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To the memory of my father —
to the memory of my nephew, Emmanuel Amar,

who died in 1944 in a concentration camp —

10 my wife and my children, to whom

I owe so much —

! this book is dedicated




PREFACE

THIS SMALL BOOK contains, with but a few developments, the substance of the
lectures I gave in the fall of 1960 at Brandeis University at the invitation of its
Department of Mathematics.

Although some of the material contained in this book appears in the latest
edition of Zygmund’s treatise, the subject matter covered here has never until
now been presented as a whole, and part of it has, in fact, appeared only in origi-
nal memoirs. This, together with the presentation of a number of problems which
remain unsolved, seems to justify a publication which, I hope, may be of some
value to research students. In order to facilitate the reading of the book, I have
included in an Appendix the definitions and the results (though elementary)
borrowed from algebra and from number theory.

I wish to express my thanks to Dr. Abram L. Sachar, President of Brandeis
University, and to the Department of Mathematics of the University for the in-
vitation which allowed me to present this subject before a learned audience, as
well as to Professor D. V. Widder, who has kindly suggested that I release my
manuscript for publication in the series of Heath Mathematical Monographs.
I am very grateful to Professor A. Zygmund and Professor J.-P. Kahane for
having read carefully the manuscript, and for having made very useful sugges-
tions.

R. Salem
Paris, | November 1961

Professor Raphaél Salem died suddenly in Paris on the twen-
tieth of June, 1963, a few days after seeing final proof of his work.
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Chapter 1

A REMARKABLE SET OF ALGEBRAIC INTEGERS

1. Introduction

We shall first recall some notation. Given any real number a, we shall denote
by [a] its integral part, that is, the integer such that

[a]<a<[a]+ 1.
By (a) we shall denote the fractional part of a; that is,
[a]+ (a) = a.

We shall denote by || a || the absolute value of the difference between a and the
nearest integer. Thus,

lal|l=minfa~n|, n=0,£1, £2,....

If m is the integer nearest to a, we shall also write

a=m+ {a}
so that || a || is the absolute value of {a}.
Next we consider a sequence of numbers t wy, us, . . ., s, . . . such that
0<u <l

Let A be an interval contained in (0, 1), and let | A | be its length. Suppose
that among the first N members of the sequence there are ¥(A, N) numbers in
the interval A. Then if for any fixed A we have
. v4A, N)
Jim 25218,
we say that the sequence {u,} is uniformly distributed. This means, roughly
speaking, that each subinterval of (0, 1) contains its proper quota of points.

We shall now extend this definition to the case where the numbers u; do not
fall between 0 and 1. For these we consider the fractional parts, (u;), of uj,
and we say that the sequence {u,} is uniformly distributed modulo 1 if the se-
quence of the fractional parts, (), (42), . . ., (), . . ., is uniformly distributed as

defined above.
The notion of uniform distribution (which can be extended to several di-

mensions) is due to H. Weyl, who in a paper [16], } by now classical, has also
given a very useful criterion for determining whether a sequence is uniformly
distributed modulo 1 (cf. Appendix, 7).

1 By “number” we shall mean “‘real number” unless otherwise stated.

1 See the Bibliography on page 67.
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Without further investigation, we shall recall the following facts (see, for

example, [2]).

1. If £ is an irrational number, the sequence of the fractional parts
(n),n=1,2, ..., is uniformly distributed. (This is obviously untrue for
£ rational.)

2. Let P(x) = ¢x*+ - -+ + a, be a polynomial where at least one coefficient
a;, with j > 0, is irrational. Then the sequence P(n), n=1, 2, ..., is uni-
formly distributed modulo 1.

The preceding results give us some information about the uniform distribution
modulo 1 of numbers f(n), n =1, 2, ..., when f(x) increases to « with x not
faster than a polynomial.

We also have some information on the behavior — from the viewpoint of
uniform distribution — of functions f(n) which increase to « slower than n.
We know, for instance, that the sequence an® (@ > 0,0 < a < 1) is uniformly
distributed modulo 1. The same is true for the sequence a log® n if @ > 1, but
untrue if @ < 1.

However, almost nothing is known when the growth of f(n) is exponential.
Koksma [7] has proved that wn is uniformly distributed modulo 1 for almost
all (in the Lebesgue sense) numbers w > 1, but nothing is known for particular
values of w. Thus, we do not know whether sequences as simple as e* or @
are or are not uniformly distributed modulo 1. We do not even know whether
they are everywhere dense (modulo 1) on the interval (0, 1).

It is natural, then, to turn in the other direction and try to study the numbers
w > 1 such that w~ is “badly” distributed. Besides the case where w is a rational
integer (in which case for all n, w" is obviously congruent to 0 modulo 1), there
are less trivial examples of distributions which are as far as possible from being
uniform. Take, for example, the quadratic algebraic integer

w = ¥(1+ V/5) with conjugate 3(1 ~ V5) = w".
Here w* + w'™ is a rational integer; that is,
W+ w™ =0 (mod 1).
But |w’ | < 1, and so @™ — 0 as n — «, which means that w* — 0 (modulo 1).

In other words, the sequence w* has (modulo 1) a single limit point, which is 0.
This is a property shared by some other algebraic integers, as we shall see.

2. The slgebraic integers of the class §

DEFINITION.  Let 6 be an algebraic integer such that all its conjugates (not 0
itself) have moduli strictly less than 1. Then we shall say that 0 belongs to the

class S.}

1 For the convenience of the reader, some classical notions on algebraic integers are given
in the Appendix.

1 We shall always suppose (without loss of generality) that § > 0. 8 is necessarily real. Al-
though every natural integer belongs properly to S, it is convenient, to simplify many state-
ments, to exclude the number | from S. Thus, in the definition we can always assume 6 > 1.

S e W o e e —
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Then we have the following.
THEOREM 1. If 0 belongs to the class S, then 6~ tends to O (modulo Dasn— o,

PROOF. Suppose that 6 is of degree k and let a, o, . . ., cu_, be its conjugates.
The number 6"+ a,* + - +- + au_," is a rational integer. Since | ;| < 1 for
all j, we have, denoting by p the greatest of the | o; |, j=1,2,..., k-1,

lanfrt -+ < (k- 1Dp, p<I,
and thus, since Or+ar+--+a " =0 (modl),

we see that (modulo 1) 6 — 0, and even that it tends to zero in the same way
as the general term of a convergent geometric progression.

With the notation of section 1, we write || 6= | — 0.

Remark. The preceding result can be extended in the following way. Let
A be any algebraic integer of the field of 6, and let u,, p, . . ., i be its conju-
gates. Then

A+ oy + - - -+

is again a rational integer, and thus || A" || also tends to zero as 1 — =, as can
be shown by an argument identical to the preceding one. Further generalizations
are possible to other numbers A.

Up to now, we have not constructed any number of the class S except the
quadratic number #(1 + V'5). (Of course, all rational integers belong trivially
to §.) It will be of interest, therefore, to prove the following result [10].

THEOREM 2. In every real algebraic field, there exist numbers of the class S.t

ProOF. Denote by wi, ws, . .., w: a basis } for the integers of the field, and
let ', ws?, ..., for i=1,2,...,k—1 be the numbers conjugate to
w, Wy, . .., . By Minkowski's theorem on linear forms [5] (cf. Appendix, 9),
we can determine rational integers x, xs, . . ., X, not all zero, such that

| x4+ x| < A4
[ xw@+ - x| <p<l (i=1,2,..,k=-1)
provided Ap-t > VD],

D being the discriminant of the field. For A large enough, this is always possible,
and thus the integer of the field

0= xjon+ -+ + xiwn

belongs to the class S.

t We shall prove, more exactly, that there exist numbers of S having the degree of the field.
$ The notion of *basis” of the integers of the field is not absolutely necessary for this proof,
since we can take instead of wy, . .., ws the numbers 1, a, ..., a*~, where « is any integer of
the field having the degree of the field.
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€ A Remarkable Set of Algebraic Integers

3. Characterization of the numbers of the class S
The fundamental property of the numbers of the class S raises the following

question.

Suppose that 6 > 1 is a number such that || || —0 as n — = (or, more
generally, that @ is such that there exists a real number A such that | Ng"j| —0
asn— «). Can we assert that 8 is an algebraic integer belonging to the class S?

This important probiem is still unsolved. But it can be answered positively
if one of the two following conditions is satisfied in addition:

1. The sequence || A8~ || tends to zero rapidly enough to make the series
3 || A6~ ||* convergent.
2. We know beforehand that 6 is algebraic.

In other words, we have the two following theorems.

THeoREM A. If @ > 1 is such that there exists a X with
2N < w0,

then 8 is an algebraic integer of the class S, and \ is an algebraic number of the
field of 8.

Tueorem B. If @ > | is an algebraic number such that there exists a real
number \ with the property || N@» || — 0 as n — <, then 0 is an algebraic integer
of the class S, and \ is algebraic and belongs to the field of 6.

The proof of Theorem A is based on several lemmas.

LEMMA 1. A necessary and sufficient condition for the power series

m f(@) = g Ca2"
to represent a rational function,
P(2)
Q0(2)

(P and Q polynomials), is that its coefficients satisfy a recurrence relation,
Qo + ACms1 + + + -+ Qmsp =0,
valid for all m > my, the integer p and the coefficients aw, o, . . ., 0 being inde-
pendent of m.
Lemma 11 (Fatou's lemma). If in the series (1) the coefficients c. are rational
integers and if the series represents a rational function, then
P(z)
2) = =,
&= %)
where P/Q is irreducible, P and Q are polynomials with rational integral co-
efficients, and Q(0) = 1.

e o e e A

A Remarkable Set of Algebraic Integers 5

LemMmA 111 (Kronecker). The series (1) re j jon i
. : presents a rational function nd
only if the determinants function I @

C € Cm
A‘ - €1 € Cm+1
Cm Cmid Com

are all zero for m > m,.

LemMA IV (Hadamard). Let the determinant

a bl ce 1|
D - az b2 o lz
an ba I

have real or complex elements. Then
o1 <(Shar)(E16) - (Sinr)
1

) We shall not prove here Lemma 1, the proof of which is classical and almost
immediate 3], nor Lemma 1V, which can be found in all treatises on calculus
{4]. We shall use Lemma 1V only in the case where the elements of D are real;
the proof in that case is much easier. For the convenience of the reader w;
shall give the proofs of Lemma 1l and Lemma II1. '

PROOF of Lemma II. We start with a definition: A formal power series
Z a.zr
0

with ratic?nal integral coefficients will be said to be primitive if no rational integer
d > 1 exists which divides al/ coefficients.
Let us now show that if two series,

3 a.z* and 3 bz,
0 0
are both primitive, their formal product,

L] n
OZ CaZ", Cp = E avbn—y,

v =0

is. also primitive. Suppose that the prime rational integer p divides all the c..
Since p cannot divide all the a,, suppose that

a =0
a =0
. 1 ..... (mod p), a. # 0 (mod p).
a, =0




6 A Remarkable Set of Algebraic Integers

We should then have

o = ab (mod p), whence by =0 (mod p),
Cre1 = @by (mod p), whence b, = 0 (mod p),
Crst = aihs (mod p), whence by = 0 (mod p),

and so on, and thus
would not be primitive.

We now proceed to prove our lemma. Suppose that the coefficients c. are
rational integers, and that the series

> caz"
0
represents a rational function

f(z)=£(—zzsp°+Plz+"-+P~zn
@) qo+q,z+...+q”z,..

which we assume to be irreducible. As the polynomial Q(z) is wholly de-
termined (except for a constant factor), the equations

qoC, + G1Ce—1 +--- + an.-. - 0 (S > m)

determine completely the coefficients g; (except for a constant factor). Since
the c, are rational, there is a solution with all ¢; rational integers, and it follows

that the p; are also rational integers.
We shall now prove that o= = 1. One can assume that no integer
~d> 1 divides all p; and all g;. (Without loss of generality, we may suppose
- that there is no common divisor to all coefficients c,; i.c., ca2z" is primitive.)
The polynomial Q is primitive, for otherwise if d divided g; for all j, we should

have

and d would divide all p;, contrary to our hypothesis.
Now let U and ¥ be polynomials with integral rational coefficients such that
PU+QV=m#0,
m being an integer. Then
m=Q(Uf+ V).

Since Q is primitive, Uf+ V cannot be primitive, for m is not primitive unless
|m}=1. Hence, the coefficients of Uf+ ¥V are divisible by m. If 4, is the
constant term of Uf + V, we have

m= qo‘YO,

and, thus, since m divides v, one has go = = 1, which proves Lemma II.

A Remarkable Set of Algebruic Integers 7
PROOF of Lemma III. The recurrence relation of Lemma I,
(2) (4 77 oy + alcn-H + tre + apcm+p = 0,

for all m > my, the integer p and the coefficients ay, . . ., a, being independent
of m, shows that in the determinant

C G Cm

A, = G ¢ Cm+1
---------------- ’
cnl cm+1 Com

where m > my + p, the columns of order my, my+ 1, . . . +pared ;
e, A , , My + p are dependent;

Wg must now show that if A., = 0 for m > m,, then the c, satisfy a recurrence
relation of the type (2); if this is so, Lemma III follows from Lemma 1. Let
p be the first value of m for which A, =0. Then the last column of A, is a
linear combination of the first p columns; that is:

Litp = autj+ o+« o+ QpiCitp1+ 4= 0, j=0,1,.., p-
We shall now show that L;,, = 0 for all values of j. Suppose that
Liyy=0, j=0,1,2,....,m—1, (m>p).

