to the remote

stresses ��ij as shown in Figure 6.4 with the dominated stress component being in the

x2-direction. The bonded skin also assumes to be subjected to a uniform temperature

change �T and/or to a thermal cycle associated with curing of the adhesive. This

problem will be analyzed under the same assumptions as in Section 6.2.2 except that

the grind-out cavity now can have a spherical depth as in most realistic repairs and the

patch is orthotropic. The rigid bond assumption is quite reasonable for stage I analysis

of most common repair configurations; however, it may not be appropriate for stage

II unless the cavity is filled with a very stiff or rigid material or for shallow cavities

in a thin skin. For an unfilled cavity or a cavity being filled with a soft material in a

relatively thick skin, this last assumption must be relaxed in the stage II analysis. It is

worthy to note that the results from the present analytical method will be less accurate

near structural discontinuities such as near the edge of the patch or grind-out cavity,

where significant (out-of-plane) shear strains occur in the adhesive rather than none as

in the rigid bond assumption.

Two-stage analysis procedure

As before, the analysis is divided into two stages as indicated in Figure 6.1. However,

for use in the future development, the skin thickness profile in the grind-out cavity needs
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σ∞ij

2

Fig. 6.4. Geometry of a bonded repair over an elliptical grind-out cavity. Numbers 1–5 indicate

critical stress locations, which are of primary interest in the design.
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tr

Rc
Rc

a

r

2Rc − r 2
2Rc − r 2Rc −

Fig. 6.5. Detailed geometry of a cross section of a skin containing a spherical deep grind-out

cavity. In the figure, a is the minor axis of the ellipsoidal cavity as shown in Figure 6.4.

to be determined first from the geometry. An expression for a skin thickness profile in

the grind-out cavity is thus derived here. Consider a cross section of a grind-out cavity

as shown in Figure 6.5. It is clear from Figure 6.5 that a radius of curvature of the

cavity and the skin thickness profile in the cavity as determined from the geometry are

given by

Rc =
�ts− tr�2+a2
2 �ts− tr�

(6.41)

ts-inside�r�= tr +Rc−
√
R2

c − r2 0 ≤ r ≤ a (6.42)
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where ts and tr are the full and the minimum remaining thickness of the skin, a is

a maximum (in-plane) radius of the grind-out as shown in the figure, and r is the

radial distance from the center of a cavity. By expanding the expression given in

Equation (6.42) into Taylor series, the skin thickness profile then can be approximated

by the second-degree polynomial of r as

ts-inside �r�≈ ts-inside �0�+ r ·
dts-inside
dr

�0�+ 1

2
r2 · d

2ts-inside
dr2

�0�

ts-inside�r�= tr +
1

2

(
r2

Rc

) (6.43)

The skin thickness profile has been derived so far for a cross section. By assuming that

the thickness profile for an ellipsoidal grind-out cavity is governed by the same relation

as that given in (6.43), then

ts-inside�x1
 x2�= tr +
1

2Rc

(
x21+

x22
42

)
(6.44)

where 4 is an aspect ratio of an elliptical grind-out, i.e., 4= b/a. It should be noted that

for a circular grind-out cavity �4 = 1�, Equation (6.44) implies that the skin thickness

profile in the cavity is axisymmetric. With the thickness profile of the skin inside the

cavity having been determined, it is ready now to proceed with the first- and second-stage

analyses.

Stage I analysis In a first stage, an infinite skin reinforced by a polygonal composite

patch under a prescribed far-field stress and thermal field is analyzed using the inclusion

analogy, without considering the grind-out cavity. Stresses around the patch and inside

the patched area at the center of the prospective grind-out location are calculated. Since

the patch is considered as an integral part of a skin in the analysis, a patched region is

treated as a polygonal inhomogeneity. This problem had been solved in Section 4.2.3

under far-field stresses and in Section 4.2.4 under thermal loads. Thus, the solution of the

present problem can be obtained by linear superposition of the individual contribution

due to the far-field stress and due to the thermal load alone. However, it also can be

obtained directly from the process outlined in Section 6.3.1 by noting the following

relationships:

CI
ijkl = CI�min�

ijkl

C
I�prime�
ijkl = 0


�T�
ij = �T��min�

ij


�init�
ij = 0

(6.45)

where C
I�min�
ijkl and 

�T��min�
ij are evaluated using the formulas given by

Equations (4.31)–(4.33) and the second equation of (4.41) with the full skin thick-

ness ts. Moreover, 
T�p�
ij appearing in a second equation of (4.41) is either defined by
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Equation (4.36) or (4.40), depending on the type of thermal loading: due to a uniform

operating temperature change or due to curing of the adhesive. Under these circum-

stances, Equation (6.35) in Section 6.3.1 will reduce identically to Equation (4.43) in

Chapter 4 in the absence of the far-field-applied strains. It should be noted that as before

the thickness of the inhomogeneity in the stage I analysis has been chosen arbitrarily

the same as the full skin thickness ts. Also, like before, for future discussion, stresses

at the center of inhomogeneity determined from the present analysis will be denoted by

�
I�stage I�
ij �0�.

Stage II analysis As done in Section 6.2.2, in the second stage, a patch is assumed

to be infinite and an integral part of a skin. Stage II analysis then involves solving a

problem of an infinite fully patched skin containing an embedded elliptical grind-out

cavity ! as shown in the last picture of Figure 6.1. In addition, the patch layer of

the skin–patch combination is also prescribed with an initial strain field 
�T��p�
ij . Explicit

formulas for 
�T��p�
ij associated with two common types of thermal loading are given

before by Equations (4.36) and (4.40).

In Section 4.2.4, it was shown that due to the initial strain 
�T��p�
ij , using the second

equation of (4.41), the bi-layer of patch–skin combination will be under an “effective”

initial strain given by


�T�
ij = tp

tI
CI−1
ijkl C

p

klmn
�T��p�
mn (6.46)

where CI
ijkl and tI are the elasticity tensor and the “effective” thickness of the patch–skin

combination, C
p

ijkl is the elasticity tensor of the patch, and the superscript −1 denotes the

inverse. CI
ijkl of the patch–skin combination can be evaluated using Equations (4.31)–

(4.33), which also can be rewritten in a compact notation as

CI
ijkl =

ts
tI
Cs
ijkl+

tp

tI
C

p

ijkl (6.47)

Since regions both inside and outside the damaged area of the current stage II problem

are bi-layers of patch–skin combination, due to 
�T��p�
ij they also will be under similar

“effective” initial strains. These “effective” initial strains will be derived below for the

present analysis.

As detailed later, the fully patched skin of the stage II problem is divided into two

separated regions: inside and outside the elliptical grind-out cavity !, and each region

is itself a bi-layer of patch–skin combination which is described with different elastic

moduli and different constitutive relation. The “effective” initial strains due to 
�T��p�
ij in

the patch layer for these two regions can be derived by using Equation (6.46) as


�T��outside�
ij = tp

tp+ ts
C

0�stage II�−1

ijkl C
p

klmn
�T��p�
mn outside ! (6.48)


�T��inside�
ij = tp

tp+ ts
C

I�stage II�−1

ijkl C
p

klmn
�T��p�
mn inside ! (6.49)
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where C
0�stage II�
ijkl and C

I�stage II�
ijkl denote the elasticity tensors of the regions outside and

inside !, respectively. Expressions for C
0�stage II�
ijkl and C

I�stage II�
ijkl will be defined in the

paragraphs below. In deriving Equations (6.48) and (6.49), the “effective” thicknesses

of the patch–skin combination, i.e., tI in Equation (6.46), inside and outside of ! have

been chosen to be the same and equal to tp + ts. With the initial strains having been

determined, the stage II problem is then fully described.

There are two different cases that will be considered for stage II analysis. In the first

case, the cavity assumes to be filled with a rigid material so that the patched skin inside

the grind-out-cavity region is again modeled as an (soft) inhomogeneity. The second

case on the other hand deals with an unfilled cavity or a cavity being filled with a

soft material. The analysis for the first case will be delineated first using an inclusion

analogy.

Case 1: Cavity filled with rigid material

In order to use solutions developed in Section 6.3.1 for stage II, the patch material must

now assume to be isotropic so that the fully patched skin region outside the grind-out

cavity is isotropic as required by the formulation given in that section. The effect of

neglecting patch orthotropy during stage II analysis is found to be small as illustrated

later through the example problems. Using the same notation as in Section 6.3.1, from

Equation (6.47), the elasticity tensor for the fully patched skin outside of the elliptical

grind-out region is given by

C
0�stage II�
ijkl = ts

ts+ tp
Cs
ijkl+

tp

ts+ tp
C

p

ijkl (6.50)

where the “effective” thickness of the patch–skin combination, i.e., tI in Equation (6.47),

outside ! has been chosen to be equal to tp+ ts, as in Section 6.2.2. It should be remem-

bered that C
p

ijkl is calculated based on the assumption that the patch is isotropic with a

modulus and Poisson’s ratio equal to the principal modulus E
p

22 and �
p

22, respectively,
3

and the rest have been defined previously. Furthermore, the constitutive relation for the

fully patched skin outside the grind-out region is given by

�
I�stage II�
ij = C0�stage II�

ijkl

(

I�stage II�
kl −�T��outside�kl

)
outside ! (6.51)

where 
I�stage II�
kl is the strain field induced by the grind-out cavity and the far-field

stresses, which is yet to be determined using method outlined in Section 6.3.1; 
�T��outside�
kl

and C
0�stage II�
ijkl have been previously defined by Equations (6.48) and (6.50). Next, the

remote strain 
�stage II�
�kl must be determined. 

�stage II�
�kl is determined from the stresses

�
I�stage I�
ij �0� obtained from stage I analysis as follows. As shown in Figure 6.1, the

stresses
ts

ts+tp�
I�stage I�
ij �0� apply at infinity in stage II. Since the strain field 

I�stage II�
kl

3Because of this assumption, C
p

ijkl in stage II in general will be different from that in stage I.
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induced by the cavity and far-field stresses must approach the constant remote strain

field 
�stage II�
�kl at infinity, therefore, for points at infinity, Equation (6.51) should read

�
I�stage II�
ij ���= ts

ts+ tp
�

I�stage I�
ij �0�= C0�stage II�

ijkl

(

�stage II�
�kl −�T��outside�kl

)
(6.52)

From this


�stage II�
�ij −�T��outside�ij = ts

ts+ tp
C

0�stage II�−1

ijkl �
I�stage I�
kl �0� (6.53)

It remains now to derive the elasticity tensor and stress–strain relation for a patched

skin inside a grind-out cavity. Similar to the stage I analysis, this inside region will

be modeled also as an elliptical inhomogeneity. By substituting Equation (6.44) for the

skin thickness ts-inside inside ! into Equation (6.47) and choosing the effective thickness

of the patch–skin combination equal to tp + ts, the elasticity tensor for the elliptical

inhomogeneity can be expressed as

C
I�stage II�
ijkl = CI�min��stage II�

ijkl +CI�prime�
ijkl

(
x21+

x22
42

)
(6.54)

where

C
I�min��stage II�
ijkl = tr

ts+ tp
Cs
ijkl+

tp

ts+ tp
C

p

ijkl (6.55)

C
I�prime�
ijkl = 1

2Rc

(
ts+ tp

)Cs
ijkl (6.56)

Similar to Equation (6.51), the constitutive relation for the inhomogeneity will take the

following form:

�
I�stage II�
ij = CI�stage II�

ijkl

(

I�stage II�
kl −�T��inside�kl

)
inside ! (6.57)

where perhaps it needs to recall that 
�T��inside�
kl is given by Equation (6.49). From Equa-

tion (6.49), it is clear that by defining 
�T��inside−min�
ij as


�T��inside−min�
ij = tp

ts+ tp
C

I�min��stage II�−1

ijkl C
p

klmn
�T��p�
mn (6.58)

it follows that

C
I�min��stage II�
ijkl 

�T��inside−min�
kl = CI�stage II�

ijkl 
�T��inside�
kl (6.59)

since they are both equal to
tp

tp+tsC
p

ijkl
�T��p�
kl . Substituting Equations (6.54) and (6.59) into

Equation (6.57) yields

�
I�stage II�
ij = C

I�min��stage II�
ijkl

[(

I�stage II�
kl −�T��outside�kl

)
−
(

�T��inside−min�
kl −�T��outside�kl

)]

+CI�prime�
ijkl

(
x21+

x22
42

)

I�stage II�
kl inside ! (6.60)
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By comparing Equations (6.60) and (6.51) with Equation (6.33) in Section 6.3.1, it is

clear that the present stage II problem can be solved by the method outlined in that

section with all parameters used there being related to those derived here as follows:

C0
ijkl = C0�stage II�

ijkl

C
I�min�
ijkl = CI�min��stage II�

ijkl

C
I�prime�
ijkl = CI�prime�

ijkl

�ij = �stage II�
�ij


�init�
ij = �T��outside�ij


�T��min�
ij = �T��inside−min�

ij −�T��outside�ij

(6.61)

where each term in the right-hand side of these equations, except for the last equation

then a first term, has been defined earlier throughout this section by Equations (6.50),

(6.55), (6.56), (6.53), (6.48), and (6.58), respectively. With these, the strain field 
I�stage II�
ij

induced by the inhomogeneity and thus the stress field �
I�stage II�
ij can be solved by the

solution procedure outlined in Section 6.3.1. Similar to Equations (4.47), stresses in the

skin are finally given by

� s
ij =
⎧⎨
⎩
Cs
ijkl

(
C

I�stage II�−1

klmn � I�stage II�
mn +�T��inside�kl

)
inside !

Cs
ijkl

(
C

0�stage II�−1

klmn � I�stage II�
mn +T�outside�kl

)
outside !

(6.62)

while stresses in the patch are

�
p

ij =
⎧⎨
⎩
C

p

ijkl

(
C

I�stage II�−1

klmn � I�stage II�
mn +�T��inside�kl −�T��p�kl

)
inside !

C
p

ijkl

(
C

0�stage II�−1

klmn � I�stage II�
mn +T�outside�kl −�T��p�kl

)
outside !

(6.63)

Case 2: Unfilled cavity

Let us consider now the case of patching an unfilled cavity. It turns out that the patching

analysis for an unfilled cavity can proceed in a similar manner as that for the first case.

In the absence of any filler in the cavity, the skin and the patch expect to be strained

differently inside the grind-out region. Furthermore, the stresses in the patch are also

expected to be nearly constant inside the grind-out region and approximately equal to

those just outside the cavity because no load transfer between the skin and the patch

can take place inside the cavity. In order to use the inclusion analogy and thus the

solution procedure outlined for case 1, one must assume that the patch is subjected to

an additional unknown initial strain field
(

�R��p�
ij

)
inside the grind-out region besides

those mentioned in the first case. Physically 
�R��p�
ij are components of the strain field in
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the patch inside the grind-out region relative to that in the skin. When the skin and the

patch are equally strained as previously assumed in the first case, components of 
�R��p�
ij

equal to zero. Since the present stage II problem involves very little in-plane shear, for

simplicity, the component 
�R��p�
12 is assumed to be zero. The unknown strain components


�R��p�
11 and 

�R��p�
22 for the present case are then determined by imposing the following

stress continuity conditions on the patch:

�
p

11

∣∣
center

= �
p

11

∣∣
top edge

�
p

22

∣∣
center

= �
p

22

∣∣
right edge

(6.64)

or

f = �
p

11

∣∣
center

− �
p

11

∣∣
top edge

= 0

g = �
p

22

∣∣
center

− �
p

22

∣∣
right edge

= 0

(6.65)

These two conditions will be explained as follows. As mentioned earlier in beginning

of this part, stresses in the patch inside the grind-out region are expected to be nearly

constant and approximately the same as those just outside and near the edge of the

cavity. At the top edge of the cavity (point 3 in Figure 6.4), the radial stress (or �22

component in our x1–x2 coordinate system) in the skin varies significantly through the

thickness since it must diminish near the top free surface where there is a hole but

maintains high value near the bottom free surface. In addition, a significant out-of-plane

shear also occurs there in the adhesive especially for the case the dominant load is in

the x2-direction as shown in Figure 6.4; ��A�x3−x2 is therefore expected to be very high. On

the other hand, the tangential stress (or �11� in the skin at that location is quite uniform

through a thickness while ��A�x3−x1 is low. The stress component �11 in the patch at the

center of the grind-out is therefore assumed to be the same as that at point 3. In contrast,

at the right or left edge of the grind-out cavity (point 2 in Figure 6.4), the tangential

stress (or �22 component in our x1–x2 coordinate system) in the skin is more uniform

through thickness while the out-of-plane shear component ��A�x3−x2 in the adhesive there

is low. Thus, stress component �22 in the patch at the center of the grind-out is more

accurately assumed to be the same as that at point 2.

It remains now to outline a procedure to determine the unknown initial strain components


�R��p�
11 and 

�R��p�
22 , which yield stresses in the patch satisfying Equation (6.65). It is clear

that for a given 
�R��p�
ij , one can follow the solution method outlined above for case 1

to obtain stresses and strains in the skin and patch since everything will be the same

as before except that the initial strain field prescribed in the patch inside the cavity

region now is 
�R��p�
ij +�T��p�ij rather than 

�T��p�
ij inside the grind-out region. In particular,

the stage II problem with the additional initial strain 
�R��p�
ij prescribed in the patch in

the grind-out region can be solved by the method outlined in Section 6.3.1 with all

parameters defined in Equation (6.61) remaining the same except for 
�T��min�
ij , which

must be modified as


�T��min�
ij = �T��inside−min�

ij −�T��outside�ij +�R��inside−min�
ij (6.66)
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where 
�R��inside−min�
ij is given by a similar expression as (6.58) but with 

�T��p�
ij being

replaced by 
�R��p�
ij . In addition, the expression for the stresses in the patch inside the

grind-out region given by the first equation of (6.63) also needs to be changed to

�
p

ij = Cp

ijkl

(
C

I�stage II�−1

klmn � I�stage II�
mn +�T��inside�kl −�T��p�kl −�R��p�kl

)
inside ! (6.67)

By linearizing Equation (6.65) as

f
(

�R��p�
11 = 0( 

�R��p�
22 = 0

)
+ �f

�
�R��p�
11

∣∣∣∣∣
0


�R��p�
11 + �f

�
�R��p�
22

∣∣∣∣∣
0


�R��p�
22 = 0

g
(

�R��p�
11 = 0( 

�R��p�
22 = 0

)
+ �g

�
�R��p�
11

∣∣∣∣∣
0


�R��p�
11 + �g

�
�R��p�
22

∣∣∣∣∣
0


�R��p�
22 = 0

(6.68)
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p
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∣∣
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− �
p

11

∣∣
top edge

g = �
p

22

∣∣
center

− �
p

22

∣∣
right edge
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where f and g are scalar functions of the parameters 
�R��p�
11 and 

�R��p�
22 , and the notation

�f

�
�R��p�
11

∣∣∣
0

means that the derivative �f

�
�R��p�
11

is evaluated at
(

�R��p�
11 = 0( 

�R��p�
11 = 0

)
; the

unknown initial strain components 
�R��p�
11 and 

�R��p�
22 can be solved by the following

simple steps. First, stage II problem is solved as in case 1 by assuming that 
�R��p�
ij = 0.

Second, f�0
 0� and g�0
 0� are evaluated via Equation (6.69) with stresses in the patch

inside and outside the cavity given, respectively, by Equation (6.67) and the second

equation of (6.63) and based on the stress solution obtained from the previous step.

In general, f�0
 0� and g�0
 0� will not equal zero as required by Equation (6.65).

Next, all first derivatives of f and g are evaluated, numerically using the finite differ-

ence scheme. In doing that, f�h1
 0�
 f�0
 h2�
 g�h1
 0�, and g�0
 h2� need to be

evaluated where h1 and h2 are small spaces between grid points in the 
�R��p�
11 –

�R��p�
22

domain spaces of functions f and g. Computations for all example problems presented

in this section are carried out with h1 and h2 chosen equal to

{
h1
h2

}
= 1

100

[
C

p

11 C
p

12

C
p

21 C
p

22

]−1 {
f �0
0�
g �0
0�

}
(6.70)

where C
p

ij is an element of the elasticity tensor of the patch in Voight (matrix) notation.

Thus, this numerical differentiation step for the derivatives of f and g will involve

solving stage II problem similar to the first case twice, first with
(

�R��p�
11 
 

�R��p�
22 
 

�R��p�
12

)
=

�h1
0
0� and then with
(

�R��p�
11 
 

�R��p�
22 
 

�R��p�
12

)
= �0
 h2
0�, where h1 and h2 are known

since they can be determined from Equation (6.70), and performing the finite differences.

With f�0
 0�
 g�0
 0�, and all first derivatives of f and g known, the unknown initial
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strain components 
�R��p�
11 and 

�R��p�
22 finally can be determined by solving the algebraic

Equation (6.68). Once 
�R��p�
11 and 

�R��p�
22 are determined, the stress and strain solutions

of stage II problem for the case of patching an unfilled cavity can be obtained in

a straightforward manner as in the first case of rigid filling except with a different

(known) initial strain field prescribed in the patch as mentioned in the beginning of this

paragraph.

Illustrative examples

To illustrate the method presented in this section, three examples taken out from the

paper by Duong and Yu (2002b) are considered here. Analytical predictions for these

three examples will also be compared with results from the FE method. In the first

example, a circular patch rigidly bonded over a circular grind-out cavity with a uniform

depth as shown in Figure 6.6 is considered. This example is used to validate the analytical

formulation. For that reason, the counterpart FE analysis for this example will also

involve similar simplified assumptions as those in the analytical model, which may not

realistically represent the actual repair. Realistic repairs will be discussed later in the

next two examples. The radii of the patch and the grind-out cavity are 38.1 and 12.7mm,

respectively. The whole patched skin is subjected to a uniform temperature change of

−100 C. Only thermal loading is considered here because a similar problem under a

purely mechanical loading had been presented in Section 6.2.2. The patch material is

linear elastic and isotropic. The material properties and thickness of the skin and the

patch are given below:

Skin:

Es = 72�4GPa
 �s = 0�33
 �s = 22�5E-6 per C full skin thickness ts = 5�08mm,

remaining skin thickness tr = 2�54mm.

Patch:

Ep = 186�2GPa
 �p = 0�21
 �p = 4�3E-6 per C
 tp = 0�79mm.

38.1 mm

12.7 mm

ΔT = –100 °C

5.08 mm

2.54 mm

0.79 mm

Patch

Grind-out cavity
filled with rigid
material

4

5

3

21

Fig. 6.6. Geometry of a repair problem with a circular isotropic patch under uniform temperature

change.
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Fig. 6.7. A mesh of a damaged skin used in the FE analysis of the repair problem with a circular

isotropic patch under uniform temperature change.

The FE analysis is carried out using MSC/NASTRAN code (2001) with the skin and

the patch each being modeled as a separate layer of (2-D) plane stress elements (see

Figure 6.7 for a typical mesh in a skin). Furthermore, the skin layer has different

thickness for regions outside and inside of the damaged area. Because the skin and the

patch are isotropic and also because of double symmetry of the repair, only stresses

in the y-component are reported here in Table 6.2. Corresponding FE results are also

given in the table for comparison. To ensure solution convergence, FE analyses had been

performed using first linear and then quadratic elements for the mesh shown in Figure 6.7.

From Table 6.2, analytical predictions agree very well with FE results as expected.

A second example involves a realistic bonded repair with an octagonal patch as illustrated

in Figure 6.8. The dimensions of the patch are also given in that figure. The skin

properties are the same as those in the first example. However, the grind-out cavity in

Table 6.2. Stress comparison between analytical predictions and FE results for an isotropic skin

containing a 2.54mm deep circular grind-out repaired with a circular orthotropic patch of 0.79mm

thickness. All stresses are in MPa.

Location Analytical FE (linear element) FE (quadratic element)

Skin Patch Skin Patch Skin Patch

1 53�2 −357�2 54�4 −354�4 54�5 −357�2
2 46�6 −372�3 48�2 −362�0 47�9 −369�6
3 34�1 −405�4 35�8 −399�2 35�0 −403�4
4 20�0 N/A 22�5 N/A 22�1 N/A
5 −20�1 N/A −18�3 N/A −20�0 N/A
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σ∞yy = 137.9 MPa

5

41 2

3

Patch

Uniform ΔT = –100 °C
Grind-out
cavity filled
with adhesive

127 mm

177.8 mm

45°

63.5 mm

Fig. 6.8. Geometry of a repair problem with an orthotropic octagonal patch under thermo-

mechanical loading.

the present example has a spherical depth with a minimum remaining skin thickness of

2.54mm. The patch is assumed to be orthotropic with its material properties given below:

Ex = 18�7GPa
 Ey = 193�1GPa
 �yx = 0�21
 �= 5�5GPa,

�x = 21�4E-06 per C
 �y = 4�3 E-06 per C
 tp = 0�79mm.

Two different loading conditions are considered in the second example. In the first

loading condition, the repaired skin is subjected to a uniform temperature change of

100 C as in the first example. On the other hand, a stress of 137.9MPa is applied to

the repaired skin at infinity in the second loading condition. Analytical predictions have

been made assuming a cavity with either uniform or spherical depth and with or without

filler. Analytical results for the second example are summarized in Table 6.3 along with

those from the FE method. Table 6.3(a) shows results of the stress component �22 in

the skin and patch due to thermal loading at various critical locations while Table 6.3(b)

is for mechanical loading. The letter (B) or (T) next to a numerical value listed in the

“FE” column of Tables 6.3(a) and 6.3(b) indicates a bottom or top surface of the skin

or patch where the reported stress value is approximately found. In the FE analysis, the

skin, patch and adhesive are all modeled using 8-node hexahedral solid elements with a

typical mesh given in Figure 6.9. Moreover, the cavity is also filled in with an adhesive

as normally done in practice. The bottom of the skin is restrained from an out-of-plane

�x3-� deflection. Typical values for shear modulus (0.455GPa) and thickness (0.127mm)

of the adhesive are used in the FE analysis. A very fine mesh is employed for regions

inside and around a cavity to enable to model the spherical surface of the cavity with a

great accuracy. Again FE analysis is carried out using MSC/NASTRAN (2001).

In contrast to the first example, stresses at critical locations from the FE method for

the present example show a considerable thickness variation. In general, stresses in the
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Table 6.3. Stress comparison between analytical predictions and FE results in x2-normal-component for an isotropic skin containing a 2.54mm deep

grind-out cavity, repaired with an octagonal orthotropic patch, under individual thermal and mechanical loading. All stresses are in MPa.

(a) Due to uniform temperature change of −100 C

Point Uniform depth
(rigidly filled)

Uniform depth
(unfilled)

Spherical depth
(rigidly filled)

Spherical depth
(unfilled)

FE

Skin Patch Skin Patch Skin Patch Skin Patch Skin Patch

1 38�6 −280�6 39�0 −283�5 39�6 −278�3 41�7 −294�6 (40.1) (B)
(43.6) (T)

�−259�2� (T)
�−268�9� (B)

2 36�8 −283�7 36�8 −283�5 31�4 −298�3 32�8 −294�6 (32.1) (T)
(34.0) (B)

�−270�3� (T)
�−272�3� (B)

3 24�7 −315�2 24�6 −315�8 27�0 −309�6 26�1 −312�1 (18.9) (T)
(27.0) (B)

�−263�4� (B)
�−285�4� (T)

4 19�4 N/A 19�4 N/A 19�4 N/A 19�4 N/A (21.0) (T)
(21.6) (B)

N/A

5 −15�2 N/A −15�2 N/A −15�2multicolumn1@ lN/A −15�2 N/A �−1�72� (T)
�−22�5� (B)

N/A

(b) Due to 137.9MPa far field stress

Point Uniform depth
(rigidly filled)

Uniform depth
(unfilled)

Spherical depth
(rigidly Filled)

Spherical depth
(unfilled)

FE

Skin Patch Skin Patch Skin Patch Skin Patch Skin Patch

1 145�8 375�8 146�4 371�4 149�2 384�2 157�2 323�0 (151.0) (B)
(164.8) (T)

(317.9) (T)
(320.6) (B)

2 144�3 372�8 143�5 371�3 119�3 306�6 125�6 322�8 (121.3) (T)
(126.2) (B)

(302.7) (T)
(306.1) (B)

3 93�4 245�4 93�1 244�1 100�8 260�2 97�0 251�5 (67.5) (T)
(100.5) (B)

(293.7) (B)
(297.9) (T)

4 117�5 N/A 117�5 N/A 117�5 N/A 117�5 N/A (115.6) (T)
(115.6) (B)

N/A

5 153�6 N/A 153�6 N/A 153�6 N/A 153�6 N/A (138.9) (T)
(160.5) (B)

N/A
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Fig. 6.9. A mesh of a damage skin used in FE analysis of a repair problem with an orthotropic

octagonal patch.

skin and patch predicted by four different analytical models are in very good agreement

with FE results at the center of the grind-out region for both loading conditions with the

unfilled, spherically deep cavity model shown to be the most superior model. At point 2

location, a uniformly deep cavity model with or without filler appears to over-predict a

skin’s stress there. This is expected since the latter analytical model has more material

being grinded out than that in the FE analysis so that more stress will diverge from

point 3 to point 2. It should be noted that since stresses in the skin at points 4 and 5

are computed from stage I analysis which is common to four analytical models, these

stresses are reported identically in Tables 6.3(a) and 6.3(b). Except for a patch’s stress

at location 3, the unfilled, spherically deep cavity model yields very accurate results

in comparison with FE method. The patch’s stress at point 3 for the second (purely

mechanical) loading condition is grossly underestimated in all analytical models. This

can be explained by the fact that the stress in the skin there varies significantly from 67.5

to 100.5MPa through thickness while all analytical models predict an average stress of

about 96MPa. The skin at point 3 therefore carries more loads in analytical models than

that in FE method, thus relieving some of the patch stress. Nevertheless, since the patch

from the design viewpoint is not critical there, the method developed in this section is

therefore considered to be good overall.

The last example is similar to a second example except for a much deeper grind-out

cavity. The minimum remaining depth in the grind-out cavity is 1.016mm. Results of the

stress component �22 in the skin and patch from the analytical method and from the FE

analysis are presented in Tables 6.4(a) and 6.4(b) for the thermal and mechanical loading

condition, respectively. From Tables 6.4(a) and 6.4(b), trends similar to those found in
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Table 6.4. Stresses comparison between analytical predictions and FE results for an isotropic skin containing a 4.06mm deep grind-out cavity,

repaired with an octagonal orthotropic patch, under individual thermal and mechanical loading.

(a) Due to uniform temperature change of −100 C

Point Uniform depth
(rigidly filled)

Uniform depth
(unfilled)

Spherical depth
(rigidly filled)

Spherical depth
(unfilled)

FE

Skin Patch Skin Patch Skin Patch Skin Patch Skin Patch

1 47�5 −258�8 48�4 −264�4 53�5 −244�4 62�5 −289�0 (62.1) (B)
(65.8) (T)

�−247�5� (T)
�−259�2� (B)

2 43�9 −264�8 43�9 −264�4 30�8 −300�1 35�0 −289�0 (35.6) (T)
(38.5) (B)

�−264�1� (T)
�−266�8� (B)

3 20�2 −326�7 19�7 −328�2 26�2 −311�9 23�1 −319�6 (12.8) (T)
(22.4) (B)

�−251�7� (B)
�−288�9� (T)

4 19�4 N/A 19�4 N/A 19�4 N/A 19�4 N/A (21.1) (T)
(21.6) (B)

N/A

5 −15�2 N/A −15�2 N/A −15�2 N/A −15�2 N/A �−1�72� (T)
�−22�5� (B)

N/A

(b) Due to 137.9MPa far field stress

Point Uniform depth
(rigidly filled)

Uniform depth
(unfilled)

Spherical depth
(rigidly Filled)

Spherical depth
(unfilled)

FE

Skin Patch Skin Patch Skin Patch Skin Patch Skin Patch

1 179�0 461�1 180�4 451�8 199�9 513�0 233�4 345�5 (236.5) (B)
(251.7) (T)

(346.8) (T)
(352.3) (B)

2 175�8 454�9 174�1 451�6 116�3 297�0 135�1 345�3 (133.8) (T)
(142.7) (B)

(344.1) (T)
(326.1) (B)

3 76�0 204�9 75�4 201�5 96�0 247�0 83�4 217�6 (43.5) (T)
(86.9) (B)

(308.9) (B)
(318.5) (T)

4 117�5 N/A 117�5 N/A 117�5 N/A 117�5 N/A (115.8) (T)
(115.8) (B)

N/A

5 153�6 N/A 153�6 N/A 153�6 N/A 153�6 N/A (138.7) (T)
(160.0) (B)

N/A
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a second example are observed for stresses in the skin and in the patch at locations 1–5,

and the unfilled, spherically deep cavity model again in general yields best results. For a

deep grind-out cavity, two important results are found from this example. First, a stress in

the skin at a center of a grind-out region could not be predicted with sufficient accuracy

using a uniformly deep cavity. This is due to omitting the effect of a local curvature at the

bottom of a cavity in that model and this effect becomes more pronounced for a deeper

cavity. Within that context, it is important to note that approximating a spherically deep

cavity by a uniformly deep cavity of the same volume will give erroneous results in the

skin’s stress at the center of the cavity. Using the constant volume approach, the cavity

will be much shallow than the one reported in Tables 6.3 and 6.4, which in turn will

reduce skin’s stress further and cause even a larger discrepancy in comparison with the

FE result. Secondly, the use of the original inclusion analogy without any modification

in a stage II analysis will not yield sufficiently accurate results for a realistic repair over

a very deep grind-out in a thick skin. In that case, the unfilled spherically deep cavity

model developed in this section should be used.

6.4 Summary

Analytical methods for analyzing a bonded repair over an elliptical cut-out or corrosion

grind-out cavity are presented in this chapter. These methods use eigenstrain theory and

a global-local approach that is similar to Rose’s two-stage analysis procedure for crack

patching. In general, analytical predictions agree well with results obtained from the full

3-D FE analyses at most critical locations under both mechanical and thermal loading.

However, for a relatively deep grind-out cavity, unless the rigid bond assumption is

relaxed in the stage II analysis, the analytical methods may give inadequate stress results

at the center of the grind-out region.



CHAPTER 7

Bond-Line Analysis at Patch Ends

7.1 Introduction

In Chapters 4 and 5, the peel and shear stresses in the adhesive of a bonded repair are

only calculated near the crack surfaces. Since these stresses may be also critical near

the end of the patch, an approximate method to estimate these stresses therefore will

be introduced in this chapter. As shown later in Sections 7.4 and 7.5, this approximate

method will utilize solutions delineated in Chapters 4 and 5 for two-dimensional (2-D)

inclusions and inhomogeneities and also the one-dimensional (1-D) solutions for bonded

joints and doublers. One-dimensional solutions for untapered joints and doublers had

been considered in Chapter 2. However, since the adhesive stresses in bonded patches or

doubler were normally peaked at the end of the overlap, which can cause failure of the

adhesive and compromise the performance of the bonded patches or doublers, bonded

patches or doublers are therefore usually tapered at their overlapped ends to reduce the

severity of these peaks. Thus, 1-D solutions for tapered doublers or tapered patches are

also of interest and they will be presented in Section 7.2. These 1-D solutions for tapered

patch and doubler are extended in Section 7.3 to include the effects of thermal mismatch

and adhesive plasticity. Finally, depending on whether the bonded patch is one-sided or

two-sided, the approximate method for estimating the adhesive stresses near the patch

edge will be described in details in Sections 7.4 and 7.5, respectively, for these two

configurations, following the work of Duong (2003a).

7.2 One-Dimensional Analysis of Tapered Patches and Doublers

Due to the mathematical complexity, no closed-form solution is available in the literature

for tapered patches or doublers. Numerical solutions are therefore sought for these

tapered patches and doublers. In the numerical approach, a set of differential equations

and boundary conditions is formulated with adherends modeled as classical beams, and

the solutions of these differential equations are obtained by direct numerical integrations.

248
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In a series of papers by Thomsen (1992), Thomsen et al. (1996), Mortensen and Thomsen

(1997, 2002), a unified approach for analyzing the variety of bonded joints and doublers

with and without tapered edges, and related problems using numerical integration method

was given. This unified approach was also accounted for the effect of a (materially)

nonlinear adhesive. However, it was limited to geometrically linear analyses of one-

sided doublers or one-sided patches. Duong (2006) has extended this unified approach

to include geometrically nonlinear analyses of the tapered joints and one-sided tapered

doublers or patches, following the Goland–Reissner (1944) two-step solution method.

Thus, the approach proposed by Duong for approximating the adhesive stresses in a

bond line of a tapered bonded joint or doubler will be given in this section. For clarity,

this approach will be demonstrated first for the case of a purely tensile load. Extension

of the approach to account for the effects of thermal mismatch and adhesive plasticity

will be described in Section 7.3.

7.2.1 Mathematical formulation and two-step solution method

Even though the approach presented here is so generic that it can be applied to a

variety of tapered bonded joints and doublers, however, for the present purpose, only

the formulation for a one-sided doubler and a two-sided doubler will be given here.

The approach follows the Goland–Reissner solution method for a single-lap joint and

involves a two-step procedure. The approach also allows for the analysis of tapered

bonded doublers with non-identical adherends. The approach is first delineated for a

tapered one-sided doubler as follows. In the first step of the procedure, the two adherends

(skin and doubler) are assumed to be rigidly bonded, and the (geometrically) nonlinear

moment distribution along the length of the joint is determined. Since the bending

moment solution in this step is relatively simple, it will be derived in closed form

using elementary functions. In the second step analysis, only the overlapped region of

the joint is considered with the bending moments obtained from the first step at the

end of the overlap prescribed as one of its boundary conditions. This latter problem is

then solved by using multi-segment method of integration (Kalnins, 1964). However, in

contrast to the original Goland–Reissner solution method, the second step analysis can

be conducted within both geometrically linear and geometrically nonlinear deformation

theory as detailed later.

For uniformity, the solution of a two-sided tapered doubler is also described within the

framework of the above approach even though the latter solution does not require a

geometrically nonlinear formulation nor step 1 of the above two-step solution procedure.

This is because due to the symmetry of the doubler joint with respect to a mid-plane

of a middle skin, the two-sided doubler configuration, within the one-dimensional beam

theory, will not exhibit any out-of-plane bending deformation and therefore results in a

trivially zero bending moment distribution along the joint.

7.2.2 Solution for nonlinear moment distribution along the joint

The equations governing the adhesive stresses require knowledge of the bending moment

at the ends of the overlap as boundary conditions. Therefore, the analysis starts with
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a solution for the nonlinear moment distribution along the joint. Consider a one-sided

tapered doubler and a two-sided tapered doubler in Figures 7.1 and 7.2, respectively,

under the in-plane tensile loads. The skin and doubler in each configuration are not

necessarily identical (balanced) and they can be a general laminate with different ply

materials, layups and thicknesses. The solution of a one-sided doubler will be delineated

first. Due to symmetry, only (left) half of the doubler configuration will be considered.

Figure 7.3 shows schematics of the analyzing model with separate coordinate system

used for each segment of the doubler configuration. The length of each segment is

denoted by �i.

P
P

Fig. 7.1. Geometry of a tapered one-sided doubler under in-plane tensile load.

P

P

Fig. 7.2. Geometry of a tapered two-sided doubler under in-plane tensile load.

P

C

x, x0

x1 x2… xN

l0 l1 l2 lN

w ′ = 0ˆ

w = 0ˆ

P

C

l0 l1 l2 lN

P

ê0 eNˆ

ˆ ˆ
V = 0

M = P ⋅ (eN – e0)

Fig. 7.3. Schematic representation of a tapered one-sided doubler for calculating the nonlinear

bending moment distribution. In the linear analysis, the bending moment at a middle of the overlap

can be determined just from the overall static equilibrium as shown in the inset figure.
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From moment equilibrium consideration, the moment distribution in each segment along

the joint is related to loads and displacements by

Mi =−P · ŵi−P �êi− ê0� (7.1)

where i = 0
 " " " 
 N( N is the number of segments (steps) in the overlapped region;

segment 0 (which corresponds to i = 0) is outside the overlap and consists of only the

skin; M is the bending moment; P is the axial tensile load applied at the ends of the

skin; ŵ is the transverse deflection; êi is the z-coordinate of the neutral axis of a beam

cross section of the segment i measured from the bottom surface of the skin. Because of

the rigid bond assumption, the skin and doubler in the overlapped region will be treated

as a single composite beam in this analysis step. It is worthy to note that the first term in

the right-hand side of Equation (7.1) represents the moment due to large deflections or

“beam column” effect while the second term denotes the moment associated with a load

path eccentricity due to the variation of the vertical position of the neutral axis along

the length of a doubler. For a laminated segment i
 êi and Mi are given respectively by

êi =
1

2

nply∑
k=1

(
C11
k

)
i

{
z2k
i− z2k−1
i

}
nply∑
k=1

(
C11
k

)
i

{
zk
i− zk−1
i

}
(7.2)

Mi =−Diŵ
′′
i �xi�

Di =
1

3

nply∑
k=1

(
C11
k

)
i

{(
zk
i− êi

)3− (zk−1
i− êi
)3} (7.3)

where
(
C11
k

)
i
is the “(1,1) element” of the elasticity matrix of the kth ply of the ith beam

segment, component (1,1) is along the length of beam, D is the flexural rigidity, zk and
zk−1 are z-coordinates of the top and bottom surface of the kth ply of the laminate, nply is
the number of plies of the laminated segment i, and the prime denotes the differentiation

with respect to the coordinate x. For a homogeneous and isotropic segment, êi = ti
2
and

Di = Et3i
12
, where ti is the thickness of ith segment. It should be noted that contributions

from both skin and doubler must be accounted for in the calculations of D and ê for any
segment inside the overlap.

Substituting Equation (7.3) into Equation (7.1) for Mi yields the following differential

equations for each segment i:

ŵ′′
i −

P

Di

ŵi =
P �êi− ê0�

Di

(7.4)

The solution of Equation (7.4) is given by

ŵi �xi�=W1i cosh ��ixi�+W2i sinh ��ixi�− �êi− ê0� (7.5)

where

�i =
√
P

Di

(7.6)
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W1i and W2i are unknown constants which must be determined from the boundary

conditions, and the first two terms in the right-hand side of Equation (7.5) represent the

homogeneous solution while the last term is the particular solution. The displacement

boundary condition at the right supported end and the symmetry condition at the middle

of the doubler configuration require that

ŵ= 0 at x = 0 or ŵ0 = 0 at x0 = 0 therefore W10 = 0 (7.7)

and the slope ŵ′ = 0 at x = �0+�1+ · · · +�N or ŵ′
N = 0 at xN = �N , thus,

�NW1N sinh ��N�N �+�NW2N cosh ��N�N �= 0 (7.8)

The displacement and slope continuity conditions at each segment junction also require

that

W1i cosh ��i�i�+W2i sinh ��i�i�−W1
i+1 = êi− êi+1

�iW1i sinh ��i�i�+�iW2i cosh ��i�i�−�i+1W2
i+1 = 0

(7.9)

Thus, Equations (7.7)–(7.9) provide a system of linear algebraic equations for deter-

mining the unknown constants W1i and W2i �i = 0
 1
 " " " 
 N�. Once these con-

stants are determined, the nonlinear bending moment at the end of the overlap is

found to be

ML =M0 �x0 = �0�=−�20D0 �W10 cosh ��0�0�+W20 sinh ��0�0�	 (7.10)

The first step analysis for a tapered bonded doubler will be concluded with the following

remarks:

(a) First, in this analysis step, the bending momentsMi �i= 0
 1
 " " " 
 N� and thusML

are defined with respect to the neutral axis of the composite beam section, which

varies along the joint due to the presence of the doubler and its multiple steps.

(b) Secondly, since the thin layer of adhesive will be modeled for in the second

analysis step, which thickness may not be an order of magnitude smaller than the

skin or doubler thickness, especially in a bonded composite repair, therefore, it

will be necessary to account for the effect of the adhesive layer in the calculations

of beam section properties such as êi and Di by including a small gap between

the two adherends in the overlapped region in these calculations.

(c) Finally, since the lengths of the first N −1 steps of the doubler, i.e., �1
 " " " 
 �N−1,

are normally small relative to �0 and �N , and the evaluations of hyperbolic func-

tions in Equation (7.5) will result in a large exponential number for a certain large

combinations of �0�0 and �N�N , which will cause an ill condition when solving

the system of the algebraic equations for the unknowns W1i and W2i, a special

caution therefore must be taken in dealing with those cases. For instance, by using

the transformed variables W ∗
10 = W10 · e−�0�0 and W ∗

20 = W20 · e−�0�0 for W10 and

W20, and expressing Equation (7.5) for the first segment in terms of these new

variables, the mentioned ill condition can be eliminated.
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In contrast to the one-sided doubler, the bending moment solution for a two-sided

doubler considered in Figure 7.2 is trivially equal to zero. This is due to the symmetry

condition of doubler configuration with respect to the mid-plane of skin so that within

the 1-D beam theory the transverse displacement is zero along the length of the joint,

i.e., ŵi = 0 �i= 0
1
 " " " 
 N�.

7.2.3 Solutions for peel and shear stresses in the adhesive

The Goland–Reissner analysis for the adhesive peel and shear stresses in a bonded single-

lap joint is based on the linear bending analysis of the overlap area of the joint, using their

nonlinear estimate for the bending moments in the adherends just outside the bonded

area from the first step rigid bond analysis as the key boundary conditions. This same

analysis technique will be used here, but slightly modified to approximately account for

the geometrical nonlinearity. As mentioned earlier in Section 7.2.1, due to mathematical

complexity, this analysis portion will be carried out using the multi-segment method of

integration. Again, the formulation and solution for a tapered one-sided doubler will be

delineated first. With reference to Figure 7.4, the equilibrium equations are set up for

the skin and doubler in each segment of the overlap area. These equilibrium equations

for segment i �i= 1
 2
 " " " 
 N� can be written as follows:

For the substrate or skin:

N ′
si =−�Ai
V ′
si =−�Ai

M ′
si = Vsi− �Ai

(
ts+ tA

2

)
−Nsi · ŵ′

i

(7.11)

For the doubler or patch:

N ′
pi = �Ai
V ′
pi = �Ai

M ′
pi = Vpi− �Ai

(
tp1+ tA

2

)
−Npi · ŵ′

i

(7.12)

where N and V are normal stress resultant and vertical shear resultant, respectively; M
again denotes the moment; �A and �A are the adhesive shear and peel stresses; ts
 tp1 and
tA are the total thickness of the skin, the minimum thickness of the doubler or patch at the

tip edge, and the adhesive layer thickness, respectively; ŵi is the transverse deflection of

a segment i of the overlap area as if the skin and doubler act in unison; and the subscripts
s and p denote skin and doubler, respectively. ŵi is considered to be the overall transverse
deflection of the overlap area and it is already obtained based on rigid bond assumption

in Section 7.2.2 as part of the nonlinear bending moment solution. In Section 7.2.2,

ŵ0 �i = 0� corresponds to the overall transverse displacement outside the overlap area
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(a)

(b)

(c)

P

P

C

us = up = 0

Vs = 0

wp = 0

ws = 0

x1 x2… xN

x1 x2… xN

l1 l2

l1 l2

lN

lN

ML + P(e0 – ts/2)

C

C

Vpi + dVpi

Vsi + dVsi

Nsi + dNsi

Msi + dMsi

Npi + dNpi

Mpi + dMpi

Adhesive

Skin, ts

Doubler, tpi

Vsi

Nsi

Msi

Vpi

Mpi

Npi

τAi

τAi

dx

σAi

σAi

ws = wp = 0′ ′

us = up = 0

ws = 0

Vp = 0

ws = wp = 0′ ′

Fig. 7.4. Schematic diagrams for calculating adhesive peel and shear stresses: (a) an overlap of

a tapered one-sided doubler; (b) an overlap of a tapered two-sided doubler; and (c) stress and

moment resultants of a differential element in the overlap.

while ŵi �i = 1
2
 " " " 
 N� is the deflection of the ith segment inside the overlap. At

this point, it is important to point out the difference between the present formulation

and that from Goland–Reissner analysis as well as any underlying assumptions for

this second step analysis. First, the effect of the geometrical nonlinearity is accounted

for in the present formulation by including the underlined terms in Equations (7.11)

and (7.12). These terms represent approximately the additional moment in the skin
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and doubler due to their large bending deflections. The otherwise geometrically linear

analysis will totally omit them. Secondly, for simplification, the bending moment in

the present analysis step is defined differently from the first step. The bending moment

in the skin is now defined with respect to the mid-plane of the skin. In contrast, the

bending moment in the doubler is always defined with respect to the mid-plane of

the first segment of the doubler for all of its segments (steps). As detailed later, this

definition of the doubler’s bending moment is preferred because it will make the doubler

moment and shear distributions to be continuous across the segment junctions. It should

be emphasized that the effect of the geometrical nonlinearity has been accounted for in

the present formulation approximately since only the “average” bending deflection of

the overlap area obtained from Section 7.2.2 is used in Equations (7.11) and (7.12) as

indicated by the underlined terms, rather than the individual bending deflections of the

skin and doubler as it would be required in an exact nonlinear analysis. However, by
using such approximation, Equations (7.11) and (7.12) will provide a system of linear

differential equations that can be solved by an appropriate numerical method.

