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PREFACE

In the commutative harmonic analysis there are at least two im-
portant theorems that make sense without the assumption of the 1local
compactness of the group and the existence of the Haar measure: the
Pontryagin-van Kampen duality theorem and the Bochner theorem on posi-
tive-definite functions. The Pontryagin-van Kampen theorem is known to
be true e.g. for Banach spaces, products of locally compact groups or
additive subgroups and quotients of nuclear Fréchet spaces. The Boch-
ner theorem remains valid for locally convex spaces over p-adic fields,
for nuclear locally convex spaces (the Minlos theorem), their sub-
groups and qguotients. These lecture notes are an attempt of clearing up
the existing material and of determining the "natural" limits of the
applicability of the theory. Pontryagin duality is discussed in chap-
ter 5 and the Bochner theorem in chapter 4.

Our exposition is based on the notion of a nuclear group. Roughly
speaking, nuclear groups form the smallest class of abelian topological
groups which contains locally compact groups and nuclear spaces and is
closed with respect to the operations of taking subgroups, Hausdorff
quotients and arbitrary products. The definition and basic properties
of nuclear groups are gathered in chapter 3. It turns out that, from
the point of view of continuous characters, nuclear groups inherit many
properties of locally compact groups.

In chapter 2 we show that the assumption of nuclearity 1is essen-
tial: if a separable Fréchet space E is not nuclear, it contains a
discrete additive subgroup K such that the quotient group E/K does
not admit any non-trivial continuous unitary representations.

In section 10 we apply nuclear groups to obtain answer to an old
problem of S. Ulam on rearrangement of series in topological groups.
From the point of view of convergence of series and sequences, nuclear
groups inherit many properties of finite dimensional and nuclear spaces.

The characteristic feature of our considerations is their geome-
trical complexion. The heart of the monograph is section 3 on relations
between lattices and n-dimensional ellipsoids in R®. The main tools
used here are the Minkowski convex body theorem and the Korkin-Zolota-
rev bases. To derive the results of chapters 3-5 from those of section



\'

3, we need only some, rather elementary, topoclogy and topological al-
gebra. The main result of chapter 2 is a consequence of the Minkowski-
-Hlawka theorem and certain properties of ellipsoids of inertia of con-
vex bodies. The analytic apparatus is made use of to a slight degree
only. In that sense, our approach to duality is kept in the spirit of
the original geometrical idea of Pontryagin.

This monograph lies on the line of several branches of mathematics,
sometimes even quite distant, and the author wishes to thank many per-
sons for their remarks and advice which enabled him to present each
particular branch in conformity with the current state of knowledge:
S. Kwapiefh and A. Peiczyiski for their help in functional analysis,
especially the local theory of Banach spaces; H.W. Lenstra, Jr. for
comments on the geometry of numbers; V.M. Kadets for information con-
cerning rearrangement of series, and many others.

Particular thanks are directed to W. Wojtyhaski for his encourag-
ing suggestions; this work is a development of his ideas.

16dz, July 1990



CONTENTS

Preface

Chapter 1.  PRELIMINARIES ... i iviivinriiviivinaoniinanavnasnans 1
1. Topological groupsS vsveavnvvvrnsniavrseronanrananses 1
2. VECLOr SPUCES i vasravavriarsansaraarsacrervairrainsaeis 16
3. Geometry of NUMDBIS v vivransesrorsnraianartnsnrsrns 25

Chapter 2,  EXOTIC GROUPS . ivvvvisvvnnvnnisavnisanaanvravaannass U5
4. Representations of abelion topological groups ve.... U5
5. Quotients of normed SPACES v vvnssnsaeronvrrssnsers D2
6. Quotients of non-nuclear SPACES vvvivervsairsranrarias 60

Chapter 3.  NUCLEAR GROUPS ... .vvvvincrnnnvrnninnnsvanarnanises 712
7. NUCLEOr grouPsS +uvvesvanrinsrasisannarnsssesnnrsansns 12
8. Characters of nuclear groupsS vevvevsarsrsesavararsss 80
9. Nucledr vectOr groupS «visvianrsnrsnisrssrisrtissrrers 86
10. The Lévy-Steinitz theorem ...vvvverssrriivnannersnrias 93

Chapter 4,  THE BOCHNER THEOREM .......cvvvvvinransanananavassass 110
11. Preliminaries v vivvnnnrarsnornvanoararavsasnrsiaae 110
12. The Bochner theorem vvvvvvvirersrasnrsvisasonsnavenss 113
13. The SNAG theorem ..ivvvvevrersvavenvanasronsnrsvaraaas 114

Chapter 5.  PONTRYAGIN DUALITY ......vvvvvnnunnirsannnierssnenrss 132
14. Preliminaries vvivivvnnsnsnvarnasnnnrassnansaananass 132
15. Locally convex Vector grouPS vvsverrissvsrreaearannss 138
16. Nuclearity of dual groupsS .vevvevearsvaraonanrasansas 144
17. Strong refleXivIity vvvevervsivsnronvenrsairernssaorass 151
18. Groups with boundedness v ivncrnconracarirarisne 162

Bibliogrﬂphy L R N R I I R N B O R N O A R R A N B A D A A I A B A IR AN N R IR A B R B A R 168
Index Of SYMDOIS v uvvvvnvnvnrnersvnvnsosnentasansronranarrssrsars 174
Subject Index «vviviiiraiaan T Y )



Chapter 1

PRELIMINARTES

In this chapter we establish notation and terminology. We also
state some standard facts in a form convenient to us. Section 1 is de-
voted to abelian topological groups and section 2 to topological vector
spaces. In section 3 we give some more or less known facts about addi-
tive subgroups of rRP.

1. Topological groups

The groups under consideration will be mostly additive subgroups
or quotient groups of vector spaces. Therefore we shall apply the addi-
tive notation mainly, denoting the neutral element by O. Naturally,
we shall keep the multiplicative notation for groups of, say, non-zero
complex numbers or linear operators. The additive groups of integers
and of real and complex numbers will be denoted by 2, R and C, re-
spectively. The multiplicative group of complex numbers with modulus
1 will be denoted by S.

By a character of a group G we mean a homomorphism of G into
the group T: = R/Z. We shall frequently identify T with the interval
(- %,%}. The canonical projection of R onto T will be denoted by
p. Thus p{(x) = x for x = (—%,%]. The value of character ¥ at
a point g will be denoted by x(g) or, sometimes, by <x,g>.

Now, let G be an abelian topological group (we do not assume
topological groups to be Hausdorff). The set of all continuous charac-
ters of G, with addition defined pointwise, is an abelian group

again. We call it the dual group or the character group of G and de-
note by G .

Characters are usually defined as homomorphisms into S. Such a
definition is convenient in harmonic analysis, when we consider com-
plex-valued functions "synthesized" of continuous characters (such a
situation will take place in chapter 4). However, it leads to the mul-
tiplicative notation on G which is inconvenient in duality theory
when we try to maintain symmetry between G and G (especially when
we consider topological vector spaces). There are also certain tech-
nical reasons for which we have chosen T instead of 8.

We shall have to consider various topologies on G . The dual



group endowed with a given topology 1t will be denoted GT. By G;,

G; and G;c we shall denote the dual group endowed, respectively,
with the topology of uniform convergence on finite, compact and pre-
compact subsets of G (il.e. with the topclogy of pointwise, compact
and precompact convergence). The second one is usually called the com-
pact-open topology.

Now, let A be a subset of G. If x is a character of G, then
we write

[x(B)| = sup {|x(g)|: g e A}.
The set

{x €6 : |x(A)] s %}
is called the polar of A in G”; we denote it by Ag. If the mean-
ing of G 1is clear, we simply write A° instead of Ag. By Ag, Ag
and Agc we denote the set A° endowed with the topology of point-

wise, compact and precompact convergence, respectively.

If A 1is a subgroup of G, then

AO:{XEG ;X|A50};
this follows, for instance, from (1.2). Thus 2% is a closed subgroup
of »Gp; we call it the annihilator of A.

A subset A of G is said to be guasi-convex if to each ge G\ A
there corresponds some x € A° with Ix(g)| > %. The set

N {g=6: [xa)] s 3

xea®

is evidently the smallest quasi-convex subset of G containing A; we
call it the guasi-convex hull of A. We say that G is a locally
quasi-convex group if it admits a base at zero consisting of quasi-
-convex sets. Observe that if G 1is a Hausdorff locally gquasi-convex

group, then it admits sufficiently many continuous characters (i.e.
continuous characters separate the points of G). Observe also that the
polar of any subset of G 1is a quasi-convex subset of each of the

groups G G and G‘ ; therefore all the three groups are locally

p’ ¢ pc
quasi-convex.

(2.1) z¥pma. Let g,h Dbe two elements of an abelian group G. If
x 1s a character of G such that |x(g)}|, |[x(h)| and Ix{g + h)|

are less than %, then x{(g + h) = x(g) + x(h).



Proof. One has

x{g + h) x(g) + x(h) (mod 2),

i.e.

(1) x(g + h) - x(g) - x(h) € zZ.

From our assumption we obtain

(2) [x(g + h) = x(g) -~ x(h)]
2 fx(g + h)| + [x(g)| + [x(h)] < % + % + % =1
Now (1) and (2) imply that x{(g + h) - x{g) - x(h) = 0, =
(1.2) LEXNA. Let x be a character of an abelian group G. Let

m be a positive integer and g an element of G, such that

x(kg) < % for k=1,...,m. Then x(mg) = mx(g).

Proof. By the preceding lemma, for each k =1,...,m-1, we have
x((k + 1)g) = x(kg) + x(g). Thus
m-1 m-1 m~1

3 x((k + 1)g) x(kg) + = x{(9),
k=1 k=1 k=1

myx{g). =

it

which means that x(mg)

Let A Dbe a subset of an abelian group G. By gp A we denote
the subgroup of G generated by A. For each m=1,2,..., we de-
note

-ran € A}.
(1.3) PROPOSIYION. Let G be an abelian topological group. The
polars of compact (resp. finite, precompact) subsets of G forma base

at zero in Gc (resp. in Gp, Gpc).

Proof. Let U be a neighbourhood of zero in G; (resp. in G;,

). There exist an e > 0 and a compact (resp. finite, precompact)

.

pc i
subset Y of G, such that the set W= {x € 6 : |[x(¥)]| < &} is
1 m

contained in U. Choose an integer m > (4g)” The set A =Y is

compact (resp. finite, precompact). By (1.2), for each X € Ao, we

1 i o
have |x(Y)]| nIx(B)| s 7= <e. Thus A~ cW. =

By NO(G) we denote the family of all neighbourhoods of zero in
an abelian topological group G (we do not assume neighbourhocods to



be open).

(1.4) LEMMA. A character x of an abelian topological group G is
continuous if and only if x € U° for a certain U € NO(G).

Proof. The necessity of the condition is trivial. To prove the

sufficiency, choose any ¢ > 0. We can find an integer m> (42)_1

and then some W e NJ(G) with W' o u. By (1.2), we have |x(W) | £

%IX(U)I < ﬁ% < €. This means that ¥ 1is continuous at zero. =

(1.5) PROPOSTTION. The polars of neighbourhoods of zero in an abe-

lian topological group G are compact subsets of G;c'

Proof . Choose any U € NO(G). The group G; is compact because

we may identify it with a closed subgroup of the product ¢ (see also

(1.8)). Since Ug is a closed subset of G;, it 1is enough to show
o
pc

Choose any « € U° and let W be a neighbourhood of « in U
By (1.3), there is some precompact subset A of G such that

that the identity mapping Ug - U is continuous.

(]
pc’

Ww:=(x +2a°% nu® cw.

3

Next, we can find some V € NO(G) with VvV~ < U. Since A is pre-

compact, there exist some gl,...,gn € A such that
n

1 A c 1. + V.

(1) {91}1=1 v

The set

w = {x e : |x(g,) - k(g,)| $=5 for i=1,...,n}
i i 12

is a neighbourhood of «k in U;. It remains to show that W” < W’'.

So, choose any x € W’. We have to show that x - « € a%. Take
any g € A. In view of (1), we may write g =9g; + h for some i =
l1,...,n and some h € V. Now, from (1.2) we obtain

x(Misx) ] s §5  and k(W sdcw)] = 5
Hence
- 3 -1 .
[ = (@] s [x(gg) - (@] + [x(m] + [«(h)] s 5=

An abelian group G 1is called divisible if to each g € G and
each n =1,2,... there corresponds some h € G with nh = g.



(1.6) PROPOSITION. Let H be a subgroup of an abelian group G.
Every homomorphism of H into a divisible group can be extended to a
homomorphism of G.

For the proof, see e.g. [38], Theorem (A.7).

Let G,H be abelian topological groups. An isomorphism ¢ of G
ontoc H 1is called a topological isomorphism if ¢ and ¢—1 are con-
tinuous. If there is a topological isomorphism of G onto H, thenwe
say that G and H are topologically isomorphic and write G~ H. An
injective homomorphism ¢ : G > H is called a topological embedding if
¢ is a topological isomorphism of G onto the group ¢(G) endowed

with the topology induced from H.

(1.7) PROPOSITION. Let Gl""’G be abelian topological groups.

n
There is a canonical topological isomorphism between (G1 X 4e. X Gn)c

and (Gl)C X ... X (Gn)c.

This is a standard fact. For the proof, we refer the reader to
[38], (23.18) - the assumption there that Gl""’Gn are locally com-

pact- is inessential. For infinite products, see (14.11) below.

Let H be a subgroup of an abelian topological group G. We say
that H 1is dually closed in G if to each g G\ H there corresponds
some ¥ € H° with x(g) # 0 (this is equivalent to the assertion that
H 1is a quasi-convex subset of G). Next, we say that H dually
embedded in G 1if each continuous character of H can be extended to
a continuous character of G. Observe that dually closed subgroups are
closed. Observe also that each continuous character of H can be ex-
tended in a unigue way to a continuous character of H.

Let us recall shortly basic facts concerning the Pontryagin - van
Kampen duality theorem. The proofs can be found e.g. in [38], §24. By
a compact (resp. locally compact) group we shall mean a group which is
compact (resp. locally compact) and separated. Locally compact abelian
groups are called LCA groups.

{(1.8) PROPGSITION. Let G be an LCA group. Then G; = Gpc is an

LCA group, too, and the evaluation map is a topological isomorphism of
G onto (Gc)c. If H is a closed subgroup of G, then H is dual-

ly closed and dually embedded. Moreover, the canonical mappings

G;/HZ -> H; and (G/H); > Hg are both topological isomorphism. If G



is compact, G; is discrete. If G 1is discrete, Gc is compact.

There are canonical topological isomorphisms R; - R, Z; > T, T; -+ 2.

(1.9) PROPOSTITION. Let G be an LCA group. Then there exist an
n=20,1,2,..., a compact group K and a discrete group D, such that
G 1is topologically isomorphic to a closed subgroup of R® x K x D.

Proof. Being an LCA group, Gc contains an open subgroup A -

R? x H for some n = 0,1,2,... and some compact group H ([69], Theo-

rem 25 or [38], (9.14)). Let ¢ : G > G /A be the natural projection.
Every (abelian) group is a quotient of a free one. So, we can find a
free abelian group F and a homomorphism ¢ of F onto G /A. Let

{fi}ieI be a system of free generators of F. For each ie€I, choose
some x; € G with ¢(xi) = w(fi). Let 0 : F + G be the homo-
morphism given by o(fi) = X3 for 1 € I. We obtain the following

commutative diagram:

F

OJ// \\\i

¢ — 5 e/a
The formula

pla,f) = a + o(f) (aea, f ev¥F)

defines a homomorphism p : A x F > G . We shall prove that
(1) p(A x F) =G
To this end, choose an arbitrary x € G . Since Y(F) = GA/A, we can
find some f € F with $(f) = ¢(x). Then ¢(o(£)) = v(f) = ¢(x),
which means that a: =yx - o(f) € ker ¢ = A. Thus x = a+o(f) =

pl{a,f) € p(A x F), which proves (1).

Let us endow F with the discrete topology. Since Ax {0} is an
open subgroup of AxF and p 1is a topological isomorphism (in fact,
an identity) of A x {0} onto the open subgroup A of G;, it follows

that p : A x F » G; is both continuous and open. Consequently, G;

(A x F)/ker p. So, in virtue of (1.8), we have
- SNt - o
G (Gc)C ((A x F)/ker p)c (ker p)c.

In other words, G 1is topologically isomorphic to a closed subgroup of



- -~ - - _n - -
(A x F)c. From (1.7) we get (A x F)c A, x F, R x H, x F_ and

it remains to observe that Fé is compact and H; discrete. =

The completion of an abelian topological group G will be denoted
by G. We shall identify G with a dense subgroup of G. The clo-
sures in G of elements of any given base at zero in G form a base

at zero in G ({23], Ch. III, §3, Proposition 7).

{(1.10) PROPOSIYION. Let GO be a dense subgroup of an abelian to-
pological group G. Let H be the closure in G of a closed sub-
group HO of GO and let ¢ : G » G/H be the canonical projection.
Then the canonical bijection GO/Ho > ¢(Go) is a topological isomor-
phism of Go/Ho onto a dense subgroup of G/H.

This is Proposition 21 of [23], Ch. III, §2.

(1.11) PRoPosITIoN. Let G be an abelian topological group. If G
is a k-space, then ¢ is a complete group.

Proof. The space TG of continuous mappings from G to T is
complete in the compact-open topology ([52], Cch. 7, Theorem 12). It
remains to observe that G is a closed subset of TG. L]

(1.312) PROPOSTTION. Let G be an abelian group and B a family of
subsets of G satisfying the following conditions:

(a) every member of B contains zero;
(b) to each U € B there corresponds some V € B with -V c U;

(c) to each U € B there corresponds some V € B with V +VcU.

Then there exists a unigue topology 1T on G compatible with the
group structure, such that B 1is a base at zero for .

For the proof, see [23], Ch. III, §1.2.

Let {Gi}ieI be a family of abelian topological groups indexed

by a set I. The product of these groups is defined in the usual way;

we denote it by II Gi' It is evident that the product of a family of
ieT

locally quasi-convex groups is locally quasi-convex.

Let {pij : Gi > Gj; i,j €1, 12 j} Dbe an inverse system of

topological groups, that is to say, I is a directed set and, for
each pair i,j € I with i 2 j, a continuous homomorphism p.

ij
. . . _ ; s 4> X
Gj is given, such that pij pjk Pix if 1 2 j 2 k. We define the

:Gi%



limit of this system in the usual way, identifying it with the appro-

priate subgroup of the product II G. . If I is the set of positive
ieT

integers, then we speak of an inverse sequence. Naturally, the 1limit

of an inverse system of locally quasi-convex groups is locally quasi-

-convex. The product IT G, 1is canonically topologically isomorphic
iel
to the 1limit of the inverse system II Gi where K runs through all
iekK

finite subsets of I and the projections for K o L are defined

Pyr,
in the usual way.

The limit G of the inverse system {pij: Gi - Gj} may be equal
to zero. If, however, I 1is at most countable and all pij are onto,

then also all projections P;

4.6, proved that if {pij : Gi -> Gj} is an inverse sequence of LCA

groups such that pij(Gi) is dense in Gj for all pairs i,] with

G > Gi are onto. Kaplan [50], Lemma

i 2 j, then also pi(G) is dense in Gi for every 1i.

Again, let {Gi}ieI be a family of abelian topological groups.
Their direct sum, denoted by > Gi’ is algebraically the subgroup of
ier
the product II Gi’ consisting of finite sequences (that is, an ele-
iel
ment (g.). of IT G, belongs to > G, if and only if g. = 0
1°i€l iel 1 ier 1
for all but a finite number of indices 1i). We shall consider on = Gi
iel

the asterisk and the rectangular topologies. To describe them, we have
to introduce some additional notions.

Let U be a subset of an abelian group G. For each g € U, we
define

ny = sup {n : kge U for k=1,...,n}

and g/U = (nU)-l. This means, in particular, that g/uU =20 if and
and only if kg € U for every k.

Let us suppose that, for each ierd, we are given some Ui €
No(Gi)' We denote

2 U, = {(g;). € > G, : g, €U, for all i e I},
iEI 1 171€l iel 1 h i 1

Z*U. = {(9.); e U, : = (g./U.,) < 1}.

iEI 1 i’iel jel 1 iel 1 1

Let B be the family of all sets of the form > U, where u; € No(Gi)
iel
for every i. Similarly, let B* be the family of all sets of the



form X *U., where Ui = No(Gi) for every i. It follows from (1.12)
ieT
that there is a unique topology on = Gy compatible with the group
iel

structure, for which B is a base at zero; we call it the rectangular
topology. Conditions (a) - (c) of (1.12) are satisfied trivially. Simi-
larly, it follows from {(1.12) that there is a unique topology on =G

iel
compatible with the group structure, for which B* is a base at zero;

i

we call it the asterisk topology. The only non-trivial thing here is
to verify (1.12) (c¢) with B replaced by B*:

(1.13) LoomA. Let {Gi} be a family of abelian topological

iex
groups and let B* be defined as above. Then to each U € B* there
corresponds some V € B* with V + V c U,

To prove (1.13), we need the following simple proposition whose
verification is left to the reader:

(1.14) LEmwa. Let U be a zero-containing subset of an abelian
group G. Then g/(U + U) £ %(g/U) for each g € U. If V is another
zero-containing subset of G and V + V c U, then (g +h)/U =
max (g/Vv,h/V) for all g,h e v,

Proof of (1.13). Choose an arbitrary U € B*, We have U= X * Ui
ier
for some Ui = NO(Gi), ieTI. For each 1 &€ I, we can find some
. 4 _ i
v, € N (G;) with v, ¢ U;. Set V = i>e:I* V.

Now, take any sequences (g
From {(1.14) we get

i)ieI and (hi)iEI belonging to V.

S [(g; +h)/U) 5 3 [(g; + hy)/(V; + V)]

iel iel
1 1
£ % = max (g./V.,, h./v.) s % = [g./V, + h,/V.] < 1.
2 ier i1 i’’1 2 jer + 1 i’ "i
Thus (gi + hi)ieI € X% Ui’ which means that V + Vc U, =

iex

The asterisk topology is, by definition, finer than the rectangu-
lar one. For countable direct sums, these two topologies are identi-
cal:

(1.25) FPORrOsTITIOE. Let (Gn)z=1 be a sequence of abelian topolo-
o

gical groups. Then the asterisk topology on X Gn is equal to the
n=1
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rectangular one.

Proof . Let Un S No(Gn) for n=1,2,... . We have to show that
ZI*Un contains a rectangular neighbourhood of =zero. For each n =
n=1

X . 2 :
1,2,..., we can find some Vn S No(Gn) with Vn c Un‘ From (1.14) it

follows by induction that

(g/u,) s 2'n(g/vn) for all n =1,2,... and all g e V.
So, if (g )= € %} V., then
n=1
= (g /u)) £ = 2'n(gn/vn) < = 27 =g,
n=1 n=1 n=1
«© [eo]
Thus 2 V. c Z*xy .. =
n=1 n n=1 B

In general, the rectangular topology is not egquivalent to the aste-
risk one (consider, for instance, an uncountable direct sum of real
lines). In the sequel, speaking of direct sums of topolegical groups,
we shall always assume that they are endowed with the asterisk topology,

unless it is explicitly stated otherwise. Notice that if {Gi}iel is a

family of locally convex spaces, then the group > Gi is topological-
. iel

ly isomorphic to their locally convex direct sum.

(1.16) PROPOSITION. The direct sum of an arbitrary family of locally
quasi-convex groups is locally quasi-convex.

An easy proof is left to the reader.

(1.17) PROPOSITION. Let G Dbe the direct sum of a family {Gi} of

iex
Hausdorff abelian groups. For each i € I, let LI G ~» Gi be the

canonical projection. If P is a precompact subset of G relative to
{0} for all but

the asterisk or rectangular topology, then ni(P)
finitely many indices 1i.

Proof. Suppose that P is precompact in the rectangular topology.
Set J={i¢€e1I: ﬂi(P) # {0}}. We have to show that J is finite.
Suppose the contrary. To each i € J there corresponds some gi e P
with ﬂi(gi) # 0. Next, there is some Ui & No(Gi) with wi(gi) 3 Ui

because Gi is separated. The set U = X U, 1is a rectangular neigh-
iel
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bourhood of zero in G. So, there is a finite subset A of P such
that P ¢ A + U because P is precompact. Since A is finite and
consists of finite sequences while J is infinite, it follows that
there is an index j € J such that nj(A) = {0}. Then
(P) € m.(A + U) = 7, + T = {0} + U. = U..

ﬂj( ) ﬂJ( ) ﬂ](A) ﬂJ(U) {0} 3 5
On the other hand, we have gj € P and nj(gj) ¢ Uj' which is a con-~
tradiction. =
Let {pij : Gi -> Gj; i, €1, i< 3j} be a direct system of
abelian topclogical groups, that is to say, I as a directed set and,
for each pair i,j € I with 1 £ j, a continuous homomorphism pij:

. . i i pD.. = D. 1 i <4 < k.

Gl > GJ is defined, such that pij pJk Pix if i £ 3j £k Let G
be the direct sum of the family {G,;}. and let Go be the subgroup

i'ier
of G generated by all elements of the form

9; - pij(gi) (i,j€eI; i<53; g, € 6G,)

(we treat Gi and Gj as subgroups of G). We define the limit of
the system considered as the gquotient group G/Go' when all groups
G; are locally convex spaces, we obtain the usual definition of the
inductive limit.

Kaplan [50] defined the limit of the direct system as the group

G/EZ. He proved that if I is countable, the groups G, are local-

ly compact and all mappings pij are injective, then Go is closed
([50], Theorem 8, p. 433).

It is not hard to see that if J is a cofinal subset of I and
all groups Gi are locally gquasi-convex, then the limit of the system

{plj : Gi > Gj;

of the subsystem {pij : Gi -> Gj; i,jeJ 123}, The assumption

of local quasi-convexity is essential.

i,j eI, i< 3} may be identified with the 1limit

If I 1is the set of positive integers, then we speak of direct
sequences. In view of the last remark, when considering 1limits of
countable direct systems we may restrict ourselves to limits of direct
sequences.,

The direct sum of a family {Gi} of 1locally dquasi-convex

iel
groups is easily seen to be topologically isomorphic to the limit of

> Gi - 3 Gi} where K,L run through
iek ieL

finite subsets of I and the embeddings
usual way.

the direct system {pKL

Pyy, are defined in the
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(1.18) PROPOSIYION. Let G be the 1limit of a direct sequence
{pn : Gn - Gn+1} of abelian topological groups, in which all mappings

P are topological embeddings. Then the topology of G induces orig-

n
inal topologies on the groups Gn. Consequently, if all groups Gn are
separated, so is G.

Proof. We may assume that (Gn):=1 is an increasing sequence of sub-

groups of G. Let B Dbe the family of all sets of the from
U1+U2+...:= L_J (U1+...+Un)
n=1
where Un e No(Gn) for every n. It follows directly from (1.15) that
B 1is a base at zero in G.

Fix an index m and choose an arbitrary vV e NO(Gm). We are to
find some U € NO(G) with U N Gm C V. Naturally, we may assume that
m = 1, There is some U1 e No(Gl) with U1 + Ul c Vv, and a simple
inductive argument allows us to find, for each n 2 2, some Un’wn S
No(G,) with w NG , cU ., and U + U cW. Itremains to show

that G1 n (U1 + U2 + ...) c V., Set Yk = U1 + ...+ Uk + Uk for

k=1,2,... . It is enough to show that G, N Yk c v for every k.

1
For k =1, this is obvious. For k > 1, we use induction:

Gy N Yy © Gy NG 1 N (U + oo 4+ Up o+ W)
=Gy 0 (Up + ooe + U o+ (W NGy 4))
€GN (U + .un + U 4 +U 1) =6 NY 4,

which is contained in V due to the inductive assumption. =

A topological vector space is locally convex if and only if it is
a Hausdorff locally quasi-convex group (see (2.4)). Komura [55] showed

that the limit of an uncountable direct system {pij : Ei - Ej} of

locally convex spaces in which all mappings p are topological em-

beddings need not be locally convex, and even E% it is, it need not
induce original topologies on the spaces E;. If, in (1.18), all
groups Gn are locally convex spaces, G is a locally convex space,
too ([80], Ch. II, (6.4)). If we assume only that all an are Haus-
dorff locally quasi-convex groups, then probably G need not be 1lo-
cally quasi-convex. See, however, (7.9). Vilenkin [99] considered an-
other topology on the limit of a direct system. Under his definition,

the limit of any direct system of abelian topological groups is a lo-
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cally quasi-convex group.
Let G,H be abelian topological groups and let ¢ : G > H be a
continuous homomorphism. Then the formula

<b(x),9> = <x,6(9)> (x eH; ge6)
defines a homomorphism vy : H - G . We call it the dual homomorphism
and denote by ¢‘. It is clear that ¢— : H; - G; is continuous when
t 1is the topology of pointwise (resp. compact, precompact) con-
vergence. If {pij : Gi -> Gj; i,j €eI; i2 3j} 1is an inverse system
of abelian topological groups, then {pij : Gj > Gi} is a direct sys-

tem, and vice versa.
Let {Gi}ieI
by a set I. Suppose that, for each i € I, a closed subgroup Hi of

be a family of abelian topological groups indexed

Gy has been chosen. Let G be the subgroup of the product II Gi
iel

consisting of all sequences (gi) such that g; € Hi for all but

ieI
finitely many indices 1i. We topologize G by identifying it with the

limit of the inverse system

m : X G, x £ (G,/H.,) » = G, x = (G./H.)
KL * ek *  qgg 14 jer, 1 igr, P01

where K,L are finite subsets of I with K o L, and T is the

KL
canonical projection. Endowed with this topology, G will be called

the reduced product of groups Gi relative to subgroups Hi and de-

noted by = (Gi : Hi). It is clear that the topology of G induces
ieI
original topologies on the subgroups Gi' Notice that if Hi = Gi for
almost all i, then G = II Gi; if Hi = {0} for almost all i, then
iel
G = = Gi' More precisely, if H 1is the subgroup of G consisting
ier

of all (gi) such that g; € Hy for every i, then H has the

ier
usual product topology and G/H is topologically isomorphic' to the

direct sum > (Gi/Hi). Since inverse limits and direct sums of lo-
ier
cally quasi-convex groups are locally gquasi-convex, G is 1locally

quasi-convex provided that so are all groups Gi and Gi/Hi'

(1.19) PROPOSIYIGH. For each 1 € I, let wi : G > Gi be the ca-
nonical projection. A subset X of G 1is precompact if and only if
wi(x) is precompact in Gi for all i, and \bi(x) c Hi for almost
all 1.
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This is a direct consequence of (1.17) and the definition of G.

(1.20) PRoFPOSIYION. If I is at most countable and G locally
gquasi-convex, then G may be identified with the limit of the direct
system

] + II G, x IL H, » II G, x II H,
KL " jegk 1 i¢gr *  dern Y  ig¢n *

where K,L are finite subsets of I with K c L and is the

%)L
canonical embedding.

The proof is left to the reader as an exercise.

Let G be a topological group (abelian or not). By a represen-
tation of G in a real or complex Banach space E we mean a homo-
morphism of G into the group GL(E) of automorphisms of E. We‘say
that E is the space of the representation. The operator being the
value of a representation ¢ at a point g € G will be denoted by

¢(g) or ¢g. We say that ¢ is faithful if ¢g £ id for g #1. A
representation ¢ : G > GL(E) is called weakly (resp. strongly) con-
tinuous if, for each fixed u € E, the mapping g =~ ¢gu is con-
tinuous in the weak (resp. strong) topology on E. We say that 4]

is uniformly continuous if the mapping g -~ @g is continuous in the

norm topology on GL(E).

We say that & 1is a cyclic representation if there exists a vec-

tor u € E such that the linear subspace spanned over the vectors
¢gu, g € G, 1is dense in E; then u is called a cyclic vector of
¢. A subspace M of E is called invariant (relative to o) if
@g(M) c M for each g € G. If the only invariant subspaces of E

are E itself and {0}, we say that ¢ 1is an irreducible represen-

tation.
Let H be a complex Hilbert space. A representation ¢ : G >GL(H)

is called unitary if all operators ¢ g € G, are unitary. A uni-

gl
tary representation is weakly continuous if and only if it is strong-

ly continuous; then we call it simply a continuous unitary represen-

tation.

if & is an irreducible unitary representation of an abelian
group in a complex Hilbert space H, then dim H = 1. Since the
multiplicative group of non-zero complex numbers is topologically iso-
morphic to R x T, it follows that the study of irreducible unitary
representations of abelian groups can be reduced to the study of their

characters.
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Let d>1,<1>2 be two representations of a group G in Banach
spaces El’Ez’ respectively. We say that these representations are
equivalent if there is a topological isomorphism 0 : El > E2 such
that <ble = 6@2. If El,E2 are complex Hilbert spaces and the repre-
sentations <I>1 and <I>2 are unitary, then we say that <I>l is unit-

arily equivalent to <I>2 if there is a unitary isomorphism @ : E.-> E

1 2
with @le = @@2.
Let {Hi}iEI be a family of complex Hilbert spaces. Their Hilbert
sum, denoted by e Hi' is the subspace of the product IIH.,, con-
ier il
sisting of all sequences (ui)iEI with 2 Iluill2 < @, The-inner prod-
iex
uct in e Hi is given by the formula
iel
((ul)'(vi)) = X (ui,Vi).

iel
Let G be a topological group and suppose that, for each i € I,

a continuous unitary representation <1>i of G in Hi is given. Then

the formula
lo)e(uy)ser = (95(9) 03) 50

defines a continuous unitary representation ¢ of G in the space

=23 Hi; we call ¢ the Hilbert sum of the representations d)i and
ier
denote it by e o,

iel .
(1.21) PROPOSIYION. Let ¢ be a unitary representation of a group

G in a complex Hilbert space H. Then there exists a family {Hi}iEI

of closed, invariant, pairwise orthogonal subspaces of H such that

u Hi is linearly dense in H and, for each i € I, the represen-

ier

tation d)i of G in Hi given by

o, (g)uy = o(g)ruy (g € G; u; € Hy)

is cyclic . In other words, every unitary representation is unitarily
eguivalent to the Hilbert sum of cyclic representations.

This is Theorem (21.14) of [38].

A complex-valued function ¢ on a group G is said to be posi-
tive-definite (shortly, p.d.) if, for each n = 1,2,..., it satisfies
the condition
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n - -1
Z A3h0(g;7gy) 2 0

J

Ve

1

for all xl,...,xn € C and 9yre+19, € G. Every linear combination

of characters, with non-negative coefficients, is a p.d. function on G
(see [38], (32.9)).
(1.22) PROPOSITION. Let ¢ be a p.d. function on a group G. Then
(a) ¢(0) 2 0;
(b) |¢{g)| £ ¢(0) for all g € G;

(c) ]6(g) - o(h)|® S 26(0)[$(0) - Re ¢(g-h)] for all g,h e G.

This is a direct consequence of the definition of a p.d. function
(cf. [38], (32.4)).

(1.23) PROPOSITION. Let ¢ Dbe a unitary representation of a group
G in a Hilbert space H. For each u € H, the function ¢(g)

i

(¢gu,u) is positive-definite. If G is a topological group and ¢
is continuous, then so is ¢. If ¢ 1is continuous and u is a
cyclic vector of ¢, then ¢ is continuous.

For the proof, see [38], (32.8) (a), (b) and (f).

(1.24) ProPoSITION. Let ¢ be a continuous p.d. function on a to-
pological group G. Then there exists a continuous c¢yclic unitary
representation ¢ of G with a cyclic vector u such that (¢dhu) =
¢(g) for all g e G.

This follows from [38], (32.3) and (32.8) (f).

(1.25) PROPOSITION. Let ¢,Y be two continuous unitary representa
tions of a topological group G with cyclic vectors u,w, respec-
tively. If (¢gu,u) = (Wgw,w) for all ge€ G, then ¢ and V¥ are
unitarily equivalent.

For the proof, see [18], Proposition 3, p. 146 or [38], (32.8)
(b).

(1.26) morE. The material of this section is standard.

2. Vector spaces

All vector spaces occurring are assumed to be real. The only ex-
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ceptions are complex spaces connected with representations of groups
and vector spaces over ultrametric fields, considered in section 7.
For the terminology (but not for the notation) concerning topological
vector spaces we refer the reader to Schaefer’s ‘book [80]. Locally
convex spaces (in particular, all nuclear spaces) are meant to be
separated.

Let E be a vector space. By E# we denote the space of all
linear functionals on E. If E 1is a topological vector space, the
space of all continuous linear functionals on E is denoted by E*;
endowed with the topology of uniform convergence on bounded, compact
and precompact sets, it is denoted by E;,E; and E;c, respectively.
The dimension of E 1is denoted by dim E. If A 1is a subset of E,
then span A denotes the linear subspace of E spanned over A and
conv A is the convex hull of A.

(2.1) moTE. It is convenient to set span @ = {0}. Consequently,
if g Uy, een is a sequence in E, the symbol span {ui} for

k = 1 should be meant as {0}.

i<k

Every vector space may be treated as an additive group. Similar-
ly every topological vector space may be treated as a topological group.

(2.2) 1LE>mA. Let U be a symmetric, radial and absorbing subset

of a vector space E and let x be a character of E such that

#

fx(uy| < %. Then there exists exactly one f € E" with pf = x. For

each u € U, one has f(u) = x(u); consequently,

sup {|f{(u)]| : u e U} = [x(U)] < %.

Proof. The unigueness of f 1is obvious. We shall prove the ex-
istence. Given u € E, we can find a positive integer n with % e U.

Set f(u) = nx(%). This definition does not depend on the choice of n.
Indeed, suppose that m 1is some other positive integer with % € U.

My = M My = A
By (1.2), we have x(m mn)--mx(mn) and x(n mn) nx(mn). Hence

mx(m) = mox(zs) = nx(3).
It remains to show that f is linear. Take any u,w € E. There
is some m such that %,% and %W 433 belong to U. Then, by (1.1),
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ut+w, _ u W
) = x(G) + xes),
i.e. %f(u + w) = %f(u) + %(w), which proves that £ 1is an additive

mapping. Now, take any scalar X € R, Let [x] and {x} denote the
integer and the fractional parts of X, respectively. Since f is
additive, for each positive integer p, we have

L =1
£(xu) f(ppku) = pf(pxu)

Le(fpadu + {pAlu) = L[pAJE(u) + 2£({pA}u).
p P P
The latter expression tends to Af(u) as p » «®. Thus f(iu)=£f(u). =

If f 1is a continuous linear functional on a topological vector
space E, then pf 1is evidently a continucus character of E. The
mapping £ - pf 1is a homomorphism of E* into E ; we shall denote

it by Py
(2.3) PROPOSITION. Let E be a topological vector space. Then
Pg is an algebraic isomorphism of E* onto EA; it is a topologic-

* ~
al isomorphism of Ec onto Ec

Proof. That pg maps E* onto E follows directly from (2.2).