If we can prove that L,.,, = 0, we shall have proved our assertion by recurrence.
Now let us write

iy vis Cm
Ap—lE . .
A"‘- ¢ é Cpim | s
Cm iCpm ... Com

and let us add to every column of order > p a linear combination with co-
efficients c, au, . . ., az—y of the p preceding columns. Hence,

i L, L.
,—l§ :
Ba=lc, | Lyim |
cm (Lyim ... Lam

and since the terms above the diagonal are all zero, we have
B = (=178 i(Lyym)™ 7.

Since A,, = 0, we have L., =0, which we wanted to show, and Lemma Il
follows.

wmezmrm. i




8 A Remarkable Set of Algebraic Integers

We can now prove Theorem A.
ProoF of Theorem A [10]. We write
NG~ = a, + €,

where a, is a rational integer and | €, | < #; thus| €, | = | A@* ||. Our hypothesis
is, therefore, that the series 3, €, converges. .
The first step will be to prove by application of Lemma III that the series

-
> auz
0

represents a rational function. Considering the determinant

G 4 ves Qn
An - a a cee Qunyy R
A  Quyl Qin

we shall prove that A, = O for all n large enough. Writing

Nm = Qm = 0a,,.-1 = 06..._1 = €m,

we have
Ne? < (67 + 1)(€nr? + €.

Transforming the columns of A,, beginning with the last one, we have

G M cee Ma
A - a Uil N+l
an  Mn+1 772-

and, by Lemma 1V,
n n+1 2n
Anz S (E au’)( i nn’) cre (Z ﬂn’)
0o 1 n
< (T ) Riks- - Ra
[
where R, denotes the remainder of the convergent series

> nat

A

But, by the definition of a.,
i a.? < Co,
0

where C = C(\, ) depends on A and 6 only.

A Remarkable Set of Algebraic Integers 9
Hencs,

ar< Il @ry,

A=1

and since Ry — 0 for h— », A, — 0 as n— =, which proves, since A, is a
rational integer, that A, is zero when n is larger than a certain integer.
Hence

}-: A" = QL((Z{)) »  (irreducible)
0

where, by Lemma I11, P and Q are polynomials with rational integral coefficients
and Q(0) = 1. Writing

Q@) =1+ qz+- -+ qz,

we have
£ = }; ez
- N - 3 g
0 0
A P(2)

TT=0z T+qz+ -+

Since the radius of convergence of
X €az®
L]
is at least 1, we see that

Q@) =1+qz+-- -+ qz*

has only one zero inside the unit circle, that is to say, 1/6. Besides, since
3 el <, f(z) has no pole of modulus 1;t hence, Q(z) has one root, 1/6, of
modulus less than 1, all other roots being of modulus strictly larger than 1. The
reciprocal polynomial,

2"‘+q:z"“+---+q,,,

has one root 6 with modulus larger than 1, all other roots being strictly interior
to the unit circle | z| < 1. Thus 8 is, as stated, a number of the class S.
Since
_A_ P/
6 (/)
A is an algebraic number belonging to the field of 6.
t See footnote on page 10.
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Proor of Theorem B. In this theorem, we again write
NG~ = a, + €,

a, being a rational integer and | e, | = || A0 || < 4. The assumption here is
merely that €, — 0 as n— «, without any hypothesis about the rapidity with
which e, tends to zero. But here, we assume from the start that § is algebraic,
and we wish to prove that 6 belongs to the class S.

Again, the first step will be to prove that the series

3 a.zn

0
represents a rational function. But we shall not need here to make use of
Lemma III. Let

Au+A|0+"'+Ag0k=0

be the equation with rational integral coefficients which is satisfied by the alge-
braic number §. We have, N being a positive integer,

N (Ag+ A8+ - - -+ A =0,
and, since
NGN+P = gy, + €nip,
we have
Aoy + Aian + - - + Aray g = — (Aoew + Arena + - - -+ Arenia).

Since the A; are fixed numbers, the second member tends to zero as N — o,
and since the first member is a rational integer, it follows that

Ay + gy + - - -+ Asang =0

for all N> No. This is a recurrence relation satisfied by the coefficients aa,
and thus, by Lemma I, the series

-»
I X
0

represents a rational function.
From this point on, the proof follows identically the proof of Theorem A.

(In order to show that f(z) has no pole of modulus 1, the hypothesis €, — O is
sufficient.f) Thus, the statement that 8 belongs to the class S is proved.

t A power series f(z) = %: c.z* with ¢, = o(1) cannot have a pole on the unit circle. Suppose

in fact, without loss of generality, that this pole is at the point z = 1. And let z = r tend to
1 —0 slong the real axis. Then |f(z)| < };, |ca] ™ = o(l — P, which is impossible if

z = 1 is a pole.

A Remarkable Set of Algebraic Integers 11

4. An unsolved problem

As we pointed out before stating Theorems A and B, if we know only that
6 > 1 is such that there exists a real A with the condition || A" | >0 as n — «,
we are unable to conclude that 6 belongs to the class S. We are only able to
draw this conclusion either if we know that 3 || A6 |2 < « or if we know
that @ is algebraic. In other words, the problem that is open is the existence
of transcendental numbers @ with the property || N@" || >0 asn— .

We shall prove here the only theorem known to us about the numbers 6
such that there exists a N\ with | A" || >0 as n— « (without any further
assumption).

THEOREM. The set of all numbers O having the preceding property is denumer-
able.

PrOOF. We again write
A= a, + €,
where a, is an integer and | €, | = || A6" ||. We have
nit’ _ Gnlnes — Gp?
an 2’8

- (A\G» — 6.)()\0""")\—0 €ny2) — (NG — €u+1)2,
L J— e-

and an easy calculation shows that, since e, — 0, the last expression tends to
zero as n — «. Hence, for n > ny, ny = ny(\, ), we have

Qpy2 —

this shows that the integer a,.,s is uniquely determined by the two preceding
integers, a», a.+1. Hence, the infinite sequence of integers {a,} is determined
uniquely by the first n, + | terms of the sequence.

This shows that the set of all possible sequences {a,} is denumerable, and,
since

8 = lim &+,
a,

that the set of all possible numbers 6 is denumerable. The theorem is thus
proved.

We can finally observe that since

)\-limg—:,

the set of all values of A is also denumerable.
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EXERCISES
! 1. Let K be a real algebraic field of degree n. Let 6 and 6’ be two numbers
‘ of the class S, both of degree n and belonging to K. Then 86’ is a number of the
class S. In particular, if ¢ is any positive natural integer, 6¢ belongs to S if 6 does.
2. The result of Theorem A of this chapter can be improved in the sense that
the hypothesis

ZiINrt< ™
can be replaced by the weaker one

318 = ofe.

It suffices, in the proof of Theorem A, and with the notations used in this proof,
to remark that
1 ...+ R,
Ri--- Ryt Tkt Re
and to show, by an easy calculation, that under the new hypothesis, the second
member tends to zero for n — .

Chapter 11

A PROPERTY OF THE SET OF NUMBERS
OF THE CLASS S

1.\ The closure of the set of numbers belonging to S
THEOREM. The set of numbers of the class S is a closed set.
The proof of this theorem [12] is based on the following lemma.

LeMMA. To every number 0 of the class S there corresponds a real number \
such that 1 < N\ < 0 and such that the series

g A6 |

converges with a sum less than an absolute constant (i.e., independent of 0 and \).

PrROOF. Let P(z) be the irreducible polynomial with rational integral co-
efficients having 6 as one of its roots (all other roots being thus strictly interior
to the unit circle | z| < 1), and write

PO =2+ qz'+ - +q.
Let Q(z) be the reciprocal polynomial

Q(z)-z"P(é)=l+q,z+-~-+qbzk.

We suppose first that P and Q are not identical, which amounts to supposing
that @ is not a quadratic unit. (We shall revert later to this particular case.)
The power series

P(z)

- = +CZ+"'+C,.Z"+"‘

o T
has rational integral coefficients (since Q(0) = 1) and its radius of convergence
is 8-1. Let us determine u such that

M 8@ =15~ o)

will be regular in the unit circle. If we set

P(2) = (z - O)Py(2),
2@ = (1 - 02Q\(2),

then P, and Q, are reciprocal polynomials, and we have

(-0 38
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Sinoel P3| 1for|z|=1,and sinoeﬁ is regular for [ z| < 1, we have

[X€) O
) )
0@ <h
and, thus,
(0] “&|<0—%<0.

Finally,
RS s

= z;: (ulr — ca)z"

has a radius of convergence larger than 1, since the roots of Q(2) different from
01 are all exterior to the unit circle. Hence,

S - = 5 [ gtem 1 de.

But, by (1) and (2), we have for | z | = 1

-1 1
<0——-(0_l)+l 2+0<3'

s <42k +|§
Hence,
S (- et <9
which, of course, gives
® S st <.

Now, by (2) | #] < 8 and one can assume, by changing, if necessary, the sign of
. 1 .
5, that > 0. (The case u =0, which would imply P (9) = 0, is excluded

for the moment, since we have assumed that @ is not a quadratic unit.) We can,
therefore, write 0 < u < 6. .

To finish the proof of the lemma, we suppose u < 1.. (Otherwise we can take
A = 4 and there is nothing to prove.) There exists an integer s such that

1 1
R

or

1<0u<t,
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We take X = f*u and have by (3)

3 I [ = 3 | e
['] 0
- Sl utm e

< Zo:llﬂo"ll’ <9.
Sinde 1 < \ < 0, this last inequality proves the lemma when @ is not a quadratic
unit.
It remains to consider the case when 8 is a quadratic unit. (This particular

case is not necessary for the proof of the theorem, but we give it for the sake
of completeness.) In this case

6 + 6-»

is a rational integer, and
1
hem ) < g
Thus,
- L) 1 e!
@”0”"’< ;5’;-5’———1
and since 6 4 é is at least equal to 3, we have # > 2 and

&4

#=1°3

Thus, since ), || 8~ || < 4, the lemma remains true, with A = 1.

Remark. Instead of considering in the lemma the convergence of
I
we can consider the convergence (obviously equivalent) of
g sin? TG~
In this case we have

f: sin? A6 < 97,
o
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PROOF of the theorem. Consider a sequence of numbers of the class S,

6,0, ...,0,,...tending to a number w. We have to prove that w belongs to
S also.

Let us associate to every 8, the corresponding \, of the lemma such that
@ 1SN <0, 3 sint w80 < 9t
0

Considering, if necessary, a subsequence only of the §,, we can assume that the
A, which are included, for p large enough, between 1 and, say, 2w, tend to a
limit x. Then (4) gives immediately

2 sin® muws < 912
0

which, by Theorem A of Chapter I, proves that w belongs to the class S. Hence,
the set of all numbers of § is closed.

It follows that 1 is not a limit point of S. In fact it is immediate that 6 € S
implies, for all integers ¢ > 0, that 87 ¢ S. Hence, if 1 + € € S, with ¢, —0,
one would have

I+ el ¢ s

a being any real positive number and [g] denoting the integral part of g--
But,asm — «, ¢, — 0 and
(1 + el s em.

It would follow that the numbers of S would be everywhere dense, which is
contrary to our theorem.

2. Another proof of the closure of the set of numbers belonging to the class S

This proof, [13], [11], is interesting because it may be applicable to different
problems.

Let us first recall a classical definition: If f(2) is analytic and regular in the
unit circle | z| < I, we say that it belongs to the class H» (p > 0) if the integral

[, "\ S pde (< 1)

is bounded for r < 1. (See, e.g., [17].)

This definition can be extended in the following way. Suppose that f(z) is
meromorphic for | z| < 1, and that it has only a finite number of poles there
(nothing is assumed for | z|=1). Let z,..., zs, be the poles and denote by
Pi(2) the principal part of f(z) in the neighborhood of z;. Then the function

8(2) = f2) — i. P2

is regular for | z| < 1, and if g(z) € H (in the classical sense), we shall say that
Sf(2) € HP (in the extended sense).
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We can now state Theorem A of Chapter I in the following equivalent form.

THEOREM A’. Let f(2) be analytic, regular in the neighborhood of the origin,
and such that its expansion there

hd
> anz
0

1 ] i j lar for |z] < 1, ex-
has rational integral coefficients. Suppose that f(z) is regul | .
cept for a simple pole 1/6 (> 1). Then, if f(z) € H? it is a rational function
and 8 belongs to the class S.

'i'ge reader will see at once that the two forms of Theorem A are equivalent.
Now, before giving the new proof of the theorem of the closure of S, we shall

prove a lemma.