The equilibrium Equations (7.11) and (7.12) do not provide the complete equations

for solving the adhesive peel and shear stresses. Additional equations that must be

considered are the kinematics and constitutive relationships for the skin, doubler and

adhesive, and they are given below:

For the ith segment of the skin:

usi = ūsi+ z�̃si

�̃si =−w′
si

ū′si =
Ds

DsAs−B2
s

Nsi−
Bs

DsAs−B2
s

Msi

�̃′
si =− Bs

DsAs−B2
s

Nsi+
As

DsAs−B2
s

Msi

(7.13)

For the ith segment of the doubler or patch:

upi = ūpi+ z�̃pi

�̃pi =−w′
pi

ū′pi =
Dpi

DpiApi−B2
pi

Npi−
Bpi

DpiApi−B2
pi

Mpi

�̃′
pi =− Bpi

DpiApi−B2
pi

Npi+
Api

DpiApi−B2
pi

Mpi

(7.14)
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For the ith segment of the adhesive:

�Ai =
EA

tA

(
wpi−wsi

)

�Ai =
GA

tA

(
ūpi−

tp1

2
�pi− ūsi−

ts
2
�si

) (7.15)

In Equations (7.13)–(7.15), u and u denote the extensional displacements measured at

an arbitrary z plane and at a reference plane, respectively; �̃ is a rotation; A, B and D

are the extensional, coupling and flexural rigidities and they are defined according to

the classical laminate theory as

A=
nply∑
k=1

(
C11
k

)
-zk− zk−10

B = 1

2

nply∑
k=1

(
C11
k

){
�zk−h0�2− �zk−1−h0�2

}

D = 1

3

nply∑
k=1

(
C11
k

){
�zk−h0�3− �zk−1−h0�3

}
(7.16)

where h0 is the z-coordinate of the reference plane; and the rest are previously defined.

It is worthy to note that As
 Bs and Ds are constant along the joint due to the uniformity

of the skin plate so that the subscript i denoting the segment number has been dropped

in these quantities for clarity. In contrast, Api
 Bpi and Dpi are expected to vary from

segment to segment depending on the doubler thickness and its lay-up composition

within each segment. For all segments of the skin and doubler, h0 is always chosen to

be equal to
ts
2
for the skin and

tp1
2
for the doubler to be consistent with the definition of

bending moments stated earlier in this section for them.

By substituting Equation (7.15) for �Ai and �Ai into Equations (7.11) and (7.12), the

resulting equations together with (7.13) and (7.14) can be rewritten into a system of

first-ordered differential equations as follows for each segment i:

-*′
i0= �#	i -*i0=

[
�#11	i �#12	i
�#21	i �#22	i

]
-*i0 (7.17)
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where

-*i0=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūsi
wsi

�̃si

Nsi

Msi

Vsi

ūpi
wpi

�̃pi

Npi

Mpi

Vpi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

( �#11	i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
Ds

DsAs−B2s
−Bs

DsAs−B2s 0

0 0 −1 0 0 0

0 0 0
−Bs

DsAs−B2s
As

DsAs−B2s 0
GA

tA
0

GA

tA

(
ts
2

)
0 0 0

GA

tA

(
ts+tA
2

)
0

GAts
tA

(
ts+tA
4

) −ŵ′
i 0 1

0
EA
tA

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.18)

�#12	i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−GA

tA
0

GA

tA

(
tp1
2

)
0 0 0

−GA

tA

(
ts+tA
2

)
0

GAtp1
tA

(
tp1+tA

4

)
0 0 0

0 −EA
tA

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.19)

�#21	i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−GA

tA
0

GA

tA

(
ts
2

)
0 0 0

GA

tA

(
tp1+tA

2

)
0

GAts
tA

(
tp1+tA

4

)
0 0 0

0 −EA
tA

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.20)

�#22	i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
Dpi

DpiApi−B2pi
−Bpi

DpiApi−B2pi
0

0 0 −1 0 0 0

0 0 0
−Bpi

DpiApi−B2pi
Api

DpiApi−B2pi
0

GA

tA
0 −GA

tA

(
tp1
2

)
0 0 0

−GA

tA

(
tp1+tA

2

)
0

GAtp
tA

(
tp1+tA

4

)
−ŵ′

i 0 1

0
EA
tA

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.21)

Equation (7.17), for i = 1
 2
 " " " 
 N , provides a system of 12×N first-order linear

differential equations for N unknown vectors -*i0, which is subjected to the following

boundary conditions:

(a) At the left end of the overlap area, with reference to Figure 7.4(a) the doubler is

stress- and moment-free, thus Np1 �0�=Mp1 �0�= Vp1 �0�= 0, noting i= 1.
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(b) In contrast, the stress, moment and shear resultants in the skin at the left over-

lap end are given respectively by Ns1 �0� = P
 Ms1 �0� =ML +P
(
ê0− ts

2

)
and

Vs1 �0� = 0, where ML is obtained previously from the first step analysis in

Section 7.2.2 and given by Equation (7.10). The fact that Ms1 �0� �=ML is because

different reference planes have been used in the first and second step analyses in

defining the bending moment of the skin. The reader is reminded that in the first

step analysis, the bending moment ML is defined with respect to the neutral axis

(or neutral plane) of the skin while Ms1 in the present analysis is defined with

respect to the mid-plane of the skin. Unless the skin is a symmetric laminate or

isotropic, in general, ê0 �= ts
2
and thus Ms1 �0� �=ML.

(c) In addition, since the reference plane for the computation of bending moment

is selected to be the same throughout the overlap area for each adherend, the

extensional and transverse deflections, the slope, and the normal stress, shear and

moment resultants in the doubler and in the skin must be continuous across the

segment junction. Thus,

-* ��i�0i = -* �0�0i+1 (7.22)

(d) Finally, the (vertical) symmetry conditions at the middle of the overlap area

require

ūsN ��N �= ūpN ��N �= 0

�̃sN ��N �= �̃pN ��N �= 0

VsN ��N �= wpN ��N �= 0

(7.23)

It is worthy to note that the condition wpN ��N �= 0 is specified in lieu of VpN ��N �= 0

so that the unknown integration constant resulting from numerical integration of the

transverse deflection can be uniquely determined. With these boundary conditions stated,

the problem of determining adhesive peel and shear stresses in a doubler is completely

formulated. Since the formulation of the two-sided doubler problem will be similar to

that of a one-sided doubler, it will be presented here first before proceeding to the

solution of Equation (7.17) with the boundary conditions listed in (a)–(d).

The governing equation for a one-sided doubler is still given by Equation (7.17) because

of the similarity between the two configurations in the overlap area. However, there

will be some difference in their boundary conditions. The boundary conditions listed as

(a), (c) and (d) remain applicable to the double-sided doubler problem. However, the

condition (b) needs to be changed as follows (see Figure 7.4(b)):

�b′� At the left overlap end,

Ns1 �0�= P
 Ms1 �0�= 0
 and ws1 �0�= 0 (7.24)

It remains now to outline a numerical method for solving a set of differential equations

given by Equation (7.17) along with boundary conditions listed either in (a)–(d) for a
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one-sided doubler or in (a), �b′�, (c) and (d) for a two-sided configuration. It was found

in the earlier study by Thomsen (1992) and Thomsen et al. (1996) that the differential

equation set (7.17) is most effectively solved by the so-called multi-segment method of

integration, which is described in the following section.

Multi-segment method of integration

The differential equation set given by Equation (7.17) for i= 1
 2
 " " " 
 N , together with

the boundary conditions listed in (a)–(d) or (a), �b′�, and (c)–(d) constitute a multiple-

point boundary value problem which can be expressed in the following general form:

-$′ �x�0
12·N×1

= ���x�	
12·N×12·N

· -$ �x�0
12·N×1

(7.25)

�T1	
12·N×12·N

· -410
12·N×1

+ �T2	
12·N×12·N

· -420
12·N×1

= �G	
12·N×1

(7.26)

where

-$0=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
-*10
-*20
���

-*N0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
( ��	=

⎡
⎢⎢⎢⎣
�#	1

�#	2
� � �

�#	N

⎤
⎥⎥⎥⎦ (7.27)

-410=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
-*1 �0�0
-*2 �0�0

���
-*N �0�0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
( -420=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
-*1 ��1�0
-*2 ��2�0

���
-*N ��N �0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.28)

�T1	 
 �T2	 and �G	 are constant matrices known from the statements of the boundary

conditions. It should be emphasized that the elements of matrices -410 and -420 are

elements of -$0 evaluated respectively at the beginning and end points of each segment i.

In the multi-segment method of integration, the boundary-value problem will be reduced

to a series of initial-value problems as follows (Kalnins, 1964). Assuming that the

solution of (7.25) can be written as

-$ �x�0
12·N×1

= �!�x�	
12·N×12·N

· -L0
12·N×1

(7.29)

where vector -L0 represents 12 ·N arbitrary constants, and �!�x�	 is defined as the

homogeneous solution of Equation (7.25) in the form

�!′ �x�	
12·N×12·N

= ���x�	
12·N×12·N

�!�x�	
12·N×12·N

(7.30)

The initial conditions for determining �!�x�	 is

�!�0�	= �I	 (7.31)
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where �I	 is the identity matrix. A numerical integration scheme for obtaining this

homogeneous solution will be detailed later. However, for the present discussion purpose,

let us assume that the initial-value problem has been solved with its homogeneous

solution denoted symbolically as �!�x�	.

Evaluation of Equation (7.29) at x = 0 leads to -$ �0�0 = �!�0�	 -L0, which upon

substitution of Equation (7.31) for �!�0�	 and noting from the first equations of (7.27)

and (7.28) that -$ �0�0= -410, yields

-410= -L0 (7.32)

Thus, Equation (7.29) can be expressed as

-$ �x�0= �!�x�	 -410 (7.33)

The next step is to relate -420 to -410. Since elements of matrix -420 are elements of

-$0 evaluated at the end point of each segment i, an evaluation of Equation (7.33) at

these end points will give the desired relationship between -420 and -410, i.e.,

-420= -$ �x�0�x=segment endpoint = �!�x�	�x=segment endpoint -410 (7.34)

Equation (7.34) together with Equation (7.26) provides a system of algebraic equations

for solving -410 and -420. Once -410 and -420 are solved, the solution at any value

of x is obtained from Equation (7.33). In summary, the solution of the multiple-point

boundary-value problem can be obtained by the following steps: (i) solving the initial-

value problem with the governing differential equations given by Equation (7.30) and

the initial conditions by Equation (7.31) for �!�x�	, then (ii) solving the system of

algebraic equations for -410 and -420 using Equations (7.34) and (7.26), and finally

(iii) evaluating Equation (7.33) at any point of interest for its solution.

So far the homogeneous solution of the initial-value problem has been assumed to be

already solved and denoted symbolically as �!�x�	 in the preceding paragraphs. Thus,

a brief description of a suitable numerical method for obtaining �!�x�	 will be given

here. Differential Equation (7.30) and initial condition (7.31) are compact forms of the

following set of differential equations and initial condition:

d

dx

{
!j

}
12·N×1

= ��	
12·N×12·N

{
!j

}
12·N×1

�j = 1
 " " " 
12 ·N� (7.35)

{
!j �0�

}= {�j} (7.36)

where
{
!j

}
is a vector corresponding to a jth column of matrix �!�x�	, and

{
�j
}
is a

vector with all of its components null except for the jth component where it has a value

of 1. Differential Equation (7.30) in its standard form of Equation (7.35) can be solved

by means of any method of direct numerical integration. In the present analysis the

direct integration was performed using adaptive step-size fourth- and fifth-order Runge–

Kutta–Fehlberg method. A Fortran subroutine of this integration method is available in

the Internet and was used by Duong in the above-cited reference (2006).
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Throughout this section the number of segments for solving the adhesive peel and

shear stresses has been chosen to be identical to that number of steps in the doubler

overlap length as shown in Figure 7.4, i.e., i = 1
 2
 " " " 
 N . However, as discussed

by Kalnins (1964), the solution obtained by the multi-segment method of integration

may suffer a complete loss of accuracy at some critical length of the interval. Thus,

if the length of the segment in the analysis exceeds this critical length, the obtained

solution will be inaccurate. Nevertheless, the loss of accuracy of the solution can be

avoided by subdividing the length of each segment into many sub-segments. Since these

sub-segments can be treated identically as the original segments, the formulation in that

case for adhesive peel and shear stresses will remain very much the same as before.

For example, let assume that due to these segment’s subdivisions the total number of

segments increases from N to N +m �m> 0�, the formulation outlined in Section 7.2.3

will remain the same for this latter case except that (a) N is changed to N +m in all

related equations, and (b) Api
 Bpi and Dpi do not always vary from segment to segment

and �i is now the sub-segment length.

7.2.4 Numerical examples

The present approach will be demonstrated first with numerical examples of untapered

doublers with identical adherends. This is because closed-form solutions for these con-

figurations are available in Chapter 2 for direct comparison with the results obtained

from the present approach. In the first example, a one-sided doubler with two identical

isotropic adherends is considered. The geometry and material properties of the skin,

doubler and adhesive as well as the applied load per unit width P are given below:

– Skin and doubler, isotropic, Es = Ep = 68�95GPa
 �s = �p = 0�3
 ts = tp
�full patch thickness
 i�e�
 tpN �= 1�27mm, where the subscripts s and p denote skin

and doubler, respectively.

– Adhesive: isotropic, EA = 1�793GPa
 GA = 0�6895GPa
 tA = 0�127mm.

– Geometry: �0 = 25�4cm, overlap length is 6.35 cm.

– Tensile load: P/ts = 137�9MPa.

Analytical solutions for this example problem using geometrically linear and nonlinear

formulations in step 2 of the present approach are presented in Figures 7.5 and 7.6 for

the adhesive peel and shear stresses, respectively, and these solutions for brevity will be

simply referred to as linear and nonlinear solutions in all the following discussions. For

comparison purpose, the corresponding Hart-Smith solutions presented in Section 2.3 of

Chapter 2 are also shown in these figures along with the newly obtained solutions. It

is found from Figures 7.5 and 7.6 that the present linear solution for the peak adhesive

peel stress is in better agreement with the corresponding Hart-Smith solution than the

nonlinear solution. However, an opposite trend is observed for the peak adhesive shear

stress, in which a nonlinear solution is preferred to the linear solution. This abnormality

can be explained as follows.

From Chapter 2, the Hart-Smith solution (2005b) for the adhesive peel utilizes the

moment boundary condition at the end of the overlap and the condition of no net
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Fig. 7.5. Distribution of adhesive peel stress in an untapered one-sided doubler with ts = tp =
1�27mm.
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Fig. 7.6. Distribution of adhesive shear stress in an untapered one-sided doubler with ts = tp =
1�27mm.

resulting peel force across the interface for determining its unknown constants. The

second boundary condition is equivalent to the condition that the vertical shear is zero

at the overlap end. Since the adhesive stress analysis in the Hart-Smith second step is

geometrically linear with all boundary conditions equivalently imposed at the end of the

overlap, his peel stress solution therefore should be similar to the present linear result.
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On the other hand, the adhesive shear stress solution has been derived using the same

moment boundary condition at the overlap end as well as the implicitly zero bending

moment condition at the middle of the doubler. This zero moment condition at the

middle of the doubler is obtained from the first step geometrically nonlinear analysis for

a doubler configuration with a long overlap length. It recalls that one of the boundary

conditions for the adhesive shear stress in Section 2.3.3 is given by Equation (2.166)

where it has been derived from the boundary condition (2.164) with the stress resultant

Np�0� of the patch evaluated based on the zero moment condition at the middle of the

doubler configuration. When the bending moment at the middle of the overlap is equal

to zero, the stresses in the skin and doubler will be uniform across their thickness, and

for a balanced doubler they are the same and equal to one half of the far-field stress.

Even though the bending analysis in the second step for computing adhesive shear is

considered to be a geometrically linear analysis, however, as explained later, the use of

the second boundary condition at the middle of the overlap based on results of the first

step nonlinear analysis will make Hart-Smith’s analysis inconsistent. In other words, a

truly linear analysis of Hart-Smith second step will require rather a different boundary

condition at the middle of the doubler than the one specified in his analysis.

The second step analysis of the present approach for a doubler configuration always

utilized the moment boundary conditions at the overlap end and the symmetric condition

at the middle of the joint, regardless of the analysis type, i.e., linear or nonlinear anal-

ysis. However, upon solving the governing differential equations, this same symmetry

condition will yield different solution for the normal stress and moment resultants at

the middle of the doubler, depending on the type of the analysis, as demonstrated in

Figures 7.7 and 7.8. This can be seen further by considering an example of a long doubler

configuration under a high applied load. For a very long overlap length and for a high
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Fig. 7.7. Distribution of normal stress resultant in an untapered one-sided doubler with ts = tp =
1�27mm.
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Fig. 7.8. Distribution of moment resultant in an untapered one-sided doubler with ts = tp =
1�27mm.

applied load, adhesive peel and shear stresses will be decayed to zero near the middle

area of the overlap, and the skin and doubler will act as if they are rigidly bonded there.

The bending moment at the middle of the overlap, therefore, as predicted by the first step

nonlinear analysis, will be zero. If the second step is performed within a linear theory,

the present approach will not necessarily yield the same zero bending moment condition

there even for this extreme case of a very long overlap length and with high applied

load. This is because the condition at the middle of the joint can be determined solely

from considering the static moment equilibrium of the overlap area without explicitly

solving the differential equations. From static moment equilibrium, there is always a

bending moment at the middle of the overlap which from the inset of Figure 7.3 is equal

to P �êN− ê0�, noting transverse shear V = 0 there due to vertical symmetry. On the

other hand, a second step analysis performed within a geometrically nonlinear theory

will predict the zero bending moment condition at the joint middle as expected, since

(a) the underlined nonlinear terms in the governing Equations (7.11) and (7.12) make

the overlap area statically indeterminate so that the static moment equilibrium condition

alone can not be used to determine the bending moment there, and (b) through inclusion

of these nonlinear terms, the effect of the alignment of the neutral plane of the middle

area of the overlap with the line of load on the bending moment distribution is correctly

accounted for. In light of the above discussion, the Hart-Smith second step analysis for

the adhesive shear stress will not be truly a linear analysis since it has used implicitly

but inconsistently the zero bending moment at the joint middle. Such inconsistency is

believed to make his adhesive shear stress solution being in a closer agreement with the

present nonlinear result.

To validate the above claim, the above analysis for the one-sided configuration is

repeated with a much thinner skin and doubler
(
ts = tp = 0�254mm

)
where the effect

of geometrical nonlinearity is more pronounced. It is worthy to note that the chosen
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thicknesses of the skin and doubler in the current analysis are unrealistically small

for typical joints used in practice; however, they are only used here to demonstrate

the extreme difference between linear and nonlinear solutions of the adhesive stresses.

Adhesive stress results from the new analysis are presented and compared with Hart-

Smith solutions in Figures 7.9 and 7.10. Again, these new results follow the same trend
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Fig. 7.9. Distribution of adhesive peel stress in an untapered one-sided doubler with ts = tp =
0�254mm.
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Fig. 7.10. Distribution of adhesive shear stress in an untapered one-sided doubler with ts = tp =
0�254mm.
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Table 7.1. Normal stress and moment resultants in the skin and doubler at their middle.

Analysis Normal stress
resultant in a skin

(N /mm)

Normal stress
resultant in a

doubler (N /mm)

Moment resultant
in a skin

�N mm/mm�

Moment resultant
in a doubler
�N mm/mm�

Nonlinear 17�72 17�30 −0�0086 −0�0086
Linear 28�93 6�09 −0�48 −0�48

when compared with Hart-Smith solutions for this extreme case. For reference, the

normal stress and moment resultants in the skin and in a doubler at their middle are also

reported in Table 7.1. It is clear from Table 7.1 that the nonlinear solution indicates a

nearly zero bending moment at the middle of the overlap as expected, but not the linear

solution.

So far the solutions of the present approach have been compared with the existing close-

form solutions. It is also of interest to compare the new solution with the FE result. The

previous solutions for the case of extremely thin skin and doubler
(
ts = tp = 0�254mm

)
are compared with the FE results in Figures 7.9 and 7.10. In the FE analysis, the

bottom adherend, the doubler or upper adherend and the adhesive are modeled by 2-D

isoparametric elements. Due to symmetry, only half of the doubler joint configuration

is modeled in the FE analysis with one end being simply supported and the other end

at the vertical center line being imposed with symmetric condition (fixed longitudinal

displacement and zero transverse force). The FE analyses were carried out by using

MSC/NASTRAN code (2001) with geometrically nonlinear solution (Solution 106) and

under plane stress condition. In Figures 7.9 and 7.10, the peel and shear stresses from

the FE analyses are computed at the mid-plane of the adhesive layer, which are roughly

equal to the average stresses across the adhesive thickness.

It has been shown in Chapter 2 that the adhesive stresses in the joint at the corner of

its overlap ends are singular. The adhesive stresses therefore become mesh dependent

there. In that regard, a comparison between the present solution and the FE result needs

some physical interpretation. It also has been suggested in Chapter 2 that the failure

in the adhesive can be predicted by using a stress intensity parameter of that corner

singularity. Similar to the conventional linear elastic fracture mechanics approach, the

corner stress intensity factor approach assumes that the adhesive will fail if its corner

stress intensity factor reaches a critical value determined from the test (Groth, 1988;

Reedy and Guess, 1997; Wang and Rose, 2000). Through a boundary layer type analysis

and using a FE method, Wang and Rose (2000) further showed that these stress intensity

factors can be estimated from the outer boundary layer adhesive peel and shear stresses

via Equation (2.182). The outer boundary layer adhesive peel and shear stresses are

those obtained from closed-form methods. Thus, within the corner singularity context,

the present solutions for the peak adhesive peel and shear stresses probably should

be compared with the corresponding FE results near the overlap end but outside the

corner singularity–dominant region where the mesh dependency poses an interpretation

problem.
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Fig. 7.11. Two dimensional distribution of adhesive peel stress in an untapered one-sided doubler

with ts = tp = 0�254mm.

Fig. 7.12. Two dimensional distribution of adhesive shear stress in an untapered one-sided doubler

with ts = tp = 0�254mm.

The two dimensional stress distributions in the adhesive near an end of the overlap for

the case of an extremely thin skin and doubler are plotted in Figures 7.11 and 7.12.

Stresses in these fringe plots have been scaled by a factor roughly equal to 145, i.e., a

stress value of 1000 in these fringe plots corresponds to 6.89MPa. From Figure 7.12,

the adhesive shear stress at the corner appears to attain the same high value over a
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quite large zone. This corner shear stress value is therefore considered as the outer

boundary layer type of stress to be compared with the analytical solution. This stress

is found to be around 11MPa for a thin doubler configuration. In contrast, the plot

of the adhesive peel stresses from Figure 7.11 shows a much steeper stress gradient

near the corner. However, by considering the peel stress at a distance of roughly one

half adhesive thickness1 away from the free edge as the outer boundary layer stress for

comparison with analytical predictions, this peel stress is found to be 12.8MPa and is

very close to the analytical prediction. Another way to compare the two-dimensional

FE results with the analytical predictions is to use the averaged adhesive peel and shear

stresses across the thickness of the adhesive in the comparison as had been done in

Figures 7.9 and 7.10. It is also interesting to note that the linear prediction of the peak

adhesive shear stress is in better agreement with FE results than the nonlinear prediction

(see Figure 7.10). In contrast, the nonlinear predictions tend to agree better with the

FE results on the adhesive shear distribution over entire overlap length as shown in

Figure 7.10.

Intuitively, the former observation appears to contradict with a normal expectation in

which the nonlinear solution for the peak adhesive shear stress that assumes to be more

accurate does not provide a better agreement with the FE results. However, as found in

Oplinger (1994) and Tsai and Morton (1994), the bending moment distribution along

the joint in the Goland–Reissner approach (1944) for a single-lap joint is inconsistent

and may be inaccurate when compared with the FE results for some joint configurations.

In contrast, the Goland–Reissner solutions for the adhesive stresses based on a second

step linear bending analysis are very adequate. Thus, any error accrued from the first

step analysis seems to be negated by the error introduced in the second step. Based on

these findings, an improvement of the second step analysis alone without the first by

including the nonlinear terms in the formulation may not lead to an overall improvement

of adhesive stresses since any error accrued from the first step will remain through the

rest of the analysis, assuming that the second step analysis is exact.

Having verified the present solutions for non-tapered joints and doublers with FE results

and with Hart-Smith closed-form solutions in the preceding paragraphs, it remains now to

demonstrate the solutions of a tapered doubler. Corresponding solutions to the previous

first example problem but with a tapered edge doubler (Figure 7.13) are presented in

Figures 7.14 and 7.15 for the adhesive peel and shear stresses, respectively. In the latter

analysis, the doubler is tapered at its edge by a slope of 1:10 with the minimum thickness

tp1 of 0.127mm at the tip as shown in Figure 7.13. From Figures 7.14 and 7.15, it is

clear that the effect of edge tapering is to reduce the peak adhesive stresses, as expected.

However, except at the edge, the adhesive shear stresses are not peaked at the beginning

of each step of the multiple-step tapered region as predicted by the classical non-bending

solutions.

1 Since the element size in that meshing area is about one adhesive thickness, adhesive peel stresses to be

compared with analytical predictions are calculated close to the centroid of a most critical element at the free

edge.
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P

Cl1 = l2 = … = l9 = 1.27 mm

10-ply doubler, tply = 0.127 mm

…
l0 = 25.4 cm

l1 lN = 10 = 2.03 cml2 …

Fig. 7.13. Geometry of a balanced one-sided doubler with a taper ratio of 10:1 and ts = 1�27mm.
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Fig. 7.14. Distribution of adhesive peel stress in a balanced one-sided doubler with a taper ratio

of 10:1 and ts = 1�27mm.

To examine the effect of different doubler thickness on the adhesive stresses, the above

analysis is repeated for full patch thickness tp = 2�54mm. Results from that analysis for

an unbalanced doubler are presented in Figures 7.16 and 7.17. Compared to the previous

results for tp = 1�27mm, the adhesive stresses are worst for a thicker doubler, especially

in a shear component, as expected.

It remains now to demonstrate a solution of a tapered two-sided doubler example.

A problem similar to example 1 but with two symmetrical doublers is analyzed. For a

direct comparison with the one-sided doubler result, the thickness of the skin and the

load of the two-sided doubler configuration will be twice of those considered in example

1 so that the ratio of the (total two) doubler stiffness to the skin stiffness and the total

load of the two problems remain the same. The adhesive peel and shear stresses along

the overlap length of a two-sided configuration are plotted in Figures 7.18 and 7.19,

respectively.
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Fig. 7.15. Distribution of adhesive shear stress in a balanced one-sided doubler with a taper ratio

of 10:1 and ts = 1�27mm.
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Fig. 7.16. Distribution of adhesive peel stress in a stiff one-sided doubler with a taper ratio of

10:1, ts = 1�27mm, and full thickness tp = 2�54mm.

7.3 One-Dimensional Analysis of Tapered Patches and Doublers Including
Effects of Thermal Mismatch and Adhesive Plasticity

For clarity, the solution approach delineated in Section 7.2 did not account for the effect

of the thermal mismatch nor the effect of adhesive plasticity. The purpose of this section

therefore is to extend that approach to include these latter effects.
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Fig. 7.17. Distribution of adhesive shear stress in a stiff one-sided doubler with a taper ratio of

10:1, ts = 1�27mm, and full thickness tp = 2�54mm.
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Fig. 7.18. Distribution of adhesive peel stress in a balanced two-sided doubler with a taper ratio

of 10:1, ts = 2�54mm and a full thickness of each doubler equal to 1.27mm.

7.3.1 Extension to include the effect of thermal mismatch

Following the similar procedure as in Section 7.2.2, the moment distribution in each

segment along the joint is given by

Mi =−P · ŵi−P �êi− ê0�+M�therm�
i (7.37)
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Fig. 7.19. Distribution of adhesive shear stress in a balanced two-sided doubler with a taper ratio

of 10:1, ts = 2�54mm, and a full thickness of each doubler equal to 1.27mm.
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(
�11
k

)
i
is the (1,1) element of the thermal expansion coefficient tensor of the kth ply of

the ith segment, nply indicates a number of plies in the segment, and the rest has been

previously defined. For any segment outside the overlap, nply is the total number of plies

in the skin laminate. In contrast, it will be the total number of plies of the skin–patch

combination for any segment inside the overlap. It is worthy to note thatM
�therm�
i defined

in Equation (7.38) was derived from the following condition and definitions:

N
�therm�
i =

∫ ti

0

C11
i

(
̂
�therm�
i −�11
i�T

)
dz= 0

M
�therm�
i =

∫ ti

0

C11
i

(
̂
�therm�
i −�11
i�T

)
�z− êi�dz

(7.39)

where �11
i ≡ �11
i�z�, C11
i ≡ C11
i�z�, while ̂
�therm�
i , êi, and �T are independent of

coordinate z; ̂
�therm�
i is the total strain due to the thermal mismatch and yet to be

determined from first equation of (7.39); ti is the thickness of segment i, e.g., ti ≡ ts
for i = 0, and ti ≡ ts + tp for i = N . The first equation of (7.39) is deducted from

the condition that the thermally induced stress resultant must be equal to zero. It is
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worthy to note that N
�therm�
i and M

�therm�
i defined in Equations (7.38) and (7.39) have

been derived for the case of a uniform temperature change. Thus, strictly speaking, the

present analysis can only be used to address the effect of the thermal mismatch due to

a low operating temperature. However, by adopting the Rose’s or Barnevel-Freddel’s

curing model mentioned in Section 5.5.1 of Chapter 5, the effect of thermal mismatch

due to curing of the adhesive can also be addressed approximately within the context

of the present analysis by using an effective thermal expansion coefficient for the skin,

rather than its real thermal expansion coefficient.

With that, the governing differential equations for bending moment distribution for each

segment i then become

ŵ′′
i −

P

Di

ŵi =
P �êi− ê0�

Di

−M
�therm�
i

Di

(7.40)

with the corresponding solutions given by

ŵi �xi�=W1i cosh ��ixi�+W2i sinh ��ixi�− �êi− ê0�+
M

�therm�
i

P
(7.41)

The unknown constants of integrationW1i andW2i are still determined from the boundary

conditions (7.7)–(7.9), except that the first equation of (7.9) must be modified to include

the thermal moment terms as indicated below:

W1i cosh ��i�i�+W2i sinh ��i�i�−W1
i+1 = êi− êi+1+
M

�therm�
i+1

P
−M

�therm�
i

P
(7.42)

Once the moment distribution along is determined, the adhesive peel and shear stresses

will be formulated and evaluated using the similar procedure as in Section 7.2.3. In

the presence of a uniform thermal loading, the governing differential equations for the

adhesive stresses are given similarly to Equation (7.17) as

-*′
i0= �#	i -*i0+ -fi0=

[
�#11	i �#12	i
�#21	i �#22	i

]
-*i0+ -fi0 (7.43)

where

-fi0=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


�therm�
s ·xi

0

�
�therm�
s ·xi

0

0

0


�therm�
pi ·xi

0

�
�therm�
pi ·xi

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(

{
�therm�

��therm�

}
=
⎡
⎢⎣

D

DA−B2

−B
DA−B2

−B
DA−B2

−A
DA−B2

⎤
⎥⎦{N�T�

M�T�

}

N�T� =
nply∑
k=1

C11
k �11
k �T -zk− zk−10

M�T� = 1

2

nply∑
k=1

C11
k �11
k �T
{
�zk−ho�2− �zk−1−h0�2

}
(7.44)
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A, B and D are again the A, B and D matrices of the appropriate laminated segment

of the doubler or skin; -*i0
 �#11	i 
 �#12	i 
 �#21	i 
 �#22	i are defined respectively by

Equations (7.18)–(7.21), respectively, in Section 7.2.3. Since �therm�, ��therm�, N�T� and

M�T� for the ith segment of the doubler or skin are defined in a very similar manner,

therefore, for simplicity, they have been specified in a general form by a set of equations

given in the right column of (7.44) without a subscript s or p and i. It is worthy to note

that N�T� and M�T� are thermal force and thermal moment (Jones, 1975), and M�T� is

different from M�therm� defined earlier. Also, the term -fi0 in Equation (7.43) arises from

the constitutive relations which relate the displacement and curvature of the ith laminated

segment of the doubler or skin to their corresponding stress and moment resultants, i.e.,

ū′si =
Ds

DsAs−B2
s

Nsi−
Bs

DsAs−B2
s

Msi+�therm�s

�̃′
si =− Bs

DsAs−B2
s

N1i+
As

DsAs−B2
s

Msi+��therm�s

(7.45)

ū′pi =
Dpi

DpiApi−B2
pi

Npi−
Bpi

DpiApi−B2
pi

Mpi+�therm�pi

�̃′
pi =− Bpi

DpiApi−B2
pi

Npi+
Api

DpiApi−B2
pi

Mpi+��therm�pi

(7.46)

The boundary conditions for the differential Equations (7.43) are exactly the same as

those considered in Section 7.2.3. For example, the boundary conditions for a one-sided

doubler are given by conditions (a)–(d) in that section while the conditions (a), �b′�,
(c) and (d) are the corresponding conditions for a two-sided doubler. The differential

Equations (7.43) are again effectively solved by the multi-segment integration method.

The differential equation set given by Equation (7.43) for i= 1
2
 " " " 
N , together with

its boundary conditions, constitutes a multiple-point boundary value problem which can

be expressed in the following general form:

-$′ �x�0
12·N×1

= ���x�	
12·N×12·N

· -$ �x�0
12·Nx1

+ -F0
12·Nx1

(7.47)

�T1	
12·N×12·N

· -410
12·N×1

+ �T2	
12·N×12·N

· -420
12·N×1

= �G	
12·N×1

(7.48)

where

-F0=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
-f10
-f20
���

-fN 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.49)

Like before, the elements of matrices -410 and -420 are elements of -$0 evaluated

respectively at the beginning and end points of each segment i while �T1	, �T2	 and �G	
are constant matrices known from the statements of the boundary conditions.
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Assuming that the solution of (7.47) can be written as

-$ �x�0
12·N×1

= �!�x�	
12·N×12·N

· -L0
12·N×1

+{$p �x�
}

12·N×1

(7.50)

where vector -L0 represents 12 ·N arbitrary constants, �!�x�	 and -$p�x�0 are the

homogeneous and particular solutions of Equation (7.47), respectively. In particular,

�!�x�	 is the solution of the following differential equations:

�!′ �x�	
12·N×12·N

= ���x�	
12·N×12·N

�!�x�	
12·N×12·N

(7.51)

with the initial conditions given by

�!�0�	= �I	 (7.52)

where �I	 is the identity matrix. In contrast, the differential equations for the particular

solution -$p�x�0 are in the form

{
$′

p �x�
}

12·N×1

= ���x�	
12·N×12·N

·{$p �x�
}

12·N×1

+ -F0
12·N×1

(7.53)

and they are subjected to the null initial conditions

{
$p �0�

}= -00 (7.54)

As outlined in Section 7.2.3, the homogeneous solution �!�x�	 can be obtained by direct

numerical integration of differential Equations (7.51) using adaptive step-size fourth-

and fifth-order Runge–Kutta–Fehlberg method. Similarly, the particular solution -$p�x�0
can be obtained from Equation (7.53) using the same adaptive integration method.

It remains now to determine the vector -L0 of the arbitrary constants of integration.

Evaluation of Equation (7.50) at x = 0 and noting that -410 = -$�0�0 = �!�0�	-L0+
-$p�0�0= �I	-L0+ -00= -L0 lead to

-$ �x�0= �!�x�	 · -410+
{
$p �x�

}
(7.55)

Furthermore, since elements of matrix -420 are elements of -$0 evaluated at the end

point of each segment i, -420 is related to -410 by

-420= -$ �x�0�x=segment endpoint

= �!�x�	�x=segment endpoint -410+
{
$p �x�

}∣∣
x=segment endpoint

(7.56)

Equation (7.56), together with Equation (7.48), provides a system of algebraic equations

for solving -410 and -420. Once -410 and -420 are determined, the solution at any

value of x is obtained from Equation (7.55).
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7.3.2 Extension to include the effect of adhesive plasticity

Most adhesives will deform plastically even at a relatively low level of external loading.

Unless the extent of the adhesive plastic deformation is small (small-scale yielding), the

assumption of linear elasticity of the adhesive may not be realistic and the use of the

corner singularity in predicting the bond-line strength may not be valid (see Sections 2.4.2

and 2.5 of Chapter 2). In that case, the effect of nonlinear adhesive must be accounted

for. For simplicity, the adhesive will assume to behave nonlinearly only in shear while

its peel behavior remains elastically through all ranges of adhesive normal stresses. In

contrast to Chapter 2, the adhesive considered in this section is not necessarily limited

to elastic-perfectly-plastic material. A general nonlinear shear-stress–shear-strain curve

for the adhesive such as that shown in Figure 2.3 of Chapter 2 can be modeled in the

present analysis.

The effect of nonlinear shear properties (plasticity) of the adhesive can be included in

the formulation presented in Sections 7.2.3 and 7.3.1 by employing the secant mod-

ulus approach as frequently used in elasto-plastic analyses. According to the secant

modulus approach, the solution procedure for determining the stress distribution in the

adhesive layer can be described by the following steps (Thomsen, 1992; Mortensen and

Thomsen, 1997):

(a) Calculate the adhesive shear strain and shear stress for a number of points in

the adhesive layer at some predetermined locations along the overlap length, say

xk
 k= 1
2
 " " " 
M , using the linear elastic solution procedure outlined in section

7.2 or 7.3.1 and assuming a uniform elastic shear modulus G
�1�
A for adhesive, i.e.,

G
�1�
A �x�≡G�ELAS�

A , whereG
�ELAS�
A is the initial elastic shear modulus of the adhesive

(or the slope of the adhesive shear-stress–shear-strain curve below the proportional

elastic limit). These shear strains and shear stresses are denoted by �A�xk� and
�A�xk�, respectively.

(b) If the calculated adhesive shear stress �A�xk� at any point in the adhesive layer

exceeds the proportional elastic limit of the adhesive material, determine the

adhesive shear stresses for each point xk of the adhesive layer from the nonlinear

shear-stress–shear-strain curve according to the adhesive shear strains and denote

them by �∗A�xk�.

(c) Calculate the difference ��A�xk� = �A �xk�− �∗A �xk�, and determine the secant

shear modulus G
�2�
A �xk� defined by

G
�2�
A �xk�=G�1�

A �xk�

{
1−3

[
�A �xk�− �∗A �xk�

�∗A �xk�

]}
(7.57)

where 3 is a non-negative weight factor specified by the user which determines

the change of modulus in each iteration.

(d) Rerun the procedure (steps (a) and (b)) with G
�1�
A for each adhesive point modified

as per step (c), i.e.,G
�1�
A �x�=G

�2�
A �x�, whereG

�2�
A �x� is approximated by a multiple-

linear curve defined by discrete points
(
xk
G

�2�
A �xk�

)
, k= 1
2
 " " " 
M along the

overlap length. Since the adhesive shear stresses at points xk, k = 1
2
 " " " 
M ,
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may exceed the proportional elastic limit so that the adhesive shear modulus at

these points must be modified as per step (c), the shear modulus of the adhesive

is no longer uniform along the overlap length nor equal to the initial elastic shear

modulus GELAS
A . It is worthy to note that the formulations in Sections 7.2 and 7.3.1

can be applied to both cases of uniform or non-uniform adhesive shear modulus

along the overlap length. This is because the governing differential equations are

solved by direct numerical integration. During direct numerical integration, it may

require to evaluate G2
A at some arbitrary location x which may be different from

the predetermined points xk
 k= 1
2
 " " " 
M . In that case, G2
A �x� at the required

point x can be evaluated by linear interpolation or extrapolation from the known

values of G2
A at the predetermined location xk
 k= 1
2
 " " " 
M .

(e) Compare the calculated adhesive shear stresses ��A��xk� for each adhesive point

with the values �∗A�xk� obtained from the adhesive shear-stress–strain-curve.

(f) Repeat steps (d) and (e) until the difference between �∗A�xk� and ��A��xk� at each
point xk
 k= 1
2
 " " " 
M , drops below a specified tolerance.

7.4 Approximate Method for Adhesive Stresses at Patch End in a One-Sided
Repair

Analyses for the adhesive peel and shear stresses at the end of the patch will be conducted

within one-dimensional theory of bonded doublers, accounting for the geometrically

nonlinear out-of-plane deflection. For the case of a tapered patch under purely mechanical

loading, these adhesive stresses are determined approximately by (Duong, 2003a) (i) first

obtaining the skin stress or load attraction at the end of the patch from a 2-D plane

stress analysis of an untapered (polygonal) patch rigidly bonded to the skin using an

inclusion analogy as outlined in Chapter 4, and (ii) performing a 1-D bond-line analysis

with the skin stress determined from step (i) applying at far field, using the solution

procedure outlined in Section 7.2 for a tapered one-sided doubler. In doing so, the

effects of the two-dimensional (polygonal) patch and the geometrical nonlinearity can

be accounted for approximately in an engineering sense. It is worthy to note that if

step (i) is performed within one-dimensional inclusion analogy (the same as assuming

the patch spans across the skin width), the skin stress at the patch end will equal the

far-field-applied stress, thus resulting in no load attraction. Therefore, the applied load

in step (ii) for the bond-line analysis in effect has been scaled up using the ratio of skin

stresses at the patch end from 1-D and 2-D inclusion analogies to account for the load

attraction in a real repair.

The approach mentioned above poses some difficulty when it applies to the analysis

of a tapered patch under a combined thermo-mechanical loading. This is because the

adhesive stresses due to the contribution of a thermal load alone can not include effect

of the two-dimensional (polygonal) patch by simply multiplying the thermal load in the

bond-line analysis by a same factor as that used for a mechanical load or by scaling
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it in a similar manner as in step (ii). The thermal stresses in the skin at the patch end

from 1-D (patch spanning across the skin width) and 2-D (a finite polygonal patch)

inclusion analogies are equal to zero and a negative value, respectively, so that the ratio

of the thermal stress there from the latter analysis to that of the former analysis becomes

infinite. However, since the thermal loading and the mechanical loading have opposite

effect on the skin load attraction and the adhesive stresses, and since the thermal effect

predicted by a 1-D inclusion analogy is less significant than that by a corresponding

2-D inclusion analogy (thus, causing a less reduction in the skin load attraction and less

alleviation of adhesive stresses that are due to the mechanical load alone), analytical

predictions for the adhesive stresses at the patch end will be conservative if the bond-line

analysis is carried out with the mechanical load of the 1-D analytical model presented

in Section 7.3 being scaled up per step (ii) while keeping the thermal load the same as

that defined in Section 7.3.

7.5 Approximate Method for Adhesive Stresses at Patch End in a Two-Sided
Repair

Because of the symmetrical configuration of the two-sided repair with respect to the

mid-plane of the skin, there will be no out-of-plane deflection in the repair. Unless the

adhesive is stressed beyond its elastic limit, the adhesive stresses due to a combined

thermo-mechanical loading can be obtained by linear superposition of the individual

contribution from the mechanical and thermal loads. As in Section 7.4, the analyses of

the adhesive stresses are conducted within one-dimensional theory of bonded doublers

as follows, which accounts for the effect of the two-dimensional patch or load attraction

in a real repair (Duong, 2003a):

(i) Determine the skin stress at the patch end due to the far-field load alone, using

the 2-D inclusion analogy (a rigidly bonded polygonal patch) and denote that skin

stress by �
s�mech�
tip .

(ii) Determine skin thermal stresses at the patch center, also using 2-D inclusion

analogy and denote it as �
s�therm�
c .

(iii) Obtain the adhesive stresses and strains at the patch end due to the mechanical load

alone with the far-field load per unit width based on the skin stress determined in

step (i), i.e., P = ts ·� s�mech�
tip , using the solution procedure outlined in Section 7.2

for a one-dimensional bond-line analysis of a tapered two-sided doubler. The

effect of the two-dimensional (polygonal) patch is accounted for approximately in

this case by scaling up the far-field load in the bond-line analysis from its actual

value of ts ·�� to ts ·� s�mech�
tip .

(iv) Obtain the adhesive stresses and strains due to thermal loads alone using a

theory developed in Section 7.3.1 for a one-dimensional bond-line analysis of

a tapered two-sided doubler. Since the skin thermal stresses at the patch center

are different from 1-D (assuming patch spanning across the skin width) and 2-D

(a finite polygonal patch) analyses using inclusion analogies, the effect of the
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two-dimensional patch on the adhesive stresses and strains due to the thermal

loads is accounted for via a correction factor given by

C�F�= �
s�therm�
c(

�p−�s

)
E′

s�T

1+ E′
sts

E′
ptp

where the denominator represents the skin thermal stress at the patch center from

the 1-D inclusion analogy.

(v) The final (total) adhesive stresses and strains are then equal to the sum of the

corresponding contribution from steps (iii) and (iv).

For an elastic-plastic adhesive, depending on the level of the far-field load, the above

procedure may need to be modified. For a low level of the far-field load, the adhesive

remains elastic so that the above procedure can be applied directly to determine the adhe-

sive stresses and strains. In contrast, for a high far-field-applied load, the adhesive will

yield. In that case the above procedure must be modified because the linear superposition

principle is no longer valid. The analysis procedure then involves the following steps:

(i) Determine the skin stress at the patch end due to the far-field-mechanical load

alone, using 2-D inclusion analogy.

(ii) Obtain the adhesive stresses and strains again using the solution procedure outlined

in Section 7.3 for a one-dimensional bond-line analysis of a tapered two-sided

doubler. However, as before, in the bond-line analysis, the far-field-mechanical

load per unit width of the 1-D analytical model presented in Section 7.3 must be

scaled up to P = ts ·� s�mech�
tip to account for the load attraction, while the thermal

load if there is any will be kept the same as that defined in Section 7.3. It is then

clear that only the contribution due to the mechanical load has been accounted

for the effect of the two-dimensional (polygonal) patch.

7.6 Summary

A unified approach for approximating the adhesive stresses in a bond line of a one-

sided and two-sided tapered doubler is presented within a one-dimensional analysis.

This approach is found to be versatile and robust for assessing bonded doublers in the

daily design and analysis environment. To account for the effect of a two-dimensional

patch or load attraction in a real repair, an approximate method for evaluating the

adhesive stresses at the patch ends is also proposed, which utilizes solutions delineated

in Chapters 4 and 5 for two-dimensional inclusions and inhomogeneities, combining

with the present one-dimensional (1-D) solutions for tapered doublers.



CHAPTER 8

Fatigue Crack Growth Analysis
of Repaired Structures

8.1 Introduction

The effectiveness of bonded repairs in terms of reducing the crack-tip stress intensity

factor has been demonstrated in Chapters 3–5. Even though a reduction of the stress

intensity factor will ultimately increase the residual strength and decrease fatigue crack

growth rate, however, it is unclear that the prediction of the growth rate of patched

cracks can be made using the crack growth data obtained from un-patched specimens,

especially under spectrum loading. For un-patched cracks, it is now possible to obtain

satisfactory predictions of the effects of stress ratio and variable amplitude loading on

fatigue crack growth rate using crack-closure models (Newman, 1992). The aim of

this chapter is therefore to establish a correspondence principle between patched cracks

and un-patched cracks, with particular emphasis on the crack-closure behaviour under

steady-state (constant amplitude loading) and transient conditions (spectrum loading).