The continuity is trivial. To prove that is an open mapping of

p
E
* - *

Ec onto Ec, take any U € NO(EC). There is a compact subset K of

E such that

kK0 : = (feB*: |£(w] £1 for all u e K} c U.

The set

H={tuekE:te{~1,1] and u € K}

is compact, so that #° e NO(E;). It remains to prove that pE(KO) po)
o
H™.

So, take any ¥ € H°. There is some f € E* with pE(f) = X.
Due to (2.2), we have

sup {|f(u)| : u € H} = |x(H)]| = %,

which means that £ € KO. L]
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(2.4) PROPOSITION. A topological vector space E is locally con-
vex if and only if it is a Hausdorff locally quasi-convex group.

Proof. Let E be a locally convex space. Take any symmetric,
closed, convex U € NO(E). Next, take any v € E \ U. By the Hahn-
-Banach theorem, there is some f € E* with sup {f(u):u €U}< £(v).
Therefore we can find a positive number ¢ such that

sup {f(u) : u € U} < ¢ < f(v) < 3c.

Set h = f%. Since U 1is symmetric, we have
1 3
sup {|h(u)|] : u e U} < 7 < h(v) < 7.

Then ph € E and

sup {|ph(W ] : u €U} < § < [oh(V)],

which means that v does not belong to the gquasi-convex hull of U.
Since v € E \ U was arbitrary, it follows that U is quasi-convex.
This proves that E is a locally quasi-convex group because symmetric,
closed, convex neighbourhoods of zero form a base at zero in E.

Now, suppose that a topological vector space E is a Hausdorff
locally gquasi-convex group. For each subset A of E*, denote

A° = (ueE: £(u) € [-%,%] + 2 for all f e A},
A = ue€eeg: f(u) e [-l l] for all f € A}
o : 4’4 .

It follows from (2.3) that every quasi-convex subset of E has the
form A° for some A c E*¥. So, there exists a family A of subsets
of E* such that that the family {A° : A€ A} constitutes a base
at zero in E. To prove that E is a locally convex space, it suf-
fices to show that {Ao‘: A € A} is such a base, too.

Choose any A € A, We have to show that Ao e NO(E). Since E
is a topological vector space, there is some radial U e NO(E) con-
tained in A°. Then U c Ao. =

(2.5) PrROPOSITION. Let K be a subgroup of a topological vector
space E. Then the set r1{x-1(0) : X € K°} is equal to the weak
closure of K. Hence K is dually closed in E if and only if it
is weakly closed; it is weakly dense if and only if (E/K) = {0}.
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Proof. Let K° denote the weak closure of K. Take any u € KY
and ¥ € K°. By (2.3), we have x = pf for some f € E*, Then
f(K) ¢ ker p = 2. This implies that £f(u) € 2 because u € KY. Hence
x{(u) = ¢f(u) = 0 and, consequently, KY c r1{x'1(0) : x e K°).

To prove the opposite inclusion, choose any u € E \ KY. ‘There is
a weak neighbourhood of u in E disjoint from K. In other words,

there are some fl,...,fn € E¥X and ¢ > 0 such that if |fi(v-u)|<e
for i=1,...,n, then v ¢ K. Consider the continuous linear opera-
tor F = (f;,...,£) : E > R'. The set
n .
{(xl,...,xn) € R : |xi - fi(u)| <eg¢ for i=1,...,n}

is a neighbourhood of F(u) in R" disjoint from F(K). Thus F(u) ¢
F(K). According to (1.8), we can find some « € (Rn)g with k(F(K)) =
{0} and «k(F(u)) # 0. Then «F € K° and (kF)(u) # 0. =

A subset X of a vector space is called radial if tu € X for

all ue€eX and t € (0,1). Let X,Y be two radial subsets of a vec-
tor space E. We write X <Y if X is absorbed by Y, i.e. if
X c ty for some t > 0. Suppose that X < Y. For each linear sub-

space L of E, we denote

d(X,¥;L) = inf {t > 0 : X c tY¥ + L}.
Next, for each k =1,2,..., we denote

dk(x,Y;E) = inf 4(X,¥Y;L)

L

where the infimum is taken over all linear subspaces L of E with
dim L < k. If E 1is contained in some other vector space F, then
dk(x,Y;F) = dk(x,Y;E). Therefore we may simply write dk(X,Y) in-
stead of dk(x,Y;E). The numbers dk(X,Y) are called Kolmogorov
diameters of X with respect to Y. We take the following natural
convention: for t > 0, the expression "dk(X,Y) < t" should be read
as "X <Y and dk(X,Y) < t".

(2.6) LEMNA. Let X,Y,Z be three radial subsets of some vector
space.

(a) If 2 is convex and X,Y < 2, then

dk+1_1(x + Y¥,2) £ dk(X,Z) + dl(Y,Z) (k,1 =1,2,...).
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(b) 1f X< v< Z, then

d 1(X,Z) < dk(X,Y)dl(Y,Z).

k+1-~
For (b), see the proof of Lemma 7.1.2 in [79]. The proof of (a)
is similar and we leave it to the reader.

(2.7) tema.  Let (E_ ) _,

m be a positive integer. Suppose that, for each n =1,2,..., we are

given radial subsets Xn'Yn of En such that

be a sequence of vector spaces and let

(1) 4 (X, ¥ ) < 27" (k =1,2,...).
Then X : = II Xn and Y : = TII Yn are radial subsets of the space
n=1 n=1
<«
E: = 1II En’ and dk(X,Y) s k™ for every K. If Eo is the sub-
n=1 «©
space of E consisting of finite sequences (that is, Eo = = En),

n=1
-m
then dk(x n Eo, Yn Eo) sk for every Xk.

Proof. Let ([x] denote the integer part of x. Fix an arbitrary
k=1,2,... . If 1 =[k2"®], then, by (1),

-mn -m -mn -n,~m _ . -m

d1+1(xn’Yn) s 2 (1 + 1) < 2 (k2 M) =k .
So, for each n=1,2,..., we can find a subspace Ln of En with

. -n - - i -

dim L s [k2™"] and X c k¥ + L. Then L:= nz=:11.n is a sub
space of Eo and we have

dimL= X dimL s = [k27") < = k27" = k.

n=1 n=1 n=1

It remains to observe that X c X ™ + L and XN E,'c k ™y n E) +1L. =

(2.8) LimA. Let E,F be some vector spaces and let X,Y be ra-
dial subsets of E with X< Y.

(a) For each linear operator ¢ : E » F, one has

dk(¢(X),¢(Y)) < dk(X,Y) (k =1,2,...).

(b) For each linear operator V¥ : F

¥

E with V¥(F)=E, one has

-1 -1 -
4 (¥ 7(x),¥ “(¥) =4, X,Y) (k

1,2,...).
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This is a direct consequence of the definition of Kolmogorov dia-
meters.

Let E be a normed space. The distance of a point u € E to a
subset A of E is denoted by d(u,A). The closed unit ball in E
is denoted by BE or, sometimes, by B{(E). We say that E is a unit-
ary space if its norm is defined by an inner product. The inner prod-
uct of vectors u,w € E 1is denoted by (u,w).

Let & : E > F be a bounded linear operator acting between norm-

ed spaces. For each k =1,2,..., we write
dk(¢ : E» F) = dk(¢(BE),BF).

The numbers dk(Q : E > F) are called the Kolmogorov numbers of ¢. In

general, they depend not only on ¢, but also on F. For example,

dlid : 15 > c) =1, while q (1d : 11> 1) =1 for x=2,3,...
(see [76], 11.11.9 and 11.11.10). If the meaning of F 1is clear from
the context, we simply write dk(®) instead of dk(® : E » F) (see

also (2.10)). The following lemma is an immediate consequence of defi-
nitions.

(2.9) Lioma. let X : B > E, ¢:E->F and ¥:F->F’ be bound-
ed operators acting between normed spaces. Then

(a) el = d1(® : E>F) 2 d2(¢ : E>F) 2 ...

[\
[en]

(b) dk(Y¢x : ET > F7) < HWHHdek(¢ : E>F) (k=1,2,...).

(2.10) LE}mAa. Let ¢ : E > F be a bounded linear operator. If F
is a subspace of some unitary space F°, then

dk(¢:E—>F)=dk(<b:E+F’) (k =1,2,...).

An easy proof is left to the reader.

Let X be a convex, absorbing subset of a vector space E. The
mapping u - inf {t > 0 : u € tX} 1is called the Minkowski functional

of X; it is a seminorm if and only if X is symmetric.

Now, let p be a seminorm on E. We denote Bp= {ue E: pluysl}.
Sometimes we shall write B(p) instead of BP. The quotient space
E/p'l(O) will be denoted by Ep and the natural projection E > Ep

by wp. We shall always consider on Ep the canonical norm given by
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i wp(u)u = p(u) for u € E. Thus wp(Bp) = B(Ep). We say that p is

a pre-~Hilbert seminorm if

pz(u + w) + p2(u -w) = 2p2(u) + 2p2(w)

for all u,w € E. This holds if and only if the norm on Ep satisfies
the parallelogram identity, i.e. if and only if I% is a unitary space.
The following lemma is a direct consequence of our definitions.

(2.11) LENHA. Let ¢ : E > F be a linear operator between vector
spaces. If p 1is a pre-Hilbert seminorm on E, then ®(Bp) is an ab-
sorbing subset of the space d(E) and the Minkowskil functional of
@(Bp) is a pre-Hilbert seminorm on ¢(E).

Let us suppose that p,q are two seminorms on a vector space E,

such that Bp-( B i.e. such that gq £ ¢p for a certain c¢>0. The

ql
canonical operator from Ep to Eq will be denoted by qu. We have

have the following commutative diagram:

id

(2.12) 1ioma. Let p,g be two seminorms on a vector space E, with

Bp-< Bq. Then dk(Bp,Bq) = dk(Apq : Ep > Eq) for each k =1,2,... .

The proof is quite easy and we leave it to the reader.

(2.13) Lekxma. Let p be a seminorm on a vector space E and M
a linear subspace of E. If g is a pre-Hilbert seminorm on E and
Bp < Bq, then

d, (M < =1,2,...).
k( ﬂB,Man) dk(Bp,Bq) (k )

P

Proof . Let r,s be the restrictions to M of p,q, respective-
lyly. We may identify Mr and MS with a subspace of Ep and Eq,

respectively. Accordingly, we may treat Ars : Mr - Ms as a restric-

tion of qu : Ep > Eq. Applying (2.12), (2.10) and (2.9) (b), for

each k=1,2,..., we have
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dk(M n Bp,M n Bq) = dk(Br,Bs) = dk(Ars : Mr - MS)

= dk(Ars : Mr - Eq) Y dk(Apq : E_~> E_)

p q

dk(Bp,Bq).

The assumption that g is a pre-Hilbert seminorm 1is essential.

For example, dk(B(ll),B(lw)) = % for k = 2,3,..., while

dy (e, N B(ll),co N B(1®)) = dk(B(ll),B(co)) =1

for k=1,2,..., (see [76], 11.11.9 and 11.11.10}.

(2.14) LWME. To each m = 2,3,... there corresponds a constant
c_> 0 with the following property: if X,Y are two symmetric, con-

m
-m

vex subsets of some vector space, with dk(X,Y) £k for every k,

then there are pre-Hilbert seminorms p.4d on span X with X c Bp

k-m+2

Bq c Y and dk(Bp,Bq) S cm- for every k.

The proof can be obtained by standard methods used in the theory
of bounded operators in Banach spaces. It is rather long, but presents
no serious difficulties. One may apply, for instance, theorem 8.4.2 of
[75].

(2.15) 1.EWmA. Let p,q9 be two pre-Hilbert seminorms on a vector

s o« -]
space E, with dk(Bp,Bq) -+ 0. Let (ak)k=1 and (bk)k=1 be two
non-increasing sequences of positive numbers, such that dk(Bp,Bq) <
ak-bk for every k. Then there exists a pre-Hilbert seminorm r on E

such that dk(Bp,Br) S 3y and dk(Br'Bq) < bk for every k.

This is an easy consequence of the spectral theorem for compact
operators. The details of the proof are left to the reader.

(2.16) LEMNA. Let p,g9 be two pre-Hilbert seminorms on a vector
space E, with Bp'< By. Let us denote
0 _ #
By = {£f e E" : |[f(u)| =1 for all u e Bp},
c _ #
By = {f €eE” : {f{u)| £ 1 for all u =« Bq}.

0 .0, _
Then dk(Bq’Bp) = dk(Bp,Bq) for every k.

Proof. Consider the linear mapping T : Ep - E given by
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r(f)(u) = f(ll)p(u)) (f e Ep; u € E).

It is not hard to verify that r1e® =sE") ana 1 18% =1 @®EY)).
p p . q PP
Naturally, we may treat T as a mapping onto T(Ep) = span Bg. Then,

by (2.8) (b),
0,0, _ -1,.0,.-1,.0
dk(Bq,Bp) = dk(r (Bq),r (Bp))
= d, (A (B(EY),B(ES))) = d (A" : E- » E)
T Tk''pa q! /BEER) = dy(Apy + By P

*

* *x
for ever k. It i 1 : = ! :
o ery is well known that dk(/\pq Eq*Ep) dk“pq EpéEq)

isee e.g. [76], 11.7.8). Hence, by (2.12), for each k=1,2,..., we
have

dk(Bg,Bg) = dlhy ¢ Ej > Eg) = (B B). =
A locally convex space E 1is said to be nuclear if to each con-
vex U € NO(E) there corresponds some convex W € NO(E) such that
dk(W,U) 5% for every k.
(2.17) PrRoPoOSIYION. Let E be a nuclear space. Choose any c¢ >0

and m=1,2,... . Then to each convex U € NO(E) there corresponds

some symmetric and convex W € NO(E) such that dk(w,U) < ck™ for
every k.

This is an easy consequence of (2.6) (b) {(cf. the proof of Propo-
sition 7.1.1. in [79]).

(2.18) woYE. The material of this section is standard.

3. Geometry of numbers

By R" we denote the n-dimensional euclidean space with the usu-
al norm. The closed unit ball in R® is denoted by Bn; there will

be no possibility of confusion with the symbol Bp where P is a

seminorm. The n-dimensional Lebesgue measure on rRP is denoted by
voln, and the measure of Bn by wp - We have
- _ .n/2 -1 _ ,2me.n/2
w, = Vo].n (Bn) =T [T{1 + n/2)] { o ) .

Throughout the section, D is an n-dimensional ellipsoid in R

with centre at zero and principal semiaxes gl £ ... 2 {’n' Thus
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= -1 =
dk(Bn’D) = Ek for k=1,...,n.

(3.1) PROPOSTYION. Let K Dbe a closed subgroup of R®. Denote by

KO the maximal linear subspace contained in K. If K # KO, then
there exist linearly independent vectors IR all orthogonal
to Ko, such that

K = KO + {klal + ... kmam : kl, .,km e Z}.

The proof can be found, for instance, in [23], Ch. VII, §1, n® 2.

Let K Dbe a closed subgroup of R®  and KO the maximal linear

subspace contained in K. It follows from (3.1) that every component
of K has the form u + KO for a certain u € K. The subspace Ko
will be called the zero component of K.

By a lattice in R? we mean an additive subgroup generated by n
linearly independent vectors. According to (3.1), lattices may be de-
0. Let L be a lat-
tice generated by vectors Uy,--- Uy we say that the system (uk)i=1

fined as n-dimensional discrete subgroups of R

is a basis of L. Let be an orthonormal basis in R and

n
(e )x=1
let v : R" » R" be the linear operator given by Wek = uy. The gquan-
tity |[det ¥| 1is called the determinant of L and denoted by d(L);

it does not depend on the choice of a basis. The set

{u € rRY (u,w) € 2 for all w € L}

is a lattice, too. We call it the polar lattice and denote by L*. One
has d(L*) = [d(L)]—l and L** = L. All these facts are standard.

The proofs can be found, for example, in [28] or [33].

(3.2) mmmA. TLet T be a lattice in R™ with L n D = {0}. Then

there exists some u € L* with

-1/n
<
(1) 0 < lul £ n(il ce gn) .
Proof - Suppose the contrary. Then L* N (an) = {0} for a cer-
tain r > n(£1 N gn)—l/n. So, by virtue of the fundamental Minkow-

ski theorem (see e.g. [33], Theorem 1 on p. 123}, we have

T yo1 (rB) = 270y

nn—n/z.
n

a(rL*) z 2

1A%

r
n

On the other hand, from the Minkowski theorem and the assumption that
LND= {0} we get
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n

- _ ,=h -1/2
d(L) 2 2 voln (D) = 2 Wby eeo gn zn gl cen gn.
Hence d(L) d(L*) 2 r"n"™g; ... £ . Since d(L)d(L*) =1, it follows
that r < n(g; ... En)_l/n, which is a contradiction. =
(3.3) 1zmm&. Let M be an {n - 1)~dimensional subspace of Rn,
nz 2. If ny £ ... S n,.p are the principal semiaxes of DNM, then
n

gk < Ny < £k+l for k=1,...,n-1. Let 7 : R -+ M Dbe the orthogonal

projection. If % £ ... £ ¢ are the principal semiaxes of n(D),

n-1
then Ek < Sy < gk+l for k=1,...,n-1.

This is a well-known geometrical fact.

(3.4) LEPmIA._ Let P be an arbitrary n-dimensional rectangular
parallelepiped in R? circumscribed on D. Then

diam P = 2(?,% + ... 4+ 5;21)1/2_

Proof. Let ¢ : R - R" be a linear operator such that ¢(Bn) = D.

We can choose an orthonormal basis (ek)§=l in R® such that P has
the form
n
{ {2 tiey Itkl s sy for k=1,...,n}
k=1
for some coefficients sl,...,sn > 0. For each k =1,...,n, one has
s, = sup (d%u,e,) = sup (u,d*e, ) = ld*e .
k ueB "~k UeB k k
n n
Hence
n n
Laiam e = (= 22 = (= nexe1hH/ 2
k=1 k=1

Now, it remains to observe that the right side is egqual to the Hilbert-

-Schmidt norm of &, 1i.e. to (g% + ... + gi)l/z. L]

(3.5) LEwmA. Let M be an (n - l)-dimensional affine subspace of
R® with
(1) M N B, £ 0.

Let us suppose that
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-2 -2
(2) El + ... Zn < 1.
Then DN M is an (n - l1)-dimensional ellipsoid; denoting its princi-

pal semiaxes by Nyse- one has

. ;ﬂn_lr

-2 -2
(3) Tt ..o+ 7 S 1.

Proof. That D N M is an (n - 1)-dimensional ellipsoid and not
an empty set follows from (1) because (2) implies that int D contains

Bn‘ Let u be the centre of D N M and Mo the linear subspace
M - u. We may assume that N1 S ... 5 Np-1* Then
(4) £ = a (B_,D) =
k k' 'n’ (k =1,...,n),
-1 _ _ _
(5) noo= dk(Bn n Mo,(D n M - u) (k =1,...,n~-1).
Let ¢ : R® - R® be a linear operator with ¢&(D) = B, - Denote E =

®(B ), N=o(M), N, =¢&(M) and w = du. Let 2 ... 2%, be the
principal semiaxes of E. Then Ty = gil for k=1,...,n and, by
(2),
2 2
(6) v + o0+ (4% < 1.
Let P be some n-dimensional rectangular parallelepiped circum-

scribed on E with the property that one of its (n-1)-dimensional
faces is parallel to N. Let w : RP » No be the orthogonal projec-
tion. From (6) and (3.4) we get P c By, and (1) means that NNE # §.

Hence it easily follows that
(7) m(P) < (Bn n N) - w.

It is clear that @(P) is an (n - 1l)-dimensional rectangular paral-
lelepiped circumscribed on the {n - 1)-dimensional ellipscid w(E). We

may assume that No = Rn-l. Hence, by (7) and (3.4), we may write
n-1 2
= d (n(E), (B, N N) - w) 5 1.
k=1 n

This implies that

n-1 2
(8) = dk(E NN ,(B. NN) -w) £1
k=1 o n
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because E N No c n(E). Since, evidently,
dk(E n No,(Bn A N) - w} = dk(Bn n Mo,(D n M - u)

for k=1,...,n-1, from (8) and (5) we obtain (3). =

(3.6) LEWMA. Let M be an (n - 1)-dimensional subspace of Rn,
n 2 2. Suppose that the principal semiaxes of D satisfy the condi-
tion 512 + ...+ g;z < 1. Let r be a fixed number belonging to
[0,1] and let E be the set of all those u € M for which the inter-
section of D and the straight line passing through u and perpen-
dicular to M is a segment with length not less than 2r. Then E is

an (n - 1)-dimensional ellipsoid in M. 1If Nysee-,Ny_q are its prin-
2 -2
1.

cipal semiaxes, then ni RERRER N
The proof is similar to the preceding one. It is also based on
(3.4). We leave the details to the reader.

(3.7) LomA. Let L be a lattice in R® with L ND = {0}. Then

we can find a basis (uk)2=1 of L such that

1 i/k

d(uy, span {u;}, )2 k- (B +ov &)

for k=1,...,n (see (2.1)).
Proof. By (3.2), there is some w € L* such that

-1/n

0 < lwll = n(g1 e En) .

The set {(u,w) : u € L} is a non-zero subgroup of 2, therefore it
has the form p2Zz for a certain p=1,2,... . Choose some u, € L
with (un,w) = p and let M be the orthogonal complement of w. It
is clear that L = Zun ® (L N M), and that

-1 - 1
dtu M = piwi™t 2 7l LLog /R
- ph-1 _ n-1 . . .
We may assume that M = R . Then Ln-l : = L NR is a lattice in
R*" 1 ana D,; :=Dn R™! is an (n - 1)-dimensional ellipsoid in
n-1 . _ : .
R with Ln_1 n Dn—l = {0}. Let n £ ... 8 Npo1 be the principal

semiaxes of Dn—l’ By repeating the above argument, we can find some

u € L _; and some (n - 2)-dimensional subspace N of Rn_l, such

n-1
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that L 4 =2u 4 @ (Ln-l N N) and
- 1 -1
dlu,_,N) 2 (n - 1) Hng ..ot/
From (3.3) we get Ny 2 gk for k=1,...,n-1. Hence
a -1 1/{n-1)
d(un_l,N) 2 (n 1) (Zl v gn-l) .

Next, we may assume that N = Rn-2, and so on. After n steps we shall

find generators U Uy qreeerly of L, with the desired properties. =

n

(3.8) Liwa. Let a € R and let K be a subgroup of R® with
1

KND= {0} and d(a,K) 2z 1 Then there exists a linear functional f

on R" such that f(K) < [%,%J + 2 and

2 )—2/k]l/2.

n
(1) £l s 1 +[ = k
k=1

(El N gk

Proof. By adding, if necessary, several sufficiently distant gen-
erators, we can find a lattice L in R? with K ¢ L, LND= {0}
and d(a,L) = d(a,K). So, we may assume that K 1is a lattice itself.

Due to (3.7), we can find a basis (uk)£=l of K such that

-1 1/k
d(uk, span {ui}i<k) 2 k (El v gk)
for k=1,...,n. Let Woreoo Wy be the Gram-Schmidt orthonormaliza-
tion of the system Uprees U We may write
U, = CpqWy + ... 0+ CrkVk (k =1,...,n)

Since Cxk > 0 for every k, we have

-1 1/k
(2) Cpe 2 KHEL ol By / (k =1,...,0).
We may write a = a;wy + ... + a w, for some coefficients a- Take
p, € Z such that
- 1
'an pncnn| 2°nn°

Next, take P, € Z such that
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1
Ian—l pncn,n—l T pn-lcn-l,n-l| s icn—l,n—l‘

Having found PP, take Pp_q € Z such that

1""'pkl

<

1
i, k-1 % 3%-1,x-1"

n
fa,_, - = b,
kel gt

and so on. After n steps we shall obtain some integers p

pl. Set ao = plu1 + ... + pnun and write a = a - ao = alw1 + ...+

a. v, . Then, clearly,
(3) lag| = e (k = 1 n)
kI = 2¥kk rerrele

Since a, € K and d(a,K) 2

fla™h 2 %. Therefore we can find a functional h on R

o=
o=

, we have d(a’,K) 2z +, whence

D with h(a’) €

[$.3) and ihi s 1. Set h_=h(w) for k=1,...,n. We shall con-
struct inductively a sequence fl""’fn of real coefficients such
that
(4) |£, - h | < clt (k = 1 n)

k kP T Tkk resaTay
(5) cklfl + ... + Ckkfk € 2 (k=1,...,n},

. - 13
(6) ajfy + ..o +agf e (7,71

Put k =1 in (3). Then it is not hard to see that we can findra coef-

s s -1
ficient £, such that c¢,,f, €2, [f; - h;| £c;] and
n
. - 13
a5 + = ayhy € [g,7].
k=2
Having constructed fl""’fk—l’ we can find, by (3), a coefficient
-1
£, such that |f, - hy| s ¢y, ¢ f) + ... + o fy €2 and
2 13
alf. + ... + a f,_ + > a.h, € [+,3].
171 kK'k i=k+1 T 1 474
After n steps we shall obtain fl""’fn satisfying (4) - (6).
Consider the linear functional £ on RD given by f(wk) = fk,

k=1,...,n. By (5), we have f(uk)erz‘for every k, whence f(K) c 2.
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From (6) we get f(a’) e [%,%], so that

- - - - 13
fla) = f(a” + a ) = f(a’) + f(a ) € [7,7] + 2.
Finally, (4) and (2) yield the estimate

n

WEN £ B + I€ - hi S Wby + [kzl|fk - th2]1/2
n n
$1+ [kzlckﬁjl/z s 1+ [kz K2 (&) ... ik)'z/k]l/z. .
= =]

(3.9) Loma. Let a € R" and let K be a subgroup of R® with
KN (a+ D) =@. Suppose that £;2 + ...+ 5;2 £ 1. Then there exists
an orthogonal projection 7 : R® - R® with 1 £ dim n(Rn) £n, such -

that n(K) n 2Bn = {0} and d(w(a),m(K)) 2 1.

Proaf. We shall apply induction on n. For n =1, the lemma is

trivial. Suppose that it is true for the space Rn-l.

If KN ZBn = {0}, we take 1w = id. So, assume that there is
some ue€ K with 0 < Jul £ 2. Let M be the orthogonal complement
of u and T
of all those points v € M for which the intersection of a + D with

the orthogonal projection onto M. Let E Dbe the set

the straight line passing through v and orthogonal to M is a seg-
ment with length not less than ilull. It is not hard to see that
nM(K) NE=4@. From (3.6) it follows that E is an ellipsoid with

-2 -2
~rNp-1 such that Ny +...+nn_1

fore, by our inductive assumption, there is an orthogonal projection
0 : M>M with 1 £ dim o(M) £ n-1, such that o(nM(K)) n2mn Bn) ={0}

principal semiaxes Nyres < 1. There-

and d(ch(a),ch(K)) 2 1. So, we may take mw = Ofy- ®

(3.10) proPOSTYION. If agrdy,.es is a sequence of non-negative
numbers not all zero, then

= (a; a, ... an)l/n <e = a.
n=1 n=1

For the proof, see [35], 9.12.

(3.11) zTooma. Let a e RV and let K be a subgroup of R" with
KN (a+D) =4g. Suppose that
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-1

n
{1) = ki

k=1

< 1.

Then there exists a linear functional f on R™ with Ifll < 4, f£(K)c 2z
13

and f(a) € [Z,Z] + 2.

Proof. We may assume that

n

D= {(xy,...,x.) € B : = £g.%x% < 1}.
1 n —_4 kK Tk
k=1
D _ 1/2 -
enote Ny = (kEk) for k=1,...,n, and
n
E = {(xl,...,xn) e R" : § nkzxi < 1}.
k=1
no-2.2
From (1) we get X Ek Ny £ 1. Thus, by (3.9), there exists an ortho-
k=1

n

gonal projection = : R™ » R® with m : = dim (R?) = 1,...,n, such

that 7n(K) n 2E = {0} and (m(a) + E) n ©n(K) = §. Hence, by (1),

1/2

a(n(a),n(K)) 2 n, = & 3

>1>'21'.

be the principal semiaxes of the ellipsoid
n

Let Cl S ... = cm

7(R™) n 2E. By (3.8), there exists a linear functional h on R

with h(7(K)) c Z, h(m(a)) e [%,%] + 2 and

m
i s 1+ [ = kg, ... z;k)'Z/k]l/z.
k=1

Set f£ = hw. From (3.3) it follows that Ty 2 an for k=1,...,m.

1/k

Hence, applying (1), (3.10) and the inequality k(kt)~ < e, we get

(]

m -
il € Ihiedml = (hi €1 + 2( % (n, ... n,) 2/%31/2
2bx M X

m -
[= k20 ™2/%a2ni? L. ka2 t/k /2
k=1

1}
—
+

N[

L] |

m m -
<1+ 232 s a2 21 L = kg /2
k=1 k=1

n
e3/2 [= kE;l]l/z
k=1

o=
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(3.12) LrwaA. Let Wopeeo W be the Gram-Schmidt orthogonaliza-

n n
tion of some system u,,...,u. € D. Then X Iw M2 s = 52.
1 n — k —.°k
k=1 k=1
This is a direct consequence of (3.4).
(3.13) IxmA. Let E Dbe an ellipsoid in R? with centre at zero
and principal semiaxis Nyreeerny such that
2 2 1
(1) n1+...+nn<4.

Let K be a subgroup of R"  and X a character of K, such that

1
(2) Ix(Kk n B < 3.
Then we can find a closed subgroup K of R" with K ¢ K’ and a

character x° o©¢f K~ with X’lK = x, such that all non-zero com-

ponents of K~ are disjoint from E, and

(3) fx (k" n %Bn)l S |x(RnB|.

Proof. By (2) and (1.2), we have

1 1 1 1
[x(xK n 5B )| s Flx(kn Bn)| < g <7
Therefore, x 1is a continuous character of K due to (1.4). The con-

tinuous extension X of ¥ onto K 1is a continucus character of K.

Denote Bg = int Bn' From (2) we obtain

Y o < 1
(4) Ix(K n B )| < [x(K N B )| <3
because Bg is open. If all non-zero components of X are disjoint
from E, we may take K =K and x = X. So, assume that some non-
-zero component M of K has common points with E. Let MO be the

zero component of K.

Let W, € M be the vector orthogonal to MO. We may assume that

twl 3 K for t € (0,1). It is easy to verify that the formula
xp(u 4 twy) = olx(u) + tx(wy)] (ueK; teRr)

defines a character X1 of the group Kl : = K + Rwl. Notice that

Kl is closed, being the vector sum of the closed group K and of the
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compact interval [0,w1]. Obviously, = x. Denote

X1|K

u-w, € Bo}.

= o,
Al = {u € Bn tu+w 1 n

1I

It is clear that Al is symmetric and convex. We shall prove that

(5) [x1(Ry N A s |X(KnBD).

So, take any v € K1 n Al. We may write v = (1 - t)u, +tu for

1 2
o . _
some u, sy, e KN Bn with u, - u; = w1 and for some t € [0,1). It

is not difficult to see that uq,uy and Wy all belong to Kn Bg.
Hence

A

(6) IXCug) |, X Cuy) |, )XWy | s [X(R 0 BD) |-

In virtue of (4) and (1.1), we have
X(uy) = X(ug) + X(wy).

Hence, by (6),

Ixp (W = Ixquy + wwy)| = [plx(uy) + tx(wy)]]

1A

leL(1 - t)x(uy) + extuy)l s [(1 - £)x(uy) + tx(uy)|

A

by (e}
Ix(K n B ).

This proves (5).

If all non-zero components of Kl are disjoint from E, then we
stop. In the other case, we can repeat the above argument. We shall

find some vector W, orthogonal to Mo + Rw1 such that w,+ Mo + Rw

2 1
is a non-zero component of Kl having common points with E. We shall

also obtain an extension X5 of X1 onto the c¢losed subgroup

K, = K

2 + Rw

1 5» such that [x,(K, N A))| s |x;(Ky N Aj)| where

A2 = {u e Al T U+ w u-w, €A

27 2 € Ak

Since Al was symmetric and convex, so is A2.

Then we proceed by induction. After several steps we shall obtain

some vectors wl,wz,...,wp such that the group Kp= Ki-Rw1+ eeo + pr

is closed and all its non-zero components are disjoint from E (it may

happen that Kp = R™). The system wl,...,wp is obtained by the Gram-
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-Schmidt orthogonalization of some system of vectors belonging to E.
We shall also obtain a sequence Al =] A2 > ... D Ap of symmetric,
convex subsets of R" such that

Ak+1 = {u e Ak s u 4+ Weg1rd T Wipgq € Ak} (k=1,...,p-1)
nd a character f K i = and K NnA <
a— : Xp O o with Xp[k = X pr( P p)l
[x{(K n B ).

Set K~ = Kp and X = Xp* To verify (3), it is enough to show
that %Bn c Ap. So, take an arbitrary u e %Bn' In order to prove
that u e Ap, we have to show that u + €% € Ap—l for e = +1.
Next, to prove that u + epwp € Ap—l’ we have to show that u-fepwp +
Ep—lwp-l € Ap_2 for €p-1 +1, and so on. Thus, we should prove

o : =
that u + Epwp + c.. + gqw, € Bn for all systems of signs ep’""al

+1. From (3.12) we have

2 2 2 2
leﬂ + ... + prH s ng t ... .
Hence, by (1),
la + apwp + ...+ elwln s ull + Hspwp + ...+ elwlﬂ
1 2 2)1/2 .1, 1.
< 3 + (pr” + ... + len ) < 5 + 5 1. L]

(3.14) 15mA. Let K be a subgroup of R? with K n oD = {0} and

let X be a character of K. Then we can find a linear functional £

on R" with prK = x and

n
(1) 1£1 s 32 1= k% 2Y/2,
k=1

Proof. We may assume K to be a lattice in -

(3.7), we can find a basis u of K such that

According to
1reee Uy

k

1/k
i )

d(uy, span {u,} ;i) z k'l(i1 e By

for k=1,...,n. Let €yseeesep be the Gram-Schmidt orthogonaliza-

tion of the system Upreee U Then

1t et Ay ey (k =1,...,n)
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for some coefficients with

k1

Iakkl z k_l(gl ove ﬁk)l/k (k =1,...,n).

Now, we can find, in succession, coefficients fn’fn—l"" ,fl such
that

p(aklf1 + ...+ akkfk) = x(uk) (k =1,...,n).

-1
|fkl S lzakkl (k 1,...,n).

By taking f(ek) = fk for k=1,...,n, we obtain some linear func-

tional £ on R" with pf(uk) = x(uk) for k=1,...,n. Hence
prK = x because (uk)n was a basis of K. Finally, by (3.10)
k=1
and the inequality k(k!)_l/k < e, we get
n n n
1612 = = g2 s = (28,072 s 1 = k%g, ...og 7k
k=1 k=1 k=1
1 2 2. 22 .2 -2 2,-2,1/k,, , -2/k
=1 ;Elk (1 £q 2 £ v ees c kTG, ) (kt)
1 2 2 2.2 2,-2,1/k , 1 3 2 .2.-2
< 3¢ = (1 El s..." k Ek ) < 1€ > k Ek . =
k=1 k=1
(3.15) LEMNA. Let K be a subgroup of R? and X a character

of K with |x(Kn D)| s %. Then there exists a linear functional £

n n -1
on R with pflK =% and |Ifll £5 X kEk

k=1

Proof. Without loss of generality we may assume that

n -1

(1) = k Ek = 1.
k=1

Next, we may assume that

n

2,-2
D= {(Xg,--,%) e R? : = omE S s 1)
k=1
Define
n
- - 2
E={(x;,...,x) € R" : = klngkl s %)

k=1

where % = 0.48. By (1), we have
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n n
= di(E,D) -9 = kg};l <
k=1 k=1

So, by (3.13), there exist a closed subgroup K~
all its non-zero components are disjoint from E

of K~ with X’IK = x and

A

(2) Ix (K 0 3D)| s |x(X n D).

Let Ké be the zeroc component of

functional h on Ké with ph =

leh(u)| = % for

1

From (1) we get Bn c D,

X |K"

- 1
u € K, N3D. Hence |h(u)| s 7

of RP such that
and a character ¥~

there is a linear

it follows that

By (2.3),

From (2)
o

- 1
for u e Ko n ED‘

which implies that

1

(3) Thi < 5

Let M Dbe the orthogonal complement of Ké in R" and let r =
dim M. Dencte N = K N M. According to {(3.1), we have K’==Ké @& N.
Let EM be the orthogonal projection of E onto M. Let n £ ... ¢
N, and 2y £ ... = or be the principal semiaxes of E and EM’ re-
spectively. Applying (3.3) several times, we see that Sk 2 My for
k=1,...,r. We have e = %kl/Zgi/Z for k =1,...,n; therefore
(4) o 2 okt l/2 (k=1,...,1).

Since non-zero components of K~

lows that N n EM = {0}.

tional hl on M with phllN =

IA

L 1.3/2 2.-2.1/2
th™ s Se 2. ] .
2 ke k

Applying (4) and (1), we obtain
(5) ity s g 32,

Let @ and nl

and M,

X |N

respectively. Set f = hm + hlnl.

are disjoint from E, it fol-

In virtue of (3.14), there is a linear func-

and

be the orthogonal projections of R® onto K’

(o]

An easy verification

shows that pf]K = X. From (3) and (5) we obtain
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e s Omn? + %)% ¢ 2y Lo 3HY2 5 .
1t ]2

(3.16) Lkma. lLet U Dbe a symmetric, radial subset of R?  and let
L be a lattice in R" such that gp{L N U) = L. Then we can find

generators ul,...,un of L such that uk € U + span {ui}

k=1,...,n (see (2.1)).

i<k for

Proof. Choose some u € L N U. Let uq be one of the generators
of the group L N Ru. We have u; = tu for a certain te({-1,1], which
implies that u; € U because U is symmetric and radial.

