

Preface

In 1985 I was looking for a job in Moscow, Russia, and I was facing a difficult
choice. On the one hand I had an offer from a prestigious Electrical Engineering
Institute to do research in applied combinatorics. On the other hand there was
Russian Biotechnology Center NIIGENETIKA on the outskirts of Moscow, which
was building a group in computational biology. The second job paid half the salary
and did not even have a weekly �zakaz,� a food package that was the most impor-
tant job benefit in empty-shelved Moscow at that time. I still don�t know what
kind of classified research the folks at the Electrical Engineering Institute did as
they were not at liberty to tell me before I signed the clearance papers. In contrast,
Andrey Mironov at NIIGENETIKA spent a few hours talking about the algorith-
mic problems in a new futuristic discipline called computational molecular biol-
ogy, and I made my choice. I never regretted it, although for some time I had to
supplement my income at NIIGENETIKA by gathering empty bottles at Moscow
railway stations, one of the very few legal ways to make extra money in pre-per-
estroika Moscow.

Computational biology was new to me, and I spent weekends in Lenin�s
library in Moscow, the only place I could find computational biology papers. The
only book available at that time was Sankoff and Kruskal�s classical Time Warps,
String Edits and Biomolecules: The Theory and Practice of Sequence
Comparison. Since Xerox machines were practically nonexistent in Moscow in
1985, I copied this book almost page by page in my notebooks. Half a year later I
realized that I had read all or almost all computational biology papers in the world.
Well, that was not such a big deal: a large fraction of these papers was written by
the �founding fathers� of computational molecular biology, David Sankoff and
Michael Waterman, and there were just half a dozen journals I had to scan. For the
next seven years I visited the library once a month and read everything published
in the area. This situation did not last long. By 1992 I realized that the explosion
had begun: for the first time I did not have time to read all published computa-
tional biology papers.

PevznerFm.qxd 6/14/2000 12:26 PM Page xiii

Since some journals were not available even in Lenin�s library, I sent requests
for papers to foreign scientists, and many of them were kind enough to send their
preprints. In 1989 I received a heavy package from Michael Waterman with a
dozen forthcoming manuscripts. One of them formulated an open problem that I
solved, and I sent my solution to Mike without worrying much about proofs. Mike
later told me that the letter was written in a very �Russian English� and impossi-
ble to understand, but he was surprised that somebody was able to read his own
paper through to the point where the open problem was stated. Shortly afterward
Mike invited me to work with him at the University of Southern California, and in
1992 I taught my first computational biology course.

This book is based on the Computational Molecular Biology course that I
taught yearly at the Computer Science Department at Pennsylvania State
University (1992�1995) and then at the Mathematics Department at the University
of Southern California (1996�1999). It is directed toward computer science and
mathematics graduate and upper-level undergraduate students. Parts of the book
will also be of interest to molecular biologists interested in bioinformatics. I also
hope that the book will be useful for computational biology and bioinformatics
professionals.

The rationale of the book is to present algorithmic ideas in computational biol-
ogy and to show how they are connected to molecular biology and to biotechnol-
ogy. To achieve this goal, the book has a substantial �computational biology with-
out formulas� component that presents biological motivation and computational
ideas in a simple way. This simplified presentation of biology and computing aims
to make the book accessible to computer scientists entering this new area and to
biologists who do not have sufficient background for more involved computa-
tional techniques. For example, the chapter entitled Computational Gene Hunting
describes many computational issues associated with the search for the cystic
fibrosis gene and formulates combinatorial problems motivated by these issues.
Every chapter has an introductory section that describes both computational and
biological ideas without any formulas. The book concentrates on computational
ideas rather than details of the algorithms and makes special efforts to present
these ideas in a simple way. Of course, the only way to achieve this goal is to hide
some computational and biological details and to be blamed later for �vulgariza-
tion� of computational biology. Another feature of the book is that the last section
in each chapter briefly describes the important recent developments that are out-
side the body of the chapter.

xiv PREFACE

PevznerFm.qxd 6/14/2000 12:26 PM Page xiv

Computational biology courses in Computer Science departments often start
with a 2- to 3-week �Molecular Biology for Dummies� introduction. My observa-
tion is that the interest of computer science students (who usually know nothing
about biology) diffuses quickly if they are confronted with an introduction to biol-
ogy first without any links to computational issues. The same thing happens to biol-
ogists if they are presented with algorithms without links to real biological prob-
lems. I found it very important to introduce biology and algorithms simultaneously
to keep students� interest in place. The chapter entitled Computational Gene
Hunting serves this goal, although it presents an intentionally simplified view of
both biology and algorithms. I have also found that some computational biologists
do not have a clear vision of the interconnections between different areas of com-
putational biology. For example, researchers working on gene prediction may have
a limited knowledge of, let�s say, sequence comparison algorithms. I attempted to
illustrate the connections between computational ideas from different areas of
computational molecular biology.

The book covers both new and rather old areas of computational biology. For
example, the material in the chapter entitled Computational Proteomics, and most
of material in Genome Rearrangements, Sequence Comparison and DNA Arrays
have never been published in a book before. At the same time the topics such as
those in Restriction Mapping are rather old-fashioned and describe experimental
approaches that are rarely used these days. The reason for including these rather
old computational ideas is twofold. First, it shows newcomers the history of ideas
in the area and warns them that the hot areas in computational biology come and
go very fast. Second, these computational ideas often have second lives in differ-
ent application domains. For example, almost forgotten techniques for restriction
mapping find a new life in the hot area of computational proteomics. There are a
number of other examples of this kind (e.g., some ideas related to Sequencing By
Hybridization are currently being used in large-scale shotgun assembly), and I feel
that it is important to show both old and new computational approaches.

A few words about a trade-off between applied and theoretical components in
this book. There is no doubt that biologists in the 21st century will have to know
the elements of discrete mathematics and algorithms�at least they should be able
to formulate the algorithmic problems motivated by their research. In computa-
tional biology, the adequate formulation of biological problems is probably the
most difficult component of research, at least as difficult as the solution of the
problems. How can we teach students to formulate biological problems in com-
putational terms? Since I don�t know, I offer a story instead.

PREFACE xv

PevznerFm.qxd 6/14/2000 12:26 PM Page xv

Twenty years ago, after graduating from a university, I placed an ad for
�Mathematical consulting� in Moscow. My clients were mainly Cand. Sci.
(Russian analog of Ph.D.) trainees in different applied areas who did not have a
good mathematical background and who were hoping to get help with their diplo-
mas (or, at least, their mathematical components). I was exposed to a wild collec-
tion of topics ranging from �optimization of inventory of airport snow cleaning
equipment� to �scheduling of car delivery to dealerships.� In all those projects the
most difficult part was to figure out what the computational problem was and to
formulate it; coming up with the solution was a matter of straightforward applica-
tion of known techniques.

I will never forget one visitor, a 40-year-old, polite, well-built man. In contrast
to others, this one came with a differential equation for me to solve instead of a
description of his research area. At first I was happy, but then it turned out that the
equation did not make sense. The only way to figure out what to do was to go back
to the original applied problem and to derive a new equation. The visitor hesitated
to do so, but since it was his only way to a Cand. Sci. degree, he started to reveal
some details about his research area. By the end of the day I had figured out that he
was interested in landing some objects on a shaky platform. It also became clear to
me why he never gave me his phone number: he was an officer doing classified
research: the shaking platform was a ship and the landing objects were planes. I
trust that revealing this story 20 years later will not hurt his military career.

Nature is even less open about the formulation of biological problems than
this officer. Moreover, some biological problems, when formulated adequately,
have many bells and whistles that may sometimes overshadow and disguise the
computational ideas. Since this is a book about computational ideas rather than
technical details, I intentionally used simplified formulations that allow presenta-
tion of the ideas in a clear way. It may create an impression that the book is too
theoretical, but I don�t know any other way to teach computational ideas in biol-
ogy. In other words, before landing real planes on real ships, students have to learn
how to land toy planes on toy ships.

I�d like to emphasize that the book does not intend to uniformly cover all areas
of computational biology. Of course, the choice of topics is influenced by my taste
and my research interests. Some large areas of computational biology are not cov-
ered�most notably, DNA statistics, genetic mapping, molecular evolution, pro-
tein structure prediction, and functional genomics. Each of these areas deserves a
separate book, and some of them have been written already. For example,
Waterman 1995 [357] contains excellent coverage of DNA statistics, Gusfield

xvi PREFACE

PevznerFm.qxd 6/14/2000 12:26 PM Page xvi

1997 [145] includes an encyclopedia of string algorithms, and Salzberg et al. 1998
[296] has some chapters with extensive coverage of protein structure prediction.
Durbin et al. 1998 [93] and Baldi and Brunak 1997 [24] are more specialized
books that emphasize Hidden Markov Models and machine learning. Baxevanis
and Ouellette 1998 [28] is an excellent practical guide in bioinformatics directed
more toward applications of algorithms than algorithms themselves.

I�d like to thank several people who taught me different aspects of computa-
tional molecular biology. Andrey Mironov taught me that common sense is per-
haps the most important ingredient of any applied research. Mike Waterman was
a terrific teacher at the time I moved from Moscow to Los Angeles, both in sci-
ence and life. In particular, he patiently taught me that every paper should pass
through at least a dozen iterations before it is ready for publishing. Although this
rule delayed the publication of this book by a few years, I religiously teach it to
my students. My former students Vineet Bafna and Sridhar Hannenhalli were kind
enough to teach me what they know and to join me in difficult long-term projects.
I also would like to thank Alexander Karzanov, who taught me combinatorial opti-
mization, including the ideas that were most useful in my computational biology
research.

I would like to thank my collaborators and co-authors: Mark Borodovsky,
with whom I worked on DNA statistics and who convinced me in 1985 that com-
putational biology had a great future; Earl Hubbell, Rob Lipshutz, Yuri Lysov,
Andrey Mirzabekov, and Steve Skiena, my collaborators in DNA array research;
Eugene Koonin, with whom I tried to analyze complete genomes even before the
first bacterial genome was sequenced; Norm Arnheim, Mikhail Gelfand, Melissa
Moore, Mikhail Roytberg, and Sing-Hoi Sze, my collaborators in gene finding;
Karl Clauser, Vlado Dancik, Maxim Frank-Kamenetsky, Zufar Mulyukov, and
Chris Tang, my collaborators in computational proteomics; and the late Eugene
Lawler, Xiaoqiu Huang, Webb Miller, Anatoly Vershik, and Martin Vingron, my
collaborators in sequence comparison.

I am also thankful to many colleagues with whom I discussed different aspects
of computational molecular biology that directly or indirectly influenced this
book: Ruben Abagyan, Nick Alexandrov, Stephen Altschul, Alberto Apostolico,
Richard Arratia, Ricardo Baeza-Yates, Gary Benson, Piotr Berman, Charles
Cantor, Radomir Crkvenjakov, Kun-Mao Chao, Neal Copeland, Andreas Dress,
Radoje Drmanac, Mike Fellows, Jim Fickett, Alexei Finkelstein, Steve Fodor,
Alan Frieze, Dmitry Frishman, Israel Gelfand, Raffaele Giancarlo, Larry
Goldstein, Andy Grigoriev, Dan Gusfield, David Haussler, Sorin Istrail, Tao Jiang,

PREFACE xvii

PevznerFm.qxd 6/14/2000 12:26 PM Page xvii

Sampath Kannan, Samuel Karlin, Dick Karp, John Kececioglu, Alex Kister,
George Komatsoulis, Andrzey Konopka, Jenny Kotlerman, Leonid Kruglyak, Jens
Lagergren, Gadi Landau, Eric Lander, Gene Myers, Giri Narasimhan, Ravi Ravi,
Mireille Regnier, Gesine Reinert, Isidore Rigoutsos, Mikhail Roytberg, Anatoly
Rubinov, Andrey Rzhetsky, Chris Sander, David Sankoff, Alejandro Schaffer,
David Searls, Ron Shamir, Andrey Shevchenko, Temple Smith, Mike Steel,
Lubert Stryer, Elizabeth Sweedyk, Haixi Tang, Simon Tavar` e, Ed Trifonov,
Tandy Warnow, Haim Wolfson, Jim Vath, Shibu Yooseph, and others.

It has been a pleasure to work with Bob Prior and Michael Rutter of the MIT
Press. I am grateful to Amy Yeager, who copyedited the book, Mikhail Mayofis
who designed the cover, and Oksana Khleborodova, who illustrated the steps of
the gene prediction algorithm. I also wish to thank those who supported my
research: the Department of Energy, the National Institutes of Health, and the
National Science Foundation.

Last but not least, many thanks to Paulina and Arkasha Pevzner, who were
kind enough to keep their voices down and to tolerate my absent-mindedness
while I was writing this book.

xviii PREFACE

PevznerFm.qxd 6/14/2000 12:26 PM Page xviii

Chapter 1

Computational Gene Hunting

1.1 Introduction

Cystic fibrosis is a fatal disease associated with recurrent respiratory infections and
abnormal secretions. The disease is diagnosed in children with a frequency of 1
per 2500. One per 25 Caucasians carries a faulty cystic fibrosis gene, and children
who inherit faulty genes from both parents become sick.

In the mid-1980s biologists knew nothing about the gene causing cystic fibro-
sis, and no reliable prenatal diagnostics existed. The best hope for a cure for many
genetic diseases rests with finding the defective genes. The search for the cystic
fibrosis (CF) gene started in the early 1980s, and in 1985 three groups of scien-
tists simultaneously and independently proved that the CF gene resides on the 7th
chromosome. In 1989 the search was narrowed to a short area of the 7th chromo-
some, and the 1,480-amino-acids-long CF gene was found. This discovery led to
efficient medical diagnostics and a promise for potential therapy for cystic fibrosis.
Gene hunting for cystic fibrosis was a painstaking undertaking in late 1980s. Since
then thousands of medically important genes have been found, and the search for
many others is currently underway. Gene hunting involves many computational
problems, and we review some of them below.

1.2 Genetic Mapping

Like cartographers mapping the ancient world, biologists over the past three deca-
des have been laboriously charting human DNA. The aim is to position genes and
other milestones on the various chromosomes to understand the genome’s geogra-
phy.

1

2 CHAPTER 1. COMPUTATIONAL GENE HUNTING

When the search for the CF gene started, scientists had no clue about the na-
ture of the gene or its location in the genome. Gene hunting usually starts with
genetic mapping, which provides an approximate location of the gene on one of
the human chromosomes (usually within an area a few million nucleotides long).
To understand the computational problems associated with genetic mapping we use
an oversimplified model of genetic mapping in uni-chromosomal robots. Every ro-
bot has n genes (in unknown order) and every gene may be either in state 0 or in
state 1, resulting in two phenotypes (physical traits): red and brown. If we assume
that n = 3 and the robot’s three genes define the color of its hair, eyes, and lips,
then 000 is all-red robot (red hair, red eyes, and red lips), while 111 is all-brown
robot. Although we can observe the robots’ phenotypes (i.e., the color of their hair,
eyes, and lips), we don’t know the order of genes in their genomes. Fortunately,
robots may have children, and this helps us to construct the robots’ genetic maps.

A child of robots m1 : : : mn and f1 : : : fn is either a robot m1 : : : mifi+1 : : : fn
or a robot f1 : : : fimi+1 : : : mn for some recombination position i, with 0 � i � n.
Every pair of robots may have 2(n + 1) different kinds of children (some of them
may be identical), with the probability of recombination at position i equal to

1
(n+1) .

Genetic Mapping Problem Given the phenotypes of a large number of children
of all-red and all-brown robots, find the gene order in the robots.

Analysis of the frequencies of different pairs of phenotypes allows one to de-
rive the gene order. Compute the probability p that a child of an all-red and an
all-brown robot has hair and eyes of different colors. If the hair gene and the eye
gene are consecutive in the genome, then the probability of recombination between
these genes is 1

n+1 . If the hair gene and the eye gene are not consecutive, then the
probability that a child has hair and eyes of different colors is p = i

n+1 , where i is
the distance between these genes in the genome. Measuring p in the population of
children helps one to estimate the distances between genes, to find gene order, and
to reconstruct the genetic map.

In the world of robots a child’s chromosome consists of two fragments: one
fragment from mother-robot and another one from father-robot. In a more accu-
rate (but still unrealistic) model of recombination, a child’s genome is defined as a
mosaic of an arbitrary number of fragments of a mother’s and a father’s genomes,
such as m1 : : : mifi+1 : : : fjmj+1 : : : mkfk+1 : : :. In this case, the probability of
recombination between two genes is proportional to the distance between these

1.2. GENETIC MAPPING 3

genes and, just as before, the farther apart the genes are, the more often a recom-
bination between them occurs. If two genes are very close together, recombination
between them will be rare. Therefore, neighboring genes in children of all-red
and all-brown robots imply the same phenotype (both red or both brown) more
frequently, and thus biologists can infer the order by considering the frequency of
phenotypes in pairs. Using such arguments, Sturtevant constructed the first genetic
map for six genes in fruit flies in 1913.

Although human genetics is more complicated than robot genetics, the silly ro-
bot model captures many computational ideas behind genetic mapping algorithms.
One of the complications is that human genes come in pairs (not to mention that
they are distributed over 23 chromosomes). In every pair one gene is inherited
from the mother and the other from the father. Therefore, the human genome
may contain a gene in state 1 (red eye) on one chromosome and a gene in state 0
(brown eye) on the other chromosome from the same pair. If F1 : : : FnjF1 : : :Fn
represents a father genome (every gene is present in two copies Fi and Fi) and
M1 : : :MnjM1 : : :Mn represents a mother genome, then a child genome is rep-
resented by f1 : : : fnjm1 : : : mn, with fi equal to either Fi or Fi and mi equal
to either Mi or Mi. For example, the father 11j00 and mother 00j00 may have
four different kinds of children: 11j00 (no recombination), 10j00 (recombination),
01j00 (recombination), and 00j00 (no recombination). The basic ideas behind hu-
man and robot genetic mapping are similar: since recombination between close
genes is rare, the proportion of recombinants among children gives an indication
of the distance between genes along the chromosome.

Another complication is that differences in genotypes do not always lead to
differences in phenotypes. For example, humans have a gene called ABO blood
type which has three states—A, B, and O—in the human population. There exist
six possible genotypes for this gene—AA;AB;AO;BB;BO, and OO—but only
four phenotypes. In this case the phenotype does not allow one to deduce the
genotype unambiguously. From this perspective, eye colors or blood types may
not be the best milestones to use to build genetic maps. Biologists proposed using
genetic markers as a convenient substitute for genes in genetic mapping. To map a
new gene it is necessary to have a large number of already mapped markers, ideally
evenly spaced along the chromosomes.

Our ability to map the genes in robots is based on the variability of pheno-
types in different robots. For example, if all robots had brown eyes, the eye gene
would be impossible to map. There are a lot of variations in the human genome
that are not directly expressed in phenotypes. For example, if half of all humans

4 CHAPTER 1. COMPUTATIONAL GENE HUNTING

had nucleotide A at a certain position in the genome, while the other half had nuc-
leotide T at the same position, it would be a good marker for genetic mapping.
Such mutation can occur outside of any gene and may not affect the phenotype at
all. Botstein et al., 1980 [44] suggested using such variable positions as genetic
markers for mapping. Since sampling letters at a given position of the genome is
experimentally infeasible, they suggested a technique called restriction fragment
length polymorphism (RFLP) to study variability.

Hamilton Smith discovered in 1970 that the restriction enzyme HindII cleaves
DNA molecules at every occurrence of a sequence GTGCAC or GTTAAC (re-
striction sites). In RFLP analysis, human DNA is cut by a restriction enzyme like
HindII at every occurrence of the restriction site into about a million restriction
fragments, each a few thousand nucleotides long. However, any mutation that af-
fects one of the restriction sites (GTGCAC or GTTAAC for HindII) disables one of
the cuts and merges two restriction fragments A and B separated by this site into a
single fragment A + B. The crux of RFLP analysis is the detection of the change
in the length of the restriction fragments.

Gel-electrophoresis separates restriction fragments, and a labeled DNA probe
is used to determine the size of the restriction fragment hybridized with this probe.
The variability in length of these restriction fragments in different individuals serves
as a genetic marker because a mutation of a single nucleotide may destroy (or
create) the site for a restriction enzyme and alter the length of the corresponding
fragment. For example, if a labeled DNA probe hybridizes to a fragment A and
a restriction site separating fragments A and B is destroyed by a mutation, then
the probe detects A + B instead of A. Kan and Dozy, 1978 [183] found a new
diagnostic for sickle-cell anemia by identifying an RFLP marker located close to
the sickle-cell anemia gene.

RFLP analysis transformed genetic mapping into a highly competitive race
and the successes were followed in short order by finding genes responsible for
Huntington’s disease (Gusella et al., 1983 [143]), Duchenne muscular dystrophy
(Davies et al., 1983 [81]), and retinoblastoma (Cavenee et al., 1985 [60]). In a
landmark publication, Donis-Keller et al., 1987 [88] constructed the first RFLP
map of the human genome, positioning one RFLP marker per approximately 10
million nucleotides. In this study, 393 random probes were used to study RFLP in
21 families over 3 generations. Finally, a computational analysis of recombination
led to ordering RFLP markers on the chromosomes.

In 1985 the recombination studies narrowed the search for the cystic fibrosis
gene to an area of chromosome 7 between markers met (a gene involved in cancer)

1.3. PHYSICAL MAPPING 5

and D7S8 (RFLP marker). The length of the area was approximately 1 million
nucleotides, and some time would elapse before the cystic fibrosis gene was found.
Physical mapping follows genetic mapping to further narrow the search.