LBMMA. Let P(2) be the irreducible polynomial having rational integral co-
efficients and having a number 0 € S for one of its roots. Let

0(z) = 2P (%)

be the reciprocal polynomial (k being the degree of P). Let \ be such that

A _ P
-6z Q2)

is regular in the neighborhood of 1/ and, hence, for all | z| < 1. [We have
already seen that | \| < 6 — é (and that thus, changing if necessary the sign of
Q, wecan take 0 < A < 8- é)] Then, in the opposite direction [11],

x> f(ilﬁ)’
provided 0 is not quadratic, and thus P » Q.

ProOF. We have already seen that

P@) _ 5.
0@ = &

the coefficients ¢, being rational integers. We now write

N _P@_ S - = S e
s 2~ g - S-S

We have
l 2x i) 2 _ = -’
(5 lsfv—r/; [ g(e*) [Pde ;5-

as already stated.

ﬁ
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On the other hand, the integral can be written

N
= 2xi {l—Oz 0 Z _8 0 z
z
where the integral is taken along the unit circle, or
1 A PN _@Q
21r|/ {l -6z Q} {2—0 zP}dz
But changing z into 1/z, we have

N @, __ [ N Pdz_ [ A P
/cl—ozzpd" L 00z [02‘09‘12
~ z

~A
ST | R S
=1 0"“{(‘0) T\ 8T
6” "B
Therefore,
| dz 2)\’ 1 Al
= i ¢, Z 6 —1"2x Jo (1—02)(2—0)
z—l
2N b ]
=l-Eoiti _glT—0zl
[
22 A A?
l-gatE-ilTE-1
and thus (5) gives
At >
6 l—a,_l-fo:e.’.
This leads to
IN] < VR -1

or changing, if necessary, the sign of @, to A < V@ -1 (an inequality weaker
than X < 0 - g already obtained in (2).

On the other hand, since A — ¢ = &, we have

IN—c|=]el <L
But
P(O) q»
O

Hence A > 0and ¢y < A+ 1.
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We shall now prove that

1

A>EFD

In fact, suppose that

>‘52(‘9+l)’

then N < 1 and necessarily ¢, = 1. But, since

5(] — 02) = co+ Z.: (= Bcny)z,
1

we have, if z = ¢',

1

2w P ’
s o | =02 -c.,+2(c»—0c»—-),

. P
and since ' 0 l = | for |z| =1 and the integral is

1+ 6,
the equality ¢o = 1 implies
I c; - 0 I < 0.

Hence, since ¢, is an integer, ¢, 2> 1.
And thus, since by (6)

At
0‘,—_—‘*' &+ e,

we have, withco=1,¢, > 1, N0 < %,

A )\

F-i + A-1)+N-1)2 < +()\-— )+ N —c) <1,

]
0_,":_l+>\-(1+or)-z)\(|+0)+| <o,

A

This contradicts

Thus, as stated,
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We can now give the new proof of the theorem stating the closure of S.

PrOOF. Let w be a limit point of the set S, and suppose first w > 1. Let
{6,) be an infinite sequence of numbers of S, tending to w as s — «. Denote
by P.(2) the irreducible polynomial with rational integral coefficients and having
the root 8, and let X, be its degree (the coefficient of zX: being 1). Let

0.0 = zxn.(})

be the reciprocal polynomial. The rational function P,/Q, is regular for
[ z] < 1 except for a single pole at z = 6,7, and its expansion around the origin

_& = Z a.(l)zl
. n=0

has rational integral coefficients.
Determine now A, such that

.

will be regular for | z| < 1. (We can discard in the sequence {6,] the quadratic
units, for since 0, — w, K, is necessarily unbounded.)t By the lemma, and
changing, if necessary, the sign of Q,, we have

1
206.+ 1)

Therefore, we can extract from the sequence {\,} a subsequence tending to a
limit different from 0. (We avoid complicating the notations by assuming that
this subsequence is the original sequence itself.)

On the other hand, if | z| =1,

<\ <6b.

|g,(z)|<§l:-)\_—'li+l <A,

A being a constant independent of s. Since g,(2) is regular, this inequality holds
for}z| <1

We can then extract from the sequence {g.(z)}. which forms a normal family,
a subsequence tending to a limit g*(z). (And again we suppose, as we may,
that this subsequence is the original sequence itself.) Then (7) gives

') e B im P

g2 = = az lim 0.

Since the coefficients a.® of the expansion of P,’Q, are rational integers, their
limits can only be rational integers. Thus the limit of P./Q, satisfies all require-
ments of Theorem A’. (The fact that g*(z) € H* is a trivial consequence of its

t See Appendix, 5.
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b.oundedn?ss, since | g*(2)| < A.) Therefore w is a number of the class S
since 1/w is actually a pole for

lim £
Q.
because u »¢ 0. (This is essential, and is the reason for proving a le t
effect that the \, are bounded below.) P 8 & lemma to the
EXERCISE

Let a be a natural positive integer > 2. Then a is a limit point for the num-
bers of the class S. (Considering the equation

™Mz—a) - 1=0,

thg resu!t for a> 2 is a straightforward application of Rouché’s theorem.
With a little care, the argument can be extended to g = 2)




Chapter 111

APPLICATIONS TO THE THEORY OF POWER SERIES;
ANOTHER CLASS OF ALGEBRAIC INTEGERS

1. A generalization of the preceding results

Theorem A’ of Chapter II can be extended, and thus restated in the following
way. :

THEOREM A”. Let f(2) be analytic, regular in the neighborhood of the origin,
and such that the coefficients of its expansion in this neighborhood,

L]
Y a.zn
1]

are either rational integers or integers of an imaginary quadratic field. Suppose
that f(z) is regular for | z| < 1 except for a finite number of poles 1/8: (| 6:| > 1,
i=1,2,...,k). Then if f(z) belongs 1o the class H* (in the extended sense),
fz2) is a rational function, and the 6, are algebraic integers.

The new features of this theorem, when compared with Theorem A’, are:

1. We can have several (although a finite number of) poles.
2. The coefficients a, need not be rational intégers, but can be integers of an
imaginary quadratic field.

Nevertheless, the proof, like that for Theorem A’, follows exactly the pattern
of the proof of Theorem A (see [ 10]). Everything depends on showing that a
certain Kronecker determinant is zero when its order is large enough. The
transformation of the determinant is based on the same idea, and the fact that
it is zero is proved by showing that it tends to zero. For this purpose, one uses
the well-known fact [ 9] that the integers of imaginary quadratic fields share
with the rational integers the property of not having zero as a limit point.

Theorem A" shows, in particular, that if

f@) = 3 auz,
0

where the a, are rational integers, is regular in the neighborhood of z=0, has
only a finite number of poles in | z| < 1, and is uniformly bounded in the neigh-
borhood of the circumference | z | = 1, then f(2) is a rational function,

This result suggests the following extension.

THEOREM 1. Let

fi2) = ); @z,

where the a, are rational integers, be regular in the neighborhood of z = 0, and
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suppose t.hat f:(z) is regular for | z| < 1 except for a finite number of poles. Let
a be any imaginary or real number. If there exist two positive numbers, 8,7 (n < 1)
such that |f(z) —a| > & for | — 9 < |z| < 1, then f(2) is a rational function.

PROOF. ‘For .the sake of simplicity, we shall assume that there is only one pole,
the proof in this case being typical. We shall also suppose, to begin with, that
a = 0, and we shall revert later to the general case.

) Let € be any positive number such that ¢ < 5. If € is small enough, there
is one pole of f(z) for | z[ < 1 — ¢, and, say N zeros, N being independent of e.
Consider
1
0= e

m being a positive integer, and consider the variation of the argument of mz f(z2)
;lor}‘g the circumference [z | =1 —e. We have, denoting this circumference
y 1,

Ar Arglmz ()] = 2n[N+ 1 — 1] = 2 N.
If now we choose m such that m(l1 ~ 7)6 > 2, we have for |z]| =1 —¢,
|mz f(z)| > m(l —9)6> 2,
and thus we have also
Ay Arg[l + mz f(2)] = 27 N.

But mz f(z) + 1 has one pole in | z| < 1 — €; hence it has N + 1 zeros. Since
€ can be taken arbitrarily small, it follows that g(z) has N + 1 poles for | z | < 1.
But the expansion of g(2) in the neighborhood of the origin,

3 cazn,
(]
has rational integral coefficients. And, in the neighborhood of the circum-
ference | z | = 1, g(2) is bounded, since
|14+mzf|> |mzf| -1 >m(l—n)é—1> 1.

Hence, by Theorem A” g is a rational function, and so is f(2).
If now « 0, let @ = \ 4 ui; we can obviously suppose \ and u rational,
and thus

a=bPt%
r

P> 9, and r being rational integers. Then
lef~(p+qi)| 218,

and we consider f* = rf — (p+ gqi). Then we apply Theorem A" in the case of
Gaussian integers (integers of K(i)).
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Extensions. The theorem can be extended [13](1) to the case of the a, being
integers of an imaginary quadratic field, (2) to the case where the number of
poles in | z| < 1 is infinite (with limit points on | z | =1), (3) to the case of the
a, being integers after only a certain rank n > mo, (4) to the case when z= 0
is itself a pole. The proof with these extensions does not bring any new diffi-
culties or significant changes into the arguments.

A particular case of the theorem can be stated in the following simple way.
Let
Sf2) = ; anz*

be a power series with rational integral coefficients, converging for |z'|.< 1.
Let S be the set of values taken by f(2) when | z| < 1. If the derived set §’ is not
the whole plane, f(2) is a rational function.

In other words if f(2) is not a rational function, it takes in the unit circle values
arbitrarily close to any given number a.

It is interesting to observe that the result would become false if we replace
the whole unit circle by a circular sector. We shall, in fact, construct a pf)wer
series with integral coefficients, converging for | z| < 1, which is not a rational
function, and which is bounded in a certain circular sector of | z| < 1. Con-

sider the series
L3 zpt
&=z o>

It converges uniformly for | z| < r if r is any number less than 1. In fact

re

Sa=n

(ES

which is the general term of a positive convergent series. Hence, f(z? is.analytic
and regular for | z| < 1. It is obvious that its expansion in thg unit circle has
integral rational coefficients. The function f(z) cannot be rational, for z =1
cannot be a pole of f(2), since (1 — 2)*f(2) increases infinitely as z — 1 — 0 on
the real axis, no matter how large the integer k. Finally, f(2) is bounded, say,
in the half circle

lz| <1, &@ <0.
For, if § < | z| < 1, say, then
[1-z|>0+) =4,
and thus )

mm<$®a

The function f(z) is even continuous on the arc | z| = 1, ®(z) < 0.
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2. Schlicht power series with integral coefficients [13]

THEOREM 11. Let f(2) be analytic and schlicht (simple) inside the unit circle
|z| < 1. Let its expansion in the neighborhood of the origin be

S =a,z'+ g anz".

If an integer p exists such that for all n > p the coefficients a, are rational integers
(or integers of an imaginary quadratic field), then f(z) is a rational function.

PROOF. Suppose first that a_, # 0. Then the origin is a pole, and since
there can be no other pole for | z| < 1, the expansion written above is valid
in all the open disc [ z| < 1. Moreover, the point at infinity being an interior
point for the transformed domain, f(z) is bounded for, say, 3 < [ z| < 1. Hence
the power series

> az

0
is bounded in the unit circle, and the nature of its coefficients shows that it is a
polynomial, which proves the theorem in this case.

Suppose now that a_, = 0. Then f(z) may or may not have a pole inside the
unit circle. The point f(0) = a, is an interior point for the transformed domain.
Let u= f(z). To thecircle C, |4~ ay| < §, in the u-plane there corresponds,
for & small enough, a domain D in the z-plane, including the origin, and com-
pletely interior, say, to the circle | z| < 4. Now, by Theorem I, if f(z) is not ra-
tional, there exists in thering 4 < | z| < 1 a point z, such that | f(z;) — ay | < 8/2.
Then u, = f(z;) belongs to the circle C and consequently there exists in the
domain D a point z,, necessarily distinct from z,, such that f(z;) = u, = f(z)).
This contradicts the hypothesis that f(z) is schlicht. Hence, f(z) is a rational
function.

3. A class of power series with integral coefficients [13]; the class T of alge-
braic integers and their characterization

Let f(z) be a power series with rational integral coefficients, converging for
| z| < 1 and admitting at least one “exceptional value” in the sense of Theorem I ;
i.e., we assume that |f(2) — a| > & > O uniformly as | z| — 1. Then f(z) is
rational and it is easy to find its form. For

P(2)
P and Q being polynomials with rational integral coefficients, and by Fatou’s
lemma (see Chapter I) Q(0) = 1. The polynomial Q(z) must have no zeros
inside the unit circle (P/Q being irreducible) and, since Q(0) = 1, it means that
all zeros are on the unit circle. By a well-known theorem of Kronecker [9]
these zeros are all roots of unity unless Q(z) is the constant |.
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Now, suppose that the expansion
Z a2,
0

with rational integral coefficients, of f(2) is valid only in the neighborhood of the
origin, but that f(z) has a simple pole 1/7 (| 7| > 1) and no other singularity
for|z] <1
Suppose again that there exists at least one exceptional value a such that
|f(2) = &[> &> O uniformly as | z| — 1. Then f(2) is rational; i..,
P
/@ o

P, Q being polynomials with rational integral coefficients, P/Q irreducible,
and Q(0) = 1. The point 1/7 is a simple zero for Q(z) and there are no other
zeros of modulus less than 1. If f(z) is bounded on the circumference | z | = 1,
Q(2) has no zeros of modulus 1, all the conjugates of 1/7 lie outside the unit
circle, and T belongs to the class S.