Now, suppose that, for a certain m=1,...,n-1, we have found some

linearly independent vectors Ugreeen U € L such that
u, € U + span {ui}i<k (k=1,...,m),
m m
gp({u,}yp_y) =L N span {u,},_-
Let us write M = span {uk}§=l. If LN (U+ M) cM, then
L=gp (LNU)cgp (LN (U+M)cgp(M=HN,

whence dim span L £ dim M = m < n, which is impossible. So, we can
find some v e L N (U + M) with v ¢ M. Let Ut be one of the ele-
ments of the set [L n (M + Rv)] \' M which are nearest to M. We have

Uns1 € LN (U + M) because U is radial and symmetric. It is not dif-

. m+l, _
ficult to observe that gp ({uk}k=1) =L 0N M+ Rum+l)‘

we are through. If not, then we can repeat the above argument to obtain

If m+ 1 =n,

some vector Ubor and so on. After a finite number of steps we shall

obtain vectors Ugreee,uy with the desired properties., =

(3.17) 1iowa. Let L be a lattice in R" with gp (L N D) = L.

Suppose that gi + ...+ gi £ 1. Then we can find a rectangular paral-

lelepiped P c %Bn such that {u + P}UEL is a disjoint covering of

rRP.

Proof . Due to (3.16), we can find generators Uypreesrly of L such

that uy € D + span {ui}i<k for k=1,...,n. So, there are Ssome

Virses,Vy € D such that v, € vy + span {ui} for k=1,...,n. Let

i<k
wl,...,wn be the Gram-Schmidt orthogonalization of the system Uygponer U



40

Then Wereoo Wy is the Gram-Schmidt orthogonalization of v

so, by (3.12),

l,...,Vn;

(1) g2 s uwnn2 sel...gds 1

Set

= R |
P = {tlw1 + ... + LW 5 s t

It is not hard to see that {u + P}ueL is a disjoint covering of rRD.

From (1) we get P c % Bn. L]

(3.18) COROLLARY. Let p,q be two pre-Hilbert seminorms on a vector
space E, with

)
1 = s 1.
(1) Z dg(B,,B ) s 1

Let K Dbe a subgroup of E such that

(2) K=gp (KNB).
P
Then span K ¢ K + lB
2 g’
Proof. Choose any u € span K. In view of (2), we may write u=
auy + ...t ou for some Upreee,u € Kn Bp and some coefficients
Ogrees 0. We may assume Wyrene Uy to be linearly independent.

- n _ n . _
Denote M = span {uk}k=1 and L = gp {uk}k=1‘ Then L is a lat

tice in M. From (1) and (2.13) we obtain

n
2
kfl 4 (B, N M,B_ N M) s 1.

So, according to (3.17), the family {v + %(Bq n M)}VGL is 'a covering

of M. Hence ueMclL+ %(Bq N M cK+ iz .

2°q

n

(3.19) .rmMA. Let K be a subgroup of R® with span K = R and

gp (K N D) = K. Suppose that gi e gi s

SN

1
. Then 5B, < conv(KﬂBn).

Proof. Without loss of generality we may assume that K is a lat-

tice in R®. It follows from (3.18) that

(1) K +
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Suppose that there is some u € (%Bn) \ conv (K N Bn)’ Since K 1is a
*

lattice, conv (K n Bn) is compact. So, there is some f € (Rn) with

f(u) > 1, such that £ <1 on Kn B, . We have I£l > 2 because

Tl s % Choose w € R® such that fwl

B[S jw

and f(w) = Hfll«-lwl. By
(1), there is some v € K with Iw - vl £ 5. Then |Ivlli £ Iw - v| +

hwit £ 1, i.e. v e KN B, whence f(v) < 1. Thus

NENNwh - £(v) = |[E£(w) = £(v)]| S VEh-Iw = Vi

and, consequently,

%< Iwh - HEN"YeE(v) < 1w - v

N
|

which is impossible. =

(3.20) coroLLARY. Let ©p,g be two pre-Hilbert seminorms on a vec-
tor space E, with
n
2 1
(1) = 4.(B_,B_) £ .
k=1 K P "4

Then, for any subgroup K of E, we have

, < , k=1,2,...).
dy (conv (K n Bp) conv (K N Bq)) 2dk(Bp Bq) ( )

Proof. Set M = span (K N Bp). We shall prove that

. 1
2 nsB_ c K .
(2) M 284 conv (K n Bq)

. 1 .
So, c¢hoose any u € M N 2Bq. We shall find some Wyreoo W e K n Bp
. n _ n
such that u € N : span {wi}i=1’ Let L = gp {wi}i=1 and let r,s be

the restrictions to N of p,q, respectively. We have Wyreso, W

cB
r
and u e %Bs. From (1) and (2.13) it follows that

n

s 2 22 o2
= 4, (B_,B.) = X 4 (B_.NM,B,_NM s = d4.(B_,B) =
k=1 ¥ TS’ =y kPO k=1 ¢ P4

N

Hence u € conv (L N BS) according to {(3.19). This proves (2). From
(2) and (2.13) we get

1
< n =l
dk (conv (K n Bp), conv (K N Bq)) < dk(M n BP'M 2Bq)

s d, (B

Ntl;—l

x (Bp q) = de(Bp,Bq) (k =1,2,...). =
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Let us formulate the results of section 3 in the language of geo-
metry of numbers. To this aim, we have to introduce some notions. Let
L be a lattice in R™ and let U be a symmetric, convex body in rRM.
The successive minima of L with respect to U are defined in the

following way:

Xi(L,U) = inf {r > 0 : dim span (L N rU) 2 i} (i=1,...,n).
The quantity
™y

(L,U) = inf {r > 0 : L. + rU = R

is called the covering radius of I with respect to U.

(3.21) timA. Let U be a symmetric convex body in R®. For each

lattice L in Rn, one has

[u(L,u)]? 2 d(L)/vol (U).

This is a standard fact; see e.g. inequality (8) in [28], Ch. XI,

§1, n® 3.

Now, (3.2) can be written in the following way: for each lattice
L in Rn, one has
-1/n

Xl(L*,Bn)Xl(L,D) < n(E;l ‘e En)

The proof of (3.2) also implies that

-2/n 2n
Al(L*,Bn))\l(L,Bn) g 4wn T et

On the other hand, Conway and Thompson proved that to each n=1,2,...

there corresponds a lattice Ln =L in R"™ such that

-1
n

2/n _

2 5
A(L,BL) > (Fw ™)

N
=}

(see [66], Ch. II, Theorem 9.5).

In connection with these inequalities, it is worth, perhaps, no-
ticing the following thing. Let U be a symmetric convex body in R"

and UO the polar body, that is,

U0 = {u e R" . (u,v) £ 1 for all v € U}.

The Bourgain-Milman inequality
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0 n 2
voln(U) voln(U ) 2 ¢ Wy
(see [24]) implies that
A (LU (L%,U0%) € c,n
1 1 ’ =71

for each lattice L in Rn; here ¢ and ¢ are some universal con-

1
stants. On the other hand, from Siegel s mean value theorem one can de-
duce that there exists a universal constant c, such that to each sym-

metric convex body U in R" there corresponds a lattice L with

Al(L,U)xl(L*,UO) 2 c,n;

the proof will be given somewhere else.

Let L be a lattice in R" and aj,...,a, some fixed basis of
L. For each x = (xl,...,xn) € Rn, let FX be the set of all linear
functionals f on R™ such that f(ai) € Z + Xy for i=1,...,n.

Then it is clear that

(1) w(L*,B ) = max min I£].

n
XeR fEFX

n

Lemma (3.14) says that if L n D = {0}, then to each X € R there

corresponds some f € FX with
¢ 1.3/2

n 2. -
[ /- 5 [ = k Ek
k=1

2] 1/2.

Then, by (1),

1e3/2

]J(L*/Bn) < _2' 2]1/2.

noo5
[ = %%
k=1

Consequently, for each lattice L 1in Rn, one has

n

- 2
W(L*,B A (L,D) s 3e3/2 [ 3 k% %1/
k=1
In particular, if D = Bn’ then
13/2 . % 2,172 3/2
u(L*,Bn)Xl(L,Bn) < 5e [kgl ] < 2.25n .

A somewhat better inequality

1.3/2
u(L*,B)A (L,B ) < 3n
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was obtained in (58], Theorem (2.14). On the other hand, from (3.21)
and the Minkowski-Hlawka theorem it follows that, for every n, there
exists a lattice L in R™ such that

-2/n . n
(2) u(L*,Bn)Xl(L,Bn) > Wy * Srer
The methods applied in section 3 also allow to prove the following

result: for every lattice L in Rn, one has

n
-1 .
xi(L,D)xn_i+1(L*,Bn) £ 6 kii k gk (i=1,...,n).
The detailed proof is given in [11]. In particular, taking El = . =
gn = 1, we obtain
xi(L,Bn)xn_i+l(L*,Bn) < 3n(n + 1) (i =1,...,n).
This differs only by a constant factor from the bounds
s (L,B_)X (L*,B_) s in? (i=1 n)
1i'77""n’ "n-i+1 '“n’ T 6 Pty

which were obtained in [58] for n 2 7.

Let L be a lattice in R". From (3.11) it follows immediately
that to each a € R" there corresponds some v € L* such that

1

(3) HVH-lp((v,a)) z [8n(n + 1)] *d(a,L).

This result was independently obtained by Hastad [36], with [8n(n-+1ﬂ_l
replaced by [6n2 + l]-l. It follows from (2) that the right side of
(3) cannot be replaced by cn-ld(a,L) with ¢ greater than me.
Papers [58] and [36] are based on the notion of the so-called Kor-
kin-Zolotarev bases (see [58]). The proofs of (3.11) and (3.14) given

above are, in fact, similar to those given in [36] and [58], respecti-
vely; Korkin-Zolotarev bases occur in the proofs of (3.8) and (3.14).

(3.22) morE. The material of this section is taken from ([5], [7]
and [8]. The idea of applying (3.4) in the proofs of (3.5), (3.6) and
(3.12) comes from [10]. Lemma (3.15) is a strengthening of Lemma 1.5
of [8]. Lemma (3.17) and Corollary (3.18) can be found in [15]; (3.19)
and (3.20) are new.



Chapter 2

EXOTIC GROUPS

It is not hard to find abelian topological groups without (non-
-trivial) continuous characters; perhaps the simplest examples are the
spaces Lp, 0 <p<l (see (2.3) or [38], (23.32)). It is much more
difficult to find abelian groups without non-trivial continuous unit-
ary representations (the so-called exotic groups). The first example of
such a group was obtained only in 1974 by W. Herer and J.P.R. Chris-
tensen [37]. 1In this chapter we present various constructions of abe-
lian groups without continuous characters or unitary representations.
Section 4 wears a preliminary complexion; we gather here several more
special technical results on continuous representations of abelian to-
pological groups.

4. Representations of abelian topological groups

Let X be a measure space with a positive measure u. By Lg(x,u)
we denote the complex Hilbert space of all (classes of) square-inte-
grable functions on X, with the usual norm. By LZ(X,u) we denote
the complex Banach space of all (classes of) essentially bounded func-
tions on X, with the ess sup norm. We may treat Lz(x,u) as an al-
gebra of operators in Lé(x,u), identifying a function belonging to
L:(X,u)) with the corresponding operator of pointwise multiplication.

If u(X) < », we define Lg(x,u) as the complex space of all
(classes of) measurable functions on X, with the topology of conver-

gence in measure. This topology can be defined by the F-norm

[£] = & min (1, }£(x)])du(x).
X

If A is a subset of C and p =0, 2, «, then by Li(x,u) we de-

note the subset of Lg(x,u) consisting of A-valued functions. If

X = (0,1), and u is the Lebesgue measure, we write Li(o,l) instead
p

of LA(X,u).

By an LS(X,u)-rgpresentation of a group G Wwe mean a representa-

tion of G in the space Lg(X,u) by operators belonging to Lg(X,u).
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Naturally, such representations are unitary.
If © is a linear operator from a vector space E to the space
Lg(x,u), then the formula

(,£)(x) = £(x)-exp [21i(6u)(x)] (ue€E; £eLI(X,u); xe€X)

defines an LS(X,u)—representation ¢ of E; we write ¢ = e2“le.

(4.1) PROPOSITION. A linear operator © from a topological vector

2mie

space E to Lg(x,u) is continuous if and only if e is a con-

tinuous representation of E.
In the proof we need the following fact:

(4.2) tima. Let X Dbe a measure space with a finite, positive

measure u. If f e Lg(X,u) and |f(x)] 21 a.e., then we can find

some t € (0,1l) with
u({x € X : tf(x) [%,;31-] + 2}) 2 %U(X)-

Proof. Let )\ be the Lebesgue measure on (0,1). If =x € X and
|[f(x)| 2 1, then an easy argument shows that

Mt € (0,1) : tf(x) & [F,3] + 2}) 2

(62118
.

Hence, by the Fubini theorem, we obtain

! 13
S ul{x € X : tf(x) e [E'Z] + 2})dt
0

= S AM{t € (0,1) : tf(x) € [$,3] + zhan(x) 2z Fu(x).
X

This implies that the function under the first integral must assume a
value not less than %u(x) for a certain t € (0,1). =

Proof of (4.1). Denote ¢ = e2n10. Suppose first that © 1is con-

tinuous. To prove the continuity of ¢, choose any f € Lg(o,l) and

€ > 0. There is some & > 0 such that if Y 1is a measurable subset

of X with u(Y) < é§, then

S OlE0[%dn(x) < e.
Y
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Since © 1is continuous, there is some U € NO(E) such that
l{x € X : [(ou)(x)| > €}) £ &
for u e U. Now, choose any w,v € E with w -~ v € U and denote

Y ={xeX: [(ow(x) - (ev)(x)] > e}.

Then
2

H¢wf ¢VfH

|£(x)+exp [2ni(ow){x)] - f(x)-exp [2ni(0v)(x)]|2du(x)

S
X
S + r lexp [2mi(ew)(x)]
Y X\Y

exp [2mi(6v)(x)]]%:[£(x)|%du(x)

in

4 7 |£(x) | 2du(x) + (21e)% &£ [£(x) | %du(x)
Y X\Y

iIn

de + 4nle?)E2.

Since € > 0 was arbitrary, this proves that ¢ is continuous.

Now, suppose that © is not continuous. Then we can find a con-
stant ¢ > 0 such that each U e NO(E) contains a vector u with

wi{x € X : |[(eu)(x)]| 2 ¢}) 2z c.
Hence, by (4.2), each U e NO(E) contains a vector u with
(1) w({xex: (eu(x) e [§,3] + 21 2 &

(we use twice the fact that E has a base at zero consisting of radial

sets). Set fo = 1. From (1) we get

he £, - ¢0f0M2 = J; |1 - exp [2ni(9u)(x)]|2du(x) 2 %c

becasue |1 - exp [2Tris]|2 2 2 whenever s € [

that ¢ is not continuous. =

PN
)

1} + 2. This means

’

Observe that the representation e2TTlG is uniformly continuous if

and only if © is a continuous operator from E to L;(O,l).
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(4.3) PROPOSITION. Let X be a measure space with a positive mea-
sure u and let ¢ be a continuous LS(X,p) - representation of the

group R. Then there is a unique function 6 € Lg(X,u) with

(0,£)(x) = £(x)-exp [2mis (x)] (seR; fell(X,u); xeX).

This is a consequence of Stone s theorem on continuous one-para-
meter groups of unitary operators (see e.g. [47], Theorem 5.6.36).

(4.4) PROPOSITION. Let X be a measure space with a finite, posi-
tive measure p and let ¢ be a continuous LS(X,u) - representation

of a topological vector space E. Then there exists a unique continu-
ous linear operator © : E - Lg(X,u) with ¢ = e2n1@.

Proof. For each fixed u € E, the mapping s -+ ¢(su) is a con-
tinuous LS(X,M) - representation of R. Thus, by (4.3), there is a

unique function $, €< Lg(X,u) with
[o(sw)f)(x) = £(X)+ exp [2nissu(x)] (s eR; feLé(X,u); x€X).

From the uniqueness of 9§ in (4.3) it follows easily that ssu = sau

and 8u+v = Su + %v for all u,ve€e E and s € R. So, the mapping

© : E ~» Lg(x,u) given by u - %u is linear. The continuity of 0 fol-

lows from (4.1). =

(4.5) PROPOSITION. Let K be a subgroup of a separable topological
vector space E. If the quotient group E/K admits a non-trivial con-
tinuous unitary representation, then there exists a non-zero continu-

ous linear operator © : E - Lg(o,l) with 0(K) < Lg(o,l).

Proof. Let ¢ be a non-trivial continuous unitary representation
of E/K in a Hilbert space H. 1In view of (1.21), we may assume ¢ to
be cyclic. This implies that H is separable. Let A be the algebra
of operators in H generated by operators ‘Dg' g € E/K. Then A is
an abelian self-adjoint algebra in H containing the identity operator.
The closure A of A in the strong operator topology is an abelian
von Neumann algebra in H. Therefore we can decompose H into an at
most countable Hilbert sum of A-invariant subspaces Hn such that,
for each n, either dim Hn =1 or the restriction of A to Hn is

unitarily isomorphic to the algebra L:(O,l) in the Hilbert space
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Lg(o,l). The last sentence follows from the standard results on the
structure of abelian von Neumann algebras; perhaps the best reference
here will be [47], Section 9.4.

The subspaces H being invariant for A, are invariant for ¢.

’
So, ¢ can be decompgsed into a Hilbert sum of some representations
Qn which are either one-dimensional or unitarily equivalent to LS(OJJ—
-representations. One of these representations is non-trivial, there-
fore we may assume that ¢ itself is one-dimensional or an LS(O,l)-
-representation. In the first case, E/K admits a non-trivial con-
tinuous character; let us denote it by x. Let ¥ : E =+ E/K be the

natural projection. Then xy € E . By (2.3), we have XYy = pf for
*

some f € E. Since xy # 0 and xy(K) = {0}, it follows that f£#0

and f(K) c 2. Now, we may define 0 by the formula (6u)(x) = £f(u)

for ue E and x € (0,1).

It remains to consider the case when ¢ is an Ls(O,l) - repre-
sentation. Then &y is an LS(O,l) ~ representation of E and, by
(4.4), there exists a continuous linear operator o0 : E = Lg(o,l) with
ezﬂle = dP. It is clear that © # 0 and ©(K) c Lg(o,l). s
A non-trivial Hausdorff abelian group is called exotic if it does
not admit any non-trivial continuous unitary representations. We say
that G is strongly exotic if it does not admit any weakly continuous
representation in Hilbert spaces.

In connection with the above definition, let us notice that every
topological group (abelian or not) admits a faithful strongly continu-
ous representation by bounded operators in a suitably chosen Banach
space. It suffices, for instance, to consider the representation by
shift operators in the space of bounded and uniformly continuous func-
tions on the group.

An abelian topological group G is said to be bounded if to each
U e NO(G) there correspond a positive integer n and a finite subset
A of G, such that A + u? =g (this definition makes sense also for
non-abelian groups). For instance, all compact or connected groups are
bounded. If K 1is a subgroup of a normed space E, the quotient group
E/K is bounded if and only if there exists a number r > 0 such that
E =K+ rB (cf. the proof of (5.1) (b) below).

(4.6) WoYE. In section 18, the expression "bounded group" will be
used in a completely different meaning.
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A representation ¢ of a group G 1in a Banach space 1is called
bounded if sup {I1¢(g)h : g € G} < =,

(4.7) LENIA_ Every weakly continuous representation of a bounded
and metrizable group in a Banach space is bounded.

Proof. Let ¢ be a weakly continuous representation of a bounded
and metrizable group G in a Banach space E. For simplicity, let us
assume that G 1s abelian. Let (gn) be an arbitrary null-seguence in

G. For each u € E, the seguence (@(gn)u):=1 converges weakly to u

and is therefore bounded. Hence, by the Banach-Steinhaus theorem, we
have

(1) sup {H@(gn)n :n=1,2,...} < =,

Since (gn) was an arbitrary null-sequence and G 1s metrizable, from
(1) it follows that there is some U e NO(G) such that

C = sup {hd¢(g) : g € U} < =,

Since G 1is a bounded group, there are a positive integer n and a
finite subset A of G, such that A + u? = G. Then

sup {lle(g) : g e G} £ c® max {hd(g)lhl : g € A} K =, =

(4.8) 1zmwa. Every bounded representation of an abelian group in a
Hilbert space is equivalent to a unitary representation.

Proof. There is an invariant mean on the space of all bounded,
real-valued functions on an abelian group ({381, (17.5}}, and it is
enough to repeat the standard argument for compact groups {(cf. [53],
Exercise 1 in sect. 9.3). =

(4.9) PROPOSITION. Every non-trivial abelian group of automorphisms
of a Banach space admits a non-~trivial character continuous in the uni-
form topology.

Proof. Let G be a non-trivial abelian group of automorphisms of
a Banach space and let A Dbe the complex Banach algebra spanned over
G. Let M be the set of all multiplicative linear functionals of A.
Suppose first that there are some g € G and f e such that
f(g) # 1. The multiplicative group € \ {0} admits a continuous cha-

racter x such that x(f(g)) # 1. Then xf 1s a non-trivial continu-
ous character of G.
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So, we may assume that £(g) =1 for all ge€ G and fem. This
implies that G c e + rad A where e is the unit of A and rad A
the radical of A. Since e + rad Acexp A, we obtain G cexp A. Thus
we can find an element a € A such that exp a € G and exp a ¥ 1.
Then a ¢ 2wiZe and the Hahn-Banach theorem implies the existence of
a continuous R-linear functional £ : A + R such that f(2nrize) c 2
and f(a) ¢ 2.

Since span G is dense in A and all functionals in M are tri-
vial on G, it follows that M consists of only one element. There-
fore the exponential mapping is simply periodic, i.e. exp x = e im-
plies that x € 2miZe (see e.g. {39], Sect. 5.6). Hence pf(x)=0 |if
exXp X = €. Consequently, there exists a continuous homomorphism x of
the multiplicative group exp A into T such that the diagram

>
\
)

exp P

exp A

v
H

commutes. Moreover, x(exp a) p(f(a)) # 0. Thus le is a continu-

ous non-trivial character of G. =

From (4.9) it follows that if an abelian topological group does
not admit non-trivial continuous characters, then it does not admit any
non-trivial uniformly continuous representations in Bahach spaces.

(4.10) EXARPLE. Let H be a complex Hilbert space with an ortho-

normal basis (e )~

nln=1° Let us set

elen =ee =e, for n=1,2,...;

e2en = ene2 =0 for n=2,3,...;

en = ey = 0 for m,n =3,4,...; m# n;
e2 = + for = 3,4

n =% e, n=3,4,... .

A direct verification shows that these formulae define on H a struc-
ture of a commutative Banach algebra with unit e,. The multiplicative

group G = exp H may be identified with H/exp_l(e A direct calcu-

1)~
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lation shows that exp'l(el) is generated by the elements 2nie1 and
2ni(e, +e)), n=3,4,...7. So, exp (e;) 1is not weakly closed in

H and (2.5) implies that continuous characters do not separate points
of G (more precisely, x(exp 2nie2) =0 for all x € G ).

Nevertheless, G admits a continuous, faithful unitary represen-
tation in a separable Hilbert space. The proof is similar to that of
(5.1) (e) and consists in constructing a continuous 1linear operator

© : H > L0(0,1) with the property that o6u € LJ(0,1) if and only if

ue exp—l(el).

(4.11) moYE. The material of this section is standard, with the ex-
ception of (4.7), (4.9) and (4.10) which are taken from [9] and [6].

5. Quotients of normed spaces

By S, and lp, 1 $ p < =, we denote the classical Banach se-

quence spaces with their usual norms. By e, n= 1,2,..., we denote
the sequence (0,...,0,1,0,...) with 1 in the nth place.

(5.1) TREOREM. Let (a )°°

. 1
n’n=1 be a sequence in 1 such that

(1) a € span {ei}i(n for each n =1,2,...

1

(see (2.1)). Suppose that {an}:zl is a dense subset of 1 and let

-

K =gp {a, + e} _,- Then

(a) K 1is a discrete subgroup in each of the spaces Sy and 1p,
1l £ p < =;
(b) the groups co/K and lp/K, 1 S p < «, are bounded;

{c} the groups co/K and 1p/K, p > 1, do not admit any non-
-trivial continuocus characters;

(d) the groups co/K and lp/K, p > 2, are strongly exotic;

(e) the groups lp/K, 1 £p s 2, admit faithful continuous
unitary representatjions in separable Hilbert spaces;

(f) ll/K admits sufficiently many continuous characters.

Proof. Throughout the proof, E denotes one of the spaces S

and lp, 1 sp<e and Y : E » E/K is the natural projection.
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(a) Choose any u € K \ {0}. We may write
u = kl(a1 + el) + ... 0t km(arn + em)

for some k .,k € 2 with km # 0. From (1) it follows that the

17/°° m
mth coordinate of u 1is equal to km' Hence, according to the defi-

nition of the norm in E, we have Jull 2 lkml 2 1.

(b) First, we shall prove that

(2) K + 2BE = E.
Choose any u € E. Since {an} is dense in 11, it is dense in E.
So, there is some n =1,2,... with u e a, + BE. Then
u e (an + en) -e, t BE c K + BE + BE = K + 2BE,
which proves (2). Now, choose any U € NO(E/K). We have w(rBE) cyu

for some r > 0. Take an integer m such that mr 2 2. Then, by (2},

u™ o w(rBE)“‘ = w((rBE)m) = ¥(mrBg) > ¥(2Bp) = ¥(2By + K)

Y(E) = E/K.

(c) Let E

¢, or E = 1P with p > 1. Since {an} is dense

in E and (en) converges weakly to zero, it follows that K is

weakly dense in E. Now, it remains to apply (2.5).

il

(d) Let E ¢, or E = 1P with p > 2. Suppose to the contra-
ry that E/K is not strongly exotic. Then, in virtue of (b), (4.7),
(4.8) and (4.5), there exists a non-zero continuous 1linear operator

® : E ~» Lg(o,l) with ©6(K) < Lg(o,l). Since © # 0, we can find some
u € E such that the set

Q={t e (0,1) : (Bu)(t) € 2 + [%’%]}
has a positive measure. Let (ay ) Dbe a subseqguence of (a,) converg-
n

ing to u. The sequence (@ak ) converges in measure to ©Ou. Apply-
n

ing the Egorov theorem, we may assume that Gak - 0u uniformly on Q.
Hence n

(02 )(t) € 2 + (3.3
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for t € Q and n sufficiently large (say, for n > no). All func-
tions e(ak ey ) assume integer values only, therefore
n n
13
(e, )(t) € 2 + [£,%] for t€Q and n > n_.
kn 474 o

This implies that

(3) |G)ekn)(t)| 2 3 for teQ and n > n.

set f = n_l/zeek for n = 1,2,-.. . Each subseries of the series

n

Zln_l/z e is convergent in E. So, by the continuity of 6, each
n= n
subseries of ;%.fn is convergent in Lg(O,l). Hence it follows that
© n=
= £2(t) < = for almost all t e (0,1) (see (73], Lemma on p. 29).
on the other hand, (3) implies that £2(t) == for teoQ.

n=1
The contradiction obtained completes the proof of (d).

(e) Let E = 1P where 1 s p £ 2. Choose any u = (xn):=1eE\K‘

Being discrete, K 1is closed in E. Moreover, we have
m
b Xxe > u as m-> =
n=1

Therefore we can find an index m such that

m
- .« = m
W o= ;Elxnen ¢ L : gp {a, + e } -1
(4) = xi < %.
n=m+1

m

n=1° Then L is a lattice in M and w &L,

Let M = span {an + en}

so that we can find some f ¢ M* with £(L) ¢ 2 and f(w) ¢ 2. Mul-~
tiplying £, 1if need be, by a suitable integer, we may assume that

(5) f(w) € 2 + [%,%].

We shall construct a bounded linear operator o : E—>Lg(0,1) with
9(K) c L%(O,l) and 0Ou ¢ L%(O,l). We may write
n-1

(6) a = =

O, €& (n=2,3,...)
no =, knk
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for some coefficients On* We shall construct step - functions

h,,hy,... on (0,1) such that Ih il I yolse-o €1, the functions
hm+l'hm+2"" are palrwise orthogonal and

n-1 2
(7) hn + %: aknhk € LZ(O,l)

k=1
for n=2,3,... . Set hn = f(en) for n=1,...,m. The functions
hm+1,hm+2,... will be constructed inductively.

Suppose we have constructed functions hl""'hn—l for a certain
n2m+ 1. The interval (0,1) decomposes into a finite union of some
intervals Ii such that, for each i, the functions hl""’hn-l are
constant on Ii' Fix an arbitrary index 1 and let p be the value

n-1
of the function ;Elaknhk on Ii. Let us write Ii =(a,b). 1f peZ,
we set hn = 0 on Ii' If p ¢ 2, then
c:=b+ (b -a)(lp] - p) € (a,b)
and we define
[pl -p for t e (a,c)
hn(t) =

[pl-p+1 for t € (c¢,b).

Here [p] denotes the integer part of p. Then ]hn(t)l <1 and

n-1
hn(t) + = a

t)=hn(t)+pEZ
k=1

xkn'k (
for t € Ii. Moreover, we have

b
J; hn(t)dt = 0.

In the same way we define hrl on other intervals. Then (7) is satis-

fied and it is clear that hn is orthogonal to h ,h

qreceeby g

has the desired properties. We only have to

@

The sequence (h_ )

n ' n=1
verify (7) for n =2,3,...,m. But, by (6), for any such n, we have
n-1 n-1 n-1
h + = o, h = f(e )+ = o, fl(e ) =£fle + = a,_e)
n k=1 kn'k n k=1 kn k n k=1 kn~k
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Since |hn| £1 for n>m and the functions h h ... are

m+l’ m+2’

pairwise orthogonal, it follows that the conditions Oen = hn,
n=1,2,..., define a bounded linear operator 6 :E-~ Lé(o,l). From
(7) we see that G(an +en) e L%(O,l) for each n=1,2,...; c<conse-

quently, 0(K) < L%(O,l). On the other hand, from (5) we derive

m m 15
ow = 0 X xe = I x f(e ) = f(w) € 2 + [5,%]
n=1 ~Rm " ;n N 3’3
and (4) yields
2 S .2,1/2
lo(u - w)l = 4o = xel=( = x2) /2 ¢ %,
n=m+1 n=m+1

which implies that ©Ou is not an integer-valued function.

We may treat 8 as a continuous linear operator from E into
Lg(o,l). Then, by (4.1), e2n1@ is a continuous unitary representa-
tion of E 1in the space Lg(o,l). Since eZ“le
e2nie

is trivial on K, the
formula oy =

E/K in Lg(O,l), with @(¥(g)) # 1.

defines a continuous unitary representation ¢ of

So, toeach ge X : = (E/K) \ {0} there corresponds a continuous
unitary representation ¢g of E/K in Lé(o,l), with ®g(g)# 1. Be-
ing continuous, ®g remains non-trivial on some neighbourhood Ug of
g. But X is a Lindelef space, therefore we can find a countable sub-

set A of X such that {Ug} is a covering of X. Then ® ¢

geA g
. . . . . . geA
is a continuous faithful unitary representation of E/K 1in a separable

Hilbert space.

(f) In view of (2.5), it is enough to show that K is weakly

closed in 11. The proof is similar to that of (e) and we leave out the

details, the more so that that we shall not use (f) in the sequel. =

(5.2) REMARK. A topological group is called monothetic if it con-
tains a cyclic dense subgroup ([38], (9.2)). The groups cO/K. and 1P/k
from (5.1) are monothetic. In fact, the following statement is true: if
K 1is a linearly dense subgroup of a metrizable and complete vector
space E, then E/K is a monothetic group. The proof, being not dif-
ficult, is omitted.

It follows from (5.1) {(c) and (f) that the group K occurring there

is weakly dense in 1P for p > 1, but weakly closed in 11. This
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gives rise to the guestion whether each discrete (resp. closed) subgroup
of 11 is weakly closed (cf. [82], Problem 2). The answer is negative:

(5.3) repoREM. Every infinite dimensional normed space E contains
a free and discrete subgroup K such that E/K 1is strongly exotic.

The proof is given in [6]. We do not repeat it here because it is
similar to that of (6.1), given below, and even a bit simpler.

(5.4) ProPoSITIOR. Let K Dbe a free and discrete subgroup of a non-
-zero topological vector space E. If K 1is weakly dense in E, then
K cannot be dually embedded.

Proof. Let (ei) be a system of free generators of K. Let ¥

ieIl

be the character of K given by x(ei) = % for i€ 1. Suppose that
X can be extended to a continuous character i of E. Then, due to
(2.3), there is a continuous linear functional f on E with pf = x.

. - 1 .
For each i € I, we have pf(ei) = x(ei) = x(ei) =35, 1i.e.
(1) fle.) e L + 2

i 2 -

This means that (2f)(K) € 2. So, if K is weakly dense in E, then
2f = 0, which contradicts (1). =

It follows from (5.4) that the group K from (5.3) is not dually
embedded. Similarly, the group K from (5.1) is neither dually embedded
in ¢, nor in lp, p > 1; it is clear, however, that K is dually

embedded in 1%.

(5.5) REmaARKs. The first example of a closed subgroup of a Banach
space which is not weakly closed was given by Hooper [41], p. 254. Sid-
ney [82] proved that if a Banach space has a separable infinite dimen-
sional guotient space, then it contains a weakly dense proper closed
subgroup. He also proved that if a Banach space X has a normalized

basis (en):=1 such that e, tends weakly to zero, then X contains

a weakly dense discrete subgroup. His method is different from ours used
in (5.1).

(5.6) rEmARRS. The fact that the groups K in (5.1) and (5.3) are
free is not accidental; Sidney [82], p. 983, proved that a countable and
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discrete subgroup of a normed space must be free. Countability is es-
sential here: L;(O,l) is a discrete but not free subgroup of L;(O,l).

Conversely, a closed and free subgroup of a Banach space must be discrete.
These facts were pointed out to the author by W. Wojtynski.

The example of an exotic group given by Herer and Christensen [37]
was a separable, metrizable and complete topological vector space (the
space of measurable functions relative to a certain pathological sub-

measure). Naturally, the space Lg(o,l) is not an exotic group. We

shall see, however, that it has an exotic quotient space.
We shall have to distinguish between a measurable function and its

class of equivalence; the space of all real-valued measurable functions

on (0,1) will be denoted by L0 and the class of egquivalence of a

function f € L0

to L0 is said to be pointwise linearly independent if to each system

tl,...,tr € (0,1) with ¢t

by {f}. A segquence (fn):=1 of functions belonging

1 < vue < tr there correspond some indices

(e )| # 0.
PR

N,,...,n
1’ ’ 1,j=1

such that det |f

r n

@

(5.7) Lemma. Let (fn)n=1 be a pointwise linearly independent se-
0

quence in L~. If 0O : Lg(o,l) - Lg(o,l) is a continuous linear operator

with @{fn} =0 for every n, then © = 0.
Proof. Let us write L0 = Lg(o,l) and denote the Lebesgue measure

on (0,1) by X. Let (¢k);=l be a sequence of functions from Lo.

Suppose that the measure of the set
X = {t : ¢k(t) = 0 for almost all k}

is equal to 1. Let then (9 be a sequence of measurable mappings

k) k=1
from (0,1) into itself, such that if A is a measurable subset of

(0,1) with A(A) = 0, then x(qa}‘(l(;x) N {t : ¢, (t) # 0})) =0 for every

k. Given a function £ € LO, we set

-

9 (O)E(0,(t))  if teX

k=1
fr(t) =
0 if t ¢ X.
Then fr € L0 and the mapping f - fr induces, as can easily be seen,
0 0

a continuous linear operator T : L° » L°. It was proved by S. Kwapieh
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[56]1 that, conversely, each continuous linear operator from L0 into
itself can be represented in such a form. So, to prove our lemma, we
have to show that I = 0 provided that F{fn} = 0 for every n.

Let us suppose that the latter condition is satisfied. Then there
is a subset Y of X with A(¥Y) =1, such that, for each t € Y,

o«

(1) Za ¢k(t)fn(®k(t)) =0 (n =1,2,...).
k=

Let us fix an arbitrary t € Y. Since t € X, there exists an index
m such that

@

m
(2) 3 6 (IE(8,(£)) = X ¢ (t)E(O,(t))
k=1 K k k=1 X k

for any function £ on (0,1). Hence, by (1),

m
(3) kZi ¢k(t)fn(¢k(t)) =0 (n=1,2,...).

Denote r = card{@k(t)}izl and choose indices k .,kr € {1,.. .,m}

170

such that Qk {t) < ... < @k {t). Then we can find some coefficients
1 r

51,...,£r such that

m
(4) T ¢, (£)E(0 (t)) =

g f(e, (t))
k=1 3 J k5

r
=1 3j

for any function £ on (0,1). Hence, by (3),

r
(5) jz; Ejfn(¢kj(t)) =0 (n=1,2,...).

Since the sequence (fn) is pointwise 1linearly independent, we can

find indices Dy,e..,n, such that det lfni(¢kj(t))|§,j=1 # 0. In

view of (5), this implies that El = oa.. = gr = 0. Hence, by (2) and

(4), we have fr(t) =0 for each f € Lo. Since t was an arbitrary

element of Y and A(Y) =1, it follows that T{f} = 0 for each
0

fel”, i.e. that T = 0. =

In view of {5.7) and (4.5), to obtain an exotic quotient space of
Lg(o,l) it suffices to find a pointwise linearly independent seguence
(fn) of measurable functions such that their classes {fn} are not

linearly dense in Lg(o,l). There are many such seguences. Perhaps



60

n
the simplest one is the sequence of functions t - t k where (nk):=1

is a sequence of positive numbers such that nk+1/nk 2 1+4a and a is

a solution of the inequality 2a > (1 + a)1+1/a

n
the sequence (t k) is pointwise linearly independent follows from the

(a > 3.403...). That

well-known fact that if n; < ... <ng and B < e <L then
n,
det‘|tjlj§ j=1 > 0 (see e.g. [77], Part 5, Problem 76). That the func-
L=

n
tions t k are not linearly dense in Lg(o,l) is a consequence of a

result of S. Mazur [64].

(5.8) REMARK. Let (nk):=l be a sequence of positive integers such
that nk+l/nk 2 g for all k, where g is some fixed number Ilarger

than 1. From the theory of trigonometric series it follows that the

closed linear subspace of Lg(0,2ﬂ) spanned over all functions
sin (nkt) and cos (nkt), k=1,2,..., consists of all functions of
the form

[+=]
£§l(ak cos (nkt) + bk sin (nkt))

@

where = (ai + bi) < ®, so that it is not the whole space Lg(0,2n)
k=1

(see, e.g. [105]), Lemma (6.5), p. 203). It seems guite possible that,
at least for certain sequences (nk) with nk+1/nk 2 g, the system

consisting of functions sin (nkt) and cos (nkt) is pointwise line-
arly independent on (0,2m).