1.3 Physical Mapping

Physical mapping can be understood in terms of the following analogy. Imagine
several copies of a book cut by scissors into thousands of pieces. Each copy is cut
in an individual way such that a piece from one copy may overlap a piece from
another copy. For each piece and each word from a list of key words, we are told
whether the piece contains the key word. Given this data, we wish to determine the
pattern of overlaps of the pieces.

The process starts with breaking the DNA molecule into small pieces (e.g.,
with restriction enzymes); in the CF project DNA was broken into pieces roughly
50 Kb long. To study individual pieces, biologists need to obtain each of them
in many copies. This is achieved by cloning the pieces. Cloning incorporates a
fragment of DNA into some self-replicating host. The self-replication process then
creates large numbers of copies of the fragment, thus enabling its structure to be
investigated. A fragment reproduced in this way is called a clone.

As a result, biologists obtain a clone library consisting of thousands of clones
(each representing a short DNA fragment) from the same DNA molecule. Clones
from the library may overlap (this can be achieved by cutting the DNA with dis-
tinct enzymes producing overlapping restriction fragments). After a clone library
is constructed, biologists want to order the clones, i.e., to reconstruct the relative
placement of the clones along the DNA molecule. This information is lost in the
construction of the clone library, and the reconstruction starts with fingerprinting
the clones. The idea is to describe each clone using an easily determined finger-
print, which can be thought of as a set of “key words” for the clone. If two clones
have substantial overlap, their fingerprints should be similar. If non-overlapping
clones are unlikely to have similar fingerprints then fingerprints would allow a
biologist to distinguish between overlapping and non-overlapping clones and to
reconstruct the order of the clones (physical map). The sizes of the restriction
fragments of the clones or the lists of probes hybridizing to a clone provide such
fingerprints.

To map the cystic fibrosis gene, biologists used physical mapping techniques
called chromosome walking and chromosome jumping. Recall that the CF gene
was linked to RFLP D7S8. The probe corresponding to this RFLP can be used

6 CHAPTER 1. COMPUTATIONAL GENE HUNTING

to find a clone containing this RFLP. This clone can be sequenced, and one of its
ends can be used to design a new probe located even closer to the CF gene. These
probes can be used to find new clones and to walk from D7S8 to the CF gene. After
multiple iterations, hundreds of kilobases of DNA can be sequenced from a region
surrounding the marker gene. If the marker is closely linked to the gene of interest,
eventually that gene, too, will be sequenced. In the CF project, a total distance of
249 Kb was cloned in 58 DNA fragments.

Gene walking projects are rather complex and tedious. One obstacle is that not
all regions of DNA will be present in the clone library, since some genomic regions
tend to be unstable when cloned in bacteria. Collins et al., 1987 [73] developed
chromosome jumping, which was successfully used to map the area containing the
CF gene.

Although conceptually attractive, chromosome walking and jumping are too
laborious for mapping entire genomes and are tailored to mapping individual genes.
A pre-constructed map covering the entire genome would save significant effort for
mapping any new genes.

Different fingerprints lead to different mapping problems. In the case of finger-
prints based on hybridization with short probes, a probe may hybridize with many
clones. For the map assembly problem with n clones and m probes, the hybridiza-
tion data consists of an n � m matrix (dij), where dij = 1 if clone Ci contains
probe pj , and dij = 0 otherwise (Figure 1.1). Note that the data does not indicate
how many times a probe occurs on a given clone, nor does it give the order of
occurrence of the probes in a clone.

The simplest approximation of physical mapping is the Shortest Covering
String Problem. Let S be a string over the alphabet of probes p1; : : : ; pm. A string
S covers a clone C if there exists a substring of S containing exactly the same set
of probes as C (order and multiplicities of probes in the substring are ignored). A
string in Figure 1.1 covers each of nine clones corresponding to the hybridization
data.

Shortest Covering String Problem Given hybridization data, find a shortest
string in the alphabet of probes that covers all clones.

Before using probes for DNA mapping, biologists constructed restriction maps
of clones and used them as fingerprints for clone ordering. The restriction map of
a clone is an ordered list of restriction fragments. If two clones have restriction
maps that share several consecutive fragments, they are likely to overlap. With

1.3. PHYSICAL MAPPING 7

1

2

3

4

5

6

7

8

9

A B C D E F G

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111

1

1

1

1

1

1

1

1

1

1

1

1

CLONES:

1

2

3

4

5

6

7

8

9

A B C D E F G

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111

1

1

1

1

1

1

1

1

1

1

1

1

PROBES

SHORTEST COVERING STRING

C A E B G C F DGABEGAD

1
2

3
4

5
6

7
8

9

Figure 1.1: Hybridization data and Shortest Covering String.

this strategy, Kohara et al., 1987 [204] assembled a restriction map of the E. coli
genome with 5 million base pairs.

To build a restriction map of a clone, biologists use different biochemical tech-
niques to derive indirect information about the map and combinatorial methods to
reconstruct the map from these data. The problem often might be formulated as
recovering positions of points when only some pairwise distances between points
are known.

Many mapping techniques lead to the following combinatorial problem. If X
is a set of points on a line, then �X denotes the multiset of all pairwise distances
between points in X: �X = fjx1 � x2j : x1; x2 2 Xg. In restriction mapping a
subset E � �X , corresponding to the experimental data about fragment lengths,

8 CHAPTER 1. COMPUTATIONAL GENE HUNTING

is given, and the problem is to reconstruct X from the knowledge of E alone. In
the Partial Digest Problem (PDP), the experiment provides data about all pairwise
distances between restriction sites and E = �X .

Partial Digest Problem Given �X , reconstruct X .

The problem is also known as the turnpike problem in computer science. Sup-
pose you know the set of all distances between every pair of exits on a highway.
Could you reconstruct the “geography” of that highway from these data, i.e., find
the distances from the start of the highway to every exit? If you consider instead of
highway exits the sites of DNA cleavage by a restriction enzyme, and if you man-
age to digest DNA in such a way that the fragments formed by every two cuts are
present in the digestion, then the sizes of the resulting DNA fragments correspond
to distances between highway exits.

For this seemingly trivial puzzle no polynomial algorithm is yet known.

1.4 Sequencing

Imagine several copies of a book cut by scissors into 10 million small pieces. Each
copy is cut in an individual way so that a piece from one copy may overlap a piece
from another copy. Assuming that 1 million pieces are lost and the remaining 9
million are splashed with ink, try to recover the original text. After doing this
you’ll get a feeling of what a DNA sequencing problem is like. Classical sequenc-
ing technology allows a biologist to read short (300- to 500-letter) fragments per
experiment (each of these fragments corresponds to one of the 10 million pieces).
Computational biologists have to assemble the entire genome from these short frag-
ments, a task not unlike assembling the book from millions of slips of paper. The
problem is complicated by unavoidable experimental errors (ink splashes).

The simplest, naive approximation of DNA sequencing corresponds to the fol-
lowing problem:

Shortest Superstring Problem Given a set of strings s1; : : : ; sn, find the shortest
string s such that each si appears as a substring of s.

Figure 1.2 presents two superstrings for the set of all eight three-letter strings in
a 0-1 alphabet. The first (trivial) superstring is obtained by concatenation of these

1.4. SEQUENCING 9

eight strings, while the second one is a shortest superstring. This superstring is re-
lated to the solution of the “Clever Thief and Coding Lock” problem (the minimum
number of tests a thief has to conduct to try all possible k-letter passwords).

SHORTEST SUPERSTRING PROBLEM

concatenation
superstring

set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

 000 001 010 011 100 101 110 111

shortest
superstring 0 0 0 1 1 1 0 1 0 0

000

011

110

010

001

111

101

100

Figure 1.2: Superstrings for the set of eight three-letter strings in a 0-1 alphabet.

Since the Shortest Superstring Problem is known to be NP-hard, a number
of heuristics have been proposed. The early DNA sequencing algorithms used a
simple greedy strategy: repeatedly merge a pair of strings with maximum overlap
until only one string remains.

Although conventional DNA sequencing is a fast and efficient procedure now,
it was rather time consuming and hard to automate 10 years ago. In 1988 four
groups of biologists independently and simultaneously suggested a new approach
called Sequencing by Hybridization (SBH). They proposed building a miniature
DNA Chip (Array) containing thousands of short DNA fragments working like the
chip’s memory. Each of these short fragments reveals some information about
an unknown DNA fragment, and all these pieces of information combined to-
gether were supposed to solve the DNA sequencing puzzle. In 1988 almost no-
body believed that the idea would work; both biochemical problems (synthesizing
thousands of short DNA fragments on the surface of the array) and combinatorial

10 CHAPTER 1. COMPUTATIONAL GENE HUNTING

problems (sequence reconstruction by array output) looked too complicated. Now,
building DNA arrays with thousands of probes has become an industry.

Given a DNA fragment with an unknown sequence of nucleotides, a DNA ar-
ray provides l-tuple composition, i.e., information about all substrings of length l
contained in this fragment (the positions of these substrings are unknown).

Sequencing by Hybridization Problem Reconstruct a string by its l-tuple com-
position.

Although DNA arrays were originally invented for DNA sequencing, very few
fragments have been sequenced with this technology (Drmanac et al., 1993 [90]).
The problem is that the infidelity of hybridization process leads to errors in de-
riving l-tuple composition. As often happens in biology, DNA arrays first proved
successful not for a problem for which they were originally invented, but for dif-
ferent applications in functional genomics and mutation detection.

Although conventional DNA sequencing and SBH are very different ap-
proaches, the corresponding computational problems are similar. In fact, SBH
is a particular case of the Shortest Superstring Problem when all strings s1; : : : ; sn
represent the set of all substrings of s of fixed size. However, in contrast to the
Shortest Superstring Problem, there exists a simple linear-time algorithm for the
SBH Problem.

1.5 Similarity Search

After sequencing, biologists usually have no idea about the function of found
genes. Hoping to find a clue to genes’ functions, they try to find similarities be-
tween newly sequenced genes and previously sequenced genes with known func-
tions. A striking example of a biological discovery made through a similarity
search happened in 1984 when scientists used a simple computational technique to
compare the newly discovered cancer-causing �-sys oncogene to all known genes.
To their astonishment, the cancer-causing gene matched a normal gene involved in
growth and development. Suddenly, it became clear that cancer might be caused
by a normal growth gene being switched on at the wrong time (Doolittle et al.,
1983 [89], Waterfield et al., 1983 [353]).

In 1879 Lewis Carroll proposed to the readers of Vanity Fair the following
puzzle: transform one English word into another one by going through a series
of intermediate English words where each word differs from the next by only one

1.5. SIMILARITY SEARCH 11

letter. To transform head into tail one needs just four such intermediates: head!
heal ! teal ! tell ! tall ! tail. Levenshtein, 1966 [219] introduced a notion
of edit distance between strings as the minimum number of elementary operations
needed to transform one string into another where the elementary operations are
insertion of a symbol, deletion of a symbol, and substitution of a symbol by another
one. Most sequence comparison algorithms are related to computing edit distance
with this or a slightly different set of elementary operations.

Since mutation in DNA represents a natural evolutionary process, edit distance
is a natural measure of similarity between DNA fragments. Similarity between
DNA sequences can be a clue to common evolutionary origin (like similarity be-
tween globin genes in humans and chimpanzees) or a clue to common function
(like similarity between the �-sys oncogene and a growth-stimulating hormone).

If the edit operations are limited to insertions and deletions (no substitutions),
then the edit distance problem is equivalent to the longest common subsequence
(LCS) problem. Given two strings V = v1 : : : vn and W = w1 : : : wm, a common
subsequence of V and W of length k is a sequence of indices 1 � i1 < : : : < ik �
n and 1 � j1 < : : : < jk � m such that

vit = wjt for 1 � t � k

Let LCS(V;W) be the length of a longest common subsequence (LCS) of V and
W . For example, LCS (ATCTGAT, TGCATA)=4 (the letters forming the LCS
are in bold). Clearly n+m� 2LCS(V;W) is the minimum number of insertions
and deletions needed to transform V into W .

Longest Common Subsequence Problem Given two strings, find their longest
common subsequence.

When the area around the cystic fibrosis gene was sequenced, biologists com-
pared it with the database of all known genes and found some similarities between
a fragment approximately 6500 nucleotides long and so-called ATP binding pro-
teins that had already been discovered. These proteins were known to span the cell
membrane multiple times and to work as channels for the transport of ions across
the membrane. This seemed a plausible function for a CF gene, given the fact that
the disease involves abnormal secretions. The similarity also pointed to two con-
served ATP binding sites (ATP proteins provide energy for many reactions in the
cell) and shed light on the mechanism that is damaged in faulty CF genes. As a re-

12 CHAPTER 1. COMPUTATIONAL GENE HUNTING

sult the cystic fibrosis gene was called cystic fibrosis transmembrane conductance
regulator.

1.6 Gene Prediction

Knowing the approximate gene location does not lead yet to the gene itself. For
example, Huntington’s disease gene was mapped in 1983 but remained elusive until
1993. In contrast, the CF gene was mapped in 1985 and found in 1989.

In simple life forms, such as bacteria, genes are written in DNA as continuous
strings. In humans (and other mammals), the situation is much less straightfor-
ward. A human gene, consisting of roughly 2,000 letters, is typically broken into
subfragments called exons. These exons may be shuffled, seemingly at random,
into a section of chromosomal DNA as long as a million letters. A typical human
gene can have 10 exons or more. The BRCA1 gene, linked to breast cancer, has 27
exons.

This situation is comparable to a magazine article that begins on page 1, con-
tinues on page 13, then takes up again on pages 43, 51, 53, 74, 80, and 91, with
pages of advertising and other articles appearing in between. We don’t understand
why these jumps occur or what purpose they serve. Ninety-seven percent of the
human genome is advertising or so-called “junk” DNA.

The jumps are inconsistent from species to species. An “article” in an insect
edition of the genetic magazine will be printed differently from the same article
appearing in a worm edition. The pagination will be completely different: the in-
formation that appears on a single page in the human edition may be broken up into
two in the wheat version, or vice versa. The genes themselves, while related, are
quite different. The mouse-edition gene is written in mouse language, the human-
edition gene in human language. It’s a little like German and English: many words
are similar, but many others are not.

Prediction of a new gene in a newly sequenced DNA sequence is a difficult
problem. Many methods for deciding what is advertising and what is story depend
on statistics. To continue the magazine analogy, it is something like going through
back issues of the magazine and finding that human-gene “stories” are less likely
to contain phrases like “for sale,” telephone numbers, and dollar signs. In contrast,
a combinatorial approach to gene prediction uses previously sequenced genes as a
template for recognition of newly sequenced genes. Instead of employing statis-
tical properties of exons, this method attempts to solve the combinatorial puzzle:
find a set of blocks (candidate exons) in a genomic sequence whose concatenation

1.6. GENE PREDICTION 13

(splicing) fits one of the known proteins. Figure 1.3 illustrates this puzzle for a
“genomic” sequence

0twas brilliant thrilling morning and the slimy hellish lithe doves

gyrated and gambled nimbly in the waves

whose different blocks “make up” Lewis Carroll’s famous “target protein”:

0t was brillig; and the slithy toves did gyre and gimble in the wabe

’T W AS B R I L L I G, AND T H E S L I T H T OVE S DI D GYRE NDA GI M B L E I N T H E W AB E

T HR I L L I AND H E L H OVE SNG I SL D I N T H E W A EGYRAT E D VM B LNI Y

I NGYRAT E D T H E W A EVM B LNI Y

T HR I L L I AND H E L H OVE SNG I SL D

W AS BT R I L L I G, AND T H E S L T H E OVE SDW AS B R I L L I G, AND T H E S L T H E OVE ST D

W AS BT R I L L I G, AND T H E S L T H E OVE SDW AS B R I L L I G, AND T H E S L T H E OVE ST D GYRAT NDAE DGYRAT NDAE D M B L EGA I N T H E W AVEI N T H E W A EVD

GYRAT NDAE DGYRAT NDAE D M B L EGA I N T H E W AVEI N T H E W A EVD

IT WAS BRILLI THRILLING MORNIN G, AND THE S L I MY HELLISH L I T HE DOVES GYRATED AND GAMBLED NIMBLY IN THE WAVESA N T

Y

Figure 1.3: Spliced Alignment Problem: block assemblies with the best fit to the Lewis Carroll’s

“target protein.”

This combinatorial puzzle leads to the following

Spliced Alignment Problem Let G be a string called genomic sequence, T be a
string called target sequence, and B be a set of substrings of G. Given G;T , and
B, find a set of non-overlapping strings from B whose concatenation fits the target
sequence the best (i.e., the edit distance between the concatenation of these strings
and the target is minimum among all sets of blocks from B).

14 CHAPTER 1. COMPUTATIONAL GENE HUNTING

1.7 Mutation Analysis

One of the challenges in gene hunting is knowing when the gene of interest has
been sequenced, given that nothing is known about the structure of that gene. In
the cystic fibrosis case, gene predictions and sequence similarity provided some
clues for the gene but did not rule out other candidate genes. In particular, three
other fragments were suspects. If a suspected gene were really a disease gene, the
affected individuals would have mutations in this gene. Every such gene will be
subject to re-sequencing in many individuals to check this hypothesis. One mu-
tation (deletion of three nucleotides, causing a deletion of one amino acid) in the
CF gene was found to be common in affected individuals. This was a lead, and
PCR primers were set up to screen a large number of individuals for this muta-
tion. This mutation was found in 70% of cystic fibrosis patients, thus convincingly
proving that it causes cystic fibrosis. Hundreds of diverse mutations comprise the
additional 30% of faulty cystic fibrosis genes, making medical diagnostics of cys-
tic fibrosis difficult. Dedicated DNA arrays for cystic fibrosis may be very efficient
for screening populations for mutation.

Similarity search, gene recognition, and mutation analysis raise a number of
statistical problems. If two sequences are 45% similar, is it likely that they are
genuinely related, or is it just a matter of chance? Genes are frequently found
in the DNA fragments with a high frequency of CG dinucleotides (CG-islands).
The cystic fibrosis gene, in particular, is located inside a CG-island. What level
of CG-content is an indication of a CG-island and what is just a matter of chance?
Examples of corresponding statistical problems are given below:

Expected Length of LCS Problem Find the expected length of the LCS for two
random strings of length n.

String Statistics Problem Find the expectation and variance of the number of
occurrences of a given string in a random text.

1.8 Comparative Genomics

As we have seen with cystic fibrosis, hunting for human genes may be a slow and
laborious undertaking. Frequently, genetic studies of similar genetic disorders in
animals can speed up the process.

1.8. COMPARATIVE GENOMICS 15

Waardenburg’s syndrome is an inherited genetic disorder resulting in hearing
loss and pigmentary dysplasia. Genetic mapping narrowed the search for the Waar-
denburg’s syndrome gene to human chromosome 2, but its exact location remained
unknown. There was another clue that directed attention to chromosome 2. For
a long time, breeders scrutinized mice for mutants, and one of these, designated
splotch, had patches of white spots, a disease considered to be similar to Waarden-
burg’s syndrome. Through breeding (which is easier in mice than in humans) the
splotch gene was mapped to mouse chromosome 2. As gene mapping proceeded it
became clear that there are groups of genes that are closely linked to one another
in both species. The shuffling of the genome during evolution is not complete;
blocks of genetic material remain intact even as multiple chromosomal rearrange-
ments occur. For example, chromosome 2 in humans is built from fragments that
are similar to fragments from mouse DNA residing on chromosomes 1, 2, 6, 8, 11,
12, and 17 (Figure 1.4). Therefore, mapping a gene in mice often gives a clue to
the location of a related human gene.

Despite some differences in appearance and habits, men and mice are geneti-
cally very similar. In a pioneering paper, Nadeau and Taylor, 1984 [248] estimated
that surprisingly few genomic rearrangements (178� 39) have happened since the
divergence of human and mouse 80 million years ago. Mouse and human genomes
can be viewed as a collection of about 200 fragments which are shuffled (rear-
ranged) in mice as compared to humans. If a mouse gene is mapped in one of
those fragments, then the corresponding human gene will be located in a chromo-
somal fragment that is linked to this mouse gene. A comparative mouse-human
genetic map gives the position of a human gene given the location of a related
mouse gene.

Genome rearrangements are a rather common chromosomal abnormality which
are associated with such genetic diseases as Down syndrome. Frequently, genome
rearrangements are asymptomatic: it is estimated that 0:2% of individuals carry an
asymptomatic chromosomal rearrangement.

The analysis of genome rearrangements in molecular biology was pioneered
by Dobzhansky and Sturtevant, 1938 [87], who published a milestone paper pre-
senting a rearrangement scenario with 17 inversions for the species of Drosophila
fruit fly. In the simplest form, rearrangements can be modeled by using a combina-
torial problem of finding a shortest series of reversals to transform one genome
into another. The order of genes in an organism is represented by a permuta-
tion � = �1�2 : : : �n. A reversal �(i; j) has the effect of reversing the order
of genes �i�i+1 : : : �j and transforms � = �1 : : : �i�1�i : : : �j�j+1 : : : �n into

16 CHAPTER 1. COMPUTATIONAL GENE HUNTING

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
X
Y

1
2
3
4
5

H
um

an
 C

hr
om

os
om

e

Mouse Chromosome
2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 X Y101

Figure 1.4: Man-mouse comparative physical map.

� � �(i; j) = �1 : : : �i�1�j : : : �i�j+1 : : : �n. Figure 1.5 presents a rearrangement
scenario describing a transformation of a human X chromosome into a mouse X
chromosome.