If, on the contrary, f(2) is unbounded on | z | = 1, Q(2) has zeros of modulus 1.
If all these zeros are roots of unity, Q(z) is divisible by a cyclotomic polynomial,
and again 7 belongs to the class S. If not, 7 is an algebraic integer whose
conjugates lie all inside or on the unit circle.

We propose to discuss certain properties of this new class of algebraic integers.

DEFINITION. A number 7 belongs to the class T if it is an algebraic integer
whose conjugates all lie inside or on the unit circle, assuming that some conjugates
lie actually on the unit circle (for otherwise T would belong to the class S).

Let P(z) = 0 be the irreducible equation determining 7. Since there must
be at least one root of modulus 1, and since this root is not = 1, there must be
two roots, imaginary conjugates, o and 1/cr on the unit circle. Since Pla)=0
and P(1/a) = 0 and P is irreducible, P is a reciprocal polynomial; 7 is its only
root outside, and 1/7 its only root inside, the unit circle; 7 is real (we may
always suppose 7 > 0; hence 7 > 1). There is an even number of imaginary
roots of modulus 1, and the degree of P is even, at least equal to 4. Finally, 7
is a unit. If P(2) is of degree 2k and if we write

1
y=z+>

the equation P(z) = O is transformed into an equation of degree k, R(y) =0,
whose roots are algebraic integers, all real. One of these, namely 7 + T is
larger than 2, and all others lic between —2 and +2.

We know that the characteristic property of the numbers § of the class §
is that to each @ € S we can associate a real A # 0 such that YN <
i.e., the series Y || A || z~ belongs to the class H™.t
1 Of course, if § € S, the series is even bounded in | z| < 1. But it is enough that it should belong
to H* in order that @ should belong to S.
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The corresponding theorem for the class T is the following one.

) THEOREM ll¥. Let 7 be a real number > 1. A necessary and sufficient condi-
tion for the existence of a real u 9 0 such that the power series t

; {urn) z»
.Ifholu.’:' :m‘ve ;;1.\' realh palrz bounded above (without belonging 10 the class H?) Sfor
z is that 7 should belong to the class T. Th ] {
i the el of g en u is algebraic and belongs

PROOF.  The condition is necessary. Let a, be the integer nearest to ur*, so
that ur" = a, + {ur*}. Wehave ’

H - o
- zo: anz” + Xo: {ur} 2™,

-7z
Now if
T+ 1
2 <|z|<1
we have
f1—7z| > - 1.
Hence, [ >#r~-1)

1

Jianz”-i-i{pr"}z"fgzl“
0 ) T—

Therefore, the real part of

f@) = ? anz"
is bounded below in the ring
7+ 1
35 < [z] <1

Since this power series has rational integral coefficients and is regular in | z | <1
excep.t for the pole 1/7, it follows, by Theorem I, that it represents a rational
ﬁ‘mctlon al.ld, heqcc, that 7 is a numbser, either of the class S or of the class 7.
Since f(z) is not in H* 7 is not in S, and thus belongs to 7. The calculation
of residues shows that u is algebraic and belongs to the field of 7.
) The condition is sufficient. Let v be a number of the class T and let 2k be
its degree. Let

Thay ot (j=1,2,.. ,k—1; aja*=1)
be its conjugates. Let

c=1+71% pi=oa;+ a,

so that o, p;, ps, . . ., pr_1 are conjugate algebraic integers of degree k.
1 See the Introduction (page 1) for the notation {a}. We recall that || a| = | {a} |.
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The determinant

1 o ves oF?
A N 1 pl P k-1
1 pe pr*!

being not zero, we can, by Minkowski’s theorem (as given at the beginning of
Chapter VI and Appendix, 9), find rational integers 4,, ..., A, such that the

number
0= A1+ -+ Ao+ A

has its conjugates 8, . . ., B all less than | in absolute value. In other words,
6 is a number of the class S belonging to the field of . Its conjugates are all
real. Take now

pu=0* and ;=L
h being a positive integer such that
N+Tt+ o+ < b
Since o = 7+ 71 and 7 is a unit, u is an algebraic integer of the field of 7, K(7),
and the numbers
pitself, vi, v Ve Yo oo Vet Vit
correspond to u in the conjugate fields
K(tY), K(an), K(a*), . . .,
respectively. It follows that the function

fo =t et T e+ S

1—-7712

K(au-1), K(aw1*)

1 — ai*z
has, in the neighborhood of the origin, an expansion
2 ez
0
with rational integral coefficients. The only singularity of f(z) for [z| < I is
the pole 1/7. We have

- w k=1 k=1
n) 7" o= " — ¢ - L ‘yj ‘Yj °
Zo:(a.-—#‘r)z Zo:a,.z 1—172z l—T-lz+;l_alz+zl:l—af*z

and
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Therefore, since v; > 0, we have for | z| < 1
R 3 Iy — ") yn > _M'_T_
{;‘“ yr)z}_7+l

On the other hand,

k=1
7.

k=1
@n = pr"+ U+ 3 (0 + )
1
and, since | a;," + a;** | < 2,
k=1 k-1
[ le Yo+ ar) | <23 v, < }.
1
Take now for m the smallest integer such that

Mo _1 . log 4u
<- .e. = | =
™ 4 Le., m [logr]+l'

Then, forn > m
[an—pum | < ¥ ie,a,— ur=— {ur.

Therefore, we can write
m—1 ©
(R{ (@n — ur)z" — ™ "} BT .
}u: ") Zm: a2t > o

On the other hand, since for all n

.
| an ur|<7”+4,

we have for [z | < 1

m—1 m—]
2@ -pr <7 +#E;,. it

whence, finally,

Thus

{Z tur) 2"} <+ 2’"— = A(u, 1),

where A is a function of u and 7 only, which proves the second part of our
theorem,
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4. Properties of the numbers of the class T
TueoreM V. Every number of the class St is a limit point of numbers of the
class T on both sides [13].

Proor. Let & be a number of the class S, root of the irreducible polynomial
Py=2z2+czr '+ -+ 6
with rational integral coefficients. Let Q(z) be the reciprocal polynomial.
We suppose first that 8 is not a quadratic unit, so that Q and P will not be iden-
tlcs\l';: denote by m a positive integer, and let
R (2) = z7P(2) + Q(2).

Then Rn(2) is a reciprocal polynomial whose zeros are algebraic integers.
We denote by € a positive number and consider the equation

(1+ §z"P+ Q = 0.

Since for | z| = 1 we have | P|=| @/, it follows by Rouché’s theorem that in
the circle | z | = 1 the number of roots of the last equation is equal to the num-
ber of roots of z™P, that is to say, m+ p — 1. As € — 0, these roots vary con-
tinuously. Hence, for € = 0 we have m+p — 1 roots with modulus < 1 and,

hence, at most one root outside the unit circle.}
It is easy to show now that the root of Rw(z) with modulus larger than 1

actually exists. In fact, we have first
Ra(0) = Q(6) # 0,
since 8 is not quadratic. On the other hand, it is easily seen that P'6) > 0. We

fix ¢ > 0 small enough for P'(z) to have no zeros on the real axis in the inter-
val

§-0c<z<6+o0. .

We suppose that in this interval P'(z) > u, u being a positive number fixed as

soon as ¢ is fixed.
If we take & real and | § | < o, P(6 + §) has the sign of & and is in absolute

value not less than | 8 | u. Hence, taking e.g.,

1
|5|._--\7_;1.

t We recall that we do not consider the number 1 as belonging to the class S (see Chapter I).
{ This proof. much shorter and simpler than the original one, has been communicated to me
by Prof. Hirschman, during one of my lectures at the Sorbonne,
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we see that for m large enough
Ru(@+ 8) = (6+ &P + 6) + Q@+ 5)

has the sign of 8. Taking 6Q(6) < 0, we see that R,.(8) and Rn(f + §) are, for
m large enough, of opposite sign, so that R..(z) has a root 7.,

between 6 and 8+ m~t if Q(6) < 0,
and
between 6 — m~} and 6 if Q(6) > 0.

Hence, 7, - fas m — .

Tl.lis proves, incidentally, since we can have a sequence of 7, all different
tending to 6, that there exist numbers of the class T of arbitrarily large degree.
It proves also that 7., has, actually, conjugates of modulus 1, for m large enough
for evidently 7., cannot be constantly quadratic (see Appendix, 5). ,

To complete the proof for 6 not quadratic, we consider, instead of zmP + Q
the polynomial ,

P - Q
z—-1

’

which is also reciprocal, and we find a sequence of numbers of the class T ap-
proaching ¢ from the other side.
Suppose now that 6 is a quadratic unit. Thus 8 is a quadratic integer > 1,

. . 1
with conjugate 7 Then 6 + 6-1 is a rational integer r > 3. Denote by T,.(x)

the first Tchebycheff polynomial of degree m (i.e., Tn(x) =2 cos me for
x =2cos ¢). T. has m distinct real zeros between —2 and +2. The equation

x=rNTa(x)—1=0
has then m — 1 real roots (algebraic integers) between —2 and +2, and one real
root between r and r + €u (ém > 0, €, — 0 as m — =). Putting

1
X=yp-4—
4 y

we get an equation in y which gives us a number of the class T approaching 6
from the right as m — o,
We get numbers of T approaching 6 from the left if we start from the equation

(x=nNTu(x)+1=0.
This completes the proof of the theorem.

We do not know whether numbers of 7 have limit points other than num-
bers of S.
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5. Arithmetical properties of the numbers of the class T

We have seen at the beginning of Chapter 1 that, far from being uniformly
distributed, the powers ¢* of a number & of the class S tend to zero modulo 1.

On the contrary, the powers 7 of a number 7 of the class T are, modulo 1,
everywhere dense in the interval (0, 1). In order to prove this, let us consider a
number 7 > 1 of the class 7, root of an irreducible equation of degree 2k.
We denote the roots of this equation by

1 - -
T, ;’ a, oy ... Ok, a, Qg ... Oy

where | ;| = 1 and &; = a;! is the imaginary conjugate of a;,. We write
Oy = exmivy,

Our first step will be to show that the w,(j=1,2,...,k—1) and 1 are
linearly independent.t For suppose, on the contrary, the existence of a relation

Av+ A+ - - -+ Ao = 0,

the A; being rational integers. Then
At s ) - |
or
¢)) ahagts - - - o Aea =1,

Since the equation considered is irreducible, it is known ([1] and Appendix, 6)
that its Galois group is transitive; i.e., there exists an automorphism ¢ of the
Galois group sending, e.g., the root o into the root 7. This automorphism can
not send any «; into 1/7; for. since o(ay) = 7,

“(@)-7

« 1
= ——y
) a,

and thus this would imply

which is not the case. Thus the automorphism applied to (1) gives

f‘la;Ai coe Qb = ]

if o(a;) =a}(j=1). This is clearly impossible since 7> 1 and |a}| = 1.

Hence, we have proved the linear independence of the w; and 1.
Now, we have, modulo 1,

k-1
™+ T_l-_. + Z (e!n'm,» + e-ﬂn—u,) =0
=1

t This argument is due to Pisot.
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or
-1
r"'+22cos 2rmw; —» 0 (mod 1)

j=1
as m— . But by the well-known theorem of Kronecker on linearly inde-
pendent numbers ([2] and Appendix, 8) we can determine the integer m, arbi-
trarily large, such that

k=1
2 3 cos 2rmw;
j=1
will be arbitrarily close to any number given in advance (mod 1). It is enough
to take m, according to Kronecker, such that

[mw,— 6| <€ (modl)
|mw;—%| <€ (modl) (j=2,3,...,k—1).

We have thus proved that the {7~} (mod 1) are everywhere dense.
The same argument applied to A7™, \ being an integer of the field of 7, shows
that A7™ (mod 1) is everywhere dense in a certain interval.

THEOREM V. Although the powers 1™ of a number 7 of the class T are, mod-
ulo 1, everywhere dense, they are not uniformly distributed in (0, 1).

In order to grasp better the argument, we shall first consider a number 7 of
the class T of the 4th degree. In this case the roots of the equation giving 7
are

(leef =),

1 _
T, = o a=-—
T a

and we have, m being a positive integer,
1'"'+T—1,,+ a”+a” =0 (modl).
Writing a = ¢, we have
™+ 'r]_"‘+ 2cos 2rmw =0 (mod 1).

The number w is irrational. This is a particular case of the above result, where
we prove linear independence of wi, ws, . .., e, and 1. One can also argue
in the following way. If w were rational, a would be a root of 1, and the equa-
tion giving 7 would not be irreducible.