The effect of thermal residual stress resulting from the mismatch between the coefficients

of thermal expansion for the composite patch and the parent metallic material will also

be considered.

A repaired crack can be viewed as being bridged by a series of distributed springs sprang

between the crack faces as modeled in Chapters 3 and 5. Under fatigue loading, these

springs restrain the opening of the crack, and thus reducing the stress intensity factor.

To analyze the effect of this bridging mechanism on the residual plastic wake behind the

crack tip, the crack-bridging theory presented in Chapters 3 and 5 is employed together

with a crack-closure model (Budiansky and Hutchinson, 1978) to analyze the steady-

state closure of patched cracks subjected to constant amplitude loading. The analytical

consideration proves that under small-scale yielding condition (the applied stress is far

smaller than the material’s yield stress), the steady-state crack closure level depends only

on the applied stress ratio and is almost identical to that corresponding to un-repaired

cracks subjected to the same applied stress ratio. This finding has been verified by a

FE analysis. Furthermore, the transient crack closure behaviour following an overload,

280
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which is the main mechanism responsible for crack growth retardation, has also been

investigated by the FE method. The results reveal that patched cracks exhibit the same

transient decrease/increase in the crack-closure stress as un-patched cracks. Based on

these findings, a correspondence principle relating the transient crack-closure behaviour

of patched cracks to that of un-patched cracks is proposed. It is finally shown that

predictions based on this method are in good agreement with the experimental results

obtained using two aircraft loading spectra.

8.2 Crack-Closure Analysis of Repaired Cracks

We begin with a crack-closure analysis of repaired cracks under a small-scale yielding

assumption. It is then followed by the development for a general case of large-scale

yielding.

8.2.1 Crack closure of repaired cracks under small-scale yielding

A schematic of a patch repair is shown in Figure 8.1, where it is assumed for simplicity

that the cracked skin is restrained from out-of-plane deflection. The problem to be

considered is a cracked skin plate repaired by a patch adhesively bonded on one side

of the cracked skin. The skin, which has a thickness of ts, contains a through crack of

length 2a. The thickness of the patch and the adhesive layer are respectively tp and tA.
The front view in the xy plane and the cross-section in the yz plane are depicted in

Figures 8.1(a) and (b). The Young’s modulus and the Poisson’s ratio of each individual

layer are denoted as E and �; here and in the following, subscripts s, p and A will

2B

ts

tp

σ∞

(a) (b)

x

y

A

B

σ∞

Skin

Patch

Fig. 8.1. Repair configuration: (a) plan view; and (b) cross-section along centre line.
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be used to distinguish properties pertaining respectively to the skin, the patch and the

adhesive layer.

The above elastic problem has been analyzed in Chapter 3 using a crack-bridging model

and an integral equation method. For isotropic reinforcement having the same Poisson’s

ratio as the cracked plate, the stress intensity factor range can be expressed as, assuming

that the adhesive remains elastic

�K = ��0

√
�aF���a� (8.1)

where the parameter ��0 denotes the stress range which would prevail at the prospective

location of the crack for a patched but un-cracked plate, which can be related to the

remotely applied stress ��� by

��0 = � ��� (8.2)

where the factor � is given by Equation (3.18) for an elliptical patch having the same

Poisson’s ratio as the skin. The parameters � and S denote respectively the spring

stiffness and patch stiffness ratio:

�= �A S

�1−�2s ��1+S�
(8.3)

where �A = [GA/tA�1/E
′
sts+1/E′

ptp�
]1/2


 S = E′
ptp/E

′
sts and E

′
s
p = Es
p/�1−�2s
p�. The

function F can be well approximated (within an error less than 0.5%) by

F���a�=
[

1

��a
tanh

��a

1+���a

]1/2
(8.4)

where the parameter � has been obtained by curve-fitting the numerical solution of

integral equation representing patch repairs, e.g., � = 0�3 for balanced repairs �S = 1�
and � = 0�1 for very stiff patch (S→��.
In the long crack limit (��a� 1�, the stress intensity factor of patched cracks (see

Equations (8.1) and (8.4)) asymptotes to the following upper limit, in the absence of

disbonding and plastic deformation in the adhesive layer:

�K = ��0√
�

���a� 1� (8.5)

This near constant stress intensity factor suggests that under constant amplitude loading,

a patched crack would grow at an approximately constant rate, indicating a steady-

state condition. In this case, it is reasonable to postulate that patched cracks ought to

experience the same crack-closure as un-patched cracks subjected to the same stress ratio

(as the amplitude of the stress intensity factor does not affect crack closure, provided

small-scale yielding prevails at the crack tip). In this case the plastic zone size and
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the crack-tip opening displacement are given by the following well-known relationship

(Broek, 1987),

 K = �

8

(
KI

�Y

)2

(8.6)

CTODK = K2
I

Es�Y

= 8�Y

�Es

 K (8.7)

where  K and CTODK denote the plastic zone size and the crack-tip opening dis-

placement estimated based on stress intensity factor KI
�Y is the yield strength of the

skin plate.

The fatigue crack growth rate can be correlated using the effective stress intensity factor:

�Keff =
�K

1−R
(
1− �op

�max

)
(8.8)

where R denotes the applied stress ratio (= �min/�max�, which is strongly influenced

by the thermal residual stresses present in the skin plate induced by curing; further

discussion will be presented later in Section 8.4. The crack-opening stress �op can be

obtained by simplifying the expressions constructed by Newman (1984):

�op

�max

=
{
A0 R < 0

A0+A2R
2+A3R

3 R > 0
(8.9)

where the constants A0
 A2
 A3 are

A0 = 0�825−0�345+0�0552

A2 = 2−3A0 (8.10)

A3 = 2A0−1

The plastic constraint factor 5 depends parametrically on only one non-dimensional

parameter: the ratio of plastic zone size  1 to plate thickness ts (Guo et al., 1998):

5 = 1+0�64�� /ts�
1/2+2� /ts�

2	

1−2�s+0�54�� /ts�
1/2+2� /ts�

2	
(8.11)

which is illustrated in Figure 8.2 together with the FE results obtained by Newman

et al. (1995).

1 The plastic zone size is denoted here as  , rather than  K, since in Equation (8.11) the plastic zone size

can be taken from either small- or large-scale yielding, and therefore it may not be necessarily equal to the

estimate value given by Equation (8.6) based on the stress intensity factor.
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Fig. 8.2. Constraint factor versus normalized plastic zone size.

8.2.2 Crack closure of repaired cracks under large-scale yielding

The above method is valid in the limiting case of small-scale yielding, i.e., the applied

stress is far smaller than the material’s yield stress, the plastic zone size is far smaller

than the crack size and the plate thickness. In practice, however, such conditions are

not always met, especially when repairs are applied to fatigue cracks in high stress

regions. To evaluate the range of the validity of the method presented in the previous

section, the influences of large-scale yielding on the crack-tip plastic deformation and

plasticity-induced crack closure will now be addressed. To this end, a model for patched

cracks will be presented, which extends the complex function method of Budiansky and

Hutchinson (1978) to include crack-bridging effect.

For simplicity, let us consider the long crack limit, i.e., ��a ≥ 1, so that the stress

intensity factor under maximum load can be considered as approximately constant.

Since the CTOD is proportional to the square of the stress intensity factor, the residual

plastic stretch attached to the crack faces would be approximately constant in thickness.

A simple schematic of the deformed profile of a bridged crack at maximum stress is

shown in Figure 8.3(a), while the boundary conditions upon unloading to the minimum

stress are shown in Figure 8.3(b). Here the difference between a patched crack and an

un-repaired crack is that the crack faces of a patched crack are bridged by a series of

distributed springs. As will be seen later, this bridging mechanism will affect the plastic

deformation ahead of the crack tip.

Following the Budiansky and Hutchinson’s approach (1978), the crack closure analysis

of repaired cracks under large-scale yielding will proceed by obtaining the crack-tip
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σyy = ϑσY + ΛEsδM

σyy = –σmax – ΛEsδM
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Fig. 8.3. Crack-closure model for short cracks.

plastic deformation and crack opening displacement at the maximum and minimum

applied stresses.

(a) Large-scale yielding solution at the maximum applied stress

Adopting the Dugdale model (Dugdale, 1960), plastic deformation ahead of the crack

tip is assumed to occur within the region a < �x�< c, where c = a+ . Here  denotes

the plastic zone size. The problem depicted in Figure 8.3(a) can be mathematically

expressed as (see Equation (3.40))

− Es

2�

∫ c

−c
u�t�

�x− t�2 dt+�Esu�x�=
{
�0 �x�< a
�0−5�Y a < �x�< c (8.12)

where u denotes the crack face displacement, �Y the material’s yield stress, and 5 the

plastic constraint factor discussed in Section 8.2.1. The first term in the left-hand side

of Equation (8.12) represents the resistance of material to crack opening and the second

term represents the resistance of springs.
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The above hyper-singular integral equation can be solved using a Galerkin method: the

unknown crack-face displacement u is expanded in terms of Chebyshev polynomials

(Wang and Rose, 1999). The plastic zone size  is determined so that the stress just

outside the plastic zone x = c+ is non-singular, i.e.,

KI = lim
x→c+

Es

√
�a

2

u�x�√
c2−x2 ≡ 0 (8.13)

which furnishes the necessary condition for determining the plastic zone for a given

applied stress. Solution of  can be determined by iteration: Equation (8.12) is first

solved for a trial  , then it is checked whether Equation (8.13) is satisfied. If this is the

case, then convergence is achieved. The numerical results are presented in Figure 8.4.

It is evident that provided the prospective stress is less than 40% of the material’s yield

stress, the plastic zone size is approximately equal to the estimate by the stress intensity

factor (and thus by Equation (8.6)). At high stress levels, the prospective stress has a

significant effect on the plastic zone size. As shown in Figure 8.4(a), the ratio of the

plastic zone size for large-scale yielding to the estimate value by Equation (8.6) based

on KI solution can be well approximated by the following expression,

 

 K

= 1+A ·
[
sec

(
�

2

�0

�Y

)
−1

]
(8.14)

where the coefficient A is determined by a least square method, A= 0�4272. By contrast,
the CTOD remains the same as that estimated based on the stress intensity factor (thus,

by Equation (8.7)), for prospective stress up to 70% of the yield stress. Furthermore, it is

interesting to note that the normalized plastic stretch variation ahead of the crack tip, as

shown in Figure 8.4(b), seems to be reasonably insensitive to the level of applied stress.

Therefore the plastic stretch variation is approximately given by a universal relation

identical to that pertaining to un-patched cracks under small-scale yielding conditions.

This universal relation is best illustrated by the ratio of the crack opening displacement

to the maximum opening at the crack tip:

��x�

CTODK

= g�x/ � (8.15)

where the function g is given in reference (Budiansky and Hutchinson, 1978) as

g�x/ �=√1−x/ − x

2 
ln

∣∣∣∣1+
√
1−x/ 

1−√
1−x/ 

∣∣∣∣ (8.16)

This important result provides a basis to extend existing crack closure model for

un-patched cracks to analyze patched cracks.

(b) Plasticity-induced crack closure under large-scale yielding solutions

Having now determined the crack-tip plastic deformation at the maximum applied stress,

it is now possible to characterize the plasticity-induced crack closure. Denote the crack

opening at the maximum stress at �M and crack opening at the minimum stress at �m.
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Fig. 8.4. Influence of applied stress on: (a) plastic zone size; and (b) crack-tip opening

displacement.

Referring to Figure 8.3(b), upon unloading to the minimum stress, crack-surface contact

is assumed to occur within the interval � < �x�< a, where � denotes the as-yet-unknown
size of the contact-free region. In the contact zone, the upper and lower crack surfaces

are attached with a layer of plastically stretched material of as-yet-unknown size �R/2.
There is also a region ahead of the crack tip, of unknown length d−a, that has gone

into reverse plastic flow, leading to a total crack-tip residual stretch equal to �R. Here d
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denotes the coordinate of reversed plastic zone. Between x = d and x = c the plastic

stretch is equal to the plastic stretch that existed at the maximum stress and remained

unchanged. It is worthy to note from Budiansky and Hutchinson’s work (1978) that the

crack-tip deformation of a stationary crack under cyclic loading will be different from

that of a growing fatigue crack. As the crack grows, it leaves in its wake plastic stretched

material which is modeled here as an extra layer of material attaching to the surface

of the growing crack. Since the thickness of this extra layer of material just behind

the crack tip must be equal to the plastic stretch just ahead of the tip at the minimum

load, the crack opening displacement �m for a ≤ �x� ≤ d must satisfy the conditions

that �m �x� ≤ �R and �m ��x� = a� = �R. In addition, it was also found from the cited

reference that �R must be smaller than the CTOD of a corresponding stationary crack at

the minimum load. Thus, �m ≤ �R ≤ CTOD for a≤ �x� ≤ d.
The boundary-value problem depicted in Figure 8.3(b) can be analyzed using the complex

function method (Budiansky and Hutchinson, 1978; Tanaka and Nakai, 1983; Rose and

Wang, 2001). In particular, the boundary conditions can be expressed as

�yy =−�min+
1

2
�Es�m�x� �x�< �

d�m
dx

= 0 or �m = �R � < �x�< a

�yy =−�min−�Y

(
1− �Es�m

2�Y

)
a < �x�< d

d�m
dx

= d�M
dx

or �m = �M d < �x�< c
d�m
dx

= 0 �x�> c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.17)

Due to the presence of �m �x� in the right-hand side of Equation (8.17), the solution of

the present problem is more complicated than for the case of un-repaired crack (�= 0,

also see (Rose and Wang, 2001)). One way of solving this equation is to adopt an

iterative approach, by using the un-bridged crack solution of Rose and Wang (2001) as

the first-order solution. By inserting the first-order solution into the right-hand side of

Equation (8.17), second-order correction can be obtained. Higher-order solutions then

can be obtained successively.

For low prospective stress, by noting �m ≤ �R ≤ CTOD
 �= �2
0

K2
I

by Equation (8.5), and

CTOD= K2
I

Es�Y
by Equation (8.7), we have

�Es�m
2�Y

≤ �Es ·CTOD
2�Y

= 1

2

(
�0

�Y

)2

≤ 0�125 ��0 ≤ 0�5�Y� (8.18)

Therefore the term �E�m/2�Y in (8.17) can be neglected without appreciable loss of

accuracy. Numerical results show that the higher-order correction is only a small fraction

of the first-order solution, and thus can be ignored. This is primarily due to that the

non-contact region � is generally much smaller than the crack size a; neglecting the

term �E�m/2 in the first expression of (8.17) would reduce the present problem to that

pertinent to un-repaired crack ��= 0�.
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8.3 Overload Effect and Validation Using Finite Element Method

To verify the above analytical solutions, a FE analysis was performed. The FE model

will also be employed to investigate the transient crack-closure behaviour of patched and

un-patched cracks subjected to variable amplitude loading. The fatigue crack opening

and closure stresses were obtained using a spring element release method, which involves

introducing two sets of bi-linear spring elements along the crack plane, as illustrated in

Figure 8.5(a). One set of spring elements, which are attached to all the nodes, are used

to simulate the patch in restraining the opening of the crack as well as to maintain the

zero displacement condition under compression. This series of spring elements have a

force–displacement relationship to give the spring constant given by Equation (8.3), and

an almost infinite compressive stiffness, as illustrated in Figure 8.5(b). For an element

of width h, The force–displacement of this bi-linear spring attached its corner node is

P = �� ·h ·Es�u (8.19)

where P and u are the force and displacement pertaining to the spring element, respec-

tively, and Es is the Young’s modulus of the skin material. In addition, a series of

tension-only spring elements are also attached to each node ahead of the crack tip to main-

tain the zero displacement condition ahead of the crack tip under tension (Figure 8.5(c)).

Crack-growth was simulated by releasing, at the maximum load, one tension-only spring-

element every two cycles. The emphasis here is to determine the stabilized crack-closure

stress, assuming that the crack will take many cycles to grow one element distance.

The FE model was developed using a general-purpose FE code, ABAQUS (1997).

A quarter model of centre-crack panel is modeled using plane-stress quadrilateral ele-

ments. The material is assumed to have Young’s modulus of 72GPa, a Poisson’s ratio

of 0.3 and a yield stress of 400MPa, typifying an aluminium alloy. The initial crack

length, ai, was 5mm and the half panel width was 101mm. For the patched crack, the

spring elements are chosen to simulate a spring constant of �= 120m−1, and the applied

stress is repeated tension with a maximum value of 150MPa. For the un-patched centre-

crack, the applied stress is also repeated tension but with a maximum value of 100MPa

S1 S2

h

NodeElement
P

u

P = (Λ . h . Es)u
P

u

(a) (b) (c) 

Fig. 8.5. Spring elements: (a) attached to one node, constitutive relations for; (b) bi-linear spring

S1; and (c) tension-only spring S2.
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Fig. 8.6. Finite element solution of a patched crack growing under constant amplitude loading

with R= 0: (a) at the maximum stress showing the residual plastic stretch; (b) at minimum stress

showing crack surface closure.

to ensure the patched crack and the un-patched crack are subjected to approximately

the same stress intensity factor. Shown in Figure 8.6 are the contours of the y-stress
plotted on the deformed geometry of the patched crack after the crack has grown 0.8mm

under constant amplitude loading. As it can be seen in the figure, the residual plastic

stretch at the crack tip caused the crack surface to close before the minimum stress is

reached, similar to that observed in un-repaired cracks. In fact, the crack-closure stresses

corresponding to the patched crack and the un-patched crack agree well with each other,

and are in close correlation with the theoretical solution (Budiansky and Hutchinson,

1978) of un-repaired cracks subjected to the same stress ratio. Therefore, under constant

amplitude loading, the crack-closure stress of patched cracks can be determined from the
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known results of un-repaired cracks. It is also noted that under steady-state condition,

the crack-closure stress depends solely on the applied stress ratio, and is independent of

the level of the applied stress intensity factor. As discussed later, this is in sharp contrast

with the transient crack closure under variable amplitude loading.

The same FE model has been used to further investigate the transient crack closure

behaviour of patched cracks subjected to variable amplitude loading, with a view to

identifying an equivalence between patched cracks and un-patched cracks. A simple

overload sequence as shown in Figure 8.7 is applied to both an un-repaired crack and a

patched crack. The maximum stress of the overload is about 30% higher than that of the

background constant loading (150MPa for patched crack and 100MPa for un-patched

crack). The patched crack experienced the same stress-intensity factor history as the

un-repaired crack. Figure 8.8 shows the plastic wake created by the overload for an

un-patched crack and a patched crack. It is evident that there is no discernible difference

between the patched crack and the un-patched crack. A fundamental difference between

the crack closure behaviour under steady-state condition (see Figure 8.6) and variable

amplitude loading is that the crack-closure stress is independent of the magnitude of

the residual plastic stretch under steady-state condition. By contrast, the transient crack-

closure behaviour after an overload is dictated by the residual stretch created by the

overload relative to that induced by prior constant amplitude loading. A schematic of

the residual plastic wake associated with a single overload is shown in Figure 8.9. The

ratios of the crack-closure stress (and crack-opening stress) to the maximum stress are

calculated from the FE results and shown in Figure 8.10, for both the patched and the

un-patched cracks. The crack advance is normalized by the distance between the plastic

zone boundaries for the overload and the constant amplitude loading. Two important

observations can be made from the results shown in Figure 8.10. First, following the

overload, an initial sharp drop occurred in the crack-closure and crack-opening stresses

for both the patched and un-patched cracks. After the initial drop, the crack-closure

stress attained a higher value and it was only after considerable crack growth did the

crack-closure stress return to the same level as prior to the overload. The fact that

the higher (than steady-state value) crack-closure stress occurred over a crack advance

greater than that over which the lower crack-closure stress occurred is a clear indication

of net retardation in fatigue crack growth rates. Secondly, and more importantly, there

is little difference between the transient evolution of the crack-closure stress for the

patched crack and the un-patched crack. This implies that the crack closure behaviour of

patched crack can be well approximated by that corresponding to an un-patched crack

subjected to the same stress intensity factor. Therefore, the crack-closure behaviour of

a patched crack can be obtained by analyzing an un-patched, centre crack subjected

max

max1.3σ
σ

Stress

Time

Fig. 8.7. A single overload superimposed on a constant amplitude loading sequence.
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Fig. 8.8. Plastic wake induced by an overload for: (a) an un-patched crack; and (b) a patched

crack subjected to approximately the same stress-intensity factor history.

to the same stress-intensity factor history as the patched crack, or the equivalent crack

method (Wang et al., 1998c). In this regard, it is worth noting that the under-prediction

of the fatigue crack growth rates of patched crack as reported in Wang et al. (1998c) is

due to the ignorance of the thermal residual stress in the earlier analysis, an issue to be

discussed in more detail in the next section.

8.4 Comparison with Experimental Results

Since composite patches generally have a lower thermal expansion coefficient than the

metallic component to be repaired, thermal residual stresses would occur upon cooling the
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Fig. 8.10. Effect of overload on the crack-closure stress of patched and un-patched cracks.

fully cured repair from elevated temperature (typically around 80–120 C for structural

adhesives) to either the ambient temperature or the operating temperature. In particular,

the residual stress in the metallic plate is generally positive, which may enhance fatigue

crack growth rate due to increased stress ratio. Other complicating factors affecting

fatigue crack propagation include possible changes in the patching efficiency resulting

from adhesive plastic yielding and debonding (see Chapters 3 and 4 for details). In the

following, we will focus our attention on the influence of thermal residual stress only.

For an orthotropic composite patch bonded to an isotropic skin, the resulting thermal

residual stresses can be determined using the method developed in Chapter 4. By treating
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the patch as isotropic, approximate and explicit solutions of the thermal stress in the

skin for different thermal loading have been derived in Chapters 3 and 4 as follows:

Curing in a uniform temperature field, e.g., an oven (see Equation (3.72) and the

remark at the end of Section 3.5)

�T
0 =−�sEs�T

(
1−�p

/
�s

)
S

2
(
1−�p

)+ �1−�2s � S
[(

1−�p
)
�1+�s�+

(
1−�2s

)
S(

1−�2p
)+ �1−�2s � S

]
(8.20)

Curing by localized heating of the repair then followed by cooling to the room

temperature (see Equation (4.110))

�T
0 =− EsS �1+�s�

2
(
1−�p

)+ �1−�2s � S
[
�p−

�s �1+�s�
2

]
�T (8.21)

where �T = Tcuring −Troom
 S = Eptp/Ests
 �s and �p are the thermal expansion

coefficients of the skin and patch, respectively, and the rest are previously defined.

It is worthy to note that �T
0 is generally a tensile stress for Boron patches with a

coefficient of thermal expansion being far smaller than that of the metallic material,

�p � �s.

For a constant amplitude loading, the presence of the residual thermal stress implies that

the patched crack experiences a stress intensity factor Rtip different from the applied

stress ratio:

Rtip =
Kmin

Kmax

= ���
min+�T
0

���
max+�T
0

= R+ 1−R
1+���
max/�

T
0

(8.22)

where R denotes the ratio of the applied stress, R = ��
min/��
max. Since �
T
0 ≥ 0, the

actual stress intensity factor ratio is higher than the applied stress ratio. This difference

needs to be considered when comparing the fatigue crack growth rates of patched and

un-patched cracks. In this regard, a rational approach would be to adopt the effective

stress intensity factor as the correlating parameter for fatigue crack growth. Take the

example of aluminium alloy 2024-T3, the fatigue crack-growth rates obtained using an

un-patched, edge cracked panel are plotted in Figure 8.11(a) against the applied stress-

intensity factor range. It is evident that the stress ratio has a considerable effect on the

crack-growth rates for a given applied stress-intensity factor range. By re-plotting the

crack growth rates against the effective stress-intensity factor range determined using

Equation (8.8), as shown in Figure 8.11(b), the crack-growth rate data corresponding

to three different stress ratios fall within a narrow band (±100%), consistent with the

crack growth rates independently obtained for the same material (Edwards and Newman,

1990). The plastic constraint factor 5 employed in the analysis is equal to 1.8. The

following expression provides the best fit to all the experimental data:

da

dN
= C��Keff�

m (8.23)

where C = 2�234×10−10 and m= 3�135, in SI unit.
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Fig. 8.11. Fatigue crack-growth rates in 2024-T3 Aluminium alloy (un-repaired) plotted against:

(a) the applied stress-intensity factor range �K; and (b) the effective stress-intensity factor range

�Keff .

In light of the above success in correlating the crack-growth rates of the un-patched

cracks, the experimental results of patched cracks reported in Baker (1996) are

re-analyzed, taking into account the residual thermal stress. The results are shown in

Figure 8.12. It can be seen that the experimental results of patched cracks also fall

within the same band as the un-patched cracks. Here the stress intensity factors for the

patched cracks are calculated using Equation (8.1), assuming that the adhesive remains

elastic. With the actual stress ratio being determined from Equation (8.22), the crack-

opening stress is evaluated by Equation (8.9), and the effective stress-intensity factor

range is calculated via Equation (8.8). The good correlation between the patched and

un-patched cracks as observed in Figure 8.12 confirms that growth rates of patched

cracks and un-patched cracks are uniquely characterized by the effective stress-intensity
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Fig. 8.12. Growth rates of patched and un-patched cracks under constant amplitude loading with

various stress ratios. R� is the far field applied stress ratio.
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factor range. Therefore, the growth behaviour of patched cracks and un-patched cracks,

under constant amplitude loading, can be successfully rationalized by the concept of

fatigue crack closure. This enables the crack growth rates of patched cracks to be

predicted using the growth rates of un-patched cracks.

Under variable amplitude or spectrum loading, it is important to analyze the transient

crack closure, especially the retardation effects associated with overloads. As already

discussed in the previous section, after the application of an overload, a patched crack

experiences nearly the same transient crack closure behaviour as un-patched crack sub-

jected to the same stress intensity factor. Therefore the crack closure of patched cracks

can be determined by analyzing the crack closure of a centre-cracked panel subjected

to a reference stress, as illustrated in Figure 8.13. The reference that the centre-cracked

panel is subjected to is determined to ensure that the stress intensity factor is the same

as the patched crack, viz,

�∗�t�
√
�a= �����t�+�T

0 	
√
�aF���a� (8.24)

which leads to

�∗�t�= �����t�+�T
0 	F���a� (8.25)

Since the factor F decreases as the crack size increases, the equivalent stress �∗�t�
would become a progressively smaller fraction of the applied stress, to ensure that the

cyclic plastic deformation at the tip of the equivalent crack remain the same as that for

the patched crack.
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Skin
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σ* (t)
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Fig. 8.13. Correspondence between a patched crack and an un-patched crack subject to an equiv-

alent stress.
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Fig. 8.14. Comparison between experimental and predicted growth behaviour of patched cracks

under F-111 spectrum. Symbols denote experimental data.

A comparison with some experimental results (Boykett and Walker, 1996) is shown

in Figure 8.14. The test specimens, which were made of 2024-T851 aluminium alloy

panels having a thickness of 3.7mm, were repaired with a boron composite patch

after being pre-cracked to give a half crack size equal to 20mm. Patches were made

from Boron/Epoxy pre-preg fibre composites to form a 14-ply laminate; the lay-up is

�05
±45	s. The patched specimens were subjected to a load spectrum (to be denoted as

F-111) consisting of 36, 273 turning points per block, with the ratio of the minimum

to the maximum equal to −0�278. The maximum applied stress, as listed in Table 8.1,

was equal to 217MPa, giving rise to a maximum plate stress (in a block) of about

112MPa. The geometry and material properties of the patched specimen (denoted as

F111) are summarized in Tables 8.1 and 8.2. The patches were bonded to the plate

using an FM-73 adhesive and cured at 80 C, resulting in a thermal residual stress of

Table 8.1. Geometry and material properties of specimens.

Specimen Es

(GPa)
ts

(mm)
Ep

(GPa)
tp

(mm)
GA

(GPa)
tA

(mm)
� �

(1/m)
��
max

(MPa)

F-111 72 3�7 156 1�82 0�57 0�25 0�52 58�0 217
FALSTAFF 72 3�14 200 0�91 0�54 0�2 0�55 65�5 248

Table 8.2. Thermal properties and temperature change.

Specimen �s (plate) �p (patch) �T �C� �T
0 (MPa)

F-111 2�40E-05 4�00E-06 60 67�35
FALSTAFF 2�40E-05 4�00E-06 100 70�67
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67.35MPa. The base-line fatigue crack-growth data for the material were taken from

the literature (DTDH, 1972), which were then converted to obtain the crack-growth rate

against effective stress-intensity factor range relationship. This allows the experimental

results from various stress-ratio tests to be collapsed within a single scatter band. The

converted data can be well correlated using the standard Paris relationship, giving rise

to the following constants C = 7�4× 10−10 and m = 2�93. As seen in Figure 8.14,

the predictions based on the equivalent crack method are in good agreement with the

experimental results. It is also interesting to note that, due to the increased mean stress

resulting from the thermal residual stress, simple predictions based on simply integrating

the crack growth equation on a cycle-by-cycle basis, using the steady-state crack opening

stress given by Equation (8.9), are slightly conservative. This implies that the retardation

effect of the loading spectrum is also not very significant due to the high mean stress.

Also shown in Figure 8.14 are the predictions based on the crack closure model, without

considering the thermal residual stress. It is evident that the calculated crack growth rate

is far lower than the experimental results, demonstrating the importance of the thermal

residual stress in enhancing the fatigue crack-growth rates. This also highlights the need

to minimize the thermal residual stress.

The experimental results of another series of tests involving FALSTAFF spectrum

(Raizenne et al., 1988) are plotted in Figure 8.15, together with predictions made using

equivalent crack method. The test specimens, which were made from 3.2mm thick

2024-T3 aluminium sheets, were first fatigue pre-cracked under constant amplitude

loading to two prescribed crack lengths: 5mm and 25mm. The test panels were then

repaired with boron/epoxy using three different adhesive systems. Two edge-cracked

face-sheets were bonded to an aluminium honeycomb core to form a sandwich panel to

avoid out-of-plane bending. A total of six such panels were tested. The thermal residual

stress, as listed in Table 8.2, was estimated based on Equation (8.20) to be approximately

5

15

25

35

45

55

65

75

0 50 100 150 200 250

Symbols: experimental data (Raizenne et al., 1998)
Solid lines: closure model prediction
Dashed lines: ignoring load sequence effect

Closure model ignoring
thermal residual stress

Number of FALSTAFF (clipped) blocks

C
ra

ck
 le

ng
th

 (
m

m
)

Fig. 8.15. Comparison between experimental and predicted growth behaviour of patched cracks

under FALSTAFF spectrum.
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70.67MPa. This thermal residual stress is significant as the maximum skin stress ���
is about 136MPa. The spectrum used was a “clipped” FALSTAFF spectrum, in which

the negative loading has been removed. As seen in the figure, the predictions based on

the crack closure model, when thermal residual stress is taken into account, are in good

correlation with the experimental data. As indicated by the dashed lines in Figure 8.15,

predictions made by integrating the crack growth rate equation, with the crack-opening

stress for each reversal being taken to be the steady-state value, are slightly on the

conservative side. Similar to the results shown in Figure 8.14, this behaviour indicates

that, due to the high thermal residual stress, the spectrum loading does not have a strong

retardation effect. Also plotted in Figure 8.15 are the predictions made by neglecting

the thermal residual stress. Again, much slower crack-growth rates are predicted. This

confirms the observations made earlier regarding the importance of the thermal residual

stresses and the need to minimize residual stresses in order to achieve lower crack-

growth rates. It should be noted that the effects of disbond and adhesive plasticity have

not been considered in this section, since the main objective here is to demonstrate the

equivalence principle between patched and un-patched cracks.

8.5 Summary

It has been shown that under constant amplitude loading with the prospective stress much

lower than the material yield stress, the closure behaviour of repaired cracks is nearly

identical to that corresponding to un-patched cracks subjected to steady-state loading.

Under variable amplitude loading, the crack closure behaviour of a patched crack has

also been shown to be identical to that corresponding to an un-patched crack subjected

to the same stress-intensity factor history.

An equivalent crack method has been developed, which enables the fatigue crack closure

of patched cracks to be determined by analyzing a centre-cracked panel subjected to an

equivalent stress given by

�∗�t�= �����t�+�T
0 	F���a�

Predictions based on this method have been found to correlate well the experimental

results obtained under two aircraft loading spectra. It has also been found that the

ignorance of the thermal residual stress would lead to significant under-predication of

the crack growth rate.



CHAPTER 9

A Preliminary Design Approach
for Crack Patching

9.1 Introduction

This chapter describes an approach to a patch design for a crack repair, based largely

on the analyses developed in Chapters 2 and 3 and also by Duong (2003a) under the

Composite Repair of Aircraft Structures (CRAS) program. The design process from this

approach follows the guidelines given in the Composite Repair to Metallic Structure

(CRMS) Guidelines (1998), RAAF Engineering Standard C5033 (Davis, 1995), and those

recently developed by The Boeing Company under the CRAS program (Duong, 2003a,b;

Duong et al., 2003). This approach does not include the effect of the out-of-plane bending

and assumes that the repaired structural component is subjected to biaxial loading at

the far field. The initially designed patch that is output from the process will be a

unidirectional patch with the 00 plies aligned normal to the line of crack. For a general

far-field loading (including a shear load), the principal stresses and principal directions

of the far-field-applied stresses must be determined and the patch will then be designed

with respect to the principal axes of the far-field stresses with its principal moduli and

the crack orientation assuming to be parallel to those axes. Since a design of a patch in a

cracked component under a primary compressive load can be accomplished in a similar

manner to the case of a primary tensile load, for clarity, the design approach delineated

in this chapter is specifically for a cracked structure subjected to the biaxial loading with

a primary tensile load. However, as illustrated through examples in Chapter 4 and also

shown later in Section 9.2.2, the effect of the compression loads and thermal loads are

additive for the patch’s stresses and for the skin stress concentration at the end of the

patch while they are subtractive in the case of a tensile load. Thus, the criteria specified

in Section 9.3 must be modified slightly for the case of a compressive load to reflect

such difference and the appropriate material allowables for compression must be used in

these criteria. In addition, the design approach in the latter case also does not address the

global buckling of the structure nor local instability at the end of the patch as observed

in some tests.

300
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The design process for composite patching of cracks consists of establishment of design

criteria, selection of the patch and adhesive materials, development of the initial design

and refinement/validation by detailed analyses and/or test. The first three tasks of

this process will be reviewed in this chapter while the last task has been covered in

Chapters 2–8 and will be discussed in Chapter 11. For clarity, the basic analysis methods

described in Chapters 2 and 3, which will be used in the preliminary design approach,

will be reviewed first in Section 9.2 along with the extensional work developed under

the CRAS program on the equivalency between a thermal and a mechanical problem

(Duong, 2003a). The design criteria are established in Section 9.3 and they are followed

by the guidelines for the selection of the patch and adhesive materials in Section 9.4.

Finally, the initial design process is developed in Section 9.5.

9.2 Basic Analysis Methods Used in the Preliminary Design Approach

In this section, a brief summary of the basic analysis methods used in the preliminary

design approach is presented. The quantities of practical interest in the design are stresses

in the skin and patch, shear strain in the adhesive, and the stress intensity factor for

residual strength and fatigue crack growth predictions. The Rose two-stage analysis

procedure described in Chapter 3 for estimating these quantities will be reviewed here

first and it will then be extended to include the thermal effects. As in Chapter 3, for

simplicity, the analysis method is developed for an elliptical isotropic patch with the

same Poisson’s ratio as that of the skin. It was shown in Chapter 3 that the effect of the

material orthotropy of the patch is insignificant on the sought quantities. The effect of

tapering of the patch’s edge as commonly done in practice is also ignored in the analysis.

It should be emphasized that the thermo-mechanical analysis outlined in Section 9.2.1

below has been developed by Duong (2003a) and it is presented here for the first time

in this book.

9.2.1 Analysis method for a repair subjected only to mechanical loads

In the first stage analysis of the Rose solution procedure, a patch is assumed to bond

rigidly to an uncracked skin. Stresses in the skin near the edge of the patch and

underneath the patch are determined in Chapter 3 and also Chapter 6 using an elliptical

inclusion analogy. These skin stresses in the y-component derived from these chapters

are given below.

Skin stress underneath the patch

�∗
0 =

��
D

{
�1+S�

[
3+2

B

A

]
+1+�sS+2

A

B
+� ·S

[
1−�s−2�s

B

A

]}

Z = 3 �1+S�2+2 �1+S�
[
B

A
+ A

B
+�sS

]
+1−�2s S2

(9.1)

Skin stress near the tip of the patch’s edge

�∗
tip = �1+S��∗

0 (9.2)
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where S is the patch stiffness to skin stiffness ratio, i.e. S = E′
ptp

E′
sts

= Eptp
Ests

for an

isotropic patch with a Poisson’s ratio same as skin, A and B are the axes of

the ellipse with the dimension B parallel to the primary loading direction, �s is the

skin’s Poisson‘s ratio, � is the biaxial stress ratio, and the subscripts p or s denote the

patch and skin, respectively. As found in Chapters 3 and 6, the skin stress underneath an

elliptical patch is uniform, independent of the spatial coordinates and the patch’s size.

Furthermore, since the reinforced skin is stiffer than the remote skin, it can be shown

from Equations (9.2) and (9.1) that �∗
tip is always larger than the remote skin stress ��.

In other words, there is a stress concentration in the skin near the tip of the patch’s edge.

Since it is more convenient to use the skin stress concentration factor at the patch tip as

a design parameter than �∗
tip, Equation (9.2) therefore has been rewritten as:

K∗
t =

�∗
tip

��
= �1+S� �

∗
0

��
(9.3)

Similar to the skin, the y-component stress in the patch is also uniform and found to be:

� stageI
p = �∗

0

E′
p

E′
s

= �∗
0

Ep

Es

(9.4)

In the second stage analysis of the Rose solution procedure, a patch is assumed to be of

infinite extent and adhesively bonded to the skin. The skin now contains a crack with a

pressure load of �∗
0 acting on its surfaces and without any remote applied stresses. The

purpose of the second stage analysis is to estimate the crack-tip stress intensity factor

KI, the maximum adhesive shear strain, and the additional stresses in the patch near

the crack surfaces due to the loss of load carrying capability of the skin in the vicinity

of the crack. For simplicity, the skin crack is assumed to be semi-infinite. As shown

in Chapter 3, the stress intensity factor when it is estimated based on this semi-infinite

crack model will have an upper bound value and will be denoted by KI�. By considering

the change in the potential energy of the patched cracked skin due to a virtual crack

extension and using results from the 1D bonded joint theory, KI� had been derived in

Chapter 3 as:

KI� = �∗
0√
�

(9.5)

where

�= �AS

�1+S� �1−�2s �
(9.6)

1/�A as in Chapters 2 and 3 is the shear load transfer length with �A defined by:

�A =
√√√√GA

tA

(
1

E′
sts

+ 1

E′
ptp

)
(9.7)

GA and tA are the shear modulus and thickness of the adhesive layer, respectively, S
again is the patch stiffness to skin stiffness ratio, E′

s
p = Es
p
1−�2s
p . As mentioned earlier,

since KI� is the upper bound value for the stress intensity factor of a patched crack,
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KI� given by Equation (9.5) is a constant and independent of the actual crack length.

Furthermore, KI� must also be less than or equal to the corresponding stress intensity

factor of an un-patched crack, i.e., KI� ≤ �∗
0

√
�a where �∗

0

√
�a is the well-known

result for the stress intensity factor of a central crack of length 2a in an infinite sheet.

In contrast, the adhesive shear strain in the adhesive and the additional stress in the patch

due to the presence of the skin crack are estimated using one-dimensional theory of a

double-strap joint described in Chapter 2. The shear strain in the adhesive in general is

highest near the patch’s edge and near the crack surfaces. Since most of the repaired

patches have a tapered edge that tends to reduce shear load transfer there, the maximum

shear strain in the adhesive therefore normally occurs near the crack surfaces. When

the shear load transfer length 1/�A is small relative to the patch size, the adhesive’s

shear strain near the crack surfaces that results from the local load transfer between

the cracked skin and the patch decays rapidly to zero for a small distance away from

the crack. The maximum shear strain in the adhesive in this case is obtained from the

displacements of the skin and patch given in Chapter 2 at the skin interruption end as:

�max
A = us �x = 0�−up �x = 0�

tA
= �∗

0 ts�A

GA

(9.8)

where us �0� has been evaluated using Equation (2.25) while up �0�= 0 due to symmetry.

Similarly, the additional stress in the patch due to the presence of the skin crack is

determined from the one-dimensional analysis as:

� stageII
p = �∗

0 ts
tp

(9.9)

The total stress in the patch is then equal to the sum of the individual contributions from

the first and second stage analyses as given by Equations (9.4) and (9.9), respectively.

So far, all results have been obtained by assuming that the adhesive remains elastic for

a given applied load. However, in many instances, the adhesive is loaded beyond its

elastic shear stress limit. When the adhesive is modeled as an elastic-perfectly-plastic

material as shown in Figure 2.3, from Chapters 2 and 3, the formulas for the maximum

shear strain in the adhesive and KI� need to be changed to the following while the rest

of the equations remain the same.

�max
A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�∗
0 ts�A

GA

for �∗
0 ts�A < �

�A�
Y

�
�A�
Y

2GA

{
1+
(
�∗
0

�0Y

)2
}

otherwise

(9.10)

KI� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�∗
0√
�
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�A�
Y

�∗
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�
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�0Y
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�∗
0

�0Y

)
−1

3

(
�∗
0

�0Y

)2

⎤
⎥⎥⎥⎦

1/2

otherwise

(9.11)
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where �0Y is defined by Equation (3.32) as �0Y ≡ �
�A�
Y

�Ats

 �

�A�
Y is the elastic shear limit

of the adhesive as defined in Figure 2.3, � is given by Equation (9.6), and the rest

are previously defined. It is worthy to note that the second equation of (9.10) has been

derived in a similar manner as that for the case of an elastic adhesive given above, except

that the displacement of the skin at the interruption end is now given by Equation (2.62).

In addition, the second equation of (9.11) is identical to Equation (3.35).

9.2.2 Analysis method for a repair subjected to thermo-mechanical loads

As before, the analysis of the thermo-mechanical problem is also divided into two stages.

In the first stage, the skin’s stresses underneath the patch, the patch’s stresses and the

skin stress concentration near the tip of a patch’s edge are calculated using an inclusion

analogy. For clarity, the analytical method for stage I analysis of a repair under purely

thermal loads is delineated first.

Consider a problem of a patched skin that is cooled uniformly from a stress-free (ambient)

temperature to a low operating temperature as experienced by the aircraft during high

altitude cruising. Follow the procedure outlined in Section 4.2.4; the analysis of this

problem proceeds in two steps. In the first step, the skin is cooled first to a low operating

temperature while the patch is still at a stress-free (ambient) temperature. Furthermore,

the patch is also subjected simultaneously to a fictitious uniform strain field of �s�T�ij
where �s is the thermal expansion coefficient of the skin, and �T = (Toperating−Tambient

)
.

Since the patch is subjected to a uniform strain field of �s�T�ij that is compatible with

the thermal strain of the skin, the skin will contract freely during this cooling phase

without experiencing any exerted forces from the patch, resulting in a stress-free skin.

Thus, the strain field in the skin and patch at the end of the first step of cooling will be

given by:


s�step1�
ij �x�= p�step1�ij �x�= �s�T�ij (9.12)

In the second step of cooling, the patch is allowed to cool to a low operating temperature

and also to relax simultaneously the fictitious strain field �s�T�ij imposed previously

on it. The problem of a second step cooling is then a problem of a patched skin with

the following strain prescribed in the patch:1


�T��p�
ij = (�p

ij�T −�s�T�ij
)= ��ij ·�T (9.13)

where �
p

ij is the thermal expansion coefficient tensor of the patch in the principal material

directions, and �ij is the Kronecker delta. While the solution of this problem will be

given in detail in the next paragraphs, let us assume for now that this solution is already

obtained with the strain solutions for the skin and patch denoted as:


s�step2�
ij �x�= p�step2�ij �x�= ∗∗ij �x� (9.14)

1 See footnote 1 of Chapter 4.
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The total strains in the skin and patch at the end of the cooling process are then equal

to the sum of individual contributions from the first and second steps of cooling, and

these strains are given by:

sij �x�= pij �x�= ∗∗ij �x�+�s�T�ij (9.15)

On the other hand, the thermal stresses in the skin and patch after cooling are determined

from the thermo-elastic constitutive relation, Equations (9.15) and (9.13) as:

� s
ij �x�= Cs

ijkl �
s
kl �x�−�s�T�kl	= Cs

ijkl
∗∗
kl �x�

�
p

ij �x�= Cp

ijkl

[

p

kl �x�−�p

kl�T
]= Cs

ijkl

[
∗∗kl �x�−

(
�
p

kl�T −�s�T�kl
)]

= Cp

ijkl �
∗∗
kl �x�−��kl�T	

= Cp

ijkl

[
∗∗kl �x�−�T��p�kl

]
(9.16)

It remains now to outline a solution method for determining ∗∗ij �x�. It is more convenient

to solve ∗∗ij �x� using a mechanical problem analogue, because the solution of the thermal

stress problem then can be easily combined with that of the purely mechanical problem

for use in the patch design process. We begin the development by showing that problem

of a patched skin under purely mechanical loads can be formulated as a type of the

problem considered earlier in the second step of cooling, and consequently it can be

made equivalent to the thermal problem. That equivalency is proven below.

Let us consider the problem of a patch bonded to a large skin that is subjected to the

far field applied stresses −�T
11 and −�T

22, or equivalently to the far field applied strains

−T11 and −T22 as depicted in Figure 9.1 where �T
ij and 

T
ij are related by �T

ij = Cs
ijkl

T
kl.

This problem can be broken in two sub-problems as illustrated in the same figure. In

the first sub-problem, the patch is assumed to be applied by fictitious uniform strain

fields −T11 and −T22, while the skin is subjected to the given far-field stresses or

strains. The patch in the first sub-problem will not exert any forces on the skin since

its strains are compatible with those of the remote skin. The solution of the first sub-

problem is therefore trivial since the skin and patch in this case have uniform strains

that are the same as the far-field-applied strains. The stress components in the skin are

thus also uniform and equal to −�T
11 and −�T

22. However, since the patch in reality is

not subjected to such fictitious strain fields, these fictitious strain fields therefore must

relieve to zero. The second sub-problem is therefore a problem of a large skin without

any remote applied stresses nor applied strains but containing a patch prescribed with

a uniform strain fields Tij as shown in Figure 9.1(c). Consequently, the problem shown

in Figure 9.1(c) is equal to the difference between the mechanical problem shown in

Figure 9.1(a) and the trivial problem shown in Figure 9.1(b), as illustrated in Figure 9.2.

It should be noted that the far-field-applied stresses or strains and the prescribed strains in

the patch of the problem shown in Figure 9.2(c) have opposite signs with those shown

in Figure 9.1(b). Also, the strain components in the skin and patch of the problem

shown in Figure 9.2(c) are equal to T11 and 
T
22. Moreover, stresses in the skin and patch

of all problems considered in Figures 9.1 and 9.2 are related to their corresponding

strains by the isothermal constitutive relations, i.e. �ij �x�= Cijklkl �x�.
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22εT22–εT

Fig. 9.1. A decomposition of a mechanical problem into two sub-problems: (a) the original

mechanical problem; (b) a mechanical problem with uniform strains prescribed in the patch; and

(c) the initial strain type problem. It should be noted that the solution of the problem shown in

Figure 9.3(b) is trivial. Also, �T
ij = Cs

ijkl
T
kl.

= +

Patch is prescribed 
with uniform strain
fields

Patch is prescribed
with uniform strain
fields  and 

(a) (b) (c)

−σT
22

σT or εT
22 22

σT or εT
11 11−σT

11

εT
22εT

11
 and εT

22εT
11

Fig. 9.2. A superposition method for analyzing a patched plate with a uniform strain field pre-

scribed in the patch, noting �T
ij = Cs

ijkl
T
kl. If 

T
ij is selected to be equal to 

�T��p�
ij , strain solution

∗∗ij will prevail in both patch and skin. Also, the solution of problem 9.2(c) is trivial, i.e. patch

and skin are under uniform strain Tij .