(5.9) moyeE. The material of this section is taken from [9]. Propo-

sition (5.4), Lemma (5.7) and the example of an exotic quotient of Lo,
subsequent to (5.7), are new.

6. Ouotients of non-nuclear spaces

This section is devoted to the proof of the following fact:

(6.1) YAREOREM. Let E Dbe a metrizable locally convex space. If E
is not nuclear, then it contains a discrete subgroup K such that the
quotient group (span K)/K 1is exotic.

The proof will be preceded by several lemmas. We have to introduce
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some new notation. Let U,W be two convex bodies (compact convex sets
with non-empty interiors) in an n-dimensional vector space N. Their
volume ratio (relative to any translation-invariant measure on N) will

be denoted by +%+. That is,

IU’ - vol a(u)

w vol Q(W)

where vol is the Lebesgue measure on R® and © : N > R® is any
linear isomorphism.

Let ¢ : E > F be a bounded linear operator acting between normed
spaces. For each k = 1,2,..., let us denote

lo(Bg N M) | 1/k

vi(® : E~>F) = sup [ -————
k N IBp N e(N)]

where the supremum is taken over all linear subspaces N of E with
dim N = dim ¢(N) = k. If dim ¢(E) < k, we set vk(¢ : E » F) = 0.
If F is a subspace of some normed space F~, then obviously,
vk(¢ : E»F) = vk(® : E> F) for every k. Therefore we may simply
write vk(®) instead of vk(¢ : E > F) (cf. the remarks before (2.9)).
It is clear that vk(¢) < el for every k.

(6.2) morE. The numbers vk(¢) satisfy all conditions in Pietsch’s
definition of s-numbers ([76], 11.1.1) except monotonicity; it may
happen that vk+1(¢) > vk(¢) (see [59] and [3]).

(6.3) IEMNA. Let ¢1,...,¢S

composition ¢1 e @s is defined. Then

be bounded operators for which the

vk(rb1 s ¢S) < Vk(¢1) v vk(®s) (k =1,2,...).

Proof. It is enough to consider the case s=2. So, suppose that

we are given operators ¢ E2 - El and @2 : E3 -> E2. Let N ke an

with dim N = dim (¢1¢2)(N) = k. Then

1 H
arbitrary subspace of E3

dim ¢2(N) = dim ¢1(®2(N)) = k and we may write

k
[ (o0, (B(Ey) n N)| 1/

IB(E; N (8;9,)(N)]
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|01 (0, (B(E3) N M))|  [@;(B(Ey) 0 &,(N))| 17k

fo; (B(E,) N &,(N))| [B(E{) n & (e (N))]
_ 19y(B(Ey) 0 W) | 1/k Loy (B(Ey) 0 ey (N)) | 1/k
IB(E,) N ¢, (N)| [B(E;) N ¢ (¢, (N))]

A

vk(¢2)-vk(¢1).
Since N was arbitrary, it follows that vk(®1¢2) < vk(¢1)-vk(¢2). L]

Let ¢ : E » F be a bounded operator acting between normed spaces.
By hk(¢ : E->F), k=1,2,..., we denote the Hilbert numbers of ®
(see [76], 11.4).

(6.4) ILEmA. For every bounded operator ¢ : E - F, one has

vk(Q:E»F)th(d):E*F) (k = 1,2,...).

Proof. Take any operators Xx,¥ with lxli,i¥l £ 1 such that the
composition x¢¥ is defined and acts between unitary spaces. Fix anar-
bitrary k =1,2,... . We have to show that vk(Q) 2 dk(x¢w). Denote

@ = x¢¥. Since © acts between unitary spaces, we have vk(O) =

[dl(e) e dk(e)]l/k. Hence, applying (6.3) with s = 3, we derive

a,(e) s [4;(0) ... dk(e)]l/k = v (X9¥) § v, (X)V, (9)v, (¥)

A

HxHHWNVk(®) s vk(¢). .

(6.5) toomAa. Let E Dbe a locally convex space. Suppose that there
exists an € > 0 such that to each continuous seminorm p on E there

corresponds another seminorm p~ 2 p with vk(Ap-p) = o(k %). Then E
is a nuclear space.

Proof. Choose an arbitrary continuous seminorm p, on E. Next,
take an integer s > Ss-l Due to our assumptions, we can find contin-
uous seminorms Py 2 ... 02 Py 2 Py such that

vy, (A )) = o(k™ %) (i=1,...,8).
kPP g

Hence, by (6.3),
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(1) v, (A ) S v (A ) ve. V(A ) = o(k™FS)
k pspo k PgPg 1 k P1P,
Let t = : . i i
et us denote A Apspo Eps - Epo From the inequality
kX X k
II d4.(A) £ ekt II h {A)
j=1 ) j=1
([76], 11.12.3) and from (6.4) we derive
k /k k 1/k /k
dk(A) s [ 1T 4. (A)] s e k![ II h.(A)] s ek[ II v (A)]
b b -
j=1 j=1 j=1

(k =1,2,...).
In view of {1) and the inequality ¢s > 5, this implies that dk(A) =
o(k-q). Consequently, A 1is a nuclear operator ([79]), Proposition
7.2.2). We have thus shown that, for each continuous seminorm on E,

there exists another seminorm such that the corresponding operator is
nuclear. This means that E is a nuclear space ([79], Theorem 7.2.7).

(6.6) LomA. Let U c W be two symmetric convex bodies in some n-
-dimensional vector space N. Let M be some m~dimensional subspace
of N. Then

junwM ,m , Jul
n M

oo “ar "

Proof. Suppose first that m=n - 1. Then we may assume that

N =R and
_ pn-1  _ n _
M =R s = {(xl,...,xn) € R : X, = 0}.
Set
h(U) = sup {xn : (xl,...,xn) € U},
h(w) = sup {xn : (xl,...,xn) € W}.

It is clear that

vol, (U) £ h(v) vol _, (u n g™7?

n ),

1 n-1
vol (W) z fh(W) vol _, (W N R

n ).

Hence
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|[unMf _vol (UnM , h(W) vol (U) , 1lwol (U) _(n-1)! |U

[Wwn M  wvol (WnN M) nh(U) vol (W) Dwvol (W) n! [w|®

Now, suppose that m < n - 1. Then we can find 1linear subspaces
M=M cM. 4c...cM =N with dim Miy1 = 1 + dim M, for i =m,
m+l,...,n and, due to the above, we have

m+l‘

junm . m UM
JW N M| (m + 1)t |wn Mol
m! . (m+ 1)! _'U n Mm+2' S
(m+1)t (m+ 2)t |Ww0M o]
, _m_ (m+ 1)1 (n-p 1V " Myl
T (m+1)t (m+2)r 77 n! EEEN
-m JunnN]o,
n! |[Wn Nj

(6.7) 1EsmA. Let M be a finite dimensional subspace of an infinite
dimensional normed space E. Then there exists a subspace N of E with

codim N < «, such that

ha + vl 2 sivi for all ueM and v € N.

rof=

The proof is standard.

(6.8) Iknma. Let E,F be normed spaces and let ¢ : E > F be an

injective bounded linear operator such that

(1) lim sup k1/2

koo

vk(®) = o,
If N 1is a subspace of E with codim N < =, then

. 1/2 - .
(2) lliﬁzup k vk(®|N) = o,

Proof. Denote s = codim N. If L is a k-dimensional subspace
of E, then 1 : =dim (L N N) 2k - s and (6.6) yields

‘ 1/1
172 leBgnn N 1/1 1y leBg n 1) NN /

|Bg N ¢(L n N)| IBp N &(L) n N|
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§ (_1_)1/2 W1/2 L |®(Bg n L) | 1/1
Tk ki iBg n o)
Let us denote
o - [¢(Bg n L) |
|Bp N (L)
Then we may write
1/(k-
, (k-8512 1/2 (k- s)! / (k) 1/(k=-s)
A ) k { ] Q
x k!
- 1/2 - - - - k/ (k-
- (k=512 (k s)1,1/(k=85), -s/2(k-5) [} 1/241/k; /(k=s)
k k!
Thus, if k and kl/2 Ql/k are both large, so is A (here s is

fixed}. In view of (1), this implies (2). =

(6.9) LEma. Let U be a symmetric convex body in R". If £ is
a linear functional on R" such that

vol ({u<U :|fu] s 1)) 23 vol (U),

then

vol (U)~1

N 7 f(w3au < 7.
U

This is an easy consequence of the Brunn-Minkowski inequality (see
[31], Corollary to Statement 2.1).

(6.10) rxmma. Let U be a symmetric convex body in R®. Let L be
a lattice in R™ such that

-n/2

(1) 4 < of(n+2)™2 vo1_ ()

and let ayreeeray be some fixed basis of L. Then there exist real

numbers Cpree-sCy such that if f is a linear functional on R® with

(2) f(ai) €c, + 2 for all i =1,...,n,
then
(3) vol (fueU: |[f(w] 2 2)) 2 2 vol_ (U)
n : =3 =2 n :
n

Proof. Let || | be the norm on R defined by
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HvH2 = —31 J (v,u)zdu, v € RY,
i8]

voln (u)

and let D be the corresponding unit ball. Then D is an ellipsoid
and voln (U)_llzD is the so-called Binet ellipsoid of U (see [65]).

Let C be the Legendre ellipsoid of U, defined by the condition

J (v,u)zdu = (v,u)zdu for all v e R®.
U o]

The connection between Legendre and Binet ellipsoids as well known in
mechanics (see [42]); one has

- 1/2
(o) M2 = (nt 2 /2.0

voln (C)

(4) voln
where

C"={ue€eR" : (uw) 1 for all w e C}.

Blaschke [22] proved that voln (c) 2 voln {(U) (see also [42]). From
this and (4) we get

vol (y) n/2

1 (D) = n/2 1 (c?
vol, (D) (n + 2) (voln (c)) vol (C7)
s (n+ 22 vo1_ (%)
n/2 0 voln (U) 1
= 1
{n + 2) voln {C) vo n (c”) voL (C) voL ()
n n
< 2 n/2 2 1 .
(n+2) “n vol (U)
n
Hence, by (1),
vol (D) < &)™t = a(r*).

This implies that L* + D # R" (see (3.21)). Choose some w & L* + D

and set ¢y = (w,ai) for i=1,...,n.

Now, let £ be a linear functional on rR" satisfying (2). Let
v be the vector defined by £(u) = (v,u) for all u € rRP. Then, by
(2),

(v - w,a;) = (v,a;) - (w,a;) = f(a;) - c; €2
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for i =1,...,n, which means that v - w € L*. Consequently, v & D,
so that

—L ;s ofPwau = —2—— & (v,uwlau = vi? > 1.
vol (U) "y vol (U) gy
n n
Ineguality (3) follows now from (6.9). =

Proof of (6.1). Let Pg s Py f ... be a sequence of seminorms de-

fining the topology of E. More precisely, we assume that {B(pn)}:=0
is a base at zero in E. Due to (6.5), we may assume that

: 1/2
(1) lim sup k v, (A : E - E )=
k> k PpPg pn p

for n=1,2,... . Suppose first that all pn's are norms. We shall
construct inductively a sequence Mo'Ml’MZ"" of finite dimensional
subspaces of E.

Set Mo = {0}. Next, suppose that Mo’Ml""’Mn-l have been con-
structed. Due to (6.7), there is a subspace Nn of E with codim Nn<m,
such that

1
(2) Po(x +y) 2 5p (y) for all xe M+ ... + M _, and y € N_.
From (1) and (6.8) it follows that

: 1/2
lim sup k vy (A
ko>w k pnpo|Nn

} = =,

So, we can find a finite dimensional subspace Mn of Nn such that

(3) k(n) : = dim M 2mn,
M_ n B(p )| 1/k(n)

{4) k(n)l/z[l—ll-————ll——] > 2me,
M, n B(p,)]|

and we may continue the induction.
After constructing the subspaces Mn we proceed to the construc-
tion of generators of the subgroup K. Let us fix an arbitrary

n=1,2,... . We may identify Mn with Rk(n); then Uo: = MnrlB(po)

and U_ : = Mn n B(pn) are bounded, symmetric and convex subsets of

Rk(n), and (4) says that

vol (u_)
(5) — k@) 0y (ne)K(M)g(n) K(R)/2
volk(n) (Uo)
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According to the Minkowski-Hlawka theorem ([33], p. 202 -or: [28], cCh.

VI, §3), we can find a lattice L, in Mn = Rk(n) such that
{6) L, Nnu, = {0},
(7) d(Ln) < v°1k(n) (Uo).
Let (ani)?ig) be some fixed basis of Ln' After easy calculations,
from (7) and (5) we obtain
aL,) < m};%n)[k(n) + 277k(m)/2 voly 1y (V).

So, by virtue of (6.10), there exist real ccefficients Chi with i =~
1,...,k(n), such that

(*) if f 1is a linear functional on Mn with f(ani) € Cpi + 2
for i=1,...,k{(n), then

(8) vol, ) ({u €U, & [£(u)] 2 3}) 2 5 vol (u_).

k(n) n

Now, an easy inductive argument allows us to construct vectors

(9) Wi € Mo + ...+ Mn_1 (i =1,...,k(n); n=1,2,...)

satisfying the following condition:

(**) given arbitrary integers n, 2 0, p#0, mz21 and j =1,

...,k(n), there is an index n > ng such that

(10) Woi = Bcni(wmj + amj) (i = 1,...,k(n)).

Let K be the subgroup of E generated by all vectors Wi toang

where n =1,2,... and i1 =1,...,k(n). We shall prove that K is

discrete. Choose any u € K \ {0}. For a certain n 2 1, we may write

k(n)

= + . . .
u v iia rl(wnl + anl)

where v € Mo + ...+ Mn—l’ and r; are integers not all equal to

zero. By (2) and (9), we have

k(n) k(n)
p,(u) = p,(v + i§1 rowo t i§1 r;a ;) 2

k(n)

( = rjag;).
i=1

o

Po
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k(n)
From (6) we get 3 r.a ¢ B(po), which implies that pu(u) > 1

427 itni 3
Finally, denote F = span K and suppose that F/K admits a non-
-trivial continuous unitary representation. Then, due to (4.5), there
exists a continuous non-zero linear operator @ : F » Lg(o,l) with

0(K) c Lg(o,l). For each n=1,2,..., we have

0 .
(11) e(wni + ani) 5 LZ(O,l) (i =1,...,k(n)).
For each pair n,i with n=1,2,... and 1 =1,...,k(n), choose a
measurable function ¢ni on {0,1), the class of which is equal to
O(w,; +a ;). By (11), we may assume that
(12) ¢ni(t) € 2 (i=1,...,k{(n); t e (0,1))
for n=1,2,... . It follows from our construction that the vectors
Whi + au; form a Hamel basis in F. Consequently, each vector u € F

can be written in the form

k(n)

(13) u = Afl i§1 xni(wni + ani)

with all but finitely many coefficients Xy equal to zero. Naturally,
such a representation is unigque. For t € (0,1), let us write

= k(n)
ft(u) = nii ifa Xni¢ni(t)‘
It is clear that ft is a linear functional on F. If u 1is given
by (13), then
@ k(n)
O(u) = nfl iEE Xnie(wni + ani).
This means that, for each fixed uerF, the class of the function

t - ft(u) is equal to ©06{u). Observe that, for every n,

(14) ft(wni + ani) = ¢ni(t) (i=1,...,k(n); te (0,1)).

Since © # 0, and {wni + ani} is a Hamel basis in F, there
are some m=1,2,... and j =1,...,k(m) with @(wmj + amj) # 0.
Let A be the Lebesgue measure on (0,1). Replacing n by m in
{(12), we see that there exist a measurable subset X of (0,1) with
A(X) > 0 and an integer p # 0, such that
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(15) ¢mj(t) =p for all t e X.

Take an arbitrary integer n, > 0. By virtue of (*¥*), there is
an index n > ng such that (10) is satisfied. Let us write Xk = k{n).
Next, fix an arbitrary t € X. From (10) we have

__1 1 =
ft(wni) = Bcnift(wmj + amj) (i 1,...,k).

Hence, replacing n by m in (14) and using (15), we get

(16) fo(w ) = -

' "ni (t) = -c_. (i=1,...,kK).

mj ni

¢

o=

ni

From {(14) and (12) we derive

ft(wni + ani) = ¢ni(t) € 2 {(i=1,...,k).
Thus, by (16),
(17) ft(ani) € - ft(wni) t2cocy; +2Z (i=1,...,k).

Let us treat ft as a linear functional on Mn. From (*) and (17) it
follows that

. 1 1
volk ({u e Un : Ift(u)| 2 3}) 2 3 volk (Un).

Since this holds for each t € X, from the Fubini theorem we infer that

there exists a vector u, € Un such that

MLt € (0,1) & [f(u)] 23D 2 D).
Conseguently, we have
(18) le(u)| = & min (1,]f (u)])dt 2 $A(X).
X

We have thus shown that to each n, = 1,2,... there corresponds

some vector u, € B(pn) c B(p, ) such that (18) is satisfied. Since
o

{Fn B(pn)}:=1 is a base at zero in F, it follows that © cannot
be continuous. The contradiction obtained completes the proof.

1f pn's are not norms, the above argument requires only small
technical modifications. .
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(6.11) REmARK. The assumption of metrizability in (6.1) is essen-
tial. Let E be an infinite dimensional vector space with a countable
Hamel basis. The topology of E 1is defined by some norm and by the
family of all seminorms u#r [f(u)| where f € E#. Naturally, E is
a non-nuclear locally convex space. An easy argument shows that each
closed subgroup of E is dually closed and dually embedded (see [4],
p. 132).

(6.12) morE. Theorem (6.1) is new. The main idea of the proof, as
well as Lemmas (6.3) - (6.7), are taken from [4].






Chapter 3

NUCLEAR GROUPS

7. Nuclear groups

(7.1) DEFINITYION. A Hausdorff abelian group G 1is called nuclear if
it satisfies the following condition:

given an arbitrary U e NO(G), c >0 and m=1,2,..., there
exist: a vector space E, two symmetric and convex subsets X,Y of
E with
(1) 4 (X,¥) £ ck "
a subgroup K of E and a homomorphism ¢ : K ~» G, such that
d(K N X) € NO(G) and ¢(K N Y) < U.

In other words, G 1is nuclear if each neighbourhood of zero con-
tains another neighbourhood which is "sufficiently small" with respect
to the original one. From the proof of (9.6) it follows that (1) may be
replaced by the condition

-m
4, (X,Y) < c_k °

where Sy and m, are some universal constants. One may take, for in-
stance, C, = 10_2 and m, = 4. The author does not know whether it is

sufficient to take, say, S 1 and m, = 1 (cf. (9.2) and (9.3)).

The above definition is rather complicated. However, it appears in
a very natural way when one tries to define "intrinsically" a reasonable
class of abelian topological groups which would include subgroups and
Hausdorff quotients of nuclear spaces. For a simpler definition, see (9.9).

(7.2) PROPOSTYIGR. A Hausdorff abelian group G is npuclear if and
only if it satisfies the following condition:

given arbitrary U € NO(G), ¢>0 and m=1,2,..., there exist:

a vector space E, two pre-Hilbert seminorms p,q on E with

dy (B,,By) < ck ™M (k = 1,2,...),
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a subgroup K of E and a homomorphism ¢ : K-> G, such that
¢(RK N Bp) € N,(G) and ¢(K N Bq) c U.

Proof. The "if" part is trivial. The "only if " part follows di-
rectly from (2.14). =

(7.3) PROPOSTYION. Discrete abelian groups are nuclear.

Proof. Set E = {0} in (7.1). =

(7.4) PROPOSITION. Every nuclear locally convex space is a nuclear
group.

Proof. Let E be a nuclear space. Choose arbitrary c >0, m=
1,2,... and U = No(E)' By (2.17), we can find symmetric and convex
sets W,V € NO(E) such that W c Vv ¢ U and

4, (W,V) £ ck ™ (k = 1,2,...).

Now, we may take X =W, Y=V, K=E and ¢ = id in (7.1). =

E

{7.5) PROPOSITION. Subgroups and Hausdorff gquotient groups of nu-
clear groups are nuclear.

Proof. Let H be a subgroup of a nuclear group G. Choose ar-
bitrary ¢ >0, m=1,2,... and U e NO(G). Next, take E,X,Y,K and
¢ as in (7.1).

Set K = ¢ (H) and ¢ = djg- - Then ¢(KNY) cUNH and

¢ (K" NX)=Hn ¢(KNX)e N (H). Since {UNH :U eN(G)} = N (H),
it follows that H 1is a nuclear group.

Suppose now that H is closed and let ¢ : G~ G/H be the natural
projection. Denote ¢“ = y¢. Then ¢”“(K N ¥) c $(U) and ¢“(K n X) €
No(G/H) because ¢ is open. Since {Y(U) : U e N ()} = NO(G/H), it
follows that G/H is a nuclear group. =

(7.6) ProvosiTIicE. The product of an arbitrary family of nuclear
groups is a nuclear group.

Proof . Let G be the product of a family ({G of nuclear

itier
groups. Take arbitrary ¢ > 0, m=1,2,... and U € NO(G). We can

find a finite subset J of I and, for each i € J, same u; € NO(Gi)
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such that II U, x TII G, ¢ U. We may write J = {in}ﬁ=1.
ied ig3 *

for each n=1,...,p, we can find a vector space E

By (7.1),

n’ two symmetric

and convex subsets xn’Yn of En with

-m

4 (X .Y ) < c2 My (k =1,2,...),

a subgroup Kn of En and a homomorphism ¢n : Kn - Gin such that
¢n(Kn n Xn) € No(Gin) and ¢n(Kn n Yn) € Uin. For each i & I \ J,
there exist a vector space Ei’ a subgroup Ki of Ei and a surjec-
tive homomorphism ¢i : Ki > Gi (every group is a gquotient of a free
one; a free group is a direct sum of 2Z°s which, in turn, 1is a sub-
group of the corresponding direct sum of R’'s). Set

P P b
E=1Ir E x TIE, X=X x IE, Y=IY xIIE,.
n=1 i#J n=1 i¢gd

Then X,Y are symmetric and convex subsets of the vector space E.
From (2.7) we get

4, (X,¥) < ck™ (k =1,2,...).

Next, define

= = o
K = II Kn x 11;[] Ki and ¢ = (¢n)n=1 X (¢l)i¢J

K +» G.
It is clear that ¢(K N ¥Y) € U. On the other hand, we have

P
T ¢ (K NXK)x IIG < ¢(Kn X),
n=1 R R gyt

whence ¢{(K N X) € NO(G). =

(7.7) PRoPOSITION. The limit of an inverse system of nuclear groups
is a nuclear group.

This is a direct consequence of (7.5) and (7.6).

(7.8) PROPOSTITION. The direct sum of a countable family of nuclear
groups is a nuclear group.
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Proof. Let (G )m 1 be a sequence of nuclear groups and let G =

- n’'n=

> Gn' Take arbitrary ¢ > 0, m=1,2,... and U € NO(G). There
n=1 o

are some U € No(Gn), n=1,2,..., with n§1 Un cU. By (7.1), for

every n, we can find a vector space E two symmetric and convex

subsets Xn’Yn of En with

n’

d (X, ¥ ) < c2 ik (k = 1,2,...),
a subgroup Kn of En and a homomorphism ¢’n H Kn > Gn' such that
¢n(Kn n Xn) € No(Gn) and ¢n(Kn n Yn) c Un' Let us define
o« o <@
E= X E X = X X, Y= 3 Y.
n=1 % n=1 ° n=1 ™
From (2.7) we get dk(X,Y) s ck™ for every k. Setting K = = Kn
© n=1
and ¢ = (¢ ) _, : K+ G, we have ¢(K N Y) cU and X ¢ (K NX)c

n=1
¢(K N X), whence ¢(K N X) e NO(G). .

{7.9) PrROPOSIYION. The limit of a countable direct system of nuclear
groups is a nuclear group provided that it is separated.

This follows directly from (7.5) and (7.8).

The limit of a direct system of nuclear groups (and even of LCA
groups) need not be separated. See, however, (1.18) and the remarks
following the definition of the direct system of groups in section 1.

From (7.5) - (7.9) we see that the permanence properties of nu-
clear groups are similar to those of nuclear spaces.

(7.10) rroFosIiTION. LCA groups are nuclear.

Proof. Let G be an LCA groups. According to (1.9), there exist
a compact group K, a discrete group D and some m=0,1,2,..., such
that G 1is topologically isomorphic to a subgroup of R®™ x K x D. Ap-
plying (7.3) - (7.6), we see that it is enough to prove that K is
nuclear. Now, K may be identified with a subgroup of some product of
circles. A circle, in turn, is a quotient of the nuclear space R. That
K is nuclear follows now from (7.4) - (7.6). =

Let G be a topoclogical group and N a set of indices. Byco(N,G)
we shall denote the group consisting of all functions £ : N - G with
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the following property: to each U € NO(G) there corresponds a finite
subset M of N such that F(v) € U for all v € N\ M, We make
co{N,G) into a topological group by taking as a base at zero the family
of sets of the form {f : f(v) € U for all v} where U € NO(G). If
G 1is a field of scalars, then cO(N,G) is a topological vector space
over G.

(7.11) PROPOSITION. Locally convex spaces over locally compact ultra-
metric fields are nuclear groups.

For the terminology concerning vector spaces over ultrametric
fields, we refer the reader to [68].

Proof. Let K be a locally compact ultrametric field. Every lo-
cally convex space over K 1is an inverse limit of Banach spaces over
K. Thus, in view of (7.7), we have to show only that Banach spaces
over K are nuclear groups.

Let E be a Banach space over K. We may identify E with the
space co(N,K) for some set N ([68], Corollary 2, p. 44). From
standard results on the structure of locally compact fields it follows
that K, as an additive topological group, may be identified with an
inverse limit of discrete groups {see e.g. [103], Ch. I, §2). In other

words, we may assume that K 1is a subgroup of some product II Di of
isx
discrete groups. Then E may be identified with a subgroup of the
group H = cO(N, 11 Di). In view of (7.5), it remains to show that H
ier
is a nuclear group.

We may treat H as a subgroup of the product

II(]'[Di)“' 1T D\)i
veN ieI (v,i)eNxI ’
where Dv i < Di‘ For each finite subset J of I, let
7
m, ¢t H->D_ : = 11 D .
J J (v,i)eNxI v,1

be the natural projection. It is clear that the family {ker nJ},
where J ranges over finite subsets of I, forms a base at zero in H.
Thus we may identify H with the inverse limit of the discrete groups
D;. That H is nuclear follows now from (7.3) and (7.7). =
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(7.12) REMARK. Locally convex spaces over local fields satisfy Gro-
thendieck s definition of nuclear spaces, based on tensor products. On
the other hand, a real (or complex) topological vector space is a nu-
clear group if and only if it is a nuclear locally convex space (see
(7.4) and (8.9)). Therefore it would be interesting to give a charac-
terization of nuclear groups similar to some characterization of nu-
clear spaces. Naturally, tensor products and bilinear mappings do not
make much sense for topological groups. Nevertheless, one may speak of
summable and absolutely summable families of elements of abelian topo-
logical groups. In this connection, see (10.16).

(7.13) t&ammAa. Let p,g be two pre-Hilbert seminorms on a vector
[+
space E, such that > di(Bp,Bq) < 1. Take any Ugreeesrl € B with

k=1 moP
m 2 2. If avector y € E belongs to the set

{tlul + ...+ tmum : 0 = tl’

coe,t 513,
then there exists a subset I of {1,...,m} such that 1ls<card I sm-1

and y - X u, € B
jer * 4

This is Lemma 4 of [10].

(7.14) LimMA. let o | be two pre-Hilbert seminorms on a vector

space E, such that b d]?;(B ,B) £ 1. Let L be a subgroup of E
k=1 Pa
and Yy a mapping from K n 2Bq into some group G, such that y(u+w)=

Y(u) + Y(w) for all u,w € K N ZBq with u + w € ZBq. Then

(a) if ul,...,uneBp and u; + ... +un€2Bq, then

w(ul + ...+ un) = w(ul) + ...+ u)(un);

(by the formula

n n

¢(i§l ui) = i>=:lw(ul) (ul,...,un €Kn Bp)

defines a homomorphism ¢ : gp (K N B ) » G which is identi-
cal with ¢ on the set ZBq ngp (KN Bp).

Proof. To prove (a), we apply induction on n. For n =2, the



78

validity of (a) is obvious. So, assume that (a) is true for n less
than some fixed integer m = 3,4,... . We shall prove that (a) is true
also for n = m.

Take any Ugyrevs u € KN Bp with

(1) Uy + ...+ u, € 2Bq

Due to (7.13), there is a subset I of {1,...,m} with 1 £ card I =
m - 1, such that

m
> u. € B .

2 b .-
(2) u Zu q

. i
i€l

N

Then, by (1), both = u, and = uy belong to 2B_. Now, from our
iel i¢1 g
inductive assumption we obtain

m
VOZ ) =v(E + T u) =y Tu) + (T uy)
i=1 ier  igr 1 ier i¢1
m
= X y(u,) + = Ylu;) = = $(u;).
ier Y igr Y i=1 7

This completes the proof of (a). To prove (b), we only have to show

n m
that ¢ is well-defined, i.e. that if 2 u, = X w., for some Uy,

..o,u_€ KN B and w

n m
n P 17 Wy € K n Bp, then = Ylu:) = = yY{u

2) .
i=1 j=1 7
One has ¥(0) = $(0 + 0) = ¢(0) + Y(0), whence ¢(0) = 0. Next, for

each j =1,...,m, one has
ll’(wj) + U)(‘Wj) = W(wj + ('wj)) = \l)(o) = Ol

i.e. w(—wj) = -w(wj). Thus, by (a),

m
Ylug) - T y(-w

n m
b ‘ll(ui) - = Y(w,) =
i = 1 J=1

n
i=1 j=1 3 i=

j)

n m
=Y( 3 ug + X (-wi)) = 9(0) = 0. =
i=1 j=1 J

(7.15) PrROPOSITION. Let G,H be locally isomorphic abelian groups.
If G is nuclear, so is H.
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For a definition of locally isomorphic groups, see [23], Ch. III,
o
1.

§l, n

Proof. Choose arbitrary U € NO(H), m=1,2,... and ¢ > 0. We
have to find a vector space E, two pre~-Hilbert seminorms p,q on E
with dk(Bp’Bq) $ck™ for k=1,2,..., a subgroup K of E and a
homomorphism ¢ : K»H, such that ¢(K N Bp) e NO(H) and ¢(K N Bq) c U.
We may assume that ¢ £ 1.

Let y be a local isomorphism of G into H. Thus Yy is a ho-
meomorphism of some W e h%(G) onto some V e NO(H), such that

y(u + w) = y{u) + y(w) for any u,w € W with u+w €W. We may as-
sume that U c V. Then U = Y_l(U) € N (G). since 6 is a nuclear

group, from (7.2) it follows that there exist a vector space E, two
pre-Hilbert seminorms p,r on E such that

a4y (B, B,) %ck-m—l (k =1,2,...),

a subgroup K of E and a homomorphism ¥ : K> G, such that
Y{K N Bp) € NO(G) and Y(K n ZBr) c U°. By (2.15), there exists a

pre-Hilbert seminorm g on E such that dk(Bp,Bq) g ck™™ and
dy(BL,B) s 1 for k=1,2,... . we have B, By © B,  since

c £ 1. Observe that

s k2% ¢ 1.

1
40

s 2
E 4By s

Let ¥  be the restriction of ¢ to the set K n 2Br‘ For any
u,weKn ZBr with u + w € ZBr, we have

V(u +w) = yPlu + w) o= y(p(u) + p(w)) = yY(u) + yp(w)

vu) + u(w).

So, according to {(7.14), there is a homomorphism ¢ : K » H which is
identical with ¢~ on the set 2Br ngp (Kn Bq). From our assump-
tions it now follows that

¢(K n Bq) =y (K n Bq) < YY(K N B ) c yu(K N 2B) cy(¥) =1,
On the other hand, we have

(K n Bp) =y (KN BP) = y$(K N Bp) € NO(H)
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because ¢(K N Bp) 5 NO(G) and vy

(7.16) NOTE.

8. Characters of nuclear groups

(8.1) PROPOSITION.

space E. Let K be a subgroup of E and x a character of K with
[x(K n Bq)l < %. Then there is an f € E# with prK = x, such that
£ : < > B_,
sup {|f(u)] : u e Bp} 5 E kdy(B,B),
k=1
provided that the right side is finite.
Proof. We may assume that
1 > k4,(B_,B =1,
(1) ) k( o’ q)
Consider the canonical diagram
id
E > E
wp wq
A
E rd > E
P g
Take any u,w € K with wq(u) = wq(w). Then wq(m(u-w)) = qu(u-W)
= 0 for every m. Hence m(u - w) € KN Bq for every m. So, due
to (1.2), we have
- 1 1
[x(u - w)| = m]x(K n Bq)l 2 im
for every m, which implies that x(u) = x(w). This proves that the
formula K(wq(u)) = k(u) defines a character « of wq(K). Observe
that
1
2 K) n = s =z,
(2) IK(wq( ) B(Eq))l Ix(K n Bq)l i
For each u € K, define

s

= x(u)}.

*
Au = {h € Ep

phwp(u)

is a homeomorphism.

Let p,qg be pre-Hilbert seminorms

The material of this section is new.

on a vector



81

Now, choose any Up,eensuy, € K. Let M = span qu‘“k’}§=1 c Eq
and m = dim M. It follows from (2.11) that wq(Bp) is an absorbing
subset of Eq and its Minkowski functional r 4is a pre-Hilbert semi-
norm on Eq. Therefore M N wq(Bp) and M n B(Eq) are n-dimensional
ellipsoids in M. So, by (2) and (3.15), there exists a linear func-
tional g on M such that pg =« on M N wq(K) and

m
(3) sup {[gtW| : ueMny (B} 55 kzl kdy (M 0, (B),M 0 B(E)).

Applying (2.13) and (2.8) (a), we see that

(4) dk(M n wq(Bp),M n B(Eq)) = dk(M N B.,MnN B(Eq)) < dk(Br,B(Eq))
= <
A (bg(Bp) by (By)) £ 4, (B,B)
for every k. Now, h™ = gqu is a linear functional on A;é(M), and

from (1), (3) and (4) we get |h'l s 5. Let h e E; be any extension

of h” with |hl £ 5. For each k =1,...,n, we have

phwp(uk) ph'wp(uk) = pgquwp(uk) = pgwq(uk) = qu(uk)

x(uk).

n
Thus h € SB(E ) N N A, -
p k=1 Yk

Since the sets Au are all weakly closed and SB(E;) is weakly

*
compact, it follows that there exists some h € 5B(Ep) n N Au. It

; uek
remains now to take £ = hwp. a

(8.2) TaporEM. Let H be a subgroup of a nuclear group G. Each
equicontinuous subset of H is the canonical image of an equicontin-
uous subset of G .

Proof. Let X be an equicontinuous subset of H . There is some
We N (H) with X c Wo. Next, there is some U €N (6) with UNHcW.
By (7.2), we can find a vector space E, two pre-Hilbert seminorms p,
g on E with

1,-3

(1) dk(Bp'Bq) S (33)77k (k =1,2,...),

a subgroup K of E and a homomorphism ¢ : K> G, such that
$(K N Bp) € NO(G) and ¢(K n Bq) c U. Define
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[N

Y={(xeG : |c(¢(K N B s g

It is clear that Y is an equicontinuous subset of G . It remains to
show that each x € X 1is a restriction of some x € Y.

So, take any x € X. let K = ¢-1(H). Then x¢ is a character
of K and |[x¢(K™ n Bq)l s [xtunH| s %. By (8.1), there is some
f e E# such that ¢f = ¥¢ on K~ and

sup {[f(u)] : u e Byl 55 k§1 kdy (BL,,B) -

Hence, in view of (1), we have

o

sup {|f(u)| : ueB ) s5 (33)"! = k2 <3
P k=1 4
It is clear that the formula «x(¢(u)) = pf(u) for u € K defines a
character « of the group ¢(K), with
1
[x($(K n Bp))| S sup {|f(u)] : ue Bp} < g
Next, the formula
g{¢(u) + h) = x{(¢(u)) + x(h) (we K, heH)

defines a character & of the group ¢(K) + H. We have g,¢(x) = K

and QIH = X. Let us extend { in any way to a character x of G (see

(1.6)). Then x € Y and iIH =3, =

(8.3) corROLLARY. Each subgroup of a nuclear group G is dually embed-
ded in G. =

(8.4) PROFOSITION. Let p,g be pre-Hilbert seminorms on a vector
-
space E, with X kdk(B ,B.) S1. Let a € E and let K be a sub-
k=1 P q
group of E, such that a ¢ K + Bq. Then there exists some f € Eg

with £(K) ¢z, f(a) € [$,3] +2 and sup {|f(u)f: ue By} S 4.

Proof. Define
- * 13
Q= {heEp : hwp(a) € [7,3] *+ 2}

and, for each u € K,
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*
Au = {h e Ep : hwp(u) e 2}.

We have wq(a) '3 wq(K) + B(Eq). We may now repeat the proof of (8.1),

applying (3.11) instead of (3.15), to show that 4B(E;)ﬂQ NN A £
uffF

for any finite subset F of K. Since @ and Au are all weakly

* *
closed and 4B(Ep) is weakly compact, there is some h € 4B(Ep) negn

N A and it remains to take £ = hy_. =
uek Y p

(8.5)

OREM. Nuclear groups are locally quasi-convex.

Proof. Let G be a nuclear group. Take any U € NO(G). By (7.2),

we can find a vector space E, two pre~Hilbert seminorms p,g on E
with

@

1
(1) ‘_1:. kdk(Bp,Bq) < 350
k=1
a subgroup K of E and a homomorphism $ : K ~» G, such that

¢(K n Bp) € NJ(G) and ¢(K N Bq) c U. To complete the proof, it suf-

fices to show that the quasi-convex hull of ¢(K n Bq) is contained
in U.

So, take any g € G \ U. We are to find some X € G with
[x(6(K 0 Bp))l ES % and |[x(g)]| > %. Suppose first that g ¢ ¢(K).

Discrete groups admit sufficiently many characters, therefore we can

find a character k of G with K|¢(K) =0 and k(g) # 0. Then
an(g)| > % for a certain n and we may take x = n«.