Now, in order to prove the nonuniform distribution of 7™ (mod 1), it is enough
to prove the nonuniform distribution of 2 cos 2wmw. This is a consequence of
the more general lemma which follows,
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LEMMA. If the sequence lu.}y is uniformly distributed modulo 1, and if
w(x) is a continuous function, periodic with period 1, the sequence w(u) = va
is uniformly distributed if and only if the distribution function of w(x) (mod 1)
is linear.}

Proor of the lemma. Let (a, b) be any subinterval of (0, 1) and let x(x) be a
periodic function, with period 1, equal for 0 < x < 1 to the characteristic func-
tion of (a, b). The uniform distribution modulo 1 of {v.} is equivalent to

N
2 x(vw)

1

N =h-a,

lim
But, owing to the uniform distribution of {u.},
o 1 '
Jim > x(va) = lim 5 > x[w(ua)] = / x(w(x)) dx.
N 1 N 1 [

Let w*(x) = w(x) (mod 1), 0 < w*(x) < 1. The last integral is

/ l X (w*(x))dx = meas E {a < w*(x) < b}.
0
Hence,

) meas £ {a < w*(x) < b} = b~ q,
which proves the lemma.

An alternative necessary and sufficient condition for the uniform distribution
modulo 1 of v, = w(u,) is that

®) / ! gtmiata) g = 0

0

for all integers i » 0.
For the uniform distribution of {v.} is equivalent to

1 & Ao (14) 1 b 0
i —_ wibo(un) = |} — TIAP), mm
lim N 21 e lim N 21
by Weyl's criterion. But

H ! 3 wihw(u,) ! 2rihw(z) dx
lim ‘1‘: e e .

0

Hence, we have the result, and it can be proved directly without difficulty, con-
sidering again w*(x), that (3) is equivalent to (2).

In our case {un} = {mw)} is uniformly distributed modulo 1, and it is enough
to remark that the function 2 cos 27x has a distribution function (mod 1) which

t No confusion can arise from the notation w(x) for the distribution function and the number
w occurring in the proof of the theorem.
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is not linear. This can be shown by direct computation or by remarking that
1
/ etvihcostrz m Jy(41rh)
[

is not zero for all integers & » 0.
In the general case (v not quadratic) if 2k is the degree of 7, we have, using
the preceding notations,

k-1 k-1
L 2am+ 2 am=0 (modl)
™ = i=1
or
1 k=1
™+ -—+ 2, 2co8 2rmw; =0 (mod 1)
Tﬂ sml
and we have to prove that the sequence

Vm = 2 CO8 2mw, + + - ~+ 2 cos 2mmw,_,

is not uniformly distributed modulo 1.
We use here a lemma analogous to the preceding one.

LeMMA. If the p-dimensional vector {u.i}y., (j=1,2,...p) is uniformly
distributed modulo 1 in R®, the sequence

Vo = W(ta!) + w(ua?) + - - - + w(u,")

where w(x) is continuous with period 1 is uniformly distributed if and only if con-
dition (2) or the equivalent condition (3) is satisfied.

ProoOF of the lemma. It is convenient here to use the second form of the
proof. The condition is

1 & ..
N 2 €= —0 (his any integer = 0).
1
But
1 & 1 »
WV Zes-alu(u.'Hn-h(u.v)l_, { / e2rihe(z) dx} .
0

n=l
Hence the lemma.
Theorem V about ™ follows from the fact that {mw,, mws, . . ., mw,_,} is
uniformly distributed in the unit torus of R*~! owing to the fact that w,, . . .,
we—1, and 1 are linearly independent. This completes the proof.

EXERCISE

Show that any number 7 of the class T is the quotient 8/6” of two numbers of
the class S belonging to the field of . (For this and other remarks, see [13].)




Chapter 1V

A CLASS OF SINGULAR FUNCTIONS; BEHAVIOR OF THEIR
FOURIER-STIELTJES TRANSFORMS AT INFINITY

1. Introduction

By a singular function f(x) we shall mean, in what follows, a singular con-
tinuous monotonic function (e.g., nondecreasing), bounded, and whose derivative
vanishes for almost all (in the Lebesgue sense) values of the real variable x.

A wide class of singular functions is obtained by constructing, say, in (0, 2m)
a perfect set of measure zero, and by considering a nondecreasing continuous
function f{x), constant in every interval contiguous to the set (but not every-
where).

A very interesting and simple example of perfect sets to be considered is the
case of symmetrical perfect sets with constant ratio of dissection. Let £ be a
positive number, strictly less than §, and divide the fundamental interval, say,
(0, 27), into three parts of lengths proportional to £, -1 — 2¢, and £ respectively.
Remove the central open interval (“black” interval). Two intervals (*“‘white”
intervals) are left on which we perform the same operation. At the kth step
we are left with 2t white intervals, each one of length 2wr§*. Denote by E, the
set of points belonging to these 2* closed white intervals. Their left-hand end
points are given by the formula

n x=2mle(l- H+ et — &+ -+ af'(1- 8]

where the ¢; are 0 or 1. The intersection of all E; is a perfect set E of measure
equal to

27 lim (§29) =0
kmeo
and whose points are given by the infinite series
@  x=2la(-Hteafl-H+ - +ap(1-H+-]

where the ¢; can take the values O or 1. The reader will recognize that the classical
Cantor’s ternary set is obtained by taking £ = §.
" We define now, when x € E, a function f(x) given by

SR =S4 G4t

2k
when x is given by (2). It is easily seen that at the end points of a black interval
(g, 6=0,&6=6=---=landa=1, == ... =0) f(x) takes the same

value. We then define f(x) in this interval as a constant equal to this common
value. The function f(x) is now defined for 0 < x < 27 (f(0) = 0, f(2m) = 1),
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is continuous, nondecreasing, and obviously singular. We shall call it the
“Lebesgue function” associated with the set E.
The Fourier-Stieltjes coefficients of df are given by

2%
3) Ca= (2m)! A e"i df(x),
and, likewise, the Fourier-Stieltjes transform of df is defined by
70 =0 [T e an
2r
= @m0 | e dx)
for the continuous parameter u, f being defined to be equal to 0 in (— «, 0)
and to 1 in (27, ).
One can easily calculate the Riemann-Stieltjes integral in (3) by remarking

that in each “white” interval of the kth step of the dissection f increases by
1/2%. The origins of the intervals are given by (1), or, for the sake of brevity, by

x=2nler+ - -+ &r],

with 7 = £-1(1 — §). Hence an approximate expression of the integral
2« X d
Jreea

.2—1; Z e"’“‘(ﬁ"l"" .. +‘t'n),

the summation being extended to the 2" combinations of ¢; =0, 1. This sum
equals

1 k ) i %r, k
% .I_Il(l +em) =e .I_]; cos mnr,.

Since 3 7, = 1, we have
1

@) e~ % 2ircy =[] cos wnr = [] cos wng-t (1 — §)
k=l b=

and likewise

5) e~ 2wy(u) = ‘fI cos wu 1 (1 - §).
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2. The problem of the behavior at infinity

It is well known in the elementary theory of trigonometric series that if f is
absolutely continuous, the Fourier-Stieltjes transform

y(a) = (2m) f " evis df

tends to zero as | u| — =, because in this case y(w) is nothing but the ordinary
Fourier transform of a function of the class L. The situation is quite different
if fis continuous, but singular. In this case v(u) need not tend to zero, although
there do exist singular functions for which (1) — 0 ([17], and other examples
in this chapter). The same remarks apply to the Fourier-Stieltjes coefficients .

The problem which we shall solve here is the following one. Given a sym-
metrical perfect set with constant ratio of dissection £, which we shall denote
by E(£), we construct the Lebesgue function f connected with it, and we try
to determine for what values of £ the Fourier-Stieltjes transform (5) (or the
Fourier-Stieltjes coefficient (4)) tends or does not tend to zero as | u| (or | n )
increases infinitely.

We shall prove first the following general theorem.

TueoreM 1. For any function of bounded variation f the Riemann-Stieltjes
integrals

2w 2w
2re, = / evdf and 2my(u) = / evitdf
0 o
tend or do not tend to zero together when | n | or | u | tends to «.

Since it is obvious that y(«) = o(1) implies ¢, = o(1), we have only to prove
the converse proposition. We shall base this proof on the following lemma, in-
teresting in itself.

LeMMA. Let f(x) be a function of bounded variation such that, as | n|— =,

2w
6) / em df — 0.
0
Let B(x) be any function such that the Lebesgue-Stieltjes integral
2n
[ B

has a meaning. Then the integral

/; ™ enie B(x)df

tends also 10 zero for | n| = .
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f’ngor.of the lemma. We observe first that by the properties of the Lebesgue-
Stieltjes integral, there exists a step function T(x) such that

™ / " B() - T | df < e

€ being gr.bitraril).l sm.all. Secondly, by a well-known theorem of Wiener [17],
the cor!dmon (6) implies that f is continuous. Hence, in (7) we can replace T(x)
by a trigonometric polynomial P(x). But (6) implies

r
ﬁ er=P(x)df — 0.
Hence, € being arbitrarily small in (7), we have

ﬁh B(x)em’: df —_ o

as stated in the lemma.

ProOF of Theorem I. Suppose that
cn—0as|n|— o,
If (1) does not tend to zero as | u| — «, we can find a sequence
{m,}:_, with l U ] — o0
such that
" o
M ewisdf| > 6> 0.

Let
Uy = n; + o,

ny, being an integer and 0 < ai. < 1. By extracting, if necessary, a subsequence
from {wu.}, we can suppose that a, tends to a limit . We would then have

woo é
Iﬁ e""‘e"“df]2§>0,
which is contrary to the lemma, since ¢, — 0 and e=*z is continuous.

It follows now that in order to study the behavior of ¢, or y(u), it is enough
to study

® T = kfI‘cos wutt

when u — o,
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TueoreM I1.  The infinite product T'(u) tends to zero as u— = if and only
if 1/ is not a number of the class S (as defined in Chapter I). We suppose here
§#4.

Remark. We have seen that the expressions (4) and (5) represent respectively
the Fourier-Stieltjes coefficient and the Fourier-Stieltjes transform of the Lebesgue
function constructed on the set E(§) if 0 < £ < 4. Nevertheless, it is easy to
see that in order that the infinite products (4), (5), (8) have a meaning, it is
enough to suppose that 0 < £ < 1. For example, I'(x) still represents a Fourier-
Stieltjes transform if only 0 < ¢ < 1, namely the transform of the monotonic
function which is the convolution of an infinity of discontinuous measures

(mass 4 at each of the two points 7§, — w§¥).

Our theorem being true in the general case 0 < £ < 1, we shall only assume
this condition to prove it.

Proor of Theorem II. If I'(#) # o(1) for u = =, we can find an infinite
increasing sequence of numbers u, such that

IT)|[ 28>0
Writing 1/ =0 (8 > 1), we can write
u, = NG,

where the m, are natural integers increasing to =, and 1 <\, < 6.
By extracting, if necessary, a subsequence from {u,}, we can suppose that
A=A <AL, Wewrite

| T'(w,) | < cos A, cos w6 - - - cos A0,

whence
TI0t - sin* #A0) > &,
=0

and, since 1 + x < e?,

Me
—Z sin'mas?

e =0 H

that is to say,

35 sin? w\0¢ < log (1/69.

=0

Choosing any r > s, we have

i sin? 7\, 0¢ < i sin® w09 < log (1/6%).

¢=0 q=0
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Keeping now s fixed and letting r — o, we have

i sin? wAf¢ < log (1/89),

=0
and, since s is arbitrarily large,

sin® TA07 < log (1/6%),

q=0
w]'hich, according to the results of Chapter I, shows that 6 = £-! belongs to the
class S.

We have thu§ shown that I'(u)  o(1) implies that § € S.

anversely, if 6 € S and 6 » 2, then I'(u) does not tend to zero. (Remark
that if £ = 4, the Fourier-Stieltjes coefficient ¢, of (4) is zero for all n = 0 and
then f(x) = x (0 < x < 27).)

Supposing now @ = £-1 ¢ 2, we have

I‘(G")-lcosrﬂcosvrﬁ’---coswﬂ"]-lcosgcosgu- cosazk---l-

Since @ € S, we have ) sin* x6" < ©. Hence, the infinite product

I1 cos? w6~

mwl
converges to a number A € 0 (except if §¢ = h+ %, h being a natural integer,
but this is incompatible with the fact that § € S). Hence,

) > VA r r...
| T(6% | > Ajcosacosa, |
and the last product converges to a number B > 0, since 8 » 2 (¢ = 2 is im-
possible for ¢ > 1 if 8 € S). Hence,
[T | > BV4,

which completes the proof of Theorem 11.




Chapter V

THE UNIQUENESS OF THE EXPANSION
IN TRIGONOMETRIC SERIES;
GENERAL PRINCIPLES

1. Fundamental definitions and results
Let us consider a trigonometric series

&) Z;: (@, cos nx + b, sin nx),

where the variable x is real. The classical theory of Cantor shows [17] that
if this series converges everywhere to zero, it vanishes identically.