Reversal Distance Problem Given permutations � and �, find a series of reversals
�1; �2; : : : ; �t such that � � �1 � �2 � � � �t = � and t is minimum.

1.9. PROTEOMICS 17

..

.

..

.

..

. ..
.

..

.

..

.

..

.

..

.

2

1

1 2 8

1 2 8

1 2 6 7 8

2 3 4 5 6 7 8

7 5

1

7

1

2

Mouse

Linkage
group

Human

Linkage
groupLocation

3

4

5

6

7

8

Sized
groupsGenes Genes

1

1

12

22

3

16

3

6

DXF34

Gata1

Cybb

Araf

Zfx

Alas2

Amg

Dmd

Ar

Col4a5

Pdha1

Camp2

Cf8

..

.

..

.

8

5

3

2

7

1

6

4q28

p21.1

p11.23

p11.22

q11.2

q24

p22.1

p22.31

AR

AMG

PDHA1

ZFX

DMD

CYBB

ARAF

GATA1

ACAS2

DXF34

COL4A5

LAMP2

F8

5 4 3

7 6 3 4 5

3 6 4

7 2 3 6 4 5 8

3 1 6 4 5 8

4 6 1 7 2 3 5 8

Figure 1.5: “Transformation” of a human X chromosome into a mouse X chromosome.

1.9 Proteomics

In many developing organisms, cells die at particular times as part of a normal
process called programmed cell death. Death may occur as a result of a failure to
acquire survival factors and may be initiated by the expression of certain genes.
For example, in a developing nematode, the death of individual cells in the nervous
system may be prevented by mutations in several genes whose function is under
active investigation. However, the previously described DNA-based approaches
are not well suited for finding genes involved in programmed cell death.

The cell death machinery is a complex system that is composed of many genes.
While many proteins corresponding to these candidate genes have been identified,
their roles and the ways they interact in programmed cell death are poorly under-
stood. The difficulty is that the DNA of these candidate genes is hard to isolate,
at least much harder than the corresponding proteins. However, there are no reli-

18 CHAPTER 1. COMPUTATIONAL GENE HUNTING

able methods for protein sequencing yet, and the sequence of these candidate genes
remained unknown until recently.

Recently a new approach to protein sequencing via mass-spectrometry emerged
that allowed sequencing of many proteins involved in programmed cell death. In
1996 protein sequencing led to the identification of the FLICE protein, which is
involved in death-inducing signaling complex (Muzio et al., 1996 [244]). In this
case gene hunting started from a protein (rather than DNA) sequencing, and sub-
sequently led to cloning of the FLICE gene. The exceptional sensitivity of mass-
spectrometry opened up new experimental and computational vistas for protein
sequencing and made this technique a method of choice in many areas.

Protein sequencing has long fascinated mass-spectrometrists (Johnson and Bie-
mann, 1989 [182]). However, only now, with the development of mass spectrom-
etry automation systems and de novo algorithms, may high-throughout protein se-
quencing become a reality and even open a door to “proteome sequencing”. Cur-
rently, most proteins are identified by database search (Eng et al., 1994 [97], Mann
and Wilm, 1994 [230]) that relies on the ability to “look the answer up in the back
of the book”. Although database search is very useful in extensively sequenced
genomes, a biologist who attempts to find a new gene needs de novo rather than
database search algorithms.

In a few seconds, a mass spectrometer is capable of breaking a peptide into
pieces (ions) and measuring their masses. The resulting set of masses forms the
spectrum of a peptide. The Peptide Sequencing Problem is to reconstruct the
peptide given its spectrum. For an “ideal” fragmentation process and an “ideal”
mass-spectrometer, the peptide sequencing problem is simple. In practice, de novo
peptide sequencing remains an open problem since spectra are difficult to interpret.

In the simplest form, protein sequencing by mass-spectrometry corresponds to
the following problem. Let A be the set of amino acids with molecular masses
m(a), a 2 A. A (parent) peptide P = p1; : : : ; pn is a sequence of amino acids,
and the mass of peptide P is m(P) =

P
m(pi). A partial peptide P 0 � P is

a substring pi : : : pj of P of mass
P

i�t�jm(pt). Theoretical spectrum E(P) of
peptide P is a set of masses of its partial peptides. An (experimental) spectrum
S = fs1; : : : ; smg is a set of masses of (fragment) ions. A match between spec-
trum S and peptide P is the number of masses that experimental and theoretical
spectra have in common.

Peptide Sequencing Problem Given spectrum S and a parent mass m, find a
peptide of mass m with the maximal match to spectrum S.

Chapter 2

Restriction Mapping

2.1 Introduction

Hamilton Smith discovered in 1970 that the restriction enzyme HindII cleaves DNA
molecules at every occurrence of a sequence GTGCAC or GTTAAC (Smith and
Wilcox, 1970 [319]). Soon afterward Danna et al., 1973 [80] constructed the
first restriction map for Simian Virus 40 DNA. Since that time, restriction maps
(sometimes also called physical maps) representing DNA molecules with points of
cleavage (sites) by restriction enzymes have become fundamental data structures
in molecular biology.

To build a restriction map, biologists use different biochemical techniques to
derive indirect information about the map and combinatorial methods to recon-
struct the map from these data. Several experimental approaches to restriction
mapping exist, each with its own advantages and disadvantages. They lead to dif-
ferent combinatorial problems that frequently may be formulated as recovering
positions of points when only some pairwise distances between points are known.

Most restriction mapping problems correspond to the following problem. If X
is a set of points on a line, let �X denote the multiset of all pairwise distances
between points in X: �X = fjx1 � x2j : x1; x2 2 Xg. In restriction mapping
some subset E � �X corresponding to the experimental data about fragment
lengths is given, and the problem is to reconstruct X from E.

For the Partial Digest Problem (PDP), the experiment provides data about all
pairwise distances between restriction sites (E = �X). In this method DNA is
digested in such a way that fragments are formed by every two cuts. No poly-
nomial algorithm for PDP is yet known. The difficulty is that it may not be
possible to uniquely reconstruct X from �X: two multisets X and Y are ho-

19

20 CHAPTER 2. RESTRICTION MAPPING

mometric if �X = �Y . For example, X , �X (reflection of X) and X + a
for every number a (translation of X) are homometric. There are less trivial ex-
amples of this non-uniqueness; for example, the sets f0; 1; 3; 8; 9; 11; 13; 15g and
f0; 1; 3; 4; 5; 7; 12; 13; 15g are homometric and are not transformed into each other
by reflections and translations (strongly homometric sets). Rosenblatt and Sey-
mour, 1982 [289] studied strongly homometric sets and gave an elegant pseudo-
polynomial algorithm for PDP based on factorization of polynomials. Later Skiena
et al., 1990 [314] proposed a simple backtracking algorithm which performs very
well in practice but in some cases may require exponential time.

The backtracking algorithm easily solves the PDP problem for all inputs of
practical size. However, PDP has never been the favorite mapping method in bio-
logical laboratories because it is difficult to digest DNA in such a way that the cuts
between every two sites are formed.

Double Digest is a much simpler experimental mapping technique than Partial
Digest. In this approach, a biologist maps the positions of the sites of two restric-
tion enzymes by complete digestion of DNA in such a way that only fragments
between consecutive sites are formed. One way to construct such a map is to mea-
sure the fragment lengths (not the order) from a complete digestion of the DNA
by each of the two enzymes singly, and then by the two enzymes applied together.
The problem of determining the positions of the cuts from fragment length data is
known as the Double Digest Problem or DDP.

For an arbitrary set X of n elements, let ÆX be the set of n � 1 distances
between consecutive elements of X . In the Double Digest Problem, a multiset
X � [0; t] is partitioned into two subsets X = A

S
B with 0 2 A;B and t 2

A;B, and the experiment provides three sets of length: ÆA; ÆB, and ÆX (A and B
correspond to the single digests while X corresponds to the double digest). The
Double Digest Problem is to reconstruct A and B from these data.

The first attempts to solve the Double Digest Problem (Stefik, 1978 [329]) were
far from successful. The reason for this is that the number of potential maps and
computational complexity of DDP grow very rapidly with the number of sites. The
problem is complicated by experimental errors, and all DDP algorithms encounter
computational difficulties even for small maps with fewer than 10 sites for each
restriction enzyme.

Goldstein and Waterman, 1987 [130] proved that DDP is NP-complete and
showed that the number of solutions to DDP increases exponentially as the num-
ber of sites increases. Of course NP-completeness and exponential growth of the
number of solutions are the bottlenecks for DDP algorithms. Nevertheless, Schmitt

2.2. DOUBLE DIGEST PROBLEM 21

and Waterman, 1991 [309] noticed that even though the number of solutions grows
very quickly as the number of sites grows, most of the solutions are very similar
(could be transformed into each other by simple transformations). Since mapping
algorithms generate a lot of “very similar maps,” it would seem reasonable to par-
tition the entire set of physical maps into equivalence classes and to generate only
one basic map in every equivalence class. Subsequently, all solutions could be gen-
erated from the basic maps using simple transformations. If the number of equiv-
alence classes were significantly smaller than the number of physical maps, then
this approach would allow reduction of computational time for the DDP algorithm.

Schmitt and Waterman, 1991 [309] took the first step in this direction and intro-
duced an equivalence relation on physical maps. All maps of the same equivalence
class are transformed into one another by means of cassette transformations. Nev-
ertheless, the problem of the constructive generation of all equivalence classes for
DDP remained open and an algorithm for a transformation of equivalent maps was
also unknown. Pevzner, 1995 [267] proved a characterization theorem for equiva-
lent transformations of physical maps and described how to generate all solutions
of a DDP problem. This result is based on the relationships between DDP solutions
and alternating Eulerian cycles in edge-colored graphs.

As we have seen, the combinatorial algorithms for PDP are very fast in practice,
but the experimental PDP data are hard to obtain. In contrast, the experiments for
DDP are very simple but the combinatorial algorithms are too slow. This is the
reason why restriction mapping is not a very popular experimental technique today.

2.2 Double Digest Problem

Figure 2.1 shows “DNA” cut by restriction enzymes A and B. When Danna et al.,
1973 [80] constructed the first physical map there was no experimental technique
to directly find the positions of cuts. However, they were able to measure the sizes
(but not the order!) of the restriction fragments using the experimental technique
known as gel-electrophoresis. Through gel-electrophoresis experiments with two
restriction enzymes A and B (Figure 2.1), a biologist obtains information about
the sizes of restriction fragments 2, 3, 4 for A and 1, 3, 5 for B, but there are many
orderings (maps) corresponding to these sizes (Figure 2.2 shows two of them). To
find out which of the maps shown in Figure 2.2 is the correct one, biologists use
Double Digest A + B—cleavage of DNA by both enzymes, A and B. Two maps
presented in Figure 2.2 produce the same single digests A and B but different
double digests A + B (1, 1, 2, 2, 3 and 1, 1, 1, 2, 4). The double digest that fits

22 CHAPTER 2. RESTRICTION MAPPING

enzyme B
5
3
1

1 35

enzyme A
3 4 2

(restriction enzymes A and B)

2
3
4

DNA

Physical map

Figure 2.1: Physical map of two restriction enzymes. Gel-electrophoresis provides information

about the sizes (but not the order) of restriction fragments.

experimental data corresponds to the correct map. The Double Digest Problem
is to find a physical map, given three “stacks” of fragments: A, B, and A + B
(Figure 2.3).

4
3
2

5
3
1

enzyme A

enzyme B

3 2

5 3 1

4

1 35

3 4 2
Map 1

Which map is correct?

Map 2
1
2
2
3

1 1
1
1
2
4

Figure 2.2: Data on A and B do not allow a biologist to find a true map. A+ B data help to find

the correct map.

2.3. MULTIPLE SOLUTIONS OF THE DOUBLE DIGEST PROBLEM 23

2.3 Multiple Solutions of the Double Digest Problem

Figure 2.3 presents two solutions of the Double Digest Problem. Although they
look very different, they can be transformed one into another by a simple opera-
tion called cassette exchange (Figure 2.4). Another example of multiple solutions
is given in Figure 2.5. Although these solutions cannot be transformed into one
another by cassette exchanges, they can be transformed one into another through
a different operation called cassette reflection (Figure 2.6). A surprising result is
that these two simple operations, in some sense, are sufficient to enable a transfor-
mation between any two “similar” solutions of the Double Digest Problem.

A B

5
5
4
4
3
3
2
1

8
7

4
4
3
2
2
2
2
2
1
1
1
1
1
1

A+B

1
2
3
3
3

1 4 3 5 2 4 5 3

3 1 3 2 8 3 7

1 2 1 1 2 1 1 4 2 2 2 1 4 3

1 4 5 2 4 3 5 3

1 2 2 1 4 2 2 1 1 2 1 1 4 3

3 3 8 1 3 2 7

Double Digest Problem:
given A, B, and A+B, find a physical map

Multiple DDP solutions

Figure 2.3: The Double Digest Problem may have multiple solutions.

A physical map is represented by the ordered sequence of fragments of single
digests A1; : : : ; An and B1; : : : ; Bm and double digest C1; : : : ; Cl (Figure 2.4).

24 CHAPTER 2. RESTRICTION MAPPING

1 4 3 5 2 4 5 3

3 1 3 2 8 3 7

1 4 5 2 4 3 5 3

3 3 8 1 3 2 7

Cassette exchange

Figure 2.4: Cassette exchange. The upper map is defined by the ordered sequences of fragment

sizes for restriction enzyme A (f1; 4; 3; 5; 2; 4; 5; 3g), restriction enzyme B (f3; 1; 3; 2; 8; 3; 7g),

and restriction enzymes A+ B = C (f1; 2; 1; 1; 2; 1; 1; 4; 2; 2; 2; 1; 4; 3g). The interval I = [3; 7]

defines the set of double digest fragments IC = fC3; C4; C5; C6; C7g of length 1, 1, 2, 1, 1. IC

defines a cassette (IA; IB) where IA = fA2; A3; A4g = f4; 3; 5g and IB = fB2; B3; B4g =

f1; 3; 2g. The left overlap of (IA; IB) equals mA � mB = 1 � 3 = �2. The right overlap of

(IA; IB) equals 13� 9 = 4.

For an interval I = [i; j] with 1 � i � j � l, define IC = fCk : i � k � jg
as the set of fragments between Ci and Cj . The cassette defined by IC is the pair
of sets of fragments (IA; IB), where IA and IB are the sets of all fragments of A
and B respectively that contain a fragment from IC (Figure 2.4). Let mA and mB

2.3. MULTIPLE SOLUTIONS OF THE DOUBLE DIGEST PROBLEM 25

1 3 12 3

1 3 12 3

2 3 3 6 4 1

2 4 6 3 3 1

1 1 2 2 6 3 1 2 1

1 1 2 1 3 6 2 2 1

12
3
3
1

6
4
3
3
2
1

6
3
2
2
2
1
1
1
1

A
B

A + B

(one more example)

Multiple DDP solutions

Figure 2.5: Multiple DDP solutions that cannot be transformed into one another by cassette ex-

change.

be the starting positions of the leftmost fragments of IA and IB respectively. The
left overlap of (IA; IB) is the distance mA �mB . The right overlap of (IA; IB) is
defined similarly, by substituting the words “ending” and “rightmost” for the words
“starting” and “leftmost” in the definition above.

Suppose two cassettes within the solution to DDP have the same left overlaps
and the same right overlaps. If these cassettes do not intersect (have no common
fragments), then they can be exchanged as in Figure 2.4, and one obtains a new
solution of DDP. Also, if the left and right overlaps of a cassette (IA; IB) have
the same size but different signs, then the cassette may be reflected as shown in
Figure 2.6, and one obtains a new solution of DDP.

26 CHAPTER 2. RESTRICTION MAPPING

1 3 12 3

1 3 12 3

2 3 3 6 4 1

2 4 6 3 3 1

1 1 2 2 6 3 1 2 1

1 1 2 1 3 6 2 2 1

Cassette reflection

Figure 2.6: Cassette reflection. The left and the right overlaps have the same size but different

signs.

Schmitt and Waterman, 1991 [309] raised the question of how to transform one
map into another by cassette transformations. The following section introduces a
graph-theoretic technique to analyze the combinatorics of cassette transformations
and to answer the Schmitt-Waterman question.

2.4 Alternating Cycles in Colored Graphs

Consider an undirected graph G(V;E) with the edge set E edge-colored in l col-
ors. A sequence of vertices P = x1x2 : : : xm is called a path inG if (xi; xi+1) 2 E
for 1 � i � m� 1. A path P is called a cycle if x1 = xm. Paths and cycles can be
vertex self-intersecting. We denote P� = xmxm�1 : : : x1.

A path (cycle) in G is called alternating if the colors of every two consecutive
edges (xi; xi+1) and (xi+1; xi+2) of this path (cycle) are distinct (if P is a cycle
we consider (xm�1; xm) and (x1; x2) to be consecutive edges). A path (cycle)
P in G is called Eulerian if every e 2 E is traversed by P exactly once. Let
dc(v) be the number of c-colored edges of E incident to v and d(v) =

Pl
c=1 dc(v)

be the degree of vertex v in the graph G. A vertex v in the graph G is called

2.5. TRANSFORMATIONS OF ALTERNATING EULERIAN CYCLES 27

balanced if maxc dc(v) � d(v)=2: A balanced graph is a graph whose every vertex
is balanced.

Theorem 2.1 (Kotzig, 1968 [206]) Let G be a colored connected graph with even
degrees of vertices. Then there is an alternating Eulerian cycle in G if and only if
G is balanced.

Proof To construct an alternating Eulerian cycle inG, partition d(v) edges incident
to vertex v into d(v)=2 pairs such that two edges in the same pair have different
colors (it can be done for every balanced vertex). Starting from an arbitrary edge in
G, form a trail C1 using at every step an edge paired with the last edge of the trail.
The process stops when an edge paired with the last edge of the trail has already
been used in the trail. Since every vertex in G has an even degree, every such trail
starting from vertex v ends at v. With some luck the trail will be Eulerian, but if
not, it must contain a node w that still has a number of untraversed edges. Since
the graph of untraversed edges is balanced, we can start from w and form another
trail C2 from untraversed edges using the same rule. We can now combine cycles
C1 and C2 as follows: insert the trail C2 into the trail C1 at the point where w is
reached. This needs to be done with caution to preserve the alternation of colors
at vertex w. One can see that if inserting the trail C2 in direct order destroys the
alternation of colors, then inserting it in reverse order preserves the alternation of
colors. Repeating this will eventually yield an alternating Eulerian cycle.

We will use the following corollary from the Kotzig theorem:

Lemma 2.1 Let G be a bicolored connected graph. Then there is an alternating
Eulerian cycle in G if and only if d1(v) = d2(v) for every vertex in G.

2.5 Transformations of Alternating Eulerian Cycles

In this section we introduce order transformations of alternating paths and demon-
strate that every two alternating Eulerian cycles in a bicolored graph can be trans-
formed into each other by means of order transformations. This result implies the
characterization of Schmitt-Waterman cassette transformations.

Let F = : : : x : : : y : : : x : : : y : : : be an alternating path in a bicolored graph G.
Vertices x and y partitions F into five subpaths F = F1F2F3F4F5 (Figure 2.7).

28 CHAPTER 2. RESTRICTION MAPPING

F F F

F

F

x y

1 2

3

4

5

F F F

F

F

x y

1 2

3

4

5

Order exchange

Figure 2.7: Order exchange.

The transformation F = F1F2F3F4F5 �! F � = F1F4F3F2F5 is called an order
exchange if F � is an alternating path.

Let F = : : : x : : : x : : : be an alternating path in a bicolored graph G. Vertex x
partition F into three subpaths F = F1F2F3 (Figure 2.8). The transformation F =
F1F2F3 �! F � = F1F

�
2 F3 is called an order reflection if F � is an alternating

path. Obviously, the order reflection F �! F � in a bicolored graph exists if and
only if F2 is an odd cycle.

Theorem 2.2 Every two alternating Eulerian cycles in a bicolored graph G can
be transformed into each other by a series of order transformations (exchanges
and reflections).

2.5. TRANSFORMATIONS OF ALTERNATING EULERIAN CYCLES 29

F

F F

F

F

1 F3

2

1 3

2

Order reflection

Figure 2.8: Order reflection.

Proof Let X and Y be two alternating Eulerian cycles in G. Consider the set
of alternating Eulerian cycles C obtained from X by all possible series of order
transformations. Let X� = x1 : : : xm be a cycle in C having the longest common
prefix with Y = y1 : : : ym, i.e., x1 : : : xl = y1 : : : yl for l � m. If l = m, the
theorem holds: otherwise let v = xl = yl (i.e., e1 = (v; xl+1) and e2 = (v; yl+1)
are the first different edges in X� and Y , respectively (Figure 2.9)).

Since X� and Y are alternating paths, the edges e1 and e2 have the same color.
Since X� is Eulerian path, X� contains the edge e2. Clearly, e2 succeeds e1 in X�.
There are two cases (Figure 2.9) depending on the direction of the edge e2 in the
path X� (toward or from vertex v):

Case 1. Edge e2 = (yl+1; v) in the path X� is directed toward v. In this
case X� = x1 : : : vxl+1 : : : yl+1 v : : : xm. Since the colors of the edges e1 and
e2 coincide, the transformation X� = F1F2F3 �! F1F

�
2 F3 = X�� is an order

reflection (Figure 2.10). Therefore X�� 2 C and at least (l + 1) initial vertices in
X�� and Y coincide, a contradiction to the choice of X�.