Now, suppose that g € ¢(K). Let K~ = ker ¢. Then g = ¢{(u)
for some u ¢ B_ + K. By (1) and (8.4), there is some f € E* with
£(K) cz, £ e(131+2 and sup (|£w)] : we B,) s 1. The for-

mula «k(¢(w)) = pf(w) for w € K defines a character «k of ¢(K) with
[<(s(k n B))| s3 and |k(@)] = [x(p(w)] 23 Let x =« if
I<(g)| > 7 and let x = 2c if (x(g)| = 3. Then [x(¢(K n B,)) | <3
and |x(qg)| >%~ .

(8.6) COROLLARY. Closed subgroups of nuclear groups are dually
closed.

Proof. Let H be a closed subgroup of a nuclear group G. Choose
any ue€ G\ H. We are to find some x = G with XIHE 0 and x(u) #0.
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Let Y : G » G/H be the canonical projection. Then y(u) # 0. Since
G/B 1is Hausdorff, there is some U e NO(G) with vy(u) € U. By (7.5},

the group G/H 1is nuclear. Therefore, by (8.5), we can find some quasi-
~convex set W e NO(G) with W c U, So, there is some k€ (G/H)

with |x¥(u)]| > % and we may set x = kyp. =

(8.7) COROLLARY. Closed subgroups of nuclear spaces are weakly
closed.

This follows immediately from (8.6), (7.4) and (2.5).

(8.8) pemARK. Let K be a discrete subgroup of a nuclear space
E. Then K 1is an at most countably generated abelian free group (see
{5.6)). Since E/K admits sufficiently many continuous characters, it
admits a continuous faithful unitary representation (the Hilbert sum
of these characters). It was proved in [5] that if the topology of E
can be defined by a family of norms, then E/K admits a faithful uni-
formly continuous unitary representation. Simple examples show that it
is essential to assume that K is discrete.

The countable product RY of real lines does not admit a faithful
uniformly continuous unitary representations. 1Indeed, from the proof
of (4.5) it follows easily that such a representation would induce an

injective continuous linear operator ¢ : RY » L;(O,l), which is im-
possible.
(8.9) PROPOSITION. Let F be a topological vector space. 1f F

is a nuclear group, then it is a nuclear locally convex space.

Proof. From (8.5) and (2.4) we infer that F 1is a locally convex
space. Choose any continuous seminorm s on F. By (7.2), we can find
a vector space E, two pre-Hilbert seminorms p,g on E with

1. -1
(1) dk(Bp,Bq) < gk (k =1,2,...),
a subgroup K of E and ‘a ‘homomorphism ¢ : K-> F, such that

¢(K n BP) € NO(F) and ¢(K n Bq) < Bg. In view of (2.13), we may as-

sume that span K = E. The formula
n

n
¢ = tyu, = = ot ¢y _od(u,) (t, € R, u
k=1 k'k k=1 k's k k

defines a linear operator ¢ : E - FS. To prove this, we only have to
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show that ¢ 1is well-defined, i.e. that = tkws¢(uk) =0 whenever

n
Ittkuk = 0. So, choose any Uj,ere,u, € K. Set M= {uk}k:l and

H=KnN M. The formula w({u) = ws¢(u) defines a homomorphism 7 :H -+
Fs' We have @(H N Bp) = ws¢(H n Bp) c ws(Bs) = B(FS), which implies

that 7 1is continuous in the usual topology on the finite dimensional
space M. Let T : H » Fs be the continuous extension of 7. Accord-
ing to (3.1), we may write H = ﬁo @ H where Eo is a closed linear
subspace of M and H~ is a free discrete group. We can therefore
extend T to a continuous homomorphism ¢ : M - Fs. Being additive
and continuous, o¢ 1is a linear mapping. Thus

n

n n
= ot 9 ¢d(uy) = = t,o(u) =0l = t
k=1 k"s k k=1 k k k=1

kuk) = g(0) =0,

which proves that ¢ is well-defined. Set X = conv (K n Bp) and Y =
conv (K N Bq). From {1) we get

<0

2

2 1 2 -2 _ 1 1
> 4;(B_,B ) s = k = == < .
k=1 K PTTAT T 9 oy 44
Hence, in virtue of (3.20},
(2) dk(X,Y) < de(Bp,Bq) (k=1,2,...).

It is not difficult to see that w;lm(y)) cB_ and w;l(qs(x)) > $(KNB ),
whence w;1(¢(x)) =3 NO(F). Finally, from (1), (2) and (2.8) we obtain

a, vzt (ex), v o)) 5 g (x,v) < k7

(k =1,2,...).
This proves that F 1is a nuclear space because s was an arbitrary
continuous seminorm on F. =

(8.10) REMARXS. Let E,F be two normed spaces and let 6{E,F} be
the family of all bounded linear operators ¢ : E » F which satisfy
the following condition: if K is a closed subgroup of F, then

¢'1(K) is a weakly closed subgroup of E {or, which is the same, if
K is a subgroup of E, then ¢ maps the weak closure of K in E
into the closure of ¢(K) in F). Proposition (8.4) says that if E,

<«

F are unitary and X kdk(¢) < », then ¢ € 6(E,F). On the other
k=1
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hand, from the proof of Lemma 6 in [4] it follows that if E,F are
arbitrary normed spaces and ¢ € &(E,F), then kvk(®) remains bounded
as k » o,

let ¥ :E - E and ¥ : F » F~ be arbitrary bounded linear op-
erators. It is clear that if ¢  ¢(E,F), then oy € (E ,F) and
x® € 6(E,F7). However, it is not known whether the sum of two opera-
tors from 6(E,F) belongs to &(E,F).

The situation described above is typical in the following sense.
A theorem on additive subgroups of nuclear spaces leads to a certain
statement on linear operators between unitary spaces which, in turn,
is reduced to a statement on lattices and ellipsoids in rR" (cf. the
remarks at the end of section 3). This gives rise to a certain class A
of operators acting in Banach spaces; A is usually closed with re-
spect to composition with bounded operators but probably not with re-

spect to addition of operators. -If 4, (%) are small enough (say,
k

4 (&) ~ k™' or ~k7?), then ¢ e A. On the other hand, if ¢ € A,

then vk(¢) cannot be too large.

Most important examples of such classes of operators are connect-
ed with (8.4) (the class & considered above), with (8.1) and with
(12.2). Very interesting (and probably difficult) problems of this
appear in connection with the considerations of section 6. See also
(10.18).

(8.11) moYE. The material of this section is mostly new. For sub-
groups and quotient groups of nuclear spaces, the results of this sec-
tion were proved in [7] and [B8]. Proposition (8.1) 1is a strengthening
of Lemma 1.5 of [8].

9. Nuclear vector groups

(9.1) DEFINITION. Let F be a vector space and Tt a topology on
F such that FT is an additive topological group. We say that F. is

a locally convex vector group if it is separated and has a base at zero

consisiting of symmetric, convex sets.

This notion was introduced by D.A. Raikov in [78], p. 301. Ob~
that, for each A € R, the mapping u - iu of F_ into itself is
continuous. Observe also that FT is a topological vector space if
and only if it has a base at zero consisting of absorbing sets; then
it is a locally convex space.
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(9.2) perImrriom. A locally convex vector group F is called a
nuclear vector group if to each symmetric, convex U & NO(F) there

corresponds a symmetric, convex W € NO(F) such that

d, (W,U0) s x1 (k= 1,2,...).

(9.3) proPOSITION. Let F be a nuclear vector group. Take any m =
1,2,... and ¢ > 0. To each radial U e NO(F) there corresponds some
symmetric, convex W € NO(F) with

4, (W,U) s ck ™ (k =1,2,...).

The proof is similar to that of (2.17).
(9.4) ProFOosIYION. Every nuclear vector group is a nuclear group.

This is an immediate consequence of (7.1) and (9.3) (see the proof
of (7.4)).

{9.5) ProrosiTTON. The completion of a nuclear vector group is a
nuclear vector group.

Proof. Let F be a nuclear vector group. We introduce multipli-
cation by real numbers in F in the following way. Let feF and
t € R. There is a generalized sequence (fc) in F, ~converging to
£f. Then (tfo) is a Cauchy sequence in F. We set tf = lim tfo. It

is easy to see that F with the multiplication thus defined is a vec-
tor space.

Let {Ui}ieI be a base at zero in F, consisting of symmetric,

convex sets. Then {ﬁi) is a base at zero in F. It is easy to see

iel
that the sets ﬁi are symmetric and convex. Choose any i € I. There

is some j € I such that

(U, 0,) < k1 (k = 1,2,...).
For any fixed k, we can find a linear subspace L of F with
dim L < k and Uy © k'lui + L. For each € > 0, we have ﬁj c Uy o+

ef}j , whence

o -1 = -1= S} T
chk Ui+er+Lck Ui+L—(k +e)Ui+L.

Therefore
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— — _1 _
4 (Uj,Ui) k (k =1,2,...),

A

k

which proves that F is a nuclear vector group. =

Let G be a topological group. By wo(G) we shall denote the
weight of G at zero, i.e. the least cardinal number m such that G
has a base at zero with cardinality m.

{9.6) YHEOREE. Let G Dbe a nuclear group. Then there exist a nu-
clear vector group F with wO(F) = wO(G), a subgroup H of F and
a closed subgroup Q of H, such that G is topologically isomorphic
to H/Q.

Proof. Choose a base B at zero in G with cardB8 = wo(G). Due

to (8.5), we may assume that B consists of quasi-convex sets. Let

RG be the vector space of all real-valued functions on G . For each

U B, let

.
X.={E eR : E(x) = x(g)}
U ngu Vxeuo

and let YU==coanU. If veB and V +V c U, then it is clear
that Y, + ¥y © Yy- It is also clear that Y g = Yy because both U
and Y are symmetric sets. Thus, according to (1.12), there is a unique
topology 1 on RG such that F : = (RG ,T) is a topological group

for which (Y is a base at zero.

U}UEB

Consider the homomorphism ¢ : G ~» TG given by the formula

o(g) (x) = x(g) (g6, xe6).

It follows from (8.5) that G separates points of G. Therefore g

G G

is injective. Let Pa R > T be the canonical projection given
by the formula
oG (E) () = plE(x)) (6er®, xe6).

Set H = pél(o(G)) and Q = H N pél(O). we shall prove that H/G with

the topology induced from F is topologically isomorphic to G. Con-
sider the canonical diagram
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PG|H
(¢
G —> o(G) <——— H/Q

Here o¢ and w are both algebraical isomorphisms. We shall prove
that o in is a topological isomorphism.

Choose any U € B. We are going to show that

(1) pg(H N ¥) = o(U).

We begin with the inclusion

(2) pglH N ¥y) 2 a(U).

So, take any & € o(U). We have £ = o(g) for some g € U. We may

treat £ as an element of R® . Then £{x) = o(g)(x) = x(g) for each

X € G‘, which implies that £ € X Next, we have p.(g)=¢ = glg) €

U
0(G), whence ¢ € H. Thus & € H N Yy, and g = pG(E) € pG(H n YU),
which proves (2).

To prove the opposite inclusion, choose any & €HN YU' Since
YU = conv XU, and XU is symmetric, we may write § = tlgl + u.-+tn£n
for some 51""’£n = XU and some tl”“’tn > 0 with t1+...+tn = 1.
According to the definition of XU, for each k=1,...,n, there is
: _ o 1
some gy € U with g (x) = x(gy) for all xeU . Hence ]ik(x)l S 3
for all x € U° and k = l,...,n. From this we get
1 o
(3) lEOO] s £l O] + oon e JE O] S 7 (x € U).
Now, since £ € H, we have pg(8) = ol(g) for some g € G. By (3),
for each yx € Uo, we have
1
Ixtg)] = Jola) O] = Jegle) (x)] = JeleG)| = te{x)]| £ 7-

This implies that g € U because we have assumed U to be quasi-con-

vex. Hence pG(g) = ¢g(g) € 0(U), which yields (H n YU)C o(U) since

Y
G
£E e HnN YU was arbitrary. From this and (2) we obtain (1).



90

Now, (1) may be written as c_lnw(H N ¥y) =U. Since this holds

for all U e B, we get {o ‘my(H N Y lyeg = B+ But  {¥(H N Y )}cg
is a base at zero in H/Q, and B 1is such a base in G. Hence c—ln
is a topological isomorphism.

To complete the proof, it remains to show that F is a nuclear

vector group. So, take any U & NO(F). ‘There 'is some V € B with

Y, ¢ U. By (7.2), there is a vector space E, two pre-Hilbert semi-

norms p,d on E with

2, -4

dk(Bp,Bq) £ 10 “k (k = 1,2,...),
a subgroup K of E and a homomorphism ¢ + K-> G, such that
(K N B € N (6) and ¢(KNB)c 1v. Due to (2.15), we can find a

pre-Hilbert seminorm r on E with pzr 2 q,

1 3

(4) dk(Br,Bq) < §§k (k =1,2,...),
(5) 4, (B_,B ) < k7t (k = 1,2,...)
x(BpBy 3 y2,0404)
Now, we shall construct a linear operator ¢ : E - RG . Take any
x € V°. Then, by (1.2),
1, 1 11 1
IX(3V) ] s 5IxM | s 53 <7

so  |x¢(K n Bp)l < %. In virtue of (8.1), there is some fXE Y with

pr = x¢ on K and

-

sup {Ifx(u)l :u e Br} s 5 kdk(Br,Bq).

k=1
Hence, by (4), we get
. S s 21
(6) sup {]fx(u)l. u e Br} < 33 k§1]< <%
For each u € E, define
£ (w) if  x e v°,
(eu)(x) =
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be the projection given by the formula

g (x) if  x € v°,
(Pg)(x) =
0 if  x ¢ V.
We shall prove that
(7) P(H) n ¢(Br) = P(XV)-
So, take any £ € P(H) n ¢(Br). Then § = Pg for some z € H and
§ = ¢u for some u € B, . Since ¢ € H, there is some g € G with
pG(c) = o{g). For each x € v®, we have
(8) x(g) = o(g)(x) = pglr)(x) = plclx)) = p(Pz(xN=p(E(X))
= p{du(x)) = pr(u).
Since u € Br’ from {(6) it follows that
[x(g)] = |pf (u)]| s [£ (u) < > (x € V9.
X X 4
Thus ¢ € X, and ¢ = Py € P(XV)’ which proves (7).
Now, since (K N Bp) € NO(G), there 1is some WeB with
w C ¢(K N Bp). We shall prove that
(92) P(Xw) c P(H) n ®(Bp).
Choose any £ € P(Xw). There is some ¢ € Xw with £ = Pg. Next,
o

there is some g € W with

have g = ¢(u) £for some

Bp c Br’ we have u € Br'

E(x) = ¢(x) = x(9g9)

(observe that Ve ¢ Wo

(du)(x) = 0. Hence ¢ =

(10) P(Xy,) < ¢(Bp).

ue€eKnNB..
p

= X¢(u) =

because W c V).
du € d’(Bp)r

for all

Now,

z(x) = x(g) X € W’. Finally, we

take any X € ve. Since

and from (6) we obtain [£ (u)] < 3. Then

pr(u) = fX(u) = {¢u){x)
X¢Vol

which implies that

For we have £(x) =
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Let n R®  be given by the formula n(x) = x(g) for x € G .

Then op,(n)(x) = x(g) = o(g){x) for every x, 1i.e. pgln) = alg).

Thus n € H. Moreover, Pn = &, which implies that P(Xw) c P(H).
From this and (10) we obtain (9).

Set M = ¢$(E). The Minkowski functionals of ®(Bp) and @(Br)

are pre-Hilbert seminorms on M (see (2.11)). From (2.8) (a) it fol-
lows that

(1) 4, (2(B,),8(B,)) s & (B ,B) (k =1,2,...).

hence, by (5),

2 1 2 -2 1
2 4, (9(B ),d(B )) <5 Z K < T,
k=1 % P r 9 4= 4

Now, (3.20) implies that

(12) dk(conv (P(H) n @(Bp), conv (P(H) N ¢(Br)))
$ 24, (0(B),9(B,)) (k= 1,2,...).
We have Y, c P_l(P(Yw)) and Y, = p"1(p(v,)). Finally, by (2.8) (b,

(7), (9), (11), (12) and (5), we obtain

4, (Y., Y £ 4d

-1 -1 _
(Fr¥y) S & (BTH(R(Y,)),BTHR(Y,)) = 4 (P(Y,),B(Y,))

dk(P(conv Xw),P(conv XV))= dk(conv P(Xw),conv P(XVH

dy (conv (B(H) N 0(B,)), conv (P(H) N &(B,)) < %k_1< k1

IA

for every k. Thus F 1is a nuclear vector group.

Since {WV}VeB is a base at zero for F, we have

wo(F) < card {YV}VEB < card B = wo(G).

A
S
as]
A
EX
]
a

On the other hand, wo(G) = wo(H/Q)

(9.7) PROPOSITION. Let G be a metrizable nuclear group. Then there
exist a metrizable and complete nuclear vector group F, a closed sub-
group H of F and a closed subgroup Q@ of H, such that the com-
pletion of G is topologically isomorpic to H/Q.
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Proof. By (9.6), there exist a metrizable nuclear vector group
F', a subgroup H  of F ~ and a closed subgroup Q  of H', such
that G 1is topologically isomorphic to H /Q . Let F be the com-
pletion of F~ and let H and Q be the closures in F of H  and
Q°, respectively. From (1.10) it now follows that the completion of
G 1is topologically isomorphic to H/Q. Finally, F is a nuclear
vector group, due to {9.5). =

(9.8) TaRoRE®. The completion of a metrizable nuclear group 1is a
nuclear group.

This follows immediately from (9.7), (9.4) and (7.5).

{9.9) REMARK. It follows from (9.6), (9.4) and (7.5) that we might
define nuclear groups as Hausdorff quotients of subgroups of nuclear
vector groups. Such a definition is much simpler and allows us to omit
the long and complicated proof of (9.6). However, it has also some dis-
advantages. Firstly, it is not "intrinsic". Secondly, applying this de-
finition, we would encounter difficulties in section 7, with proving
that groups locally isomorphic to nuclear groups are nuclear. Also,
which is more important, we would have troubles in section 16 with show-
ing that the dual group of a metrizable nuclear group is nuclear. In
fact, we would have to repeat there the argument from the proof of
{(9.6).

(9.10) morE. The material of this section is new.

10. The Lévy-Steinitz theorem

©

Let > 9y be a convergent series in a Hausdorff abelian group
i=1 ®
G. TIts sum will be denoted simply by 9ir that is,
i=1
® b
> g, = 1lim = g..
i=1 t jee i=1 7t

[e+]
To simplify the notation, we shall often write Zgi instead of = 93
i=1
to denote both the series and its sum; this should not lead to misun-
derstandings.

The set of sums of the series Zgi, denoted by S(Zgi;G) is

defined in the following way: a point s € G belongs to 3( Zgi;G)
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if there is a permutation w of indices such that the series =g
converges to s.

w(i)

(10.1) REMARK. 1t may happen that § (Zgi;é) # 8( Zgi;G). For ex-

ample, denoting the group of rational numbers by ¢, we have

® i = i
(= i:%l_;Q) =Q and $( = i;i%—;R) = R.
i=1 i i=1 1

If the meaning of G is clear, we shall write simply s(z:gi) instead
of S(ZQi;G)-

The Lévy-Steinitz theorem says that the set of sums of a conver-

gent series in R? is an affine subspace (cf. also (10.11)). This
theorem can be generalized to certain infinite dimensional spaces; see
the remarks following (10.2). For series in Banach spaces, see {10.12)
and (10.13).

On p. 61 of his book [89], &S. Ulam posed the following problem:
in connection with the Lévy-Steinitz theorem, he and Garrett Birkhoff
had noticed that the following assertion is true:

(*¥*) the set of sums of a convergent series in a compact group G
is a coset modulo a certain subgroup of G;

does a similar result hold for more general, non-compact topological
groups? This section is an attempt to answer the question; the main
result is (10.3).

(10.2) more. Ulam and Birkhoff did not leave, as it seems, any in-
dications and one does not very well know how they had shown (*). For com-
pact metrizable groups, (*) follows from (10.3). In this particular case,
the proof of (10.3) can be much simplified, for it suffices to apply
(10.9) and to make use of the fact that the set of sums of a convergent
series in the countable product of real lines is a linear manifold
(see below). Without the metrizability assumption, (*) is false; see
(10.14).

Let E be a real topological vector space. By a linear manifold

in E we mean a set of the form u + M where u € E and M is a
linear subspace of E. et us consider the following assertion:

(**) the set of sums of every convergent series in E 1is a closed
linear manifold.
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If E 1is the locally convex direct sum of an arbitrary number of real
lines, the validity of (**) follows immediately from the Lévy-Steinitz
theorem for R" because every convergent series in E lies ina fi-
nite dimensional subspace.

Troyanski [88] proved that (**) is true if E is the countable
product of real lines. His result had been obtained earlier by Wald
[100] and was rediscovered later by Katznelson and McGehee [51]. See
also Halperin [34]. The validity of (**) for some other nuclear spaces
can be deduced from the results of Barany [16], as well as from those
of Beck [19] and Pecherskii [74); see (10.18). By modifying Barany s
proof, the author showed in [10] that (**) is satisfied for every met-
rizable nuclear space E; c¢f. also (10.8), (10.11) and (10.14).

The aim of this section is to prove the following fact:

(10.3) TEROREN. Let Zgi be a convergent series in ametrizable
nuclear group G. Then P : = S(Xgi) - Zgi is subgroup of G (not

necessarily closed). If G is complete, P is a continuous homo-
morphic image of a nuclear Fréchet space.

The assumption of metrizability is essential; see (10.14).

Let us begin with some definitions. Let Zgi be a convergent
series in a Hausdorff abelian group G. By ¢€( Zgi;G) we shall de-
note the set defined in the following way: a point s € G belongs to
t(Zgi;G) if there exist a permutation 7 of indices and a sequence

jl < j2 < ..., such that

In
s = 1lim 3 g iy
n-w i=1 m(i)

For each m=1,2,..., let Am be the closure in G of the set of all

points of the form > 9; where I is a finite subset of {m,m+l,...}.
iex

We define A(XZg.;G) = N .
16 = 0 Ay

Remarks analogous to (10.1) are applied to €(x=g;;G) and A(xg,:G),
as well. When there is no risk of misunderstanding, we shall briefly
write C(Zgi) and A():gi).

(10.4) PROPOSITION. Let ):gi be a convergent series in a Hausdorff

abelian group G. Then A(X=g,) is a closed subgroup G. Moreover,
i
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A(Zgi) + Xgy = c(zgi).

This is a well-known fact; see e.g. [23], Ch. III, §5, Exercise 3.

For the first time, it appears in Wald s paper [101]. For series in

Rn, it was known to Steinitz [87].

(10.5) LEsmA. let D c E Cc F be three o-symmetric n-dimensional
n

closed ellipsoids in R with
22 a2 1
= dk(D,E) <1 and > dk(E,F) < 7
k=1 k=1
m
Let Ugreee iy e D and a € g be such that a+ = ui e E. Then
i=1
there exists a permutation ¢ of {1,...,m} such that
a + i§1 o(i) € F (j =1,...,m).

This is Lemma 6 of [10].

(10.6) rxema. If Eiui is a convergent series in a metrizable nu-

clear vector group, then s(Ejui) = C(Elui).

Proof . We only have to show that C(E:ui) c 5(2:ui), the opposite

inclusion being trivial. So, take any s € t(EIui). There are a permu-
tation 7w of indices and a sequence j1 < j2 < ..., such that
In
s = lim = uﬂ(i)
n»e  ji=1

Let us denote our nuclear vector group by F. It follows easily from

(9.3) and (2.14) that we can find a fundamental sequence Ul -l U2 = TN

of convex neighbourhoods of zero in F, such that, for every n, the

Minkowski functional P, of U, is a pre-Hilbert seminorm on Moo=

span Un’ and

(1) U, = {ue M, e pn(u) <13,
2 1
(2) = AU ,0, 0 M) =7
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Increasing the indices jn’ if need be, we may assume that, for every

n,
Jn
(3) s - X u_,., €U ,
i=1 m(i) n+2
(4) Ur(i) € U2 for all i»> jn.

Let us now fix an arbitrary index n. Replacing n by n+1 in
(2), we get

1

Z o2
(5) > a4 (u U nM o) S g

k=1 n+2’ n+l < 1.

Similarly, replacing n by n+1 in (3), we get

In+1
(6) s - X u.,., €U
i=1 w(i) n+2
because Un+3 c Un+2' Let L Dbe the linear subspace of F spanned
jn
over the vector s - izi un(i) and the vectors uy for i = ]n+l,..”

Jn+1” Set 1 = dim L. From (3) and (4) we get L c Mn+2' Therefore,

replacing n by n+1 and n + 2 in (1), we see that UnﬂL,Un nL

+1
and Un+2 N L are o-symmetric closed l-dimensiocnal ellipsoids in L.

In virtue of (2.13), from (5) and (2) we obtain

1

2 )
= ai(v_,, nL,uU_, nL)s1, = e
k=1

k=1

N[
.

n L,Un n L) s

n+2 n+1l n+1

Thus, by (4), (3) and (6), from (10.5) we infer that there exists a

permutation Oh of the set {n(]n+1),...,n(3n+1)}, such that
Jn 3

(7) s - = u_,. S u : e U (j_+1<3<3 ).
i=1 n{i) i=jn+l onn(l) n n n+l

Let o be the permutation of positive integers given by p(i) =
onw(l) when Jn + 1 1€ Jh+1 and by p(i) =i when 1 <Jl. Since

{7) holds for every n, we may write
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J
s - %2 up(i)EUn (J)Jn; n=1,2,...).
i=1
This means that the series > u converges to s, Thus

p(i)
s € S(Zui). =

Let F be a nuclear vector group. The set MN{span U:Ue NO(F)}

is a closed linear subspace of F; we shall denote it by FO. Notice

that Fo is a nuclear space.

(10.7) LEaMNA. Let Zui be a convergent series in anuclear vector

group F. Then A(Zui) is a closed linear subspace of F contained
in Fo'

Proof. For each m=1,2,..., let Am be the closure in F of
the set of all points of the form > u, where I 1is a finite subset
iex
of {m,m+l,...}. Denote A = A(Zui); then A= N Am' Since
m=1

u; > 0, toeach U e NO(F) there corresponds an index m such that

u; €U for i 2m; hence A C span U = span U. This implies that
A C FO. Since A is, by (10.4), a closed subgroup of F, we only
have to prove that A 1is radial.

Choose arbitrary s €A and $ € (0,1). It is to be shown that
9s € A. So, take any m=1,2,... and any U € NO(F). Due to (9.3)
and {2.14}, we can find some W e NO(F) and two pre-Hilbert seminorms

p,d on span W, such that W n Bp n Bq N U and

s .2
1 = d4%(B_, < 1.
(1) k=1k(qu)

Since Bp e NO(F) and u; > 0, there is an index n 2 m such that

(2) u; € Bp for all i 2 n.

Next, since U e NO(F) and s € An, there is a finite subset I
of {n,n+1,...} such that

(3) s e X u; + U,
ieI

From (1), (2) and (7.13) it follows that there is a subset J of I



99

such that

9 X u, €B_+ = u,.
iel 9 jeg

From this and (3) we derive

9s € U + % = ui c (1 + %) + T u,.
ieI iegJ

Since U € NO(F) was arbitrary, it follows that $§s € An. But n 2 m,

therefore An c Am and, consequently, 9s € Am. This  prowves that

9s € A because m was arbitrary. =

(10.8) COROLIARY. Let E:gi be a convergent series in a metrizable
nuclear vector group F. Then §$ (zjgi) - E:gi is a closed linear sub-

space of F contained in Fo.

This is a direct consequence of (10.4), (10.6) and (10.7). The as-
sumption of metrizability is essential; see (10.14).

(10.9) LrimA. Let X be a set of indices and let RX denote the
space of all real-valued functions on X, endowed with the topology of
pointwise convergence. Similarly, let T  denote the group of all func-

tions g : X » T endowed with the topology of pointwise convergence and

let ¢ : RX > TX be the natural projection given by

Y(u)(x) = p(u(x)) (uerRY; xex).

For each convergent series 2:ui in RX, one has

$(Z9(u);T) = y(s(uy RY).

Proof. The inclusion W(S(Eiui)) c $(2:w(ui)) is trivial. To prove

the opposite one, take any g € z(i:w(ui)). There is a permutation i

of positive integers such that
J .
(1) =1w(u“(i)) > g as j o =,

1

Fix an arbitrary x € X. From (1) we get

j
Lo \P(u_"(l))(x) > g(X) as J > ©,

1
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which can be written as

J
(2) p(izl u,n(i) (x)) ~» g(X) as J > <.
Since (ui) is a null sequence in RX, we have ui(x) >0 as i » =.

From this and (2) it follows that there is an integer k(x) such that

j

(3) i§1 u_n(i)(x) »> g(x) + k(x) as j o «.
Since (3) holds for each x € X, the series Zuﬂ(i) converges to the
function g + k in RX. Thus g + k € $%( Zui). We have

Y(g + k) = ¢(g) + y(k) =g+ 0 =g,

which proves that g e \P(S(Zui)). .

The proof of (10.3), given below, is, in fact, a modification of
the proof of (10.9). The differences may bear a technical character on-
1ly.

Proof of (10.3). It is clear that

$(Zg;;6) =G N $(xg,:6),

therefore we may assume that G 1is complete. By (9.7), we may write
G = BH/K where H is a closed subgroup of some metrizable and complete
nuclear vector group F and K 1is a closed subgroup of S. Since
H/K may be identified with a closed subgroup of F/K, we may simply
assume that G = F/K. Let ¢ : F > F/K be the natural projection.

We may restrict ourselves to the case when K does not contain any
lines. Indeed, let L be the maximal linear subspace of L contained
in K (i.e. the union of all linear subspaces contained in K). We have
L ¢ K because K is closed. Since F is a locally convex vector group;
it follows that I is a vector subspace of F, the proof being the
same as for topological vector spaces. Thus L = L. Let ¢: F > F/L
be the canonical projection. The group F/L has a natural structure of
a nuclear vector group; it is metrizable and complete. Evidently, ¥(K)
is a closed subgroup of F/L containing no lines. It remains to be ob-
served that F/K 1is canonically topologically isomorphic to (F/L)/y(K).

Let U, DO U2 > ... be a fundamental sequence of neighbourhoods of

1
zero in F, consisting of symmetric convex sets. In view of (9.3) and

(2.14), we may assume that, for every n, the Minkowski functicnal



101

P, of U is a pre-Hilbert seminorm on M_ : = span Un with

n n
B(pn) = Un' We may also assume that
(1) > W v M) 51

k=1 k' "n+l’'"n n+l’ ~©

for every n. Denote Ln = span (K N Un) for n=1,2,...

For every n, let Fn be the family of all linear functionals f

on Ln+l satisfying the conditions

(2) f(K n Un+1) c z,

(3) &m{fN):xlEUnanﬂ}<m.

We shall prove that Fn is at most countable. Denote E = Ln+l and
let r,s be the restrictions to Ln+1 of P, and Poiyr respec-
tively. We have Br = Un n Ln+1 and BS = Un+l n Ln+l' From (1) and

{2.13) we obtain

Z 2
(4) k'fl dy (Bg,B.) < 1.

As usual, we have the canonical diagram

id
E > E
b lwr
v Asr
Eg ——> E,

We shall prove that the mapping h - hwr is a bijection of the set
2 = {(h * n c 2
= {heE_ : hy (KNU,)c 2}

onto Fn.

If h e @, then it follows immediately from our definitions that
hwr = Fn' So, take an arbitrary f € Fn. We have £f(u) =0 for all
u € ker wr; this follows easily from (3). Consequently, there is some
h e Ei with hwr = £f. From (3) we see that h is bounded and (2)
vields hwr(K n Un+1) < Z. Thus h € Q. Finally, if h1 # h2, then
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hlwr # hzmr because wr is surjective.

From (4) and (2.12) it follows that dk(l\s ) > 0 as k-«, which

r
means that Asr is a compact operator. Therefore Er is separable
* s
and, consequently, Er is a separable Hilbert space. It is obvious

*
that g 1is an additive subgroup of E;. Furthermore, & N int B(Er) =
{0}. 1Indeed, if h e g \ {0}, then h{u) # 0 for a certain u €

wr(K nu because E = span (K N Un+1). But h(u) € 2 and

n+1)
V(KN U 1) e (ENU) =B,

which implies that fhii 2 1. Being a discrete subgroup of a separable
space, Q 1is at most countable. Consequently, so is T

n’
Let B be the family of all sets of the form
Un,f = Un + {u e Lm+1 f(u) = 0}
where m,n =1,2,... and f € Fm. Observe that B 1is at most count-
able. It is evident that B satisfies conditions (a) - (¢) of (1.12).

So, there is a unique topology 1t on F such that FT is a topologic-

al group for which B 1is a base at zero. Notice that if U € B, then
cl & NO(FT) for each ¢ > 0. The original topology on F is finer

than +t1; we shall denote it by ¢. Thus we may write G = Fo/K'

We shall prove that FT is a metrizable nuclear vector group. To
prove that FT is separated, take any w € F \ {0}. We have to find
some U € NO(FT) with w ¢ U. Suppose first that w ¢ K. Since K is
a closed subgroup of the nuclear vector group FO, from (9.4) and (8.6)

it follows that there is some x € F; with XIK = 0 and x(w) #0.

By (1.4), there is an index n such that |x(Un)[ < %. Next, accord-
ing to (2.2), there is some f € Mﬁ with pf = Xp and
n
i
(5) sup {|£(u)| : u e u.t s 7.
We have £(K n Mn) c Z Dbecause XIK = 0. Therefore £ := fiLn+1 €T,
Since pf(w) = x{w) # 0, it follows that c : = |[£(w)}}| # 0. By (5),

for each v s Un’ we have

[f(w - ev)| 2 |£(w)] - ¢c[f(v)] 2 ¢ - %c = %c > 0,
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1

which means that w ¢ CUn + £ 7(0). Hence w ¢ cUn £ 0 either.
r

Now, suppose that w € K. Since w # 0 and K does not contain
any lines, there is some t € (0,1) with tw ¢ K. According to the
above, there is some radial U e NO(FT) with tw ¢ U. Hence w ¢ U,
either.

Being separated, FT is metrizable. Moreover, F is a locally

convex vector group because all sets U in B are symmetric and

n,f
convex. Take any m,n = 1,2,... and any f € Pm' Since F0 is a nu-
clear vector group, there is an index 1> n such that dk(Ul’Un) < k-l
for every k. Set N = {u e Lm+1 f(u) = 0}. According to (2.6) (a),

for every k, we have

dk(Ul,f’Un,f) = dk(Ul + N,Un + N) £ dk(Ul,Un-+N) + dl(N,Un-FN)

1

A

dk(Ul,Un) + dl(N,N) <k

because dl(N,N) = 0. This proves that FT is a nuclear vector group.
Our next goal is to show that the mapping ¢ : FT > FO/K is con-

tinuous. Take an arbitrary index n. We have to show that

(8) U, +Ke NO(F).

Let r and s be defined as before. From (4) and (3.18) we have

1

Lo4+1 ¢ = span (K n Un+1) = span (K N BS) C 5B, *+op (K n BS)
1
C 2Un + K.

1
Hence 2Un + Ln

1
50, + Lo+1 € No(Fr)'

+41 © Un + K, which proves (6) because, evidently,

The completion ﬁT of FT is a nuclear vector group due to (9.5).

Let ¢ : FT -+ G be the canonical extension of ¢.

Without loss of generality we may assume that = g; = 0; then
P =3$(xg;;6). sSince G = F_/K, we can find a null sequence (si);’=1
]
in FO with ¢(sj) = iflgi for 3 =1,2,... . Set u; = s, and
u; =85 - sy for i =2,3,... . Then
J
(7) > u, = s >0 in F
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and qb(ui) =9; for i=1,2,... . From (10.8) it follows that Q: =
s(Zui;f'T) is a closed linear subspace of the nuclear Fréchet space
(Fr)o‘

It remains to show that &(Q) = P. The inclusion 6(9) c P is
trivial. To prove the opposite one, choose any a € P. There is a per-

mutation w of positive integers such that the series Zgﬂ(i) con-
verges te a. Choose some w € F with ¢{(w) = a. We have
3 J
w - X . = - . > 0.
o i=1 uTT(l)) a i§1 gTT(l) Joo >
Conseguently, there is a sequence (zj)‘;=1 in K such that
]
z., + - - > w in F_.
b LA 2 A b o
Define vy = Zq and Vi =207 25 for i =2,3,... . Then vy € K
for every 1i, and
8 J i
(8) k2 [U‘ﬂ(i) + vi] Ioe > w in F_.
i=1
o« (o]
From (7) and (8) it follows that (ujljoq ad (up 3y + vilimp are

)co

null segquences in FO. Hence (v i=1

i is a null sequence in Fo’ too.

We shall prove that the series Zvi satisfies Cauchy s criterion
in F_. Take any m,n = 1,2,... and any f € e There is an index

such that v, € Um for 1 > iqi then viELm+l because vy = K.

J1 +1
Consequently, we have f(vi) € Z for i> jl’ Since f e rm and
vy ? 0 in Fo' replacing n by m in (3), we see that f(vi) > 0.

Hence there is an index j2 > j1 such that f(vi) =0 for i > j2.

J
This means that = v € Un

= for each j > j2.
i=j,

, £

Since FT is complete, the series Zvi converges in f‘T to a
certain point y. Let K be the closure of K in ';“T; then vy € K

because all vy were in K. Consequently,

o(y) € ¢(K) < §(K) = ¢(K) = {0} = {0}.

From (8) we infer that the series ZuTT converges to w-y in f‘T.

(1)
Thus w - y € Q. Finally,
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$(w - y) = plw) - ¢(y) = ¢(w) - 0 = a,

which proves that P c J)(Q). L]

(10.10) EXAMPLE. Let % : R2 - T2 be the canonical projection. Take
some u = (X,y) € R2 with vy/x irrational and denote L = span {u}.
(-1)*

Next, set u; = u and g; = w(ui) for every i. It is not hard

i
to see that 5(Zui;R2) =1L and P : =5(Zgi;T2) = y(L)., Thus P is
a dense, but non-closed subgroup of T2. Notice that (= gi) =
A(zgy) = T2

(10.11) REHARKS. Let Zui be a convergent series in a real topo-

logical vector space E. Let us denote
'(XZu,) = {f e E*¥ : = |f(u,)]| < =}.
i i=1 i

Then the set

I‘O(Zui) = {uekE<: f(u) =0 for all f e I‘(Zui)}

is a closed linear subspace of E.

The Lévy-Steinitz theorem is often formulated in the following,

somewhat stronger version: for each convergent series Z:u:.L in Rn,
one has
(1) $(Zuy) = Zuy + Ty(Zuyg).