Cantor himself has generalized this result by proving that if (S) converges to
zero for all values of x except for an exceptional set E containing a finite number
of points x, then the conclusion is the same one, i.e.,

a, =0, b, = 0 for all n.

Cantor proved also that the conclusion is still valid if E is infinite, provided
that the derived set E’ is finite, or even provided that any one of the derived sets
of E (of finite or transfinite order) is empty, in other words if E is a denumerable
set which is reducible [17],

The results of Cantor go back to the year 1870. Not until 1908 was it proved
by W. H. Young that the result of Cantor can be extended to the case where E
is any denumerable set (even if it is not reducible).

The preceding results lead to the following definition.

DERANITION. Let E be a set of points x in (0, 2x). Then E is a set of uniqueness
(set U) if no trigonometric series exists (except vanishing identically) converging
10 zero everywhere, except, perhaps, for x € E. Otherwise E will be called set of

multiplicity (set M).
We have just seen that any denumerable set is a set U. On the other hand,
as we shall easily show (page 44):

If Eis of positive measure, E is a set M.

It is, therefore, natural to try to characterize the sets of measure zero by clas-
sifying them in “sets U” and “sets M.” We shall give a partial solution of this
problem in the next two chapters, but we must begin here by recalling certain
classical theorems of the theory of trigonometric series of Riemann [17].
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DEFINITIONS. (a) Given any function G(x) of the real variable x, we shall write
%A’G(x, B = G(x+ h) + GE:: — h) — 26(x),

and, if this expression tends for a given fixed x to a limit \, as h — 0, we shall
say that G(x) has, at the point x, a second generalized derivative equal to \.
(b) If, ar a given point x, the expression

1 8G(x, by = SEEA) G(: — b~ 2G(x)

tends to zero as h— 0, we shall say that G(x) is smooth ar the point x.
THEOREM 1 (Cantor-Lebesgue). If the trigonometric series

N da,+ ? (@ cos nx + b, sin nx)

converges in a set of positive measure, its coefficients a, and b, tend 1o zero.

DEFINITION.  If we integrate the series (1) formally twice, assuming that a, — 0,
by — 0, we obrain the continuous function '

@ F(x) = % awt — i (aa cos nx -}2- b, sin nx),
1 n
the last 'series be;ing uniformly convergent. If, at a given point x, F(x) has a second
ge.nerahzed derivative equal to s, we shall say that the series (1) is summable-
Riemann (or summable-R) and that its sum is s.

THBOREM I1. If the series (1) (a,, by — 0) converges to s at the poi it i
s t x,
summable-R to s at this point. ' ® pomtx, ftis ao

THeoREM 11A. If the series (1) with coefficients tending 10 zero is summable-R
10 zero for all the points of an interval, it converges to zero in this interval (conse-
quence of the principle of “localization™).

THeOREM 1. The function F(x) (always assuming a, — 0, b, — 0) is smooth
at every point x.

THeOREM IV. Let G(x) be continuous in an interval (a, b). If th j
v IV . , b). e generalized
second derivative exists and is zero in (a, b), G(x) is linear in (a, I{) generatze

THBORBL.i V: Theorem IV remains valid if one supposes that the generalized
secor.ld derivative exists and is zero except at the points of a denumerable set E,
provided that at these points G is smooth. ’

Historica!ly, this last theorem was proved first by Cantor (a) when E is finite,
gb) when E is reducible, i.c., has a derived set of finite or transfinite order whic};
is empty. It was extended much later by Young to the general case where E
is supposed only to be denumerable.
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From Theorem V we deduce finally:

THEOREM V1. If the series (1) converges to O at all points of (0, 2mw) except
perhaps when x belongs to a denumerable set E, the series vanishes identically. In
other words every denumerable set is a set U, which is the above stated result.

Proor. This follows immediately as a consequence of Theorems II, 111, and
V. For the application of these theorems shows that the function F(x) of (2) is
linear. Hence, for all x,

S a, cos nx + by sinnx 1 _ _
21: s 29X —Ax—B
and the periodicity of the series implies ag = 4 = 0; next, the series being uni-
formly convergent, B = 0 and a, = b, = 0 for all n.

We shall now prove the theorem on page 42:

TueOREM. Every set of positive measure is a set M.

ProoF. Let E C (0, 2x) and | E| > 0. It will be enough to prove that there
exists a trigonometric series (not vanishing identically) and converging to zero
in the complementary set of E, that is, CE.

Let P be perfect such that P C E, and | P| > 0. Let x(x) be its characteristic
function. In an interval A contiguous to P, one has x(x) = 0; hence the Fourier

series of x(x),

%" + ? (ata cos nx + By sin nx) ~ x(x),

converges to zero in A. Hence it converges to zero in CP, and aiso in CE C CP.
But this series does not vanish identically, since

a.,-}r/;"x(x)dx-f—i—'>o,

which proves the theorem.

2. Sets of multiplicity

The problem of the classification of sets of measure zero into sets U and sets M
is far from solved. But it is completely solved for certain families of perfect
sets, as we shall show in the next two chapters.

We shall need the following theorem.

THEOREM. A necessary and sufficient condition for a closed set E to be a set of
multiplicity is that there should exist a trigonometric series

hed
E L‘,.Ci”’
-
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(not vanishing identically) with coefficients c,= o (’l‘) t and representing a constant }
in each interval contiguous to E.

PROOF. The condition is necessary. Let E, closed, be of the type M, and
consider a nonvanishing trigonometric series

(S) i: Y ul™%,

converging to zero in every interval contiguous to E.
We show first that we can then construct a series

) T yaeri,

but with v, = 0, having the same property. For (S) has at least one nonvanishing
coefficient, say, vx. Let [ k. The series

(5) = vie~ %= (S) — vie=#*= (S)

has a vanishing constant term, and converges to zero, like (:S), for all x belonging
to CE, the complementary set of E. Let E, be the set where (S) does not con-
verge to zero. (S’) cannot vanish identically, for the only points of E; (which is
necessarily infinite) where (S’) converges to zero are the points (finite in number)
where.

ayke—ilz —_ 'Yze-“u = 0'

Let us then consider the series
E 7"eniz (70 = 0)9

converging to zero in CE. The series integrated twice,
-1 -
12_ inz

represents by Riemann theorems (11 and IV on page 43) a linear function in each
interval of CE. But this series is the integral of the Fourier series
~1

'7._" nx
-+zl: m.e s

which must hence represent a constant in each interval of CE, and it is now
enough to remark that

since necessarily v, — 0 (Th. I).

t The series is a Fourier series by the Riesz-Fischer theorem.
1 Hence, by the elementary theory, converging to this constant.
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The condition is sufficient. Suppose that the series
Z c”eiuz

(not vanishing identically) with c, = o G) represents a constant in each interval
of CE. One can write

=" wi
e =i with v, — 0.

It follows that the integrated series
CoX — Z 2%‘ eiut

miz1 7

represents a linear function in each interval of CE. Hence, the series

2 .-Y.eo'ns

is summable-R to zero in each interval of CE, and thus, by Theorem IIA, con-
verges to zero in each interval contiguous to E, the set E being, therefore, a set
of multiplicity.

Remark. 1f the series
L4
E C“e"’
—
of the theorem represents a function of bounded variation, the series

Z Yneint

converging to zero in CE is a Fourier-Stieltjes series (in the usual terminology,
the Fourier-Stieltjes series of a ““measure™ whose “support” is E). In this case,
we say that E is a set of multiplicity in the restricted sense.

To construct a set of multiplicity in the restricted sense, it is enough to con-
struct a perfect set, support of a measure

du ~ Z Ynes,
whose Fourier-Stieltjes coefficients,
l 2% . d
Yn = b ﬂ € (%),

tend to 0 for | n | — .

Consequence. The results of Chapter 1V show that every symmetrical perfect
set E(£) with constant ratio £, such that 1/£ is not a number of the class S, is
a set of multiplicity. In view of the preceding remark, it is enough to take for
u the Lebesgue function constructed on the set.
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3. Construction of sets of uniqueness

We have just seen that in order to show that a closed set E is a set of uniqueness,
we must prove that there is no series

©
Z C,.e'“.'
—

(not vanishing identically) with coefficients ¢, = o (r!z) representing a constant

in each interval of CE.

We were able to prove only that a symmetrical perfect set £(£) is a set M
if &1 does not belong to the class S, but we cannot, at this stage, prove that if
£ € S, then E(£) is a set U. This is because we only know that if £-! € S, the
Fourier-Stieltjes coefficients of the Lebesgue measure constructed on the set
do not tend to zero. But we do not know (a) whether this is true for every
measure whose support is £(¢) or (b) whether there does not exist a series

z.: c"eniz
. 1 . . . C
with ¢, = o0 (;1) representing a constant in each interval of CE, and which is

not a function of bounded variation (i.e., the derived series Z Ya€"i% is not a
Fourier-Stieltjes series).

A negative proof of this kind would be rather difficult to establish. In general,
to prove that a set £ is a set of the type U, one tries to prove that it belongs to a
family of sets of which one knows, by certain properties of theirs, that they
are U sets.

In this connection, we shall make use of the following theorem.

THBOREM 1. Let E be a closed set such that there exists an infinite sequence
of functions {N(x)} with the following properties :
1. Au(x) = O for all kK when x € E.
2. The Fourier series of each
A(x) = Z . Beine
is absolutely convergent, and we have

31 va® | < A, constant independent of k.
n

3. We have lim v, =0 for n=0,
kmeo
lim y,* =1 0.
ko

4, The derivative N{(x) exists for each x and each k, and is bounded (the bound
may depend on k).
Under these conditions, E is a set of uniqueness.
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We shall first prove the following lemma.

LEMMA. Let E be a closed set, N(x) a function vanishing for x € E and having
an absolutely convergent Fourier series 3~ yae™i=, and a bounded derivative N'(x).
Let 3 c.e*i* be a trigonometric series converging to zero in every interval of the
complementary set CE. Under these conditions we have

3 Faca=0.
(The series is obviously convergent, since E | Ya| < » and ¢, —0.)
PROOF. Let A be an interval contiguous to E. The series

x? Cn
“©F T Ly

evn'z
converges to a linear function in A. Hence, the Fourier series
C evu‘z
» n
~ Cne
f Z ni 4

where the star means that there is no constant term, represents in A a function
~cox + a, the constant a = a(A) depending on A. Parseval’s formula is applicabie
{17] in our hypothesis to the functions f(x) and

N(x) ~ Z Yanie™'*

and gives

3 [ NG =~ T

Ini21

The integral is equal to
en Y / V&) (—cox + a)dsx,
A A

since \ and \’ are zero for x € E. (Note that if E is closed, but not perfect,
its isolated points are denumerable.) Integrating by parts,

/ N(@)(—cox + a)dx = [(—cox + ANa+ ¢ /; Nx)dx,
a
and comparing the three last relations, we have

- 3 Faea= 2 T / N)dx

ini21
= c2m) / " Ndx = co¥a

or, as stated,
> Yaca=0.
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Remark. The hypothesis that A’(x) is bounded could be relaxed (which would
lead also to a relaxation of the hypothesis (4) of the theorem), but this is of no
interest for our applications. It should be observed, however, that some hy-
pothesis on A(x) is necessary. We know, in fact, since the obtention of recent
results on spectral synthesis [6], [8], that the lemma would not be true if we
assume only that A(x) = 0 for x € E, and that its Fourier series is absolutely
convergent

Proor of Theorem 1. Suppose that E is not a set of uniqueness. Hence,
suppose the existence of
Z cnem‘z

(not identically 0) converging to O in each interval of CE. The lemma would
then give

(3) Z 75“)0. =0

for all k.
Since ¢, — 0 for n = « (by general Theorem I on page 43), the hypothesis (2)
gives
Yokl | < A - .| < Ae,
gy el < A L] < e

€ being arbitrarily small for N large enough. Having fixed N, we have

Fa®en ] < €
1<Im< N
for k large enough, by the hypothesis (3) of the theorem.
Hence the first member of (3) differs from ¢,/ by a quantity arbitrarily small,
for k large enough. This proves that ¢, = O.
Multiplying the series
E cnenir

by e~*i~, we find its constant term to be c.. Thus the argument gives that ¢, = 0
for all k, that the series Y, c,e™** is identically 0, and that E is a set of the type U.

First application: Sets of the type H. A linear set E C (0, 2m) is said to be
“of the type H” if there exists an interval (a, ) contained in (0, 2m) and an
infinite sequence of integers {m}T such that, for whatever x € E none of the
points of abscissa m.x (reduced modulo 27) belongs to (a, ).

For example, the points of Cantor’s ternary set constructed on (0, 2):

€ € €
X=27[3+3§+"'+§;+"']
where ¢; is 0 or 2, form a set of the type H, since the points 3*x (mod 2m) never
belong to the middle third of (0, 2r). The situation is the same for every sym-
metrical perfect set E(£) with constant ratio §, if 1/£ is a rational integer.
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TueoreM 11.  Every closed set of the type H (and thus also every set of the
type H 1) is a set U.