Case 2. Edge e2 = (v; yl+1) in the path X� is directed from v. In this case,
vertex v partitions the path X� into three parts, prefix X1 ending at v, cycle X2,

30 CHAPTER 2. RESTRICTION MAPPING

e2

X *

Y

v

X*

X*

 Edge e Edge e

Case 2Case 1

v v

e e

X 1

X 2

X3

e1

in X* is directed from v

2 2

2 2
in X* is directed toward v

Figure 2.9: Two cases in theorem 2.

e1

e2

F1

F2

F3

e1

e2

F1

F2

F3

F1 F2 F3 F1 F2 F3
order exchange

Figure 2.10: Case 1: Order exchange.

and suffix X3 starting at v. It is easy to see that X2 and X3 have a vertex xj = xk
(l < j < k < m) in common (otherwise, Y would not be an Eulerian cycle).
Therefore, the cycle X� can now be rewritten asX� = F1F2F3F4F5 (Figure 2.11).

Consider the edges (xk; xk+1) and (xj�1; xj) that are shown by thick lines in
Figure 2.11. If the colors of these edges are different, then X�� = F1F4F3F2F5

is the alternating cycle obtained from X� by means of the order exchange shown
in Figure 2.11 (top). At least (l + 1) initial vertices of X�� and Y coincide, a
contradiction to the choice of X�.

2.5. TRANSFORMATIONS OF ALTERNATING EULERIAN CYCLES 31

F1

F3

F2

F4

F5
x

x
k-1

j-1

Colors of thick edges

Colors of thick edges
reversal

xk+1

F1

F3

F2

F4

F5
x

xj-1

k-1

COINCIDE

ARE DIFFERENT

reversal
xk+1

F1

F3

F2

F4

F5
x

xj-1

k-1

xk+1

F1

F3

F2

F4

F5
x

xj-1

k-1

order exchange

order

order

Figure 2.11: Case 2: Depending on the colors of the thick edges, there exists either an order

exchange or two order reflections transforming X� into a cycle with a longer common prefix with

Y .

If the colors of the edges (xk; xk+1) and (xj�1; xj) coincide (Figure 2.11, bot-
tom), then X�� = F1F4F

�
2 F

�
3 F5 is obtained from X� by means of two order

reflections g and h:

F1F2F3F4F5
g�! F1F2(F3F4)

�F5 = F1F2F
�
4 F

�
3 F5

h�!
F1(F2F

�
4)�F�

3 F5 = F1F
��
4 F�

2 F
�
3 F5 = F1F4F

�
2 F

�
3 F5

At least (l+1) initial vertices of X�� and Y coincide, a contradiction to the choice
of X�.

32 CHAPTER 2. RESTRICTION MAPPING

2.6 Physical Maps and Alternating Eulerian Cycles

This section introduces fork graphs of physical maps and demonstrates that every
physical map corresponds to an alternating Eulerian path in the fork graph.

Consider a physical map given by (ordered) fragments of single digests A and
B and double digestC = A+B: fA1; : : : ; Ang, fB1; : : : ; Bmg, and fC1; : : : ; Clg.
Below, for the sake of simplicity, we assume that A and B do not cut DNA at the
same positions, i.e., l = n + m � 1. A fork of fragment Ai is the set of double
digest fragments Cj contained in Ai:

F (Ai) = fCj : Cj � Aig

(a fork of Bi is defined analogously). For example, F (A3) consists of two frag-
ments C5 and C6 of sizes 4 and 1 (Figure 2.12). Obviously every two forks F (Ai)
and F (Bj) have at most one common fragment. A fork containing at least two
fragments is called a multifork.

Leftmost and rightmost fragments of multiforks are called border fragments.
Obviously, C1 and Cl are border fragments.

Lemma 2.2 Every border fragment, excluding C1 and Cl, belongs to exactly two
multiforks F (Ai) and F (Bj). Border fragments C1 and Cl belong to exactly one
multifork.

Lemma 2.2 motivates the construction of the fork graph with vertex set of
lengths of border fragments (two border fragments of the same length correspond
to the same vertex). The edge set of the fork graph corresponds to all multiforks
(every multifork is represented by an edge connecting the vertices corresponding
to the length of its border fragments). Color edges corresponding to multiforks of
A with color A and edges corresponding to multiforks of B with color B (Fig-
ure 2.12).

All vertices of G are balanced, except perhaps vertices jC1j and jClj which
are semi-balanced, i.e., jdA(jC1j) � dB(jC1j)j = jdA(jClj) � dB(jClj)j = 1. The
graph Gmay be transformed into a balanced graph by adding an edge or two edges.
Therefore G contains an alternating Eulerian path.

Every physical map (A;B) defines an alternating Eulerian path in its fork
graph. Cassette transformations of a physical map do not change the set of forks
of this map. The question arises whether two maps with the same set of forks can
be transformed into each other by cassette transformations. Fig 2.12 presents two

2.6. PHYSICAL MAPS AND ALTERNATING EULERIAN CYCLES 33

3 2 1 3 4 1 2 3 4

A A A A A1 2 3 4 5

B B B B B1 2 3 4 5

3

1

4

2

A A

A

A
A

2 3

5

1
4

B

B

B
B B

1

3

4

3 1 2 3 4 1 2 3 4

5 2

-A -A A A A

B -B B B B

3 4 5

1 2 3 4 5

12

Figure 2.12: Fork graph of a physical map with added extra edges B1 and A5. Solid (dotted)

edges correspond to multiforks of A (B). Arrows on the edges of this (undirected) graph follow

the path B1A1B2A2B3A3B4A4B5A5, corresponding to the map at the top. A map at the bottom

B1�A2�B2�A1B3A3B4A4B5A5 is obtained by changing the direction of edges in the triangle

A1; B2; A2 (cassette reflection).

maps with the same set of forks that correspond to two alternating Eulerian cycles
in the fork graph. It is easy to see that cassette transformations of the physical
maps correspond to order transformations in the fork graph. Therefore every al-
ternating Eulerian path in the fork graph of (A;B) corresponds to a map obtained
from (A;B) by cassette transformations (Theorem 2.2).

34 CHAPTER 2. RESTRICTION MAPPING

2.7 Partial Digest Problem

The Partial Digest Problem is to reconstruct the positions of n restriction sites
from the set of the

�n
2

�
distances between all pairs of these sites. If �X is the

(multi)set of distances between all pairs of points of X , then the PDP problem is
to reconstruct X given �X . Rosenblatt and Seymour, 1982 [289] gave a pseudo-
polynomial algorithm for this problem using factoring of polynomials. Skiena et
al., 1990 [314] described the following simple backtracking algorithm, which was
further modified by Skiena and Sundaram, 1994 [315] for the case of data with
errors.

First find the longest distance in �X , which decides the two outermost points
of X , and then delete this distance from �X . Then repeatedly position the longest
remaining distance of �X . Since for each step the longest distance in �X must
be realized from one of the outermost points, there are only two possible positions
(left or right) to put the point. At each step, for each of the two positions, check
whether all the distances from the position to the points already selected are in
�X . If they are, delete all those distances before going to next step. Backtrack if
they are not for both of the two positions. A solution has been found when �X is
empty.

For example, suppose �X = f2; 2; 3; 3; 4; 5; 6; 7; 8; 10g. Since �X includes
all the pairwise distances, then j�Xj = �n

2

�
, where n is the number of points in the

solution. First set L = �X and x1 = 0. Since 10 is the largest distance in L, it is
clear that x5 = 10. Removing distance x5 � x1 = 10 from L, we obtain

X = f0; 10g L = f2; 2; 3; 3; 4; 5; 6; 7; 8g :
The largest remaining distance is 8. Now we have two choices: either x4 = 8

or x2 = 2. Since those two cases are mirror images of each other, without loss of
generality, we can assume x2 = 2. After removal of distances x5 � x2 = 8 and
x2 � x1 = 2 from L, we obtain

X = f0; 2; 10g L = f2; 3; 3; 4; 5; 6; 7g :
Since 7 is the largest remaining distance, we have either x4 = 7 or x3 = 3. If

x3 = 3, distance x3�x2 = 1 must be in L, but it is not, so we can only set x4 = 7.
After removing distances x5 � x4 = 3, x4 � x2 = 5, and x4 � x1 = 7 from L, we
obtain

X = f0; 2; 7; 10g L = f2; 3; 4; 6g :
Now 6 is the largest remaining distance. Once again we have two choices:

either x3 = 4 or x3 = 6. If x3 = 6, the distance x4 � x3 = 1 must be in L,

2.8. HOMOMETRIC SETS 35

but it is not. So that leaves us only the choice x3 = 4 and provides a solution
f0; 2; 4; 7; 10g of the Partial Digest Problem.

The pseudo-code for the described algorithm is given below. Here the func-
tion Delete Max(L) returns the maximum value of L and removes it from list L,
and two global variables X and width are used. �(X;Y) is the (multi)set of all
distances between a point of X and a point of Y:

set X
int width
Partial Digest(List L)

width = Delete Max(L)
X = f0; widthg
Place(L)

Place(List L)
if L = ; then

output solution X
exit

y = Delete Max(L)
if �(fyg;X) � L then

X = X [fyg
Place(L n�(fyg;X)) /* place a point at right position */
X = X n fyg /* backtracking */

if �(fwidth � yg;X) � L then
X = X [fwidth � yg
Place(L n�(fwidth � yg;X)) /* place a point at left position */
X = X n fwidth � yg /* backtracking */

This algorithm runs in O(n2 log n) expected time if L arises from real points
in general positions, because in this case at each step, one of the two choices will
be pruned with probability 1. However, the running time of the algorithm may be
exponential in the worst case (Zhang, 1994 [377]).

2.8 Homometric Sets

It is not always possible to uniquely reconstruct a set X from �X . Sets A and B
are homometric if �A = �B. Let U and V be two multisets. It is easy to verify
that the multisets U + V = fu + v : u 2 U; v 2 V g and U � V = fu � v : u 2
U; v 2 V g are homometric. The example presented in Figure 2.13 arises from this
construction for U = f6; 7; 9g and V = f�6; 2; 6g.

36 CHAPTER 2. RESTRICTION MAPPING

0 1 3 8 9 11 12 13 15 0 1 3 4 5 7 12 13 15

1 2 5 1 2 1 1 2

3 6 3 3

7 3 2

8 4

8 4

8 4

9 6

10

9

5

6

11

11

10

7

12

12

12

13

14

15

1 2 1 1 2 5 1 2

3 2 7 3

3 3 6

4 8

4 8

4 8

5 10

15

14

13

12

12

12

11

10

11

7

8

9

9

6

Figure 2.13: Homometric sets U + V = f0; 1; 3; 8; 9; 11; 12; 13; 15g and U � V =

f0; 1; 3; 4; 5; 7; 12; 13; 15g.

It is natural to ask if every pair of homometric sets represents an instance of
this construction. The answer is negative: the homometric sets f0; 1; 2; 5; 7; 9; 12g
and f0; 1; 5; 7; 8; 10; 12g provide a counterexample. Nevertheless this conjecture
is true if we define U and V as “multisets with possibly negative multiplicities.”

Given a multiset of integers A = faig, let A(x) =
P

i x
ai be a generating

function for A. It is easy to see that the generating function for �A is �A(x) =
A(x)A(x�1). Let A(x) and B(x) be generating functions for multisets A and B
such that A(x) = U(x)V (x) and B(x) = U(x)V (x�1). Then A(x)A(x�1) =
B(x)B(x�1) = U(x)V (x)U(x�1)V (x�1), implying that A and B are homomet-
ric.

Theorem 2.3 (Rosenblatt and Seymour, 1982 [289]) Two sets A and B are homo-
metric if and only if there exist generating functions U(x) and V (x) and an integer
� such that A(x) = U(x)V (x) and B(x) = �x�U(x)V (x�1).

2.8. HOMOMETRIC SETS 37

Proof Let A and B be homometric sets. Let P (x) be the greatest common di-
visor of A(x) and B(x) and let A(x) = P (x)QA(x) and B(x) = P (x)QB(x),
where QA(x) and QB(x) are relatively prime. Let V (x) be the greatest common
divisor of QA(x) and QB(x

�1) and let QA(x) = V (x)SA(x) and QB(x
�1) =

V (x)SB(x), where SA(x) and SB(x) are relatively prime. Clearly SA(x) and
SA(x

�1) are relatively prime to both SB(x) and SB(x�1).
Since A and B are homometric,

P (x)V (x)SA(x)P (x
�1)V (x�1)SA(x

�1) = P (x)V (x�1)SB(x
�1)P (x�1)V (x)SB(x)

implying that SA(x)SA(x�1) = SB(x)SB(x
�1). Since SA(x) and SA(x

�1) are
relatively prime to both SB(x) and SB(x

�1), SA(x) = �xa and SB(x) = �xb.
Therefore, A(x) = �xaP (x)V (x) and B(x) = �xbP (x)V (x�1). Substitution
U(x) = �xaP (x) proves the theorem.

It can happen that some of the coefficients in the decomposition given in the-
orem 2.3 are negative, corresponding to multisets with negative multiplicities. For
example, if A = f0; 1; 2; 5; 7; 9; 12g and B = f0; 1; 5; 7; 8; 10; 12g, U(x) =
(1 + x+ x2 + x3 + x4 + x5 + x7) and V (x) = x�5(1� x3 + x5).

We say that a set A is reconstructible if whenever B is homometric to A, we
have B = A+ fvg or B = �A+ fvg for a number v. A set A is called symmetric
if �A = A + v for some number v. A polynomial A(x) is symmetric if the
corresponding set is symmetric, i.e., A(x�1) = xvA(x). Theorem 2.3 implies the
following:

Theorem 2.4 A set A is reconstructible if and only if A(x) has at most one prime
factor (counting multiplicities) that is not symmetric.

Rosenblatt and Seymour, 1982 [289] gave the following pseudo-polynomial
algorithm for the Partial Digest Problem with n points. Given a set of

�n
2

�
distances

�A = fdig, we form the generating function �A(x) = n+
P

i(x
di + x�di). We

factor this polynomial into irreducibles over the ring of polynomials with integer
coefficients using a factoring algorithm with runtime polynomial in maxi di. The
solution A(x) of the PDP problem must have a form �A(x) = A(x)A(x�1).
Therefore, we try all 2F possible subsets S of the F irreducible nonreciprocal
factors of �A(x) as putative factors of A(x). As a result, we find a set of all the
possible sets A(x). Finally, we eliminate the sets A(x) with negative coefficients
and sort to remove possible redundant copies.

38 CHAPTER 2. RESTRICTION MAPPING

2.9 Some Other Problems and Approaches

2.9.1 Optical mapping
Schwartz et al., 1993 [311] developed the optical mapping technique for construc-
tion of restriction maps. In optical mapping, single copies of DNA molecules are
stretched and attached to a glass support under a microscope. When restriction en-
zymes are activated, they cleave the DNA molecules at their restriction sites. The
molecules remain attached to the surface, but the elasticity of the stretched DNA
pulls back the molecule ends at the cleaved sites. These can be identified under
the microscope as tiny gaps in the fluorescent line of the molecule. Thus a “pho-
tograph” of the DNA molecule with gaps at the positions of cleavage sites gives a
snapshot of the restriction map.

Optical mapping bypasses the problem of reconstructing the order of restriction
fragments, but raises new computational challenges. The problem is that not all
sites are cleaved in each molecule (false negative) and that some may incorrectly
appear to be cut (false positive). In addition, inaccuracies in measuring the length
of fragments, difficulties in analyzing proximal restriction sites, and the unknown
orientation of each molecule (left to right or vice versa) make the reconstruction
difficult. In practice, data from many molecules is gathered to build a consensus
restriction map.

The problem of unknown orientation was formalized as Binary Flip-Cut (BFC)
Problem by Muthukrishnan and Parida, 1997 [243]. In the BFC problem, a set of
n binary 0-1 strings is given (each string represents a snapshot of a DNA molecule
with 1s corresponding to restriction sites). The problem is to assign a flip or no-flip
state to each string so that the number of consensus sites is minimized. A site is
called a consensus under the assignment of flips if at least cn 1s are present at that
site if the molecules are flipped accordingly, for some small constant parameter c.

Handling real optical mapping data is considerably harder than the BFC prob-
lem. Efficient algorithms for the optical mapping problem were developed by
Anantharaman et al., 1997 [8], Karp and Shamir, 1998 [190], and Lee et al.,
1998 [218].

2.9.2 Probed Partial Digest mapping
Another technique used to derive a physical map leads to the Probed Partial Di-
gest Problem (PPDP). In this method DNA is partially digested with a restriction
enzyme, thus generating a collection of DNA fragments between any two cutting
sites. Afterward a labeled probe, which attaches to the DNA between two cut-
ting sites, is hybridized to the partially digested DNA, and the sizes of fragments
to which the probe hybridizes are measured. The problem is to reconstruct the
positions of the sites from the multiset of measured lengths.

In the PPDP problem, multiset X � [�s; t] is partitioned into two subsets
X = A

S
B with A � [�s; 0] and B � [0; t] corresponding to the restriction sites

2.9. SOME OTHER PROBLEMS AND APPROACHES 39

to the left and to the right of the probe. The PPDP experiment provides the multiset
E = fb � a : a 2 A; b 2 Bg. The problem is to find X given E. Newberg and
Naor, 1993 [252] showed that the number of PPDP solutions can grow quickly, at
least more quickly than n1:72.

Chapter 3

Map Assembly

3.1 Introduction

The map assembly problem can be understood in terms of the following analogy.
Imagine several copies of a book cut by scissors into thousands of pieces. Each
copy is cut in an individual way such that a piece from one copy may overlap a
piece from another copy. For each piece and each word from a list of key words,
we are told whether the piece contains the key word. Given this data, we wish to
determine the pattern of overlaps of the pieces.

Double Digest and Partial Digest techniques allow a biologist to construct re-
striction (physical) maps of small DNA molecules, such as viral, chloroplast, or
mitochondrial DNA. However, these methods do not work (experimentally or com-
putationally) for large DNA molecules. Although the first restriction map of a viral
genome was constructed in 1973, it took more than a decade to construct the first
physical maps of a bacterial genome by assembling restriction maps of small frag-
ments. To study a large DNA molecule, biologists break it into smaller pieces, map
or fingerprint each piece, and then assemble the pieces to determine the map of the
entire molecule. This mapping strategy was originally developed by Olson et al.,
1986 [257] for yeast and by Coulson et al., 1986 [76] for nematode. However, the
first large-scale physical map was constructed by Kohara et al., 1987 [204] for E.
Coli bacteria.

Mapping usually starts with breaking a DNA molecule into small pieces using
restriction enzymes. To study individual pieces, biologists obtain many identical
copies of each piece by cloning them. Cloning incorporates a fragment of DNA
into a cloning vector, a small, artificially constructed DNA molecule that originates
from a virus or other organism. Cloning vectors with DNA inserts are introduced
into a bacterial self-replicating host. The self-replication process then creates an
enormous number of copies of the fragment, thus enabling its structure to be inves-
tigated. A fragment reproduced in this way is called a clone.

41

42 CHAPTER 3. MAP ASSEMBLY

As a result, biologists obtain a clone library consisting of thousands of clones
(each representing a short DNA fragment) from the same DNA molecule. Clones
from the clone library may overlap (overlapping can be achieved by using a few
restriction enzymes). After the clone library is constructed biologists want to order
the clones, i.e., to reconstruct the relative placement of the clones along the DNA
molecule. This information is lost in the construction of the clone library, and
the process of reconstruction starts with fingerprinting the clones. The idea is to
describe each clone using an easily determined fingerprint, which can be thought
of as a set of “key words” present in a clone. If two clones have substantial overlap,
their fingerprints should be similar. If non-overlapping clones are unlikely to have
similar fingerprints then fingerprints would allow a biologist to distinguish between
overlapping and non-overlapping clones and to reconstruct the order of the clones.
The following fingerprints have been used in many mapping projects.

� Restriction maps. The restriction map of a clone provides an ordered list of
restriction fragments. If two clones have restrictions maps that share several
consecutive fragments, they are likely to overlap. With this strategy Kohara
et al., 1987 [204] constructed a physical map of the E. coli genome.

� Restriction fragment sizes. Restriction fragment sizes are obtained by cutting
a clone with a restriction enzyme and measuring the sizes of the resulting
fragments. This is simpler than constructing a restriction map. Although an
unordered list of fragment sizes contains less information than an ordered
list, it still provides an adequate fingerprint. This type of fingerprint was
used by Olson et al., 1986 [257] in the yeast mapping project.

� Hybridization data. In this approach a clone is exposed to a number of
probes, and it is determined which of these probes hybridize to the clone.
Probes may be short random sequences or practically any previously identi-
fied piece of DNA. One particularly useful type of probe is the Sequence Tag
Site (STS). STSs are extracted from the DNA strand itself, often from the
endpoints of clones. Each STS is sufficiently long that it is unlikely to occur
a second time on the DNA strand; thus, it identifies a unique site along the
DNA strand. Using STS mapping, Chumakov et al., 1992 [68] and Foote et
al., 1992 [111] constructed the first physical map of the human genome.

The STS technique leads to mapping with unique probes. If the probes are
short random sequences, they may hybridize with DNA at many positions, thus
leading to mapping with non-unique probes. For the map assembly problem with
n clones and m probes, the experimental data is an n�mmatrix D = (dij), where
dij = 1 if clone Ci contains probe pj , and dij = 0 otherwise (Figure 1.1). Note
that the data does not indicate how many times a probe occurs on a given clone,
nor does it give the order of the probes along the clones. A string S covers a clone

3.1. INTRODUCTION 43

C if there exists a substring of S containing exactly the same set of probes as C
(the order and multiplicities of probes in the substring are ignored). The string in
Figure 1.1 covers each of nine clones corresponding to the hybridization matrix D.
The Shortest Covering String Problem is to find a shortest string in the alphabet of
probes that covers all clones.