This result was obtained by E. Steinitz [87]; it is sometimes called
the Steinitz theorem. However, in the literature there is no conse-
quence, and the expressions "Steinitz theorem" and "Lévy-Steinitz the-
orem" are used exchangeably. It was proved in [10] that (1) holds for
each convergent series Zui in a metrizable nuclear space. Example
(10.10) shows that there is no reasonable way of extending this result
to series in nuclear groups.

It has been proved in [14] that if a metrizable locally convex
space is not nuclear, then it contains a convergent series Zui such
that A(Zui) is not a linear subspace. Then (1) does not hold, for,
in view of (10.4) and the obvious inclusion A( Zui) = I‘O( Zui), we

have

S(Zui) c t(Zui) = Zui + A(Zui) < Zuy o+ TO(Zui).
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It is not known whether the following sentence is true: if a metrizable
locally convex space is not nuclear, then it contains a convergent se-
ries EIui such that s(E:ui) is not a linear manifold.

(10.12) REMARKS. In infinite dimensional Banach spaces, the Lévy-
-Steinitz theorem fails to hold (Problem 106 from the Scottish Book; see
[81], p. 188). The sclution of this problem has an interesting history;
see [34] or [43], pp. 44-45. V.M. Kadets [45] proved that every infinite
dimensional Banach space contains a convergent series with a non-~convex
set of sums. See also [46], especially Theorem 10.

Some years ago M.I. Kadets found an interesting example of a series
in a Hilbert space, making the conjecture that the set of sums of this
series consists of exactly two points. The conjecture was proved inde-
pendently by K. WoZniakowski and P.A. Kornilov; see [44). Making use of
this example and applying a standard technique, one can construct a se-
ries with n-point set of sums in every infinite dimensional normed
space; see [46], Theorem 10. Another example cf a series with two-point
set of sums was obtained by P. Enflo.

(10.13) REMARK. There are several analogous of the Lévy-Steinitz
theorem which are valid in infinite dimensional Banach spaces. They as-

sert that if E:ui is a convergent series in a Banach space E, then

condition (1) of (10.11) is satisfied under various additional assump-

tions on E and E:ui. A typical example is the situation when E is

a Hilbert space and §:nuiu2 < o, The best source of information here

is [46], pp. 158-159.

(0,1)

(10.14) REMARK. Let R be the space of all real-valued func-

tions on the unit interval, endowed with the topology of pointwise
convergence (i.e. the product of continuum real lines). The example of

M.I. Kadets mentioned in (10.12) allows one to construct a series in

R(O'l) with two-point set of sums (see [43], Theorem 6.4.3, p. 172).

(0,1)

Applying (10.9), we see that the product T of continuum circles

contains a convergent series such that its set of sums consists of ex-
actly two points and is not a coset moduloc any subgroup of T(O’l) (cf.

(10.2)).

(10.15) REMARK. From the results of this section it follows easily
that if (gi) is an arbitrary null sequence in a metrizable and complete

nuclear group, then there exist a permutation 7 of indices and a se-
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quence of signs €. = #1 such that the series E:eig is converg-

i n{i)
ent. On the other hand, it can be shown that if a metrizable locally
convex space (and probably even a locally quasi-convex group) 1is not
nuclear, then it contains a null sequence (ui) such that the series

E:aiuw(i) is divergent for each permutation = and each seguence

E, = %],
i 1

{10.16) RENARK. Let be a system of elements of an abe-

(93)er

lian topological group G. We say that satisfies the Cauchy

(9;)ie1
criterion of unconditional convergence if to each U e NO(G) there

corresponds a finite subset J of I such that = g; € U for each
iek
subset K of I\J. Next, we say that the system (gi)ieI is absolu-
tely summable if = (gi/U) < » for each U & NO(G). It turns out
ier

that if a system of elements of a nuclear group satisfies the Cauchy
criterion of unconditional convergence, then it is absolutely summable.
Hence, every unconditionly convergent series in a complete nuclear
group is absolutely convergent. The proof will be given in a separate
paper.

{10.17) BMARK. By the weak topology on an abelian topological
group G we mean the topology induced by the family of all continuous
characters of G. If G 1is a locally convex space, this topology is
much weaker than the weak topology induced by the family of all con-
tinuous linear functionals, but defines the same class of convergent
sequences (it is enough to consider the case G = R).

A series E:gi in G 1is said to be subseries convergent if the

series EZEigi is convergent for each sequence g, = 0,1. The Orlicz-

-Pettis theorem says that if a series in a locally convex space is sub-
series convergent in the weak topology, then it is subseries convergent
in the original topology, too. The same is true for series in a sepa-
ble locally quasi-convex group; this follows directly from Theorem 7
of [48]. Hence, in view of (8.6), the Orlicz-Pettis theorem remains
valid for series in arbitrary nuclear groups.

It seems very likely that every weakly convergent segqguence in a
nuclear group is convergent in the original tcpology.

(10.18) REMARKS. Let & : E> F be a linear operator acting be-
tween normed spaces. By B{(¢) we shall denote the smallest number
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r > 0 with the following property:

to each finite system Uprees Uy € BE there corresponds signs

= <
Eqree-r€p +1 such that H@(slul + ... + snun)n £ r.

We say that ¢ 1is a balancing operator if g(¢) < =.

The proof of (10.7) is based on (7.13). Lemma (7.13) also occurs
in the proof of (10.5). It is not hard to see that (7.13) says, in
fact, that Hilbert-schmidt operators are balancing. More precisely, if

¢ acts between unitary spaces, then B(¢) = [ = di(@)]l/z; the proof
k=1
very similar to that of (7.13), is given in [13]. On the other hand,

it can be shown that if ¢ is an arbitrary operator acting between

1/2

normed spaces, then g(®) 2 C sup k vk(¢) where C 1is a universal
k

constant (the numbers vk(®) were defined in section 6). It is a stan-
dard fact that every finite dimensional operator ¢ is balancing,
with B(%) £ 21%ll rank &. The Beck-Fiala theorem [20] implies that
g(id : ll > 1%y £ 2. Beck and Spencer [21] proved that the diagonal

operator ¢ : 1° - 1° given by e, = k_l/z(log k)_lek is balancing.

Spencer [86] showed that the factor (log k) 1 can be omitted. It is
an open problem whether the canonical embedding of 12 into 1° is
balancing (this is called the Komlos conjecture).

By ¢(®) we denote the smallest number r > 0 with the following
property:

to each finite system Upsewe,u, € BE with up ... b = 0
there corresponds a permutation =w of indices, such that
j .
”izh Qun(i)" £ r (j = 1,...,n).

We say that ¢ is a Steinitz operator if ¢(d) < =.

Every finite dimensional operator ¢ is a Steinitz operator with
¢(®) £ ¢l rank ¢ (see [341, [32] and [10], Remark 3). Barany [16]

k
proved that the diagonal operator ¢ : 17 517 given by ¢ek =2 3 ex

is a Steinitz operator with ¢(®) < 1. Lemma (10.5) says that if ¢

acts between unitary spaces, then ¢(¢) = X dk(Q). It is not hard
k=1

to see that B(®) £ 2¢(®) for every ©¢.
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By o(®) we denote the smallest number r > 0 with the following
property:

to each finite sequence Ug,eee,u € B there corresponds a se-

n E
quence of signs Epreeer€y = +1 such that
] ( 1 )
I3 e.du.li £r i =1,...,n).
i=1 *+

We say that ¢ is a strongly balancing operator if o(d) < =.

Every finite dimensional operator ¢ is strongly balancing with
c(®) £ 2ol rank & (see [17]; in fact, o(®) £ Khoh(2 rank ¢ - 1)). J.

Beck [19] proved that the diagonal operator e : 17 » 17 given by

- k- (2+e) log k e,

de is strongly balancing for each fixed ¢ > 0. It

k
seems likely that the exponent (2 + ¢) log k can be replaced here by
some positive constant independent of k. The existence of such a con-
stant would imply that, for each null sequence (ui) in a nuclear Fré-
chet space, one can choose signs gy = +1 such that the series Zsiui

is convergent (for countable products of real lines this fact was proved
by Katznelson and McGehee [51]). What is more, a nuclear Fréchet space

could be replaced here by a metrizable and complete nuclear group. on
the other hand, if a metrizable locally convex space 1is not nuclear,
then it contains a null sequence (ui) such that the series Ezeiu. is

divergent for each sequence g4 = +1 (cf. (10.15)). *

By definition, one has Bg(¢) £ o(9). Pecherskif [74], Lemma 1,
proved that, up to the notation, ¢(¢) < 30(®). A very short and simple
proof of the inequality ¢(®) £ o(®) was found by S. Chobanyan (un-
published). Thus every strongly balancing operator is a Steinitz opera-
tor.

(10.19) ROTE. The results of this section are new. The method of
the proof of (10.8) is taken from [10]. The argument applied to obtain
(10.8) from (10.5) through (10.6) and (10.7) is standard. In various
forms, it occurs in several papers on infinite dimensional generaliza-
tions of the Lévy-Steinitz theorem; see (10.13). Ite main idea goes back
to Steinitz [87]. Lemma (10.7) is a straightforward consequence of the
results of [20] or [21]; <cf. [10], Remark 2.



Chapter 4

THE BOCHNER THEOREM

In this chapter we show that nuclear groups satisfy Bochner s the-
orem on positive-definite functions. Section 11 wears an introductory
complexion. We introduce here some new terminology and state several
standard results in a form convenient to us. Section 12 contains the
proof of the main result. Finally, in section 13 we give some applica-
tions. We formulate here an appropriate version of the SNAG theorem for
nuclear groups and prove that each continucus positive-definite function
{resp. continuous unitary representation) defined on a subgroup of a
nuclear group can be extended to the whole group.

11. Preliminaries

Bochner s classical theorem asserts that each continuous positive-
~definite function on the real line is the Fourier transform of some
Radon measure. Many far-reaching generalizations of this fact are known.
Roughly speaking, they say that, under certain assumptions on a topolo-
gical group G, each continuous positive-definite function on G may
be written as an integral of some measure on the dual object G (cf.
[63], Ch. VI, §9).

We confine ourselves to abelian groups only. By a Bochner theorem
for an abelian group G we shall mean a statement of the following form:

(*) each continuous positive-definite function on G 1is the ‘Fou-

rier transform of a (unique) Radon measure on G .
There are at least three situations where (*) is known to be true:

{i) the weil-Raikov theorem asserts that {*) holds for any LCA
group G;

(ii) the fact that (*) is true for every nuclear locally convex
space G is known as the Minlos theorem (see [67]), Theorem 1, p. 508
or [63], Ch. IV, Theorem 4.3, p. 318); it follows easily from the Minlos
theorem that (*) is true when G is a Hausdorff quotient group of a
nuclear locally convex space (see Yang [104]);

(iii) each locally convex space G over p-adic field satisfies
(*); this was proved by Madrecki [62].
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We do not specify here the topology on G . The Weil-Raikov the-
orem is usually formulated for the compact-open topology, whereas the
Minlos theorem in the language of vector spaces, the topology on the
dual space Il being the topology of uniform convergence on finite,
bounded or, say, compact convex subsets of G (there is a canonical
isomorphism between ¢* and GA; see (2.3)). The result of (iii) was
proved for the weak” topology on el

We shall prove that (*) holds for every nuclear group G {The-
orem (12.1)); this is a common generalization of (i) - (iii).

The Bochner theorm in the form of (*) characterizes nuclear spaces
among metrizable locally convex spaces ([70], Theorem 5, p. 75). On the
other hand, there is version of the Bochner theorem which is valid in
any locally convex space ([30], Theorem 1, p. 348). Thus, each contin-
uous positive-definite function on a locally convex space can be in
some way synthesized of continuous characters. The situation becomes
completely different when we start to consider quotient groups. In
section 5 we gave an example of a discrete subgroup K of the space
lp, P > 2, such that the gquotient group 1P/x admits non-trivial
continuous unitary representations but does not admit any non-trivial
continuous characters. Thus, there are on 1P/K continuous positive-
-definite functions which cannot be synthesized of continuous charac-
ters (since the latter do not exist); therefore one cannot speak of any
version of Bochner s theorem in this case. It is quite possible that
similar examples can be constructed in any non-nuclear locally convex
metrizable space.

Let G be an abelian topological group. We say that T is an
admissible topology on G if the mappings G; 3 x » x(g), geG, are

continuous and the sets Ug,
(1.5) it follows that the topologies of pointwise, compact and precom-
pact convergence are all admissible.

U e NO(G), are compact in G;. From

Let X be a topological space. The family of Borel subsets of X
is denoted by B(X). By a Borel measure on X we mean a o-additive
mapping of B(X) into {[0,«]. A finite Borel measure p on X is
called a Radon measure if, for each A € B(X) and each & > 0, there
exists a compact subset Q of A with (A \ Q) < ¢.

Let X,Y be two topological spaces, m : X » Y a Borel mapping
and u a Borel measure on X. Then the mapping B(Y) 3 A » u(r-1(a))
is a Borel measure on Y. We call it the m-image of u and denote by
u_. If £ is a un—integrable function on Y, then f1 is a p-inte-

kil
grable function on X and

S fndy = s fduﬂ.
X Y
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Let G be an abelian topological group and let 1t be a topology
on G such that all the mappings G:Bjx->x(gL g€ G, are continuous.

By the Fourier transform of a finite Borel measure | on GT we mean

the function

G = g = S _ exp [2wix(g)]du(x).
GT
The Fourier transform of u 1is denoted by i; it is sometimes called
the inverse Fourier-Stieltjes transform of u. A Borel measure u on
GT will be called regular if, for each A € B(G;) and each € >0,

there exists a compact equicontinuous subset ©Q of A with uwA\Q)< e.

(11.1) PROPOSITION. Let G Dbe an abelian topological group and let
T be a topology on G such that the mappings GT 3 x » x(g), ge€G6G,

are continuous. If u is a finite Borel measure on GT, then ﬂ is
a p.d. function on G with ﬂ(O) = p(G;). If u is regular, ﬂ is
continuous.

Proof. The fact that ﬂ is a p.d4. function 1is well known (see
e.g. [38], (33.1)). sSo, assume that u is regular and take any ¢ > 0.
There is an equicontinuous subset @ of G; with u(\Q) < =. Next,
we can find some U e NO(G) such that |x{U)| < & for all x e Q. Then,

for each g € U, we have

[ (1 - exp [2wix(9)])du() |

G

S |1 - exp [2mixt))jdu(x) s & _ 2mw|x(g)|duix)
G G

[n(g) - 1(0)|

IA

=21 S |x(g@)|du(x) + 2r & |x{g)|du(x)
Q \Q

2mep(Q) + mu(\Q) < [2u(G ) + 1) me.

A

Thus up 1is continuous at zero and the continuity at the remaining
points follows from (1.22) (c). =

(11.Z) PROPOSITION. Let ¢ : G - H be a continuous homomorphism of
abelian topological groups. Suppose that the dual groups G and H

are endowed with some topologies such that the mappings G 3 x - x(9),
ge G, and H » «x » k(h), h € H, are continuous. Suppose also that

the dual homomorphism ¢ = ¢ﬂ : H > G is continuous. If u is a

finite Borel measure on HA, then uw = ﬂ¢.
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Proof. For each g € G, one has

Hylg) = S exp [2mi<x,g>] du,(x) = S expl2mi<y(x),g>]dulx)

G H
= s exp[2mi<k,¢(g)>]du(x) = u(e(g)). =
H

(11.3) PROPGSITICN. Let G be an abelian topological group and let
T be a topology on G such that the mappings G; 3 x » xlg), gegG,
are continuous. If yu,,u, are two Radon measures on G; with ﬂ1= ﬂz,
then y;, = u,.

Proof. Let Gd denote the group G endowed with the discrete

topology. The identity homomorphism G - (G is continuous.

d)c

¢
Let v be the ¢-image of u i=1,2. Then Vi is a Radon measure
Vi

i i’

on (Gd); and (11.2) implies that = ﬁi' Thus v, = v,. From the

uniqueness of the measure in the Weil-~Raikov theorem it now follows that
v, = v,. If @Q is a compact subset of GT, then ¢(Q) is a compact,

hence Borel, subset of (Gd);' and p;(Q) = pa (67 (0(Q))) = v; (6(Q))

for i =1,2,. Hence u,{(Q) = u,(Q). This completes the proof because
Hi,H, are both Radon measures. L]

(11_4) moTE. The material of this section is standard.

12. The Bochner theorem

The aim of this section is to prove the following fact:

(12.1) rEmoREM. Let G be a nuclear group and T an admissible
topology on G . Then the mapping u - ﬂ establishes a one-to-one
correspondence between the family of all regular finite Borel measures
on G; and the family of all continuous p.d. functions on G.

Let E Dbe a nuclear space and E* the dual space endowed with
the topology of uniform convergence on finite, compact or precompact
sets. It is not difficult to see that the topology induced on E by

*
P ¢ E
(12.1) implies the Minlos theorem.

the canonical homomorphism > E is an admissible one. Thus

The proof given below is patterned upon that of the Minlos theorem.
The main difference lies in replacing the Minlos lemma ([67], Lemma 4,
p. 510) by its analogue for p.d. functions on additive subgroups of ]RP
(lemma (12.2) below). To obtain (12.1) from (12.2) is a matter of tech-
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nigque; we have found it most convenient to aply here the Prokhorov
theorem on inverse limits of measures, in the form due to Kisynski
{54].

(12.2) LFEMKA_ Let N be an n-dimensional vector space, n 2 1, and
let p,qg Dbe two pre-Hilbert seminorms on N such that
n

= 4
k=1

1/2 1
k (Bp.Bq) <75

Let K be a subgroup of N and u a Borel measure on Ké with u(K-)
= 1. Suppose that there is some ¢ > 0 such that Re ﬂ(u) 21-¢g for

o
all uekn Bq' Then w((K N Bp)K) 2 1 - 2¢,

Proof. Suppose first that both p and g are norms. In this

n

case, we may simply assume that N = R and g 1is the euclidean norm

on N. Then Bq = Bn and Bp is some ellipsoid in Rn; let gn,u.,

En be its principal semiaxes. Obviously, we have
n n
(1) = £/2= = a2 ,B) < k.
k=1 k=1 pq
We begin with the case when K 1is discrete. Let L = gp (Kr1Bp)
and let 7 : K_ > L. be the natural homomorphism. Denote v=yu_. Ac-

P P i

cording to (11.2), we have v o= ﬁlL. We shall prove that
o
(2) vi(L n Bp)L) 21 - 2¢.

Let M=span L and m=dim M. If L = {0}, then

v((L n B v(0) = u(0) 21 -~ ¢ > 1 - 2¢,

p)T) = V({0ID) = (L)

So, suppose that m 2 1. Let NpreeesMy be the principal semiaxes of

the ellipsdid D = M n Bp. From (1) and (2.13) it follows that

m
1/2 1

(3) = 7 < =
k=1 k 12

n

We may assume that M = R and

m
- m o 2
D= {(xl,...,xm) € R : le(xk/nk) s 1}).

= ni/4 for k=1,...,m and denote

Set ck
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m
- m . 2
E = {(xl,...,xm) € R : kia (xk/ck) $1}.

We have L = gp (L n D) and, by (3),

M3
A

m 2 m 2
= dp(D,E) = X (n /gy )" = 4.

2 1
ne < s
k=1 k=1 x=1 & 12

According to (3.17), we can find a rectangular parallelotope P c E

such that {u+P}ueL is a disjoint covering of R". Set a, =
ni/4 for k=1,...,m and denote

A= {(xl,...,xm) e rR" —a, < xp < a for k=1,...,m}.

From (3) we get ai + ... + ai < 1/12, which implies that A CB

q
Therefore, for each u € L N A, we have Re Q(u) = Re u{u) z 1 - ¢,
i.e.
(4) Re S exp [2mik(u)]dv(x) 21 - e.
L
let us write |W| = card (L N W) for W c M. Consider the function
L 3k » f(x) = 1 > Re exp [2wik(u)]

|A] ueLna
and denote X = {x € | fik) 2 %}. From (4) we obtain

S f(x)dv(k) 21 - ¢,
L

whence v(X) 2 1 - 2¢ because f $ 1. Thus, to prove (2), it remains
o]
to show that X < (L n BP)L.

To this end, take any «x € X and w = (wl,...,wm) € L N D. We ae
to show that

(5) l(w)| s 3.
Since P c E, and the sets u + P, u € L, are pairwise disjoint, we
have

[Aa} vol (P} =vol ( U (u+ P)) s vol (A + E).
m ™ ueLna m

It is clear that
m
A+ EC {(xl,...,xm) € R : -8y - gk < Xy < ay + Tk

for k=1,...,m},
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whence

m b
(6) |a] vol (P) £ 27 = (a + g,.).

m . k

k=1
Let Aw =w+ A and B =ADN Aw. The set U =M\ ((M \ B) + E) is
an m-dimensional rectangular parallelotope with edges equal resp. to
Zak - 2ck - |wk|, k=1,...,m. Since P c E, and {u + P}UEL is a
covering of Rm, it follows that U c U (u + P). Hence
ueL.NB
m

(7) IBl vol (P) 2 vol (U) = le(Zak - 2gy - fwy 1) -

Let V be the symmetric difference of A and Aw' i.e.
vV = (AN Aw) U (Aw \A) = (A\ B) U (Aw \ B).

Let us write

1 3 exp [2ﬂiK(u)],'t.=_l_ = exp [2mik{u)],.

S =
jal uelna A} ueLna

Then s = t exp [2mik(w)]. On the other hand,

Is - ¢} 2 L = | exp [2mix{u)]] = lzl.

[A] wernnv T |l
It 1is clear - that |v| = 2(|a} - |B|), whence, by (6) and (7),
m
> (2a, - 2 - |w, )
|B] L. |
[s - t] < 2[1 - ] < 2[1 - ].
121 2m ;2 (a, + z.)
a 4
k=1 * K
Hence, applying the standard inequalities
1 - x - m m
=~ X" ¥ 51 - 2% - y and I (1 - Xk) 21 - = Xy,
1+ x k=1 k=1
we obtain
m m
|s = t] £ 4= (¢, /a,) + 2= (lw.}/a,).
k=1 KR Ty kUK
o 2
Since w € D, we have X (wk/nk) <1, and thus, lwkl < ny for
k=1

k=1,...,m. Therefore, by (1),
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m m m
s-tls4 =242 = o s6 = nl/2 1
k=1 k=1 =1
On the other hand, we have
|s = t] = |t exp [2mik(w)] - t} = |t] + |1 - exp [2mik(w)]].

But «x € X, therefore Re t = f(x) 2 1/2 and |t} 2 1/2. Hence we
obtain (5) and, in consequence, (2). It is clear that n_l((LIWBp)E) =

(KN Bp)i. Then, by (2), we get
p((K n Bp); = uw(v" L@ n Bp)i) = v((L n Bp)g) 21 - 2e.

This completes the proof in the case when K is discrete.

Now, let K Dbe an arbitrary subgroup of N. We may clearly assume
K to be closed. Then K is the direct sum of some discrete subgroup
and some linear subspace (see (3.1)) and, therefore, we can find an in-
creasing sequence (Km) of discrete subgroups of K such that their

union is dense in K. For every m, let T * KA->K% be the natural

homomorphism and let By = W From {11.2) we get

. L= Uip -
m L
as we have just proved, the lemma is true for discrete subgroups, it

follows that um((Km n Bp)o) 2 1 - 2¢ for every m. The subgroups Km

may be chosen in such a way that the condition

. Since,

- -1 o o)
Cl ﬂm ((Km n Bp) ) ¢ (K n Bp)
m=1
be satisfied. Then

O
p((K n Bp) )

[\
h =4
3
s
=
=
o)
o]
o

. -1 s o)
éiz ulm "N Bp) )) = iiz M (K 0 Bp) )

2 1 - 2¢e.

This completes the proof in the case when p and g are norms.

Finally, consider the case when p and ¢ are arbitrary pre-~
-Hilbert seminorms on N. Then, clearly, one can find two decreasing
seguences (pm) and (qm) of unitary norms on N such that

n

=
k=1

1/2 1
X (B ,B_ ) < ==

1

[\
3
]
=
~
]
-
—
-
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-4}

B c B for every m and B_c U B Applying our lemma to the

N d p m=1 pm
norms P and 9, we get u((K n Bp 1%y 21 - 2¢ for every m.
m
Hence
o) - ) : o)
p(KAB))zu(Nm(KNnB_))=1limu({(KNB_)"})21-2e. =
p m=1 P m-a>e Pry

(12.3) PROPOSTYION. Let (Q,c) be a directed set. For each Ke4§,

let XK be a Hausdorff topological space and let Uy be a Radon
measure on XK with uK(Xk) = 1. Suppose that, for each pair (K,L) €
92 with K c L, a continuous mapping KL of XL into XK is given,
such that
(1) L 1de for each K € @,
(2) TRLTIM T kM
for each triple (K,L,M) € 93 with K c L ©€ M, and
(3) b (A) = u (12 (a))
K L' KL
2

for each pair (K,L) € @ such that K ¢ L and for each A e B(XK).

Suppose further that X is a Hausdorff topological space, and that,

for each K € @, a continuous mapping 1% of X onto XK is given,
such that
. 2 -
(4) if (X,L) € @ and K c L, then Tx = TgpLe
Finally, suppose that, for any two distinct points X,y € X, there

exists some K € @ such that nK(x) # nK(y). Then the following two
statements are equivalent:

(i)} there is a unigue Radon measure u on X with u(X) =1 such
that wg(A) = u(mgl(A)) for each K € @ and each & & B(X);

(ii) for each ¢ > 0, there is a compact subset Q of X such
that uK(xK \ nK(Q)) £ ¢ for each K € Q.

This is Theorem 3.2 of [54].

(12.4) 12oA. Let H be a subgroup of a nuclear vector group and
¢ a continucus p.d. function on H. Then there exists a finite regu-
lar Borel measure p on H; with ﬂ = ¢.
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Proof. Suppose first that ¢(0) = 1. Let K be a finitely gene-
rated subgroup of H. Then there exists on K; a unique Radon measure

Mg with QK = ¢|K‘ Indeed, the closure K of K in span K, being

a closed subgroup of a finite dimensional vector group, is locally com-
pact. Hence, by the Weil-Raikov theorem, there is a Radon measure v on

jolel
dently, each compact subset of K is contained in the closure of some

(E); with v = ¢|E' We may identify (K); with K because, evi-

precompact subset of K. Therefore we may treat v as a measure on

Kpc and write v = ¢|K' The restriction of v to Borel subsets

u
K
of K; is then a Radon measure on K; with ﬂK = ¢|K' The unigueness
of Mg is a consequence of (11.3). From (1l1.1) we get uK(KA) = ¢(0)=
= 1.

Let & Dbe the directed family of all finitely generated subgroups

of H. For each K e @, put X, = K_. For each pair (K,L) € 92 such

K P
that K < L, let T, Lp > Kp be the natural homomorphism. Put
X = H; and, for each K € @, let L H; > K; be the natural homo-
morphism.

In the situation we have just described, the assumptions of (12.3)

are satisfied. The continuity of the homomorphisms = and T is

KL

obvious and their surjectivity follows from (8.3). Coiditions (1), (2)
and (4) of (12.3) are satisfied trivially, as well as the fact that,
for any two distinct XprXy € HA, there is some K € @ with nK(x1)=
"K(X2)' Condition (3) is a consequence of (11.2). We shall prove that
(ii) is satisfied.

Fix an € > 0. Let F denote the nuclear vector group contain-
ing H. Since ® is 'continuous and ¢(0) =1, there is some
U e NO(F) such that

(1) Re ¢(h) 21 - £ for heHnNU.

(S]]

Next, there are a linear subspace N of F and three pre-Hilbert
seminorms p,q,r on N, such that Br c U,

<«

i
(2) 5 kfﬁ kdk(Bp.Bq) s 3

o 1/2 1
(3) k§1 4 (BB < T3

and Bp € NO(F) (see (9.3), (2.14) and (2.15)). Then'w:==Hf1Bp ENO(H),
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and Wg is a compact subset of H; (see (1.5)).

Take any K € Q; we are to show that

(4) g (K \ me (WE))

I
[y}
.

Denote L =K O N and M = span L. Let s and t be the restric-
tions to M of g and r, respectively. Then s,t are pre-Hilbert
seminorms on M and, by (2.13), we have

dk(Bs’Bt) pS dk(Bq’Br) (k =1,2,...).

Hence, by (3),

©

=
k=1

1/2

1
X .

(BS'Bt) < iz

From (1) and (12.2) it now follows that

)9y 21 - e,

UL((L N Bs L

which may be written as

-1 o) _
(5) U (T (LN Bq)L)) 21 - ¢,
Since K N Bq =L N Bq, we have
-1 o o
(6) nLK((L n Bq)L) c (KN Bq)K'

From (2), (8.1) and (2.3) it follows that
o o)
(7) (KN Bq)K c ﬂK(WH).

Finally, from (5) - (7) we obtain (4) because uK(K‘) = $(0) = 1.

We have proved that condition (ii) of (12.3) is satisfied. So, ac-
cording to (12.3), there is a Radon measure u on Hp with u(Hp)= 1
such that uK(A) = u(wK
each K € @, the measure

(A)) for each K € @ and each A€ B(K;). For

My is the nK—image of yu. Hence, by (11.2),

we have ﬂlK = ﬂK = ¢]K‘ Thus u = ¢. It remains to show that u is

a regular measure.
As we have just seen, to each n there corresponds some Wne Nouﬂ

for all K € Q. The set Q. = we  is

such that uK(Kh \ WK(Wg)) < n n

B
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equicontinuous and, by (1.5), compact in H;. The family of sets of the
-1, - s -

form ) (Kp \ WK(Qn)) where K € @ forms an open covering of Hp \ Qn'

Hence, for each compact Y C Hp \ Qn’ we can find some K € @ such that

¥ mglk” 1(9)). Then
-1, -~ _ - 1
(YY) s plu (KN me(Q ))) = Mg(K N 1 (Q ) = 4.

This implies that u(H‘ \ Qn) < since up 1is a Radon measure. Thus

is regular.

3=

It remains to consider the case ¢(0) # 1. If ¢(0) # 0, then it
suffices to consider the p.d. function ¢/¢(0) instead of ¢. On the
other hand, if ¢(0) = 0, then, by (1.22) (b), we have ¢ = 0 and ¢
is the transform of the zero measure. =

Proof of (12.1). Due to (11.1), if U is a regular finite Borel
measure on G;, then ﬂ is a continuous p.d. function on G. From
(11.3) it follows that the mapping u - ﬂ is injective. We shall prove
that it is surjective, as well.

So, take any continuous p.d. function ¢ on G. By (9.6) there
exist a nuclear vector group F, a subgroup H of F and a closed
subgroup K of H, such that G -~ H/K. We may simply assume that G =
H/K. Let ¢ : H » H/K be the natural projection. Then ¢y is a con~-
tinuous p.d. function on H and, due to (12.4), there exists a regular

finite Borel measure Vv on H; with v = ov. Let 7 : H - K; be the

natural homomorphism. By (11.2), we have Vo = GIK = ¢¢IK $(0). In view

of (11.3), this means that Vo is the Dirac measure. Then V(K°) =

(o}

v(ﬂ_l(O)) = v ({0}) = ¢(0), i.e. v is concentrated on K . We may

treat v as afinite regular Borel measure on Kg.
The natural homomorphism o : Kg - (H/K); is continuous (in fact,

it is a topological isomorphism; however, the mapping o - (H/K);

o)
: Kpc
need not be continuous; consider e.g. the canonical mapping Lgc *(D/L);
in (17.6)). Set X = Ve Then X 1is a finite regular Borel measure on

Gp. For each h € H, one has

x(¥(h))

J . x((h))da(x) = S o «th)dv(k) = S . k{h)dv(x)

G K H
p P P

v(h) = ¢(¥(h)),

n

which proves that A= ¢ .
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Since v 1is regular and \)(H;}) = ¢(0), there is a segquence Un =
NO(H) with \)(Ug) > ¢{(0). The sets Qn = (w(Un))o are equicontinuous
and compact in G:. Moreover,

_ o, _ o o _ o Oy . o
K(Qn) = A(w(Un) ) = >\(0(Un nK)) = \)(Un n K") \J(Un) > ¢(0)

1}

>\(Gp),

i.e. X(G; \ Q) > 0. Let X be the completicn of X. Take any closed

subset Y of G;. The sets YﬂQn, n=1,2,..., are compact in G;,

Lo

thus in Gp. Hence U (¥ n Qn) € B(G;). On the other hand,
n=1

@ [<3]

AY A\ nL=Jl (¥ n Qn)) S Mngl (Gp \ Qn)) = 0.
This implies that Y is X-measurable. Hence all Borel subsets of G; ‘are
A~-measurable.

A Let M be the restriction of X to B (G;). It is clear that {1=
A. Hence u = ¢. It remains to prove that u 1is regular. So, take any
A€ B(G;) and ¢ > 0. Since A is A-measurable, there are some B,N e
B(GI;) with M(N) =0 and B \ Nc A c B U N. Next, since X 1is reg-
ular, there exists a compact equicontinuous subset Q@ of B \ N with
MB\NNN\NQ) < g. Take n so large that A(G;> \ Qn) < £¢. The set Q

is closed in G;, thus in G;. Therefore Q n Qn is compact in G_[

Finally, we have
MA N (@n Qn)) = XxB \ (Qn Qn)) S AMB N Q) + A(B\ Qn)

< g +¢e. =

(12.5) THEROREN. Let G be a nuclear group and T an admissible

° itier
on GT, with pi(G ) =1 for every 1i. Then the family

topology on G . Let {u be a family of regular Borel measures

{Hydiep ©of

p.d. functions on G is equicontinuous at zero if and only if to each

€ > 0 there corresponds a compact eguicontinuous subset Q of G
such that ui(G— \ Q) £ ¢ for all i e I.

T

Proof. The sufficiency of the condition follows immediately from
the proof of (11.1). We shall prove the necessity. It is not hard to see
that, without loss of generality, we may assume that 1 1is the topology
of pointwise convergence. Next, due to (9.6), we may assume that G =H/K
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where H 1s a subgroup of some nuclear vector group F, and K 1is a
closed subgroup of H. Suppose first that K = {0}.

Choose any ¢ > 0. We can find some U € NO(F) such that

1%
[y
]

(1) Re ﬂi(u) for all ue U and i e I.

M

According to (9.3) and (2.14), we can find some linear subspace N of
F and two pre-Hilbert seminorms p,qg on N, such that Bp e NO(F),

©

(2) = d
k=1

1/2 1
X (Bp,Bq) <713

and Bq c U. Take any i € I and any compact Xc H;\ (HNB Since

o

p)H'

M is a regular measure, it is enough to show that u.(X) £ .
i

i
Let Q@ be the family of all finitely generated subgroups of H.

: H - L; be the natural homomorphism. It

For each L € @, let T,
P

is clear that

-1 o
(HnB)S=n =L nB),
P'H Leq L p'L
whence

BN @mne)% = u =17\ (LB
P’'H Leq L P’L

Since X is compact, it follows that there is some L € @ with X c

-~l..- o .
T [L N (L n Bp)L]' Let 1 be the w_-image of Uy From (11.2)

L

we get My = ﬁL. Hence, by (1), (2), (12.2) and (2.13), we obtain

uy(X) 8 ugLnpt(n” \ By)P] = wy (L7 \ (LN BD) s e.

It remains to consider the case when K # {0}. Let ¢ : H » H/K

be the canonical projection and ¢ : (H/K); -> H; the dual homomorphism.

For every 1i, let Vi be the ¢-image of yu then vi_=ﬂiw accord-

i;
ing to (11.2). Since the family {Qi} = {ﬂiw) of p.d. functions on H
is equicontinuous at zero, the above implies that to each £ > 0 there

corresponds a compact equicontinuous subset Q of I-&; with \)i(HA\Q) Se
for all i € I, Then

A
[y}

- _1 _ _l - _ -~
g CGH/K) T\ 077(Q)) = wy (977 (B \ Q) = vy (H \ Q)

Now, it remains to observe that the closure 0£.¢—1(Q) is a compact equi-
continuous subset of (H/K); (cf. (1.5)). =
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(12.6) BorE. The material of this section is now.

13. The SNAG theorem

(13.1) texya. Let G be an abelian topological group and T a
topology on G such that the mappings G; 2 k » k(g), g € G, are

continuous. Let o : G - (G;)A be the natural homomorphism and pu a

Radon measure on G;. Then span o(G) 1is a dense subset of Lg(G;,p).

Proof . It is enough to show that the characteristic function of
compact subsets of G; can be approximated in Lé(G;,u) by elements
of span a(G). So, take any compact subset X of G; and any ¢ > 0.
Since 1y is a Radon measure, there exists a compact subset Y of

G; \ X with
(1) e \ X\ Y) < €.

Denote U =G \ Y. Since Y is a compact subset of G;, it is a

compact subset of G;, which means that U 1is an open subset of G;.

So, for each & € X, there are a finite subset G of G and some

g
GE > 0, such that

(2) UE: = {keG : lk(g) - &£(g)]| < GE for all g e G} cU.

g

The sets Ug' ¢{ € X, are open in G; and cover the compact set X.

So, there is a finite subset Q@ of X such that

(3) Xc U U

g °
Arrange all elements of the finite set u GE in a seguence
£€Q
(gk)Ezl. Let ¢ : Gp - st be the continuous homomorphism given by
the formula ¢(x) = (K(gk)i=1 for « € G . Denote V = ¢_l(¢(XD. We

shall prove that
(4) X cvcU.

The first inclusion is trivial. To prove the second one, <choose any
K € V. We have ¢(k) = ¢(x) for some x € X. Next, by (3), we have
X € Ug for some & € Q. This implies that « e Ug' Hence, by (2), we

get « € U, which proves (4).
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The restriction v of u to Borel subsets of Gp is a Radon
measure on G;. So, v¢ is a Radon measure on S". Let | HGA and
[t n denote the norms in the spaces Lg(Ga,u) and Lg(sn,v¢), re-

S

spectively. Let Xa denote the characteristic function of a set A.

Since trigonometric polynomials are dense in Lé(sn,v) (see [38], (31.4)),

¢
we can find some complex numbers xl,...,xp and some continuous homo-
morphisms (characters) Ny ¢ s > s, k=1,...,p, such that
It s
X 2 AN < €.
¢ (X) k=1 k'k gh
Then
P P
Ixy = T Aempéll - = [/ fxy - = Aknk¢|2d\)]1/2
k=1 G G k=1

1/2

p 2
s Ix - = AN, |%dv,] < e.
n (X)) kK ¢

S

Hence, applying (1) and (4), we obtain
| 5 i 5
IXey = 2 2 on, ol - S iy = Xoll -+ Xy, = = Ayn,ol .
X k=1 K k G X v G v k=1 k'k G

1/2 1/2

A

[u(u \ X)] + g < ¢ + €.