According to the preceding paragraph, the solution of any problem of the type illustrated

in Figure 9.2(a) can be obtained by superimposing the solutions of two problems shown

respectively in Figures 9.2(b) and 9.2(c). The reader is reminded that a problem of a

second step cooling of the original thermal stress problem also falls into that category.
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Thus, by identifying T11 and 
T
22 of the problem shown in Figure 9.2(a) as Tij = �T��p�ij =

��ij�T , noting 
�T��p�
ij is given by Equation (9.13), the sought solution ∗∗ij �x� of the

original thermal stress problem can be easily found by the procedure shown in Figure 9.2

with �T
11 and �

T
22 given by:

�T
11 =

Es

1−�2s
(
T11+�sT22

)= Es

1−�2s
(

�T��p�
11 +�s�T��p�22

)

�T
22 =

Es

1−�2s
(
�s

T
11+T22

)= Es

1−�2s
(
�s

�T��p�
11 +�T��p�22

) (9.17)

Once ∗∗ij �x� is obtained, the thermal stresses in the skin and patch are determined by

Equation (9.16).

The above procedure for determining thermal stresses involves two separate steps: first

determining ∗∗ij �x� using the procedure illustrated in Figure 9.2 and then the thermal

stresses via Equation (9.16). However, these two steps can be combined so that the

thermal stresses can be obtained directly in a single step as follows.

From Equation (9.16), the thermal stresses in the skin and patch are equal to the

product of their elasticity tensor and ∗∗ij or
(
∗∗ij −�T��p�ij

)
where ∗∗ij is obtained from

linear superposition of solutions of problems shown in Figures 9.2(b) and 9.2(c) with

Tij = �T��p�ij , as mentioned above. From Figure 9.2, it is clear that strains in the skin and

patch from this linear superposition are given by


s�a�
ij = ∗∗ij = s�b�ij +s�c�ij = s�b�ij +Tij and


p�a�
ij = ∗∗ij = p�b�ij +p�c�ij = p�b�ij +Tij or 

p�b�
ij = ∗∗ij −p�c�ij = ∗∗ij −Tij

(9.18)

where the superscripts a, b, and c denote respectively the problems shown in

Figures 9.2(a)–9.2(c), and the strains in the skin and patch of the problem 9.2(c) are

trivially equal to Tij .

Let us consider now the linear superposition of problems shown in Figures 9.3(b)

and 9.3(c). From Figures 9.3(b) and 9.3(c) and by noting that (i) Figure 9.3(b) is the

same as Figure 9.2(b) so that strains in the skin and patch due to the contribution

from Figure 9.3(b) will be 
s�b�
ij and 

p�b�
ij , respectively, and (ii) strains in the skin of

the problem shown in Figure 9.3(c) are equal to Tij , the strains in the skin and patch

from linear superposition of the results of problems shown in Figures 9.3(b) and 9.3(c)

therefore are given by:

sij = s�b�ij +Tij


p

ij = p�b�ij

(9.19)
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ΔT ≠ 0

−σT
22 σT

22

−σT
11 σT

11

Fig. 9.3. A superposition method for determining thermal stresses in a patched plate.

However, since 
s�b�
ij +Tij = ∗∗ij and 

p�b�
ij = ∗∗ij −Tij by Equation (9.18), the strains in

the skin and patch given by (9.19) can also be rewritten as

sij = s�b�ij +Tij = ∗∗ij


p

ij = p�b�ij = ∗∗ij −Tij
(9.20)

while the corresponding stresses are given by

� s
ij = Cs

ijkl
s
kl = Cs

ijkl
∗∗
kl

�
p

ij = Cp

ijkl
p

kl = Cp

ijkl

(
∗∗kl −Tkl

) (9.21)

Since the stresses in the skin and patch of the original thermal stress problem are also

given by the same expression as (9.21) via Equation (9.16) and noting Tij = 
�T��p�
ij ,

the linear superposition of problems shown in Figures 9.3(b) and 9.3(c) will render the

original thermal stress problem as indicated in Figure 9.3(a).

So far only thermal stresses of the problem associated with uniform cooling is considered.

However, it can be shown in a similar manner that the thermal stress solutions of the

problem associated with curing of the adhesive can be obtained by the same procedure

as given in Figure 9.3, except for a new and different expression for 
�T��p�
ij . For a curing

process using a circular heater blanket, this new expression for 
�T��p�
ij can be derived as

follows. As presented in Section 4.2.4, 
�T��p�
ij associated with the curing of the adhesive

is found from Equation (4.40) as


�T��p�
ij =−�p

ij�Theating+s�heating�ij (9.22)

where �Theating = Tcuring − Tambient, and 
s�heating�
ij is the total strain of the skin inside

the inclusion region ! of a thermal inclusion problem with eigenstrain given by

∗ij = �s�Theating�ij . For a curing process using a circular heater blanket, region ! of this
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thermal inclusion problem is also circular. Based on the results given in Section 6.2.1

for a circular inclusion, the strain in the skin inside ! can be obtained from the Eshelby

solution as:


s�heating�
ij = Sijkl∗kl (9.23)

where Sijkl is defined by Equation (6.4), and ∗ij = �s�Theating�ij . Substituting Equa-

tion (9.23) into (9.22) for 
s�heating�
ij , noting ∗ij = �s�Theating�ij , and evaluating Sijkl by

Equation (6.4) for a circular region ! yield:


�T��p�
11 =

[
−
(
�s
2
+ 1

2

)
�s+�p

11

] (
Tcuring−Tambient

)


�T��p�
22 =

[
−
(
�s
2
+ 1

2

)
�s+�p

22

] (
Tcuring−Tambient

) (9.24)

With 
�T��p�
ij associated with the curing process being determined, �T

11 and �T
22 of the

equivalent mechanical problem shown in Figure 9.3 can be evaluated by the same

equation as (9.17) but with 
�T��p�
ij now defined by Equation (9.24).

The above equivalency between a thermal and a mechanical problem has many significant

implications in the design of the repaired patch and has been verified independently by

means of the FE method. First, all results derived in Section 9.2.1 still hold for the

thermal problem with only minor changes since they are solutions of the problem shown

in Figure 9.3(b), while the solution of the problem shown in Figure 9.3(c) is trivial.

Second, using the above equivalency, a thermo-mechanical problem can be analyzed

by the method illustrated in Figure 9.4. Third, the equivalency holds for any patch’s

geometry (octagonal, rectangular, etc.) even though it has been demonstrated in this

section only through an example of an elliptical patch. Using the above equivalency and

= +

(a) (b) (c)

ΔT ≠ 0

Σ ⋅ σ∞

σ∞ σ∞ – σT
22 σT

22

Σ ⋅ σ∞ – σT
11

σT
11

Fig. 9.4. A linear superposition method for analyzing the thermo-mechanical problem.
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from Figure 9.4, it is quite easy to show that for a repair with thermo-mechanical loads,

the counterparts of Equations (9.1)–(9.4) of the first stage analysis are given by:

�0 =
�∗
0

��

(
��−�T

22

)+�T
22

�tip =
�∗
tip

��

(
��−�T

22

)+�T
22

(9.25)

or

�0

��
= �∗

0

��
+ �T

22

��

(
1− �∗

0

��

)
(9.26)

Kt = K∗
t −

�T
22

��
�K∗

t −1� (9.27)

and

� stageI
p = (�0−�T

22

) Ep

Es

(9.28)

where �∗
0 
 �

∗
tip, and K

∗
t are stresses in the skin underneath the patch, near the edge of

the patch, and the stress concentration, respectively, due to the applied stress �� alone,

and they are given by Equations (9.1)–(9.3), respectively.

The second stage analysis of Rose’s approach for the present case of thermo-mechanical

loading will be identical to that given in Section 9.1.1 except for a new value of the

pressure load acting on the crack surfaces. Thus, the counterparts of Equations (9.5),

(9.6), and (9.8)–(9.11) for a repair under thermo-mechanical loading are exactly the same

except that �∗
0 is now replaced by �0 given by Equation (9.25). The reader is reminded

that �T
11 and �

T
22 are defined by Equation (9.17) where 

�T��p�
11 and 

�T��p�
22 for two typical

thermal loading conditions (low operating temperature and curing of the adhesive) are

given respectively by Equations (9.13) and (9.24).

It is interesting to note from Equations (9.26) and (9.27) that the effects of uniform

cooling and curing increase the skin’s stress underneath the patch ��0/�� > �∗
0 /���

while at the same time reduce the stress concentration in the skin near the tip of the

patch’s edge �Kt <K
∗
t �, since

�∗
0

��
< 1


�T
22

��
> 0, and K∗

t ≥ 1.

9.3 Design Criteria

The design of an effective patch requires that the patch will carry an appreciable

percent of the applied load without any premature failure or disbond. To develop such

a design, the patch, adhesive, and cracked skin after the repair must possess sufficient

static strength and fatigue resistance. Criteria and guidelines to assure the structural

integrity of the repair have been established in the CRMS Guidelines (1998) and in
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the RAAF Engineering Standard C5033 (Davis, 1995). Additional guidelines have also

been established by engineers performing repairs at Warnin-Robin Air Logistic Center

(WR-ALC) (see CRAS Design Manual, 2003). Further improvements to enhance these

criteria and guidelines have been developed under the CRAS program (Duong, 2003a;

CRAS Design Manual, 2003). Basic criteria, described in this section, define acceptable

patch stress, adhesive strain, skin stress, crack growth behavior and patch size based on

load transfer and crack length.

9.3.1 Design criteria for cracked skin

Failure-inducing forces, acting on the repaired skin, are those at the crack and those at

the edge of the patch. Failure at the crack typically results from fatigue crack growth,

governed by the stress intensity factor. Any repair locally stiffens a structure and attracts

load into the repaired area. The stress concentration at the edge of a patch can result

in failure (cracking) at that location due to overstressing of the skin material. Design

criteria are established for skin stress at the edge of the patch and the stress intensity

factor at the crack tip.

Any patch draws load into the repaired area. A patch needs to be just stiff enough to

repair the damage but not too stiff or it will result in high stress concentration at the

edge of the patch and may induce cracking near that edge. The first criterion, identified

by WR-ALC, is that the value of stress in the substrate at the patch edge, in the tensile

load direction, should be limited to about 115 to 130% of the far field applied stress.

This stress concentration at the edge should minimize peel stresses that develop at the

adhesive edge and allay the concern that high fatigue loads at the end of the patch

may induce cracking. Consistent with the WR-ALC key performance criterion, the skin

stress concentration factor near the patch’s edge tip due to the design ultimate load

(DUL) is limited to values below 1.3 when the ratio of the material ultimate strength to

the far-field stress at DUL exceeds 1.3, i.e.,
Ftu

�� at DUL
> 1�3, or below Ftu

�� at DUL
when

otherwise. The latter case corresponds to a case when the applied stress at DUL is so

high that even though the skin stress concentration at the patch tip is below 1.3, the skin

stress there still exceeds the material ultimate strength.

The stress intensity factor measures how strong the crack driving forces are. Plane stress

and plane strain fracture toughness, KC and KIC, provide a measure of the resistance to

crack propagation under static loads. In contrast, the fatigue crack growth is governed

by the difference in stress intensity factors at the maximum and minimum loads of a

fatigue cycle, i.e., �KI. Repairs should be designed to reduce KI so that no unstable

crack growth will occur at the design static load and that the fatigue crack growth is

slowed or stopped. In other words, the repaired stress intensity factor KI due to a design

static load should be limited to a value considerably less than the fracture toughness

of the skin material and the repaired �KI is below the fatigue threshold. The second

and third criteria for the cracked skin therefore require that the crack-tip stress intensity

factor must be equal to or less than 80% of the skin fracture toughness at the design

ultimate load (DUL), and �KI must be below the fatigue threshold at the design fatigue

load (DFL). This second criterion is the same as having a margin of safety factor equal to

0.25 for skin fracture. To take advantage of stable crack growth in thin ductile materials,
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the “apparent” plane stress skin fracture toughness KC (Broek, 1987) will be used in the

second criterion. However, it was found under CRAS program (Duong, 2003a,c; Duong

et al., 2003) that the third criterion for fatigue crack growth is too restrictive and it can

lead to overly stiff patch designs. Thus, the last skin criterion has been modified by

allowing the crack to grow at the design fatigue load but at a slow enough rate such

that the final crack length after the specified number of cycles of the fatigue load is still

contained by the patch within 80% of the patch’s width.

9.3.2 Design criteria for patch

In the repair practice, the stiffness ratio S is defined as the ratio of the stiffness after the

repair has been installed to the stiffness of the original structure prior to the occurrence

of damage. For a structure with cracks through the thickness, it is assumed that the

after-repair stiffness is that of the patch alone and S = E′
ptp/E

′
sts. Since the intent of the

repair is to return the stiffness to its original state, values of S should always be greater

than 1.0. The CRMS Guidelines (1998) recommends a maximum value of 1.5 for the

stiffness ratio. In a joint effort, Warner Robin Air Logistic Center and the Southwest

Research Institute tested patches with values of S from 1.1 to 1.6 and they recommend

that range as reasonable (Spigel et al., 1998). However, those references do not include

the effect of residual thermal stress in their recommendations. An upper bound value

of 2.0 is used under the CRAS program (Duong, 2003a; CRAS Design Manual, 2003).

The stiffness requirement for the patch therefore is that 1≤ S ≤ 2.

Minimum patch dimensions are established to assure an adequate and realistic design.

Design criteria establish the minimum patch length based on load transfer through the

adhesive, patch width to encompass the defect, and edge length for tapered octagonal

patches to assure a reasonable shape. Minimum patch length is established by studying

the adhesive shear stress developed in a bond (see Chapter 2). The durability of a repair

is predicated on a bonded area large enough to resist the effects of stress on the bond

line over time, or creep. An elastic anchor of very low shear stress in the adhesive will

prevent creep. This region of low shear stress is defined as a function of the load transfer

length 1/�A, mentioned in Chapter 2, and the minimum patch length criterion is based

on this parameter.

The load transfer length 1/�A is defined as the length over which the adhesive shear

stress decreases from �
�A�
max or �

�A�
Y to nearly zero. The adhesive shear stress between the

edge of the patch and the defect consists of two plastic zones at the ends and the elastic

zone where the stress decreases from the adhesive shear yield strength value �
�A�
Y to a

low value, approaching zero (see Figure 2.4). As mentioned above, in order to assure

that the overlap is long enough to develop a central area of very low adhesive shear

stress which anchors the bond to resist creep, the elastic zone is determined to be 5/�A.

The total length of the two plastic zones is designated �Y and the length of the elastic

zone �E. The overlap length – that length required to develop a central region of low

adhesive stress – is the distance between the edge of the patch and the defect and is

equal to �E+�Y. The minimum patch length is equal to twice the overlap length plus the

size of the defect and the tapered portion. The tapered portion of the patch is denoted

by 2�T. For a crack, patch length is defined normal to the crack and the defect size in
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the patch length direction is essentially zero. The minimum patch length is, therefore,

equal to twice the overlap length plus the tapered portion or 2 ��E+�Y+�T�, i.e.,

�E =
5

�A

�Y = �0ts

�
�A�
Y

�T =
(
nply−1

) ·d · tply
Lp ≥

10

�A

+ 2�0ts

�
�A�
Y

+2 · (nply−1
) ·d · tply

(9.29)

where nply is the number of plies, tply is the thickness per ply, d is the step-off rate and the

rest have been previously defined. It is worthy to note that the minimum patch’s length

given by Equation (9.29) is different from that recommended by the CRMS Guidelines

or the RAAF Engineering Standard C5033 (Davis, 1995), in which �E is specified in

(9.29) to be 5/�A, not as 6/�A as required in the two cited references. This new value

of �E �5/�A� was proposed recently by Hart-Smith (2001a) resulting from a revised

analysis of his original work (1973) upon which the Engineering Standard and CRMS

Guidelines were based. Furthermore, occasionally �E also has been recommended to be

equal to 12/�A.

On the other hand, the minimum width, according to CRMS Guidelines, should overlap

the initial crack length, prior to patching, by at least 25.4mm and be at least twice that of

the initial crack length. In contrast, CRAS bases the required minimum patch width on

growth of the crack after patching (Duong, 2003a). CRAS computes crack growth for a

specified number of fatigue cycles and requires that the patch width exceed the predicted

crack length by 20% and also exceed an established minimum width of 2 �a+√
ao�,

where a is half the crack length after the designed number of cycles and ao is half the

original crack length before installation of the repair. Therefore, the minimum patch

width will be specified in the present design process as (Duong, 2003a):

Wp ≥ 2
(
a+√

a0
)

or Wp ≥ 1�2a (9.30)

Finally, the remaining criteria for the patch consider its strengths at the design ultimate

load and at the design fatigue load. The maximum stress in the patch at DUL must be

less than 83% of the material tensile ultimate strength of the patch. This corresponds to a

margin of safety of 0.2 or higher for the patch strength. The margin safety factor is used

to accommodate for any variation or degradation of the composite material properties.

In contrast, the maximum stress in the patch at DFL must be less than 40% of the patch

material strength allowable to assure the durability of the patch.

9.3.3 Design criteria for adhesive

The forces acting on a bond must be understood for a good patch design to be developed.

The CRMS Manual summarizes failure modes related to those forces. An adhesive bond
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is subjected to shear forces parallel to the bond surface and normal forces perpendicular

to that surface. Load is transferred from the damaged structure to the patch through

adhesive shear as shown in Figure 2.4. Shear stress is highest at the crack and at the

edge of the patch. Tensile load perpendicular to the crack length tends to open the crack.

The patch restrains such opening and adhesive shear stress is high at the discontinuity

between the crack and the patch. The overlap length of the patch is increased to reduce

the average shear stress in the bond line. Static strength of an adhesive bond is not what

determines its overlap length. The overlap must be long enough to develop a central

area of very low adhesive shear stress. This area anchors the bond to resist creep.

The offset of the neutral axis in a single-sided patch induces bending moments at the

edge of the patch, resulting in peel forces. Peel forces are only addressed in the present

design approach by incorporating patch taper, which can reduce those forces. Another

important factor in the efficiency of a bond is the thickness of the adhesive. Thicker

bond lines rely on the bulk cohesive properties of the adhesive, while thinner bonds take

greater advantage of the interfacial adhesive forces.

Adhesive shear stress–strain properties are idealized with an elastic-perfectly-plastic

stress strain curve, comprised of linear segments, as shown in Figure 2.3. The idealization

is based on equal areas below the curves. Design parameters for the adhesive are:

(a) elastic shear strain limit, (b) plastic shear strain, (c) shear strain at failure, (d) shear

stress at linear limit, and (e) elastic shear modulus, GA. These values are provided for

various adhesives in Section 9.4.2.

The adhesive design criteria are based on allowable strains defined in that stress–strain

curve and recommended in RAAF Engineering Standards C5033 (Davis, 1998) and

CRMS Guidelines (1995). These criteria are (i) the maximum shear strain in the adhesive

at DUL must be at or below 80% of the maximum allowable strain and (ii) the maximum

shear strain in the adhesive at DFL must be equal to or less than twice the elastic shear

strain limit.

9.4 Material Selection

The second step in designing a patch for crack or corrosion repair is to select materials,

for the patch and the adhesive, on which to base the design. Sections 9.4.1 and 9.4.2

provide data to aid in this endeavor.

9.4.1 Patch materials

The CRMS Guidelines (1998) indicates that considerations in selection of a patch

material include stiffness, strength, thickness, conformability, service temperature, and

product form. Repair materials may be conventional metals, fiber metal laminates, or

composites. Factors that may dictate patch material selection include thickness, weight,

stiffness, thermal expansion coefficient, ability to inspect the damage through the patch,

and operating temperature requirements. Thinner patches can be designed with higher

modulus material. Composite materials have higher stiffness to weight ratio. Metals and
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fiber metal laminates have CTE more compatible with the metal structure being repaired

and are more capable of enduring elevated temperatures.

General guidelines for bonded patches are provided in RAAF Engineering Standard

C5033 (Davis, 1998) as follows:

• The patch should not have an elastic modulus less than the material being patched.

• Bonded patches should match the surface profile to which they are bonded such that

the adhesive film conforms within a tolerance of +/−0�0508mm on the nominal

adhesive thickness, during application of normal bonding pressure.

• Composite patches should have a balanced lay-up about the mid plane, with each

layer of a particular orientation above the mid plane corresponding in orientation

with an equivalent layer below the mid plane.

• Composite patches are to maximize strength by use of fiber-dominated lay-ups.

Lay-up configurations in which the laminate strength is limited by the strength of

the resin system are not desirable.

A summary of metallic and composite repair material characteristics is provided in

Fredell (1994). That summary is the basis for Table 9.1, which provides those charac-

teristics. Properties in this table are for unidirectional composite prepreg configurations

with 60% fiber volume content, except for Aramid/Epoxy properties which are based

on 50% fiber volume content. Specific tensile modulus is the tensile modulus divided

by density and is used to provide an indication of the inherent stiffness to weight ratio

of the material. The units of specific tensile modulus are, therefore, MPa divided by

MPa/m and the values in the table are in units of millions of meters.

Table 9.2 is a list of composite material tensile properties from the CRAS Design Manual

(2003). Boron/epoxy properties are those published by Textron Specialty Materials

(Belason and Buccolo, 1995). Table 9.3 provides fiber metal laminate properties used

in the USAF CalcuRep code (2001).

The material most commonly used for doubler design is Boron/epoxy (B/ep) which is

selected for its high stiffness and strength (approximately three times that of aluminum

in the zero degree ply direction), fatigue resistance, immunity to corrosion (since it is

galvanically inert with aluminum, steel and titanium), and low electrical conductivity

so that simple eddy current procedures can be used to monitor cracks under the patch.

Typically, B/ep 5505 patches are pre-cured, since their 177 C cure temperature is too

high for aluminum structure. Consequently, only autoclave-cured data are presented for

5505. B/ep 5521 patches are cured at 121 C and can be pre-cured or co-cured. Limited

data are presented for both autoclave-cured and vacuum bag-cured 5521.

9.4.2 Adhesive materials

The CRMS Guidelines (1998) indicate that considerations in selection of an adhesive for

patch bonding include service temperature, mechanical properties, cure temperature and
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Table 9.1. Characteristics of repair materials.

Patch material Specific
tensile

modulus∗
�×106 m�

Coefficient of
thermal
expansion
�×10−5/C�

Approximate
relative material

cost

Characteristics

2024-T3
Aluminum (clad,
polished)

2�667 2�3004 1 • Most widely used repair

• Low cost

• Ease of use

• Wide availability

• Bonding uncommon

S-Glass/Epoxy 2�032 0�6102 1 • Economical and widely
available

• High strain-to-failure (5%)

• Stiffness lower than Al

Aramid/Epoxy 4�318 – 2 • Moderate cost

• 1.6 times stiffness of Al

• Sensitive to moisture
(harmful to adhesive)

• High residual thermal
stress when
bonded to aluminum

GLARE 2 (3/2) 2�667 1�9998 5 • Moderate cost

• Same stiffness as Al

• Exceptional resistance to
fatigue and impact

• Outer layer of aluminum
acts
as environmental barrier

• Can be plastically
deformed

HM 35
Carbon/Epoxy

12�319 – 16 • High cost

• High stiffness

• Susceptible to corrosion
(large galvanic
couple with
Aluminum)

FT700
Carbon/Epoxy

19.812 – 24
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Table 9.1. (Continued)

Patch material Specific
tensile

modulus∗
�×106 m�

Coefficient of
thermal
expansion
�×10−5/C�

Approximate
relative material

cost

Characteristics

Boron/Epoxy 10�541 0�45 40 • High cost

• High stiffness

• Corrosion resistant

• Stiff, prepreg makes forming
and working difficult

∗ Measure of stiffness to weight ratio of material.

pressure, product forms, cure time, and prepreg compatibility. The cure temperature of

adhesives is an especially significant parameter. Room temperature adhesives typically

do not have adequate strength and durability at elevated operating temperatures.

Adhesives cured at temperatures above 121 C tend to be brittle and have lower peel

strength. Use of adhesives that require temperatures around 121 C may potentially

induce thermal damage to the structure due to mismatch of the coefficients of thermal

expansion of the repair material and the structure to be repaired. High residual thermal

stresses which develop during cooling, following application of elevated cure or bonding

temperature, induce tensile loading in the metal and increase the stress intensity factor

at the crack tip. Adhesives that cure between 93 and 121 C have good strength and

stiffness and adequate moisture resistance and are, therefore, most desirable for com-

posite patching. Consequently, based on the cure temperature data of Table 9.4, FM-73

adhesive appears to be the best choice. Other considerations may impact the choice of

adhesive. Adhesive shear stress–shear strain properties are generally idealized with an

elastic-perfectly-plastic stress–strain curve, comprised of linear segments, as shown in

Figure 2.3. The idealization is based on equal areas below the curves.

Selection criteria for the adhesive must consider operational loads, temperature, and

humidity. Adhesive properties are shown in Table 9.4 for various cure temperatures.

Except for the 80 C cure FM-73 properties, which are from the CRMS Guidelines

(1998), all properties are from the CRAS Design Manual (2003). Values from Table 9.4

are GA, �
�A�
Y , and �

�A�
p . There are several other factors that the designer must consider

even though definitive design criteria are not established in this section. These factors,

some of which are addressed in the previous chapters, include peel stress, disbonds, and

operational temperatures.

Peel Stress: When a one-sided patch is applied, the neutral axis of the repair is shifted

from the centerline of the skin towards the patch. Load application is therefore

offset from the skin centerline and out-of-plane bending moments are induced at the

patch edges and over the crack. Peel forces normal to the surface are counteracted

by the overlap length and by patch taper.
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Table 9.2. Composite patch material properties (tensile).

Laminate material Temp.
�C�

E1

(GPa)
E2

(GPa)
Poisson’s

ratio
G12

(GPa)
Ftu

(GPa)
CTE1

(in/in/C)
CTE2

(in/in/C)
Nominal ply

thickness (mm)

Boron/Epoxy

Boron/Epoxy 5505 Tape −55 224�1 24�8 0�21 7�58 1�39 1.69E-05 4.50E-06 0�127
(177C Autoclave) RT 219�9 21�4 0�21 6�89 1�32 2.36E-05 4.50E-06

93 219�9 15�2 0�21 6�27 1�18 2.92E-05 4.50E-06
149 215�1 9�7 0�21 4�83 1�12 3.38E-05 4.50E-06
177 211�0 8�3 0�21 3�03 1�08 3.60E-05 4.50E-06

Boron/Epoxy 5521 Tape RT 195�1 19�4 0�21 5�52 1�56 2.41E-05 4.50E-06 0�127
(121 C Autoclave) 82 192�4 13�1 0�21 4�96 1�52 3.08E-05 4.50E-06

Boron/Epoxy 5521 Tape −59 173�1 20�7 0�21 5�38 1�41 2.27E-05 4.50E-06 0�127
(Vacuum bag 121 C,
711mm Hg)

RT 181�3 15�9 0�21 5�10 1�31 2.79E-05 4.50E-06

Boron/Epoxy 5521 Tape
(Vacuum bag 121 C,
381mm Hg)

RT 187�5 16�5 0�21 5�24 1�30 2.14E-05 4.32E-06 0�127

Carbon/Epoxy Tape −55 121�3 15�9 0�3 6�89 0�132
(Generic) RT 121�3 13�1 0�3 5�86 1�85

93 121�3 12�4 0�3 4�69

C/E Cloth (Generic) RT 75�8 72�4 0�06 6�89 0�356

AS/3501 RT 137�9 9�0 0�3 7�10 1�45 −3�06E-07 2.81E-05 0�132

AS/3501-6 RT 142�0 10�3 0�27 7�17 2�28 −9�00E-07 2.70E-05 0�132

AS4/977-3 Tape −54 133�1 10�1 0�3 6�00 0�132
RT 133�1 8�8 0�3 5�03
88 133�1 7�2 0�3 3�79
104 133�1 6�8 0�3 3�38
121 133�1 6�3 0�3 2�90
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AS4/977-3 Cloth −54 71�0 71�0 0�05 5�79 0�356
RT 71�0 71�0 0�05 4�96
88 71�0 71�0 0�05 3�72

104 71�0 71�0 0�05 3�31
121 71�0 71�0 0�05 2�83

AS4/3501-6 Tape
(DMS 2224)

RT 124�1 11�0 0�34 5�52 1�81 −9�00E-07 2.70E-05 0�132

AS4/3501-6 Cloth
(DMS 2224)

RT 67�6 67�6 0�056 3�45 0�74 1.80E-05 1.80E-05 0�356

AS4/5250-4 �177 C W� RT 125�5 5�8 0�32 3�24 1�63 −1�80E-07 2.70E-05 0�132

AS4/APC2 PEEK RT 131�7 8�8 0�28 5�03 2�06 −1�80E-06 2.39E-05 0�127

IM6/Epoxy RT 203�1 11�2 0�27 8�41 3�50 −3�60E-07 3.01E-05 0�127

IM6/SC1081 RT 177�2 10�8 0�27 3�93 2�85 −3�60E-07 3.01E-05 0�127

IM7/977-3 Tape −54 162�0 10�3 0�3 6�07 0�127
RT 162�0 9�0 0�15 5�17 0�89 −1�98E-07 3.06E-05
88 162�0 7�3 0�3 3�86
104 162�0 6�9 0�3 3�45
121 162�0 6�4 0�3 2�96

IM7/8851-7A Tape RT 157�2 8�9 0�15 5�45 2�76 −1�80E-07 3.06E-05 0�127

T300/F934 RT 148�1 9�7 0�3 4�55 1�32 1.80E-08 2.25E-05 0�127

T300/5208 RT 181�3 10�3 0�28 7�24 1�50 1.80E-08 2.25E-05 0�127

E-Glass/Epoxy RT 39�3 8�5 0�28 3�72 1�08 7.02E-06 2.11E-05 0�127

S-Glass/Epoxy RT 43�4 8�9 0�27 4�55 1�28 5.04E-06 2.59E-05 0�127

7781/5245C RT 29�7 29�7 0�17 5�31 0�37 1.01E-05 1.01E-05 0�127

Scotchply 1002 RT 38�6 8�3 0�34 4�14 0�97 7.20E-06 2.16E-05 3�810

Kevlar-49/epoxy RT 86�9 5�5 0�34 2�14 1�28 −1�98E-06 5.94E-05 0�127

Values computed from data in reference; not measured test data.
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Table 9.3. Fiber metal laminate properties.

Fiber metal
laminate

Max thickness
(mm)

E1

(GPa)
E2

(GPa)
Poisson’s

ratio
Shear

modulus
(GPa)

Glare-2-3/2-0.2 1�100 68�9 53�8 0�33 15�2
Glare-2-3/2-0.3 1�400 64�8 50�3 0�33 17�2
Glare-2-4/3-0.2 1�549 63�4 42�1 0�33 12�4
Glare-2-4/3-0.25 1�750 64�8 45�5 0�30 14�5
Glare-2-4/3-0.3 1�951 64�1 48�3 0�33 16�5
Glare-2-5/4-0.25 2�250 64�1 44�1 0�31 13�8
Glare-2-5/4-0.3 2�499 64�8 46�9 0�31 15�2
Glare (generic) 0�000 71�0 71�0 0�30 34�5

Fiber metal
laminate

Tensile yld
strength 1
(MPa)

Tensile yld
strength 2
(MPa)

Tensile ult
strength 1
(MPa)

Tensile ult
strength 2
(MPa)

CTE1
�E-5/C�

CTE2
�E-5/C�

Glare-2-3/2-0.2 383�3 242�0 1187�3 313�7 1�638 2�448
Glare-2-3/2-0.3 359�9 228�2 1074�2 317�2 1�782 2�412
Glare-2-4/3-0.2 324�7 217�2 1490�0 217�2 1�476 2�448
Glare-2-4/3-0.25 328�9 233�0 1371�4 239�9 1�566 2�412
Glare-2-4/3-0.3 364�0 222�0 1157�6 289�6 1�728 2�412
Glare-2-5/4-0.25 328�2 228�2 1406�5 233�0 1�53 2�412
Glare-2-5/4-0.3 330�9 241�3 1310�0 252�3 1�602 2�358

Adhesive Disbonds: Voids in the adhesive or areas of bond line discontinuity generally
result from poor surface preparation. However, disbonds along the crack can result

from motion due either to operational cycling or crack growth itself. These may be

tolerated if the crack growth rate is acceptable. Edge disbonds may permit moisture

penetration and conditions that promote growth of the disbond itself. No criteria

have been established for acceptable disbonds at the edge of a patch.

Operating Temperatures: Adhesive properties change over a range of operating tem-

peratures as shown in Table 9.4. For example, shear yield stress for FM-73 adhesive,

cured at 121 C for two hours, varies from 15.9MPa at 104 C to 46.2MPa at

−41 C. The adhesive must be capable of handling high and low operational tem-

peratures and the change in material properties over the range of temperatures.

Typically, adhesives become stiffer and more brittle at low temperature and are,

therefore, more susceptible to disbonding. Adhesives become softer and more duc-

tile at high temperature, adversely affecting the function of the repair.

9.5 Preliminary Design Procedure

The design procedure is an iterative process that requires adjustments of several variables

or parameters until a satisfactory design that meets the established criteria is attained.

Patch design variables are the patch stiffness ratio S, patch aspect ratio B/A, and the
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Table 9.4. Adhesive material properties.

Adhesive
type

Cure temp.
�C� and

time of cure

One ply
thickness
[cured]
(mm)

Environment Shear
modulus, GA

(MPa)

Shear
yield
stress,

�
�A�
Y

(MPa)

Max.
shear
strain,

�
�A�
max

Elastic
shear
strain,

�
�A�
Y

Plastic
shear
strain,

�
�A�
p

FM-73 80 (8 h) – −40 C/dry 737�7 52�7 0�192 0�071 0�121
RT/dry 468�8 38�8 0�577 0�083 0�494
80 C/sat. 32�4 20�4 0�863 0�630 0�233

FM-73 121 (2 h) 1�143 −41 C/dry 482�6 46�2 0�15 0�096 0�054
−41 C/sat. 455�1 42�7 0�15 0�094 0�056
RT/dry 355�1 35�5 0�6 0�100 0�500
RT/wet 326�7 33�4 0�756 0�102 0�654
85 C/dry 133�1 22�1 1�0 0�166 0�834
85 C/sat. 56�8 11�1 1�0 0�195 0�805
104 C/dry 17�2 15�9 1�0 0�920 0�080

FM-300 149 (4 h) 0�279 −54 C/dry 606�7 46�5 0�19 0�077 0�113
−54 C/sat. 606�7 46�2 0�18 0�076 0�104
RT/dry 459�7 31�0 0�275 0�067 0�208
RT/sat. 459�7 26�2 0�26 0�057 0�203
104 C/dry 344�7 19�3 0�33 0�056 0�274
104 C/sat. 268�9 14�8 0�38 0�055 0�325

FM-300 177 (1 h) 0�152 RT/dry 393�0 35�2 0�33 0�089 0�241
85 C/dry 204�3 27�6 0�535 0�135 0�400
85 C/sat. 162�0 17�2 0�76 0�106 0�654
104 C/dry 170�1 25�5 0�6 0�150 0�450
104 C/sat. 124�1 15�9 0�85 0�128 0�722

FM300K 116 (1h) &
177 (2 h)

0�152 RT/dry 517�1 45�5 0�295 0�099 0�196
RT/wet 427�5 39�3 0�38 0�108 0�272
93 C/dry 122�4 30�3 0�705 0�248 0�457
93 C/wet 65�5 27�9 1�035 0�426 0�609

(Continued)
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Table 9.4. (Continued)

Adhesive
type

Cure temp.
�C� and

time of cure

One ply
thickness
[cured]
(mm)

Environment Shear
modulus, GA

(MPa)

Shear
yield
stress,

�
�A�
Y

(MPa)

Max.
shear
strain,

�
�A�
max

Elastic
shear
strain,

�
�A�
Y

Plastic
shear
strain,

�
�A�
p

FM-300-2K 121 (1.5–2 h) 0�152 −54 C/dry 841�2 42�1 0�11 0�050 0�060
or RT/dry 465�4 38�6 0�3 0�083 0�217
177 (1.5 h) 82 C/dry 280�6 24�1 0�68 0�086 0�594

82 C/wet 222�0 19�3 0�66 0�087 0�573
104 C/dry 226�8 17�2 0�8 0�076 0�724
104 C/wet 147�5 12�4 0�75 0�084 0�666

FM400 177 (1–2 h) 0�152 RT/dry 1082�5 60�7 0�169 0�056 0�113
RT/wet 706�7 31�4 0�187 0�044 0�143
93 C/dry 861�8 46�2 0�187 0�054 0�133
93 C/wet 371�3 22�7 0�152 0�061 0�091

FM36 177 (2 h) & 0�152 −54 C/dry 941�1 31�0 0�036 0�033 0�003
316 (2 h) RT/dry 672�2 26�9 0�06 0�040 0�020

204 C/dry 266�1 18�6 0�25 0�070 0�180
204 C/wet 257�2 17�9 0�18 0�070 0�110
288 C/dry 53�3 4�6 0�45 0�085 0�365
288 C/wet 34�5 4�6 0�4 0�132 0�268

EA9321 RT (2 h) & 0�4572 RT/dry 551�6 25�5 0�0463 0�046 0�000
88 (1h) 104 C/dry 20�0 2�0 0�11 0�100 0�010

104 C/sat. 12�0 1�2 0�11 0�100 0�010

Note: One ply thickness values are not measured data, but analytically derived values
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patch length or width. However, it is more convenient to use other parameters than those

just mentioned as the variables in the iterative process for the following reasons. In

Section 9.3, all design criteria for the repairs of cracks are specified. Quantities required

for the evaluations of these criteria are either given explicitly in Section 9.3 or estimated

by the formula presented in Section 9.2. Since most of these quantities are commonly

expressed in terms of the parameter �0 or �
∗
0 , this common parameter will be used as a

design variable in the present preliminary design procedure. By varying �0 or �
∗
0 within

a certain appropriate range, one can effectively control the crack-tip stress intensity,

the maximum adhesive shear strain, etc., within their required range. Furthermore, since

the skin stress concentration near the tip of the patch’s edge is inevitably, present due

to the high stiffness of the reinforced region relative to the surrounding materials, Kt or

K∗
t will be selected as a second design variable. For clarity, we first delineate the design

procedure for a repair subjected only to mechanical loads.

9.5.1 Design procedure for a repair subjected only to mechanical loads

There is no unique patch design that meets the criteria listed in Section 9.3. In a design

process, one iteratively searches for a first design that meets the criteria. Thus, the design

that results from the process will be different depending on what route the search has

taken, and it may not necessarily always be the desired (optimal) design. A good logic

for the design procedure with �∗
0 and K∗

t as the variables is therefore proposed here. It

is expected that to meet the criteria a smaller patch in general will be thicker while a

thinner patch will be larger in size. Thus, in the design logic, one starts to search for

a design within a certain preset upper patch’s size limit. If none of the design is found

satisfactory, the preset upper patch’s size limit is increased and the search is repeated

with a new upper limit. In the design algorithm, this step corresponds to an outermost

iterative loop.

In Chapter 3, Equations (9.1) and (9.3) were plotted in the special chart form as illustrated

in Figure 3.6 to show how the design variables �∗
0 and K∗

t relate to the patch stiffness

ratio S and aspect ratio B/A in a graphically useful way. Acceptable ranges for �∗
0 and K∗

t

for a reasonably good patch design are indicated by the heavy lines in Figure 3.6. Any

patch design that falls into that region will have a reasonable geometry, i.e. 1

5
≤ B

A
≤ 7,

and an acceptable stiffness ratio, i.e. 1≤ S ≤ 2. In that region, values of
�∗
0

��
are bounded

between 0.8 and 0.33 while the range of K∗
t is between 2.0 and 1.05. The range of

�∗
0

��

∣∣∣
at DUL

in the iterative design process therefore will also be limited to values between

0.33 and 0.8.
�∗
0

��

∣∣∣
at DUL

was limited to 0.33 to avoid an unwanted overly stiff patch design

�S ≤ 2�. The value of 0.33 for
�∗
0

��
was determined from Figure 3.6 with K∗

t = 1�05 and

S = 2. This particular choice of range for
�∗
0

��

∣∣∣
at DUL

has yielded reasonable patch designs

in all considered benchmark test cases and these designs are quite similar to those

obtained by other design tools such as the one mentioned in Spigel et al. (1998).

Referring to Figure 3.6, a higher value of �∗
0 will result in a smaller stiffness ratio

and therefore a thinner patch for the same patch aspect ratio B/A. Thus, for a given

preset upper patch’s size limit, one can search for an acceptable design with a smallest
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thickness within that limit by using a second inner iterative loop based on �∗
0 starting

with a high value for �∗
0 of 0.8 and decreasing from that value by small decrements

to 0.33. However, from Equations (9.1) and (9.3) or Figure 3.6, since S and B/A are

only uniquely determined when �∗
0 and K∗

t are both specified and since K∗
t has not been

specified in the outer and inner iterative loop mentioned above, an innermost iterative

loop based on K∗
t must be used. For this innermost loop, to avoid obtaining an extremely

wide and/or overly stiff patch design, 1�05 ≤ K∗
t ≤ 2. While the upper limit for K∗

t can

be as high as 2 as indicated in Figure 3.6 for all reasonable patch geometries, the patch

criteria specified in Section 9.3 for it would require a smaller value to avoid potential

cracking in the skin near the patch end. Thus, K∗
t will take values starting from 1.05 to

an upper limit value set forth by the criteria specified in Section 9.3.

In summary, the design algorithm will have three nested loops with the outermost loop

for the maximum allowable patch size, the next inner loop for �∗
0 , and the innermost

loop for K∗
t . This algorithm with all the principal steps is briefly described below.

(i) Specify a maximum possible size for a patch, start with Amax = a0 +√
a0 (or

25.4mm if a0 = 0, as in a preventive repair) and increase Amax incrementally to

a value of 20a0 or 0.508m, whichever has a larger value. The latter maximum

size of 0.508m is specified to include the case of preventive repairs, i.e. a0 = 0.

(ii) Specify a value for
�∗
0

��

∣∣∣
at DUL

, start with
�∗
0

��

∣∣∣
at DUL

= 0�8 and decrease by small

decrements to 0.33.

(iii) Specify a value for K∗
t , start with K

∗
t = 1�05 and increase incrementally to 1.3

or
Ftu

���at DUL�
, whichever is smaller in value.

(iv) Solve Equations (9.1) and (9.3) simultaneously for S and B/A with �∗
0 and K∗

t

specified from steps (ii) and (iii).

(v) Calculate stresses in the patch and strains in the adhesive at the DUL and

DFL using formula given in Section 9.1 with S, B/A, and �∗
0 obtained from

previous steps. It should be noted that since the patch and skin are modeled

as elastic materials and bonded together rigidly (i.e. no adhesive),
�∗
0

��

∣∣∣
at DUL

=
�∗
0

��

∣∣∣
at peak of DFL

= �∗
0

��

∣∣∣
at valley of DFL

. An appropriate value of �∗
0 at DUL and

the peak of the DFL must be used in these formulas. The obtained stresses

and strains in the patch and adhesive are then compared with their allowable

according to the criteria established in Section 9.3.

(vi) Calculate the crack-tip stress intensity factor KI at DUL, and at the peak and

valley of the (cyclic) DFL using S and �∗
0 . Again, an appropriate value of �∗

0 at

DUL and at the peak and valley of the DFL must be used in the formula. The

obtained KI at DUL is then compared with the skin material fracture toughness.

The amount of crack growth at DFL is also calculated based on the computed

�K, i.e. �K = KI�peak of DFL − KI�valley of DFL, a specified number of loading

cycles, and existing da/dN test data for the (unpatched) skin material.
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(vii) Calculate the final crack length a, the required minimum patch length and width.

Determine the length and width of the patch based on B/A found in step (iv)

and the required minimum patch length or minimum patch width.

(viii) If a satisfactory design is found then the process is complete. Otherwise, one

needs to return to step (iii) or (ii) or (i) depending on whether or not K∗
t and

�∗
0

��

∣∣∣
at DUL

have reached their upper limit specified in these steps.

So far the discussion has been limited to a design procedure for a repair subjected only

to mechanical loads. It remains now to extend the procedure just described to a case of

general thermo-mechanical loading, which is the subject of the next section.

9.5.2 Design procedure for a repair subjected to thermo-mechanical loads

There is no plot such as Figure 3.6 for a repair with thermo-mechanical loads. We

will therefore try to make use of the results from Figure 3.6 and the above design

logic as much as possible for the case of thermo-mechanical loading. The present

design variables are the total skin stress underneath the patch �0 and the total skin

stress concentration at the patch tip Kt . In Section 9.5.1, in the absence of ther-

mal load,
�∗
0

��

∣∣∣
at DUL

= �∗
0

��

∣∣∣
at DFL

and K∗
t �DUL = K∗

t �DFL since the design fatigue load

and the design ultimate load assume to be proportional. However, for the combined

thermo-mechanical loading,
�0
��

∣∣∣
at DUL

�= �0
��

∣∣∣
at DFL

and Kt�DUL �= Kt�DFL even when the

design fatigue load is proportional to the design ultimate load. This is because the ther-

mal contributions to the total stress �0 and to the stress concentration Kt at the patch tip

are constant, not proportional to the applied mechanical loads. Thus, �0 and Kt at the

DUL are specifically chosen as the design variables for the case of thermo-mechanical

loading. Throughout this section, �0,
�0
��

, and Kt whenever they are mentioned will

denote the total skin stress, the normalized skin stress, and the skin stress concentra-

tion at the patch tip, respectively, with the understanding that they are evaluated at

the DUL.

In Section 9.5.1, it had been shown that the thermal effects increase the skin stress

underneath the patch but reduce the skin stress concentration near the tip of a patch’s

edge. By rewriting Equations (9.26) and (9.27) as:

�0

��
=
(
1− �T

22

��

)
�∗
0

��
+ �T

22

��
(9.31)

Kt =
(
1− �T

22

��

)
K∗

t +
�T
22

��
(9.32)

and plotting the resulting equations into diagrams as shown in Figures 9.5 and 9.6, it

is clear that there are two distinct curves corresponding to two cases, i.e.
�T
22

��
≤ 1 and

�T
22

��
> 1. We therefore need to determine first the range of

�0
��

and Kt in the iterative loops

of the design process for each case of
�T
22

��
. It is interesting to note from Figure 9.5 that
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Fig. 9.5. A
�0
�� vs

�∗
0

�� diagram for determining the appropriate range of
�0
�� in the iterative loop.

As mentioned in the main text,
�0
�� ≥ �∗

0

�� which corresponds to the shaded region of the diagram.

The open circles shown on the plotting curves of Equation (9.31) for two cases of
�T
22

�� > 1 and

�T
22

�� < 1 indicate upper and lower bounds of
�0
�� on the respective curve, which correspond to

�∗
0

�� = 0�33 and
�∗
0

�� = 0�8.

K t
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1
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Fig. 9.6. A Kt vs K
∗
t diagram for determining the appropriate range of Kt in the iterative loop.

As mentioned in the main text, Kt ≤ K∗
t which corresponds to the shaded region of the diagram.