The Shortest Covering String Problem is NP-complete. However, if the order
of clones is fixed, it can be solved in polynomial time. Alizadeh et al., 1995 [3]
suggested a local improvement strategy for the Shortest Covering String Problem
that is based on finding optimal interleaving for a fixed clone order.

Given a set of intervals on the line, one can form the interval graph of the set
by associating a vertex of the graph with each interval and joining two vertices by
an edge if the corresponding intervals overlap (Figure 3.2). In the case of unique
probes, every error-free hybridization matrix defines an interval graph on the vertex
set of clones in which clones i and j are joined by an edge if they have a probe in
common. The study of interval graphs was initiated by Benzer, who obtained data
on the overlaps between pairs of fragments of bacteriophage T4 DNA. He was
successful in arranging the overlap data in a way that implied the linear nature of
the gene. Benzer’s problem can be formulated as follows: Given information about
whether or not two fragments of a genome overlap, is the data consistent with the
hypothesis that the genes are arranged in linear order? This is equivalent to the
question of whether the overlap graph is an interval graph.

Interval graphs are closely related to matrices with the consecutive ones prop-
erty. A (0; 1) matrix has the consecutive ones property if its columns can be per-
muted in such a way that 1s in each row occur in consecutive positions. In the
case of unique probes, every error-free hybridization matrix has the consecutive
ones property (the required permutation of columns corresponds to ordering probes
from left to right). Given an arbitrary matrix, we are interested in an algorithm
to test whether it has the consecutive ones property. Characterization of interval
graphs and matrices with the consecutive ones property was given by Gilmore and
Hoffman, 1964 [128] and Fulkerson and Gross, 1965 [114]. Booth and Leuker,
1976 [40] developed a data structure called a PQ-tree that leads to a linear-time
algorithm for recognition of the consecutive ones property. Given an error-free
hybridization matrix, the Booth-Leuker algorithm constructs a compact represen-
tation of all correct orderings of probes in linear time. However, their approach
does not tolerate experimental errors. Alizadeh et al., 1995 [3] devised an alterna-
tive simple procedure for probe ordering. In the presence of experimental errors
the procedure may fail, but in most cases it remains a good heuristic for the con-
struction of probe ordering.

The most common type of hybridization error is a false negative, where the
incidence between a probe and a clone occurs but is not observed. In addition,
the hybridization data are subject to false positives and errors due to clone abnor-
malities. Different cloning technologies suffer from different clone abnormalities.

44 CHAPTER 3. MAP ASSEMBLY

Early clone libraries were based on bacteriophage � vectors and accommodated up
to 25 Kb of DNA. Cosmids represent another vector that combines DNA sequences
from plasmids and a region of � genome. With cosmids, the largest size of a DNA
insert is 45 Kb, and it would take 70,000 cosmids to cover the human genome. To
reduce this number, Yeast Artificial Chromosomes (YAC) were developed to clone
longer DNA fragments (up to 1,000 Kb). Although YACs have been used in many
mapping projects, there are a number of clone abnormalities associated with them.
The most common abnormality is chimerism. A chimeric clone consists of two
distinct segments of DNA joined together by an error in a cloning process. It is
estimated that 10–60% of clones in YAC libraries are chimeric. Chimeras may
arise by co-ligation of different DNA fragments or by recombination of two DNA
molecules. Another problem with YACs is that many clones are unstable and tend
to delete internal regions. BAC (Bacterial Artificial Chromosome) cloning sys-
tems based on the E. coli genome significantly reduce the chimerism problem as
compared to YACs.

A true ordering of probes corresponds to a permutation � of columns of the
hybridization matrix D, which produces a matrix D� . Each row of D� corre-
sponding to a normal clone contains one block of 1s, and each row corresponding
to a chimeric clone contains two blocks of 1s. Define a gap as a block of zeroes in a
row, flanked by ones. The number of gaps in D� is equal to the number of chimeric
clones. A false negative error typically splits a block of ones into two parts, thus
creating a gap. A false positive error typically splits a gap into two gaps. Thus the
number of gaps in D� tends to be approximately equal to the number of chimeric
clones plus the number of hybridization errors. This suggests a heuristic principle
that a permutation of the columns that minimizes the number of gaps will corre-
spond to a good probe ordering (Alizadeh et al., 1995 [3], Greenberg and Istrail,
1995 [137]). Minimizing the number of gaps can be cast as a Traveling Salesman
Problem called the Hamming Distance TSP in which the cities are the columns
of D together with an additional column of all zeroes, and the distance between
two cities is the Hamming distance between the corresponding columns, i.e., the
number of positions in which the two columns differ (Figure 3.1).

3.2 Mapping with Non-Unique Probes

Physical mapping using hybridization fingerprints with short probes was suggested
by Poustka et al., 1986 [279]. The advantage of this approach is that probe genera-
tion is cheap and straightforward. However, the error rate of hybridization experi-
ments with short probes is very high, and as a result, there were very few successful
mapping projects with non-unique probes (Hoheisel et al., 1993 [165]). Hybridiza-
tion errors and a lack of good algorithms for map construction were the major
obstacles to using this method in large-scale mapping projects. Recently, Alizadeh

3.2. MAPPING WITH NON-UNIQUE PROBES 45

PROBES

0

B

C

D

E

F

GA

4

3

2

3

2
2

4

4

2

1

2

3

4

5

6

7

8

9

CLONES:

C F D G A B E

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.1: Shortest cycle for the Hamming Distance TSP corresponding to the hybridization ma-

trix in Figure 1.1 with a different order of columns. The shown minimum cycle defines the ordering

of clones with the minimum number of gaps. Clones 1, 3, and 4 in this ordering are chimeric.

et al., 1995 [3] and Mayraz and Shamir, 1999 [234] designed algorithms that work
well in the presence of hybridization errors.

A placement is an assignment of an interval on the line [0; N] to each clone
(the line [0; N] corresponds to the entire DNA molecule). An interleaving is a
specification of the linear ordering of the 2n endpoints of these n intervals. An
interleaving may be viewed as an equivalence class of placements with a common
topological structure. Given matrix D, the map assembly problem is to determine
the most likely interleaving (Alizadeh et al., 1995 [3]):

Alizadeh et al., 1995 [3] gave a precise meaning to the notion “most likely”
for the Lander and Waterman, 1988 [214] stochastic model and showed that it cor-
responds to the shortest covering string. In this model, clones of the same length
are thrown at independent random positions along the DNA, and the probes along
the DNA are positioned according to mutually independent Poisson processes. Al-
izadeh et al., 1995 [3] devised a maximum likelihood function for this model. The
simplest approximation of this function is to find an interleaving that minimizes
the number of occurrences of probes needed to explain the hybridization data, the
Shortest Covering String Problem.

In the following discussion, we assume that no clone properly contains another.
A string S covers a permutation of clones � if it covers all clones in the order given
by �. A string ABACBACDBCE covers the permutation (3; 2; 4; 1) of clones

46 CHAPTER 3. MAP ASSEMBLY

C1; C2; C3; C4 that hybridize with the following probes A;B;C;D;E:

C1 � fB;C;Eg; C2 � fA;B;C;Dg; C3 � fA;B;Cg; C4 � fB;C;Dg:
Let c(�) be the length of the shortest string covering �. Figure 1.1 presents a

shortest covering string for the permutation � = (1; 2; : : : ; 9) of length c(�) = 15.
Alizadeh et al., 1995 [3] devised a polynomial algorithm for finding c(�) and a
local improvement algorithm for approximating min� c(�).

1
2

3
4

5
6

8

[1,1] [1,2] [1,3] [2,3] [2,4] [2,5] [3,5] [3,6] [6,7] [7,7]

9

7

[3,7] [4,7] [5,7] [7,8] [8,8] [8,9] [9,9]

1

2

3
4 5 6

7

8

9

C A E B G C F D A G E B A G D

Figure 3.2: Atomic intervals.

The endpoints of clones partition the line into a number of atomic intervals,
where an atomic interval is a maximal interval that contains no clone endpoints
(Figure 3.2). Every atomic interval is contained in clones i; : : : ; j, where i (j)
represents the leftmost (rightmost) clones containing the atomic interval. We de-
note such atomic interval as [i; j]. Intervals [i; j] and [i0; j0] are conflicting if
i < i0 < j0 < j. Note that every set of atomic intervals is conflict-free, i.e.,
contains no conflicting intervals (once again, we assume that no clone properly
contains another).

A set of intervals I = ([i; j]) is consistent if there exists an interleaving of
clones with respect to which every interval in I is atomic.

3.2. MAPPING WITH NON-UNIQUE PROBES 47

Lemma 3.1 A set of intervals is consistent if and only if it is conflict-free.

Proof Induction on the number of clones.

For the data presented in Figure 1.1, the clones containing a probe A are orga-
nized into two runs: [1; 2] and [6; 8]. Every probe A in a covering string defines
an atomic interval [i; j] in the corresponding interleaving of clones and therefore
generates one run of length j � i+ 1 in the A-column of the hybridization matrix.
Therefore A appears at least twice in every covering string. It gives a lower bound
of 2 + 2 + 2 + 1 + 2 + 1 + 1 = 11 for the length of the shortest covering string.
However, there is no covering string of length 11 since some of the runs in the
hybridization matrix are conflicting (for example, a run [3; 5] for C conflicts with
a run [2; 8] for G). Note that every covering string of length t defines a consistent
set of t runs (intervals). On the other hand, every consistent set of t runs defines a
covering string of length t. This observation and lemma 3.1 imply that the Short-
est Covering String Problem can be reformulated as follows: sub-partition a set
of runs for a hybridization matrix into a conflict-free set with a minimum number
of runs. For example, a way to avoid a conflict between runs [3; 5] and [2; 8] is to
sub-partition the run [2; 8] into [2; 5] and [6; 8]. This sub-partitioning still leaves the
interval [7; 7] for E in conflict with intervals [6; 8] for A, [3; 9] for D, and [6; 8] for
G. After sub-partitioning of these three intervals, we end up with the conflict-free
set of 11 + 4 = 15 runs (right matrix in Figure 1.1). These 15 runs generate the
shortest covering string:

[1; 1]| {z }
C

[1; 2]| {z }
A

[2; 3]| {z }
E

[2; 4]| {z }
B

[2; 5]| {z }
G

[3; 5]| {z }
C

[3; 6]| {z }
F

[3; 7]| {z }
D

[6; 7]| {z }
A

[6; 7]| {z }
G

[7; 7]| {z }
E

[7; 8]| {z }
B

[8; 8]| {z }
A

[8; 8]| {z }
G

[8; 9]| {z }
D

Below we describe a greedy approach to sub-partitioning that produces the shortest
covering string. Let [i; j] and [i0; j0] be two conflicting runs with i < i0 � j0 < j
and minimal j0 among all conflicting runs. Clearly, [i; j] has to be cut “before”
j0 in every sub-partitioning (i.e., in every subpartitioning of [i; j] there exists an
interval [i; t] with t � j0). This observation suggests a sub-partitioning strategy
based on cutting every interval “as late as possible” to avoid the conflicts. More
precisely, for a given run [i; j], let I be a set of intervals contained in [i; j]. Let t be
a maximal number of mutually non-overlapping intervals from I such that [i1; j1]
is an interval with minimal j1 in I , [i2; j2] is an interval with minimal j2 among
intervals with i2 > j1 in I , ..., and [it; jt] is an interval with minimal jt among
intervals with it > jt�1 in I . At first glance, it looks like the partition of the run
[i; j] into t+1 runs [i; j1]; [j1+1; j2]; [j2+1; j3]; : : : ; [jt�1+1; jt]; [jt+1; j] leads
to the solution of the Shortest Covering String Problem. Unfortunately, that is not
true, as an example in Figure 3.3 (proposed by Tao Jiang) illustrates. However,
a simple modification of the last interval among these t + 1 intervals leads to the

48 CHAPTER 3. MAP ASSEMBLY

solution of the problem (see Figure 3.3 for an example). Note that the shortest
covering string in this case has a clone with a double occurrence of the probe D.

: :

SHORTEST COVERING STRING

PROBES

CLONES

PROBES

CLONES

1

2

3

4

5

A B C D X F G H

1 1 1

11 1

1 1 1 1

1 1 1

1 1 1

1

2

3

4

5

A B C D X F G H

1 1 1

11 1

1 1 1 1

1 1 1

1 1 1

B C
B C D

C D X D F
D F G

F G H

A

Invalid sub-partition
interval [4,4] for D conflicts with interval [3,5] for F

Valid sub-partition
interval [2,4] for D is broken into overlapping runs [2,3] and [3,4]

to avoid a conflict with interval [3,5] for F

Figure 3.3: Shortest covering string may contain clones with probe repeats (such as CDXDF).

3.3 Mapping with Unique Probes

Let f1; : : : ;mg be the set of probes, and let Ci be the set of clones incident with
probe i. A clone X contains a clone Y if the set of probes incident withX (strictly)
contains the set of probes incident with Y . In the following, we assume that the set
of clones satisfies the following conditions:

� Non-inclusion. There is no clone containing another clone.

3.3. MAPPING WITH UNIQUE PROBES 49

� Connectedness. For every partition of the set of probes into two non-empty
sets A and B, there exist probes i 2 A and j 2 B such that Ci \ Cj is not
empty.

� Distinguishability. Ci 6= Cj for i 6= j.

There is no essential loss of generality in these assumptions, since any set of clones
may be filtered by eliminating the clones containing inside other clones. The fol-
lowing lemma reformulates the consecutive ones property:

Lemma 3.2 Let (1; : : : ;m) be the correct ordering of the probes and 1 � i < j <
k � m. Then, in the error-free case, jCi \ Cjj � jCi \ Ckj and jCk \ Cj j �
jCi \ Ckj.

Given a probe i, how can we find adjacent probes i� 1 and i+1 in the correct
ordering of probes? Lemma 3.2 suggests that these probes are among the probes
that maximize jCi \ Ckj—i.e., either jCi \ Ci�1j = maxk 6=i jCi \ Ckj or jCi \
Ci+1j = maxk 6=i jCi \Ckj. If maxk 6=i jCi \Ckj is achieved for only probe k, then
either k = i�1 or k = i+1. If maxk 6=i jCi\Ckj is achieved for a few probes, then
it is easy to see that one of them with minimal jCkj corresponds to i � 1 or i + 1.
These observations lead to an efficient algorithm for ordering the probes that starts
from an arbitrary probe i and attempts to find an adjacent probe (i� 1 or i+ 1) at
the next step. At the (k + 1)-th step, the algorithm attempts to extend an already
found block of k consecutive probes to the right or to the left using lemma 3.2.

For each probe i, define the partial ordering �i of the set of probes j �i k if
either

jCi \ Cjj > jCi \ Ckj
or

jCi \ Cjj = jCi \ Ckj 6= ; and jCj j < jCkj:
Clearly, if j �i k, then probe k does not lie between probe i and probe j in the true
ordering. Moreover, a maximal element in �i is either i� 1 or i+ 1.

Let N(i) be the set of probes that occur together with probe i on at least one
clone.

Lemma 3.3 The true ordering of probes is uniquely determined up to reversal by
the requirement that the following properties hold for each i:

� The probes in N(i) occur consecutively in the ordering as a block B(i).

� Starting at probe i and moving to the right or to the left, the probes in B(i)
form a decreasing chain in the partial order �i.

50 CHAPTER 3. MAP ASSEMBLY

The lemma motivates the following algorithm, which finds the true ordering
of probes (Alizadeh et al., 1995 [4]). Throughout the algorithm the variable � =
�first : : : �last denotes a sequence of consecutive probes in the true ordering. At
the beginning, � is initialized to the sequence consisting of a single probe. Each
step adjoins one element to � as follows:

� If every element in N(�last) lies in �, replace the sequence � by its reversal.

� Choose a probe k 62 � that is greatest in the ordering ��last among probes
in N(�last). If �last �k �first, append k to the end of �; otherwise, append
k to the beginning of �.

The algorithm stops when � contains all probes. Lemma 3.2 implies that after
every step, the probes in � form a consecutive block in the true ordering. Since a
new element is adjoined to � at every step, the algorithm gives the true ordering
� after m steps. Alizadeh et al., 1995 [4] report that a simple modification of this
algorithm performs well even in the presence of hybridization errors and chimeric
clones.

3.4 Interval Graphs

Golumbic, 1980 [132] is an excellent introduction to interval graphs, and our pre-
sentation follows that book.

A triangulated graph is a graph in which every simple cycle of length larger
than 3 has a chord. The “house” graph in Figure 3.4 is not triangulated because it
contains a chordless 4-cycle.

Lemma 3.4 Every interval graph is triangulated.

Not every triangulated graph is an interval graph; for example, the star graph in
Figure 3.4 is not an interval graph (prove it!). An undirected graph has a transitive
orientation property if each edge can be assigned a direction in such a way that the
resulting directed graph G(V;E) satisfies the following condition for every triple
of vertices a; b; c: (a; b) 2 E and (b; c) 2 E imply (a; c) 2 E. An undirected
graph that is transitively orientable is called a comparability graph (Figure 3.4).
The complement of the star graph in Figure 3.4 is not a comparability graph.

Lemma 3.5 The complement of an interval graph is a comparability graph.

Proof For non-overlapping intervals [i; j] and [i0; j0] with j � i0, direct the corre-
sponding edge in the complement of the interval graph as [i; j]! [i0; j0].

3.4. INTERVAL GRAPHS 51

Figure 3.4: (i) The house graph is not an interval graph because it is not triangulated. (ii) The star

graph is not an interval graph because its complement is not a comparability graph. (iii) Transitive

orientation of a graph “A.”

A complete graph is a graph in which every pair of vertices forms an edge.
A clique of a graph G is a complete subgraph of G. A clique is maximal if it
is not contained inside any other clique. The graph in Figure 3.2 has five maxi-
mal cliques: f1; 2; 3g, f2; 3; 4; 5g, f3; 4; 5; 6; 7g, f7; 8g and f8; 9g. The following
theorem establishes the characterization of interval graphs:

Theorem 3.1 (Gilmore and Hoffman, 1964 [128]) Let G be an undirected graph.
The following statements are equivalent.
(i) G is an interval graph.
(ii) G is a triangulated graph and its complement is a comparability graph.
(iii) The maximal cliques of G can be linearly ordered such that for every vertex x
of G, the maximal cliques containing x occur consecutively.

Proof (i)! (ii) follows from lemmas 3.4 and 3.5.
(ii) ! (iii). Let G(V;E) be a triangulated graph and let F be a transitive

orientation of the complement G(V;E). Let A1 and A2 be maximal cliques of G.
Clearly, there exists an edge in F with one endpoint in A1 and another endpoint in
A2 (otherwise A1 [A2 would form a clique of G). It is easy to see that all edges
of E connecting A1 with A2 have the same orientation. (Hint: if edges (a1; a2)
and (a01; a02) connect A1 and A2 as in Figure 3.5(left), then at least one of the edges
(a1; a

0
2) and (a01; a2) belongs to E. Which way is it oriented?) Order the maximal

cliques according to the direction of edges in F : A1 < A2 if and only if there
exists an edge of F connecting A1 and A2 and oriented toward A2. We claim that
this ordering is transitive and therefore defines a linear order of cliques.

52 CHAPTER 3. MAP ASSEMBLY

Suppose that A1 < A2 and A2 < A3. Then there exist edges (a1; a
0
2) and

(a002 ; a3) in F with a1 2 A1, a02; a002 2 A2, and a3 2 A3 (Figure 3.5(right)). If
either (a02; a3) 62 E or (a1; a002) 62 E, then (a1; a3) 2 F and A1 < A3. Therefore,
assume that the edges (a1; a002); (a002 ; a02), and (a02; a3) are all in E. Since G contains
no chordless 4-cycle, (a1; a3) 62 E, and the transitivity of F implies (a1; a3) 2 F .
Thus A1 < A3, proving that the cliques are arranged in linear order.

Let A1; : : : ; Am be the linear ordering of maximal cliques. Suppose there exist
cliques Ai < Aj < Ak with x 2 Ai, x 62 Aj and x 2 Ak. Since x 62 Aj , there is
a vertex y 2 Aj such that (x; y) 62 E. But Ai < Aj implies (x; y) 2 F , whereas
Aj < Ak implies (y; x) 2 F , a contradiction.

(iii)! (i). For each vertex x, let I(x) denote the set of all maximal cliques of
G that contain x. The sets I(x), for x 2 V , form the intervals of the interval graph
G.

Theorem 3.1 reduces the problem of recognition of an interval graph to the
problems of recognition of triangulated and comparability graphs (Fulkerson and
Gross, 1965 [114], Pnueli et al., 1971 [277]).

a
/

1
a

A A A A

A

1
a

3

1 2 1 3

a
1

a

a
/

a
/

a

2

2

2

/ /

2

2

Figure 3.5: Proof of theorem 3.1.

3.5. MAPPING WITH RESTRICTION FRAGMENT FINGERPRINTS 53

3.5 Mapping with Restriction Fragment Fingerprints

The simplest case of mapping with restriction fragment fingerprints is Single Com-
plete Digest (SCD) mapping (Olson et al., 1986 [257]). In this case the fingerprint
of a clone is a multiset of the sizes of its restriction fragments in a digest by a
restriction enzyme. An SCD map (Figure 3.6) is a placement of clones and restric-
tion fragments consistent with the given SCD data (Gillett et al., 1995 [127]).