PROOF. Let us fix an € > 0, arbitrarily small and denote by A(x) a function
vanishing in (0, @) and in (B, 2), equal to 1 in (@ + ¢, — ¢ and having a
bounded derivative N'(x), so that its Fourier series is absolutely convergent.
Write

Mx) = 2 e
and
M(®) = Nmx) = 2 Yme™e,

The sequence of functions {Ai(x)} satisfy the conditions (1), (2), (3), (4) of
Theorem 1. In particular, A(mx) is zero for all x € E and all k, and since

7"(15) = Ym

if and only if n = mn, and ¥, = 0 if n, }'n, we see that the conditions (3) are
satisfied, with

1= %o= 25 [ Mo = 2m) B - o~ 20,

which is positive if € has been chosen small enough.

Second applica!ion. Sets of the type H™. The sets of the type H have been
generalized by Piatecki-Shapiro, who described as follows the sets which he calls
“of the type H™.”

DEFINITION.  Consider, in the n-dimensional Euclidean space R", an infinite

family of vectors {Vi} with rational integral coordinates
Vi={pV pe®, .. o™} (k=1,2,..).
This family will be called normal, if, given n fixed arbitrary integers a,, as, . . ., Ga
not all zero, we have
| apr® 4+ ape® + - -+ @i [ — @

ask-— .

Let A be a domain in the n-dimensional torus

0<x;<2r (j=1,2,...,n).

A set E will be said to belong to the type H™ if there exists a domain A and

a normal family of vectors ¥, such that for all x € E and all , the point with
coordinates

POx, pe®x, oo, P,

all reduced modulo 2, never belongs to A.
t If Eis of the type H, so is its closure, and a subset of a U-set is also a U-set.
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TueoreM III.  Every set E of the type H™ is a set of uniqueness.

Proor. We can again suppose that E is closed, and we shall take n =2,
the two-dimensional case being typical. Suppose that the family of vectors
Vi = (ps, qi)
is normal. We can assume that A consists of the points (x,, x,) such that

o < x < B,
a < x» < By,

the intervals (a,, 8,) and (a3, B2) being contained in (0, 2).

We shall denote by A(x) and u(x) respectively two functions constructed with
respect to the intervals (ay, B;) and (a., 3;) as was, in the case of sets H, the
function A(x) with respect to (o, 8). Under these conditions, the functions

ApX)p(gex) (k=1,2,...)

are equal to zero for all k and all x € E. This sequence of functions will play
the role of the sequence denoted by Ai(x) in Theorem 1. Thus, the condition (1)
of that theorem is satisfied.
Write
Ax) = 2 Yme™s, u(x) = 3 e
The Fourier series of A(p«x)u(grx) is absolutely convergent, and, writing

Mpe)u(gex) = 2 ca®eins,
we have
z c”(k)ei-u = Z aymam,el'(mmi'm'qg’z

and

Zla®| <60 < A

This proves that condition (2) is also satisfied.

Condition (4) is satisfied if we have chosen A(x) and u(x) possessing bounded
derivatives.

Finally, for condition (3) we note that

) = Y Yubm

n=mp,+m’g,

Suppose first n = 0. Then

o™ = Z T 5’",
mpy+miq =0

=Yt  * Yubw = Yobo+ T

mpy+m'g =0

the star meaning that {m |+ |m’| » 0. We shall prove that T tends to zero
for k — . Write T = T, + T, where T, is extended to the indices |m| < N,
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|m’| < N. Since the family of vectors {V.} is normal, if |m |+ |m'| # 0,
mp + m’q, cannot be zero if k is large enough, and if m and m’ are chosen
among the finite number of integers such that [m| < N, [m’| < N. On the
other hand, in T either [m | > N, or | m’| > N and thus

[T < (X Ym0 D+ ([ Ym DC 2 18w )
n|>N —w - Im'I>N
is arbitrarily small for N large enough. Choosing first N, and then k, we see
that
o™ — Yoo

as k — o, and since .0, # 0, the second part of condition (3) is satisfied.
If now n = 0, the second member of (4) does not contain the term where
m =0,m’ =0. The same argument leads then to

c,®—0 for k=, ,n#0.
This concludes the proof that all conditions of the general theorem are satisfied
and hence that the set E is a set of uniqueness.

In the following two chapters we shall apply the preceding theorems to special
sets: symmetrical perfect sets with constant ratio of dissection, and *“homo-
geneous sets.”

Chapter VI

SYMMETRICAL PERFECT SETS WITH CONSTANT
RATIO OF DISSECTION; THEIR CLASSIFICATION
INTO M-SETS AND U-SETS

In this chapter and in the following one we shall make use of the fundamental
theorem of Minkowski on linear forms. For the proof we refer the reader to
the classical literature. (See, e.g., [5].)

MINKOWSKI’S THBOREM. Consider n linear forms of n variables

Ap(x) = Z:a,,’xq (r=112..,n

where we suppose first the coefficients a? to be real. We assume that the de-
terminant D of the forms is not zero. If the positive numbers 8y, 8, . . ., On are such
that

66s---0.2|D]|,

there exists a point x with rational integral coordinates (X1, Xs, . . ., Xs) not all zero
such that
AN [ <6, (p=1,2,...,n).

The theorem remains valid if the coefficients a,» are complex numbers pro-
vided:
1. the complex forms figure in conjugate pairs
2. the §, corresponding to conjugate forms are equal.

THEOREM. Let E(§) be a symmetrical perfect set in (0, 2) with constant ratio
of dissection §. A necessary and sufficient condition for E(£) to be a set of unique-
ness is that 1/ be a number of the class S [14].

Proor. The necessity of the condition follows from what has been said in
the preceding chapter. We have only to prove here the sufficiency: If £-! be-
longs to the class S, E(£) is a U-set.

We simplify the formulas a little by constructing the set E({) on [0, 1]. We
write 8 = 1/ and suppose, naturally, that § > 2. We assume that § is an
algebraic integer of the class S and denote by # its degree. We propose to show
that E(£) is of the type H™, and hence a set of uniqueness.

The points of E(§) are given by

x=ert+er:t---+erit-

where rj= Y1~ §) = L(1 —5) = 0; I and the ¢; are Q or 1.

=
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Thus,
=@-Dl8+C ... 4% . ]
x=@-D[g+g++ g+

By A we denote a positive algebraic integer of the field of 8, which we shall
determine later. We denote by ay, on, ..., a1 the conjugates of § and by
I&s, b, . . ., sy the conjugates of A.

We have, x being a fixed point in E({) and m a rational integer > 0,
) )\omx-)\(ﬁ-—l)(—e"bi‘-;-...)_g.](

R=N0- 1) (ef™ '+ &2+ - - - + €n).
Observe that, for any natural integer p > 0,

n—1
MO - 18P+ X o — Da? =0 (mod 1).
tw]
That is to say

t=]

Hence, remembering that the | a; | are < 1,
@ IRI<2nimlEladm-2F il moay.
Let us now write (1), after breaking the sum in parenthesis into two parts, as
(3) Mmx =B -1) (‘“0*'+-~-+fg—;¥)+x(o— 1) (‘;;’it‘+---)+k
=P+Q+R.

We have

—N—
@ 101 < MNO— 1) {grs = o

We now choose A of the form
AN=x14+ X0+ - -+ x0,
where the x; are rational integers. Then, obviously,
=X+ X0+ -+ xe™ (i=1,2,..,n—1).

By Minkowski’s theorem, we determine the rational integers, such that

) Ao o 2{ml o @ 1o o,

O = n2¥m 1~ o | T m2Nm
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where o will be determined in a moment. The determinant of the forms

o and 1—_2—1:;—‘ (=12..,n=1)

can be written as
A

o‘—ﬁ’
where A is a nonvanishing determinant depending only on 6 (and independent
of N), say, A = A(f). Minkowski’s theorem can be applied, provided
o A
n"2¥ > o’
and, after choosing o, we can always determine N so that this condition be

fulfilled, since 8/2 > 1.
By (2), (3), (4), and (5), we shall then obtain for an arbitrary fixed x € E(§)
and any arbitrary natural integer m > 0

[ NGm=x — P | 5% (mod 1),

that is to say

< 55 (mod 1).

©®) A8mx — M@ - 1) (&fa—' - eW)

Denote now by g. the fractional part of P (depending on m), and denote by O,
k an arbitrary natural integer, the point having the coordinates giy1, ge42, - - -, Grine

The number of points O, depends evidently on k, n, and the choice of the €’s;
but we shall prove that there are at most 2V+*! distinct points O:. In fact,
observe that g, can take 2¥ values (according to the choice of the €’s). But,
once g1 is fixed, gusa can only take 2 different values; and, once giy1 and giys
are fixed, gu4s can take only 2 distinct values. Thus the number of points O,
is at most 2¥+-1,

Let now M, be the point whose coordinates are

(NG+ix), (\+2x), . . ., (AB*+nx),

where (z) denotes, as usual, the fractional part of z. This point considered as
belonging to the n-dimensional unit torus is, by (6), interior to a cube of side

20
2N/n

and of center 0,. The number of cubes is at most 2¥+7-1 and their total volume
is

2N+n—l % - 22»—1cn - _12_ (40-)71.
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If we take o < }, there will remain in the torus 0 < x; < 1 (j=1,2,...,m)
a “cell” free of points M;. This will also be true, for every k > k, large enough,
for the point M; of coordinates

(Cas1X), « + o (CrynX),

if we denote generally by c. the integer nearest to N\6=, since we know that
AG™ = ¢,, + 8, With 6, — 0 (m — o).

To show now that E(£) is of the type H™, we have only to prove that the
sequence of vectors

Vi = (Cry1, Crazy - - - Cin)

in the Euclidean space R* is normal. Let ay, @, . . ., @ be natural integers, not
all zero. We have

WCisr+ - - - F AuCrin = N@IH + - - - + @) + (@0es1 + < -+ + Gabrga).

If k — o, the last parenthesis tends to zero. On the other hand, the first paren-
thesis equals

AGH1(a,+ af + - - - + a0,

and its absolute value increases infinitely with k, since, 8 being of degree n,
we have

a+af+ -+ a0 =0,

This completes the proof.

Remark. We have just proved that if 6 belongs to the class S and has degree n
the set E(£) is of the type H®. But it does not follow that E cannot be of a
simpler type. Thus, for instance, if 8 is quadratic, our theorem shows that £
is of the type H®. But in this particular case, one can prove that E is, more
simply, of the type H.t '

Stability of sets of uniqueness. We have shown in Chapter II that the set
of numbers of the class S is closed. If E(£) is a set M, &' belongs to an open
interval contiguous to S. Hence, there exists a neighborhood of & such that
all numbers of this neighborhood give again sets M. Thus, a symmetrical
perfect set of the type M presents a certain stability for small variations of £.
On the contrary, if E(£) is a U-set, there are in the neighborhood of £, numbers
£ such that E(£) is an M-set. The sets of uniqueness are are “stable” for small

variations of £.

t See Trans. Amer. Math. Soc., Vol. 63 (1948), p. 597.

Chapter VII

THE CASE OF GENERAL “HOMOGENEOUS” SETS

1. Homogeneous sets

The notion of symmetrical perfect set with constant ratio of dissection can be
generalized as follows.

Considering, to fix the ideas, the interval [0, 1] as “fundamental interval,”
let us mark in this interval the points of abscissas

"10-0, N N2y o« oo Md (dZI; nd=l_.£),

and consider each of these points as the origin of an interval (“white” interval)
of length £, £ being a positive number such that

1
§<ari

N — ;> & (for all j)

so that no two white intervals can have any point in common. The intervals
between two successive “white” intervals are “black” intervals and are removed.
Such a dissection of [0, 1] will be called of the type (d, &; 1o, M, %2, - - -, 7).

We operate on each white interval a dissection homothetic to the preceding
one. We get thus (d+ 1)* white intervals of length £, and so on indefinitely.
By always removing the black intervals, we get, in the limit, a nowhere dense
perfect set of measure zero, whose points are given by

M x=6+at+ a2+

where each ¢; can take the values 7o, 7, . . ., 70
The case of the symmetrical perfect set is obtained by taking

d=1, 7]0-0,7)1=1—E-

The set E of points (1) will be called “homogeneous” because, as is readily
seen, E can be decomposed in (d+ 1)* portions, all homothetic to E in the
ratio # (k=1,2,...).

2. Necessary conditions for the homogeneous set E to be a U-set

Since each subset of a set of uniqueness is also a set of uniqueness, if we con-
sider the set E, C E whose points are given by (1) but allowing the ¢; to take
only the values 1o = 0 or 7¢ = 1 — £, then Ky is a set U, if E is a set U.

But E, is a symmetrical perfect set with constant ratio of dissection £. Hence,
if the homogeneous set E is a U-set, we have necessarily £ = 1/6, where 8 is a
number of the class S.
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Consider further the subset E’ of E whose points are given by (1) but with the
choice of the ¢; restricted as follows:

=0 or Mm
€u=0 or Mm

€u1=0 or

&=0 or m

a=0 or m etc.

...............