Thus it remains to show that nk¢ € a(G) for k =1,...,p.

Fix any k =1,...,p. We can find some SqreeesSy € 2 such that

51 Sn
nk(zl,...,zn) =27 ...z
for (zl,...,zn) e st (cf. (1.7)). Then, for each « € GA, we have
n Sy n
(n o) (k) = n (x{g;),...,c(g_)) = TI k(g,) k(=2 s.9.),
k k i’ n k=1 k k=1 k¥k
n
which means that nk¢ = q( = skgk) € 0(G). =
k=1
(13.2) THEOREHN. Let ¢ be a continuous cyclic unitary representa-

tion of a nuclear group G and let 1 be an admissible topology on
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G . Then there exists on G; a regular finite Borel measure u such

that ¢ is unitarily equivalent to the representation V¥ in the space
2

LC(G;,p), given by the formula
(¥ 5100 = £(x) exp [21ix(g)]
for ge G, yx € G and Lg(G;,u).
Proof.- Let u be a cyclic vector of ¢. Then the formula ¢(g) =
(@gu,u), g € G, defines a continuous p.d. function ¢ on G (see

(1.23)). By (12.1), there exists a regular finite Borel measure u on
G; with ﬂ = ¢. Let f be the function identically egqual to 1 on

G . From (13.1) it follows that f 1is a cyclic vector of Y. For
each g € G, we have

(¢, £.£) = S exp[2mix(g)ldu(x) = uig) = é(g) = (¢u,u).
G

This implies that ¢ and VY are unitarily eguivalent (see (1.25)). =

Since a continuous unitary representation can be written as the
Hilbert sum of cyclic representation (see (1.21)), we could easily
formulate an analogue of {(13.2) for non-cyclic representations (cf.[38],
(21.14)). Instead, we shall give the SNAG theorem for nuclear group in
its usual form (cf. [18], p. 160).

(13.3) THEORFM. Let ¢ be a continuous unitary representation of
a nuclear group G and let 1 be an admissible topology on G . Then

there exists on Borel subsets of GT a unique spectral measure P
such that
(1) 0y = S _ exp [2mix(g)]dR(x) (g @)

G

For the definition of the spectral measure, see [18], app. B. 3.

Proof. In view of (1.21), we may assume that ¢ is the Hilbert
sum of some continuous cyclic unitary representations ®i, ielI.
Next, according to (13.2), we may assume that, for each i € I, there

exists a regular finite Borel measure ¥y on GT such that ¢i is

the representation in the space Lé(G;,ui), given by the formula

(0, (9)E) (x) = £(x) exp [2mix(qg)]
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- 2 - 3 -
for ge G, x €@ and f € Lc(GT,ui). Let H = ;ZI LC(GT,uiL
For each A € B(G;), we define a projection P(A) : H > H by

POAV(Es) 501 = Oafi)ser

where fi e Lé(G;,pi) for every 1 and ¥ denotes the characteris-

A
tic function of A. It is not difficult to verify that P 1is a spec-

tral measure on H, satisfying (1).

To prove the uniqueness of P, suppose that we are given two spec-
tral measures P1 and P2 defined on Borel subsets of GT such that

¢g = S exp [2ﬂix(g)]dPi(x) (ge G, 1i=1,2,).
G

For each h € H, the mapping

- h Lo .
B (GT) 3 A > Pi(A) : = (Pi(A)h,h) (i =1,2),
is a regular finite Borel measure on G;, and
(0gh,h) = & exp [2mix(g)]dpl (ge6, i=1,2).
G
Hence, in view of the uniqueness of the measure in (12.1), we - have
P? = Pg. Since h was arbitrary, it follows that Pl = P2. .

We shall now deal with the problem of the extending of continuous
p.d. functions and unitary representations.

(13.4) 1zmmA. Let H be a subgroup of a nuclear vector group F.
Then each continuous unitary representation of H can be extended to
a continuous unitary representation of F.

Proof. Let ¢ Dbe a continuous unitary representation of H. Ac-
cording to (1.21), we may write ¢ as the Hilbert sum of some con-
tinuous cyclic unitary representations ¢V. Suppose that, for every

v, we have found a continuous unitary representation ¥, of F with

?le = Wv. Then ¥ = 6>Wv is a continuous unitary representation of

F with WIH = ¢. Therefore, ¢ may be assumed to be a cyclic repre-~

sentation. Then, in virtue of of (13.2), we may assume that there
exists on H; a regular finite Borel measure u such that ¢ is the
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representation in the space Lé(HA,p), given by the formula

(o £)(x) = £(x) exp [2mix(h)]

for heH, xeH and feLg(H",u).

For each n =1,2,..., there is a compact equicontinuous subset

Qn of Hp with u(H \ Qn) < 1/n. We may assume that QnC:Qn+1' Let
Li be the subspace of Lg(H-,u) consisting of functions with support

in Qn \ Q .  Then Lg(HA,u) is the Hilbert sum of the invariant

n-

subspaces L and ¢ is the Hilbert sum of the corresponding repre-

SN

sentations ¢n. As before, we have to show only that every %1 can be
extended to a continuous unitary representation Wn of F. There-
fore, we may simply assume that there is a compact equicontinuous sub-
set Q of H; with u(HA \ Q) = 0. Then there is some U e NO(F)
with Q c (U n H)g. As in the proof of (12.4), we can find a linear

subspace N of F and three pre-Hilbert seminorms p,q,r of N, such
that BpE No(F),

1 1lim 4, (B =
(1) kii k( p,Bq) 0,
®©
(2) 5 k§1 kdk(Bq,Br) <1,

and Br c U. We may assume that N = F. Indeed, if Y’ is a contin-

uous unitary representation of N with ¥’ = ¢ on H N N, then the
formula

¥”(h + u) = ¢(h)¥’'(u) {h € H, u € N)

defined a unitary representation V¥ of H+N. Since the group of
unitary operators is divisible, we can extend VY¥” to a unitary rep-
resentation ¥ of F (cf. (1.6)). We have W|H = W"IH = ¢. More-
over, WlN = W"lN = V¥Y’. Since V¥’ 1is continuous and N is an open
subgroup of F, it follows that V¥ is continuous.

Consider the canonical diagram
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r id 5 F id 5 F
by Va
A A
v —2d >V a5 v
F F F
P o] r

Let B be the closed unit ball of (Fq)*. It follows from (1) that

£q
B is a Polish space.

A is a compact operator, which implies that Fq is separable. Thus

Consider the relation

2= {(x,f) e 9 x B : pqu(h) = y(h) for all h e H}.

We shall prove that = 1is a multifunction from Q to B (for the ter-

minology concerning multifunctions, cf. [40]). So, take any x€Q. The
formula

x"(h + u) = x(h) (heH, uez t0))
defines a continuous character ¥’ of the group H' = H + r_l(O). We
have |[x’'(H’ n B.)| £ 1/4. By (2) and (8.1), there exists'some f'e F#
with pf’lH, = x’ and sup {|f'(u)| : ue Bq} < 1. Since ¥’ = 0 on
r-l(O), it follows that f° = 0 on q-l(O). So, there is some fe€B
with £’ = qu. Then (x,f) € =.

It is obviocus that the graph of

(11

is closed. Hence, by Aumann s
theorem on measurable selectors (see [40], Theorem 5.2), there exists

a Borel mapping a : Q » B such that pa(x)wq!H =X for u-almost

all x € Q. Consider the continuous mapping B : B ~» F; given by

the formula B(f) = pqu for f € B. The set B(B) is equicontinuous
. 1 o . -~

because, evidently, Bg(B) c (4 Bq)F. Next, let o : Hp - Fp be the

Borel mapping given by the formula

Bal(x) if X € Q

o(x) =
0 if X ¢ Q.
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The image of o 1is equicontinuous because o(HA) = ¢g(Q) ¢ B(B). There-
fore the Fourier transform of the Borel measure Wy is continuous (cf.

the proof of (11.1)). Let V¥’ be the unitary representation of F in

the space Lg(FA,uo), given by the formula

(Wﬁf)(K)= f(k) exp [2wik(u)]

for ue?F, f e Lé(Fk,uo) and « € F . Due to (13.1), the function
fO = 1 is a cyclic vector of V¥’. We have
(Yif . £,) = S exp [2mik(u)]du (<) = u (u)
F

for all u € F, which means that V¥’ 1is continuous (see (1.23)).

For almost all x € Q, we have
c(x)|H = (B“)(X)[H = pa(x)wq'H = X
which implies that

(3) 0(x)|H = X for almost all x € H

Hence, for each f € Lé(H”,u), we have

S Ee ) P 00 = s e ) [P0 = S 1200 [P0 .
F H H

This means that the formula

(TE)(x) = £k ) (k € F )
defines an isometric operator T : Lg(H-,u) > Lé(Fg,po). On the other

hand, for each f = Lé(FA,uO), we have

S IEGOD) Pauto = o [£(0) | 2du (e),
H F

which means that the formula
(A£)(x) = £(a(x)) (x € H )
defines an isometric operator A : Lg(FA,ug) > Lg(HA,p).

Take any f € Lg(Ha,u). According to (3), we have
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ATE(x) = (T£){o(x)) = f(O(X)IH) = £(x)

for almost all x € H . Thus AT = id, which implies that T 1is an
isometry of Lg(H‘,u) onto Lg(F-,uO). Then VY : = r'1W'r is a con-
tinuous unitary representation of F 1in the space Lg(H”,u).

Take any h € H and f € L%(HA,u). In view of (3), for almost
all y e H”, we have

(V) () = (AYTE) () = (¥, TE)(o(x))

(Tf)(o(x)) exp [2mio(x)(h)] = f(c(x)lH) exp [2mix(h)]

£(x) exp [2mix(h)] = (¢, £)(x).

This proves that WIH = ¢, =

(13.5) TEROREN. Let A be a subgroup of a nuclear group G. Then
each continuous unitary representation of A can be extended to acon-
tinuous unitary representation of G.

Proof . Let ¢ be a continuous unitary representation of A. 1In
virtue of (9.6), we may assume that there exist a nuclear vector group
F, a subgroup H of F and a closed subgroup K of H, such that
G = H/K. Let ¢y : H - H/K be the canonical projection. Then ¢y is
a continuous unitary representation of w—l(A). By (13.4), we can ex-
tend it to a continuous unitary representation V¥’ of H. Since V¥’
is trivial on K, it induces a continuous unitary representation Y of

H/RK with Yy = W’lH. It is obvious that WIA = ¢, =

(13.6) THEORFM. Let A be a subgroup of a nuclear group G. Then
each continuous p.d. function on A can be extended to a continuous
p.d. function on G.

Proof. Let ¢ be a continuous p.d. function on A. There exists
a continuous cyclic unitary representation ] of A with a cyclic
vector u, such that (@gu,u) = ¢{g) for all g € A (see (1.24)). By
(13.5), we can extend ¢ to a continuous unitary representation ¥
of G. Then the function G 3 g ~» (Wgu,u) is a continuous p.d. ex-
tension of ¢ (see (1.23)). =

(13.7) morE. The material of this section is new.



Chapter 5
PONTRYAGIN DUALITY

Let K be an additive subgroup of a real locally convex space E.
Let E* Dbe the dual space and K* the subgroup of E* consisting of
functionals which assume integer values at points belonging to K. We
saw in section 8 that closed subgroups of nuclear spaces are weakly
closed. Thus, if K 1is a closed subgroup of a nuclear Fréchet space,
we may write K** = K. The equality K** = K for closed subgroups of
R1
were the starting point for the investigation of duality properties of

is the heart of the Pontryagin duality for LCA groups. These facts

additive subgroups and quotients of nuclear spaces.

Section 14 of this chapter contains the basic facts on duality
for subgroups, quotient groups, products and direct sums of abelian
topological groups. In section 15 we give an account of known results
on the Pontryagin duality for locally convex spaces. In section 16 we
prove that character groups of metrizable nuclear (vector) groups are
nuclear. Section 17 contains the proof of the main result of this
chapter: 1if G 1is a countable product of LCA groups and metrizable,
complete nuclear groups, then the duality between G and G induces
dualities between appropriate closed subgroups and guotients of G and
G . We also give here some examples which show that the assumptions of
countability and metrizability are essential. Finally, section 18 is
devoted to Vilenkin's theory of groups with boundedness.

Let H be a subgroup of an abelian topological group G. To sim-
plify the notation, in this chapter we shall assume that the groups G
and H° are endowed with the compact-open topology. In some places,
however, where the difference between various topologies on G is

essential, we shall apply the notation G;,Gpc etc.

14. Preliminaries

Let G be an abelian topological group. The evaluation map from

G into G will be denoted by Qg Thus <aG(g)> = <x,g> for gegG,
X € G . Obviously, ag is injective if and only if G admits suf-

ficiently many continuous characters. We say that G is a reflexive

roup if o«

G is a topological isomorphism of G onto G .
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(14.1) 1FamA. Let A Dbe an arbitrary subset of an abelian topolo-
gical group G and let Q@ be the quasi-convex hull of A. Then o, (Q)
0o Q
= aG(G) n a"-.

Proof. The inclusion aG(Q) ot aG(G) n a°° is trivial. To prove
the opposite one, choose an arbitrary ¢ € aG(G) n a°°. we have g =
aG(g) for a certain g € G and it remains to show that g € Q. Sup-
pose the contrary; then |x(g)| > % for a certain ¥ € 2. Hence

[z(x)] = Ixtg)] > %, which is impossible because ¢ € A°°. =

(14.2) rEsmA. Let G be an abelian topological group with aG(G)=

G . For each dually closed subgroup H of G, one has aG(H)= HOC.

Each dually closed subgroup of G is the annihilitor of some closed
subgroup of G.

Proof. The first assertion is a direct consequence of (14.1) be-
cause dually closed subgroups are quasi-convex sets. To prove the sec-
ond one, take a dually closed subgroup A of G . The set

B={geG: x(g) =0 for all x = A}

is a closed subgroup of G. It is obvious that A < B°. So, it re-
mains to show that B ¢ A.

Suppose the contrary and let « € B® \ 2. Since A is dually
closed in GA, we have ]c(K)| > % for a certain ¢ € 2°. Next, we
have ¢ = aG(g) for a certain g € G because aG(G) =G . Since
z € Ao, it follows that x(g) = ¢(x) = 0 for all X € A, whence

g e B. But « € B° and, therefore, «(g) = 0, which 1s impossible

because «(g) = z(x). =

(14_.3) rysmAa. Let G be a locally quasi-convex group and let G~

be the image of og endowed with the topology induced from G . Then
the mapping ag : G~ G~ 1is open.

Proof . Choose an arbitrary U e NO(G). We have to show that
aG(U) e NO(G'). We may assume U to be quasi-convex. Then, by (14.1},
we have aG(U) =6~ n Uu° and it remains to observe that U°° ENO(GA‘)
because U° is a compact subset of G (see (1.5)). =

(14_4) rzmmAa. If an abelian topological group G is a *k-space,

then o

G is continuous.
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This follows immediately from the fact that, due to the Ascoli

theorem, compact subsets of G are equicontinuous.

(14.5) FEMARK. Let X,Y be topological spaces. A mapping f :X-Y
is calied k-continuous if all its restrictions to compact subsets of
X are continuocus. A topological group G 1is called a k-group if all
k-continuous homomorphisms of G into topological groups are continu-
ous. This notion was introduced by N. Noble [72]. Naturally, if G is
a k-space, it is also a k-group, but there exist k-groups which are not
k-spaces. Noble proved that if an abelian topological group G is a k-

-group, then a is continuocus ([72], Theorem 2.3).

G
For our purposes, we get little benefit from the notion of a k-

-group. An abelian topological group G will be called a c-group if

o is continuous. It turns out that the permanence properties of k-

—groups, established in [72], remain valid for c-groups. Consequently,
if we are able to prove that a given topological group is a k-group,
then we are also in a position to prove that it is a c-group, without
referring to the notion of a k-group. Besides, there exist c¢ -groups

which are not k-groups, e.g. uncountable direct sums of real lines.

(14.6) LEMME_ Let H be a dually closed, dually embedded subgroup
of an abelian topological group G. If ag(G) = G, then aH(H)='H

Proof. Take an arbitrary § € H  and consider the canonical ho-
momorphism ¢ : G - H . It is obvious that E£¢ u°°, By (14.2), we
have a,(H) = B°°, Consequently, there is some h € H with ag(h) =¢£¢

and it remains to show that aH(h) = t. For each y € GA, one has

<QH(h),hX> <aH(h),¢(x)> = <aH(h)'X]H> = <x,h>

<aG(h),x> = <Ed,X>.

This means that aH(h)¢ = £¢. Hence aH(h) = § because ¢ maps G

onto H (H was assumed to be dually embedded in G). =

(14.7) LEXDA_ Let H be a closed subgroup of an abelian topolo-
gical group G. If aG 1s continuous, sO 1S GG/H'

Proaf. Let ¢ : G » G/H be the canonical projection. A direct

verification shows that the diagram
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@
v
9]

is commutative. =

Let H be a closed subgroup of an abelian topological group G.
The canonical homomorphisms Gﬁ/Ho » H and (G/H)‘ - Ho, defined in
the obvious way, will be denoted by ¢H and ¢H, respectively. Ob-

serve that is a continuous injection; it is a surjection if and

¢
H
only if H is dually embedded in G. The mapping ¢H is a continuous

isomorphism of (G/H)A onto H°.

(14.8) LEmMA. Let H be a dually closed and dually embedded sub-

group of a Hausdorff locally guasi-convex group G. 1f aG(G) = G

and the group GQ/HO is locally quasi-convex, then ¢H: GA/HO > H  is
a topological isomorphism.

Proof. The Hausdorff locally quasi-convex group G admits suffi-

ciently many continuous characters, which means that aq is injective.

. , -1 - .
g 1S open, 1.e. 04" G »> G 1s con-
tinuous. By (14.2), we have aG(H) = g°°, Therefore, the homomorphism

B : H°° 5> H, defined as the restriction of aél to HY®, is contin-

uous. Let @ = G‘/Ho and let v : H - QAQ be the homomorphism dual
te] . o

to B¢H : Q ~» H. Since B and ¢H are both surjective, Y is
injective. A direct verification shows that Y¢H = aQ. Let Q'==aQ(Q);

maps Q onto H , so that we ob-

From (14.3) it follows that «a

since H is dually embedded, ¢H

tain the following commutative diagram
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where <y 1is a continuous isomorphism. To complete the proof, it re-
mains to observe that, due to (14.3), the mapping aQ : Q> Q0 is
open. =

Let f be a continuous mapping of a topological space X onto a
topological space Y. We say that £ 1is compact-covering if to each

compact subset A of Y there corresponds a compact subset B of X
such that A < £(B).

(14.9) PROPOSITION. An open mapping of a Cech-complete space X on-
to a topological space Y 1s compact-covering.

This fact was proved by Arkhangelski [2].

(14.10) COROLLARY. Let H Dbe a closed subgroup of a Cech-complete
abelian group G. Then ¢H : (G/H)A -» u° is a topological isomor-
phism. =

(14.11) PROPOSITION. Let {Gi} be a family of abelian topologi-

iel
cal groups. There are canonical topological isomorphisms

(I ;) ~ X *6; and ( =*6y) ~ TIG;.
iel iel jer iel
If all groups G. are reflexive, so are II G. and S *G, .
i . i : i
iel iel

*
Proof. To simplify the notation, we shall write IIi and E:i in-

stead of II and = *, respectively. Let x € (IIiGi)A. For each
iel ieIl

ie I, let xi denote the restriction of x to Gi (we identify Gi

with the corresponding subgroup of IIiGi). It is clear that Xy = 0

for all but finitely many indices 1i. Consider the canonical mapping

¢ : (IIiGi) -> EZiGi

given by ¢(x) = (xi) . It is clear that ¢ 1is an algebraic iso-

iel
% -
morphism. To prove that it is continuous, choose any U € NO(EIiGiL We

*
may assume that U = EjiUi where Ui

each 1 € I, we can find some compact subset Ki of Gi such that

o ] . :
.t . s e : K. .G,
Kl Kl c Ul Then K IIlKl is a compact subset of IIlGl and it

5 No(Gi) for every i. For
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is enough to show that ¢(K°) c U.

So, take any yx € K°. Wwe may assume that all sets Ki are sym-
metric. Then it is not hard to see that

- 1
RO = XK s 7

Write c, = |x(Ki)| for every 1i. From the condition Kg’ + K? cU it

follows easily that

1.1 -1
x3/V; s 3lgg]]
i
where [x] 1is the integer part of x. Since ey S %, after easy
calculations we get Zi(xi/Ui) <1, which means that ¢(x) =
*
(Xjlier € =3U; = U.

To prove that ¢ is open, choose any W € NO((HiGi)A). We may

@]

assume that W = K for some compact subset K of HiGi. Next, we

assume that K = IIJ._Ki where Ki is a compact subset of Gi for

: o - . *_ o * -
every 1i. Then KiENo(Gi) for every i, so that ZiKieNO(ZiGi)

*
and it remains to show that ZiK(iD c ¢(W).

*
Take any x € (HiGi) with ¢(x) ZiKg. We have to

(Xj)ie1 €
prove that |[x(K)| £ -llf It is not hard to verify that Xi/KfL) 2 4|xi(Ki))

for every i. Then

s

(K| < =y 0x (K] s §350G/RD) < 4

* -~ .
The proof that (ZiGi) is canonically topologically isomorphic
to HiG; is similar, and even a little bit simpler (use (1.17)).

The last assertion of (14.11) is a consequence of the following
canonical isomorphisms:

-~ * -~ ° -
(HiGi) (ZiGi) (l’IiGi ) Im;6,,
. * T - * ~- *
-~ -~ -~ »
(%;64) (I1;6;) (26; ) 7 3,0;-
(14.12) PROPOSITION. Let G = = (Gi : Hi) be a reduced product of
iel

abelian topological groups. Suppose that Hi is dually closed in Gi

for almost all i. Then G is canonically topologically isomorphic
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to the reduced product > (G; : Hi)
iel

are reflexive, then G is reflexive, too.

Consequently, if all groups Gy

We omit the proof because it is very similar to that of (18.2) be-
low. For details, we refer the reader to [60]. See also [38], (23.33).
Let G = = (Gi : Hi) be a reduced product of abelian topologi-

iel
cal groups. Let H be a subgroup of G consisting of all sequences
(gi) such that g; € Hy for all i. Then H may be identified with

the product ITI H, with the usual product topology and G/H may be

iel
identified with the direct sum b (Gi/Hi). We may also identify u°
iel
with the subgroup II B® of > (G; : Hg) It is clear that H is
ier iel

dually closed (resp. dually embedded) in G if and only if Hi is

dually closed {resp. dually embedded)} in Gi for every i. Similarly,
G/H is locally quasi-convex if and only if Gi/Hi is locally quasi-

-convex for every i. The mapping ¢H GA/HO > H (resp. ¢H:(G/Hf‘*
B°) is a topological isomorphism if and only if ¢y G;/Hg > H;
i
H, -
{resp. ¢ 1. (Gi/Hi) - Hg) is a topological isomorphism for every i.

Detailed proofs of these facts can be found in [60].

(14.13) morES. The material of this section is taken mainly from
[8]. Proposition (14.11) is known as Kaplan s duality theorem and was
proved by Kaplan [49]). For countable products, it was obtained inde-
pendently by Vilenkin (see [97], n°
from [60]. It had been obtained earlier by Vilenkin [97], Thecrem 7. In

the case when Gi are LCA groups and Hi are open compact subgroups,

4). Proposition (14.12) is taken

(14.12) was proved independently by Braconnier [25] and Vilenkin [96].

15. Locally convex vector groups

(15.1) PROPOSTYION. A locally convex space E satisfies the condi-
tion aE(E) = E  if and only if closed convex hulls of compact sub-

sets of E are weakly compact.

*
Proof. By (2.3), we have a topological isomorphism PE E. "~ E

* ok * -~ * %
and an algebraical isomorphism pE* : (Ec) > (Ec) . Let B: E-*(Ec)
c
be the canonical embedding. We have the following commutative diagram:
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id
E
“g
- P %
~= Pg * - Ec
E —> (E_ ) <
c
So, the condition aE(E) =E  is equivalent to
* %
(1) B(E) = (Ec)

Suppose first that closed convex hulls of compact subsets of E
* %
are weakly compact. We have to prove (1). Let h € (Ec) . There is a
symmetric compact subset A of E such that, by denoting

A = (feE: [f(u)]| 51 for all u e A},

one has

(2) |In(£)] €1 for all f e al.

Let M Dbe the family of all finite dimensional subspaces of E.
Fix an arbitrary M € fi. It is clear that we can find some ve€E with

(3) f(v) = h(f) for all f € M.
Let us denote
1

M- = {ue€E: f{u) = 0 for all f € M}.

We shall prove that

(4) ven + conv A.

Suppose the contrary. Since Ml is weakly closed and, by our as-

sumption, conv A is weakly compact, it follows that Ml + conv A is

weakly closed in E. So, by the Hahn-Banach theorem,
f, € E* with [f (v)] > 1 and

(5) ff,(w)]| s 1 for all wue m! + Conv A.

there 1is some

From (5) it follows that fo e M N AO. Hence, by (3) and (2), we ob-
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tain |fo(v)] = |h(fo)| £ 1, which is a contradiction.

Now, (4) implies that there is some w € conv A with w -v € Ml.

Then, by (3), for each f € M, one has
f(w) = £(v) + f(w - v) = h(f).
We have thus shown that, for each M €®, the set
Pyt =convA N {uekE: h(f) =£(u) for all £ € M}

is non-empty. Since conv A is weakly compact, the intersection of
all Pm's contains some vector v. Then f(v) = h(f) for all £f€E,

i.e. B(v) = h. This proves (1).

Conversely, suppose that (1) is satisfied. Choose an arbitrary
compact subset A of E and denote

0

A = {f € E* : |f(u)| £ 1 for all u € A},
B = (ueE: |f(u)| <1 for all £ e al}.
Naturally, B 1is a closed, convex subset of E containing A, so

*
that it remains to show that B is weakly compact. Since AOEENO(EC),

the Banach-Alaoglu theorem implies that

2% i = the ()" |n(6)] s1 for all £ e’y
* Xk . .
is compact in the weak* topology on (EC) . Now, (1) implies that
B(B) = AOO and it remains to observe that B8 is a topological iso-

morphism of the space E endowed with its weak topology onto the space

* %
(Ec) endowed with its weak* topology. =

( 15.2) PROPOSIYION. Every metrizable and complete locally convex
vector space is a reflexive group.

"Vector space" may be replaced here by "vector group"; see (15.7).

Proof. Let E be a metrizable and complete locally convex space.
Then closed convex hulls of compact subsets of E are compact, hence

weakly compact, and (15.1) says that aE(E) = E . That o is open

E
and continuous follows from (14.3) and (14.4). =
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(15.3) PROPOSIYIGN. Every reflexive locally convex space is a re-
flexive group.

Proof. Let E be a reflexive locally convex space. Then closed
bounded subsets of E are weakly compact ([80], Ch. IV, Theorem 5.5),
and (15.1) implies that ag(E) = E . From (2.4) and (14.3) we infer
that ap is open. We shall prove that it is continuous.

In view of (2.3), it is enough to show that compact subsets of E;
are equicontinuous. So, let A be a compact subset of E;. Since E
is reflexive, it suffices to show that A 1is a bounded subset of E;.
Suppose the contrary; then there is some £ € (E;)* with sup {[f(u)]:
ue A} = », However, since E 1is reflexive, we have f e (E;)* and

*
then sup {|f(u)| : u € A} < » because A was compact in Ec. The

contradiction obtained completes the proof. =

(15.4) REMARK. Since there exist non-reflexive Banach spaces, from
(15.2) and (15.3) it follows that, for locally convex spaces, reflex-
ivity is an essentially stronger property than '"group reflexivity". See
also (18.2). One more notion of reflexivity can be obtained by consid-
ering the so-called structure of continuous convergence on topological
groups. H.-P. Butzmann [27] proved that a locally convex space is re-
flexive in the sense of continuous convergence if and only if it is
complete.

(15.5) mEmarRK. Kye [57] proved that a locally convex space E is
a reflexive group if and only if closed convex hulls of compact subsets
of E are weakly compact and each closed convex balanced set which is
a neighbourhood of zero in the k-topology is a neighbourhood of zero
in the criginal topology. The first condition is satisfied if and only
if aE(E) = € (see {(15.1)). The second one is equivalent to the con-
tinuity of ap-

(15.6) 1ima. Let E be a locally convex space, L a vector space
endowed with the discrete topology and M a linear subspace of E x L.
For each u € (E x L) \ M, there exists some x € (E x L) with
Xim = 0 and x(u) # 0.

Proof. Choose any u € (E x L) \ M. Let vy and y,  be canon-

ical projections of E x L. onto E and L, respectively. Suppose

first that by (u) 3 b (M) . Since L 1is discrete, there is some k€L



142

with K(wL(M)) = {0} and K(wL(u)) # 0; then we may take yx = Ky -

Next, suppose that wL(u) IS5 wL(M). Then wL(u) = wL(w) for some
weM Let N =y (Mn (Ex {0})). Since u ¢ M, it follows that
wE(u - w) ¢ N. So, there is a continuous linear functional f£ on E

such that £ =0 and fyg(u - w) ¢ 2. Then of < E, pfy = 0 and
pwa(u - w) # 0. It is clear that the formula

K(wL(v)) = pwa(v) (v € M)
defines a character «k of wL(M). Then the formula

gE(v) = pEVp(v) - k¥ (V) (v e E x ¢y (M)

defines a continuous character ¢ of the group E x wL(M). Naturally,

we may extend &§ to some X € (E x L)A. Then X|M = E}M = 0 and

x(u) glu) = pfyp(u) - ko (u) = pfvp(u) - ki (W)

pfvp(u) - pfyp(w) = pfy (u - w) # 0. =

(15.7) THEOREN. Every metrizable and complete locally convex vec-
tor group is reflexive.

Proof. Let F be a metrizable and complete locally convex vector

group. Let {Un}:=1 be a base at zero consisting of symmetric convex

sets. Fix an arbitrary n = 1,2,... and denote Mn = span Un' We can
find a linear subspace Ln of F such that F = Mn =] Ln algebraic-
ally. Since Mn is an open subgroup of F, it follows that Ln is
discete and F = Mn @ Ln topologically. Hence the canonical projec-

; M, L, ;
tions Th ¢ F > Mn and LS F > Ln are continuous. Let P, be the

Minkowski functional of Un in Mn and let En be the quotient space
Mn/p;l(O) endowed with the canonical norm. Let then v, s M > E be
the canonical projection and let Fn denote the group F endowed with
the topology induced by the homomorphism

. =P m X L F - En x L.

Denote G = IIL (En x Ln) and consider the linear mapping ¢ =
n=1



143

@

(¢n)n=1 : F > G. It is clear that F may be identified, as a topolo-

gical group, with the limit of the inverse sequence id Fn+l > Fn.
Therefore ¢ is a topological isomorphism between F and ¢(F). From
(1.8), (15.2) and (14.11) we see that G is reflexive. 1In view of
(14.3), (14.4) and (14.6), to complete the proof, we only have to show
that ¢(F) 1is dually embedded and dually closed in G.

So, take any x € ¢(F)‘. Then x¢ € F and, consequently, x¢ €

©

F; for some n because F = U F;. Since the topology of Fn is
n=1

induced by ¢,, wWe can write x¢ = k¢, for some « € (En><Ln) . Let

K € (En X Ln) be the natural extension of x and let o, :G-»Enx Ln

be the canonical projection. An easy verification shows that Koy is

an extension of x. Thus ¢(F) is dually embedded in G.

To prove that ¢(F) 1is dually closed, choose any g € G \ ¢(F).
Since F 1is complete, ¢(F) is a closed subgroup of G. Therefore we

can find some U € NOXG) with (g + U) n ¢(F) = @. In other words,

there is a finite subset I ¢ {1,2,...} such that if or is the ca-

nonical projection of G onto GI : = II (ﬁn x Ln), then oI(g) does
nel

not belong to the closure of cI(¢(F)) in GI’ Hence, by (15.6),

I
X0 is a continuous character of G taking ¢(F), but not g, to

there is some X € G with x(cI(¢(F))) = {0} and x(oI(gn # 0. Then

Zero. -

(15.8) rEMARK. The above argument shows that if F 1is a complete
locally convex vector group not necessarily metrizable, then aF(F) =

F . From (9.4), (8.5) and (14.3) it follows that a is open. The

F
following example shows that need not be continuous (see also

(17.6)).

F

(15.9) EXANPLE. Let E be an infinite dimensional normed space
endowed with its weak topology. Clearly, there is a convex infinite
dimensional subset K of E* compact in the norm topology. Since

*

weakly compact subsets of E are bounded, K is compact in Ec but,

being infinite dimensional, it cannot be equicontinuous. Thus the eva-
s * * . . s s
luation map E - (Ec)c is not continuous and, by (2.3), neither is

OLE.
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(15. 10) MOYES. Propositions (15.1) and (15.2) are taken from [57]
(cf. (15.5)). Proposition (15.1) is an immediate consequence of the re-
sult of Arens [1], Theorem 2, which asserts that if E is a locally
convex space and Tt 1is a locally convex topology on E* not weaker
than the topology of pointwise convergence, then the evaluation map
E » (E:)* is onto if and only if 1 is not stronger than the topo-
logy of uniform convergence on convex weakly compact subsets of E.
Arens s paper contains a very detailed study of "reflexive" topologies
on E* and E**,

For Banach spaces, (15.2) appears in [83]. Also (15.3) is taken
from [83]}. Lemma (15.6) and Theorem (15.7) are new. Example (15.9) is
due to G.W. Mackey and was given in [1].

16. Nuclearity of dual groups

The aim of this section is to prove the following fact:

(16.1) THREOREN. Let G be a nuclear group. If G 1is metrizable,

then G;c is a nuclear group, too.

(16.2) REMARK. The assumption of metrizability is essential. Let E
be an uncountable product of real lines. Then E 1is a nuclear locally
convex space, hence a nuclear group. By (14.11), we may identify E;c
with an uncountable locally convex direct sum of real lines. As a lo-
cally convex space, an uncountable direct sum of real lines is not

nuclear. So, by virtue of (8.9), the group Epc cannot be nuclear.

(16.3) LismA. Let F be a metrizable nuclear vector group and let
P be a precompact subset of F. Given arbitrary c¢ > 0 and m =1,
2,..., one can find a vector space E, two symmetric and convex sub-
sets X,Y of E with

(1) 4, (X,¥) < ck™" (k =1,2,...),

a subgroup K of E and a homomorphism ¢ : K- (F), such that
¢(K N ¥Y) 1is precompact and P c $(K N X).

Proof. By (9.3), one can find a base {Un}:=1 at zero 1in F,

consisting of symmetric, convex sets such that U1 ) U2 2 ... and

(2) 4, (U . .,U0.) < g2 2mn-1-m

n+l’°n (k,n =1,2,...).

k
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Let I be a set of indices. By Ri we denote the corresponding
direct sum of real lines, i.e. the subspace of the product RI con-
sisting of all functions f : I » R such that f(i) = 0 for almost

all i e€ I. By Zg we denote the subgroup of Rg

consisting of in-
teger-valued functions.

Fix an arbitrary n = 1,2,... and let Mn = span Un' There is a
linear subspace Ln of F such that F = Mn -] Ln (that is, the vec-
tor space F is the algebraical direct sum of its vector subspaces Mr1
and L.: since Mn is an open subset of F, it follows that the to-

pological group F 1is the topological direct sum of its subgroups M

n
and Ln). Since every abelian group is a quotient of a free one, we
In
may identify Ln with a quotient group of ZO for some set In; let
In
wn : ZO -> Ln be the canonical projection.

There is a finite subset An of F with P c Un+l + An because
P 1is precompact. Since F = Mn 3 Ln' we have An [ Bn + Cn for some

finite subsets Bn of Mn and Cn of Ln; we may assume that B

and Cn are symmetric. Next, there is a symmetric and finite subse:
D, of zz“ with ¥ (D) = C . Thus
(3) PcuU,, +B,+¥,(D).
It is clear that we can find a symmetric and finite subset Bﬁ of Mn
such that
(4) dy (conv B, conv B ) < c272ma-1 y-m (k =1,2,...).

In

Similarly, there is a finite and symmetric subset DA of Rn such
that

(5) a) (conv D_, conv D) < cp~2mn p-m (k= 1,2,...).
Let us define
Xopo1 = U4 * conv B, Y, 1 = U, + conv Bﬁ,
X,p = conv D, Y,, = conv DA.
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Now, take any k = 1,2,... . Applying (2.6) (a) and then (2) and (4),
we get
(6) A1 (X 17¥on-1) = dyp_q(Upyq * conv B, Uy + conv Bé)
s dk(Un+1’ U + conv BA) + dk(conv B, U, + conv Bﬁ)
< dk(Un+1’Un) + dk(conv B,, conv BA)
< C2-2mn-1 kM o4 Cz—zmn-l AL c2—2mn-k-m.
Hence

-m(2n-1) oy -m
(7) dypoq Xy 1Y 1) < €2 (2k - 1)7™,

From (6) we also obtain

(8) d

Aoy (Kop_1/¥on-1) S dop 1 (Xpp1+¥509)

< o273 M o oy m(2Rm1) (o) T,

From (7) and (8) we derive

(9) dy (Kyp_4,¥, o) s c2 M(2Rh) e (kyn = 1,2,...).

Let us now consider the vector space

© 1
E= T (M xRT).
n=1
It ists of (u ,£)° h €M d £ e RIn
consists © seqguences Un, n)n=l where un n an n o

for every n. Let K be the subgroup of E consisting of all se-
In

quences (un,fn)n=1 such that fn e zO and un-Fwﬁ(fﬁ)==u1-+wl(f1)

for every n. Next, let ¢ : K > F be the homomorphism given by the

formula o((u_,f )

n'fn n=1) =u; 4 wl(fl). Finally, set

o«

{(un,f) e E:u €X

>
1

and fn e X for all n},

n'n=1 n 2n-1 2n
Y = {(un,fn)n=1 €E:u €Y, 4 and fn €Y, for all n}.
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We shall prove that the E,X,Y,K and ¢ thus defined have the de-
sired properties.