The open circles shown on the plotting curves of Equation (9.32) for two cases of
�T
22

�� > 1 and

�T
22

�� < 1 indicate upper and lower bounds of Kt on the respective curve.

the plotted curves based on Equation (9.31) for two cases of
�T
22

��
are linear with the end

points located at �0
�T
22

/
��� and (1,1). It should be reminded that in Equations (9.31)

and (9.32), �∗
0 and K∗

t are skin stress and skin stress concentration due to the applied

stress �� alone. Also, �0 > �
∗
0 , Kt <K

∗
t , and �

∗
0

/
�� ≤ 1�0.
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The patch can help to arrest the crack in two different ways, first by reducing the skin

stress underneath the patch in stage I of Rose’s procedure and second by bridging the

crack in stage II. Because of this crack-bridging phenomenon, the stress intensity factor

KI� of a patched crack is usually much less than that of an un-patched crack. From

Figure 9.4, the (y-component) stress in the skin underneath the patch ��0� will be equal

to or higher than �T
22 when

�T
22

��
≤ 1, and less than that value when

�T
22

��
> 1. This is because

the far-field-applied stresses of the problem shown in the Figure 9.4(b) corresponding

to these two cases are tension and compression, respectively. The same results can also

be seen from Figure 9.5. Because �T
11 and �

T
22 are independent of the patch’s geometry

as seen from Equations (9.17), (9.13), and (9.24), and since their values are fixed for

a given thermal loading condition, the only way to reduce �0 is by either reducing the

tensile stress (when
�T
22

��
< 1) or increasing the compressive stress (when

�T
22

��
> 1) in the

skin underneath the patch of the problem shown in Figure 9.4(b). It is interesting to note

that when
�T
22

��
= 1, from Figure 9.4 and also from Figure 9.5, �0 is independent of the

patch’s geometry and equal to �T
22. For that case, the patch aspect ratio ceases to be a

design factor while the patch stiffness ratio still is because the latter parameter affects

the bridging capability of a patch in stage II analysis.

Since
�∗
0

��
and K∗

t in Equations (9.31) and (9.32) are the respective contributions to
�0
��

and

Kt due to the remote applied stress alone, and they are related to the patch stiffness ratio

S and the patch aspect ratio B/A via Equations (9.1) and (9.3) or alternatively through

the design chart shown in Figure 3.6, the range of
�0
��

and Kt in the iterative loops of the

design process will be determined based on the range of
�∗
0

��
and K∗

t . From Figure 3.6,

it appears that all possibly acceptable patch designs are confined to a region marked

by the heavy line as indicated in the same figure. Any patch design that falls into that

region will have a reasonable geometry, i.e. 1

5
≤ B

A
≤ 7, and an acceptable stiffness ratio,

i.e. 1≤ S ≤ 2. In that region, values of
�∗
0

��
are bounded between 0.8 and 0.33 as specified

in the previous design logic while the range of K∗
t is larger with a lower and upper limit

of 1.05 and 2.0, respectively (as opposed to 1.05 and 1.3 or
Ftu

���at DUL�
). These particular

ranges are the widest ranges of all possible ranges for
�∗
0

��
and K∗

t , which will lead

to reasonable patch designs. Since thermal effects reduce the skin stress concentration

due to the applied stress ��
 K∗
t is allowed to exceed 1.3 or

Ftu
���at DUL�

. If the thermal

effects could not reduce the skin stress concentration due to the applied stress alone at

its current maximum allowable value of 2.0 to a value below the design requirement, a

smaller upper bound value for K∗
t will be used. With these in mind, we are now ready to

discuss in detail the ranges of the normalized total skin stress
�0
��

and the total skin stress

concentration Kt for the two particular cases of
�T
22

��
≤ 1 and

�T
22

��
> 1.

(a) Ranges of �0
��

and Kt for
�T
22

��
≤1

As mentioned in the preceding paragraph, we limit values of
�∗
0

��
, i.e. the contribution to

the normalized total stress
�0
��

due to the far-field-applied stress alone, between 0.8 and

0.3 in the design process. The effect of limiting the values of
�∗
0

��
within that range on the

patch design will be examined in detail here. When �T
22 is smaller than the applied stress
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��, the only way to reduce �0 is to reduce the tensile stress in the skin underneath the

patch of the problem shown in Figure 9.4(b) with a far-field stress in tension. Since the

skin stress underneath the patch of the problem shown in Figure 9.4(b) when normalized

by its far-field stress ��� −�T
22� is equal to

�∗
0

��
, limiting the value of

�∗
0

��

∣∣∣
at DUL

, i.e. a

part of
�0
��

∣∣∣
at DUL

due to the far-field stress alone, between values of 0.33 and 0.8 will

have the same effect as limiting the normalized skin stress of the problem shown in

Figure 9.4(b) within the same range. In general, a larger reduction in the normalized

skin (tensile) stress underneath the patch of the problem shown in Figure 9.4(b) will

require a higher patch stiffness ratio and a lower patch aspect ratio B/A which in turn

produces a smaller value for 1√
�
, thus the crack-tip stress intensity factor, and overall

a better crack growth retardation (via Equations (9.5) and (9.11)). It therefore appears

that a lower bound value for
�∗
0

��
in the iterative loop may be preferably smaller than

0.33. However, as mentioned before, since any further reduction in value of
�∗
0

��
below

0.33 would result in an overly stiff patch design, the lower bound of
�∗
0

��
is therefore

maintained at 0.33. Substituting values of 0.8 or 0.33 for
�∗
0

��
into Equation (9.31) yields

respectively:

�0

��
= 0�8+0�2

�T
22

��
(9.33)

�0

��
= 0�33+0�67

�T
22

��
(9.34)

Thus,
�0
��

∣∣∣
at DUL

is limited to values between 0�33+0�67
�T
22

��
and 0�8+0�2

�T
22

��
. From the

lower curve in Figure 9.5, it should also be noted that as
�0
��

decreases from 0�8+0�2
�T
22

��
to 0�33+0�67

�T
22

��
along that curve,

�∗
0

��
will decrease from 0.8 to 0.33 accordingly, and

also
�0
��

in this case could be higher than 0.8 but never exceed 1.

We next turn our attention to the skin stress concentration near the patch’s edge. From

the upper curve in Figure 9.6, since Kt is always greater than 1 and it can be potentially

higher than 1.3 or
Ftu

���at DUL�
, its value is therefore limited to values below 1.3 or

Ftu
���at DUL�

,

whichever is smaller in value, as before for a repair without thermal effects. In the present

case, K∗
t may exceed 1.3 or

Ftu
���at DUL�

, but it is however still acceptable since thermal

effects will reduce the skin stress concentration due to far-field-applied stresses to values

below 1.3 or
Ftu

���at DUL�
and thus will allow Kt to satisfy the required design criteria. In

order to avoid obtaining a patch design with an extremely high aspect ratio, we added the

further restriction that K∗
t as determined from Kt satisfies the condition 1�05≤K∗

t ≤ 2 as

recommended in the beginning of this section. This restriction requires that the minimum

value of Kt is set equal to 1�05−0�05
�T
22

��

∣∣∣
at DUL

while the maximum value of Kt is equal

to the minimum of the three values of 1.3,
Ftu

���at DUL�
, and 2− �T

22

��

∣∣∣
at DUL

. Kt values of

1�05− 0�05
�T
22

��

∣∣∣
at DUL

and 2− �T
22

��

∣∣∣
at DUL

have been derived by substituting respectively

K∗
t = 1�05 and K∗

t = 2 into Equation (9.32).
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(b) Ranges of �0
��

and Kt for
�T
22

��
>1

As before, we limit values of
�∗
0

��
, i.e. the contribution to the normalized total stress

�0
��

due to the far-field-applied stress alone, between 0.8 and 0.3 in the design process. The

effect of limiting the values of
�∗
0

��
within that range on the patch design again will be

examined. When �T
22 is larger than ��, the only way to reduce �0 is to increase the

compressive stress in the skin underneath the patch of the problem shown in Figure 9.4(b)

with a far-field stress in compression. Similar to the case for
�T
22

��
< 1, limiting the value of

�∗
0

��

∣∣∣
at DUL

between values of 0.33 and 0.8 has the same effect as limiting the normalized

(compressive) skin stress of the problem shown in Figure 9.4(b) within the same range.

Since, in the present case, we want to maximize the normalized compressive skin stress

underneath the patch of problem shown in Figure 9.4(b) in order to minimize the total

skin stress
�0
��

, it appears that the upper bound value for
�∗
0

��
in the iterative loop may be

preferably larger than 0.8. However, since an increase in that normalized compressive

stress would require a thinner and slender patch and since a lower patch stiffness ratio

will result in a larger value for 1√
�
as indicated in Equation (9.6), any beneficial gain

by the reduction in the total skin stress
�0
��

therefore will be offset by an increase in
1√
�
. An increase in 1√

�
would lead to a higher stress intensity factor at the crack tip.

Thus, the maximum value of
�∗
0

��
has been maintained at a value of 0.8 for this case.

�0
��

∣∣∣
at DUL

is, therefore, limited to values between 0�8+0�2
�T
22

��
and 0�33+0�67

�T
22

��
. These

limiting values of
�0
��

∣∣∣
at DUL

are given by Equations (9.33) and (9.34) as in part (a), which

correspond to
�∗
0

��
= 0�8 and 0.33, respectively. It is worthwhile to observe from the

upper curve in Figure 9.5 that as
�0
��

increases from 0�8+0�2
�T
22

��
to 0�33+0�67

�T
22

��
along

that curve,
�∗
0

��
decreases from 0.8 to 0.33.

For the skin stress concentration near the tip of the patch’s edge, since Kt is always less

than 1 as shown by the lower curve in Figure 9.6, Kt may not be a critical design factor,

unless it becomes negative and smaller than − Fcu
���at DUL�

where Fcu is the magnitude of the
compressive strength of the skin material. For ductile metals, it is customary to assume

that Fcu equals to Ftu. In the absence of any specific restriction on Kt , the range of Kt

will be derived from the range of K∗
t using the guideline given in the beginning of this

section. According to that guideline, for an acceptable patch’s geometry, 1�05≤K∗
t ≤ 2.

It then follows from Equation (9.32) that 2− �T
22

��

∣∣∣
at DUL

≤ Kt ≤ 1�05− 0�05
�T
22

��

∣∣∣
at DUL

.

However, when 2− �T
22

��

∣∣∣
at DUL

<− Fcu
���at DUL�

, then − Fcu
���at DUL�

≤Kt ≤ 1�05−0�05
�T
22

��

∣∣∣
at DUL

.

It should be noted that as K∗
t increases, Kt decreases as seen from the lower curve in

Figure 9.6.

(c) Design procedure

With the range of
�0
��

and Kt in the iterative loops of the design process having been

determined in parts (a) and (b), the logic of the design procedure for a repair with
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thermal effects now can be described. Similar to the previous design logic for a repair

without thermal effects, the present design procedure involves the following steps:

(i) Start with Amax = a0+√
a0 (or 25.4mm if a0 = 0) and increase Amax incremen-

tally to a value of 20a0 or 0.508m, whichever is higher in value.

(ii) Start with
�0
��

∣∣∣
at DUL

= 0�8+ 0�2
�T
22

��
and decrease by small decrements (when

�T
22

��
≤ 1) or increase incrementally (when

�T
22

��
> 1) to 0�33+0�67

�T
22

��
.

(iii) Start with Kt = 1�05−0�05
�T
22

��

∣∣∣
at DUL

and increase incrementally to 1.3,
Ftu

���at DUL�

or 2− �T
22

��

∣∣∣
at DUL

, whichever is smaller in value, when
�T
22

��
≤ 1, or decrease by

small decrements to 2− �T
22

��

∣∣∣
at DUL

or − Fcu
���at DUL�

, whichever is higher in value,

when
�T
22

��
> 1.

(iv) Calculate
�∗
0

��
and K∗

t using Equations (9.31) and (9.32), with
�0
��

and Kt given

from steps (ii) and (iii).

(v) Solve Equations (9.1) and (9.3) simultaneously for S and B/A with
�∗
0

��
and K∗

t

obtained from step (iv).

(vi) Calculate stresses in the patch, strains in the adhesive, the crack-tip stress

intensity factor, etc., at DUL and DFL, and check the criteria.

(vii) Determine the patch width and length.

(viii) If a satisfactory design is found then the process is complete. Otherwise, one

needs to return to step (iii) or (ii) or (i) depending on whether or not Kt and
�0
��

∣∣∣
at DUL

have reached their upper limit specified in these steps.

Steps (vi) and (vii) have been described very briefly because they are very similar to

those given earlier in the previous design logic. It is also important to note that the crack-

tip stress intensity factor evaluated at the DUL and the peak of the DFL will include

the effect of thermal stresses induced by the curing of the adhesive and the uniform

temperature change due to the low operating temperature. However, the evaluation of

the stress intensity factor at the valley of the DFL may include only the thermal effect

associated with the curing of the adhesive as in the case of repairs of fuselage structures

subjected to cabin pressurization cycles.

All the above design procedures compute the geometry of an elliptical patch based on

simple formulas. Since boron/epoxy elliptical patches are impractical for manufacturing,

an octagonal or rectangular shape can be approximately derived from the above elliptical

design. A rectangular patch design assumes to have the same aspect ratio, length, width,

and stiffness output from the previous design process for an elliptical shape. For an

octagonal patch design, Hart-Smith (2001b) has developed a method to convert an

elliptical patch to an octagonal shape. According to this method, the area of the octagonal

patch should be the same as that of the elliptical one, and the edge length and width of the

octagonal patch are 34.5% of the corresponding centered (full) dimensions as illustrated

in Figure 9.7. The method was originally developed for an untapered patch but has been
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x

y
Optimal
octagonal
patch

Crack
0

0.345b

Equivalent
elliptical
patch of
same area 0.345a

Edge
length

a

b

Fig. 9.7. An equivalent octagonal patch obtained from conversion of an elliptical design.

used in the CRAS program (Duong et al., 2002, 2003) for both tapered and untapered

patches. This conversion method may yield geometric anomalies for short patches with

long taper if the edge length of the octagonal patch design is smaller than twice the

required taper length as shown in Figure 9.8. A minimum clearance between opposing

taper regions is, therefore, specified arbitrarily as 1.27 cm. If the edge length is less than

twice the taper length plus 1.27 cm, an alternate conversion method is employed. In that

case, the patch’s geometry will be modified as follows while still maintaining the outer

Taper length, l t

Edge length 

Fig. 9.8. An example of a bad patch’s geometry, where the edge length is smaller than the required

taper length.
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Fig. 9.9. An alternate conversion of elliptical patch to octagonal patch scheme to avoid taper

overlap at the edge length.

length and width dimensions and therefore the aspect ratio of the originally elliptical

design. The dimensions of each ply are determined independently. Corners are cut at

45 degrees. The amount trimmed from each side at a corner is equal to 25% of the

shortest side of the ply, either the width or length dimension, whichever is smaller in

value. This tapering technique results in tapered patch of the form shown in Figure 9.9.

As the ply length decreases, less of the corner is cut-off.

9.6 An Illustrative Example Using Design Process

The CRMS Guidelines (1998) presents several case studies where bonded repairs are

used. One of these is repair of multiple small cracks in the upper (crown) section of the

C-5A fuselage. Two bonded repairs were implemented, in 1995, at fuselage stations 1700

and 1784 by a team of Wright Laboratory, SA-ALC, and USAF Academy personnel.

Their designs and analyses were performed using the analytical code CalcuRep (2001)

and the finite element code FRANC2D/L (Swenson and James, 1997). A summary of

the applied Glare patch design and analyses is presented in the cited reference.

The example of this section sizes a Glare rectangular patch to repair cracks similar

to those that developed in the C-5A fuselage. The 22mm crack at station 1784 is the

subject of this example, which follows the process outlined in Section 9.5. This example

is very simplified compared to the actual C-5A damage and USAF repair. The fuselage

cracks grew from rivet holes. Per reference, the situation was not one of ordinary fatigue

cracking. The stress intensity factor computations used here are derived for central cracks

in skin panels and therefore may be too simple for the actual repair condition. Both the

rivets and the complicated substructure obscure the exact stress field around the crack.

Also, room temperature dry material properties are used for the patch and adhesive
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during the design process, even though the C-5A operational temperature is typically

−51 C corresponding to a low temperature experienced during high altitude cruising.

Thermal stress effects are, however, included in the design and analysis. To facilitate

the design process outlined in Section 9.5, its design algorithm was implemented into

a computer code as part of the CRAS program. The patch design for this example was

computed by this computer code (CRAS Software User Manual, 2003).

9.6.1 Loading conditions

The C-5A crown section is subjected to significant longitudinal tensile bending in

addition to biaxial tension. For simplicity in this example, the crack is assumed to be

oriented normal to that principal longitudinal tensile load. The applied far-field stresses

are 212.4MPa limit (318.5MPa ultimate) and a fatigue stress of 113.1MPa, the “typical”

load. The fatigue loading is defined as the typical load that occurs 500 times per 1000

flight hours or 15,000 times during the 30,000-hour life of the C-5A. The number of

times that stress is exceeded during 1000 hours of flight is shown in Figure 9.10. For

this example, the number of fatigue cycles N , to be designed for, is 30,000 or twice the

expected occurrence of the 113.1MPa typical fatigue stress. The biaxial stress ratio is

equal to 0.36. In contrast, the fatigue stress �R� ratio is 0.05.

9.6.2 Design parameters

Input parameters for the initial design process relate to the damaged structure, the loading

conditions, and the selected patch and adhesive materials. For illustration purposes and
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Fig. 9.10. Exceedance data for C-5A fuselage station 1784.
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to simplify the example, room temperature dry properties are used for the initial design.

In an actual design situation, properties at the operating temperature extremes would be

utilized.

In the design process, the following information is provided:

• Skin material properties: Properties for the actual aluminum skin material, 7079-T6,

are not available since 7079 has been deleted from MIL-HDBK-5. It is assumed

that another aluminum alloy can be substituted without significantly impacting the

design. 2024-T3 Clad properties from MIL-HDBK-5 are used here.

– Young’s modulus, Es = 72�4GPa

– Tensile ultimate strength, Ftus = 420�6MPa (B Basis)

– Tensile yield strength, Ftys = 310�3MPa (B Basis)

– Poisson’s ratio, � = 0�33

– Fracture toughness, KC = 102MPa ·√m

– Coefficient of thermal expansion, CTEs = 2�25E-05 per C

• Skin thickness, ts = 1�27mm

• Crack length, 2ao = 22mm

• Loading conditions

– Ultimate tensile stress normal to crack, �ult = 318�5MPa

– Typical peak fatigue stress, �fat = 113�1MPa

– Stress ratio (valley to peak), Rfat = 0�05

– Number of fatigue cycles, N = 30
000

• Thermal conditions

– Ambient temperature, Tamb = 21 C

– Adhesive effective glass transition temperature, Tg-eff = 82C

– Low operating temperature, Top =−51C

• Patch material properties are based on a design of a Glare 2 4/3-0.2 patch with

room temperature properties from Table 9.3. Glare consists of alternating layers of

aluminum and glass/epoxy. Glare 2 indicates each glass/epoxy layer of the Glare

material actually formed by two unidirectional (0 0) plies of glass/epoxy of 0.125mm

thick per ply. 4/3 indicates 4 layers of aluminum and 3 layers of glass/epoxy while

0.2 denotes the thickness of each aluminum layer in mm. The total thickness of one

ply of Glare 2 4/3-0.2 is therefore 1.55mm thick.

– Elastic modulus (1 is fiber direction and normal to the principal tensile load)

E1 = 63GPa
 E2 = 42GPa

– Ply thickness, tply = 1�55mm

– Tensile ultimate strength Ftu1 = 324�7MPa
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– Coefficient of thermal expansion in 1 (fiber) direction, CTEp-1 =
14�86E-06 per C

– Coefficient of thermal expansion, in 2 (transverse) direction, CTEp-2 =
24�50E-06 per C

• Adhesive material properties are based on use of FM-73 adhesive, cured at 121 C
for 2 hours. Room temperature, dry properties, from Table 9.4, are used for initial

design.

– Shear modulus, GA = 355�1MPa

– Thickness, tA = 0�114mm

– Shear yield stress, �
�A�
Y = 35�5MPa

– Maximum elastic shear strain, �
�A�
Y = 0�1

– Maximum plastic shear strain, �
�A�
p = 0�5

– Maximum shear strain, �
�A�
max = ��A�Y +��A�p = 0�6

The patch design from the present process will be a 1-ply patch (1.55mm thick) which

is 60.2mm long by 59.4mm wide. For reference, the previous design performed by a

team of Wright Laboratory, SA-ALC, and USAF Academy personnel is also a 1-ply

patch but with larger dimensions (100mm by 89.9mm).

9.7 Summary

This chapter presents a design algorithm for bonded repairs of metallic structures. The

design algorithm uses simple closed-form solutions for an elliptical patch and analytical

results from a 1D bonded joint theory, and it accounts for thermal stresses. To facilitate

the design logic, the design chart presented in Chapter 3 has been used as a visual aid.

A novel approach for analyzing a repair under a combined thermo-mechanical loading is

also described, in which the thermal problem is shown to be equivalent to a mechanical

problem.



CHAPTER 10

A Preliminary Design Approach for Corrosion
Repairs

10.1 Introduction

In Chapter 9, a preliminary design approach for crack patching was presented. A similar

approach but for a corrosion repair will be delineated in this chapter. The present design

approach is based mainly on the work of Duong (2003a) and follows closely with his

development. As in Chapter 9, the present design approach for a corrosion repair will

be presented here for the case that the repaired structural component is subjected to

a biaxial loading with a primary load being tensile. The cases of a general far field

loading (including a shear load) and biaxial loading with a primary compressive load

will be treated in a similar manner as in Chapter 9 and they will not be discussed any

further in this chapter. The designed patch that is output from this approach will be

a cross-ply patch with the 0 and 90 plies dispersed throughout the patch thickness

and with the 0 plies aligned parallel to the primary loading direction. The ratio of the

number of 90 plies to the number of 0 plies will be approximately the same as the

applied biaxial stress ratio. To make use of the algorithm developed in Chapter 9 for

a unidirectional patch design as much as possible and to account for stiffness of the

90 plies in the design process, the cross-ply patch will be treated as a unidirectional

patch in all calculation below with the “effective” modulus, effective thermal expansion

coefficient, and effective thickness given by Ep = Ef +� ·Em
 �p = Ef�f+�·Em�m
Ef+�·Em , and

tp = n0ply · tply, where E is the modulus, �p is the patch thermal expansion coefficient,

tp is total thickness of all 0 plies of the patch, n0ply is the number of 0 plies, tply is

the thickness of one ply of the composite patch, � is the biaxial stress ratio, and the

subscript p, f, and m denote respectively the patch, the fiber and matrix directions of a

lamina. After the “equivalent” unidirectional patch is computed from the design process,

this unidirectional patch can be converted into a cross-ply patch design by adding the

90 plies to the former design accordingly based on the biaxial stress ratio. In addition,

the patch of a corrosion repair may also need to be tapered in both length and width

direction since the patch stiffness in the width direction may be no longer negligible

when compared to the skin stiffness due to a possible presence of 90 plies.

336
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10.2 Basic Analysis Methods Used in the Preliminary Design Approach

In this section, a brief summary of the basic analysis methods used in the preliminary

design approach is presented. The quantities of practical interest in the design are stresses

in the skin and patch, and shear strain in the adhesive. A two-stage analysis procedure for

estimating these quantities as presented in Section 6.2 of Chapter 6 without considering

thermal effects will be reviewed here first. The procedure is then expanded to include

the thermal effects. The analysis methods are developed for an elliptical patch and under

plane stress condition. For simplicity, the patch is also assumed to be isotropic with

the same Poisson ratio as that of the skin in the analysis. As shown in Chapter 3, the

effect of the material orthotropy of the patch appears to be insignificant for the sought

quantities. The effect of tapering of the patch’s edge as commonly done in practice is

also ignored in the analysis.

10.2.1 Analysis method for a repair subjected only to mechanical loads

In the first stage analysis of the solution procedure (Figure 10.1(b)), a patch assumes to

be rigidly bonded to an undamaged skin. For reference, Figure 6.1 has been reshown in

Figure 10.1 with a minor change as noted in the caption of Figure 10.1. Stresses in the

skin near the edge of the patch and underneath the patch are determined from the stage I

analysis using an elliptical inclusion analogy. These skin stresses were determined from

Section 6.2.3 of Chapter 6 as:

Skin stress underneath the patch
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Skin stress concentration factor near the tip of the patch’s edge

K∗
t =

�∗
tip

��
= �1+S� �

∗
0

��
(10.3)

whereS is the patch stiffness to skin stiffness ratio, i.e.,S= E′
ptp

E′
sts

= Eptp
Ests

 E′ =E/1−�2,

A and B are minor and major axis of the elliptical patch, � is the Poisson’s ratio, � is

the biaxial stress ratio, and the subscript p or s denote patch and skin, respectively.

In the second stage analysis of the solution procedure, a patch is assumed to be infinite

extent and again rigidly bonded to the skin (see Figure 10.1(c)). The patched skin now
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(a) (b) (c)

Stage I Stage II

Σ ⋅ σ∞

Σ ⋅ σ∞

σ∞

Grind-out
No grind-out 

ij0σ

ts + tp

tsσ0x (1 + S ) 

ts + tp

tsσ0 (1 + S ) 
σ∞

Fig. 10.1. An illustration of the two-stage analysis procedure. �0 and �0x are components of the

skin stress underneath the patch of a problem shown in Figure 10.1(b). It is worthy to note that

Figure 10.1(c) becomes identical to Figure 6.1(c) when its far field stresses are expressed in term

of �
I�stage I�
ij �0� instead of �0 and �0x as illustrated here. �

I�stage I�
ij �0� are related to �0 and �0x by

Equation (6.12).

contains an elliptical grind-out cavity with stresses �∗
0

�1+S�ts
ts+tp and �∗

0x
�1+S�ts
ts+tp applied at

infinity where �∗
0 and �∗

0x are obtained earlier from stage I analysis (see Section 6.2.3

of Chapter 6 and particularly Equation (6.16)). The purpose of the second stage analysis

is to estimate the stresses in the skin near the bottom and near the edge of the grind-out

cavity, and the maximum stress in the patch that usually occurs at the center of the

patch. The stage II problem is again solved using the elliptical inclusion analogy as

shown in Figure 10.1(c). It should be noted that Figure 10.1(c) depicts a problem of an

infinite skin reinforced with an infinite patch and containing an elliptical inhomogeneity

with the same aspect ratio as that of the grind-out cavity, which composes of a reduced

thickness skin and a patch. The skin stresses near the bottom of the cavity are given by

Equations (6.23) and (6.22) as

�∗
c =

�∗
0

Zcorro

[
�1+Scorro�

(
3+2

b

a

)
+1+�sScorro

+ 2
a

b
+ �∗

0x

�∗
0

·Scorro
(
1−�s−2�s

b

a

)]
(10.4)

�∗
cx =

�∗
0

Zcorro

{
�∗
0x

�∗
0

·
[
�1+Scorro�

(
3+2

a

b

)
+1+�sScorro+2

b

a

]

+ Scorro

(
1−�s−2�s

a

b

)}

while the y-component patch’s stress is given by (6.24):

�p = �∗
c

(
E′

p

E′
s

)
(10.5)
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where from (6.20) and (6.18),

Zcorro = 3 �1+Scorro�2+2 �1+Scorro�
(
b

a
+ a

b
+�s Scorro

)
+1−�2s S2corro

Scorro =− ts− tr
�1+S� ts

(10.6)

b/a is the aspect ratio of the elliptical cavity, �ts− tr� is the depth of a grind-out, and

the rest are previously defined. It should be noted from Equation (10.6) that Scorro is

negative.

On the other hand, similar to the results of stress concentration for a hole, the

y-component skin stress at the left or right edge of the cavity and the x-component

skin stress at the tip edge of the cavity are of interest, especially for a very deep

grind-out cavity. These stress components are determined from Section 6.2.3 as (see

Equation (6.28)):

�∗
yy

(±a+
0)=
{[
�∗
0 �1+S�

ts
ts+tp

− �
∗
c

E′
s

(
E′

str+E′
ptp
)

ts+tp

]
·
(
1+2

a

b

)
+ �

∗
c

E′
s

(
E′

str+E′
ptp
)

ts+tp

−
[
�∗
0x �1+S�

ts
ts+tp

− �
∗
cx

E′
s

(
E′

str+E′
ptp
)

ts+tp

]}
· E

′
s

(
ts+tp

)
E′

sts+E′
ptp

(10.7)

�∗
xx

(
0
 ±b+)=

{[
�∗
0x �1+S�

ts
ts+tp

− �
∗
cx

E′
s

(
E′

str+E′
ptp
)

ts+tp

]
·
[
1+2

b

a

]
+ �

∗
cx

E′
s

(
E′

str+E′
ptp
)

ts+tp

−
[
�∗
0 �1+S�

ts
ts+tp

− �
∗
c

E′
s

(
E′

str+E′
ptp
)

ts+tp

]}
· E

′
s

(
ts+tp

)
E′

sts+E′
ptp

In contrast to the case of crack patching, the present second stage analysis assumes a

rigid bond between the damaged skin and the patch. The maximum strain in the adhesive

therefore cannot be determined from the present solution procedure. However, since a

crack-like damage appears to result in a larger maximum shear strain in the adhesive

near an edge of the damage than that induced by a corrosion cavity, the maximum strain

in the adhesive of a corrosion repair will be predicted conservatively as if it is estimated

by using formula given in Chapter 9 for crack patching. The maximum shear strain in

the adhesive near the corrosion cavity is therefore estimated by (see Equation (9.10)

of Chapter 9):

�max
A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�∗
0 ts�A

GA

for �∗
0 ts�A < �

�A�
Y

�
�A�
Y

2GA

[
1+
(
�∗
0

�0Y

)2
]

otherwise

(10.8)
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where 1/�A as in previous chapters is the shear load transfer length with �A defined by:

�A =
√√√√GA

tA

(
1

E′
sts

+ 1

E′
ptp

)
(10.9)

GA and tA are the shear modulus and thickness of the adhesive layer, respectively, �0Y is

defined by Equation (3.32) as �0Y ≡ �
�A�
Y

�Ats

 �

�A�
Y is the elastic shear limit of the adhesive

as defined in Figure 2.3, and the rest are previously defined.

10.2.2 Analysis method for a repair subjected to thermo-mechanical loads

It had been shown in Chapter 9 that a thermo-mechanical problem could be made

equivalent to a purely mechanical problem. For the problem of an undamaged skin

reinforced with a bonded patch, this equivalency is illustrated in Figure 9.4 of Chapter 9

where �T
11 and �

T
22 are given by:

�T
11 =

Es

1−�2s
(

�T��p�
11 +�s�T��p�22

)

�T
22 =

Es

1−�2s
(
�s

�T��p�
11 +�T��p�22

) (10.10)

while 
�T��p�
11 and 

�T��p�
22 are defined from Chapter 9 as follows for two typical thermal

loading conditions:

1. Due to a uniform operating temperature


�T��p�
11 = (�p

11−�s

) (
Toperating−Tambient

)

�T��p�
22 = (�p

22−�s

) (
Toperating−Tambient

) (10.11)

2. Due to curing of the adhesive using a circular heater blanket


�T��p�
11 =

[
−
(
�s
2
+ 1

2

)
�s+�p

11

] (
Tcuring−Tambient

)


�T��p�
22 =

[
−
(
�s
2
+ 1

2

)
�s+�p

22

] (
Tcuring−Tambient

)
(10.12)

In Equations (10.11) and (10.12), �
p

11 and �
p

22 are thermal expansion coefficients of the

patch in principal material directions, and �s is the skin’s thermal expansion coefficient.
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Using the equivalency (see Figure 9.4), the stresses in the skin underneath the patch

and near the patch tip of a stage I analysis were determined in Chapter 9 as (see

Equations (9.25)–(9.27)):

�0 =
�∗
0

��

(
��−�T

22

)+�T
22

�tip =
�∗
tip

��

(
��−�T

22

)+�T
22

(10.13)

or

�0

��
= �∗

0

��
+ �T

22

��

(
1− �∗

0

��

)
(10.14)

Kt = K∗
t −

�T
22

��
�K∗

t −1� (10.15)

where �∗
0 
 �

∗
tip and K∗

t are stresses in the skin underneath the patch and near the edge

of the patch, and the skin stress concentration at the patch tip, respectively, due to the

mechanical loads alone, i.e., when �T
11 =�T

22 = 0, and they are given by Equations (10.1)–

(10.3). When the damage is introduced into the skin, the skin stress �0 underneath the

patch will change because of the load redistribution around the damage while the skin

stress at the end of the patch assumes to remain the same. However, since �0, i.e., the

skin stress underneath the patch of an undamaged skin, will be used as one of the design

variables in Section 10.4 and also for evaluating the adhesive shear strain as discussed

at the end of this section, a formula for �0 was therefore given.

In order to determine stresses in the skin near the bottom and near the edge of the cavity,

and the maximum stress in the patch, the equivalency needs to cast in a slightly different

form so that it can be extended easily to the case of a repair of a corroded skin (Duong,

2003a). From Chapter 9, a purely thermal stress problem can also be solved by (i)

first determining the strain solution of the problem of a patched skin with a strain field


�T��p�
ij prescribed in the patch as shown in Figure 10.2(a), using the linear superposition

procedure shown in Figures 10.2(b) and 10.2(c), and (ii) then computing the thermal

stresses accordingly to the formula given below:

� s
ij �x�= Cs

ijkl
∗∗
kl �x�

�
p

ij �x�= Cp

ijkl

(
∗∗kl �x�−�T��p�kl

) (10.16)

where ∗∗ij �x� denotes the strain solution obtained in step (i), and 
�T��p�
ij is defined

previously. Since the skin stress � s
ij�x� of the problem shown in Figure 10.2(a) is also

equal to Cs
ijkl

∗∗
kl �x� as that of the thermal stress problem, the skin thermal stress therefore

can be obtained directly by superimposing the solutions of two problems shown in

Figures 10.2(b) and 10.2(c). In contrast, the thermal stress in the patch still needs to

be evaluated using Equation (10.16) since the patch stress of the problem shown in
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(a) (b) (c)

= +

Patch is prescribed with
uniform strain fields

(T)(p)ε11   and ε22
(T)(p)

(T)(p)ε11   and ε22
(T)(p)

Patch is prescribed with
uniform strain fields

(T)(p)T−σ22 or −ε22

(T)(p)T−σ11 or −ε11

(T)(p)T−σ22 or −ε22

(T)(p)Tσ11 or ε11

Fig. 10.2. A superposition method for analyzing a patched skin with the uniform strain field


�T��p�
ij prescribed in the patch. Note that �T

ij = Cs
ijkl

�T��p�
kl .

Figure 10.2(a) is equal to C
p

ijkl
∗∗
kl �x�, not C

p

ijkl�
∗∗
kl �x�−�T��p�kl 	 as required by (10.16).

From Equation (10.16), the patch thermal stress can be expressed alternatively in terms

of the skin thermal stress as

�
p

ij �x�= Cp

ijkl

(
Cs−1
klmn�

s
mn �x�−�T��p�kl

)
(10.17)

Thus, while the skin stresses of the thermal stress problem can be determined according

to the superposition procedure shown in Figures 10.2(b) and 10.2(c), the patch thermal

stresses are rather obtained by Equation (10.17).

By using linear superposition, a problem of an undamaged skin reinforced with a patch

under thermo-mechanical loading can be solved in a similar manner, in which the skin

stress is first determined according to the approach given in Figure 10.3 while the patch

stress is computed using Equation (10.17). It should be emphasized that the solutions

of problems shown in Figures 10.2(c) and 10.3(c) are trivial since the resulting strains

in the patch and skin in those problems are uniform and equal to the remote applied

strains.

With the above approach and discussion in mind, we are now ready to present the solution

approach for determining skin stresses near the bottom and near the edge of the grind-out

cavity, and the maximum patch stress of the corrosion repair problem under a combined

thermo-mechanical loading. With the equivalency between the thermo-mechanical and

mechanical problems established and demonstrated in Figure 10.3, the problem of a

corrosion repair subjected to thermo-mechanical loads can be analyzed by a method

illustrated in Figure 10.4.

Problems shown in Figures 10.4(a)–10.4(c) are very similar to those shown in

Figures 10.3(a)–10.3(c), except that the former problems include a corrosive damage.
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(a) (b) (c)

= +

Patch is prescribed with
uniform strain fields

(T)(p)ε11

σ∞
Tσ∞ − σ22

TΣ ⋅ σ∞ Σ ⋅ σ∞ − σ11

ΔT ≠ 0

(T)(p)Tσ22 or ε22

(T)(p)Tσ11 or ε11

Fig. 10.3. Another form of the superposition method for analyzing an undamaged skin reinforced

with a patch under thermo-mechanical loading that can be extended to the repair analysis of a

corroded skin.

(a) (b) (c)

= +

Patch is prescribed with
uniform strain fields

Grind-out

(T)(p)ε11   and ε22
(T)(p)

σ∞

Σ ⋅ σ∞

ΔT ≠ 0

TΣ ⋅ σ∞ − σ11

Tσ∞ − σ22
(T)(p)Tσ22 or ε22

(T)(p)Tσ11 or ε11

Fig. 10.4. A linear superposition method for analyzing the problem of a corrosion repair under

thermo-mechanical loading.

The local skin stresses near the cavity of the problem depicted in Figure 10.4(b) can be

obtained using the two-stage analysis procedure outlined in Section 10.1.1 since it is the

same as the problem shown in Figure 10.1(a) except for the different far field applied

stresses. The far field stress of the problem shown in Figure 10.4(b) is
(
��ij−�T

ij

)
rather

than ��ij . The problem depicted in Figure 10.4(c) also can be solved using the mentioned

two-stage analysis procedure. A two-stage analysis procedure for solving this problem

10.4(c) is illustrated in Figure 10.5. Since the problem shown in Figure 10.5(b) is a

trivial problem with the resulting strains in the patch and skin being uniform and equal

to the remote applied strains as noted in the preceding paragraph, stresses in the skin
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(a) (b) (c)

No grind-out
patch prescribed with
strain field εij

Patch prescribed with
strain field εij

Grind-out

Stage I Stage II

(T)(p)(T)(p)

(T)(p)Tσ22 or ε22
(T)(p)T

T

σ22 or ε22

(T)(p)Tσ11 or ε11

ts + tp

tsσ22 (1 + S) 

T

ts + tp

tsσ11 (1 + S) 

Fig. 10.5. A two-stage analysis procedure for solving problem shown in Figure 10.4(c). It should

be noted that the solution of the problem shown in Figure 10.5(b) is trivial; the skin stress is

uniform and equal to �T
ij .

of that problem will also be uniform and equal to �T
ij . Thus, the skin stress underneath

the patch of the problem shown in Figure 10.5(b) is �T
ij . It was shown in Section 10.2.1

that when the skin stress components underneath the patch from stage I analysis was

�∗
0 and �∗

0x, the far field applied stress of the stage II problem would be �∗
0

�1+S�ts
ts+tp and

�∗
0x
�1+S�ts
ts+tp . In the similar manner, the far field applied stress of the problem shown in

Figure 10.5(c) will be �T
ij
�1+S�ts
ts+tp , since problems shown in Figures 10.5(b) and 10.5(c)

correspond respectively to the stage I and II problems of the problem depicted in

Figure 10.4(c) and the skin stress underneath the patch from the stage I analysis is �T
ij .

Specifically, stresses in the skin near the cavity and the maximum patch stress can be

evaluated using the following steps:

(i) Calculate �∗
0 
 �

∗
0x
 �

∗
c 
 �

∗
cx
 �

∗
yy�±a+
0� and �∗

xx�0
 ±b+� for the problem

shown in Figure 10.4(b) using formula given in Section 10.2.1, and denote them

as �
∗�part1�
0 
 �

∗�part1�
0x 
 �

∗�part1�
c 
 �

∗�part1�y
cx 
 �∗�part1�

yy �±a+
0� and �∗�part1�
xx �0
 ±b+�.

(ii) Calculate �∗
c 
 �∗

cx
 �∗
yy�±a+
0� and �∗

xx�0
 ±b+� again using formula in

Section 10.2.1, assuming �∗
0 = �T

22 and �∗
0x = �T

11, and denote them as

�
∗�part2�
c 
 �

∗�part2�
cx 
 �∗�part2�

yy �±a+
0� and �∗�part2�
xx �0
 ±b+�. Step (ii) basically cor-

responds to solving the problem shown in Figure 10.4(c) directly through stage

II analysis, skipping the trivial stage I analysis.

(iii) The local skin stresses near the cavity of the thermo-mechanical problem are equal

to the sum of individual contributions from steps (i) and (ii), i.e., �c = �∗�part1�
c +

�
∗�part2�
c 
 �yy�±a+
0�= �∗�part1�

yy �±a+
0�+�∗�part2�
yy �±a+
0�, etc.

(iv) Calculate the maximum patch stress via Equation (10.17) using skin stresses �c

and �cx obtained in step (iii).
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Finally, as before, the maximum shear strain in the adhesive is also of interest. The

maximum shear strain in the adhesive again can be estimated (conservatively) using

Equation (10.8) but with �∗
0 now being replaced by �0 as in Chapter 9, where �0 is

given by Equation (10.13). It should be reminded that �∗
0 in Equation (10.13) is the skin

stress under the patch due to the far field applied stress ��ij alone and as if the skin

contains no corrosive damage.

10.3 Design Criteria

The design of an effective patch requires that the patch will carry an appreciable percent

of the applied load without any premature failure or disbond. To develop such a design,

the patch, adhesive, and corroded skin after the repair must possess sufficient static

strength. Criteria and guidelines to assure the structural integrity of the repair have been

established in the CRMS Guidelines (1998) and in the RAAF Engineering Standard

C5033 (Davis, 1995). This section will summarize these design criteria and guidelines.

Most of these criteria and guidelines will be used in the present preliminary design

approach with minor modifications for improvement whenever necessary. Basic criteria,

described in this section, define acceptable patch stress, adhesive strain, skin stress and

patch size, and they are described in the following sections.

10.3.1 Design criteria for corroded skin or substrate

Two design criteria are considered here for the corroded skin or substrate. First, at the

design limit load (DLL), the stresses in the skin around and at the bottom of the grind-out

cavity must be equal to or less than the skin yield strength. This criterion is to assure

that the corroded skin after the repair will restore its original load-carrying capability.

Second, the skin stress concentration factor near the patch’s edge tip is limited to values

below 1.3 when the ratio of the material ultimate strength to the far field stress at the

design ultimate load (DUL) exceeds 1.3, i.e.,
Ftu

���at DUL�
> 1�3, or below Ftu

���at DUL�
when

otherwise. It is worthwhile to note that when
Ftu

���at DUL�
> 1�3
 Kt is still limited to values

below 1.3 to prevent potential fatigue cracking in the skin near the patch’s edge.

10.3.2 Design criteria for patch

Four design criteria are considered here for the repaired patch. First, the patch stiffness

must be equal to or greater than the stiffness of the removal skin material. Second, the

maximum stress in the patch at DUL must be less than 83% of the material tensile

ultimate strength of the patch. This corresponds to a margin of safety of 0.2 or higher for

the patch strength. The margin safety factor is used to accommodate for any variation

or degradation of the composite material properties. Third, the length of the patch must

be greater than or equal to the following value:

Lp ≥
10

�A

+ 2�0ts

�
�A�
Y

+2 · (nply−1
) ·d · tply+2 ·b (10.18)
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where nply is the number of plies, tply is the thickness per ply, d is the step-off rate,

b is the half length of an elliptical grind-out cavity, and the rest have been previously

defined. As mentioned in Chapter 9, occasionally a value of 12/�A is specified in

Equation (10.18) in place of 10/�A. The purpose of this requirement is to assure that

the overlap is long enough to develop a central area of very low adhesive shear stress,

which anchors the bond to resist creep. The final patch criterion is a minimum width

requirement which specifies

Wp ≥ 2
(
a+√

a
)

(10.19)

where a is the half width of a grind-out cavity.

10.3.3 Design criteria for adhesive

In order to assure the structural integrity of the bond, the maximum shear strain in the

adhesive at DUL is required to be at or below 80% of the maximum allowable strain.

10.4 Preliminary Design Procedure

The design procedure is an iterative process that requires adjustments of several variables

or parameters until a satisfactory design that meets the established criteria is attained.

Patch design variables are the patch stiffness ratio S, patch aspect ratio B/A, and the

patch length or width. However, as shown in Chapter 9, it is more convenient to use

�0 and Kt as the design variables in the iterative process since most of quantities used

in the evaluation of criteria are commonly expressed in terms of these two parameters.

By varying �0 and Kt within a certain appropriate range, one can effectively control the

skin stress at the bottom of a grind-out cavity, the maximum adhesive shear strain, etc.,

within their required range.

There is no unique patch design that meets the criteria listed in Section 10.3. In a design

process, one iteratively searches for a first design that meets the criteria. Thus, the design

which results from the process will be different depending on what route the search

has taken, and it may not necessarily always be the desired (optimal) design. A design

procedure which is similar to that proposed in Chapter 9 for crack patching will be

employed here. The design algorithm will involve three nested loops with the outermost

loop for the maximum allowable patch size, the next inner loop for �0 and the innermost

loop for Kt . In order to avoid obtaining any patch design with an extremely high aspect

ratio or stiffness ratio, acceptable ranges of values for these design variables had been

determined in Chapter 9. It was shown in Chapter 9 that the maximum allowable patch

size ranges from a+√
a to 20 ·a or 0.508m whichever is higher in value. On the other

hand, the ranges for �0 and Kt are given by the following expression depending on the

ratio of
�T
22

��
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For
�T
22

��
≤ 1

0�33+0�67
�T
22

��
<
�0

��
< 0�8+0�2

�T
22

��
( 1�05−0�05

�T
22

��

∣∣∣∣
at DUL

≤ Kt ≤ 1�3

Ftu

���at DUL�

,

or 2− �T
22

��

∣∣∣∣
at DUL

, whichever is smaller in value.

For
�T
22

��
> 1,

0�8+0�2
�T
22

��
<
�0

��
< 0�33+0�67

�T
22

��
( 2− �T

22

��

∣∣∣∣
at DUL

≤ Kt ≤ 1�05−0�05
�T
22

��

∣∣∣∣
at DUL

or − Fcu
�� at DUL

≤ Kt ≤ 1�05−0�05
�T
22

��

∣∣∣∣
at DUL

if 2− �T
22

��

∣∣∣∣
at DUL

<− Fcu
���at DUL�

where Ftu and Fcu are the magnitudes of the tensile and compressive strengths of the

skin material. For detailed discussion on how these ranges were determined, a reader

should refer to Chapter 9. With the range of �0 and Kt having been determined, the

design algorithm can now be described. The design algorithm involves the following

principal steps:

(i) Start with Amax = a+
√
a and increase Amax incrementally to a maximum value

of 20a or 0.508m whichever is higher in value.

(ii) Start with
�0

��

∣∣∣∣
at DUL

= 0�8+0�2
�T
22

��
and decrease by small decrements (when

�T
22

��
≤ 1) or increase incrementally (when

�T
22

��
> 1) to 0�33+0�67

�T
22

��
.

(iii) Start with Kt = 1�05− 0�05
�T
22

��

∣∣∣∣
at DUL

and increase incrementally to 1.3,

Ftu
���at DUL�

or 2− �T
22

��

∣∣∣∣
at DUL

, whichever is smaller in value, when
�T
22

��
≤ 1, or

decrease by small decrements to 2− �T
22

��

∣∣∣∣
at DUL

or − Fcu
���at DUL�

, whichever is

higher in value, when
�T
22

��
> 1.

(iv) Calculate
�∗
0

��
and K∗

t by the first equation of (10.13) and a second equation of

(10.14) with
�0

��
and Kt given from steps (ii) and (iii).

(v) Solve the first equation of (10.1) and Equation (10.3) simultaneously for S and

B/A with
�∗
0

��
and K∗

t obtained from step (iv). It is important to note that since

S and tp are the stiffness ratio and the thickness of an equivalent unidirectional

patch (with effective moduli accounting for the cross plies), respectively, the
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number of piles determined from S will be n0ply, as mentioned in the Introduction

of this chapter.

(vi) Calculate stresses in the patch and strains in the adhesive at DUL, and the

skin stresses around and at the bottom of the grind-out cavity at DLL using

the formula and/or the analysis procedure given in Section 10.1 and check the

criteria specified in Section 10.2.

(vii) Determine the patch width and length, noting nply in Equation (10.18) for the

minimum patch length given by nply = n0ply+
∑ ·n0ply.

(viii) If a satisfactory design is found then the process has completed. Otherwise, one

needs to return to step (iii) or (ii) or (i) depending on whether or not Kt and
�0

��

∣∣∣∣
at DUL

have reached their upper limit specified in these steps.