€,=0 or M
The points of this set E’ are given by
X = €m+ emt+ - - -+ €matt + i+ - = 3 €y,

where the ¢ are either 0 or 1.
We can, as in the case of symmetrical perfect sets, define a measure carried by
this set and prove that its Fourier-Stieitjes transform is

2 fI COS TUry.
k=1

If Eis a U-set, E' is a U-set and (2) cannot tend to zero if u — «. It follows
that there exists an infinite sequence of values of « for which each of the infinite
products

cos Tun, - cos wumE? - cos wumEe - - -

cos Tumat - o8 Tunsktt - cos wunEAtt - - .

.....................................

cos TunaEi! - cos a4 - cos wunEH!

has absolute value larger than a fixed positive number a. Write w = 1/§%. We
have, for an infinite sequence of values of u:

ﬁ|cos1rum£""-£"‘l>a th=1,2,...,d),

k=0

and from this we deduce, by the same argument as in Chapter IV, the existence
of a real number A # 0 such that

Yosint FApE -l < © (h=1,2,...,4d).

We know that from this condition it follows that (1) w € S, a condition which
we shall suppose to be fulfilled (since we know that we have the necessary
condition £-! € S, which implies £-¢ € S), (2) the numbers

A”b An!; ooy A'ﬂd

all belong to the field of w (hence to the field of 6 = £). Since na=1- §
it follows that

M, My -5 M

k..
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Summing up our results we get:

THeOREM. If the homogeneous set E is a set of uniqueness, then:
1. 1/§ is an algebraic integer 0 of the class S.
2. The abscissas 1, . . ., N are algebraic numbers of the field of 6.

We proceed now to prove that the preceding conditions are sufficient in order
that £ be a U-set.

3. Sufficiency of the conditions

THEOREM. The homogeneous set E whose points are given by (1), where 1/£ = 0
is an algebraic integer of the class S and the numbers n,, . .., n. are algebraic
belonging to the field of 8, is a set of the type H™ (n being the degree of ), and
thus a set of uniqueness.

PROOF. Let a be a rational positive integer such that an,, an,, . . ., ans are
integers of the field of 6. Denote by

a(l)’ R a(ﬂ*l}
the conjugates of 8 and by
w0 L@ (j=1,2,...,d)

the conjugates of ,. Denote further by A an algebraic integer of the field of 8,
whose conjugates shall be denoted by

p'(l)’ e ”'(n—l).
Writing (1) in the form

€ €
x=e0+§‘+93,+--- (&= "0 My -« -5 M)

we have, if m is a natural integer > 0,

n—1
Nafmy, + 3 u¥a- a9mw,$ =0 (mod 1).

=]

Thus, x € E being fixed, we have always

)\a0"x=)\a(%+--'+%—;ﬁ)+)\a(€;;—zf‘+-~)+R (mod 1),

where N > 1 is a natural integer to be chosen later on, and where, putting
M = max {] w;% |, 9}
“w
we have

n=1 . © . n—-1 l M(.’) !
R<MaZI#“’IEla“’"‘I=MaZ .
=1 m=0

Sl-[a®]
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Just as in the case considered in Chapter VI, Minkowski’s theorem leads to
the determination of the positive algebraic integer A of the field of 6 such that

NaM 1
CICES) 2n(d+ 1)(N/..)+1’

| ai | 1
Ma 1 - ‘ a'? l < 2,,(d+ l)(N/nH-l

provided that
N
[2n(d+ DT> | A] 6.

Here A is a certain nonvanishing determinant depending on the set E and on 6,
but not on N. This condition can be written

0% > Ald+ 1)M[2n(d + 1)T*

and will certainly be satisfied for a convenient choice of N, since § > d+ 1.
The numbers A and N being now thus determined, we shall have, for all m and
all x € E,

<

€ €m 1
)\00"):—)\0(?‘ + 0;”) W

The argument is now identical with the one of Chapter V1. It is enough to
observe that

(mod 1).

1 " 1
[(d+ l)(N/n)+lJ ~d+1

in order to see that there exists in the torus0 < x; < 1 (j=1,2,...,n a “cell”
free of points whose coordinates are the fractional parts of

Aat+ix, Naf++ix, . . ., Na@+rx,

(d+ I)N+u-—l

the natural integer k¥ > 0 and the point x € E being arbitrary.
Since 8 € S, we have A\af™ = c,, + Oa, cx being a rational integer and 6, — 0.
The remainder of the proof is as before, and we observe that the vectors

Vi(Cri1s Ciesy « - < Chin)

form a normal family.

EXERCISE

The notion of symmetric perfect set with constant ratio of dissection (de-
scribed at the beginning of Chapter IV) can be generalized as follows.

Divide the fundamental interval (say [0, 1]) in three parts of respective lengths
&, 1 =2, & (where 0 < £, < 4). Remove the central part (“black” interval)
and divide each of the two “white” intervals left in three parts of lengths pro-
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portional to £, 1 — 2§, £ (0 < & < 4). The central parts are removed, and the 4
white intervals left are divided in parts proportional to &, 1 — 2, £ (0 < & < 4).
We proceed like this using an infinite sequence of ratios &, &, . . ., ., . . . and we
obtain a symmetric perfect set with variable rates of dissection E(S,, R S B

Suppose now that the sequence {£.} 7 is periodic, i.e., that £,,; = £; for all J,
the period p being a fixed integer. Prove that the set E(&'., veu &a...) can be
considered as a “homogencous set” in the sense of Chapter VII, with a constant
rate of dissection

X“&"'Eﬂ'

Using the results of this chapter, prove that this set is a set of uniqueness if and
only if the following hold.
1. X~! belongs to the class S.

2. The numbers &, . . ., &, are algebraic and belong to the field of X.




SOME UNSOLVED PROBLEMS

1. The following problem has already been quoted in Chapter I:

Suppose that the real number § > 1 is such that there exists a real A with
the property that || AG" || — O as the integer n increases infinitely (without any
other hypothesis). Can one conclude that @ belongs to the class S?

Another way to state the same problem is:

Among the numbers § > 1 such that, for a certain real A, || N || — 0 as
n — o do there exist numbers § which are not algebraic?

2. Let us consider the numbers 7 of the class T defined in Chapter 1II. It
is known that every number § of the class S is a limit point of numbers 7 (on
both sides). Do there exist other limit points of the numbers 7, and, if so,
which ones?

3. It has been shown in Chapter 1V that the infinite product

T(u) = :.I:Io cos ruf

is, for 0 < ¢ < #, the Fourier-Stieltjes transform of a positive measure whose
support is a set E(§) of the Cantor type and of constant rate of dissection £.
But this infinite product has a meaning if we suppose only 0 < £ < 1, and in
the case 3 < £ < 1 it is the Fourier-Stieltjes transform of a positive measure
whose support is a whole interval.t We know that I'(x) = o(1) for u — oo, if
and only if £-! does not belong to the class S. Let

W = ﬁ cos wutk,
(V]

Ty(u) = fI cos wuts*
0

where £, and & both belong to the class S, so that neither I'y(4) nor I's(u)
tends to zero for u = . What is the behavior of the product

Ii(w) - Ta(w)

as u— ? Can this product tend to zero? Example, §, = 3, & = 4.

This may have an application to the problem of sets of multiplicity. In fact,
if £, and £, are small enough, I',T"; is the Fourier-Stieltjes transform of a measure
whose support is a perfect set of measure zero, namely E(%)+ E(£).t If
I',T'; — 0, this set would be a set of multiplicity.

t Sce Kahane and Salem, Colloquium Math icum, Vol. V1 (1958), p. 193. By E(t) + E(&)

we denote the set of all numbers x; + x; such that x; € E(4) and x; € E(§).
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4. In the case § < § < 1, the measure of which I'(4) is the Fourier-Stieltjes
transform can be either absolutely continuous or purely singular.t Determine
the values of £ for which one or the other case arises. (Of course, if £~ € S,
I'(4) > o(1) and the measure is purely singular. The problem is interesting
only if £-! does not belong to the class S.)

t See Jessen and Wintner, Trans. Amer. Math. Soc., Vol. 38 (1935), p. 48.




APPENDIX

For the convenience of the reader we state here a few definitions and results
which are used throughout the book. ,

We assume that the reader is familiar with the elementary notions of algebraic
numbers and algebraic fields. (See, e.g., [5])

1. An algebraic integer is a root of an equation of the form
xt+axt14 .-+ ar=0,

where the a; are rational integers, the coefficient of the term of highest degree
being 1.

If « is any algebraic number, there exists a natural integer m such that ma
be an algebraic integer.

If 8 is an algebraic integer of degree n, then the irreducible equation of degree
n with rational coefficients, with coefficient of x* equal to 1, and having § as
one of its roots, has all its coefficients rational integers. The other roots, which
are also algebraic integers, are the conjugates of 6.

Every symmetric function of @ and its conjugates is a rational integer. This
is the case, in particular, for the product of § and all its conjugates, which proves
that it is impossible that 8 and all its conjugates have all moduli less than 1.

The algebraic integer @ is a wnit if 1/6 is an algebraic integer.

2. If (in a given field) f(x) is an irreducible polynomial, and if a root £ of
f(x) is also a root of a polynomial P(x), then f(x) divides P(x) and thus all roots
of f are roots of P.

3. If an algebraic integer and all its conjugates have all moduli equal to 1,
they are all roots of unity (see [9]).

4. Let R be a ring of real or complex numbers such that 0 is not a limit point
of numbers of R. (R is then called a discontinuous domain of integrity.) Then
the elements of R are rational integers or integers of an imaginary quadratic
field (see [9]).

5, There exist only a finite number of algebraic integers of given degree n,
which lie with all their conjugates in a bounded domain of the complex plane

(see[9D).

6. Let P(x) be a polynomial in a field k. Let K be an extension of k such
that, in K, P(x) can be factored into linear factors. If P(x) cannot be so factored
in an intermediate field K’ (i.e., such that k C K’ C K), the field K is said to be
a splitting field of P(x), and the roots of P(x) generate K.

Let ay, . . ., a» be the roots of P(x) in the splitting field K = k(a, .. ., Qn).
Each automorphism of X over k (i.e., each automorphism of K whose restriction
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to k is the identity) maps a root of P(x) into a root of P(x), i.e., permutes the
roots. The group of automorphisms of K over k is called the (Galois) group
of the equation P(x) = 0. This group is a permutation group acting on the
roots ay, . . ., an of P(x).

If P(x) is irreducible in k, the group thus defined is transitive.

See, for all this, [1].

7. Uniform distribution modulo 1 of a sequence of numbers has been defined
in Chapter I.

'A'ncccssary and sufficient condition for the sequence {u.}$ to be uniformly
distributed modulo 1 is that for every function f(x) periodic with period 1 and
Riemann integrable,

lim S + - -+ flun) n +fm) _ ﬁ lf (x)dx.

n—s o

H. Weyl has shown that the sequence {u,} is uniformly distributed modulo 1
if and only if for every integer 4 # O,

shuy see 2w ihu,,
fim St e,

n— w0 n

In Rr (p-dimensional Euclidean space) the sequence of vectors
Vi=(va,..., ¥?)

is uniformly distributed modulo 1 in the torus 7, if for every Riemann integrable
function

J&x) =S ..., x7),

periodic with period 1 in each x4, we have

Iim fl!{ﬁin' +f(Vn) - ﬁ f(x)dx,

n-—+e

the integral being taken in the p-dimensional unit torus 7.
H. Wey!’s criterion becomes

eiIHYY 4 .4 eWilHV,)
=
n

lim

where (HV,) is the scalar product
hlvn] + A + hnvn’

and A, . . ., h, are rational integers not all 0.
If wy, wo, . .., wp, and 1 are linearly independent, the vector (nw, . . ., nw,) is
uniformly distributed modulo 1 (see [2]).




A

66  Appendix

8. Kronecker’s theorem. See [2]. In the form in which we use it in Chapter
111 it may be stated as follows:

U 011 02) ooy oh 1

are linearly independent, o, o, . . ., ou are arbitrary, and N and € are positive,
there exist integers

n>N,p,psy ... P
such that
|nb;—p;—a;jl <€ (j=1,2,...,k).

(This may be considered as a weak consequence of the preceding result on
uniform distribution modulo 1 of the vector (nf,, . . ., n6s).)

9. We had occasion to cite Minkowski's theorem on linear forms in Chapters
I, III, and VI. We restate it here as follows.

Let
M) =S arx, (p=1,2,...n)
g=1

be n linear forms of the n variables x,, . . ., X» where the coefficients are real and the
determinant D of the forms is not zero. There exists a point x with integral co-
ordinates not all zero, x,, . . ., X, such that

[Ap(x) | £ 6m
provided that 6, - - - 8, > | D|.

The result holds if the coefficients a,» are complex, provided that complex
forms figure in conjugate pairs, and that the two J,’s corresponding to a con-
jugate pair are equal.

The theorem is usually proved by using the following result. If X is a convex
region of volume V in the Euclidean space R* with center of symmetry at the
origin and if ¥ > 27, the region K contains points of integral coordinates other
than the origin. An extremely elegant proof of this result has been given by
C. L. Siegel, Acta Mathematica, Vol. 65 (1935).
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