Inequality (1) follows from (5), (9) and (2.7). To prove the in-
clusion P c ¢{K N X), take any g & P. By (3), to each n there

correspond some u, € Un+1' bn = Bn and dn € Dn' such that g=u, +

bn + wn(dn). Then the sequence (un + bn'dn)n=l belongs to Kn X,

and

«©

d((u_ + b.,d )=1) = 9.

n
It remains to prove that ¢(K N Y) is precompact. Let us take any
n=12,... . The subspace Mn = span Un is absorbed by Un‘ Since

Bg is finite, we can find another finite subset Bﬁ of Mn such

that conv Bn c Bn + Un' Then

(10) ¥Yyn-1 C 2U, + B.

I
It is clear that the set D; = zorl n conv Dé is finite.

Take an arbitrary g € ¢(K N Y). We have g = ¢((un,fn):=1) for

and f ey

2n-1 n 2n n

[+
some sequence (un,fn)n=1 € KN Y. Then u, € Y

I

Zon for every n. Applying the definition of ¢ and then (10), for

every n, we get

I
- n " "
g = un + wn(fn) € an_l + wn(an n Z0 ) 2Un + Bn + wn(Dn).
Since g € ¢(K N Y) was arbitrary, we derive
(K NY)c 2Un + By + wn(Dn) (n=1,2,...).

This proves that ¢(K n Y) is precompact becasue {2Un}:=1 is a base
at zero in F. =

(16.4) rExmA. Let K be a subgroup of a vector space E and let
X,¥Y be two symmetric, convex subsets of E such that

(1) 4, (X,Y) = ck™™ (k =1,2,...)

where ¢ >0 and m= 5,6,... are some fixed numbers. Let ¢ be a
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homomorphism of K into a topological group G. Then there exist a

vector space E°, a subgroup K of E’, two symmetric, convex sub-

sets X ,Y¥" of E° and a homomorphism ¢  : K~ - G‘, such that
(2) [6(k 0 ¥)]% c ¢ (K n X)),

(3) 67 (K" n ¥7) c [¢(K n x)]°,

(4) 4 (X7,¥) £ 5 ey k™3 (kK =1,2,...)

where Y is some universal constant depending on m only.

Proaf. Set F = span X. From (1) and (2.14) it follows that there

are pre-Hilbert seminorms p,q on F with X c Bp-( Bq c Y and

dk(Bp,Bq) < cc_k (k = 1,2,...)

where Cm is some universal constant depending on m only. By (2.15),
there is another pre-Hilbert seminorm r on E such that

2 -m+5 _
(5) dk(Bp,Br) < 10 cc, k (k =1,2,...),

-2 -3

(6) dk(Br’Bq) £ 10 k (k =1,2,...).

From {6) we get

@ o«

(7) 5 = k4 (B_,By) s 5:107% = k% < 3.
k=1 9 k=1
R . - . G G G
We may identify G with a subgroup of T . Let Py ¢ R > T
be the canonical projection. Set E~ = R® and K = p;l(GA); let ¢~
be the restriction of Pg to K~
For each g & ¢(K n Bp), choose some wg e K n Bp with ¢(wg) =
g. Then the formula
if e KnNB
f(wg) i g ¢ ( p)
(ef)(g) =
0 if g ¢ (K N Bp)

defines a linear operator ¢ : F# - RG. Let us denote
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o _ # 1
B, = {f eF [E(u)] = 1 for all u € Br},
B° = {f e ' : [f(uw)| £ 2 for all u e B},
p 4 P
L = {¢ € r® : z(g) =0 for all g € (K N Bp)}.
Sset X~ = ¢(B?) + L and Y = @(Bg) + L. Since L is a linear sub-

space of RG, we have dl(L,L) = 0. Applying (2.6) (a), (2.8)(a) and

(2.16), we get

Ay (X7,¥7) s &, (0(BY),0(BY) + L) + d;(L,@(B]) + L)

A

o} o] [0} o
dk(¢(Br),¢(Bp)) + 4,(L,L) = dk(Br,Bp) dk(Bp,Br)

for k =1,2,... . Hence, by (5), we obtain (4) with v = 1020m.

To prove (3), take any §{ €« K" nY and g e ¢(K N X). We may
write § = ¢f + ¢ for some f = Bg and ¢ € L. Then

[¢7(£)(q)| log(e)(a)]| = fele(a))| < [E(a)]

WA

1
[ef) (@) | + |zlg)] = |f(wg)| < %

Thus ¢ (£) € (¢(K n X))°, which proves (3).

It remains to prove (2). So, take any x € (¢(K N ¥))°. Let H =
KNF and «x = X¢|H' Then |k(H n Bq)l < %. By (7) and (8.1), there

is some f € Bg with pf'H = k. Then the formula

x(g) if g & ¢(H N Bp)
E(g) =
f(wg) if g e ¢(HN Bp)
defines some function § € RG. It is easy to verify that pG(i) =X
and £ - ¢f € L. Hence £t € K N X  and ¢ (&) = x. =

(16.53) LEMMA. Let F be a nuclear vector group. If F 1is metri-

zable, then ch is a nuclear group.



150

Proof. Choose arbitrary U € NO(F;C), ¢c>0 and m=1,2,...,
There is a precompact subset P of F with P° < u. According to
(16.3), there exist a vector space E, two symmetric and convex sub-
sets X,Y of E with

-m-5 _
dk(X,Y) < ¢k (k =1,2,...),
a subgroup K of E and a homomorphism ¢ : K-> F, such that
(K n Y) is precompact and P c $(K n X). Next, by (16.4), there

exist a vector space E’, a subgroup K’ of E’, two symmetric
convex subsets X ,Y" of E° and a homomorphism ¢  : K~ » F, such
that
[6(k n ¥)I°% € ¢(K™ n X7), ¢ (K” N Y') e [¢(k nx)I°,
- - -m —
dk(X ,Y') £ cymk (k = 1,2,...)

where Ym is a universal constant depending on m only. Now, it re-
mains to observe that

(o]

¢ (K" nyY)c[e(Rnx)I°cp®cu,

and that ¢ (K" n X') & No(F;c) because [¢(K n ¥)]° c ¢ (K n X') and
¢(K n Y) is precompact. =

Proof of (16.1). Every compact subset of G is contained in the
closure of some precompact subset of G. Therefore we may identify Gpc
with (é);. So, we have to prove that ¢ = G; is nuclear provided

that G 1is complete.

According to (9.7), there are a metrizable and complete nuclear
vector group F, a closed subgroup H of F and a closed subgroup Q
of H, such that G 1is topologically isomorphic to H/Q. From (9.4},
(8.3) and (8.6) we infer that H 1is dually embedded and dually closed
in F. From (16.5) and (7.5) it follows that F /u° is a nuclear
group. Hence, by (8.5), it is locally qguasi-convex. Therefore, by (15.7)
and (14.8), the mapping ¢H : FQ/HO +H is a topological isomorphism.
Thus H is a nuclear group. Applying (7.5), we see that Qg is nuclear,
too. To complete the proof, it remains to observe that, due to (14.10),

the mapping ¢Q : (H/Q) - @°

H is a topological isomorphism. =

(16.6) more. The material of this section is new.
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17. Strong reflexivity

A reflexive group G is called strongly reflexive if every closed

subgroup and every Hausdorff quotient group of G and of G is re-
flexive. Strong reflexivity is an essentially stronger property than
reflexivity. For instance, every infinite dimensional Banach space is a
reflexive, but not strongly reflexive group ((5.3) and (15.2)).

(17.1) PROPOSITION. Let H be a closed subgroup of a strongly re-
flexive group G. Then

(a) H is dually closed in G;

(b) H is dually embedded in G;

(o]

(c) the canonical mappings ¢ /E® > H and ¢H : (G/H) - H

¢
H
are topological isomorphisms;

(d) H and G/H are strongly reflexive.

Proof. (a) Since G is strongly reflexive, G/H is reflexive. In
particular, G/H admits sufficiently many continuous characters, which
means that H is dually closed in G.

(b) Since G is reflexive, it follows from (a) and (14.2) that

aGIH is a topological isomorphism of H onto H°C. Let vy : H°° 5> H

be the inverse isomorphism. Choose any X € H and consider the conti-
Ho ~ 30 00 H0 P o R
nuous isomorphism ¢ : (G /HT) » H, Then XYd € (6 /H') . By

o
is reflexive, so that we may write xy¢H =a O(E)
G /H

for some ¢ € GA/HO. Let ¢ : G - G‘/Ho be the canonical projection.

assumption, G*/Ho

Then £ = Y(k) for a certain «x € G and a direct verification shows
that KlH = X

(c) Since G 1is strongly reflexive, GA/Ho is reflexive, hence

locally gquasi-convex. It follows from (a), (b) and (14.8) that ¢y is
a topological isomorphism. Similarly, ¢ o} ¢ /E°° > (Ho)‘ is a topo-
H
logical isomorphism. Consider the canonical commutative diagram
o
G S > G
B
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It is clear that g 1is a topological isomorphism. A direct verifica-
tion shows that the composition

a ¢

(o] - (o]
> (%) H

°o__H- T B (67 %) £ (el

; H,.-1
is equal to (¢7) .

(d) Let K be a closed subgroup of H. Then K is a closed
subgroup of G, therefore it is reflexive. We shall prove that H/K
is reflexive.

Consider the canonical diagram

H/K —————> G/K

It is clear that j 1is a topological embedding. Since, by (a) and (b),
H 1is dually closed and dually embedded in G, it follows easily that
j(H/K) 1is dually closed and dually embedded in G/K. So, in virtue of

(14.6), we have aH/K(H/K) = (H/K)

Since G 1is strongly reflexive, G/K 1is reflexive, hence locally
quasi-convex. Therefore j(H/K) is locally quasi-convex, too (sub-
groups of locally guasi-convex groups are locally quasi-convex). Con-
sequently, H/K 1is locally gquasi-convex and from (14.3) and (14.7) we

infer that %H/K is open and continuous. Thus H/K is reflexive.

Finally, let Q be a closed subgroup of G/H. That Q@ is re-
flexive follows from the above and the obvious fact that Q may Dbe
identified with a Hausdorff quotient of a closed subgroup of G. The
group (G/H)/Q 1is reflexive because it is a quotient of G. =

A nuclear group G 1is called binuclear 1f G- is nuclear and g

maps G onto G (we do not assume «o to be continuous).

G

(17.2) THEOREM. Let G be a binuclear group. If G is Cech-com-
plete, then it is strongly reflexive.

Proof. That G 1is reflexive follows from (8.5), (14.3) and (14.4)
because Cech-complete space are k-spaces. Every closed subgroup of G
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and of G is dually closed and dually embedded due to (8.6) and (8.3),
respectively. From (7.5) and (8.5) it follows that Hausdorff gquotient
groups of G and of G are locally quasi-convex.

Let H be an arbitrary closed subgroup of G. In view of (14.2),

we only need to prove that the four groups H, G/H, B° and G /H® are
reflexive.

As in the proof of (17.1) (c), we see that the canonical mapping
B : G/H ~» G“/Hoo is a topological isomorphism. The group GM/HOo is
locally quasi-convex, being topoclogically isomorphic to the locally
quasi-convex group G/H. So, by (14.8), the mapping

¢ 6 /HO - (%)
HO

is a topological isomorphism. Since G is Cech-complete, (14.10)

plies that ¢H : (G/H)‘ - H° is a topological isomorphism, too. It is

not hard to verify that the diagram

- ¢ (o] -
G /Hoo H > (HO)
8 (oF)”
[¢ ] -~
G/H > (G/H)

G/H

is commutative. Thus aG/H is a topological isomorphism of G/H onto
(6/H) , i.e. G/H is reflexive. Then (G/H)A is reflexive, too, and
H° is reflexive because ¢H is a topological isomorphism.

The reflexivity of H follows from (14.6), (14.3) and (14.4). Con-~

sequently, H is reflexive, and GA/Ho is reflexive Dbecasue ¢H :
¢ /8° > H is a topological isomorphism due to (14.8). =

(17_.3) COROLLARY. Let G be a metrizable and complete nuclear group
and let (An):=1 be a sequence of LCA groups. Then the product
G x II An is a strongly reflexive group.

n=1

Proof. Naturally, P : =G x II A, is Cech-complete. We have to

n=1
show that P is binuclear. That P is nuclear follows from (7.10) and
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{(7.6). The nuclearity of P is a consequence of (14.11), (16.1),
(1.8) and (7.8):

L)

P = (G x IIL An) ~ G e 3 A
n=1 n=

In view of (1.8) and (14.11), it suffices to prove that G 1is reflex-
ive.

According to (9.7), we can find a metrizable and complete nuclear
vector group F, a closed subgroup H of F and a closed subgroup Q
of H, such that G —~ H/Q. From (15.7) and (16.5) it follows that
F 1is a binuclear group. Hence, by (17.2), it is strongly reflexive.
Finally, (17.1) (d4) implies that H/Q is reflexive. =

We shall now give some examples of groups which are not strongly

reflexive; they show that (17.3) cannot be much generalized. Denote by

Rw

technical result:

the countable product of real lines. We begin with the following

(17.4) LEWWA. Let M be a dense linear subspace of a metrizable

locally convex space E. Then the identity mappings Epc > Eé - MpC -
Mc are all topological isomorphisms.

Proof - It is enough to show that id : Mc - Epc is continuous.

Let X Dbe an arbitrary precompact subset of E. We have to find a

compact subset Y of M with ¥° c x°. Naturally, there is a pre-

compact subset A of M with X c A. Next, there is a null seguence

(un);=1 in M with A < conv {u }m

ntn=1 (see [80], p. 151). Obviously,

the set

A

Y = {tun : -1 £t l1; n=1,2,...}

is compact. Let x € Y°. By {2.3), we have ¥ = pf for some f € E*

From (2.2) it follows that f(u) = x(u) for u e Y. Thus [f(u)] s %
for all u e Y and, consequently, for all u € conv Y. Since X c
conv ¥, for each u € X, we have |x(u)| = [pf(u)| £ [£(u)]| £ %,

which means that x e x°. =«

(17.5) REMARK. Let E be a locally convex space and let E; be

the dual group (or, which is the same, the dual space) endowed with the
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topology of uniform convergence on compact convex sets. Then id:E; >

Ec need not be continuous. For instance, let E be the subspace of

R(.\)

compact convex subset of E is finite dimensional. Therefore E; nay

consisting of finite sequences. It is not hard to see that every

identified with E, whereas E; is simply the direct sum of real

lines. Notice that the evaluation map is a topological isomorphism of
E onto (E.)._.
't

(17.6) REMARK. O.G. Smolyanov [84] proved that the space D = ?D(R)
of test functions on the real line contains a closed linear subspace L

such that 0 /L is topologically isomorphic to a non-closed dense sub-

space M of RY.

(Rw)”‘ -~ Rw, so that M 1is not a reflexive group. Consequently, 0 is

By (17.4), we have M~ (Rw)”, and hence M -~

not strongly reflexive. Observe that ©» is a reflexive nuclear space,
and the dual space ?  is nuclear, too. Thus ©? is a reflexive binu-
clear group ((7.4) and (15.3)). This example shows that the assump-

tion of the metrizability of G in (17.3) is essential.

Let N =1° be the annihilator of L in 0 . We may write

0 . -

m~ o/~ o/’ ~ wh =N~ w

Since M 1is not a reflexive group, it follows that an is not contin-
uous (cf. (15.8)).

The space ©D(R) may be replaced here by the space 0(Q) of test
functions on an arbitrary open subset Q of rR? because the latter

one has a quotient topologically isomorphic to D(R) (see [90] or [85]).
Other examples of spaces with quotients isomorphic to non-closed dense

subspaces of RY are given in [91], Theorem 2 and [92], Theorem 7.

(17.7) EXARPLE. Let wR be the countable direct sum of real lines.
We shall prove that the group E = wR X RY is not strongly reflexive.
Elements of E may be identified with left-hand finite sequences of
real numbers. The family of sets of the form

{(x)) eE: [x | <e, for n sn.},
where n, = 1,2,... and (sn)n<n is a sequence of positive numbers,
o
is a base at zero in E. By (14.11), the dual group E may be iden-

w

tified with the space R” x wR of right-hand finite sequences. Thus E
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is a reflexive binuclear group.

For each n € Z, let e_€ E be the sequence with 1 in the

n
*
n~th place and 0 elsewhere. Let e, nE Z, be the continuous lin-
*
ear functional on E given by en(em) = dmn' We shall identify the dual

space E* with R” x wR in the usual way.

Let 9§ be some fixed irrational number. For each m=1,2,..., set

_ *_ %_1* S*
u.=e_ ten, U, = (1 -3) “le_, - em),
=3 *k_ S—l* *
w, = %e m + e’ W = (1 - %) (em - e_m).

@

Let K be the subgroup of E generated by the set H = {eo} U{u_}

m-m=1
U {wm}:l=1 and let K* be the subgroup of E* generated by the set
* = e 3 e ' lation shows th
H* = {eo} U {um}m=l U {wm}m=1' A direct calculation shows that

K={ue&E: f(u) € 2 for all f € K¥},

therefore K 1is a (weakly) closed subgroup of E. Observe that the
linear mapping @ : E » E* defined by the conditions

...1*
(1 -9) € when m < 0
— * _0
@em = ey when m =
-1 *
(1 -9) Te_, when m > 0
is a topological isomorphism which carries K over onto K%, Conse-
quently, the mapping pE*¢ : E->E is a topological isomorphism which
carries K over onto K°. This means that E /K° ~ E/K.

[ ]
Let E be the group E endowed with the topology induced by its

W

canonical embedding into R~ x RY. It is not hard to see that id :

L]
E/K - E/K 1is a topological isomorphism. Let ¢ : E » E/K be the ca-
nonical projection. The set

H = {tu : t € [0,1]; u e H}

[ ]
is obviously compact in E. Consequently, Y(H') is a compact subset

of E/K. We shall prove that
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(1) [W(H)IG g = (0).

Take any x € (E/K)  with [x(p(H))| £ %. Then xy € E , and,
by (2.3), there is some f € E* with pf = yy. From (2.2) we obtain

(2) flu) = xy(u) for all u e H .

Now, take any v € H and denote IV = {tv : t € [0,1]}. Then w(Iv)
is a subgroup of E/K; since wa(Iv)I < %, it follows that
wa(IV)| = 0 and (2) implies that f(v) = 0. Since v € H was arbi-

trary and H is linearly dense in E, we see that £=0, which means

that x = 0. This proves (1).

*
Let TH be the group of all functions f : H* » T endowed with
*
the topology of pointwise convergence. Let ¢ : E/K - TH be the ho-
momorphism given by the formula
¢ (Y(u)) (v*) = pv*(u) (uwe E, v* e H¥)

(it can be shown that ¢ is a topological embedding). Take any u =

> x.e € E and set f = ¢(y(u). Then, according to our defini-
nez

tions, for each n € Z, we have

pl(1 - )7t

£(up) (x_, - 9x)],

* 1
f(wn)

pl(1 - 8) “(x, - x_ )7,

-n

which can be written as

* *
X, = f(un) + f(wn) + kn + ln’
=f(u’) + 9F(w. s
X_, = (un) + f(wn) + kn + ln’
for some k _,1_ € Z. Since Xx e € E, there is an index n_ > 0
n’"n nn o

such that, for each n > n,, one has X_, = 0, which is clearly pos-

sible if and only if

(3) f(u;) + %f(w;) €z + 92.

The above argument shows that ¢(E/K) consists of all those func-
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tions £ : H* » T which satisfy (3) for sufficiently large n. So,

*
¢$(E/K) 1is a non-closed_dense subgroup of the compact group TH . Now,

(1) implies that (E/K)A is discrete. Therefore, if E/K were reflex-
ive, it would have to be compact and then ¢(E/K) would be a compact
H*

subgroup of T This proves that E/K cannot be reflexive. It is

not hard to see that (E/K)-- is compact and a is a topological

E/K
isomorphism of E/K onto a non-closed dense subgroup of (E/K) {cf.
(14.7)).

From (14.8) we see that E”/KO + K is a topological iso-

ok
morphism. Since EA/KO ~ E/K, and E/K 1is not reflexive, it follows

that K 1is not reflexive, either. It can be shown that «, is an open,

K
but not continuous, isomorphism of K onto KAA, that K is di-
screte and that each precompact subset of K is finite. The homomor-
phism ¢K : (E/K) - K° is not open; consequently, P : E > E/K is
not compact-covering.

The above example shows that in (17.3) the countable product of
LCA groups cannot be replaced by the countable direct sum.

(17.8) REMARK. By (17.3), the groups wR and RY are both strong-
ly reflexive. Therefore (17.7) shows that the product of two strongly
reflexive groups need not be strongly reflexive. It is quite easy to
show that the product of a strongly reflexive group and a compact or
discrete one is strongly reflexive again; it is not known if the prod-
uct of a strongly reflexive group and the real line must be strongly
reflexive.

A standard argument shows that each closed linear subspace and
each Hausdorff quotient space of w(Rw) and (wR)w are reflexive (the
meaning of the symbols is obvious). The author does not know if the

same is true for the spaces (0(R®))® and w((«R)Y).

(17.9) RemARK. A subset of wR 1is open if and only if it inter-
sects each finite dimensional subspace in a relatively open set ([26],
Proposition 1 or [93], Proposition 4 on p. 477). So, wR is a k-space
and RY is a k-space because it is metrizable. Nevertheless, R x R”

@

is not a k-space; the function (x. ) .. » ;Elxnx_n is k-continuous,

but not continuous.



159

{17.10) RERARK. Let Gn =R for all n e 2, let Hn = {0} for
n < 0 and Hn =R for n 2 0. It is then clear that wR x RY~

> (Gn : Hn). So, (17.7) shows that countable reduced products of LCA
nez

groups need not be strongly reflexive. Nevertheless, if G is a reflex-
ive binuclear group (in particular, a countable reduced preoduct of LCA

groups) and K 1is a closed subgroup of G, then ¢K : GA/Ko > K is
a topological isomorphism, ¢K : (G/H)A > k° is an open isomorphism,
ag is an open isomorphism of K onto K and 2G/K is a topologic-
al embedding of G/K into (G/K) . The proofs of these assertions
are left to the reader.

(17.11) EXAMPLE._ Let @ be the first uncountable cardinal and, for

each a < 9, let Ga be the group 2Z/27Z. Let G be (algebraically)

the group = Ga. As a base at zero in G we take the family
a<kf
{HB}B<Q where
HB = {(ga)a<9 : g, =0 for all a< B1.
Then G 1is a non-discrete Hausdorff group and every HB is an open

subgroup of G.

The groups G/HB are discrete, and the canonical projections
"B : G > G/HB induce a homomorphism w of G into the 1limit K of

the inverse system
: G H <
{ﬂYB /HY - G/HB' B Yy < Q}

where HYB are the canonical projections. Evidently, Ui is a topo-

logical embedding. As a matter of fact, G is complete and, therefore,
m is a topological isomorphism of G onto K (see [72], Example 1.6
and [102], §5). So, G may be treated as a closed subgroup of the

product II (G/HB)' We shall show that G is not reflexive; this
B<Q
means that the countable product of LCA groups in (17.3) cannot be re-

placed by an uncountable one (see, however, (17.14)).

The dual group G may be identified algebraically with the sub-

group Q of the product II G&, consisting of all elements g =
a<Q

(ga)a<9 with the property that there is some B < @ (depending on g‘)
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such that g; =0 when B £ a. It is not hard to see that every pre-

compact subset of G is finite; therefore G may be identified with

Q topologically. For each B < @, let gé = be the element

(gBa)a<Q

of TI G with g‘ # 0 and gﬁ =0 when a # B. It is clear that
a<q ¢ BB Ba

the set {0} U {g’;}B<Q is compact, and its quasi-convex hull in G

is G itself. Consequently, ¢~ is discrete. Naturally, we may i-

dentify G with > Ga' This means that «
a<f .
continuous, isomorphism of G onto G

G is an open, but not

The possibility of extending the Pontryagin-van Kampen duality
theorem to non-locally compact abelian groups was investigated in sev-
eral papers. A brief survey can be found in [38], in the notes after
§§23-25. Here we shall restrict ourselves to a review of results con-
nected with strong duality.

(=]
be a sequence of LCA groups. Set G = II An and H=
n=1

Let (&)

> An. Let P and Q be arbitrary closed subgroups of G and H,
n=1

respectively.
Kaplan [49] proved that G and H are reflexive, and that there
(>~ (23
are canonical topological isomorphisms G ~ = An and H = II An.

n=1 n=1
Kaplan [50] proved that P is dually closed and dually embedded in G.
Varopoulos [93] proved that ©Q is dually closed and dually embedded
in H. Kaplan [50] proved that limits of direct and inverse sequences
of LCA groups are reflexive. Similar results were independently ob-
tained by Vilenkin [99].

Varopoulos [93] showed that ¢Q : (H/Q)A > Qo and 0y :HA/QP-*Q‘
are topological isomorphisms. Noble [72] proved that P is reflexive.
He introduced a special class of topological groups, the so-called k-

-groups (see (14.5)) and proved that if K is a k~group, then ap is

continuous. It can be shown that P,Q,G/P and H/Q are all k-groups.
Brown et al. [26] showed that G is strongly reflexive if Ay is com-
pact and An is isomorphic to R or to 2 for n 2z 2 (or, dually,
if Al is discrete and An is isomorphic to R or to T for nz22).

Venkataraman [95] proved that P is reflexive, and that G”/Po >

¢P
P is a topological isomorphism.
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(17.12) REMARK. As a special case of (17.3) we obtain the follow-
ing proposition:

(*) countable products of LCA groups are strongly reflexive.

It turns out that (*) is an almost immediate consequence of the results
of [50] and [93] (see [12]). It was pointed out to the author by E.
Martin-Peinador that, as a matter of fact, (*) is a direct consequence
of the results of [50] only, which allows one to obtain a relatively
elementary proof of (*). Another elementary proof of (*) can be ob-
tained by following the way of [26].

{17.13) REXARK. Let A be an open subgroup of a Hausdorff abelian
group G. Then A 1is dually closed and dually embedded in G ([72],
Lemma 3.3). Venkataraman [94],Corollary 6.3, proved that if G is re-
flexive, then A 1is reflexive, too (for k-groups, this was proved
by Noble [72], Corollary 3.4). It can be shown that G is reflexive
(resp. strongly reflexive) if and only if A is reflexive (resp. strong-
ly reflexive); the proof will be given in [29].

A group locally isomorphic to a reflexive group need not be re-
flexive itself (see (15.3) and (5.1) or (5.3)). The author does not
know whether a group locally isomorphic to a strongly reflexive one
must be strongly reflexive.

(17.14) REMarxk. Negrepontis [71] proved that direct and inverse
limits of compactly generated LCA groups are reflexive (cf. (17.11)).
There is, however, an error in the proof of Proposition 4.4 on p. 250.
The author does not know whether closed subgroups of uncountable direct
sums of real lines are dually closed or dually embedded. Also, it re-
mains an open question whether closed subgroups or Hausdorff quotients
of uncountable products of R's or of 2°s are reflexive. Brown et
al. [26] proved that each closed subgroup of the countable product of
R's can be written in the form

{(xn) X, = 0 for ne€ A and X, € Z for n € B}
for some disjoint subsets A,B of {1,2,...}. Most likely, this re-
sult cannot be extended to uncountable products.

(17.15) MOTE. The material of this section is new, with the follow-
ing exceptions. Strong reflexivity was introduced in [26]. Parts (a)
and {b) of (17.1) were communicated to the author by M.J. Chasco and
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E. Martin-Peinador. Parts (c) and (d) of (17.1) are, in fact, taken
from [26]. The special case of (17.3) when G is a nuclear Fréchet
space and all groups An are trivial appears in [8]. Example (17.11)
is taken from [72]; as a matter of fact, this is the example given by
Leptin in [61].

18. Groups with boundedness

One of the main obstacles in extending Pontryagin duality to non-
-locally compact groups is that the quotient homomorphism G + G/H need
not be compact-covering (cf. (17.6) and (17.7)). To avoid this diffi-
culty, N.Ya. Vilenkin [98) introduced the so-called groups with bound-
edness. In this section we give an outline of Vilenkin's theory and
show how groups with boundedness allow one to obtain an analogue of
(17.2) for binuclear groups which are not Cech-complete. The main re-
sults are (18.4) and (18.7).

Let G be an abelian group. By a boundedness on G we mean a
family of subsets of G, called bounded sets, satisfying the follow-
ing conditions:

1} 1if X 1is bounded, so is -X;
2) subsets of bounded sets are bounded;
3) if X,Y are bounded, so are X U Y and X + Y;

4) finite sets are bounded.

For instance, the family of all finite (resp. precompact or relatively
compact) subsets of a topological group forms a boundedness. Another
example is the family of all subsets of a topological vector space
which are bounded in the usual sense i.e. absorbed by neighbourhoods of
zero. Equipped with this boundedness, a topological vector space E will
be denoted by Eo'

Let G be a group with boundedness and H its subgroup. The
boundedness on G 1induces the boundedness cn H and on G/H. As
bounded subsets of H we take the sets H N X where X is a bounded
subset of G. Bounded subsets of G/H are defined as the canonical
images of bounded subsets of G.

If L 1is a closed linear subspace of a topological vector space
E, then it may happen that (E/L)O # EO/L; for instance, in the no-
tation of (17.6), there are bounded subsets of /L which are not
canonical images of bounded subsets of 7.
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Let G be a topological group with boundedness. We say that G
is a Q-group if it is locally quasi-convex and if quasi-convex hulls of
bounded sets are bounded. If E is a locally convex space, then every
closed, convex and symmetric subset of E is quasi-convex (see the
proof of (2.4)); therefore Eo is a Q-group. It is obvious that any

subgroup of a Q-group is a Q-group. However, a Hausdorff quotient of a
Q-group need not be locally quasi-convex (see (5.3)).

Let ¢ : G » H be a homomorphism of groups with boundedness. We
say that ¢ is bounded if the images of bounded sets are bounded. We
say that ¢ is bounding if to each bounded X c H there corresponds
some bounded Y ©¢ G with X n ¢(G) < ¢(Y). Finally, ¢ is called
bi-bounded if it is both bounded and bounding. Bi-bounded topological
isomorphisms will be called b-isomorphisms.

Let G be a topological group with boundedness. The dual group,

denoted by Gd, is defined in the following way. As a set, Gd con-

sists of all continuous characters of G. As a base at zero in Gd we

take the polars of bounded subsets of G. The boundedness on Gd con-

sists of equicontinuous sets. It follows immediately from our defini-

tions that Gd is a Q-group. Notice that if ¢ : G » H is a b-iso-

morphism, then the dual mapping ¢d : Hd > Gd, defined in the usual

way, is a b-isomorphism, too.

The evaluation map G - Gdd will be denoted by BG' We say that
G 1is an involutive group if 3G is a b-isomorphism of G onto Gdd.

(18.1) PROPOSITION. Let G be a separated Q~group. Then BG is a
b-isomorphism of G onto BG(G).

This is a direct consequence of our definitions.

(18.2) PROPOSITIOR. A locally convex space E 1is semi-reflexive if
and only if E0 is an involutive group.
*
Pg ¢ Ep 7
(EG)d which, again by (2.3), allows us to identify algebraically

Proof. By (2.3), we have the topological isomorphism

(E;)k with (Ec)dd. Thus, E 1is semi-reflexive if and only if im BE =
o
dd
(E ) .

s Now, it suffices to apply (18.1) because E0 is a Q-group. n

(18.3) ProPoSI¥ION. A dually closed, dually embedded subgroup of an
involutive group is involutive.
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Proaf. Let H be a dually closed, dually embedded subgroup of an
involutive group G. 1In view of (18.1), it is enough to show that

im BH = Hdd. Take an arbitrary continuous character ¢ of Hd. The
canonical homomorphism ¢ : Gd > Hd is continuous, therefore £ 1is
a continuous character of Gd. It is obvious that ¢£¢ € H°°. Since
H is dually closed in G, we have B (H) = B°°  (cf. (14.2)). so,
there is some h € H with BG(h) = t¢ and it is not hard to verify
that BH(h) = £ (cf. the proof of (14.6)). =

Let G = X (G, : H.) be a reduced product of groups with bound-

jer 1 1
edness. We introduce boundedness into G in the following way. For
each 1 € I, let mos G ~» Gi be the canonical projection. A subset
X of G 1is bounded if ni(X) is a bounded subset of Gi for all

i el and if wi(x) [ Hi for all but finitely many 1i.

(18.4) PROPOSITICN. Let G = 2 (G, : Hi) be a reduced product of
iel
topological groups with boundedness. Suppose that Hi is dually closed

in Gi for almost all i. Then Gd is canonically b-isomorphic to

> (G{i: Hg). Consequently, if all groups Gi are involutive, then G
iex
is involutive, too.

Proof. Take any x € Gd. Since X is continuous, one has
Ix(u)| = % for some U € N_(G). According to the definition of the

topology on G, we may assume that

(1) U = {(gi) €6 :9g; €U for all i e I}
where Ui S No(Gi) for all i and Hi c Ui for almost all 1i. Let
Xy = XIGi € Gg for each i € I. Then Xj € Hg for almost all i,

which means that

- d o}
(x:):.- €6 := 3 (¢% : HY).
17'1€I iel 1 1
Consider the mapping ¢ : Gd > G~ given by ¢{x) = (Xi)iel' It is
clear that ¢ 1is an algebraical isomorphism of Gd onto G™. We

shall prove that ¢ is a b~isomorphism.



165

1° ¢ is continuous. Take any W € NO(G'). According to the

definition of the topology on G°, we may asume that

W = {(xi) e G Xy € Wy for all i e I}

where Wi [ No(Gg) for all i and H? c Wi for almost all 1i. For
each 1 € I, there exists a bounded subset Xi of Gi with X? c wi'

o o . . ,
If Xi ¢ Hi, then Hi ¢ Xi because Hi is dually closed in Gi‘ This

means that Xi c Hi for almost all i. Then the set

(2) X = {(gi) €6 :g; €X for all i € 1}
is bounded in G. We have x° e No(Gd) and it is clear that
0(x°) < w.

2° ¢ is open. Take any V € No(Gd). There is a bounded subset

X of G with x° c V. we may assume that X has form (2) where

Xi is a bounded subset of Gi for all 1 and Xi s Hi for almost

all 1. We may write

o d | o s
X~ = {(Xi) €6 : % € X for all i e I}.
o o) o o :
If Xi c Hi’ then Hi c Xi‘ So, we have Hi c Xi for almost all i,

which means that ¢(X°) e NO(G')-

3° ¢ is bounded. Let X be a bounded subset of Gd. There is

some U € NO(G) with X c v°. we may assume that U has form (1).
Then

e = {(Xi) e Gd : Xy € U° for all i e I}.

If Hi = Ui’ then U? c H?; since this holds for almost all i, it

follows that ¢(U°) is a bounded subset of G’.

4° ¢ is bounding. Let Y be a bounded subset of G’. We may

assume that

Y = {(Xi) e G X; € Yy for all i e I}

d

where Yi is a bounded subset of Gi for all i and Yi = H? for

all 1 outside a certain finite subset J of I. To each i eI
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there corresponds some Ui S No(Gi) with Yi c Ug. Let A be the

subset of G consisting of all sequences (gi) such that gy € Ui for
i eyJg and 9; € Ui + Hi for 1 ¢ J. Then A e NO(G) and A° is the

bounded subset of Gd consisting of all sequences (xi) such that

o : e} . . .
X; € Ui for i€ J and Xy € (Ui + Hi) for 1 ¢ J. Since Hi is
a subgroup of Gi’ we have (Ui + Hi)O = Ug n H?. This implies that
v, © (U + H)® for i ¢ J. Hence Y c ¢(a%). =

An involutive group G 1is called strongly involutive if every

closed subgroup and every Hausdorff quotient group of G and of Gd
is involutive.

(18.5) LERMIA. Let G be a topological group with boundedness. For

each closed subgroup H of G, the canonical mapping ¢H :(G/H)d—»HO

is a b-isomorphism.
The verification of this simple fact is left to the reader.

(18.6) PrRoPoSITION. Let H be a clcsed subgroup of a strongly in-
volutive group G. Then

(a) H is dually closed and dually embedded in G;

d

{b) the canonical mappings ¢H : Gd/Ho - H and ¢H :(G/H)d» H°

are b-isomorphisms;
(c) the groups H and G/H are strongly involutive.

The proof is similar to that of (17.1). We leave it to the read-
er.

Let G be an abelian topological group. By [G] we shall denote
the group G equipped with the boundedness consisting of precompact
sets.

(18.7) YHEOREM. Let G be a reflexive group. Suppose that both the
groups G and G  are nuclear and complete. Then the group [G] is
strongly involutive.

The assumptions of (18.7) are satisfied, in particular, for G =

D(Q) or G = owR x RY (cf. (17.6) and (17.7)).
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Proof. It follows directly from our assumptions that the identity
mappings 1 : [G]d > [GA] and j : [GA]d > [G-‘] are Db-isomorphisms.
Then the sequence

o d

o =1 ~ .
(6] —— (¢ ] 41— [c71¢ L+ [

shows that [G] 1is involutive. By (8.6) and (8.3), closed subgroups of
[G] and of {G]d are dually closed and dually embedded. Hence, by
(18.3), each closed subgroup of [G] and of [G]d is involutive. It
remains to show that Hausdorff quotient groups of [G] and of[G]d are
involutive.

So, let H be a closed subgroup of [G]. The canonical mapping
vy + [G]/H ~» [G]dd/Hoo is a b-isomorphism (see {14.2)). ©Next, (14.8)

d

implies that the canonical mapping ¢ o ¢ [G]dd/HOO > (H9) is a to-
H

pological isomorphism. It is clear that ¢ o is bounded; that it 1is
H

follows from (8.2). Finally, (18.5) says that o8 : ([c1/M)Y » O  is

a b-isomorphism. Now, the sequence

¢ o H.,d
[6l/B —Y—> [c19d/ge0 B~ (yo)d &) o (rgy/m

shows that [G]/H is involutive. The proof that Hausdorff quotients of

[G]d are involutive is similar. =

(18.8) REMARK. If E 1is a non-reflexive Banach space, then E is
a reflexive group, but EO is not involutive (see (15.2) and (18.2)).
Therefore it is interesting that a metrizable locally convex space E
is a strongly reflexive group if and only if E0 is strongly involu-
tive, namely, if and only if E is a nuclear Fréchet space. This fol-
lows from (17.3), (18.7) and (6.1).

(18.9) NOYE. The material of this section is taken from [98].
Theorem (18.7) is new.
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