SCD Mapping Problem Find a most compact map (i.e., a map with the minimum
number of restriction fragments) that is consistent with SCD data.

7 5 7 8 6 5 9

A

B

C

D

6 8 7 5 7 8 6 5 9

B

A

C

D

5

5

5

5

6

6

6

7

7

7

7

8

8

9

5

5

5

5

6

6

6

7

7

7

7

8

8

9

Clone-fragment graph Path cover corresponding to the most compact map

SCD mapping with fingerprints : A={5, 7, 7}, B={5,6,7,8}, C={5,6,7,8}, D={5,6,9}.

 The most compact map has cardinality 7 (top); another possible map has cardinality 9 (bottom).

Figure 3.6: SCD mapping.

The problem of finding the most compact map is NP-hard. In practice the
fingerprints of clones often provide strong statistical evidence that allows one to
estimate the ordering of clones. Jiang and Karp, 1998 [179] studied the problem of
finding a most compact map for clones with a given ordering.

Assume that no clone contains another clone, and assume that every clone starts
and ends with the restriction enzyme site. Jiang and Karp, 1998 [179] formulated
SCD mapping with known clone ordering as a constrained path cover problem on
a special multistage graph. Let S = fS1; : : : ; Sng be an instance of SCD mapping,

54 CHAPTER 3. MAP ASSEMBLY

where each Si is a multiset representing the fingerprint of the i-th clone in the
clone ordering by the left endpoints. A labeled multistage graph G (called a clone-
fragment graph) consists of n stages, with the i-th stage containing jSij vertices.
At stage i, G has a vertex for each element x of Si (including duplicates), with
label x. Two vertices are connected if they are at adjacent stages and have identical
labels (Figure 3.6).

Intuitively, a path in G specifies a set of restriction fragments on consecutive
clones that can be placed at the same location in a map. We denote a path running
through stages i; : : : ; j as simply [i; j]

A path cover is a collection of paths such that every vertex is contained in
exactly one path. Clearly, any map for S corresponds to a path cover of G of
the same cardinality (Figure 3.6 presents a path cover of cardinality 7). But the
converse is not true; for example, the clone-fragment graph in Figure 3.6 has a
path cover of cardinality 6 that does not correspond to any map. The reason is that
some paths are in conflict (compare with lemma 3.1). Paths [i; j] and [i0; j0] are
conflicting if i < i0 < j0 < j. A path cover is conflict-free if it has no conflicting
paths.

A path cover of G is consistent if it corresponds to a map of S with the same
cardinality. Similarly to lemma 3.1:

Lemma 3.6 A path cover is consistent if and only if it is conflict-free.

Hence, constructing a most compact map of S is equivalent to finding a small-
est conflict-free path cover of G. Although the problem of finding the smallest
conflict-free path cover of G is similar to the Shortest Covering String Problem,
their computational complexities are very different. Jiang and Karp, 1998 [179]
described a 2-approximation algorithm for SCD mapping with a given ordering of
clones.

3.6 Some Other Problems and Approaches

3.6.1 Lander-Waterman statistics
When a physical mapping project starts, biologists have to decide how many clones
they need to construct a map. A minimum requirement is that nearly all of the
genome should be covered by clones. In one of the first mapping projects, Olson
et al., 1986 [257] constructed a library containing n = 4946 clones. Each clone
carried a DNA fragment of an average length of L = 15; 000 nucleotides. This
clone library represented a DNA molecule of length G = 2 � 107; i.e., each nucleo-
tide was represented in NL

G
� 4 clones on average. The number c = NL

G
is called

the coverage of a clone library. A typical library provides a coverage in the range
of 5–10. When this project started, it was not clear what percentage of the yeast
genome would be covered by 4946 clones.

3.6. SOME OTHER PROBLEMS AND APPROACHES 55

Lander and Waterman, 1988 [214] studied a probabilistic model in which clones
of the same length were thrown at independent random positions along the DNA.
Define a gap as an interval that is not covered by any clones, and a contig as a
maximal interval without gaps. Lander and Waterman, 1988 [214] demonstrated
that the expected number of gaps is � ne�c and that the expected fraction of DNA
not covered by any clone is � e�c. The Olson et al., 1986 [257] mapping project
resulted in 1422 contigs, which comes close to the Lander-Waterman estimate of
1457 contigs. Arratia et al., 1991 [11] further developed the Lander-Waterman
statistics for the case of hybridization fingerprints.

3.6.2 Screening clone libraries
A naive approach to obtaining a hybridization matrix for n clones and m probes
requires n � m hybridization experiments. The aim of pooling is to reduce the
number of experiments that are needed to obtain the hybridization matrix. If the
number of 1s in a hybridization matrix is small (as is the case for mapping with
unique probes), then most experiments return negative results. It is clear that pool-
ing clones in groups and testing probes against these pools may save experimental
efforts.

Assume for simplicity that
p
n is an integer, and view n clones as elements

of a
p
n � pn array. Pool together clones corresponding to every row and every

column of this array. The resulting set consists of 2
p
n pools, each pool containingp

n clones. This reduces experimental efforts from n�m to 2
p
n�m hybridiza-

tion but makes the computational problem of map assembly more difficult (Evans
and Lewis, 1989 [98] and Barillot et al., 1991 [25]). Chumakov et al., 1992 [68]
used this pooling strategy for the construction of the first human physical map.
Computational analysis of pooling strategies is related to the following problem:

Group Testing Problem Find the distinguished members of a set of objects L by
asking the minimum number of queries of the form “Does the set Q � L contain a
distinguished object?”

Asking the query corresponds to testing the pool (set of clones) with a probe.
For mapping applications, it is most cost-effective to ask queries in parallel (non-
adaptive group testing). Bruno et al., 1995 [51] advocated a “random k-set design”
pooling strategy that has advantages over the row-column pooling design. In the
“random k-set design,” each clone occurs in k pools, and all choices of the k pools
are equally likely. See Knill et al., 1998 [200] for analysis of non-adaptive group
testing in the presence of errors.

3.6.3 Radiation hybrid mapping
Radiation hybrid (RH) mapping (Cox et al., 1990 [77]) is an experimental strategy
that uses random pooling that occurs in nature. RH mapping involves exposing

56 CHAPTER 3. MAP ASSEMBLY

human cells to radiation, which breaks each chromosome into random fragments.
These fragments are then “rescued” by fusing the human cells with hamster cells
that incorporate a random subset of the human DNA fragments into their chromo-
somes. One can think about human fragments as clones and about hamster cells
as pools of these clones. The resulting hybrid cell can be grown into a cell line
containing a pool of the fragment from the human genome. Figure 3.7 presents
an RH mapping experiment with three hybrid cell lines and four probes (markers)
that results in a 4 � 3 hybrid screening matrix. The Radiation Hybrid Mapping
Problem is to reconstruct marker order from the hybrid screening matrix (Slonim
et al., 1997 [317]).

C DA B

A B

C

DC A B

A

B

C

D

+
+

+

_

_
_

+
+

+
+
_
_

screening

vectors

hybrid

hybrid

panel

chromosome

Radiation Hybrid Mapping

Figure 3.7: Hybrid screening matrix.

If the radiation-induced breaks occur uniformly at random across the chro-
mosome, then breaks between closely located markers (like A and B) are rare.
This implies that they are co-retained, i.e., that the hybrid cell contains either both
of them or neither of them. This observation allows one to elucidate closely lo-
cated markers and to use arguments similar to genetic mapping for probe ordering
(Boehnke et al., 1991 [39], Lange et al., 1995 [215]). Slonim et al., 1997 [317]
used the Hidden Markov Models approach for RH mapping and built the frame-
work of an RH map by examining the triplets of markers. The most likely order of
triples of markers can be estimated from the hybrid screening matrix. The example
in Figure 3.7 may result in a subset of triples ABC, ABD, ACD and BCD, and

3.6. SOME OTHER PROBLEMS AND APPROACHES 57

the problem is to find a string (ABCD) that contains these triples as subsequences.
The problem is complicated by the presence of incorrectly ordered triples and the
unknown orientation of triples (the marker order (A-B-C or C-B-A) for triple ABC
is not known).

Chapter 4

Sequencing

4.1 Introduction

At a time when the Human Genome Project is nearing completion, few people re-
member that before DNA sequencing even started, scientists routinely sequenced
proteins. Frederick Sanger was awarded his first Nobel Prize for determining the
amino acid sequence of insulin, the protein used to treat diabetes. Sequencing in-
sulin in the late 1940s looked more challenging than sequencing an entire bacterial
genome looks today. The computational aspects of protein sequencing at that time
are very similar to the computational aspects of modern DNA sequencing. The
difference is mainly in the length of the sequenced fragments. In the late 1940s
biologists learned how to chop one amino acid at a time from the end of a protein
and read this amino acid afterward. However, it worked only for a few amino acids
from the end, since after 4–5 choppings the results were hard to interpret. To get
around this problem Sanger digested insulin with proteases and sequenced each
of the resulting fragments. He then used these overlapping fragments to recon-
struct the entire sequence, exactly like in the DNA sequencing “break - read the
fragments - assemble” method today:

Gly Ile V al Glu
Ile V al Glu Gln

Gln Cys Cys Ala
Gly Ile V al Glu Gln Cys Cys Ala

Edman degradation that chopped and sequenced one terminal amino acid at a time
became the dominant protein sequencing method for the next 20 years, and by the
late 1960s protein sequencing machines were on the market.

Sanger’s protein sequencing method influenced the work on RNA sequencing.
The first RNA was sequenced in 1965 with the same “break - read the fragments -

59

60 CHAPTER 4. SEQUENCING

assemble” approach. It took Holley and collaborators at Cornell University seven
years to determine the sequence of 77 nucleotides in tRNA. For many years af-
terward DNA sequencing was done by first transcribing DNA to RNA and then
sequencing RNA.

DNA sequencing methods were invented independently and simultaneously in
Cambridge, England and Cambridge, Massachusetts. In 1974 Russian scientist
Andrey Mirzabekov was visiting Walter Gilbert’s lab at Harvard University and
found a way to selectively break DNA at A and G. Later on, Maxam and Gilbert
found a method to break DNA at every C and T. After measuring the lengths of the
resulting fragments in four separate reactions, they were able to sequence DNA.

Sanger’s method takes advantage of how cells make copies of DNA. Cells copy
DNA letter by letter, adding one base at a time; Sanger realized that he could make
a ladder of DNA fragments of different sizes if he “starved” the reaction of one of
the four bases needed to make DNA. The cell would copy the DNA until the point
where it ran out of one of the bases. For a sequence ACGTAAGCTA, starving at
T would produce the fragments ACG and ACGTAAGC. By running four starva-
tion experiments for A, T, G, and C and separating the resulting DNA fragments
by length, one can read DNA. Later Sanger found chemicals that were inserted in
place of A, T, G, or C but caused a growing DNA chain to end, preventing further
growth. As a result, by 1977 two independent DNA sequencing techniques were
developed (Sanger et al., 1977 [297] and Maxam and Gilbert, 1977 [233]) that cul-
minated in sequencing of a 5,386-nucleotide virus and a Nobel Prize in 1980. Since
then the amount of DNA sequencing data has been increasing exponentially, and
in 1989 the Human Genome Project was launched. It is aimed at determining the
approximately 100,000 human genes that comprise the entire 3 billion nucleotides
of the human genome. Genetic texts are likely to become the main research tools
of biologists over the next decades.

Similar to protein sequencing 50 years ago, modern biologists are able to se-
quence short (300- to 500-nucleotide) DNA fragments which have to be assembled
into continuous genomes. The conventional shotgun sequencing starts with a sam-
ple of a large number of copies of a long DNA fragment (i.e., 50 Kb long). The
sample is sonicated, randomly partitioning each fragment into inserts, and the in-
serts that are too small or too large are removed from further consideration. A
sample of the inserts is then cloned into a vector with subsequent infection of a
bacterial host with a single vector. After the bacterium reproduces, it creates a
bacterial colony containing millions of copies of the vector and its associated in-
sert. As a result, the cloning process results in the production of a sample of a
given insert that is sequenced, typically by the Sanger et al., 1977 [297] method.
Usually, only the first 300 to 500 nucleotides of the insert can be interpreted from
this experiment. To assemble these fragments, the biologists have to solve a tricky
puzzle, not unlike trying to assemble the text of a book from many slips of paper.

4.2. OVERLAP, LAYOUT, AND CONSENSUS 61

4.2 Overlap, Layout, and Consensus

After short DNA fragments (reads) are sequenced, we want to assemble them to-
gether and reconstruct the entire DNA sequence of the clone (fragment assembly
problem). The Shortest Superstring Problem is an overly simplified abstraction
that does not capture the real fragment assembly problem, since it assumes perfect
data and may collapse DNA repeats. The human genome contains many repeats;
for example, a 300 bp Alu sequence is repeated (with 5–15% variation) about a
million times in the human genome. Fortunately, different copies of these repeats
mutated differently in the course of evolution, and as a result, they are not exact
repeats. This observation gives one a chance to assemble the sequence even in the
presence of repeats.

Another complication is the unknown orientation of substrings in the fragment
assembly problem. The DNA is double-stranded, and which of the two strands
is actually represented by a subclone depends on the arbitrary way the insert is
oriented in the vector. Thus it is unknown whether one should use a substring or
its Watson-Crick complement in the reconstruction.

The earlier sequencing algorithms followed the greedy strategy and merged the
strings together (starting with the strings with the strongest overlaps) until only one
string remained. Most fragment assembly algorithms include the following three
steps (Peltola et al., 1984 [262], Kececioglu and Myers, 1995 [195]):

� Overlap. Finding potentially overlapping fragments.

� Layout. Finding the order of fragments.

� Consensus. Deriving the DNA sequence from the layout.

The overlap problem is to find the best match between the suffix of one se-
quence and the prefix of another. If there were no sequencing errors, then we
would simply find the longest suffix of one string that exactly matches the prefix
of another string. However, sequencing errors force us to use a variation of the
dynamic programming algorithm for sequence alignment. Since errors are small
(1–3%), the common practice is to use filtration methods and to filter out pairs of
fragments that do not share a significantly long common substring.

Constructing the layout is the hardest step in DNA sequence assembly. One can
view a DNA sequence of a fragment as an extensive fingerprint of this fragment
and use the computational ideas from map assembly. Many fragment assembly
algorithms select a pair of fragments with the best overlap at every step. The score
of overlap is either the similarity score or a more involved probabilistic score as
in the popular Phrap program (Green, 1994 [136]). The selected pair of fragments
with the best overlap score is checked for consistency, and if this check is accepted,
the two fragments are merged. At the later stages of the algorithm the collections

62 CHAPTER 4. SEQUENCING

of fragments (contigs)–rather than individual fragments–are merged. The difficulty
with the layout step is deciding whether two fragments with a good overlap really
overlap (i.e., their differences are caused by sequencing errors) or represent a repeat
in a genome (i.e., their differences are caused by mutations).

The simplest way to build the consensus is to report the most frequent character
in the substring layout that is (implicitly) constructed after the layout step is com-
pleted. More sophisticated algorithms optimally align substrings in small windows
along the layout. Alternatively, Phrap (Green, 1994 [136]) builds the consensus
sequence as a mosaic of the best (in terms of some probabilistic scores) segments
from the layout.

4.3 Double-Barreled Shotgun Sequencing

The shotgun sequencing approach described earlier was sequencing cosmid-size
DNA fragments on the order of 50 Kb in the early 1990s. As a result, the Human
Genome Project originally pursued the “clone-by-clone” strategy, which involved
physical mapping, picking a minimal tiling set of clones that cover the genome,
and shotgun-sequencing each of the clones in the tiling set.

DNA sequencing moved toward the entire 1800 Kb H. Influenzae bacterium
genome in mid-1990s. Inspired by this breakthrough, Weber and Myers, 1997 [367]
proposed using the shotgun approach to sequence the entire human genome. A year
later, a company named Celera Genomics was formed with a goal of completing
shotgun sequencing of the human genome by the year 2001.

However, fragment assembly becomes very difficult in large-scale sequencing
projects, such as sequencing the entire fruit fly genome. In this case, the standard
fragment assembly algorithms tend to collapse repeats that are located in different
parts of the genome. Increasing the length of the read would solve the problem,
but the sequencing technology has not significantly improved the read length yet.
To get around this problem, biologists suggested a virtual increase in the length of
the read by a factor of two by obtaining a pair of reads separated by a fixed-size
gap. In this method, inserts of approximately the same length are selected, and
both ends of the inserts are sequenced. This produces a pair of reads (called mates)
in opposite orientation at a known approximate distance from each other.

Repeats represent a major challenge for whole-genome shotgun sequencing.
Repeats occur at several scales. For example, in the human T-cell receptor locus,
there are five closely located repeats of the trypsinogen gene, which is 4 Kb long
and varies 3–5% between copies. These repeats are difficult to assemble since reads
with unique portions outside the repeat cannot span them. The human genome
contains an estimated 1 million Alu repeats (300 bp) and 200,000 LINE repeats
(1000 bp), not to mention that an estimated 25% of human genes are present in at
least two copies.

4.4. SOME OTHER PROBLEMS AND APPROACHES 63

The computational advantage of double-barreled DNA sequencing is that it is
unlikely that both reads of the insert will lie in a large-scale DNA repeat (Roach et
al., 1995 [286]). Thus the read in a unique portion of DNA determines which copy
of a repeat its mate is in.

Double-barreled shotgun sequencing can be further empowered by using STS
maps for fragment assembly. An STS is a unique 300-bp DNA fragment, and the
available STS maps order tens of thousands of STSs along human chromosomes
(Hudson et al., 1995 [173]). Since the approximate distance between consecutive
STSs is known, the positions of STSs can serve as checkpoints in fragment assem-
bly (Weber and Myers, 1997 [367], Myers, 1999 [247]).

The ambitious projects of genomic double-barreled shotgun sequencing raise
a challenge of “finishing” sequencing in the areas that remain uncovered after the
shotgun stage is completed. Any reasonable amount of shotgun sequencing will
leave insufficiently sequenced areas. These areas will include both sequenced ar-
eas with low coverage and gaps of unknown length. Finishing is done by walking
experiments that use primers from the already sequenced contigs to extend a se-
quenced region by one read length. Optimization of DNA sequencing requires
a trade-off between the amount of shotgun sequencing and walking experiments.
Another problem is where to walk in order to meet the minimum coverage criteria.

4.4 Some Other Problems and Approaches

4.4.1 Shortest Superstring Problem
Blum et al., 1994 [37] devised an algorithm that finds a superstring that is no more
than three times the optimal length. Later Breslauer et al., 1997 [48] described an
algorithm with a 2.596 approximation ratio. The question about the approxima-
tion ratio of a simple greedy algorithm that merges a pair of strings with maximum
overlap remains open. No one has produced an example showing that this algo-
rithm produces a superstring more than twice as long as an optimal one. Thus it is
conjectured that the greedy algorithm is a 2-approximation.

4.4.2 Finishing phase of DNA sequencing
The minimum requirement for production of accurate DNA sequences is to have at
least three clones covering every DNA position and to use majority rule in consen-
sus construction. However, every genomic sequencing project is likely to result in
DNA fragments with low clone coverage. Once the locations of these regions have
been established, there is a need for a further finishing phase that is usually done
by genome walking. The set of sequenced DNA reads defines a position coverage
that is the number of reads covering position x in DNA. Given a requirement of k-
fold redundant coverage, the goal of the finishing phase is to find a minimum set of
walking-sequenced reads increasing the coverage to k for every position (Czabarka
et al., 2000 [78]).

Chapter 5

DNA Arrays

5.1 Introduction

When the Human Genome Project started, DNA sequencing was a routine but
time-consuming and hard-to-automate procedure. In 1988 four groups of biolo-
gists independently and simultaneously suggested a completely new sequencing
technique called Sequencing by Hybridization (SBH). SBH involves building a
miniature DNA array (also known as DNA chips) containing thousands of short
DNA fragments attached to a surface. Each of these short fragments reveals some
information about an unknown DNA fragment, and all these pieces of informa-
tion combined together are supposed to sequence DNA fragments. In 1988 almost
nobody believed that the idea would work; both biochemical problems (synthesiz-
ing thousands of short DNA fragments on the array) and combinatorial problems
(sequence reconstruction by array output) looked too complicated. Shortly after
the first paper describing DNA arrays was published, Science magazine wrote that
given the amount of work involved in synthesizing a DNA array, “it would sim-
ply be substituting one horrendous task for another.” It was not a good prognosis:
a major breakthrough in DNA array technology was made by Fodor et al., 1991
[110]. Their approach to array manufacturing is based upon light-directed polymer
synthesis, which has many similarities to computer chip manufacturing. Using
this technique, building an array with all 4l probes of length l requires just 4 � l
separate reactions. With this method, in 1994, a California-based biotechnology
company, Affymetrix, built the first 64-Kb DNA array. Shortly afterward building
1-Mb arrays became a routine, and the idea of DNA arrays was transformed from
an intellectual game into one of the most promising new biotechnologies, one that
revolutionized medical diagnostics and functional genomics.

Every probe p in a DNA array queries a target (unknown) DNA fragment by
answering the question of whether p hybridizes with this fragment. Given an un-
known DNA fragment, an array provides information about all strings of length l

65

66 CHAPTER 5. DNA ARRAYS

contained in this fragment (l-tuple composition of the fragment) but does not pro-
vide information about the positions of these strings. Combinatorial algorithms are
then used to reconstruct the sequence of the fragment from its l-tuple composition.