As in Chapter 9, the design procedure computes the geometry of an elliptical patch

based on simple formulas. Since elliptical patches are impractical for manufacturing, an

octagonal or rectangular shape can be approximately derived from the elliptical design

using the process similar to that outlined in Chapter 9. A rectangular patch design

assumes to have the same aspect ratio, length and width output from the previous

design process for an elliptical shape. In contrast, the above elliptical patch design can be

converted to an octagonal patch design using the Hart-Smith equivalent volume concept.

10.5 Summary

This chapter presents a design algorithm for bonded repairs of corroded metallic struc-

tures. The design algorithm uses simple closed-form solutions for an elliptical patch and

analytical result from a 1-D bonded joint theory and accounts for thermal stresses. The

algorithm is robust and versatile, which can greatly reduce the patch design cycle time

in practice.



CHAPTER 11

Experimental Verifications of Analytical Methods

11.1 Introduction

In Chapters 3–5, analytical methods for predicting the stress distribution and crack-tip

stress intensity factor in a skin with a supported or unsupported one-sided and two-

sided repair are presented. Even though the results from these analytical methods were

always compared with the FE solutions in the previous chapters, such comparisons with

experimental data have not been made. These analytical and FE results will be verified

experimentally in this chapter.

There are four main individual effects, which are important for the design of a bonded

repair.

1. Residual thermal stresses

2. Patch aspect ratio (load attraction)

3. Tapering ratio

4. Out-of-plane bending.

Several analytical models have been developed in Chapters 3–5 to address these indi-

vidual effects. As part of the Composite Repair Aircraft Structures (CRAS) study effort

performed by the Boeing Company and funded by the United States Air Force Research

Laboratory (AFRL), a comprehensive experimental program was conducted to provide

data for validating these analytical models (Duong, 2003b; Duong and Wang, 2004;

Duong et al., 2006). Since these analytical models employ a different set of simplifying

assumptions, which yield results with a different level of accuracy, a building block

approach is employed in the test. According to this testing approach, first, each of these

effects will be assessed individually through a basic test and compared with the analytical

predictions. After this, these individual effects will be tested in different combinations

and again compared with analytical results.

349
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To determine the effectiveness of the bonded repair, two important quantities of interest

are as follows:

1. The crack-tip stress intensity factor, which is linked directly to the crack growth

rates underneath the patch;

2. The stress concentration (load attraction) in the skin near the edge of the patch,

which is important for assessment of damage initiation in the skin adjacent to

the patch.

Since each of these two quantities requires a different set of testing techniques and

loading for its determination, two different sets of tests are conducted. In the first

set, specimens are loaded in fatigue and crack growth data is collected and directly

compared with analytical predictions. In the second set, in order to collect load attraction

data, specimens are coated with a photo-elastic coating on one side and with strain

gauges on the other side, which are subjected to a static load. Specimen configurations

corresponding to these two sets of tests will be described in detail in Sections 11.2 and

11.3. All specimens were fabricated and tested at the United States Air Force Academy

(USAFA) according to the designs and instructions provided by The Boeing Company.

11.2 Fatigue Crack Growth Tests and Method Validation

11.2.1 Fatigue crack growth tests

Relatively wide geometrical and material configurations of patches and cracked plates

are tested for fatigue crack growths. The details of these specimen configurations for

a two-sided repair type are listed below. All two-sided repair test specimens have a

sandwich configuration where two one-sided, patched, cracked plates are bonded back to

back onto a honeycomb core, in order to eliminate the out-of-plane bending at the crack

(Figure 11.1). The plates in the sandwich configuration are 3.175mm thick. Similarly,

the descriptions of the test specimens corresponding to one-sided repairs are summarized

in Table 11.1. The cracked plates in both configurations are made of Aluminum 7075-T6

bare with dimensions of 22�9cm× 61cm unless noted otherwise. The plates have a

starter crack of 25mm and a final crack length of 60mm. All patches are rectangular. The

pre-crack stress level range is 60-3MPa, and the fatigue test was conducted at a range

of 120-6MPa. The adhesive is FM-73M from Cytec. The details of the test procedure

and test results are documented in Duong (2003b). In contrast, detailed descriptions of

the tested sandwich configurations are as follows:

• Configurations F1 and F2: Each side of the honeycomb core is a cracked plate

bonded with a 10-ply boron/epoxy patch (the nominal thickness of each ply is

0.127mm, and the patch stiffness ratio S, i.e., Eptp/Ests, equals 1.11). The patch

dimensions are 76.2mm × 177.8mm. The patch is unidirectional with the zero-

degree ply oriented normally to the crack. Configurations F1 and F2 are nearly

identical, except that the patch in the latter configuration is tapered with a tapering

ratio of 30:1 (1mm rise for every 30mm edge length).

• Configurations F3 and F4: Configurations F3 and F4 are similar to F1 and F2,

respectively, except for the patch material, thickness and edge’s tapering ratio.
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177.8 mm
(7")

609.6 mm
(24")

609.6 mm
(24")

177.8 mm
(7")

76.2 mm
(3")

228.6 mm (9")

(a) (b) (c)

228.6 mm (9")

Fig. 11.1. A sandwich configuration of fatigue crack growth specimens: (a) side view; (b) plan

view of a specimen with a patch spanning across the full plate’s width; and (c) plan view of a

specimen with a finite-size rectangular patch.

The patches in configurations F3 and F4 are also aluminum like the cracked plates,

thus there will be no residual thermal stresses associated with curing of the adhesive

in these configurations. Furthermore, in order to keep the patch stiffness ratio of

configurations F3 and F4 approximately the same as those of F1 and F2, the thick-

ness of the patches in the former configurations is equal to 3.683mm �S = 1�16�.
In addition, the tapering ratio in configuration F4 is only 10:1. This is because

the tapering ratio is recommended in practice to be equal to ten times the patch

modulus ratio Ep/Es (Davis, 1995; CRMS Report, 1998).

• Configurations F5 and F6: Each side of the honeycomb core is a cracked plate

bonded with a 10-ply boron/epoxy patch (S equals 1.11). The patch spans across

the full plate’s width with a length of 177.8mm. Configuration F6 differs from

configuration F5 by the tapered edge of the patch with a tapering ratio of 30:1.

11.2.2 Characterization of fatigue crack growth in one-sided and two-sided
repairs

Analytical predictions for the growth rates of patched cracks are based on a correspon-

dence principle between the patched cracks and the un-patched cracks. This principle has

been proven theoretically and demonstrated in Chapter 8 for a flight spectrum loading.

According to this principle, patched and un-patched cracks under a constant ampli-

tude cyclic load will have the same crack growth behavior if their tips experience the
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Table 11.1. Detailed description of patched specimen configurations used for validating the

analytical and FE models. In the table, S is defined as ratio of patch stiffness to the plate stiffness,

and the nominal thickness of a boron-epoxy ply is 0.127mm.

Specimen
configuration

Plate thickness and
material

Patch thickness and
material

Patch geometry

S1 3.175mm thick Al
7075-T6 bare

10-ply boron-epoxy
�S = 1�11�

76.2mm wide,
177.8mm long

S2 1.27mm thick Al
7075-T6 bare

4-ply boron-epoxy
�S = 1�11�

76�2mm×177�8mm

S3 3.175mm thick Al
7075-T6 bare

3.683mm thick
Aluminum �S = 1�16�

76�2mm×177�8mm

S4 1.27mm thick Al
7075-T6 bare

1.524mm thick
Aluminum �S = 1�2�

76�2mm×177�8mm

S5 1.175mm thick Al
7075-T6 bare

18-ply boron-epoxy
�S = 2�

76�2mm×177�8mm

S6 3.175mm thick Al
2024-T3 bare

10-ply boron-epoxy
�S = 1�16�

76�2mm×177�8mm

S7 3.175mm thick Al
7075-T6 bare

10-ply boron-epoxy
�S = 1�16�

Patch spans the
plate’s full width with
a length of 177.8mm

S8 3.175mm thick Al
7075-T6 bare

3.683mm thick
Aluminum �S = 1�16�

Patch spans the
plate’s full width with
a length of 177.8mm

S9 1.27mm thick Al
7075-T6 bare

1.524mm thick
Aluminum �S = 1�2�

Patch spans the
plate’s full width with
a length of 71.12mm

same history of �K�= Kmax−load−Kmin−load� and R-ratio

(
= Kmin−load

Kmax−load

)
where K is the

stress intensity factor and the subscripts min-load and max-load denote the valley and

the peak of the cyclic load, respectively. Thus, the growth rate of patched cracks can

be predicted using the crack growth data obtained from the un-patched specimens. The

crack growth da/dN data obtained from these un-patched specimens when it is expressed

in terms of �K and R-ratio will be a material property that is independent of specimen

geometries (coupon or structural component, patched or un-patched crack) and applied

loads. Typical da/dN data for a given material depends on the testing environment (lab

air, relative humidity [RH]) and specimen thickness.

The un-patched specimens used to determine da/dN data of a given material are usually

tested under in-plane tensile loading so that the specimens do not exhibit any out-of-

plane deflection and therefore the crack-tip stress intensity factor is uniform across the

plate thickness. Similarly, two-sided bonded composite repairs also have no secondary

bending due to the symmetric lay-up of the patch-plate combination. Thus, fatigue crack

growths in these two configurations are clearly characterized by the constant through-

thickness stress intensity factors evaluated at the maximum and the minimum loads of

the loading cycle. The stress intensity factor at the crack tip of a two-sided repair can
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be evaluated by the analytical methods given in Chapter 4, which follows the two-stage

analysis procedure and accounts for various effects such as residual thermal stresses, the

local disbond around the crack surfaces, and the materially nonlinear behavior of the

adhesive.

In contrast to symmetric repairs, predicting crack growth in a plate with a one-sided

repair poses a real challenge. This is because the stress intensity factor at the crack

tip of a plate with a one-sided repair will vary across the plate thickness as shown in

Figure 11.2 due to the out-of-plane deflection induced by the load path eccentricity,

and it is therefore unclear which through-thickness value of the stress intensity factor

governs the observed fatigue crack growth. Even though the maximum, mean and

root mean square (rms) values of the thickness-varying stress intensity factors were

commonly suggested for use in practice for predicting fatigue crack growth in a plate

with a one-sided repair, there is no comprehensive experimental study of their validity

to date since the work of Ratwani (1980). However, as found later by Rose (1988)

and Arendt and Sun (1994), Klug and Sun (1998) and Sun et al. (1966), the effect

of the out-of-plane bending was not correctly accounted for in the Ratwani’s work.

The good agreement between crack growth predictions using the maximum-thickness

values of the stress intensity factors and test results in that work therefore may be a

coincidence.

As mentioned earlier, due to the out-of-plane bending induced by load-path eccentricity,

the crack-tip stress intensity factor will vary across the plate thickness. Various values

of the stress intensity factor can be evaluated for the plate with a one-sided repair using

the analytical model described in Chapter 5 that accounts for the effects of geometric

nonlinearity and thermal stresses. For future discussion, values of the thickness-varying

stress intensity factor that are commonly used in practice for predicting fatigue crack

2θ

2u

Kb

Kmax

Kmin
K

z = h/2

z = –h/2

Fig. 11.2. Variation of the stress intensity factor through the plate thickness.
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growth of a general bending crack are defined below, in terms of the membrane and

bending values (Wang et al., 1998).

Kmax = Kmem+Kb

Kmean =
Kmax+Kmin

2
= Kmem (11.1)

Krms =
√
K2

mem+
K2

b

3

In Equation (11.1), the subscripts max, min, b, membrane, mean and rms denote respec-

tively the maximum, minimum, bending, membrane, mean and root mean square values

of the stress intensity factor. Generally, the Krms value is only slightly higher than the

Kmean value. However, as shown by Duong (2003) and also later in the next subsection,

the predictions using Kmax in many instances will yield unrealistically high crack growth

rates when compared with the test results. On the other hand, the predictions using Krms

or Kmean in other instances will grossly underestimate the crack growth rates of the plates

with a one-sided repair. Thus, a new effective K accounting for the thickness variation

of the stress intensity factor in a plate with a one-sided repair as proposed by Duong

(2003b) and later refined by Duong and Wang (2004) will be used to characterize the

fatigue crack growth in one-sided patched specimens.

Duong (2003b) has postulated that a bending crack would probably grow according to

Kmax at low values of Kb but by Krms at high values of Kb. This is particularly true for the

two extreme cases of without bending and with pure bending. An equivalent (effective)

stress intensity factor denoted by Keq is therefore proposed for crack growth prediction

of a patched bending crack that conforms with the above postulate as follows:

Keq =max �Krms
Kmean+�Kb	 (11.2)

where � will be derived semi-empirically later using a one-sided strap joint theory, and

it is less than or equal to 1. � is assumed to equal 1 for a low bending case and 0 for a

high bending case. According to Equation (11.2), Keq equals either Krms or Kmean+�Kb,

whichever has a larger numerical value.

According to the one-sided strap joint theory described in Chapter 2, if the overlap joint

is sufficiently long, there will be no interaction between the skin interruption end and

the patch end. The amount of load transferred from the skin to the patch at the patch end

is equal to P·S
S+1

, where P and S are the applied load per unit width and patch stiffness

ratio, respectively. Thus, the skin will carry a load of P
[
1− S

S+1

]
at the middle of the

half overlap length between the skin interruption end and the patch end. This remaining

load in the skin must be transferred to the patch at the skin interruption end. This latter

load transfer is the source for local bending at the skin interruption end. It is worthy to

note that the overall bending at the skin interruption end will be governed solely by this

local bending since the global bending of the patch/skin combination is negligible for

a long overlap strap joint according to the geometrically nonlinear deformation theory.
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e2̂

P

e1ˆ

Fig. 11.3. Schematic of a one-sided strap joint.

The local bending at the skin interruption end depends on the remaining load in the skin

after the first load transfer at the patch end and the eccentricity between the centroid of

the patch/skin combination and the centroid of the region directly over the interruption

end (Figure 11.3). The centroids ê1 and ê2 shown in Figure 11.3 are found respectively

from the second equation of (2.81) in Chapter 2 and the geometry as

ê1 =
S

1+S
[
ts+ tp
2

]

ê2 =
ts+ tp
2

(11.3)

ê2
ê1

= S+1

S

where S is defined previously as the patch stiffness ratio, and noting ê1 was denoted as ê
in Section 2.3.1. It was shown in Section 2.3.1 of Chapter 2 that the bending moments of

the patch and skin at the interruption end in the one-sided strap joint are approximately

equal to the followings for a sufficient long overlap (see Equation (2.109), assuming

�� 1 and M therm = 0 in that equation)

Mp =−P ·
[
tp+ ts
2

− ê1
]

=−P · tp+ ts
2

·
[
1− S

S+1

]
(11.4)

Ms = 0

The bending moment in the patch at the skin interruption end also can be expressed in

a normalized form as

mp =
Mp

−P · tp+ ts
2

= 1− S

S+1
(11.5)

From Equation (11.5), mp is approximately 0 for S� 1, and 1 for S� 1. For a very

stiff strap, i.e., S � 1, most of the remote load in the skin will be transferred at the

patch end, leaving only a small remaining load in the skin needed to be transferred at

the skin interruption end, and the eccentricity in the load path near the skin interruption

end will also be small as dictated by the last equation of (11.3), i.e., ê2 ≈ ê1 so that
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ê2− ê1 ≈ 0. As a result, there is only small local bending near the skin interruption end,

thus small mp. In contrast, for a very soft patch, only a small portion of the remote

load in the skin will be transferred at the patch end, leaving a large remaining load in

the skin after the first load transfer, which together with a high eccentricity in the load

path near the skin interruption end causes the high local bending there. Thus, mp is a

good parameter for quantifying the effect of the local bending near the crack surface of

a one-sided bonded repair. Furthermore, mp = 0 for a small local bending at the crack

surfaces, and mp = 1 for a high local bending there. Since the sought coefficient � of

Equation (11.2) is assumed to be equal to 1 for a small bending case and 0 for a high

bending case, it is then clear that � ∝ (1−mp

) ∝ S
S+1

. A general expression for � has

been derived empirically by correlating crack growth predictions by analytical methods

for single-sided repairs with all available test data generated under the CRAS project.

Through these analysis correlations with various fatigue crack growth data, the following

definition of � yields crack growth predictions that are consistently in good agreement

with the test data (Duong, 2003b):

�=

⎧⎪⎪⎨
⎪⎪⎩

S

S+1
S > 1

S

S+1
·S S ≤ 1

(11.6)

It is worthy to note that � defined by Equation (11.6) will be continuous at S = 1 and

ranges between 1 and 0, as required.

While the use of Keq defined by Equations (11.5) and (11.6) to characterize the fatigue

crack growth in a one-sided repair produces encouraging prediction results, there are two

drawbacks with that approach. First, the use of the non-dimensional parameter S/�S+1�
implies that the proposed approach is limited to cracks in patched plates. Secondly,

since the only similitude parameter for fracture and fatigue crack growth is the stress

intensity factor at the crack tip, it is therefore preferred to express Keq solely in terms of

Krms
 Kmax, and Kb rather than a mixture of these stress intensity factors with S/�S+1�
as indicated by Equations (11.6) and (11.2).

To generalize the above concept, Duong and Wang (2004) have suggested an alternative

form of the above equivalent (effective) stress intensity factor in terms of Krms
 Kmax

and Kb for a balanced or stiff patch repair �S ≥ 1�. Similar to the previous approach,

the equivalent stress intensity factor for characterizing the fatigue crack growth in a

one-sided repair is postulated to be given by

Keq = Kmax+�
Kb

Kmax

Krms (11.7)

where � is determined from the two conditions given below:

Keq = Kmax for
Kb

Kmax

= 0 �pure tension�

Keq = Krms for
Kb

Kmax

= 1 �pure bending
 Kmem = 0�

(11.8)
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For the second condition of Equation (11.8), Kmax = Kb and Kmax = Kb =
√
3 · Kb√

3
=√

3 ·Krms by the last equation of (11.1) and noting Kmem = 0 in the case of pure bending.

Thus, evaluation of Equation (11.7) for this condition yields �= 1−√
3. Consequently,

Equation (11.7) becomes

Keq = Kmax+
(
1−√

3
) Kb

Kmax

Krms (11.9)

or

Keq = Kmem +Kb+
(
1−√

3
) Kb

Kmem +Kb

√
Kmem + K2

b

3
(11.10)

According to Equation (11.9), Keq for any value Kb/Kmax between 0 and 1 is determined

by linear interpolation of the results of the two extreme cases: Kb/Kmax = 0 (pure

tension) and Kb/Kmax = 1 (pure bending). It is interesting to note that for all one-sided

repair configurations considered in this chapter as well as those additional configurations

reported in Duong (2003b) with patch stiffness ratio greater than 1, the values of Keq

given by Equation (11.9) are nearly the same (within 6% deviation) as those given by

Equations (11.2) and (11.6). This observation can be generalized to all one-sided repair

configurations since the repair configurations considered in this chapter and in the report

by Duong (2003b) cover quite a wide range of different combinations of Kb/Kmax and

Krms or Kmean. Thus, the latter definition of Keq will be employed in the subsequent

correlations of analytical predictions of fatigue crack growths of specimens described in

Table 11.1 with the test results.

As mentioned earlier in the beginning of this section, in order to be able to compare the

analytical and FEM predictions to the test results for the crack growth, it is necessary to

have da/dN versus �K curves for each R-ratio that will be predicted by the analysis.

Since the analysis will probably predict many different R-ratios at the crack tip due to

the thermally induced residual stress, this will mean that one would have to create these

curves for all these different R-ratios. However, by using the principle of the effective

stress intensity factor �Keff , all different da/dN –�K for each possible R-ratio will fall

on top of each other or collapse into a single curve, i.e., da/dN will only depend on

�Keff , independent of R. The equation that transforms �K and R into �Keff is only valid

within certain R-range and also for a certain material. For Al 7075-T6 and for R > 0,

De Koning (1980) showed that the effect of the R-ratio could be incorporated into a

single da/dN versus �Keff curve with the latter parameter given by

�Keff = �K �0�55+0�35R+0�5R2−0�4R3� (11.11)

where �K = Kmax−load −Kmin−load and R= Kmin−load/Kmax−load, and the subscripts “max-

load” and “min-load” denotes, respectively, the peak and valley of the cyclic load.

Several un-patched Al 7075 specimens that came from the same batch of material as the

one used for all the patched specimens were tested. These tests had been done over a

specific �Keff range for two Al 7075 plate thicknesses, i.e., 1.27mm thick and 3.175mm

thick. Since the crack growth may be affected by the RH, da/dN data are also generated

for both low and high RH. Figures 11.4 and 11.5 show da/dN versus �Keff on linear

scale for two Al 7075 plate thicknesses. These raw data are then fitted by a fourth degree

polynomial. Equations of these fourth degree polynomial fits are given in Table 11.2
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Fig. 11.4. da/dN versus �Keff for Al 7075-T6 3.175mm thick sheet.
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Fig. 11.5. da/dN versus �Keff for Al 7075-T6 1.27mm thick sheet.
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Table 11.2. Coefficients of the fourth degree polynomial fits to da/dN–�Keff data for Al 7075-T6 bare material. The polynomial fit takes the form

of y = a+bx+ cx2+dx3+ ex4, where y and x stand for da/dN and �Keff , with a unit of mm/cycle and MPa
√
m, respectively.

Plate
thickness
(mm)

Relative
humidity (%)

Applicable range a b c d e

1.27 4–8 4�485< �Keff < 18�517 −8�166536E-6 −8�4353778E-5 4�147869E-5 −5�061604E-6 2�326616E-7
1.27 14–23 4�532< �Keff < 23�045 1�1444186E-4 −2�6661175E-4 9�1705431E-5 9�2909308E-6 3�4035549E-7
3.175 6–12 4�494< �Keff < 24�185 −2�201150E-4 2�3847794E-4 −3�207314E-5 7�0813134E-7 7�9250803E-8
3.175 21–23 4�716< �Keff < 24�176 −1�655046E-4 1�0414462E-4 1�0676499E-5 −3�153469E-6 1�867254E-7
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with both the applicable range of �Keff and the associated level of RH indicated.

In many patched specimen configurations, the values of the predicted �Keff may be

outside the valid domains of these equations. In that case, the following linear equations

are suggested to use instead:

High RH, 3.175mm and 1.27mm thick plate

y = 0�0001x−0�0004

Low RH, 3.175mm thick plate

y = 1�E-4x−0�0003

Low RH, 1.27mm thick plate

y = 0�8E-4x−0�0003.

The latter linear-fit equations are plotted against the collapsed un-patched crack growth

data in Figures 11.6 and 11.7 for �Keff < 10, on linear scale. For all ranges of �Keff , the

equations that are closest to the actual test conditions of the patched specimens will be

used in the correlations. It remains now to outline a procedure for predicting crack growth

in a plate with a bonded repair. That topic is therefore presented in the next subsection.

11.2.3 Fatigue crack growth analysis

The analytical predictions of the crack growth versus number of loading cycles for the

patched specimens described above involve the following steps (Duong, 2003b; Duong

and Wang, 2004):
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Fig. 11.6. A linear fit of da/dN versus �Keff for Al 7075-T6 3.175mm thick plate at low

�Keff range.
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Fig. 11.7. A linear fit of da/dN versus �Keff for Al 7075-T6 1.27mm thick plate at low

�Keff range.

(a) Calculate the stress intensity factors of the repaired crack in a patched specimen

at the maximum �Kmax−load� and minimum loads �Kmin−load� of the fatigue cycle

for a given crack length using the analysis methods described in Chapter 4 or

5, accounting for any thermally induced residual stresses associated with curing.

Due to crack patching, the values of these stress intensity factors will be low

compared to those unrepaired values. The �K values will be low as well.

(b) Calculate �K and R-ratio. It should be noted that due to the thermally induced

residual stresses, the R-ratio is generally different from the applied stress ratio,

i.e., R= Kmin−load/Kmax−load �= ��min−load

/
��max−load

(c) Calculate da/dN using the available un-patched crack growth data with values

of �K and R-ratio obtained from step (b). The un-patched crack growth data for

Al 7075-T6 bare material were also generated using the same batch materials

as those used in patched specimens and they are represented in terms of fourth

power fit empirical equations, as mentioned in the last paragraph of the previous

subsection. These empirical equations account for the R-ratio effect as well as the

effects of RH and thickness of the cracked plate. In contrast, the un-patched crack

growth data for Al 2024-T3 are available in table form from the Boeing in-house

material database for various R-ratios.

(d) Calculate the amount of crack growth for a specific number of cycles, say for

every 1000 cycles.

(e) Calculate the total number of cycles that have passed since the start of fatigue

loading and also the total crack length after that total number of cycles.

(f) Repeat steps (a)–(e) for the new (growing) crack length.
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For one-sided patched specimens, since various values of K, i.e., Kmax
 Krms, or Keq,

can be used for crack growth predictions, the stress intensity factors referred to in steps

(a)–(b) obviously can be identified with any of the mentioned values. To facilitate the

crack growth predictions, the above procedure was implemented into a Fortran code. To

simplify the crack growth analysis, Kmax−load and Kmin−load of a given patched specimen

are first computed for a range of crack lengths starting from 11.43mm to 36.83mm using

the analytical methods described in Chapter 4 or 5. A table of crack lengths versus these

stress intensity factors is then input to the Fortran code. Step (a) of the above procedure

is performed in the Fortran code for a given crack length by linear interpolation of the

stress intensity factor data listed in the mentioned input table.

11.2.4 Comparison between analytical predictions and test results

(a) Sandwich Configurations

In this subsection, crack growth predictions for specimens F1–F6 are made and compared

with test results (Duong, 2003b; Duong et al., 2005).

Since the boron patch has a lower thermal expansion coefficient than the cracked

aluminum plate, residual thermal stresses will occur upon cooling the fully cured repair

from elevated curing temperature to the ambient temperature. Even though the curing

temperature of the FM-73 adhesive in the test is specified to be 93�3 C, the adhesive

may only harden at a much lower temperature which is denoted here as Tg. Thermal

stresses are only built up after the adhesive is solidified since the boron patch and

the aluminum cracked plate are freely expanded or contracted at temperatures above

Tg. Since Tg is generally unknown, it must be determined indirectly from the test by

measuring the residual thermal stresses in the patch and skin through strain gauges of one

of the patched specimens and correlating with the analytical predictions using various

assumed values of Tg until the analytical predictions and test results of these thermal

stresses are in close agreement. Once the value of Tg is determined, it will be used in

the predictions of the rest specimens.

In the present test-analysis correlations, Tg is determined from strain gauge measure-

ments of specimen F1 since this specimen has no tapering effect, which can be predicted

accurately by the analytical model. To limit the search for a value of Tg, it was found
before in another CRAS study (Duong, 2003b) as well as in an independent report

(Spigel et al., 1998) that an assumed value Tg of 82�2 C for FM-73 will yield thermal

strain predictions consistent with the strain gauge measurements. To confirm this pre-

vious finding, the same value of Tg will be assumed here in the theoretical analysis of

thermal stresses of specimen F1 (also assuming Tambient = 21�1 C), and these analytical

predictions will be compared with the gauge measurements at locations 13, 14, 7, and

8 (Figure 11.8 for actual gauge locations). Strains are measured at these locations right

after curing and before test, and they are summarized in Table 11.3. Due to symmetric

configuration of specimen F1 with respect to the mid-plane of the honeycomb core, one

would expect the strain gauge reading at locations 13 and 14 to be the same. Similarly,

the readings at locations 7 and 8 are expected to be the same. However, from Table 11.3,

these readings are not the same, especially when comparing the readings of gauge
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Fig. 11.8. Gauge locations for measuring thermally residual strains in specimen F1.

Table 11.3. Gauge measurements of residual thermal strains in specimen

configuration F1.

Gauge location Vertical reading (micro) Horizontal reading (micro)

7 34 −182
8 −157 −22

13 −638 –
14 −468 –

7 with gauge 8. Since the readings at gauges 13 and 14 are considered close in light of

the experimental scatter, the average value of these two readings therefore will be used

to compare with the analytical prediction. In contrast, only the reading at gauge 8 will

be used in the correlation since the reading at gauge 7 gives positive strain instead of a

negative value in the skin at the end of the curing process, which therefore appears to be

wrong. These strain readings were converted to stresses and compared with analytical
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predictions in Table 11.4. The material properties of Al 7075, boron/epoxy, and FM-73

(for future reference) used in the present and subsequent analyses are listed in Table 11.5.

A good agreement is found between the two. Thus, the effect of curing will be simulated

in the subsequent analyses of boron patches as a uniform cooling process of the whole

specimen from 82�2 C to 21�1 C.

The stress intensity factors at the peak and the valley of the constant amplitude load

for specimen F1 are computed by the analytical method for different crack lengths,

and they are summarized in Table 11.6. For comparison, the results from the 3-D FE

analyses for selective crack lengths are also shown in the table. Since the analytical

model developed in Chapter 4 ignores the effect of patch’s tapered edge on the stress

intensity factor solution, the analytical predictions for configurations F1 and F2 will be

the same. In contrast, the FE results reported in Table 11.6 are obtained specifically

Table 11.4. Comparison of analytical predictions and test results

for residual thermal stresses in specimen configuration F1.

Gauge location Stress in loading direction (MPa)

Test Analytical prediction

8 −30�3 −22�1
13&14 −106�9 −94�5

Table 11.5. Material properties of Al 7075, Boron/Epoxy, and FM-73.

Al 7075-T6 Boron/Epoxy Adhesive FM-73

E = 71GPa E1 = 193GPa G= 0�69GPa
� = 0�33 E2 = 18�7GPa t = 0�127mm
t = 3�175mm or 1.27mm �12 = 0�21

G12 = 5�5GPa
t = 0�137mm per ply

�1 = 4�31 per C
�= 22�51/C �2 = 21�41 per C

Table 11.6. Stress intensity factor solutions for configurations F1 and F2 by the analytical
and FE methods.

Analytical Method FE Methoda
(mm)

Kmax

�MPa-
√
m�

Kmin

�MPa-
√
m�

Kmax

�MPa-
√
m�

Kmin

�MPa-
√
m�

11.43 10�127 2�895 11.007 3.576
16.51 10�326 2�886 – –
21.59 10�474 2�885 11.528 3.588
26.67 10�592 2�794 – –
31.75 10�737 2�718 11.708 3.412
36.83 11�035 2�661 – –
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Fig. 11.9. Crack growth predictions and test results for specimen configuration F1.

for configuration F1. The crack growth predictions vs number of cycles are plotted

in Figures 11.9 and 11.10 for specimen configurations F1 and F2, respectively. From

Figure 11.9, analytical and FE predictions are in excellent agreement. However, crack

growths predicted by the analytical and FE methods are faster than the actual test

results for both specimens. Theoretical predictions are thus conservative. Since fatigue

crack growth data is widely known for its scattering nature, the above correlations are

considered to be good.

Similarly, crack growth predictions for the rest specimens F3–F6 are presented in

Figures 11.11–11.14. From these figures, analytical predictions and test results are in

excellent agreement. It is worthy to note that specimen configurations F3 and F4 have

no residual thermal stresses.

(b) One-sided patched specimens

Crack growth predictions for specimen configurations S1 and S2 using various values of

the stress intensity factors (i.e, Kmax
 Krms and Keq� are presented and compared with test

results in Figures 11.15 and 11.16, respectively, with the stress intensity factor solutions

for various crack lengths reported in Tables 11.7 and 11.8 (Duong, 2003b; Duong and

Wang, 2004). The material properties of the aluminum cracked plate, boron-epoxy patch,

and FM-73 adhesive used in the computations of the stress intensity factors are the

same as in the Part (a) ‘sandwich configuration’ as given in Table 11.5. Like before

for a boron-epoxy patch, thermally induced residual stresses in a patched specimen

are simulated as a uniform cooling process of the whole specimen with a differential

temperature of−61 C. For comparison, the stress intensity factors from 3-D FE analyses
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Specimen configuration F2
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Fig. 11.10. Crack growth predictions and test results for specimen configuration F2.

Specimen configuration F3
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Fig. 11.11. Crack growth predictions and test results for specimen configuration F3.
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Specimen configuration F4
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Fig. 11.12. Crack growth predictions and test results for specimen configuration F4.

Specimen configuration F5
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Fig. 11.13. Crack growth predictions and test results for specimen configuration F5.
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Specimen configuration F6
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Fig. 11.14. Crack growth predictions and test results for specimen configuration F6.

Specimen configuration S1 (t = 3.175 mm)
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Fig. 11.15. Analytical predictions versus test results of crack growth in specimen configuration S1.
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Specimen configuration S2 (t = 1.27 mm)
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Fig. 11.16. Analytical predictions versus test results of crack growth in specimen configuration S2.

for selective crack lengths and the corresponding crack growth predictions using these

FE results are also presented respectively in Tables 11.7 and 11.8, and Figures 11.15

and 11.16. From Figures 11.15 and 11.16, it is clear that predictions using Kmax will

yield unrealistically high crack growth rate for specimen configurations S1 and S2. In

contrast, predictions using Krms will grossly underestimate the actual crack growth of

specimen configuration S1. However, crack growth predictions using Keq are in excellent

agreement with the test data. To show the importance of including the effect of stress

intensity factor due to bending, crack growth prediction for configuration S1 without

considering the effect of bending was also made but not shown there. The number of

cycles to reach the same final crack length for the non-bending case was found to be

60,000 cycles, as opposed to 25,000 cycles from the present predictions using Keq, as

indicated in Figure 11.15.

Similar crack growth predictions for specimen configurations S3 and S4 are presented,

respectively, in Figures 11.17 and 11.18, along with the test data. Again, the analytical

predictions using Keq yield best agreement with test results when compared with those

using Kmax or Krms. It is interesting to note that configurations S3 and S4 involve no

thermally induced residual stress since the patch is aluminum and that the predictions

using Kmax will not grossly overestimate the actual crack growth rate like before, since

the bending components Kb of these two configurations are small relative to those of

configurations S1 and S2. Comparisons between analytical predictions and test results

for crack growth of the rest of the configurations (S5–S9) are shown respectively in

Figures 11.19–11.23. Since crack growth predictions using Kmax were shown to be

too high in the last five configurations, these predictions are therefore not included in
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Table 11.7. Stress intensity factor solutions for specimen configuration S1.

Analytical method �MPa-
√
m� FE method �MPa-

√
m�a

(mm)
Peak Valley Peak Valley

Kmem Kb Krms Kmem Kb Krms Kmem Kb Krms Kmem Kb Krms

11�43 15�231 6�922 15�745 2�650 −0�15 2�653 14�839 6�708 15�335 2�918 −0�63 2�940
16�51 16�945 8�357 17�619 2�916 0� 2�916 – – – – – –
21�59 18�144 9�393 18�937 3�102 0�204 3�104 18�111 9�136 18�864 3�427 −0�15 3�428
26�67 19�034 10�177 19�921 3�238 0�323 3�244 – – – – – –
31�75 19�724 10�792 20�685 3�343 0�416 3�351 20�035 10�826 20�988 3�642 0�245 3�644
36�83 20�275 11�285 21�297 3�427 0�493 3�438 – – – – – –

Table 11.8. Stress intensity factor solutions for specimen configuration S2.

Analytical method �MPa-
√
m� FE method �MPa-

√
m�a

(mm)
Peak Valley Peak Valley

Kmem Kb Krms Kmem Kb Krms Kmem Kb Krms Kmem Kb Krms

11.43 13�210 6�473 13�729 3�304 0�725 3�331 12�890 5�268 13�244 3�792 0�648 3�810
16.51 14�362 7�461 14�994 3�576 0�955 3�617 – – – – – –
21.59 15�137 8�146 15�850 3�756 1�115 3�811 14�353 5�850 14�744 4�260 0�976 4�296
26.67 15�731 8�683 16�511 3�893 1�242 3�958 – – – – – –
31.75 16�249 9�161 17�088 4�011 1�355 4�085 14�851 6�327 15�293 4�284 1�279 4�348
36.83 16�756 9�640 17�656 4�124 1�466 4�210 – – – – – –
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Specimen configuration S3 (t = 3.175 mm)
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Fig. 11.17. Analytical predictions versus test results of crack growth in specimen configuration S3.

Specimen configuration S4 (t = 1.27 mm)
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Fig. 11.18. Analytical predictions versus test results of crack growth in specimen configuration S4.
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Specimen configuration  S5 (t = 3.175 mm, S = 2)
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Fig. 11.19. Analytical predictions versus test results of crack growth in specimen configuration

S5. Since the RH condition in this particular test varies quite significantly from one specimen to

another, RH condition of the specimen is also indicated in the figure’s legend with “low” and

“high” meaning low and high values of RH.

Specimen configuration S6 (t = 3.175 mm, Al 2024-T3)
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Fig. 11.20. Analytical predictions versus test results of crack growth in specimen configuration S6.
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Specimen configuration S7 (t = 3.175 mm)
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Fig. 11.21. Analytical predictions versus test results of crack growth in specimen configuration S7.

Specimen configuration S8 (t = 3.175 mm)

0

5

10

15

20

25

30

35

40

45

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Number of cycles, N

H
al

f c
ra

ck
 s

iz
e,

 a
 (

m
m

)

test
test
analy_rms
analy_eq

Fig. 11.22. Analytical predictions versus test results of crack growth in specimen configuration S8.
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Specimen configuration S9 (t = 1.27 mm, L = 71.12 mm)

0

5

10

15

20

25

30

35

0 20,000 40,000 60,000 80,000 100,000 120,000

Number of cycles, N

H
al

f c
ra

ck
 s

iz
e,

 a
 (

m
m

)

test
test
analy_rms
analy_eq

Fig. 11.23. Analytical predictions versus test results of crack growth in specimen configuration S9.

Figures 11.19–11.23. Like before, a good agreement is observed between the analytical

predictions using Keq and experimental results, considering the inherent scatter in the

crack growth data. For example, the agreement seems to be worst for specimen con-

figuration S8 as shown in Figure 11.22. However, if the analytical prediction for this

specimen configuration is compared with test result in terms of crack growth rate, it

seems that the analytical model is still doing a decent job. The analytical prediction of the

crack growth rate in this case is approximately constant and equal to 3.12E-4mm/cycle

while the measured rates ranging from 2.06E-4 to 2.29E-4mm/cycle. The predicted

crack growth rate is therefore 50% higher than the measured rate, which is normally

considered to be good in fatigue crack growth prediction due to the inherent scatter in

typical crack growth test data. It should be emphasized that the good agreement between

analytical predictions and test results observed in this study was found for a variety

of patched specimen configurations involving different patch materials (boron-epoxy,

aluminum), plate thicknesses (1.27 and 3.175mm), plate materials (7075-T6, 2024-T3),

patch stiffness ratios (1.11 and 2), patch geometries (finite rectangle and full width), and

patch lengths (177.8 and 71.12mm).

11.3 Load Attraction Tests and Method Validation

11.3.1 Load attraction tests

A second set of tests to measure the strain and stress distributions around the patch and

inside the patched region of a reinforced uncracked plate is also conducted. The purpose of
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the load attraction tests is to validate the “polygon-shaped” inclusion model developed in

Chapter 4 for stage I analysis of the two-stage analytical procedure (Duong 2003b; Duong

et al., 2005). The following four sandwich configurations will be analyzed in this section:

1. L1: Rectangular boron patch �S = 1�11�

2. L2: Octagonal boron patch �S = 1�11�

3. L3: Rectangular aluminum patch �S = 1�16�

4. L4: Octagonal aluminum patch �S = 1�16�

The geometries of these sandwich configurations are similar to those used in the fatigue

crack growth test. A plate is 3.175mm thick, 22.9 cm wide, and 61 cm long. A rectan-

gular patch has dimensions of 76�2mm× 177�8mm. An octagonal patch has the same

dimensions but edges cut off equally at the corner by a length of 25.4mm (thus, the

corner cut-off angle is 45) as shown in Figure 11.24. For direct comparison, all patches

have no tapered edge as assumed by the analytical model. All specimens are coated

with photo-elastic material on one side and instrumented with strain gauges on the other

side. The side with photo-elastic material coating will provide the difference in principal

stresses at the critical locations while the gauges on the other side measure the various

components of strains at these locations.

25.4 mm

25.4 mm

76.2 mm

177.8 mm

Fig. 11.24. Geometry of the load attraction specimen with an octagonal patch.
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11.3.2 Comparison between analytical prediction and test results

Strain gauge locations for specimens with rectangular and octagonal patches are illus-

trated, respectively, in Figures 11.25 and 11.26. Similarly, the photo-elastic locations

for these two configurations are given in Figures 11.27 and 11.28, respectively. The

photo-elastic locations are as close as possible to the locations of the strain gauge for

comparison purpose.

Analytical predictions for strains at locations 1–4 of specimen configuration L1 are

compared with test results in Table 11.9. In contrast, a comparison between analytical

predictions and photo-elastic results for the difference of principal stresses at locations

1–4 for the same specimen is reported in Table 11.10. Similar strain and stress compar-

isons with respective strain gauge and photo-elastic results are presented in Tables 11.11

and 11.12, respectively, for configuration L2. In general, strain predictions are in excel-

lent agreement with the strain gauge readings for a rectangular patch (configuration L1)

and they are considered to be satisfactory for an octagonal patch (configuration L2).

However, a reverse trend is observed when comparing the stress predictions with the

photo-elastic results.

1 2
3

45

38.1

88.9
5.08

5.08

Front

Fig. 11.25. Strain gauge locations for a sandwich plate with rectangular patches.
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Fig. 11.26. Strain gauge locations for a sandwich plate with octagonal patches.

Specimen configurations L3 and L4 are identical to configurations L1 and L2, respec-

tively, except for the aluminum patches. There is no residual thermal stress in config-

urations L3 and L4. Strain and stress predictions for configurations L3 are compared,

respectively, with the strain gauge readings and photo-elastic results in Tables 11.13

and 11.14. Similar comparisons for configuration L4 are reported in Tables 11.15

and 11.16. As before, the strain predictions are generally more accurate for the rectangular

patch.

11.4 Summary

Based on a comprehensive experimental study of load attraction and fatigue crack growth

in two-sided and one-sided bonded repairs performed under the CRAS program, existing

analytical methods for analyzing two-sided bonded repairs are shown to be capable of

predicting the fatigue crack growths and load attraction in these repairs. However, for a
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Fig. 11.28. Photo-elastic locations for a sandwich plate with octagonal patches.
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Table 11.9. A strain comparison between analytical predictions

and strain gauge readings for configuration L1.

Gauge location Analytical predictions
(1mm/mm)

Gauge reading
(1mm/mm)

1V 1724 1760
1C 718 674
1H −529 −577
3V 1627 1678
3C 609 895
3H −530 −607
2 1791 1834
4 1525 1575

Table 11.10. A stress comparison between analytical predictions and

photo-elastic results for configuration L1.

Photo-elastic location Analytical predictions
(MPa)

Photo-elastic results
(MPa)

1 135�1 121�4
2 140�8 105�7
3 113�4 85�9
4 89�1 62�1

Table 11.11. A strain comparison between analytical predictions

and strain gauge readings for configuration L2.

Gauge location Analytical predictions
(1mm/mm)

Gauge reading
(1mm/mm)

1V 1834 1658
1C 677 538
1H −558 −528
3V 1800 1620
3C 647 430
3H −573 −606
4V 1588 1622
4C 511 487
4H −566 −619
2 1818 1625
5 1521 1605
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Table 11.12. A stress comparison between analytical predictions and

photo-elastic results for configuration L2.

Photo-elastic location Analytical predictions
(MPa)

Photo-elastic
results (MPa)

1 152�9 145�1
2 144�9 148�5
3 148�6 129�6
4 112�9 106�2
5 88�2 86�6

Table 11.13. A strain comparison between analytical predictions

and strain gauge readings for configuration L3.

Gauge location Analytical predictions
(1mm/mm)

Gauge reading
(1mm/mm)

1V 1889 1769
1C 1059 749
1H −528 −428
3V 1573 1531
3C 789 684
3H −458 −563
2 2046 2024
4 1225 1086

Table 11.14. A stress comparison between analytical predictions and

photo-elastic results for configuration L3.

Photo-elastic location Analytical predictions
(MPa)

Photo-elastic
results (MPa)

1 137�9 125�8
2 143�2 129�9
3 113�4 102�4
4 87�2 79�7
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Table 11.15. A strain comparison between analytical predictions

and strain gauge readings for configuration L4.

Gauge location Analytical predictions
(1mm/mm)

Gauge reading
(1mm/mm)

1V 2157 1942
1C 888 844
1H −628 −639
3V 2061 1846
3C 839 621
3H −645 −733
4V 1443 1690
4C 736 452
4H −560 −53
2 2108 1681
5 1216 1118

Table 11.16. A stress comparison between analytical predictions and photo-

elastic results for configuration L4.

Photo-elastic location Analytical predictions
(MPa)

Photo-elastic results
(MPa)

1 152�2 129�6
2 144�2 128�9
3 148�0 117�2
4 113�7 95�2
5 86�6 73�2

one-sided repair, an equivalent or effective stress intensity factor, i.e., Keq, must be used

for characterizing its fatigue crack growth. This concept of using Keq for characterizing

fatigue crack growth with out-of-plane bending has been verified experimentally for

a wide variety of repair geometries and cracked plate materials and it appears to be

promising and versatile. Even though the proposed approach, in theory, can also be

applied to the case of a general bending crack, it needs further study and evaluation

before it can be used in the general case. Moreover, when there is a relatively large

discrepancy between the two methods, analytical predictions for the fatigue crack growth

and critical stress or strain concentration appear to be conservative.



CHAPTER 12

Repair of Sonic Fatigue

12.1 Introduction

Sonic or acoustic fatigue is induced by predominately resonant response of structural

components to radiated sound excitations, typically associated with engines and aerody-

namic boundary layers impinging on the structure. The primary source of excitation is

the varying sound pressure level over the structure. While good detail designs (ESDU,

1986) are now available to reduce a structure’s susceptibility to sonic fatigue, structural

failures resulting from sonic fatigue remains a significant issue for some fighter aircraft

(Brewer, 1994; Callinan et al., 1997a), where overall sound pressure levels of the order

of 170 dB have been found to exist on the lower external surface of the inlet nacelle skin

(Brewer, 1994). Repairs designed in accordance with the standard methods of repairs

(RAAF, 2006), which are, strictly speaking, applicable to structures subjected to in-plane

loading, have been found to be ineffective (Callinan et al., 1998). It was reported that

although the composite patch did to some extent reduce in the crack growth driving

force, the original crack continued to grow unabated, eventually emerging from the edge

of the repair.

Since large portions of many aircraft structures, including fuselage, wings, and control

surfaces, are constructed from thin panels reinforced by rectangular or near rectangular

array of stiffeners, acoustically induced fatigue cracks normally occur near where the

panel is attached to the stiffeners. This is because the bending stresses resulting from

the out-of-plane vibrations are highest at these clamped boundaries. Figure 12.1 shows

a structural model of a skin panel clamped at all edges. The vibrational response of such

a panel excited by broad frequency band random forces can be treated as the summation

of responses in relatively large number of modes. Such an approach is too complicated

to be used in design. A very much simplified theory (Miles, 1954; Clarkson, 1968)

has been developed, derived on the assumptions that (i) the response is dominated by

the contribution of one mode, and (ii) the acoustic pressures are exactly in-phase over

the whole panel. In this case, the root-mean-square level of the plate displacement,

382
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A A

Panel with four sides supported 
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Fig. 12.1. Geometry and notations for a rectangular plate containing an edge crack.

wrms�x
 y�, can be expressed in term of the displacement response of the plate to a

uniform static pressure of unit magnitude, ws�x
 y�. This can be written as

wrms�x
 y�= prmsws�x
 y�

√
�f0
2&0

(12.1)

where f0 and &0 denote, respectively, the resonant frequency and the structural loss

factor at the dominating resonant mode, and the parameter prms denotes the root mean

square value of the fluctuating pressure described in the next section. It is important to

note that both prms and &0 may depend on frequency.