The SBH problem can be cast as a Hamiltonian path problem, i.e., the problem
of finding a path in a graph that visits every vertex exactly once. The vertices of
the graph correspond to l-tuples and the edges correspond to pairs of overlapping l-
tuples. However, this reduction does not lead to an efficient SBH algorithm, since
efficient algorithms for the Hamiltonian path problem are unknown. The SBH
problem was actually solved long ago— centuries before the study of molecular bi-
ology even existed—by ... Leonhard Euler, the great 18th-century mathematician.
Of course, he didn’t know he was solving the SBH problem; he was just trying to
solve – the “Seven Bridges of Konigsberg” puzzle. Konigsberg was located on a
few islands connected by seven bridges (Figure 5.1), and Euler got interested in the
problem of finding a path that traveled over each bridge exactly once. The solution
of this problem heralded the birth of graph theory and, two centuries later, resulted
in the solution of many combinatorial problems; SBH is one of them.

Although DNA arrays were originally proposed as an alternative to conven-
tional gel-based DNA sequencing, de novo sequencing with DNA arrays is still a
difficult problem. The primary obstacles in applications of DNA arrays for DNA
sequencing are inaccuracies in interpreting hybridization data: distinguishing per-
fect matches from highly stable mismatches. This is a particularly difficult problem
for short (8- to 10-nucleotide) probes used in de novo sequencing.

As a result, DNA arrays found more applications in re-sequencing and muta-
tion detection (which can be done with longer probes) than in de novo sequencing.
In this case the problem is to find the differences between the (known) wild type
gene and a mutated (useful) gene. Relatively long (20-nucleotide) probes can be
designed to reliably detect mutations and to bypass the still unsolved problem of
distinguishing perfect matches from highly stable mismatches. These probes are
usually variations of probes hybridizing with known DNA fragment. For exam-
ple, each 20-tuple in DNA may correspond to four probes: the wild type, and
three middle-mutations with a central position replaced by one of the alternative
nucleotides. Lipshutz et al., 1995 [226] described such tiling arrays for detect-
ing mutations in the HIV virus. Although no threshold of hybridization signal can
distinguish between perfect and imperfect matches, the distinction between these
signals is achieved if we compare the hybridization intensities of a probe with the
hybridization intensities of its middle-mutations.

Tiling arrays can be used to explore the genetic diversity of entire populations.
Analysis of mutations in human mitochondrial DNA has greatly influenced studies
of human evolution and genetic diseases. These studies involve re-sequencing hu-
man mitochondrial DNA in many individuals to find the mutations. Because of the
cost of conventional sequencing, most of the studies were limited to short hyper-
variable regions totaling � 600 base pairs. Chee et al., 1996 [65] designed a tiling

5.2. SEQUENCING BY HYBRIDIZATION 67

array for the entire human mitochondrial genome (16,569 base pairs) and were able
to successfully detect three disease-causing mutations in a mtDNA sample from a
patient with Leber’s hereditary optic neuropathy. Prefabricated mtDNA arrays al-
low us to re-sequence DNA in many individuals and provide an efficient and fast
technology for molecular evolution studies (Hacia et al., 1999 [148]). Other appli-
cations of DNA arrays include functional genomics (monitoring gene expression)
and genetic mapping (Golub et al., 1999 [131] , Wang et al., 1998 [349]).

Kneiphoff island

Pregel river

Figure 5.1: Bridges of Konigsberg.

5.2 Sequencing by Hybridization

DNA Arrays, or DNA Chips, were proposed simultaneously and independently by
Bains and Smith, 1988 [23], Drmanac et al., 1989 [91], Lysov et al, 1988 [228],
and Southern, 1988 [325]. The inventors of DNA arrays suggested using them for
DNA sequencing, and the original name for this technology was DNA Sequencing
by Hybridization (SBH). SBH relies on the hybridization of an (unknown) DNA
fragment with a large array of short probes. Given a short (8- to 30-nucleotide)
synthetic fragment of DNA, called a probe, and a single-stranded target DNA frag-
ment, the target will bind (hybridize) to the probe if there is a substring of the
target that is the Watson-Crick complement of the probe (A is complementary to
T and G is complementary to C). For example, a probe ACCGTGGA will hy-
bridize with a target CCCTGGCACCTA since it is complementary to the substring
TGGCACCT of the target. In this manner, probes can be used to test the unknown

68 CHAPTER 5. DNA ARRAYS

target DNA and determine its l-tuple composition. The simplest DNA array, C(l),
contains all probes of length l and works as follows (Figure 5.2):

� Attach all possible probes of length l (l=8 in the first SBH papers) to the
surface, each probe at a distinct and known location. This set of probes is
called the DNA array.

� Apply a solution containing a fluorescently labeled DNA fragment to the
array.

� The DNA fragment hybridizes with those probes that are complementary to
substrings of length l of the fragment.

� Detect probes hybridizing with the DNA fragment (using a spectroscopic
detector) and obtain l-tuple composition of the DNA fragment.

� Apply a combinatorial algorithm to reconstruct the sequence of the DNA
fragment from the l-tuple composition.

The “all 8-tuples” DNA array C(8) requires synthesizing 48 = 65; 536 probes.
It did look like a horrendous task in 1988 when DNA arrays were first proposed.

5.3 SBH and the Shortest Superstring Problem

SBH provides information about l-tuples present in DNA, but does not provide in-
formation about the positions of these l-tuples. Suppose we are given all substrings
of length l of an unknown string (l-tuple composition or spectrum of a DNA frag-
ment). How do we reconstruct the target DNA fragment from this data?

SBH may be considered a special case of the Shortest Superstring Problem. A
superstring for a given set of strings s1; : : : ; sm is a string that contains each si as
a substring. Given a set of strings, finding the shortest superstring is NP-complete
(Gallant et al., 1980 [117]).

Define overlap(si; sj) as the length of a maximal prefix of sj that matches a
suffix of si. The Shortest Superstring Problem can be cast as a Traveling Salesman
Problem in a complete directed graph with m vertices corresponding to strings si
and edges of length �overlap(si; sj). SBH corresponds to the special case when
all substrings s1; : : : ; sm have the same length. l-tuples p and q overlap if the last
l � 1 letters of p coincide with the first l � 1 letters of q, i.e., overlap(p; q) =
l � 1. Given the spectrum S of a DNA fragment, construct the directed graph
H with vertex set S and edge set E = f(p; q) : p and q overlapg. The graph
H is formed by the lightest edges (of length �(l � 1)) of the previously defined
complete directed graph. There is a one-to-one correspondence between paths that
visit each vertex of H at least once and DNA fragments with the spectrum S. The

5.3. SBH AND THE SHORTEST SUPERSTRING PROBLEM 69

AA AT AG AC TA TT TG TC GA GT GG GC CA CT CG CC

AA

AG

AT

AC

TA

TT

TG

TC

GA

GT

GG

GC

CT

CG

CA

CC

ATAG

GCAA

TAGG

ACGC

GGCA

CAAA

DNA target TATCCGTTT (complement of ATAGGCAAA)

hybridizes to the array of all 4-mers:

A T G G C A A A
A T G

T G
G
G

G
G
G
G

C
C
C
C

A
A
A

A
A A

DNA ARRAY C(4)

A
A
A
A

Figure 5.2: Hybridization of TATCCGTTT with DNA array C(4).

spectrum presented in Figure 5.3 yields a path-graph H . In this case, the sequence
reconstruction ATGCAGGTCC corresponds to the only path

ATG! TGC ! GCA! CAG! AGG! GGT ! GTC ! TCC

visiting all vertices of H . A path in a graph visiting every vertex exactly once is
called a Hamiltonian path.

The spectrum shown in Figure 5.4 yields a more complicated graph with two
Hamiltonian paths corresponding to two possible reconstructions.

70 CHAPTER 5. DNA ARRAYS

ATGS={ TCC GTC GCA CAG }TGC

Vertices: l-tuples from the spectrum S. Edges: overlapping l-tuples.

Path visiting ALL VERTICES corresponds to sequence reconstruction

AGG GGT

ATGCAGGTCC

H

Sequence reconstruction (Hamiltonian path approach)

Figure 5.3: SBH and the Hamiltonian path problem.

For larger DNA fragments, the overlap graphs become rather complicated and
hard to analyze. The Hamiltonian path problem is NP-complete, and no efficient
algorithm for this problem is known. As a result, the described approach is not
practical for long DNA fragments.

5.4 SBH and the Eulerian Path Problem

As we have seen, the reduction of the SBH problem to the Hamiltonian path prob-
lem does not lead to efficient algorithms. Fortunately, a different reduction to the
Eulerian path problem leads to a simple linear-time algorithm for sequence recon-
struction. The idea of this approach is to construct a graph whose edges (rather
than vertices, as in the previous construction) correspond to l-tuples and to find a
path in this graph visiting every edge exactly once. In this approach a graph G on
the set of all (l � 1)-tuples is constructed (Pevzner, 1989 [264]). An (l � 1)-tuple
v is joined by a directed edge with an (l � 1)-tuple w if the spectrum contains an
l-tuple for which the first l � 1 nucleotides coincide with v and the last l � 1 nu-
cleotides coincide with w (Figure 5.5). Each probe from the spectrum corresponds
to a directed edge in G but not to a vertex as in H (compare Figures 5.3 and 5.5).
Therefore, finding a DNA fragment containing all probes from the spectrum cor-
responds to finding a path visiting all edges of G, Eulerian path. Finding Eulerian
paths is a well-known and simple problem.

A directed graph G is Eulerian if it contains a cycle that traverses every directed
edge of G exactly once. A vertex v in a graph is balanced if the number of edges
entering v equals the number of edges leaving v: indegree(v) = outdegree(v).
The following theorem gives a characterization of Eulerian graphs:

5.4. SBH AND THE EULERIAN PATH PROBLEM 71

ATGS={ }TGC GTG GGC GCG CGT

H

ATGCGTGGCA

ATGGCGTGCA

TGG GCA

Multiple sequence reconstructions (Hamiltonian path approach)

Figure 5.4: Spectrum S yields two possible reconstructions corresponding to distinct Hamiltonian

paths.

Theorem 5.1 A connected graph is Eulerian if and only if each of its vertices is
balanced.

The SBH problem is equivalent to finding an Eulerian path in a graph. A vertex
v in a graph is called semi-balanced if jindegree(v) � outdegree(v)j = 1. The
Eulerian path problem can be reduced to the Eulerian cycle problem by adding an
edge between two semi-balanced vertices.

Theorem 5.2 A connected graph has an Eulerian path if and only if it contains at
most two semi-balanced vertices and all other vertices are balanced.

To construct an Eulerian cycle, start from an arbitrary edge in G and form a
“random” trail by extending the already existing trail with arbitrary new edges.

72 CHAPTER 5. DNA ARRAYS

This procedure ends when all edges incident to a vertex in G are used in the trail.
Since every vertex in G is balanced, every such trail starting at vertex v will end at
v. With some luck the trail will be Eulerian, but this need not be so. If the trail is
not Eulerian, it must contain a vertex w that still has a number of untraversed edges.
Note that all vertices in the graph of untraversed edges are balanced and, therefore,
there exists a random trail starting and ending at w and containing only untraversed
edges. One can now enlarge the random trail as follows: insert a random trail of
untraversed edges from w at some point in the random trail from v where w is
reached. Repeating this will eventually yield an Eulerian cycle. This algorithm can
be implemented in linear time (Fleischner, 1990 [108]).

AT CA
GT CG

TG GC

GG

AT CA
GT CG

TG GC

GG

ATGGCGTGCA ATGCGTGGCA

AT CA
GT CG

TG GC

GG

Paths visiting ALL EDGES correspond to sequence reconstructions

S={ATG, TGG, GCGTGC, GTG, GGC, GCA,

Edges correspond to l-tuples from the spectrum

Vertices correspond to (l-1)-tuples.

, CGT}

Sequence reconstruction (Eulerian path approach)

Figure 5.5: SBH and the Eulerian path problem.

The number of different sequence reconstructions in SBH is bounded by the
number of Eulerian cycles (paths). The formula for the number of Eulerian cycles
in a directed graph is known as the BEST theorem (Fleischner, 1990 [108]). Let G
be a directed Eulerian graph with adjacency matrix A = (aij), where aij = 1 if

5.4. SBH AND THE EULERIAN PATH PROBLEM 73

there is an edge from vertex i into vertex j inG, and aij = 0 otherwise (Figure 5.6).
Define a matrix M by replacing the i-th diagonal entry of �A by indegree(i) for
all i. An i-cofactor of a matrix M is the determinant det(Mi) of the matrix Mi,
obtained from M by deleting its i-th row and i-th column. All cofactors of the
matrix M have the same value, denoted c(G).

Theorem 5.3 The number of Eulerian cycles in an Eulerian graph G(V;E) is

c(G) �
Y
v2V

(degree(v) � 1)!

There exists an easy way to check whether for a given spectrum there exists
a unique sequence reconstruction. Decompose an Eulerian graph G into simple
cycles C1; : : : ; Ct, i.e., cycles without self-intersections. Each edge of G is used
in exactly one cycle (vertices of G may be used in many cycles). For these cycles,
define the intersection graph GI on t vertices C1; : : : ; Ct where Ci and Cj are
connected by k edges if and only if they have k vertices in common.

Theorem 5.4 Graph G has only one Eulerian cycle if and only if the intersection
graph GI is a tree.

0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0

G: A=

1 -1
0 2
-1 -1
0 0 -1 1

0 0
-1 -1
2 0

M=

Figure 5.6: Each cofactor of the matrix M is 2. The number of Eulerian cycles in graph G is

2 � 0! � 1! � 1! � 0! = 2.

The Eulerian path approach works in the case of error-free SBH experiments.
However, even in this case, multiple Eulerian paths may exist, leading to multiple
reconstructions. For real experiments with DNA arrays, the errors in the spectra
make reconstruction even more difficult. In addition, repeats of length l complicate
the analysis since it is hard to determine the multiplicity of l-tuples from hybridiza-
tion intensities.

Figure 5.7 presents the same spectrum as in Figure 5.5 with two trinucleotides
missing (false negative) and two possible reconstructions (only one of them is cor-
rect). The situation becomes even more complicated in the case of non-specific
hybridization, when the spectrum contains l-tuples absent in a target DNA frag-
ment (false positive). Several biochemical approaches to the elimination of non-
specific hybridization in SBH experiments attempt to better discriminate between

74 CHAPTER 5. DNA ARRAYS

perfect and imperfect matches. However, DNA array hybridization data are still
much more ambiguous than computer scientists and biologists would like them to
be.

***,

AT CA
GT CG

TG GC

GG

AT CA
GT CG

TG GC

GG

AT CA
GT CG

TG GC

GG

S={ATG, TGC,GTG,GGC,GCA, ***, CGT}

Sequence reconstruction (false negative errors)

Figure 5.7: Sequence reconstruction in the case of missing l-tuples (false negative).

5.5 Probability of Unique Sequence Reconstruction

What is probability that a DNA fragment of length n can be uniquely reconstructed
by a DNA arrayC(l)? Or, in other words, how big must l be to uniquely reconstruct
a random sequence of length n from its l-tuple spectrum? For the sake of simplic-
ity, assume that the letters of the DNA fragment are independent and identically
distributed with probability p = 1

4 for each of A; T;G; andC .
A crude heuristic is based on the observation that l-tuple repeats often lead

to non-unique reconstructions. There are about (n2)p
l potential repeats of length

5.6. STRING REARRANGEMENTS 75

l corresponding to pairs of positions in the DNA fragment of length n. Solving
(n2)p

l = 1 yields a rough estimate l = log 1

p
(n2) for the minimal probe length

needed to reliably reconstruct an n-letter sequence from its l-tuple spectrum. The
maximal length of DNA fragment that can be reconstructed with a C(l) array can
be roughly estimated as

p
2 � 4l.

A more careful analysis reveals that l-tuple repeats are not the major cause
of non-unique reconstructions (Dyer et al., 1994 [94]). The most likely cause
is an interleaved pair of repeated (l � 1)-tuples (repeats of AGTC and TTGG
in Figure 5.9 interleave). Therefore, repeats of length l � 1 should be consid-
ered. Another observation is that repeats may form clumps, and something like
“maximal repeats” of length l � 1 should be considered. The expected number
of such repeats is about � � (n2)(1 � p)pl�1. A Poisson approximation takes the
form Pfk repeatsg � e�� �

k

k! . Arratia et al., 1996 [12] showed that when there

are k repeats, the probability of having no interleaved pair is � k!2kCk
(2k)! , where

Ck = 1
k+1

�2k
k

�
is the k-th Catalan number. Averaging over k reveals that the prob-

ability of unique reconstruction for an n-letter sequence from its l-tuple spectrum
is approximately

X
k�0

e��
k!2kCk

(2k)!

�k

k!
= e��

X
k�0

(2�)k

k!(k + 1)!

Arratia et al., 1996 [12] transformed these heuristic arguments into accurate esti-
mates for resolving power of DNA arrays.

5.6 String Rearrangements

Figure 5.8 presents two DNA sequences with the same SBH spectrum. The graph
G corresponding to the spectrum in Figure 5.8 contains a branching vertex TG. We
don’t know which 3-tuple (TGC or TGG) follows ATG in the original sequence
and cannot distinguish between the correct and the incorrect reconstructions. An
additional biochemical experiment (for example, hybridization of a target DNA
fragment with ATGC) would find the correct reconstruction (the sequence at the
top of Figure 5.8 contains ATGC, while the sequence at the bottom does not).

Additional biochemical experiments to resolve branchings in the reconstruc-
tion process were first proposed by Southern, 1988 [325] (using a longer probe for
each branching vertex) and Khrapko et al., 1989 [197] (continuous stacking hy-
bridization). Continuous stacking hybridization assumes an additional hybridiza-
tion of short probes that continuously extends duplexes formed by the target DNA
fragment and the probes from the array. In this approach, additional hybridization
with an m-tuple on the array C(l) provides information about some (l+m)-tuples

76 CHAPTER 5. DNA ARRAYS

CG

CA
TG GC

GG

AT

AT

TG

GT

GT

CG

CA
GC

GG

reconstruction:
first

reconstruction:

ATGGCGTGCA

ATGCGTGGCA

if ATGC hybridizes with a target -

if ATGC does not hybridize with a target - ATGGCGTGCA

ATGCGTGGCA

An additional experiment with ATGC reveals the correct reconstruction:

S={ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}

second

Figure 5.8: Additional biochemical experiments resolve ambiguities in sequence reconstruction.

contained in the target DNA sequence. Computer simulations suggest that con-
tinuous stacking hybridization with only three additional experiments provides an
unambiguous reconstruction of a 1000-bp fragment in 97% of cases.

To analyze additional biochemical experiments, one needs a characterization
of all DNA sequences with the given spectrum. In the very first studies of DNA
arrays, biologists described string rearrangements that do not change the spectrum
of the strings (Drmanac et., 1989 [91]). However, the problem of characterizing
all these rearrangements remained unsolved. Ukkonen, 1992 [340] conjectured
that every two strings with the same l-tuple spectrum can be transformed into each
other by simple transformations called transpositions and rotations (Figure 5.9).
In the following, by “a string written in l-tuple notation,” we mean a string writ-
ten as a sequence of its l-tuples. For example, the 2-tuple notation for the string
ATGGGC is AT TG GG GG GC. Ukkonen, 1992 [340] conjectured that any two
strings with the same l-tuple composition can be transformed into each other by

5.6. STRING REARRANGEMENTS 77

gta cgggc TTGG aaattta TTGGat

gta AGTCaaattta TTGG taga

tagaAGTC

cgggcAGTC TTGG at

transposition

AGTC

AGTC gtaTTGG tagaAGTC

TTGG tagaAGTCgta TTGG

 rotation

Equivalent sequence transformations

Figure 5.9: Ukkonen’s transformations (l = 5).

simple operations called transpositions and rotations.
If a string

s = : : : x: : :z : : : x : : :|{z} z : : :
(written in (l � 1)-tuple notation) contains interleaving pairs of (l � 1)-tuples x
and z, then the string : : : x : : :|{z} z : : : x: : :z : : : where : : : and : : :|{z} change places is

called a transposition of s. If s = : : : x: : :x : : :|{z} x : : :, where x is an (l � 1)-tuple,

we also call : : : x : : :|{z} x: : :x : : : a transposition of s. If a string

s = x: : :z : : :|{z} x
(written in (l � 1)-tuple notation) starts and ends with the same (l � 1)-tuple x,
then the string z : : :|{z} x: : :z is called a rotation of s.

Clearly, transpositions and rotations do not change l-tuple composition.

Theorem 5.5 (Pevzner, 1995 [267]) Every two strings with the same l-tuple com-
position can be transformed into each other by transpositions and rotations.

78 CHAPTER 5. DNA ARRAYS

Proof Strings with a given l-tuple composition correspond to Eulerian paths in
the directed graph G (Figure 5.10). Graph G either is Eulerian or contains an
Eulerian path. Notice that only if G is Eulerian does there exist a rotation of the
corresponding string. In this case the rotations correspond simply to a choice of
the initial vertex of an Eulerian cycle.

Substitute each directed edge a = (v; w) in G with two (undirected) edges,
(v; a) colored white and (a;w) colored black (Figure 5.10). Obviously each alter-
nating path in the new graph G� is a directed path in G and vice versa. According
to theorem 2.2, order exchanges and reflections generate all Eulerian paths in G�
and, therefore, all strings with a given l-tuple composition. Notice that Ukkonen’s
transpositions correspond to order exchanges in G�. On the other hand, every cycle
inG� is even; therefore there are no order reflections inG�. This proves Ukkonen’s
conjecture that transpositions and rotations generate all strings with a given l-tuple
composition.