For a rectangular plate with four sides being fully fixed, the maximum static displacement

response, which occurs at the centre of the plate, to a unit pressure is

ws =
L4
x

12D
�1�Lx/Ly� (12.2)

where Lx and Ly denote the edge lengths, D the bending stiffness. The values of �1 are

available in Roark and Young (1989). As shown in Figure 12.2, the numerical values

can be well approximated by

�1 = 0�0284e−0�754�Lx/Ly�
3�79

(12.3)

Similarly, the fundamental resonant frequency of a fully fixed rectangular plate is

f0 =
22�4

2�

√
D

mL4
x

�2�Lx/Ly� (12.4)

where m denotes the unit mass of the plate material, and the factor �2 given by Roark

and Young (1989) can be approximated by

�2 = e0�477�Lx/Ly�
2�3

(12.5)
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Fig. 12.2. Shape factors for: (a) displacement; and (b) resonant frequency.

Previous studies (Clarkson, 1968) confirmed that the theoretical solution (12.1) is in

good agreement with experimental values for fully clamped plates as well as integrally

stiffened panels.

For a broad band excitation, the root-mean-square pressure prms is approximately constant

at the dominating resonant mode. In this case, the Miles solution suggests that it is

important to increase the structural damping to at least offset the detrimental effect of

increased resonant frequency resulting from the increased stiffness after repair. Therefore,

it is essential to incorporate an efficient damping mechanism into repairs to achieve the

required reduction in fatigue crack growth rates. As compared to conventional bonded

patch repairs, damped repairs to acoustic fatigue employ a damping layer between the

patch and the skin, as illustrated in Figure 12.3.
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Fig. 12.3. Notations for highly damped repairs.

The application of highly damped repairs to acoustically damaged panels has been

reported by Rogers et al. (1997). As part of a test program (Liguore et al., 1999), a highly

damped repair was applied to the vertical fin of the F-15 aircraft. A series of repairs

have been designed and tested in progressive wave tunnel (Gordon et al., 2001; Liguore

et al., 2001). To measure the acoustic vibrations of aircaft panels during high speed

subsonic flight, Boeing developed a small autonomous device called Dosimeter, which

has been employed to monitor the performance of damped repairs (Ikegami et al., 2001).

The Defence Science and Technology Organisation (DSTO) of Australia undertook a

comprehensive investigation into the design and application of highly damped repairs

(Callinan et al., 1999, 2005), culminating into a flight trial of a damped repair on F/A-18

aircraft (Callinan et al., 2005). This chapter focuses on the fundamental mechanics of

damped repairs; readers are recommended to consult the aforementioned reports for

details of experimental validation.

Under acoustic excitation, the damping layer undergoes intense shear deformation, as

illustrated in Figure 12.4, which turns the mechanical energy into heat, thus reducing

the amplitude of vibration. For a panel with fully clamped edges, the centre regions

of the clamped edges are the most highly stressed locations. As a result, the design of

Acoustic pressure

Fig. 12.4. Deflection under acoustic pressure showing the shear deformation of the damping layer.
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damped repairs to this type of sonic fatigue damage requires optimizing the geometrical

parameters as well as the selection of appropriate damping materials. In this chapter, the

basic solutions for the stresses in a skin reinforced by highly damped repairs are first

derived, which provide the basis for optimizing repair designs.

12.2 Structural Response to Acoustic Loading

Structural loadings from sonic excitations are often given in terms of sound pressure

levels (SPL) in decibels, which relate the root mean square values of the fluctuating

pressure �prms� relative to a reference pressure of pref = 201Pa. The relationship between
the fluctuating pressure and the spectrum SPL is given by (ESDU, 1996)

prms = pref10SPL/20 (12.6)

The power spectral density of the acoustic pressure at any given frequency is defined as

℘= p2rms (12.7)

The severity of a particular acoustic excitation is characterized by the area under the

normalized power spectral density �prms/pref�
2. This area is often denoted as the overall

sound pressure level (OASPL) as defined by

OASPL = 10 log

∫ �

1

10SPL/10df (12.8)

In general, sound pressure levels are dependent on frequency. As an example, the relative

sound pressure levels �RSPL = SPL – OASPL� measured on the external surface of an

F/A-18 inlet nacelle are shown in Figure 12.5. The RSPL was derived from in-flight

one-third octave band SPL measurements (Brewer, 1994). OASPLs of 172 dB have been
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Fig. 12.5. Relative sound pressure levels (RSPL) over an external nacelle inlet.
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measured on the inlet nacelle. The experimental data shown in Figure 12.5 can be well

approximated by the following expression:

SPL = OASPL−31�8415×10�log f�
5/5000 (12.9)

It can be verified that the above expression automatically satisfies the definition of

overall sound pressure level. This approximate expression can be utilized to estimate the

sound pressure level at any given overall sound pressure level and frequency.

12.3 Analysis of Damped Repairs

For a given structural panel to be repaired, the major design consideration is to choose

a damping material (shear modulus, loss factor, and thickness) and a patch (elastic

modulus and thickness) to achieve the maximum reduction in the stress or the stress

intensity factor of an existing crack. Similar to the case of statically loaded structures,

the two-stage approach will be employed, in which the prospective stresses in the skin

panel, in the absence of the crack, are first determined, then the crack bridging theory

is utilized to calculate the stress intensity factors. Due to the presence of a low-stiffness

damping layer, the repaired region (the skin, the damping layer, and the patch) can no

longer be treated as rigidly bonded, since stress transfer is not restricted to the edges

only. Instead, a distributed shear stress exists along the entire length of the repair, as

illustrated in Figure 12.4. Consequently a layered-beam or layered-plate analysis, which

is detailed in the following section, is required to solve the stresses in the skin and the

patch, and the overall structural damping.

12.3.1 Dynamic analysis of layered beams

Consider a three-layer structure shown in Figure 12.3, which presents the cross-section

AA indicated in Figure 12.1. Through the change of variables, the solutions for the lay-

ered beam can be extended to the case of two-dimensional panel. So only the pertinent

solutions for a three-layer beam structure are presented in the following. Assume that

the three-layer beam lies along the x-axis and is subjected to a space–time-dependent

acoustic pressure p�x
 ��. In the following the subscripts s, p, and d are employed to

signify quantifies pertinent to the skin, the patch, and the damping layer, respectively.

Since the three layers are adhesively bonded, they have identical displacement in the

z direction, i.e., ws = wp = wd = w. However, each layer has a different in-plane dis-

placement. Denoting the in-plane displacements of the skin and the patch as us and up,
respectively, the following equality holds since the sum of in-plane forces is equal to

zero

Ests
�us
�x

+Eptp
�up

�x
= 0 (12.10)

where E and t denote the Young’s modulus and thickness of a layer, respectively.

The governing equations for the displacements w and us are given by (Mead and

Markus, 1970)
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Dt

�6w

�x6
−gDt�1+Y�

�4w

�x4
+mt

[
�4w

�x2��2
−g �

2w

��2

]
= �2p�x
 ��

�x2
−g p�x
 �� (12.11)

�2us
�x2

−gus =− Gdd

Eststd

�w

�x
(12.12)

where

mt = .sts+.dtd+.ptp (12.13)

Dt = Est
3
s /12+Ept

3
p/12 (12.14)

Y = d2

Dt

EstsEptp

Ests+Eptp
(12.15)

g = Gd

td

[
1

Ests
+ 1

Eptp

]
(12.16)

d = td+ �ts+ tp�/2 (12.17)

The shear modulus of the damping layer is Gd.

Inserting wm = eikmxei m� and p = 0 into Equation (12.11), the mth resonant frequency

 m can be expressed in terms of the wave number km:

 2
m = Dtk

4
m

mt

[
1+ gY

k2m +g
]

(12.18)

The effect of damping will be considered in the following section.

12.3.2 Influence of structural damping

Assume that the skin, the damping layer, and the patch can all be described as linearly

viscoelastic, and their complex moduli are given by

E∗
s = Es�1+ i&s� (12.19)

G∗
d =Gd�1+ i&d� (12.20)

E∗
p = Ep�1+ i&p� (12.21)

Here the parameters &s
 &d, and &p denote the loss factors of the skin, the damping

layer, and the patch, respectively. Inserting these complex moduli expressions into the

shear parameter yields

g∗ = Gd�1+ i&d�

td

[
1

Ests�1+ i&s�
+ 1

Eptp�1+ i&p�

]
= �1+ i&g� g

′ (12.22)
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where

g′ = Gd

td

[
1+&s&d

Ests�1+&2
s �

+ 1+&d&p

Eptp�1+&2
p�

]
(12.23)

&g =
Ests�&d−&p��1+&2

s �+Eptp�&d−&s��1+&2
p�

Ests�1+&d&p��1+&2
s �+Eptp�1+&s&d��1+&2

p�
(12.24)

It is clear that the above expression recovers the special solution of &g = &d when

&s = &p = 0.

Similarly, the total bending stiffness of the repaired structure is, noting I = Et3/12,
D∗

t = E∗
s Is+E∗

pIp = Es�1+ i&s�Is+Ep�1+ i&p�Ip =Dt�1+ i&t� (12.25)

with

&t =
EsIs&s+EpIp&p

EsIs+EpIp
(12.26)

It is advantageous to define a non-dimensional shear parameter gm:

gm = g′

k2m
(12.27)

where km denotes the wave number of the layered beam.

Inserting expressions (12.22), (12.25), and (12.27) into Equation (12.18) yields the

following expression for the resonant frequency and the model loss factor pertinent to

the mth mode

� ∗
m�

2 ≡  2
m�1+ i&m�=

Dt�1+ i&t�k
4
m

mt

[
1+ gm�1+ i&g�Y

1+gm�1+ i&g�

]
(12.28)

Clearly the resonant frequency  m is the real part on the right-hand side of expression

(12.28), while the model loss factor &m is equal to the ratio between the imaginary part

and the real part. After algebraic manipulation, the following expressions are obtained:

 m =!m

√
Dt

mt

k2m (12.29)

&m = &t +&0

1−&t&0

(12.30)

with

!m =
√
1+Ygm

1+gm�1+&2
g�

1+2gm +g2m�1+&2
g�

(12.31)

&0 =
gm&gY

1+gm�2+Y �+g2m�1+&2
g��1+Y �

(12.32)
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Expression (12.29) is a very important result, i.e., the resonant frequency of a damped

repair is equal to the resonant frequency of a layered-structure with zero-stiffness core

(as given by Equation (12.18) with Gd = 0 or g = 0) multiplied by the non-dimensional

frequency ratio !m.

In the case of a two-dimensional panel, the wave number km in Equations (12.27) and

(12.29) should be replaced by
√
k2mx+k2my, where kmx and kmy denote respectively the

wave numbers in the x and y directions. The wave numbers of the fundamental mode

of a fully clamped plate are k0x = 2�/Lx
 k0y = 2�/Ly, yielding

k0 = 2�

√
1

L2
x

+ 1

L2
y

(12.33)

12.3.3 Static and dynamic responses of damped repair

It can be shown that the Miles solution, Equation (12.1), can be readily extended to the

problem of a damped repair. Denoting the displacement response to a unit static pressure,

the resonant frequency, and the loss factor as wr�x
 y�
 fr , and &r , respectively, the root-

mean-square value of the dynamic response to random acoustic loading can be written as

wrms�x
 y�= prmswr�x
 y�

√
�fr
2&r

(12.34)

The loss factor of a damped repair &r is given by Equation (12.30). Explicit expressions

for wr�x
 y� and fr can be derived from the solutions presented in Sections 12.1 and

12.3.2, and are summarized in the following.

The resonant frequency and maximum static displacement of a three-layer structure with

a zero-stiffness core, with all four edges being fully fixed, can be derived by substituting

the bending stiffness and mass in Equations (12.4) and (12.2) by the total bending

stiffness and total mass, respectively:

f0 =
22�4

2�

√
Dt

mtL
4
x

�2�Lx/Ly� (12.35)

w0 =
L4
x

12Dt

�1�Lx/Ly� (12.36)

The effects of finite-stiffness and damping of the core can be accounted for by using

the non-dimensional frequency factor, recalling Equation (12.29) and its remark. The

fundamental resonant frequency of a damped repair, fr , is given by

fr =!0

22�4

2�

√
Dt

mtL
4
x

�2�Lx/Ly� (12.37)

Among the various shape functions that can approximately describe the shape of the

fundamental mode of a rectangular plate (all edges are fixed), the static plate type has
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been shown to produce good curvature (or strain) estimates (Byrne, 1977). Consequently

the static plate mode shape will be adopted here. The static displacement wr�x
 y�
becomes

wr�x
 y�=
[
1−4

(
x

Lx

)2
]2 [

1−4

(
y

Ly

)2
]2
wmax (12.38)

with

wmax = Aw0 (12.39)

where A is an unknown coefficient to be determined. Here wmax is essentially the

maximum displacement response of a damped repair to a unit static pressure, and hence

the coefficient A denotes the ratio between the maximum static displacements of damped

repair with the core having finite and zero stiffness.

The coefficient A can be derived by utilizing the approximate theory by Jones (1975),

which contends that the maximum deflection of plates with arbitrary boundary conditions

is inversely proportional to the square of the resonant frequency. This implies that the

coefficient A is

A= 1

!2
0

(12.40)

Here !0 is given by Equation (12.31), in which g0 and k0 are given, respectively,

by (12.27) and (12.33). Having obtained the solutions for the model loss factor and

the resonant frequency, the remaining task is to determine the stresses in the repaired

structure under acoustic loading.

12.3.4 Stresses and stress intensity factors in the repaired skin

With the displacement being given by Equation (12.34), the bending strains in the x and
y directions are given by

rms
b
xx =−�

2wrms

�x2
ts
2

(12.41)

rms
b
yy =−�

2wrms

�y2
ts
2

(12.42)

The in-plane displacement components of the skin, us�x
 y� and vs�x
 y�, can be deter-

mined by inserting Equation (12.34) into Equation (12.12) and its equivalence for vs,
subjected to the zero-displacement boundary conditions pertinent to the fixed edges. The

membrane strains in the x and y directions are given by

rms
m
xx =

�us
�x

(12.43)

rms
m
yy =

�vs
�y

(12.44)
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Fig. 12.6. Structural model of a cracked plate reinforced by a bonded patch.

The prospective stress components that are normal to the crack faces can be determined

in accordance with the Hooke’s law.

Consider the damped repair to a cracked skin as depicted in Figure 12.6. In the absence

of the crack, the in-plane stress varies linearly through the skin thickness, as illustrated in

Figure 12.7. For an edge crack lying between �−a
 Ly/2� and �a
 Ly/2�, the prospective
membrane stress �m and the prospective bending stress �b both vary with coordinate

x (see Section 12.6). The crack bridging problem, viz, the integral Equation (5.119) of

Chapter 5, can be solved numerically using a Galerkin method: expand the unknown

functions in terms of Chebyshev polynomials and then determine the coefficients numer-

ically. Because the prospective stresses vary with the position along the crack path, the

matrix Equations (5.134) become

tp

td

ts
x

z

Unit pressure

Membrane and bending stresses
in skin

+

σm σb

Fig. 12.7. Stress distributions in a layered structure subjected to out-of-plane loading.
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Âij f̂j+ B̂ij ĝj =
1

Es

1∫
−1

√
1− r2Uj�r��m�r�dr �i
 j = 0
 1
 2
 " " " 
N �

Ĉij f̂j+ D̂ij ĝj =
1

Es

1∫
−1

√
1− r2Uj�r��b�r�dr �i
 j = 0
 1
 2
 " " " 
N �

(12.45)

where Uj denotes the Chebyshev polynomials of the second kind, and r = x/a.
It should be noted that the crack bridging solution is, strictly speaking, applicable to

cracks remote from any boundary constraints. For the case of a crack being along a

fully fixed edge, as illustrated in Figure 12.1, a geometry correction factor is required

to account for the influence of the edge. For instance, the bending stress intensity factor

of an unrepaired crack close an edge is given by

K = ��b

√
�a (12.46)

where �b is the bending stress existent along the prospective crack path. Experimental

measurements (Byrne, 1977) indicated � = 0�8. A detailed FE analysis (Callinan, et al.,

2006) yielded � = 0�7. This correction factor is also applicable to repaired cracks.

12.4 Fatigue Crack Growth Analysis

One important feature of acoustic fatigue is the high frequency at which structural panels

vibrate. Since the addition of a repair patch will increase the structural stiffness, the

fatigue frequency of a repaired structure will double or even triple the frequency of

the original structure. For a repaired aircraft structure that vibrates at 600Hz, it will

experience over two million cycles for every one hour of flight.

A conservative approach is to design the damped repairs to achieve zero crack growth,

i.e., by reducing the maximum stress intensity factor below the material’s fatigue crack

growth threshold. In some cases, however, such an approach can be overly conservative.

This is particularly true when the high stress cycles have an extremely low rate of

occurrence. In this case, repairs are only required to reduce fatigue crack growth rate

below a certain level in order to restore the structural integrity of a damaged structure.

Since acoustic loading is a random process involving an extremely large number of

cycles, the conventional cycle-by-cycle-based crack growth analysis is often impractical.

Consequently fatigue crack growth rates are commonly correlated using the root-mean-

square value (with respect to time) of the crack-tip stress intensity factor �Krms�. However,
such an approach has been found to lead to considerable overestimation of the crack

growth rate under narrow band random loading (Byrne, 1975). This overestimation

can be attributed to two major mechanisms. First, some of the cycles in the random

time history may be below crack growth threshold and hence do not contribute to

the propagation of the crack. Secondly and more importantly, plasticity-induced crack

closure (Elber, 1970) causes the stress cycles below the crack closure level to not affect

crack growth.
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For a given structural response to a random acoustic excitation, the probability density

distribution of the peak stress intensity factor of each loading cycle, Kp, is assumed to

be given by a distribution 3�Kp�. As an example, the probability density distribution of

the peak stress intensity factor, Kp, for narrow band random acoustic loading (Byrne,

1975) is a truncated Rayleigh distribution,

3�Kp�=
Kp

2K2
rms

e−K
2
p/2K

2
rms Kp <KM (12.47)

where KM denotes the maximum stress intensity factor in the time history. For conve-

nience, let us denote the ratio KM/Krms as �, i.e.,

�= KM/Krms (12.48)

which can range between 3.75 (Byrne, 1975) and 5.0 (Callinan et al., 2006).

Let us now denote the crack growth rate for the parent structure as

da

dN
= F��Keff� (12.49)

where �Keff = Kp−Kop denotes the range of the effective stress intensity factor, with

Kop denoting the crack-opening stress intensity factor. Since it is impractical to track

the crack closure behaviour on a cycle-by-cycle basis for random loadings, it is not

unreasonable to assume that the crack opening stress is a constant fraction of KM, the

maximum stress intensity factor of a loading spectrum,

Kop = �KM (12.50)

In this case, the average crack growth rate per cycle (total crack growth per block

of random loading divided by the number of cycles in the block) can be obtained by

integrating the product of 3 and F :

da

dn
=
∫ �Krms

��Krms

F�Kp−��Krms�3�Kp�dKp (12.51)

Once the fatigue crack growth relation is known for a material, the crack growth per

block can be readily determined by numerical integration.

For the damped repair shown in Figure 12.3, it is necessary to consider the contributions

of both the membrane and the bending stress intensity factor. In this regard, Duong and

Wang (2004) have found that the following equivalent stress intensity factor provides a

satisfactory correlation with experimental results (see Equation (11.10)),

Keq = Krms
m +Krms

b + �1−√
3�

Krms
b

Krms
m +Krms

b

√
�Krms

m �2+ �Krms
b �2/3 (12.52)

Consequently, the spectrum peak stress intensity factor Kp in Equations (12.49)–(12.52)

should be replaced by the equivalent stress intensity factor Keq.
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12.5 Optimization of Damped Repairs

Since the loss factors of the skin and the patch are generally much less than unity, a

good approximation to the model loss factor, expression (12.30), is,

&m ≈ &0+&t (12.53)

In this case, it can be shown that the mth mode loss factor attains its maximum value

�d&m/dgm = 0� when the shear parameter (12.27) equals to the following:

gm
opt =
1√

�1+Y ��1+&2
g�

(12.54)

where Y and &g are given, respectively, by Equations (12.15) and (12.24). At this optimal

loss condition, the model loss factor is given by,

&m
max =
&gY

�2+Y �+2
√
�1+Y ��1+&2

g�
+&t (12.55)

From Equation (12.27) it is clear that the wave number, km, the geometric factor, Y , and
the shear loss factor, &g, need to satisfy the following condition to achieve maximum

damping:

k2mx+k2my = g′
√
�1+Y ��1+&2

g� (12.56)

For a given structure to be repaired, determination of the optimal damping configuration

involves a multi-parameter optimization. Since the extensional stiffness of a repair patch

needs to match that of the structure being repaired, it is important to select a repair

material that meets the constraint Ests = Eptp.

12.6 An Illustrative Example

Consider a square panel (thickness= 1mm, edge length= 200mm) made of aluminium

alloy. The panel is subjected to an overall sound pressure level of 160 db. The modulus

and thickness of the repair patch are respectively 140GPa and 0.5mm. If the patch is

adhesively bonded to the panel without a damping layer, like a conventional repair,

the root-mean-square values of the membrane stress and the bending stress at the

centre of a fixed edge are approximately 11 and 13MPa, respectively. Now consider

the case of damped repair incorporating a layer of Dyad 609 viscoelastic material

�thickness= 1mm�. The shear modulus and the loss factor of Dyad 609 are shown

in Figures 12.8 and 12.9. It is clear that this particular viscoelastic material attains its

maximum damping at a temperature of 80 C. For temperatures below 10 C, the material

behaves very much like an elastic material. Therefore, a damped repair using Dyad

609 will only show significant damping at high temperatures. The maximum membrane

and bending stresses at the centre of a clamped edge are presented in Figure 12.10.
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Fig. 12.10. Membrane and bending stresses at the centre of a clamped edge of a square panel.

The stress distributions at three different temperatures are presented in Figure 12.11.

Comparing with the case of conventional bonded repair without a damping layer, the

damped repair configuration achieves a significant reduction in stresses. At temperatures

below 10 C, the stress reduction by the damped repair is primarily due to the presence of

the core, which considerably increases the total bending stiffness of the repaired region.

As the temperature increases, as shown in Figure 12.10, the damping effect of the core

becomes increasingly effective. The membrane stress decreases from 6.4MPa at 10 C to

0.33MPa at 100 C. Because the shear stiffness of the core decreases with temperature,

the skin panel and the patch become eventually uncoupled as the temperature increases

above 60 C. As a result, the membrane stress monotonically decreases while the bending

stress initially decreases then increases with temperature.

Figure 12.12 shows stress intensity factors for a 50mm crack located at the centre of

a clamped edge. Both the membrane and the bending stress intensity factors remain

approximately constant at temperatures below 20 C. As the temperature increases,

the membrane stress intensity factor monotonically decreases while the bending stress

intensity factor reaches its minimum at 80 C. The equivalent stress intensity factor,

Equation (12.52), followed a similar trend as the membrane stress intensity factor, due

to the relative small contribution of the bending component.

Clearly the crack size has a significant effect on the stress intensity factors. In the case of

uniform stresses along the crack path, the stress intensity factors would asymptotically

approach their upper bound values. In the present case, however, the stress intensity

factors initially increase with crack length then decrease with crack length. This is

illustrated in Figure 12.13 for three different temperatures. This is primarily due to the

non-uniform distribution of the membrane and bending stresses shown in Figure 12.11.
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It is worth noting that this is consistent with the observed deviation of acoustic fatigue

cracks away from clamped edges after reaching a certain length (Byrne, 1977). To

accurately determine the influence of crack-tip deflection on the repair efficiency would

require detailed computation using the FE method. However, from the viewpoint of

designing damped repair to acoustic fatigue cracks, it suffices to consider the maximum

stress intensity factor of edge cracks.



CHAPTER 13

Repair Analysis Methods Accounting
for Secondary Effects

The preceding chapters do not completely address all effects pertaining to the bonded

repair. Some effects are secondary in nature and they do not fit well within the logical

framework of those chapters. This chapter is therefore devoted to a brief discussion of

the remaining effects, not included in the preceding chapters for one reason or another.

13.1 Effect of Tapering on Load Attraction of Bonded Patches

In Chapters 3 and 4, all solutions for the load attraction pertain to patches of uniform

thickness. However, in practice, all patches are tapered at their edge to avoid the adhesive

failure there. Nevertheless, results from FE analyses indicate that the tapering effect on

the stress level in the skin around and under the patch is normally quite small for patches

repaired on thin structures such as fuselage skin and skin of the wing’s lower and upper

surfaces (6–10 ply patch with a taper ratio from 10:1 to 30:1), where the volume fraction

of the tapering region is smaller than 20% of the total volume fraction of the patch.

Thus, the use of results given in Chapters 3 and 4 is justified for these patches.

On the other hand, repair of a thick skin such as a frame structure may require thicker

patches with higher taper ratio. In such cases, the volume fraction of the tapering region

may be much larger than 20% of the total volume fraction of the patch since the size of

the patch cannot be increased in proportion to its thickness due to the existence of the

surrounding structure which limits the availability of the repair space. The effect of patch

tapering on load attraction is thus inevitable for such cases. This effect therefore will be

addressed in this section using the multi-inclusion model, following closely the work by

Li (2000) for thermoelastic behavior of composites with functionally graded interphase.

For simplicity, only tapered elliptical patches under far-field-tensile load are considered

in the present analysis, as the one illustrated in Figure 13.1. A similar analysis can be

carried out for a combined thermo-mechanical loading. However, the latter analysis is

omitted from this chapter for reason of clarity.

402
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Fig. 13.1. Geometry of a tapered patch with concentric and similar ellipses.

Consider a tapered elliptical patch shown in Figure 13.1. This tapered patch will be

analyzed as a uniformly thick patch of the same external dimensions but with effective

elastic moduli. These effective elastic moduli will be derived based on the averaging

method widely used in micromechanics for determining the macroscopic properties of

heterogeneous materials (Mura, 1998; Nemat-Nasser and Hori, 1993; Li, 2000). Let us

denote the concentric ellipses of the patched or overlap region as !r �r = 1
 " " " 
 N�
such that !1 be the full thickness region of the patch, and the annulus between two

successively concentric ellipses of the tapering region of the patch be �!r = !r −
!r−1 �r = 2
 " " " 
 N� with a uniform patch thickness of t

��!r �
p . Furthermore, as in

Chapters 3 and 4, the patch is also assumed to be rigidly bonded to the skin and it is

therefore considered to be an integral part of the skin in the overlap region. The overlap

region is then treated as an inhomogeneity, which is composed of an elliptical region !1

and �N −1� annulus, each region with different elastic moduli. For convenience, in the

following development, we will adopt the following notation for !1, i.e., �!1 ≡ !1.

The constitutive relations for annulus regions �!r and elliptical region !1 can be

expressed as

�
I��!r �
ij = CI��!r �

ijkl 
I��!r �
kl

�r = 1
 " " " 
N�


I��!r �
ij = CI��!r �−1

ijkl 
I��!r �
kl

(13.1)

where C
I��!i�
ijkl is the elasticity tensor of the patch–skin combination in the overlap region

�!r , superscripts I and ��!r� signify, respectively, the inhomogeneity problem and the
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overlap region �!r . C
I��!i�
ijkl can be evaluated by using Equation (4.31) or equivalently

in compact notation by Equation (6.47) as

C
I��!r �
ijkl = 1

ts

(
tsC

s
ijkl+ t��!r �p C

p��!r �
ijkl

)
(13.2)

where C
p��!r �
ijkl 
 t

��!r �
p are the elastic moduli and thickness of the patch in region �!r ,

and tI in Equation (4.31) and (6.47) has been set to equal ts.

The average stress and strain fields inside the inhomogeneous region of the inhomo-

geneity problem can be determined by the equivalent inclusion method described in

Chapter 4. However, since the inhomogeneity now composes of concentric and similar

ellipses, the corresponding equivalent inclusion problem must also compose of these

ellipses. As in Chapter 4, the inclusion problem is a homogeneous problem in which the

constitutive relation for the medium is given by the usual elasticity formula as

�H
ij = Cs

ijkl
H
kl (13.3)

However, each annulus region �!r �r = 1
 " " " 
 N� of the inclusion will be prescribed

by a different average eigenstrain field. This type of inclusion problem will be referred

to as a multi-inclusion problem, and it then will be solved by the multi-inclusion model.

According to the multi-inclusion model, for an inclusion composing of concentric and

similar ellipses, subjected to average eigenstrain fields
〈

∗��!r �
ij

〉
�r = 1
 " " " 
 N� in each

sub-region �!r , the average field in the annulus embedded in an infinite medium only

depends on the shapes and orientation of the ellipses. Furthermore, when all ellipses of

the inclusion are concentric and similar in shape, the average strain in the annulus is

given by

〈

H��!r �
ij

〉
= Sijkl

〈

∗��!r �
kl

〉
(13.4)

and the average stress is

〈
�

H��!r �
ij

〉
= Cs

ijkl �Sklmn−�kl�mn�
〈
∗��!r �mn

〉
(13.5)

where Sijkl is Eshelby tensor, which is a function of the elastic moduli Cs
ijkl of the infinite

medium and the inclusion shape, �ij is the Kronecker delta, the superscript H denotes

the homogeneous or inclusion problem, and �•� ≡ 1

�!r

∫
�!r

�•�dA. For 2-D elliptical

inclusion in an infinite isotropic medium, Sijkl is given by a fourth equation of (6.4)

in Chapter 6. Since elliptical regions !1
 " " " 
!N are concentric and similar, Sijkl is
the same for all regions �!r and it can be calculated by Equation (6.4) of Chapter 6

using geometrical dimensions of !1. So far the multi-inclusion has been assumed to

be subjected only to the eigenstrain field. When the inclusion is also under a uniform

stress and strain field applied at the far field in addition to the mentioned eigenstrain,

Equations (13.4) and (13.5) become
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〈

H��!r �
ij

〉
= Sijkl

〈

∗��!r �
kl

〉
+�ij

〈
�

H��!r �
ij

〉
= Cs

ijkl

[
�Sklmn−�kl�mn�

〈
∗��!r �mn

〉+�ij]
(13.6)

On the other hand, as in Chapter 4 and from Equation (4.1), the equivalency condition

of the equivalent inclusion method requires that


I��!r �
ij = H��!r �ij

�r = 1
 " " " 
N�

�
I��!r �
ij = �H��!r �

ij

(13.7)

Applying condition (13.7) above to the average strain and stress fields, one obtains〈

I��!r �
ij

〉
=
〈

H��!r �
ij

〉
�r = 1
 " " " 
N�〈

�
I��!r �
ij

〉
=
〈
�

H��!r �
ij

〉 (13.8)

Following the procedure outlined in Section 4.1 of Chapter 4 and assuming that the

strain fields in the inclusion and inhomogeneity problems are composed of two parts,

one from a uniform far field �ij and the other from the disturbance field induced by

the eigenstrain or inhomogeneity, one finally arrives at the following equations upon

substitution of Equations (13.1), (13.3), and (13.6) into (13.8) (see Equation (4.5)):

�C
��!r�
ijkl Sklmn

〈
∗��!r �mn

〉−Cs
ijkl

〈

∗��!r �
kl

〉
=−�C��!r�ijkl �kl

�r = 1
 " " " 
 N�

�C
��!r�
ijkl = Cs

ijkl−CI��!r�
ijkl

(13.9)

The first equation of (13.9) can be rearranged by multiplying both sides of the equation

with �C
��!r�−1

ijkl to yield

〈

∗��!r �
ij

〉
=���!r�

ijkl �kl (13.10)

where

�
��!r�
ijkl =

(
�C

��!r�−1

iijmn Csmnkl−Sijkl
)−1

�r = 1
 " " " 
 N� (13.11)

With the equivalent eigenstrain known, the average stress and strain field in the annu-

lus regions �!r and elliptical region !1 of the inhomogeneity can be obtained from

Equations (13.6), (13.8), and (13.10) as〈

I��!r �
ij

〉
=
(
Sijkl�

��!r�
klmn +�ij�mn

)
�mn

�r = 1
 " " " 
 N�〈
�

I��!r �
ij

〉
= Cs

ijkl

[
�Sklmn−�kl�mn����!r�

mnpq +�ij�pq
]
�pq

(13.12)
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The average field in the whole inhomogeneity can be determined by summing weighted

contributions from all regions, �!r , and dividing the result by its total area, i.e.,!N , thus,

〈
Iij
〉= 1

!N

N∑
r=1

�!r

〈

I��!r �
ij

〉
=
(

N∑
r=1

fr

[
Sijkl�

��!r�
klmn +�ij�mn

])
�mn

(13.13)〈
� I
ij

〉= 1

!N

N∑
r=1

�!r

〈
�

I��!r �
ij

〉
=
(

N∑
r=1

frC
s
ijkl

[
�Sklmn−�kl�mn����!r�

mnpq +�ij�pq
])
�pq

where fr = �!r
!N

is the volume fraction of the annulus region �!r . By defining the

effective elastic moduli C
I�effective�
ijkl of the inhomogeneity shown in Figure 13.1 as

〈
�Iij
〉=

C
I�effective�
ijkl

〈
Ikl
〉
, it is very easy to show from Equation (13.13) that

C
I�effective�
ijkl = Cs

ijmn

[(
Smnpq−�mn�pq

)
�pqrs+�mn�rs

]
�Skltu�turs+�kl�rs	−1

(13.14)

where �ijkl =
N∑
r=1

fr ·���!r�
ijkl .

13.2 Effect of Patches in Proximity on Load Attraction

Bonding a patch on aircraft skin results in an area that is locally stiffened compared to the

surrounding skin. This attracts proportionally higher load per unit width of the skin than

at an un-patched area of the skin. When another patch is introduced into the proximity

of the first, there will be an interaction between the two patches. This interaction tends

to raise the stress levels in the neighboring patch. Limited FE studies were conducted to

investigate that effect for two patches of the same stiffness in the proximity (Atluri, 1997;

Callinan et al., 1998; Muller and Fredell, 1999; Vlot et al., 2000; and Duong, 2003a).

From these FE studies, it was found that the effect of the patch proximity was most

pronounced when two patches aligned vertically (with the far-field load in the vertical

direction). On the other hand, patches aligned horizontally have very little influence on

each other. The results of the FE studies can also be summarized as follows. Referring to

Figure 13.2, the proximity effect on the subjected patch is negligible for any proximate

patch located outside the shaded area of Figure 13.2. Furthermore, the effect of the

proximate patch located inside the shaded area can be conservatively estimated using the

curves given in Figure 13.3, which represent the most severe case, i.e., when two patches

are aligned vertically. However, the interaction curve in Figure 13.3 had been determined

only for a special case when two patches having the same stiffness ratio of 1. For the

general case, this interaction can be predicted analytically for two non-identical patches

in the proximity by expanding the equivalent inclusion method described in Chapter 4

for a case of a single inhomogeneity to that of two inhomogeneities, following the work

of Moschovidis and Mura (1975; Mura, 1998). To illustrate this method, for simplicity,

let us consider two elliptical inhomogeneities !1 and !2 in an infinite skin with elastic

moduli of Cs
ijkl, as shown in Figure 13.4. For convenience, xi and xi coordinate systems

are taken at the center of!1 and!2, respectively, and tensor components referring to the
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xi coordinate system will be denoted by bars in the development followed. Furthermore,

the two coordinate systems are related by the following coordinate transformation law:

xi− ri = Tijxj
xj = Tji

(
xj− rj

) (13.15)
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Fig. 13.4. Two elliptical inhomogeneities under far-field-uniformstresses or strains.

where Tij is the direction cosine between the xi-axis and xj-axis, and ri is the

xi-coordinate of the origin 0 in !2. As before, the overlap regions of the two patches

in proximity will be idealized as two inhomogeneities with equivalent elastic moduli.

Applying the equivalent inclusion method leads to the following equivalency equations

in subdomains !1 and !2:

C
I�!r �
ijkl

(
�kl+�Ikl

)= Cs
ijkl

(
�kl+�Hkl−∗�!r �kl

)
in !r
 r = 1
2

�Ikl = �Hkl
(13.16)

where superscripts I and �!r� again signify, respectively, the inhomogeneity problem

and the inhomogeneity !r , while the superscript H denotes the homogeneous or the

equivalent inclusion problem. Thus, C
I�!r �
ijkl is the elasticity tensor of the inhomogeneity

!r . Furthermore, �Hij or ��
H
ij and �Iij or ��

I
ij are disturbance strain or stress fields

due to eigenstrain field in the equivalent inclusion problem and disturbance strain or

stress field due to the inhomogeneity in the inhomogeneity problem, respectively. These

fields define disturbance strain or stress at every point in the domain, both interior and

exterior to subdomains !1 and !2. It is worthy to note that the total strain fields Hij
and Iij were employed in all previous formulations for the inclusion and inhomogeneity

problems. However, for simplicity, the present formulation will employ the disturbance

strain fields �Hij and �
I
ij instead, and they are related to the corresponding total strain

fields by H or I
ij =�H or I

ij +�ij . Let us further assume the equivalent eigenstrain fields

in !1 and !2 to be
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∗�!1�
ij = F�!1�

ij +F�!1�
ijk xk+F�!1�

ijkl xkxl+· · ·


∗�!2�
ij = F�!2�

ij +F�!2�

ijk xk+F�!2�

ijkl xkxl+· · ·
(13.17)

and the corresponding disturbance strain fields due to each of these two eigenstrain

fields to be represented in the respective coordinate systems xi and xi by

�
H�!1�
ij = S�!1�

ijkl �x�F
�!1�
kl +S�!1�

ijklm �x�F
�!1�
klm +S�!1�

ijklmn �x�F
�!1�
klmn +· · ·

�
H�!2�
ij = S�!2�

ijkl �x�F
�!2�

kl +S�!2�

ijklm �x�F
�!2�

klm +S�!2�

ijklmn �x�F
�!2�

klmn+· · ·
(13.18)

for all x ∈ �
 x ∈ �, where � is an infinite domain including !1 and !2.

Since �
H�!1�
ij and �

H�!2�
ij are the respective strain fields caused by 

∗�!1�
ij and 

∗�!2�
ij ,

and tensor components of �
H�!2�
ij are given in the coordinate system xi, the strain field

�Hij given in Equation (13.16) is the sum of �
H�!1�
ij and �

H�!2�
ij after appropriate

coordinate transformation. For elliptical regions!1 and!2, it was shown in Mura (1998)

that Eshelby tensors S�!1�’s and S
�!2�

’s given in Equations (13.18) are a polynomials

of the spatial coordinates of the same degree as their corresponding eigenstrain field

inside the respective regions !1 and !2. In particular, S
�!r �
ijkl , which is the Eshelby tensor

corresponding to the constant eigenstrain F
�!r�
kl in !r , is also the constant tensor in !r ,

while S
�!r �
ijklmn, which is the Eshelby tensor corresponding to the second-degree polynomial

eigenstrain, is the second-degree polymonial of the spatial coordinates in !r . Thus, the

Eshelby tensors S�!1�’s and S
�!2�

’s in their respective elliptical regions !1 and !2 are

represented exactly by the following equations (after consideration of symmetry):

S
�!1�
ijkl �x�= S�!1�

ijkl �0�

S
�!1�
ijklm �x�=

�

�xq
S
�!1�
ijklm �0� xq

S
�!1�
ijklmn �x�= S�!1�

ijklmn �0�+
1

2

�2

�xp�xq
S
�!1�
ijklmn �0� xpxq

S
�!2�

ijkl �x�= S�!2�

ijkl

(
0
)

S
�!2�

ijklm �x�=
�

�xq
S
�!2�

ijklm

(
0
)
xq

S
�!2�

ijklmn �x�= S�!2�

ijklmn

(
0
)
+ 1

2

�2

�xp�xq
S
�!2�

ijklmn

(
0
)
xpxq

(13.19)

for x ∈!1 and x ∈!2.
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However, the Eshelby tensors S�!1�’s and S�!2�’s are not polynomials of x and x outside

!1 and !2 or inside !2 and !1, respectively. Thus, the disturbance strain fields �
H�!1�
ij

and �
H�!2�
ij inside the respective region !2 and !1 due to the eigenstrain 

∗�!1�
kl and


∗�!2�
kl can only be approximated by a polynomials of x or x by Taylor series expansion

around points 0 or 0, respectively, and appropriate coordinate transformation as:

�
�!1�
ij �x�= TriTsj

[
S
�!1�
rskl �0�+Tpu

7

7xp
S
�!1�
rskl �0�xu+

1

2!TpuTqv
72

7xp7xq
S
�!1�
rskl �0�xuxv

]
Fkl+· · ·

+TriTsj
[
S
�!1�
rsklm�0�+Tpu

7

7xp
S
�!1�
rsklm�0�xu+

1

2!TpuTqv
72

7xp7xq
S
�!1�
rsklm�0�xuxv

]
Fklm+· · ·

+TriTsj
[
S
�!1�
rsklmn�0�+Tpu

7

7xp
S
�!1�
rsklmn�0�xu+

1

2!TpuTqv
72

7xp7xq
S
�!1�
rsklmn�0�xuxv

]
Fklmn+· · ·

(13.20)

�
�!2�
ij �x�= TirTjs

[
S
�!2�

rskl �0�+Tup
7

7xp
S
�!2�

rskl �0�xu+
1

2!TupTvq
72

7xp7xq
S
�!2�

rskl �0�xuxv

]
Fkl+· · ·

+TirTjs
[
S
�!2�

rsklm�0�+Tup
7

7xp
S
�!2�

rsklm�0�xu+
1

2!TupTvq
72

7xp7xq
S
�!2�

rsklm�0�xuxv

]
Fklm+· · ·

+TirTjs
[
S
�!2�

rsklmn�0�+Tup
7

7xp
S
�!2�

rsklmn�0�xu+
1

2!TupTvq
72

7xp7xq
S
�!2�

rsklmn�0�xuxv

]
Fklmn+· · ·

for x ∈!1 and x ∈!2.

It is worthy to note that in the above equation S
�!1�
ijkl �0�
 S

�!1�
ijklm�0� and S

�!1�
ijklmn�0� are the

Eshelby tensors of the inclusion !1 due to the eigenstrain 
∗�!1�
kl evaluated at point �0�

inside !2 with their components referring to xi-coordinates while �
H�!1�
ij �x� is the

disturbance strain due to the eigenstrain 
∗�!1�
kl but evaluated at an arbitrary point x inside

!2 and with their tensor components referring to xi-coordinates. Similarly, S
�!2�

ijkl �0�,

S
�!2�

ijklm�0� and S
�!2�

ijklmn�0� are the Eshelby tensors of the inclusion !2 due to eigenstrain


∗�!2�
kl evaluated at point 0 inside !1 with their components referring to xi-coordinates,

and �
H�!2�
ij �x� is the corresponding disturbance strain evaluated at point x inside !1

with tensor components referring to xi-coordinates.

Substituting Equations (13.17)–(13.20) into Equation (13.16), noting that �Hij is the

sum of �
H�!1�
ij and �

H�!2�
ij , and equating the coefficients of the power series of the

right-and left-hand sides of the resulting equation yield the following system of algebraic

equations for solving the equivalent eigenstrains F�!1�’s and F
�!2�

’s:

�C
I�!1�
stmn

{[
S
�!1�
mnij �0�F

�!1�
ij +S�!1�

mnijkl �0�F
�!1�
ijkl +· · ·

]

+TmcTnh
[
S
�!2�

chij �0�F
�!2�

ij +S�!2�

chijk �0�F
�!2�

ijk +S�!2�

chijkl �0�F
�!2�

ijkl +· · ·
]}

−Cs
stmnF

�!1�
mn =−�CI�!1�

stmn �mn
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�C
I�!1�
stmn

{[
�

�xp
S
�!1�
mnijk �0�F

�!1�
ijk +· · ·

]

+TmcTnhTpf
[
�

�xf
S
�!2�

chij �0�F
�!2�

ij + �

�xf
S
�!2�

chijk �0�F
�!2�

ijk + �

�xf
S
�!2�

chijkl �0�F
�!2�

ijkl +· · ·
]}

−Cs
stmnF

�!1�
mnp = 0

1

2!�C
I�!1�
stmn

{[
�2

�xp�xq
S
�!1�
mnijk �0�F

�!1�
ijk +· · ·

]
+TmcTnhTpfTqg

[
�2

�xf �xg
S
�!2�

chij �0�F
�!2�

ij + �2

�xf �xg
S
�!2�

chijk �0�F
�!2�

ijk + �2

�xf �xg
S
�!2�

chijkl �0�F
�!2�

ijkl +· · ·
]}

−Cs
stmnF

�!1�
mnpq = 0 (13.21)

�C
I�!2�
stmn

{
TcmThn

[
S
�!1�
chij �0�F

�!1�
ij +S�!1�

chijk�0�F
�!1�
ijk +S�!1�

chijkl�0�F
�!1�
ijkl +· · ·

]

+
[
S
�!2�

mnij�0�F
�!2�

ij +S�!2�

mnijkl�0�F
�!2�

ijkl +· · ·
]}

−Cs
stmnF

�!2�

mn =−�CI�!2�
stmn �mn

�C
I�!2�
stmn

{
TcmThnTfp

[
�

�xf
S
�!1�
chij

(
0
)
F
�!1�
ij + �

�xf
S
�!1�
chijk�0�F

�!1�
ijk

+ �

�xf
S
�!1�
chijkl�0�F

�!1�
ijkl +· · ·

]
+
[
�

�xf
S
�!2�

mnijkl�0�F
�!2�

ijkl +· · ·
]}

−Cs
stmnF

�!2�

mnp = 0

1

2!�C
I�!2�
stmn

{
TcmThnTfpTgq

[
�2

�xf �xg
S
�!1�
chij �0�F

�!1�
ij + �2

�xf �xg
S
�!1�
chijk�0�F

�!1�
ijk

+ �2

�xf �xg
S
�!1�
chijkl�0�F

�!1�
ijkl +· · ·

]
+
[

�2

�xp�xq
S
�!2�

mnijkl�0�F
�!2�

ijkl +· · ·
]}

−Cs
stmnF

�!2�

mnpq = 0

Once the eigenstrains are determined, the stress and strain fields in the equiva-

lent inclusion problem and thus in the inhomogeneity problem can be evaluated by

Equations (13.16) and (13.18). The stresses and strains in the patch and in the skin under

the patch can be determined from the strain field Iij in a similar manner as in Chapter 4
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by using the classical laminate theory applying to the skin–patch combination. The

original problem of two inhomogeneities in proximity is therefore completely solved.

13.3 Effect of Adherend Shear Deformation on Repair Efficiency

One effect related to thick patches is the effect of shear deformations in the skin and

patch on the repair efficiency. In Chapter 3, the stress intensity factor is estimated for

a supported one-sided or two-sided repair by using either an energy argument or a

crack bridging model. In either way, pertinent results from theory of bonded joints and

doublers presented in Chapter 2 are used in that estimate. However, for simplicity, only

classical solutions of these bonded joints and doublers are developed in Chapter 2, and

they ignore the shear deformations in the adherends. The adhesive layer can sustain

significant shear stresses during load transfer. These large shear stresses would also be

present at the interface between the adherend and the adhesive, and they would cause the

adherend shear deformations. For thick patches with low transverse shear modulus such

as laminated composite patches, their shear deformations will be significant, which will

reduce the efficiency of the repair. This section is therefore devoted to address the effect

of adherend shear deformation on the repair efficiency. However, for demonstration

purpose, this effect will only be examined in detail within the context of the crack

bridging model delineated in Section 3.3.4 for a two-sided or a supported one-sided

repair.

It was shown in Section 3.3.4 that the constraint imposed by the bonded patch on the

opening of the crack is simulated by a distribution of springs across the crack surfaces.

These springs have a spring constant � given by

�0 = Es�us (13.22)

where �0 is the stress in the skin at the perspective crack location of an uncracked geo-

metry, Es and ūs are the Young’s modulus and the crack opening displacement (averaging

through the thickness) of the skin, respectively. Equivalently, � can be defined in terms

of the complementary energy via the following relation:

Uc =
1

2
�0us =

1

2

�2
0

Es�
(13.23)

In the first approach, � will be derived from the stress analysis of a double-strap joint

using Equation (13.22), accounting for the adherend shear deformations. This analysis

follows the work of Tsai et al. (1998). Let us consider a double-strap joint shown in

Figure 13.5. From equilibrium consideration of differential elements of the skin, patch,

and adhesive, one obtains

dNp

dx
− ��A� = 0

dNs

dx
+ ��A� = 0

(13.24)
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Patch, Ep, Gp, and tp

Adhesive, EA, GA, and tA

Skin, Es, Gs and ts
CL

Np + dNp

τ 
(p) = τ 

(A)

τ(p) = 0

τ(A) ⋅ dx

τ 
(s) = 0

τ 
(s) = τ 

(A)

Ns + dNs

Np

Ns

σ0

z2

z1

Fig. 13.5. Geometry of a semi-infinite double-strap joint used to derive the spring constant of the

crack-bridging model, accounting for adherend shear deformations.

where N is the normal stress resultant, �A is the adhesive shear stress which is assumed

to be uniform across the adhesive thickness, subscripts s and p indicate skin and patch,

respectively. Shear deformations of the skin and the patch are accounted for in the

present formulation by assuming that the shear stress or strain distribution through the

thickness of the skin or patch is linear. It then follows that

��s� = ��A�z1
ts

��s� = ��A�z1
Gsts

��p� = ��A�
(
1− z2

tp

)
��p� = ��A�

Gp

(
1− z2

tp

) (13.25)

where G and t are the shear modulus and thickness, respectively, and the rest have been

previously defined. The axial displacement in the skin is obtained from the kinematics

relation and (13.25) as

us �z1�=
∫ dus

dz1
dz1 =

∫
��s�dz1 = uso+

z1∫
0

��s� �z′1�dz
′
1

= uso+
��A�z21
2Gsts

(13.26)

By defining usi as the skin displacement at the skin–adhesive interface, from

Equation (13.26),

usi = us �z1 = ts�= uso+
��A�ts
2Gs

(13.27)
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Thus, Equation (13.26) can be rewritten as

us = usi−
��A�ts
2Gs

+ ��A�z21
2Gsts

(13.28)

Similarly, the displacement of the patch is given by

up = upi+
z2∫

0

��p��z′2�dz
′
2

= upi+
��A�

Gp

(
z2−

z22
2tp

)
(13.29)

where upi ≡ up �z2 = 0� is the patch displacement at the patch–adhesive interface. On the

other hand, constitutive relations of the skin and patch, Equations (13.28) and (13.29)

provide

Ns = E′
s

∫ ts

0

dus
dx

dz1 = E′
sts

(
dusi
dx

− 1

3

ts
Gs

d��A�

dx

)

Np = E′
p

∫ tp

0

dup

dx
dz2 = E′

ptp

(
dupi

dx
+ 1

3

tp

Gp

d��A�

dx

) (13.30)

where E′
s
p = Es
p

1−�2s
p . Similarly, the kinematics and constitutive relations of the adhesive

are given by

��A� = 1

tA

(
upi−usi

)

��A� = GA

tA

(
upi−usi

) (13.31)

Thus,

d��A�

dx
= GA

tA

(
dupi

dx
− dusi

dx

)
(13.32)

Substitution of Equation (13.30) for
dusi
dx

and
dupi
dx

into (13.32) results in the following

equation.

d��A�

dx
= GA

tA

[
Np

E′
ptp

− Ns

E′
sts

− d��A�

dx

(
tp

3Gp

+ ts
3Gs

)]
(13.33)

Differentiating Equation (13.33) with respect to x and substituting Equation (13.24) into

the resulting equation for
dNp

dx
and

dNs

dx
yield

d2��A�

dx2

[
1+ GA

tA

(
tp

3Gp

+ ts
3Gs

)]
− GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
��A� = 0 (13.34)
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or

d2��A�

dx2
− �̃2

A�
�A� = 0 (13.35)

where

�̃2
A =

GA

tA

(
1

E′
ptp

+ 1

E′
sts

)
1+ GA

tA

(
tp
3Gp

+ ts
3Gs

) (13.36)

Equation (13.35) is similar to Equation (2.5) of the classical theory, except that the

inverse load transfer length �A has been modified to become �̃A as given by (13.36).

For a semi-infinite domain, the solution of Equation (13.35) is given by

��A� = ��A�maxe
−�̃Ax (13.37)

�
�A�
max in Equation (13.37) then can be determined from the following boundary condition:∫ �

0

��A�dx =−�0ts (13.38)

which essentially states that the total shear load in the adhesive layer must be equal

to the total load in the skin at the joint end before transferring all of it to the patch.

Substituting Equation (13.37) into (13.38) and performing the integration yield

��A�max =−�0ts�̃A

��A� =−�0ts�̃Ae
−�̃Ax

(13.39)

It remains now to determine the average displacement of the skin through its thickness

at the joint end, i.e., x = 0. From Equation (13.28) and the second equation of (13.31),

by noting that upi �x = 0�= 0 due to symmetry, it is very easy to show that

us �x = 0�= usi �0�−
��A� �0� ts

2Gs

+ ��A� �0� z21
2Gsts

usi �0�=− tA
GA

��A� �0�

(13.40)

or

us �x = 0�=− tA
GA

��A� �0�− ��A� �0� ts
2Gs

+ ��A� �0� z21
2Gsts

(13.41)

Evaluation of the second equation of (13.39) at x = 0 and substitution of the result for

��A� �0� into the above equation yield

us �x = 0�= �0ts�̃A

[
tA
GA

+ ts
2Gs

− z21
2Gsts

]
(13.42)
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With that, the average displacement of the skin at the joint end through its thickness is

found to be

us �0�=
1

ts

∫ ts

0

us �x = 0
 z1� dz1 = �0ts�̃A

[
ts
3Gs

+ tA
GA

]
(13.43)

The spring constant � of the crack-bridging model is finally determined from Equa-

tions (13.22) and (13.43) as

�= 1

Ests�̃A

[
ts
3Gs

+ tA
GA

] (13.44)

It is clear from Equation (13.44) that the spring constant � will have a smaller numerical

value than that predicted by the classical theory since �̃A > �A and
ts
3Gs

+ tA
GA
> tA

GA
.

Thus, according to the double-strap joint model that accounts for the adherend shear

deformation, a patch will be less effective in restraining the crack-opening displacement

than it would be based on the classical model since the system of springs idealizing the

patch based on the former model are softer or more compliant than those derived based

on the latter model.

It was pointed out by Chalkley and Rose (1998, 2001) that the above approach to

determine the spring constant may not always give a conservative estimate for �. For
a conservative estimate of a spring constant �, another approach based on Chalkley

and Rose’s work which in turn is an extension of the Hashin variational method should

be employed. A brief discussion of this variational approach will be presented here.

Chalkley and Rose’s analysis begins by assuming the stress states in the skin, patch, and

adhesive can be expressed in term of a single stress potential �̃ as

Skin

��s�xx =−�0�̃ �x�

��s�zx = �0�̃
′ �x� z

��s�zz = 1

2
�0�̃

′′ �x�
[
ts
(
ts+ tp

)− z2]
(13.45)

Patch

��p�xx = ts
tp
�0�̃ �x�

��p�zx = ts
tp
�0�̃

′ �x�
(
ts+ tp+ tA− z

)

��p�zz = 1

2

ts
tp
�0�̃

′′ �x�
[
ts+ tp+ tA− z

]2
(13.46)
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Adhesive

��A�xx = 0

��A�zx = �0ts�̃
′ �x�

��A�zz = 1

2
�0tstp�̃

′′ �x�

(13.47)

It is worthy to note that the above assumed stress states ensure continuity of the �xz and
�zz stresses across the patch/adhesive and skin/adhesive interfaces. For a semi-infinite

joint, the complementary energy is given by

2Uc =
∫ ts+tA+tp

0

dz
∫ �

0

W �x
 z�dx (13.48)

where W �x
 z� is the strain energy density. W �x
 z� can be expressed in terms of

stresses as

W �x
 z�= 1

2

(
�2
xx

E′ +
�2
zz

E′ +
�2
xz

G
−2

�

E′�xx�zz

)
(13.49)

Substituting Equations (13.45)–(13.47) and (13.49) into (13.48) and performing the first

integration through the thickness lead to

2Uc = �2
0 t

2
s

∫ (
A0�̃

2 �x�+A1�̃
′ �x�2+A2��x� �̃

′ �x�+A3�̃
′′ �x�2

)
dx (13.50)

where

A0 =
1

E′
sts

+ 1

E′
ptp

A1 =
tA
GA

+ ts
3Gs

+ tp

3Gp

A2 =
1

3EsEp

[(
2ts+3tp

)
Ep�s �1+�s�− tpEs�p

(
1+�p

)]

A3 =
ts
4E′

s

(
8

15
t2s +

4

3
tstp+ t2p

)
+ t3p

20E′
p

+ t2ptA

4E′
A

(13.51)

The governing differential equation for the stress potential � can be derived by mini-

mizing Uc given by Equation (13.50) through a variational analysis as

A3�̃
′′ ′′ + �A2−A1� �̃

′ ′ +A0�= 0 (13.52)

The boundary conditions for Equation (13.52) are determined from the stress condition

of the skin at the joint end, i.e.,

��s�xx �x = 0�=−�0 or �̃ �0�= 1 (13.53)
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and

��s�xz �x = 0�= 0 or �̃′ �0�= 0 (13.54)

The solution of Equation (13.52) over the semi-infinite domain that satisfies boundary

conditions (13.53) and (13.54) is

��x�=− �
�II�
A

�
�I�
A −��II�A

e−�
�I�
A x+ �

�I�
A

�
�I�
A −��II�A

e−�
�II�
A x (13.55)

where

�
�I�
A =

√
1

2A3

√
�A1−A2�−

√
�A1−A2�

2−4A0A3

�
�II�
A =

√
1

2A3

√
�A1−A2�+

√
�A1−A2�

2−4A0A3

(13.56)

Once the stress potential is determined, stresses in the skin, patch, and adhesive can

be obtained from Equations (13.45)–(13.47) while the complementary energy can be

evaluated from Equation (13.50) as

Uc = �2
0 t

2
s

⎡
⎢⎣
(
�
�I�
A �

�II�
A

)2 (
A1−A2+A3�

�I�
A �

�II�
A

)
+4A0

(
�
�I�2
A +3�

�I�
A �

�II�
A +��II�2A

)
4�

�I�
A �

�II�
A

(
�
�I�
A +��II�A

)
⎤
⎥⎦

(13.57)

With that, the spring constant � finally can be easily derived from Equation (13.23)

with Uc given by Equation (13.57).



CHAPTER 14

Concluding Remarks

As mentioned in Chapter 1, the goal of this book is to provide a theoretical foundation

for the design and analysis of bonded repairs and bonded doublers. The preceding 13

chapters addressed various important issues pertinent to the repairs and at the same time

introduced to the reader many powerful mathematical techniques borrowed from various

branches of mechanics such as micromechanics of composite or heterogeneous materials,

elasticity, plate theory, and fracture mechanics. However, the book is not complete since

not all topics relevant to the field of bonded repairs are covered. These omissions are

intended for one reason or another to limit the length of the book. One important topic

that has been omitted from the book is the composite repair to composite structures,

including a scarf repair. The topic does not fit well within the logical framework of the

present book and perhaps it shall be included in another book which is devoted entirely

to the subject of composite repairs to composite structures. Nevertheless, some of the

methods and approaches developed herein clearly can be extended to include these latter

repairs. For example, even though the formulation for the load attraction problem of an

anisotropic skin bonded with an anisotropic patch under general loading may be simpler

by using a new method known as Stroh formalism (Ting, 1996; Cheng and Reddy, 2004),

the two-stage analysis approach delineated in Chapter 6 can be applied similarly to the

composite repair of cut-out or grind-out cavity in a laminated skin (Wang and Duong,

2003). Similarly, the bond-line analysis developed in Chapter 7 can also be modified to

analyze scarf joints or scarf repair within a one-dimensional approximation.

This book has been based mostly on the recent works by the authors during the last 10

years, and it was inspired by the original and significant contribution of Rose during the

1980s. The authors’ works were carried out at the Boeing Company through a USAF

contract entitled Composite Repair of Aircraft Structure (CRAS) and at the Defence

Science and Technology Office (DSTO), respectively. These works have provided an

analytical capability that (after implementation into software) not only yields a quick

and easy way to design and analyze the bonded repairs but also explains the physics

of the behavior of the repairs in general. However, as in any other major research

programs, due to the limited budgets and/or beyond the scopes of these works, some
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other important aspects of the bonded repairs still remain unaddressed and therefore

require further research. Among them is the following short list:

• Investigating the failure mechanism and developing a test-validated failure criterion

for patches in compression;

• Identifying design and analysis issues associated with thick structures and develop-

ing methods which will be validated through test to address these issues;

• Expanding existing repair methodologies to stress corrosion cracking and composite

repairs to composite structures;

• Applications and demonstrations of the existing analytical methods on large and

sub-components such as curved panels, heavy frames, bulkhead, and wing spars.

At the time this book was completed, some of these aspects were under investigation with

a low level of funding effort, and few of them were addressed partially in Chapter 13.

New results obtained from the current and future studies on these topics will be certainly

incorporated into our book in the future when there is an opportunity for a book revision.
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Composite Repair of Aircraft Structures is an analysis/design software application for

bonded composite repairs over damaged metallic structures. The repairs to be analyzed

by CRAS may be a crack patching or a corrosion repair. CRAS provides users three main

tools: an initial design tool based on simple closed-form solutions for an elliptical patch

and results from 1-D bonded joint theory, a refined closed-form analysis tool where

varying degrees of complexity are included in the formulation, and a rapid FE modeling

tool. The repairs of complex structures, which are aircraft-specific such as splice joints,

using the CRAS software are demonstrated in the appendices of Duong et al.’s report

(2003a). Both design guidelines and FE techniques for these complex repairs are also

provided there.

A.1 Brief Descriptions of CRAS Design and Analysis Tools

(a) Initial design

The CRAS initial design tool provides an initial design of the repaired patch

based on user’s inputs for the skin, patch and adhesive materials, design and

fatigue loads, damage configuration (crack length, corrosion grind-out diameter

and depth, hole), maximum number fatigue cycles, and preferred patch shape

(octagon, ellipse or rectangle). CRAS designs a patch under biaxial loading,

following the approaches described in Chapters 9 and 10. As mentioned in those

two chapters, the effect of out-of-plane bending is not considered in the initial

design.

(b) Refined closed-form analysis

The CRAS refined closed-form analysis tool provides the user with a quick,

alternative method (without relying on FE analysis), to estimate the skin stresses

at critical locations near the edge of the patch, KI in crack patching, and Kt at the

bottom of the corrosion cavity in corrosion repair. This analysis tool has a wide

range of capabilities that were derived from various analytical models developed in

Chapters 3–7. In particular, different analytical models developed in Chapters 3–7

to address various effects pertinent to a bonded repair were implemented into

Fortran codes, and these Fortran codes were integrated into CRAS software as

modules. The sources of these codes can also be found in the software package

and they can be run independently with proper input files. The availability of
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Table A.1. A sample list of analysis modules or Fortran codes used in CRAS analysis tool.

CRAS analysis
module/Fortran code

Capability Method

JMPSYY Analysis of load attraction of
a polygonal patch in a fully
supported one-sided or
two-sided repair

Equivalent inclusion method
with second-ordered eigenstrain
described in Chapter 4

STAGE2 Fracture analysis or stage II
analysis of Rose’s two-stage
analysis procedure for a
polygonal patch in a fully
supported one-sided or
two-sided repair

Displacement compatibility
method and elasticity by
complex stress function
described in Chapter 4

JAMXX1 Analysis of load attraction of
a polygonal patch in an
unsupported one-sided repair

Plate inclusion model described
in Chapter 5

BENDING Fracture analysis or stage II
analysis of Rose’s two-stage
analysis procedure for a
polygonal patch in an
unsupported one-sided repair

Crack-bridging model described
in Chapter 5

JMPSYYCA Two-stage analysis of a
corrosion repair with a
polygonal patch

Equivalent inclusion method
with second ordered eigenstrain
described in Chapter 6

CONSTHRM Plane stress analysis of
residual thermal stresses of a
circular patch due to curing in
a circular plate of finite size
and with constrained edge

Wang et al. curing model
described in Chapter 4

SINGLE Plate-bending analysis of
residual thermal stresses of a
circular patch due to curing in
a circular plate of finite size
and with constrained edge

Wang et al. curing model
described in Chapter 5

JOINT Bond-line analysis near the
end of a tapered patch

A unified approach for
geometrically nonlinear
analysis of bonded joints
described in Chapter 7

these codes is intended to give a greater flexibility in using CRAS. Table A.1 lists

a sample of the analysis modules or Fortran codes used in the CRAS analysis

tool, along with their corresponding capability and their corresponding analytical

model as described in Chapters 3–7.

(c) Rapid finite element modeler – PatchGen

PatchGen is a program designed to facilitate the creation of FE models of patch

repairs of skin structure. It creates a session file that can then be played by
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MSC/PATRAN (2001). The session file creates a bulk data deck that is the input

for the MSC/NASTRAN solver (2001). After the solver has completed, the results

file can be read back into MSC/PATRAN (2001) to view the results. PatchGen

was used initially during the development phase of CRAS project to validate the

formulations and predictions of the analytical methods discussed in Chapters 4–7

with FE results.

A.2 How to Use the CRAS Software Application

This section describes the use of the CRAS software application. The program is a PC-

based Windows software application that is user-friendly with online help. For a detailed

description of the software, the reader should refer to CRAS User Manual (2003). An

example problem is also given there.

A.2.1 Starting the program

After installation, select the CRAS application from the Start Programs menu, or double-

click on the first icon illustrated in Figure A.1 to start the CRAS program.

Fig. A.1. Program Windows directory.
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The view shown in Figure A.2 is displayed as the opening screen:

Fig. A.2. Opening screen.

The user may enter information about the repair design by selecting the Repair command

on the menu bar. Six dialog commands are available (Figure A.3).

(1) Design Wizard: The advisory mode dialog wizard guides the user to design a

repair patch

(2) Analysis: The dialog to execute the analytical programs for the repair patch

(3) Design: The advanced mode dialog allows users who are familiar with the program

to quickly select and enter data to design a repair patch

(4) PatchGen Only: The dialog allows the user to create an MSC/PATRAN ses-

sion file of a repair patch without CRAS calculating the design; this executes

PatchGen only

(5) User Specified Material: The dialog to allow the user to enter skin, laminate, and/or

adhesive material data

(6) Load Constant N: The dialog to initialize the load constant N (default is 5)
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Also, two measurement unit options are available:

(1) English – Displays the measurement units in the English units

(2) Metric – Displays the measurement units in the metric units

Fig. A.3. Repair menu commands.

By selecting the appropriate icon button on the toolbar, some of the Repair menu

commands may also be activated (Figure A.4).

Fig. A.4. Dialog commands in the toolbar.

For some of the menu commands and toolbar buttons, they may initially appear dimmed

or grayed. This indicates that the menu command is not yet available for input. For

example, the Repair→Analysis and View → Patch Design menu commands will not be

enabled until a valid repair patch is designed via the Repair→Design or Repair→Design
Wizard dialog.
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A.2.2 User Specified Material Dialog

The user may enter their own skin, laminate, and/or adhesive material data by providing

the information in the Repair→User Specified Material dialog (Figure A.5). By selecting

the appropriate tab, the data may be entered for the new material.

Fig. A.5. Repair→User Specified Material dialog box.

The new material will be added to the end of the drop-down list of the appropriate skin,

laminate, or adhesive material combo box in the Repair→Design and Repair→Design
Wizard dialogs for the user to select (Figure A.6).

Fig. A.6. Selecting the user specified skin material.
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For the da/dN data of the user specified skin material (Figure A.7), the following

limitations apply:

1. Only one set of da/dN data with a maximum of 30 values in ascending order.

2. A maximum of six different R ratio values in ascending order; minimum of one

set of R ratio.

3. A maximum of 30 delta K values for each R ratio in ascending order.

4. First delta K value of each R ratio must be in descending order.

5. The number of delta K values for each R ratio must equal the number of da/dN

values.

6. For the English units, the delta K values are in ksi sqrt in., and da/dN values are in

inches/cycle; for metric units, the delta K values are in MPa sqrt mm., and da/dN

values are in mm/cycle.

Fig. A.7. User specified skin material da/dN data dialog.

Also, a data file may be read in with its values populated in the cells of the da/dN grid.

The file may be selected by clicking on the Data File " " " button on the da/dN data dialog.

The dialog shown in Figure A.8 will be displayed to allow the user to select and/or enter

the data file name.
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Fig. A.8. da/dN data file dialog.

The user may click on the File Name " " " button to select the da/dN data file in the dialog

shown in Figure A.9.

Fig. A.9. da/dN data file selection dialog.
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An example of the file format for the da/dN data file is given in Figure A.10.

Fig. A.10. An example of the da/dN file format.

A.2.3 Load Constant N dialog

For CRAS to calculate the initial design of a repair patch, the user must provide the

load constant N value. The default is set to 5 (Figure A.11).

Fig. A.11. Repair→Load Constant N dialog.
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A.2.4 Design Wizard dialog

By using the Repair→Design Wizard dialog, the user is guided through the design

process of a repair patch in a sequenced order (Figure A.12). It contains five pages with

advisory help on the right side of the page. The advisory help describes the purpose of

the page and its inputs.

The pages allow the user to enter information grouped by common characteristics. The

pages are listed as follows:

1. Design Option

2. Skin/Damage

3. Loading Stresses

4. Repair Type

5. Patch Design

Fig. A.12. Repair→Design Wizard dialog.

CRAS allows the user to (1) Have CRAS calculate the patch design, or (2) Enter their

own patch design. The default option is to have CRAS calculate the patch design. No

matter which option is selected, the following three pages of the design dialog allow the

user to enter information about the skin/damage, loading stresses and repair type.
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If the user had selected to have CRAS calculate the patch design, then the fields on the

fifth page are filled with the values of the CRAS calculated patch design (Figure A.13).

The fields are grayed to indicate that the user may not change the values on the page,

except by selecting an alternative CRAS calculated patch design.

Fig. A.13. CRAS calculates patch design via Repair→Design Wizard.

CRAS will try to calculate up to four more alternative patch designs (Figure A.14). Each

design is at least 10% greater in volume than the previous design. If alternative designs

were also calculated, then the Alternative Designs " " " button will be enabled for the user

to select; otherwise, the button will not be enabled.

Fig. A.14. Alternative designs dialog.
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Also, if the user makes changes to the input of the previous three pages in either the

Repair→Design or Repair→Design Wizard dialogs, then CRAS will calculate a new

patch design and alternative designs based on the input of those three pages.

For more information on how the user may enter their own patch design, refer to

Section 4.6.

A.2.5 Design dialog

By using the Repair→Design dialog, the user may enter the same data as the

Repair→Design Wizard, but by selecting the appropriate tabs (Figure A.15). This allows
the user to fill in the information and yet skip certain pages entirely.

Fig. A.15. Repair→Design Dialog.

Although this gives the user more flexibility, it should be noted that if the user selects to

allow CRAS to calculate an initial patch design, the Patch Design tab must be selected to

have the fields populated with the calculated dimensions. That is, by activating the Patch
Design tab, the initial patch design will be calculated with the information provided in

the previous three tabs and the load constant dialog (Figure A.16). Note that the edit
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fields containing the design parameters are initially grayed, which indicates that the user

may not change its values.

Fig. A.16. CRAS calculated patch design via Repair→Design.

A.2.6 User enters the patch design option

By selecting User Enters the Patch Design from the Design or Design Wizard dialog, the
user may enter their own patch design without having CRAS calculate an initial design

(Figure A.17).
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Fig. A.17. Option to allow user to enter patch design.

In the next three pages of the dialog, the user enters the skin/damage, loading stresses

and repair type data. The user must then also specify the patch design in the last page

that is titled Patch Design. The fields on this page are enabled for the user to enter the

information about their patch design (Figure A.18).
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Fig. A.18. User enters own patch design via Repair→Design.

Also, it should be noted that the user can select to have CRAS calculate an initial

patch design, and the fields on the fifth page will be filled with the values of the patch

design. After CRAS calculates the initial patch design, the user may change the design

parameters by selecting the User enters the patch design option on the Options tab. The
edit controls are then enabled on the Patch Design tab to allow the user to make any

changes. Note that the Alternative Designs " " " button will no longer be available for the

user to select (Figure A.19).
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Fig. A.19. Modify original CRAS calculated patch design.

For an octagonal patch, if the user modifies the patch dimensions of the last ply, CRAS

will recalculate the corresponding angle. If the user modifies the patch angle, then CRAS

will recalculate dimension C of the patch design’s largest ply.

A.2.7 Analysis dialog

Analysis is performed on the patch design of the last page of the Repair→Design or

Repair→Design Wizard dialogs. The Repair→Analysis menu command is enabled when

the repair patch design is specified (Figure A.20). The user may select to have CRAS

analyze

• A crack with either an octagonal, elliptical, or rectangular patch

– The stresses in and around the patch

– The stress intensity factor
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– The adhesive shear strain and stress

– The ply-by-ply stresses

• A corrosion with either an octagonal, an elliptical, or a rectangular patch

– The stresses in and around the patch

– The adhesive shear strain and stress

– The ply-by-ply stresses

or generate a session file using PatchGen. If PatchGen is selected, then the Options
button will be enabled to allow the user to select to enter data

Fig. A.20. Repair→Analysis dialog.

A.2.8 PatchGen Only dialog

By using the Repair→PatchGen Only dialog, the user can create an FE model of patch

repair (Figure A.21). After selecting the type of file to be generated and the type of

solver to be used on the first dialog, the user needs to enter data on eight more pages. The
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eight pages request information about the input/output files, panel, loading, boundary

condition, stiffeners, coordinate transformation, damage, and patch (Figure A.22).

Fig. A.21. Repair→PatchGen Only dialog.

Fig. A.22. PatchGen dialog.
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A.2.9 Dialog buttons

At the bottom of the dialog box, the buttons control the changes of the input and provide

help if requested (Figure A.23). For the Repair→Design Wizard, the Back, Next, and
Finish buttons allow the user to navigate through the dialog boxes for the input sequence

(Figure A.24).

The OK button will close the dialog box and save any changes made.

The Cancel button will close the dialog box without saving any changes.

The Apply button will keep the input change for that page.

The Help button provides assistance about the active page or dialog box.

Fig. A.23. Dialog buttons.

Fig. A.24. Repair→Design Wizard dialog buttons.

At the upper right corner of the dialog box, the question mark button will provide help

on an item of that page. Click on the question mark button, and click on the item to

bring up help information. Also, the X button will close the dialog box without saving

any changes (Figure A.25).

Fig. A.25. Help and Cancel buttons.

A.2.10 Different types of help

The Windows interface of the CRAS software provides many types of on-screen help

and user hints (Figure A.26). First, the advisory mode, which is invoked by selecting the

Repair→Design Wizard, steps an inexperienced user through sequenced dialog pages to

design a repair patch using the input data. Secondly, on-line help may be invoked by

using either the Help menu or the dialog button. Also, context-sensitive help may be

invoked by clicking on the question mark button in the upper right corner of the dialog

box, and then click on the item to bring up the control’s help information. Or the user
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may right-click the control item and selectWhat’s This? to bring up the help information

on that control item. Finally, the CRAS application’s main window status bar provides

variable on-screen cues at the lower edge of the program window. The on-screen cues

provide a short textual indicator of the program action corresponding to the position of

the mouse cursor. That is, whenever the user moves the cursor over an enabled control

in a dialog box, a brief help message describing the functionality of the control appears

in the status bar. In addition, each time the cursor is positioned over an icon in the tool

bar, a short icon descriptor is displayed adjacent to the cursor. By volunteering this flyby

help, it hopes to aid the user’s progress.

Fig. A.26. Help in the CRAS software.

A.2.11 Document/View

After the analysis is complete, the output will be displayed on the view document as

shown in Figure A.27. It may be saved into a file by selecting File→Save As " " "

A plot of the repair patch may be viewed by selecting View→Patch Design from the

menu bar, or clicking the graph icon on the toolbar (Figure A.28).



Appendix: Introduction to CRAS Software 441

Fig. A.27. CRAS analysis output.

Fig. A.28. CRAS analysis output with plot.
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Acoustic fatigue see Sonic fatigue, repair of

Adherends, stress concentration in, 59–62

normalized longitudinal stresses, 62
quantitative evaluation, 59

stress contours near spew fillet, 60
Adhesives:

adhesive disbonds, 320

adhesive materials, 315–20

properties, 321–2
adhesive plasticity effect, 276–7

bonding, 4

curing, 112–13

layer:

adhesive peel see under Peel stresses
adhesive stresses, equations governing, 33

Poisson’s ratio, 55

shear–stress distribution, 18–22, 24, 26
Air Force Research Laboratory (AFRL), 10

Aircraft structure:

damage repair process of, phases, 2

damage assessment, 2

installation and inspection of repair, 2

repair design and analysis, 2

Analytical methods, experimental verifications

see under Experimental verifications of

analytical methods

Bending analysis, 9

Bond-line analysis at patch ends, 248–79

adhesive stresses in a one-sided repair,

approximate method for, 277–8

adhesive stresses in a two-sided repair,

approximate method for, 278–9

tapered patches and doublers,

one-dimensional analysis of, 248–77

adhesive plasticity effect, 276–7

thermal mismatch effect, 271–5

see also separate entry
Bonded doublers and bonded joints theory,

16–68

failure criteria for, 65–8

corner stress-intensity factor, 67

stress-based failure criteria, 66

important effects in, 50–65

adhesive Poisson’s ratio, 52
corner singularity, 53–9

see also separate entry
stress concentration in adherends, 59–62

see also under Adherends, stress
concentration in

stress-free condition at the adhesive ends,

51–2

triaxial stresses and plastic yielding, 62–5

one-sided bonded doublers and single-strap

joints, stress analysis, 31–50

see also separate entry
two-sided doublers and double-strap joints,

stress analysis, 17–31

see also separate entry
Bonded patches:

load attraction, tapering effect on, 402–406

size and shape of, 5

Bonded repairs:

areas of consideration, 2

for crack patching, 70–3

see also under Crack patching

damage repair process, phases, 2

see also under Aircraft structure
design and analysis, past and present, 8–10

disadvantages, 5

fracture mechanics theory, 10–15

see also separate entry
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installation, 7–8

objectives, 1–8

corrosion repair, 1–2

crack patching, 1–2

fatigue enhancement, 1–2

repair design, 3–7

bonded patch, size and shape of, 5

bonded vs mechanically fastened

repairs, 4–5

in non-structural constraints, 4

in structural constraints, 4

pre-installation check, 6–7

repair design analysis, 6

repair material, choice of, 6

repair, installation of, 7–8

heating method in, 7

structural assessment, 3

vs mechanically fastened repairs, 4–5

Boron/epoxy (B/ep) composite patch, 6

Budiansky and Hutchinson’s approach, 15,

284–5

CALCUREP, Windows-based repair

program, 10

Cauchy principal value integral, 85, 198

Chebyshev polynomials, 131, 199, 201, 286,

392–3

Classical plate theory, 198, 201–202

Coefficient of thermal expansion (CTE)

compatibility, 6

Collocation methods, 85, 198

Composite Repair Aircraft Structures (CRAS)

study, 214, 300, 349

Composite Repair to Metallic Structure

(CRMS), 300

Composites:

composite patch displacements and stresses,

122–30

Fourier integral transform method

in, 126

infinite sheet patch, 122–6

infinite strip patch, 126–30

composite patch material properties

(tensile), 318–19
composite plate theory, classical, 74

Constraints:

non-structural, 4

structural, 4

Corner singularity, 53–9

double-lap joint, finite element

mesh for, 53

normalized stresses, contour plots of, 54

spew fillet, 56–9

see also separate entry
square edge, 53–6

Corrosion grind-outs repairs, analytical

approach, 216–47

circular grind-out problem repaired with a

circular isotropic patch, 223

elliptical isotropic patch with a Poisson’s

ratio same as skin, formulas for, 224–9

elliptical patches, analytical solution of,

220–4

Stage I analysis, 221–2

Stage II analysis, 222

two-stage analytical solution, 221–2

Eshelby solution for elliptical

inhomogeneities, 217–20

Tanaka–Mura method, 219
fundamental concepts, 216–29

polygon-shaped patches, general solution of,

229–47

see also separate entry
two-stage analytical solution procedure, 217

Corrosion repair, 1–2

analysis, 8

preliminary design approach for, 336–48

see also under Preliminary design

approach for corrosion repairs;

Corrosion grind-outs repairs,

analytical approach

Crack bridging model, 84, 146

fracture analysis using, 189–209

spring constants determination, 192–7

Crack-closure analysis, of repaired cracks,

281–8

under large-scale yielding, 284–8

for cracks, 285
large-scale yielding solution at the

maximum applied stress, 285–6

overload effect, 293

plasticity-induced crack closure, 286–8

under small-scale yielding, 281–4

Crack patching, 1–2, 69–94

analysis, 8

analytical method for, 10

stages, 9

bonded repairs for:

one-sided repair (asymmetric)

category, 71

stages, 70–3

two-sided repair (symmetric) category, 71

formulation and notation, 71–3

one-sided repairs, 87–92

see also separate entry
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Crack patching (Continued)
preliminary design approach for, 300–35

see also under Preliminary design

approach for corrosion repairs

repair configurations and coordinates, 70
Rose’s two-stage analysis procedure for, 96
symmetric or fully supported one-sided

repairs, 73–87

finite crack size effect, 83

inclusion analogy approach for, 75
load attraction by patch (Stage I), 73–80

mixed mode loading, effect of, 86–7

plastic adhesive effect, 82–3

stress intensity factor (Stage II), 80–3

thermal stresses, 92–4

Crack repair:

adhesively bonded patches for, 4

mechanically fastened, 4

Crack-tip deformation of a stationary

crack, 288

Crack-tip plasticity:

Dugdale model for, 15

Cracked sheet:

displacements and stresses, 118–22

arbitrary crack surface pressure,

displacements due to, 118–19

constant shear body forces,

displacements and stresses due to,

119–22

types:

crack surface pressure, 130

shear body forces, 130

CRAS software, 10, 421–41

application, 423–41

analysis dialog, 436–7

design dialog, 432–3

design wizard dialog, 430–2

dialog buttons, 439

different types of help, 439–40

document/view, 440–1

load constant N dialog, 429

PatchGen Only dialog, 437–8

starting the program, 423–5

user enters the patch design

option, 433–6

user specified material dialog, 426–9

design and analysis tools, 421–3

Fortran codes in, 422
initial design, 421–3

PatchGen, rapid finite element

modeler, 422–3

refined closed-form analysis, 421–2

Damped repairs, analysis, 387–93

of layered beams, 387–8

repaired skin, stresses and stress intensity

factors in, 391–3

static and dynamic responses of, 390–1

structural damping, influence of, 388–90

Design fatigue load (DFL), 311

Design ultimate load (DUL), 311

Double-sided bonded doubler, 24

Double-strap joints, stress analysis, 17–31

elastic-plastic analysis, geometry for, 26

see also under Two-sided doublers and

double-strap joints, stress analysis

Duong and Yu’s curing model, 209–10

Eigen-function expansion method, 52

Elastic-perfectly-plastic model, 23

Elliptical composite patch, 9

Elliptical isotropic patch with a Poisson’s

ratio, formulas for, 224–9

Elliptical patches, analytical solution

of, 220–4

‘Energy release rate’, 12

Epoxy film adhesives, 6

Equivalent inclusion method, 97–100, 403

assumptions in, 108

of Eshelby, 96

Equivalent initial strain field, determining,

110–13

thermal cycle associated with adhesive

curing, 112–13

uniform low operating temperature, 111–12

Eshelby tensor, 75, 96–102, 105–106, 156,

232, 404, 409–10

for elliptical inhomogeneities, 217–20

Experimental verifications of analytical

methods, 349–81

fatigue crack growth tests and method

validation, 350–74

see also under Fatigue crack growth

load attraction tests and method

validation, 374–7

analytical prediction and test results,

comparison, 376–81

load attraction specimen with an

octagonal patch, geometry, 375

load attraction tests, 374–7

FALSTAFF spectrum, 298–9

Fatigue crack growth, 14–15

analysis, of repaired structures, 280–99
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comparison with experimental results,

292–9

crack-closure analysis, 281–8

see also separate entry
finite element method, overload effect

and validation using, 289–92

in one-sided patching, characterization, 214

tests and method validation, 350–74

analytical predictions and test results,

comparison, 362–74

fatigue crack growth analysis, 360–2

fatigue crack growth tests, 350–1

gauge measurements, 363
in one-sided and two-sided repairs,

characterization, 351–60

one-sided patched specimens, 365–74

patched specimen configurations,

description, 352

sandwich configurations, 362–5

stress intensity factor, 353
Fatigue enhancement, 1–2

Finite two-dimensional patch, 9

Fourier integral transform method, 126–7

Fracture:

basic modes, 11
opening mode (mode I), 11
shear mode(mode II), 11
tearing mode (mode III), 11

fracture toughness in ductile materials:

skin thickness effect on, 13
see also Fracture mechanics concepts

Fracture mechanics concepts, 66–7

basic elements, 10–15

crack growth under static load or residual

strength of a cracked structure, 12–14

fatigue crack growth, 14–15

see also Fracture

Galerkin method, 85, 192, 198–9, 286, 392

Gauge measurements, 363
Goland–Reissner approach, 31, 249,

253–4, 268

Grit blast silane (GBS), 7

Hadamard finite part, 198

Hart-Smith approach, 31, 33, 38, 40, 262–4, 268

Hooke’s law, 98, 392

Hybrid method, 146

Hydrostatic stress, 63–4

Infinite composite patch, 9

Infinite orthotropic strip theory, 127

Infinite sheet patch, 122–6

Infinite strip patch, 126–30

Isotropic skin/patches, 74, 79

Keer formulation, 86

Kirchoff theory, 38

Kirchhoff–Poisson plate bending theory,

198–9, 204, 206

Kronecker delta, 111, 116, 148, 155, 202,

304, 404

Laplacian equation, 139

Linear elastic fracture mechanics (LEFM)

approach, 10–12

Linear superposition method, 146

Maxwell’s reciprocal relation, 196

Mechanically fastened repairs, 4

Miles solution, 384, 390

Multi-inclusion model, 404

Multi-segment method of integration, 249,

259–61

Muskhelishvili complex variable method, 96

Non-destructive inspection (NDI)

techniques, 6

Non-elliptical patch, theoretical analysis, 10

Normalized shear spring constant, 86

One-dimensional theory, 74

One-sided bonded doublers and single-strap

joints, stress analysis, 31–50

analyses terminologies, 32
bending moment at ends and middle of

overlap, solution for (Stage I), 33–8

dimensions and material properties, 36
equation for, 258

Goland–Reissner solution, 31

Hart-Smith approach, 31, 33, 38

induced adhesive peel stresses, solution for,

(Stage II), 38–45

longitudinal force equilibrium, 39

moment equilibrium, 39

transverse force equilibrium, 39

induced adhesive shear stresses, solution for

(Stage III), 45–50

One-sided repairs, in crack patching, 87–92

analytical solution and finite element results

for, comparison, 91
dimensions and material properties, 91
spring constant, 90

un-cracked plate reinforced with a patch,

stress distribution in, 88
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One-sided strap joint theory, 354

Operating temperatures, 320

Out-of-plane bending effect, 220

analysis, 10

Overall sound pressure level (OASPL), 386

Patches:

co-cured, 7

patch ends, bond-line analysis at, 248–79

see also under Bond-line analysis at

patch ends

patch stiffness ratio, 355

patch–plate combination, 179

patch–skin displacement compatibility

equations, 116

pre-cured, 7

Peel stresses, 28–31, 317–20

differential equations governing, 29

equation for, 44

induced adhesive peel stresses, 38–45

induced adhesive shear stresses, 45–50

and shear stresses in the adhesive, solutions

for, 253–61

Phosphoric acid anodizing (PAA), 7

Plane-strain fracture toughness:

for selective skin aluminum materials,

13–14
Plastic adhesive, 82–3

Plastic yielding, 62–5

Plasticity-induced closure, 15

Plate-bending theory, 34, 39

Plate-spring approach, 50–1

Poisson’s ratio, 77–8, 119, 142, 148, 217, 219,

222, 236, 302

elliptical isotropic patch with a Poisson’s

ratio, formulas for, 224–9

order of singularity at square end

for, 55–6
Polygon-shaped patches, general solution of,

229–47

circular isotropic patch, repair problem

with, 241–2

orthotropic octagonal patch, repair problem

with, 243–5

polygonal inhomogeneity with variable

stiffness, 229–32

repair over an elliptical grind-out, 232–47

two-stage analysis procedure, 232–41

cavity filled with rigid material, 236–8

elliptical grind-out cavity, geometry, 233
spherical deep grind-out cavity,

geometry, 233

Stage I analysis, 234

Stage II analysis, 235

unfilled cavity, 238–41

Polygonal inclusion, 147–51

solution algorithm for, 149

Polygonal patch, geometrically linear analysis,

152–9

equivalent inclusion method for a bending

plate, 156–8

regular polygon-shaped inclusions, 152
repaired plate, geometry of, 154

Polynomial eigenstrains, inclusion problem

with, 100–107

computational algorithm, 102–107

formulation, 100–102

Preliminary design approach for corrosion

repairs, 336–48

basic analysis methods, 337–45

patched skin analysis, superposition

method for, 342
repair subjected only to mechanical loads,

337–40

repair subjected to thermo-mechanical

loads, 340–5

thermo-mechanical loading analysis,

linear superposition method

for, 343
two-stage analysis procedure, 338
undamaged skin analysis, superposition

method for, 343
design criteria, 345–6

for corroded skin or substrate, 345

for patch, 345–6

preliminary design procedure, 346–8

Preliminary design approach for crack

patching, 300–35

basic analysis methods, 301–10

design criteria, 310–14

for adhesive, 313–14

for cracked skin, 311–12

for patch, 312–13

design parameters, 333–5

loading conditions, 333

material selection, 314–20

adhesive disbonds, 320

adhesive materials, 315–20

composite patch material properties

(tensile), 318–19
fiber metal laminate properties, 320
operating temperatures, 320

patch materials, 314–15

peel stress, 317–20

repair materials, characteristics, 316–17
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preliminary design procedure, 320–32

adhesive material properties, 321–2
design procedure, 329–32

ranges of 80/8� and Kt for 8
T
22>1, 327–8

ranges of 80/8� and Kt for 8
T
22 ≤1,

327–8

repair subjected only to mechanical loads,

323–5

repair subjected to thermo-mechanical

loads, 325–32

repair subjected only to mechanical loads,

analysis method, 301–304

repair subjected to thermo-mechanical

loads, analysis method, 304–10

linear superposition method, 309
superposition method, 308

Pressurization technique, 7

Proximate patch, 406–12

QUADPACK mathematical package, 129

Reissner plate theory, 87, 198, 200,

202–206, 207
Relative sound pressure levels (RSPL), 386

Repair analysis methods accounting for

secondary effects, 402–18

load attraction of bonded patches, tapering

effect on, 402–406

load attraction, proximity on, patches effect,

406–12

repair efficiency, adherend shear

deformation effect on, 412–18

tapered patch with concentric and similar

ellipses, 403

Repair efficiency, adherend shear deformation

effect on, 412–18

Repair of sonic fatigue see under Sonic
fatigue, repair of

Repair process:

compounding technique for, 9

overview, 1–8

repair design analysis, 6

repair material, choice of, 6

see also Bonded repairs

Rose two-stage analysis procedure, 301

Rose’s or Barneveld–Fredell’s curing

model, 209

R-ratio effect, 15

Runge–Kutta–Fehlberg method, 260, 275

St Venant’s principle, 51

Sandwich configurations, 362–5

Shear deformation (Reissner) plate theory, 87,

198, 200, 202–206, 207
Sonic fatigue, repair of, 382–401

acoustic loading, structural response

to, 386–7

damped repairs, analysis, 387–93

see also separate entry
damped repairs, optimization of, 395

damping layer, shear deformation

of, 385
Dyad 609 at 250 Hz, loss factor of, 396

Dyad 609, shear modulus of, 396
fatigue crack growth analysis, 393–4

highly damped repairs, notations

for, 385
membrane and bending stresses, 397, 399
rectangular plate containing an edge crack,

geometry and notations, 383
Sound pressure levels (SPL), 386

Spew fillet, 56–9

configuration, 58
maximum fillet angle 9 for zero corner

singularity, 58
order of corner singularity at, 58

Strain-energy release rate, 89–90

Stress intensity factor evaluation, 10, 130–1

see also Cracked sheet

Supported one-sided crack patching,

mathematical theory, 95–145

see also under Two-sided crack patching,

mathematical theory

Tanaka–Mura method, 219, 220
Tapered patches and doublers,

one-dimensional analysis, 248–77

first step analysis, 252

mathematical formulation and two-step

solution method, 249

multi-segment method of integration,

259–61

nonlinear moment distribution along the

joint, solution for, 249–53

numerical examples, 261–70

peel and shear stresses in the adhesive,

solutions for, 253–61

Taylor series, 114, 231–2

Thermal constraints, in two-sided crack

patching, 138–45

isotropic patch used in, 143
simulating finite size effect, Spring

representation for, 140

temperature distribution during heating and

cooling, 139
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Thermal cycles in adhesive curing, 112–13

Thermal mismatch and adhesive plasticity

effects, 270–7

Thermal stresses, 92–4

in bonded patched skin, 158
formulation for, 167–9

illustrative examples, 170–6

in polygonal patch, 162–76

preliminary analysis, 162–7

solution method, 169–70

solution of, 113–15

thermal residual stresses resulting from

bonding, 209–14

Duong and Yu’s curing model, 209–10

fatigue crack growth in one-sided

patching, characterization, 214

Rose’s or Barneveld–Fredell’s curing

model, 209

Wang and Erjavec’s curing model,

210–14

Transverse deflection, 34

Triaxial stresses and plastic yielding, 62–5

Two-sided crack patching, mathematical

theory, 95–145

composite patch displacements and stresses,

122–30

see also under Composites

fracture analysis (Stage II), 115–31

cracked sheet displacements and stresses,

118–22

see also under Cracked sheet

load attraction (Stage I), 95–115

equivalent inclusion method, 97–100

equivalent initial strain field, determining,

110–13

see also separate entry
inclusion problem with polynomial

eigenstrains, 100–107

see also under Polynomial eigenstrains,

inclusion problem with

load attraction problem, solution of,

107–10

load attraction with thermal effects,

110–15

Rodin’s approach, 97

thermal stresses, solution of, 113–15

numerical illustrations, 131–8

stress intensity factor evaluation, 130–1

see also Cracked sheet

thermal constraints, 138–45

see also separate entry

Two-sided doublers and double-strap joints,

stress analysis, 17–31

boundary conditions, 19

elastic analysis, 17–22

adherend stress–strain relations, 17

adhesive elastic stress–strain

relation, 17

horizontal force equilibrium, 17

elastic-plastic analysis, 23–8

geometry for, 23
geometry, 18
peel stresses analysis, 28–31

adhesive stress–strain relation, 29

force equilibrium, 29

geometry, 29

moment equilibrium, 28

moment–curvature relation, 29

Unsupported one-sided crack patching,

approximate theory of, 146–215

fracture analysis using crack-bridging model

(Stage II), 189–209

classical plate theory, 201–202

geometrically linear analysis, 206–207

geometrically nonlinear analysis, 208

integral equations, numerical solutions

of, 201–205

Kirchhoff–Poisson plate bending

theory, 198–9

physical dimensions and material

properties, 206

Reissner’s plate theory, 200, 202–205

see also under Crack bridging model

geometrically linear analysis (Stage I),

147–59

Beom’s approach, 147

Duong and Yu’s approach, 147

geometrically nonlinear analysis (Stage I),

159–89

thermal stresses in polygonal patch,

162–76

see also under Thermal stresses

inclusion with constant eigencurvature,

147–52

elliptical inclusion, 151

polygonal inclusion, 147–51

patch spanning across the entire plate’s

width under purely mechanical loading,

176–83

polygonal patch under combined

thermo-mechanical loading, 183–9

Step 1, 183–4
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Step 2, 184–5

Step 3, 185–6

polygonal patch, geometrically linear

analysis, 152–9

see also under polygonal patch
thermal residual stresses resulting from

bonding, 209–14

see also under Thermal stresses

Voight’s convention, 218

Von Karman plate theory, 163

Von Mises yield criterion, 63–4

Wang and Erjavec’s curing model,

210–14

Wang–Rose’s crack-bridging model, 159,

171, 187
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