5.7 2-optimal Eulerian Cycles

A 2-path (v1; v2; v3) in a directed graph is a path consisting of two directed edges
(v1; v2) and (v2; v3). Every Eulerian cycle in a graph G(V;E) defines a set of jEj
2-paths corresponding to every pair of consecutive edges in this cycle. A set of jEj
2-paths is valid if every edge of E appears in this set twice: once as the beginning
of a 2-path and once as the end of a 2-path. Every valid set of 2-paths defines a
decomposition of E into cycles. A valid set of 2-paths defining an Eulerian cycle
is called an Euler set of 2-paths.

Let G be a directed Eulerian graph with a weight w(v1v2v3) assigned to every
2-path (v1v2v3) in G. The weight of an Eulerian cycle C = v1 : : : vm is the sum of
the weights of its 2-paths w(C) =

Pm�1
i=1 w(vivi+1vi+2) (we assume that vm = v1

and vm+1 = v2). The 2-optimal Eulerian cycle problem is to find an Eulerian cycle
of maximal weight (Gusfield et al., 1998 [147]).

Let
C = : : : vxw : : : vyw : : : v̂x ŵ : : : ^̂v| {z } y ^̂w : : :

be an Eulerian cycle in G traversing vertices x and y in an interleaving order. An
order exchange transforming C into

C 0 = : : : vx ŵ : : : ^̂v| {z } yw : : : v̂xw : : : vy ^̂w : : :

is called an Euler switch of C at x; y. Every two Eulerian cycles in a directed
graph can be transformed into each other by means of a sequence of Euler switches
(Pevzner, 1995 [267]).

5.7. 2-OPTIMAL EULERIAN CYCLES 79

AT TG GG GC CC

ACCT CA

GA AG

AT TG GG GC CC

ACCT CA

GA AG

l-tuple composition: ATG, AGC, ACT, TGA, TGG, GAG, GGG, GGC, GCC, CAC, CTG

Eulerian directed graph

Eulerian bicolored graph

AT TG GG GC CC

ACCT CA

GA AG

AT TG GG GC CC

ACCT CA

GA AG

Two alternating Eulerian paths correspond to two sequence reconstructions

A TG G GC AC TG A GC C A TG A GC AC TG G GC C

Figure 5.10: Ukkonen’s conjecture. The sequence (Eulerian path) on the right is obtained from

the sequence on the left by a transposition defined by the interleaving pairs of dinucleotides TG and

GC.

We denote an Euler switch of C at x; y as s = s(x; y) and write C 0 = s � C .
An Euler switch s of C at x; y transforms four 2-paths in C

vxw; vyw; v̂xŵ; ^̂vy ^̂w

80 CHAPTER 5. DNA ARRAYS

into four 2-paths in C 0

vxŵ; ^̂vyw; v̂xw; vy ^̂w:

Denote
�x(s) = w(vxŵ) + w(v̂xw)� w(vxw)� w(v̂xŵ)

�y(s) = w(^̂vyw) + w(vy ^̂w)� w(vyw)� w(^̂vy ^̂w)

and �(s) = �x(s)+�y(s). �(s) is the change in the weight of the Eulerian cycle
C 0 as compared to C . An Euler switch s is increasing for cycle C if w(s � C) >
w(C).

Consider a valid set of 2-paths S containing four 2-paths:

vxw; vyw; v̂xŵ; ^̂vy ^̂w:

A switch of this set at vertices x; y is a new valid set of 2-paths that contains instead
of the above four 2-paths the following ones:

vxŵ; ^̂vyw; v̂xw; vy ^̂w:

If S is an Euler set of 2-paths then a switch of S is called non-Euler if it transforms
S into a non-Euler set of 2-paths. For example, a switch at x; y of a set of 2-
paths corresponding to the Euler cycle : : : vxw : : : v̂xŵ : : : vy w : : : ^̂v| {z } y ^̂w : : : is a

non-Euler switch.
Gusfield et al., 1998 [147] studied the 2-optimal Eulerian cycle problem in

2-in-2-out directed graphs, i.e., in graphs with maximal degree 2.

Theorem 5.6 Every two Eulerian cycles in a 2-in-2-out graph can be transformed
into each other by means of a sequence of Euler switches s1; : : : st such that
�(s1) � �(s2) � : : : � �(st).

Proof Let s1; : : : ; st be a sequence of Euler switches transforming C into C� such
that the vector (�(s1);�(s2); : : : ;�(st)) is lexicographically maximal among all
sequences of Euler switches transforming C into C�. If this vector does not satisfy
the condition �(s1) � �(s2) � : : : � �(st), then �(si) < �(si+1) for 1 �
i � t � 1. Let C 0 = si�1 � � � s1C . If the switch si+1 is an Euler switch in C 0
(i.e., change of the system of 2-paths in C 0 imposed by si+1 defines an Eulerian
cycle), then s1; : : : ; si�1; si+1 is lexicographically larger than s1; : : : ; si�1; si, a
contradiction. (Pevzner, 1995 [267] implies that there exists a transformation of
C into C� with the prefix s1; : : : si�1; si+1.) Therefore, the switch si+1 at x; y
is not an Euler switch in C 0. This implies that the occurrences of x and y in
C 0 are non-interleaving: C 0 = : : : x : : : x : : : y : : : y : : :. On the other hand, since
the switch si at z; u is an Euler switch in C 0, the occurrences of z and u in C 0

5.8. POSITIONAL SEQUENCING BY HYBRIDIZATION 81

are interleaving: C 0 = : : : z : : : u : : : z : : : u : : :. We need to consider all kinds of
interleaving arrangements of the four vertices x; y; z, and u in C 0. The condition
that si+1 is an Euler switch in si �C 0 (i.e., si moves vertices x and y in such a way
that they become interleaving in si �C 0) makes most of these cases invalid (in fact,
this is the key idea of the proof). It is easy to see that all valid arrangements of
x; y; z, and u in C 0 are “equivalent” to the arrangement

C 0 = : : : z: : : x : : :u : : : x : : : y : : : z : : :|{z} u : : : y : : :
In this case si “inserts” x between the occurrences of y, thus making x and y
interleaving:

si � C 0 = : : : z : : :|{z} u : : : x : : : y : : : z: : : x : : :u : : : y : : :
Note that in this case the switches s0 at z; y and s00 at x; u are also Euler switches
in C 0. Moreover, �(si) + �(si+1) = �(s0) + �(s00) Without loss of generality,
assume that �(s0) � �(s00). Then

�(s0) � �(s0) + �(s00)
2

=
�(si) + �(si+1)

2
> �(si)

Therefore, the vector (�(s1); : : : ;�(si�1);�(s0)) is lexicographically larger than
the vector (�(s1); : : : ;�(si�1);�(si)), a contradiction.

Theorem 5.6 implies the following:

Theorem 5.7 (Gusfield et al., 1998 [147]) If C is an Eulerian cycle that is not
2-optimal then there exists an increasing Euler switch of C .

The proof of theorem 5.6 also implies that in the case when all weights of
2-paths are distinct, a greedy algorithm choosing at every step the switch with
maximal weight leads to a 2-optimal Eulerian cycle.

5.8 Positional Sequencing by Hybridization

Although DNA arrays were originally proposed for DNA sequencing, the resolv-
ing power of DNA arrays is rather low. With 64-Kb arrays, only DNA fragments
as long as 200 bp can be reconstructed in a single SBH experiment. To improve
the resolving power of SBH, Broude et al., 1994 [49] suggested Positional SBH
(PSBH), allowing (with additional experimental work) measurement of approxi-
mate positions of every l-tuple in a target DNA fragment. Although this makes the

82 CHAPTER 5. DNA ARRAYS

reconstruction less ambiguous, polynomial algorithms for PSBH sequence recon-
struction are unknown. PSBH can be reduced to computing Eulerian path with an
additional restriction that the position of any edge in the computed Eulerian path
should be in the range of positions associated with the edge.

PSBH motivates the Positional Eulerian Path Problem. The input to the Po-
sitional Eulerian Path Problem is an Eulerian graph G(V;E) in which every edge
is associated with a range of integers and the problem is to find an Eulerian path
e1; : : : ; ejEj in G such that the range of ei contains i:

Positional Eulerian Path Problem Given a directed multigraph G(V;E) and an
interval Ie = fle; heg, le � he associated with every edge e 2 E, find an Eulerian
path e1; : : : ; ejEj in G such that lei � i � hei for 1 � i � jEj.

Hannenhalli et al., 1996 [156] showed that the Positional Eulerian Path Prob-
lem is NP-complete. On a positive note, they presented polynomial algorithms to
solve a special case of PSBH, where the range of the allowed positions for any
edge is bounded by a constant (accurate experimental measurements of positions
in PSBH).

Steven Skiena proposed a slightly different formulation of the PSBH problem
that models the experimental data more adequately. For this new formulation, the
2-optimal Eulerian path algorithm described in the previous section provides a so-
lution.

Experimental PSBH data provide information about the approximate positions
of l-tuples, but usually do not provide information about the error range. As a re-
sult, instead of an interval fle; heg associated with each edge, we know only the ap-
proximate position me associated with each edge. In a different and more adequate
formulation of the PSBH problem, the goal is to minimize

PjEj
i=0 j(mei+1 �mei)j,

where me0 = 0 and mejEj+1
= jEj + 1. For every pair of consecutive edges e; e0

in G, define the weight of the corresponding 2-path as jme � me0 j. The PSBH
problem is to find a 2-optimal Eulerian path of minimal weight.

5.9 Design of DNA Arrays

Since the number of features on a DNA array is fixed, we are interested in the
design of a smallest set of probes sufficient to sequence almost all strings of a
given length. Suppose that the number of positions m on a DNA array is fixed
and the problem is to devise m probes to provide the maximum resolving power of
a DNA array. It turns out that the uniform arrays C(l) containing all l-tuples are
rather redundant. Pevzner and Lipshutz, 1994 [271] introduced new arrays with
improved resolving power as compared to uniform arrays. These arrays are based
on the idea of pooling probes into multiprobes: synthesizing a set of diverse probes

5.9. DESIGN OF DNA ARRAYS 83

at every address on the array. A multiprobe is a set of probes located at a single
address of an array. A DNA fragment hybridizes with a multiprobe if it hybridizes
with at least one probe in the multiprobe. For example, WWS is a multiprobe
consisting of eight probes:

AAG;AAC;ATG;ATC; TAG; TAC; TTA; TTC

(W stands for A or T , while S stands for G or C). RY R is a multiprobe consisting
of eight probes:

ATA;ATG;ACA;ACG;GTA;GTC;GCA;GCG

(R stands for purines A or G, while Y stands for pyrimidines T or C). TXG is a
multiprobe consisting of four probes:

TAG; TTG; TGG; TCG

(X stands for any nucleotide–A; T;G, or C).
An array is now defined as a set of multiprobes C , each multiprobe being a

set of probes. The memory jCj of the array is the number of multiprobes in C .
Each DNA sequence F defines a subset of array C consisting of the multiprobes
hybridizing with F (spectrum of F in C):

FC = fp 2 C : multiprobe p contains a probe occurring in sequence Fg
(F stands for the sequence complementary to F).

The binary array Cbin(l) is the array with memory jCbin(l))j = 2 � 2l � 4
composed of all multiprobes of two kinds:

fW;Sg; fW;Sg; : : : ; fW;Sg;| {z }
l

fNg and fR;Y g; fR; Y g; : : : ; fR;Y g;| {z }
l

fNg

whereN is a specified nucleotide A,T, G, or C. Each probe is a mixture of 2l probes
of length l + 1. For example, the array Cbin(1) consists of the 16 multiprobes

WA;WC;WG;WT; SA; SC; SG; ST;RA;RC;RG;RT; Y A; Y C; Y G; Y T:

Each multiprobe is a pool of two dinucleotides (Figure 5.11).
The gapped array Cgap(l) (Pevzner et al., 1991 [272]) is the array with memory

jCgap(l)j = 2 � 4l composed of all multiprobes of two kinds:

N1N2 : : : Nl and N1N2 : : : Nl�1XX : : : X| {z }
l�1

Nl

84 CHAPTER 5. DNA ARRAYS

A T

G C

W={A,T}

R={A,G} Y={T,C}

{ } { }S
W

S
W. . . { }

A
T
G
C

{ } { }. . . { }

A
T
G
C

R R
Y Y

S={G,C}

WS - sub-array RY - sub-array

every string of length l in {W,S} or {R,Y} alphabet

is a pool of 2 strings in {A,T,G,C} alphabet
l

l times l times

Binary arrays

Figure 5.11: Binary arrays.

where Ni is a specified base and X is an unspecified base. Each multiprobe of the
first kind consists of the only probe of length l; each multiprobe of the second kind
consists of 4l�1 probes of length 2l � 1.

The alternating array Calt(l) is the array with memory jCalt(l)j = 2 � 4l com-
posed of all multiprobes of two kinds:

N1XN2X : : : Nl�2XNl�1XNl and N1XN2X : : : Nl�2XNl�1Nl:

Each multiprobe of the first kind consists of 4k�1 probes of length 2k � 1, while
each multiprobe of the second kind consists of 4k�2 probes of length 2k � 2.

5.10 Resolving Power of DNA Arrays

Consider the sequence F = X1 : : : Xm�1XmXm+1 : : : Xn and assume that its
prefix Fm = X1X2 : : : Xm has already been reconstructed. We will estimate the
probability of unambiguously extending the prefix to the right by one nucleotide.

5.11. MULTIPROBE ARRAYS VERSUS UNIFORM ARRAYS 85

Since Fm is a possible reconstruction of the first m nucleotides of F ,

(Fm)C � FC :

There are four ways of extending Fm: FmA, FmT , FmG, and FmC . We define an
extension of Fm by a nucleotide N as a possible extension if

(FmN)C � FC : (5.1)

We call the sequence F extendable after m with respect to array C if the condition
(5.1) holds for exactly one of the four nucleotides; otherwise F is called non-
extendable.

Define �(C;F;m) as

�(C;F;m) =

(
0; if F is extendable after m with respect to the array C
1; otherwise

The branching probability p(C; n;m) is the probability that a random n-sequence
is non-extendable after the m-th nucleotide upon reconstruction with array C , i.e.,

p(C;n;m) =
1

4n

X
F

�(C;F;m)

where the sum is taken over all 4n sequences F of length n.
Let us fix m and denote p(C; n)=p(C;n;m). Obviously, p(C;n) is an in-

creasing function of n. For a given probability p, the maximum n satisfying
the condition p(C; n) � p is the maximal sequence length nmax(C; p) allow-
ing an unambiguous extending with branching probability below p. We demon-
strate that for uniform arrays, nmax(C; p) � 1

3 � jCj � p, while for binary arrays

nmax(C; p) � 1p
12
� jCj � pp. Therefore, the new arrays provide a factor

q
3
4p

improvement in the maximal sequence length as compared to the uniform arrays.
For p = 0:01 and binary 64-Kb arrays, nmax � 1800, versus nmax � 210 for
uniform arrays.

5.11 Multiprobe Arrays versus Uniform Arrays

Consider the sequence F = X1 : : : Xm�1XmXm+1 : : : Xn and assume that its
prefix Fm = X1 : : : Xm has already been reconstructed. Denote the last (l � 1)-
tuple in Fm as V = Xm�l+2 : : : Xm. For the sake of simplicity we suppose l � m
and l� n� 4l = jC(l)j.

The sequence F is non-extendable after m using C(l) if the spectrum FC(l)
contains a V Yi l-tuple (here, Yi is an arbitrary nucleotide different from Xm+1).

86 CHAPTER 5. DNA ARRAYS

Therefore, p(C(l); n) = 1� PfV Y1; V Y2; V Y3 62 FC(l)g. Assume that the prob-
ability of finding each of the 4l l-tuples at a given position of F is equal to 1

4l
. The

probability that the spectrum of F does not contain V Y1 can be roughly estimated
as (1� 1

4l
)n�l+1 (ignoring potential self-overlaps (Pevzner et al., 1989 [269]) and

marginal effects). The probability that the spectrum of F contains neither V Y1, nor
V Y2, nor V Y3 can be estimated as ((1� 1

4l
)(n�l+1))3. Therefore

p(C(l); n) = 1� PfV Y1; V Y2; V Y3 62 FC(l)g �

1� ((1� 1

4l
)n�l+1)3 � 3n

4l
=

3n

jC(l)j : (5.2)

Therefore

nmax(C(l); p) � 1

3
� jC(l)jp:

Now we estimate p(Cbin(l); n) for n � jjCbin(l)jj. Denote the last l-tuple in
the prefix Fm as V = Xm�l+1; : : : ; Xm, and let VWS and VRY be V written in the
fW;Sg and fR;Y g alphabets, respectively. In this case the ambiguity in recon-
struction arises when the spectrum FCbin(l) contains both a VWSYi multiprobe and
a VRY Yi multiprobe for Yi 6= Xm+1. Assume that the probability of finding a mul-
tiprobe from Cbin(l) at a given position of F is 1

4�2l and ignore self-overlaps. Then
the probability that the spectrum of F does not contain VWSY1 can be roughly es-
timated as (1� 1

4�2l)
n�l. Therefore the probability that the spectrum of F contains

both VWSY1 and VRY Y1 is

(1� (1� 1

4 � 2l)
n�l) � (1� (1� 1

4 � 2l)
n�l) � n2

4 � 2l � 4 � 2l :

Similarly to (5.2) we derive the following:

p(Cbin(l); n) = PfVWSYi 2 FCbin(l) and VRY Yi 2 FCbin(l)g �

1� (1� n2

4 � 2l � 4 � 2l)
3 � 3 � n

4 � 2l �
n

4 � 2l =
12n2

jCbin(l)j2 :

Therefore, for Cbin(l),

nmax(Cbin(l); p) � 1p
12
� jCbin(l)jpp:

Next we estimate the branching probability of gapped arrays Cgap(l). Let m �
2l � 1 and n � jjCgap(l)jj. Denote U = Xm�2l+4 : : : Xm�l+2. In this case

5.12. MANUFACTURE OF DNA ARRAYS 87

the ambiguity arises when the spectrum FCgap(l) contains both a V Yi l-multiprobe
and a U XX : : : X| {z }

l�1

Yi (2l � 1)-multiprobe (here, Yi 6= Xm+1). Assume that the

probability of finding each multiprobe from Cgap(l) at a given position of F is
1
4l

and ignore self-overlaps. Then the probability that the spectrum of F does
not contain V Y1 can be roughly estimated as (1 � 1

4l
)n�l. The probability that

the spectrum of F does not contain U XX : : : X| {z }
l�1

Y1 can be roughly estimated as

(1� 1
4l
)n�(2l�1)+1. Therefore, the probability that the spectrum of F contains both

V Y1 and U XX : : : X| {z }
l�1

Y1 is

(1� (1� 1

4l
)n�l) � (1� (1� 1

4l
)n�2l+2) � n2

4l � 4l :

Similarly to (5.2), we derive the following:

p(Cgap(l); n) = PfV Yi 2 FCgap(l) and UYi 2 S(Cgap(l); F)g �

1� (1� n2

4l � 4l)
3 � 3 � n

4l
� n
4l

=
12n2

jCgap(l)j2 :

Similar arguments demonstrate that

nmax(Calt(l); p) � 1p
12
� jCalt(l)jpp:

5.12 Manufacture of DNA Arrays

DNA arrays can be manufactured with the use of V LSIPS, very large scale im-
mobilized polymer synthesis (Fodor et al., 1991 [110], Fodor et al., 1993 [109]). In
V LSIPS, probes are grown one nucleotide at a time through a photolithographic
process consisting of a series of chemical steps. Every nucleotide carries a pho-
tolabile protection group protecting the probe from further growing. This group
can be removed by illuminating the probe with light. In each chemical step, a pre-
defined region of the array is illuminated, thus removing a photolabile protecting
group from that region and “activating” it for further nucleotide growth. The entire
array is then exposed to a particular nucleotide (which bears its own photolabile
protecting group), but reactions only occur in the activated region. Each time the
process is repeated, a new region is activated and a single nucleotide is appended
to each probe in that region. By appending nucleotides to the proper regions in the

88 CHAPTER 5. DNA ARRAYS

appropriate sequence, it is possible to grow a complete set of l-length probes in as
few as 4 � l steps. The light-directed synthesis allows random access to all positions
of the array and can be used to make arrays with any probes at any site.

The proper regions are activated by illuminating the array through a series of
masks, like those in Figure 5.12. Black areas of a mask correspond to the region
of the array to be illuminated, and white areas correspond to the region to be shad-
owed. Unfortunately, because of diffraction, internal reflection, and scattering,
points that are close to the border between an illuminated region and a shadowed
region are often subject to unintended illumination. In such a region, it is uncertain
whether a nucleotide will be appended or not. This uncertainty gives rise to probes
with unknown sequences and unknown lengths, that may hybridize to a target DNA
strand, thus complicating interpretation of the experimental data. Methods are be-
ing sought to minimize the lengths of these borders so that the level of uncertainty
is reduced. Two-dimensional Gray codes, described below, are optimal V LSIPS
masks that minimize the overall border length of all masks.

Figure 5.12 presents two C(3) arrays with different arrangements of 3-tuples
and masks for synthesizing the first nucleotide A (only probes with first nucleotide
A are shown). The border length of the mask at the bottom of Figure 5.12 is sig-
nificantly smaller than the border length of the mask at the top of Figure 5.12. We
are trying to arrange the probes on the array C(l) in such a way that the overall
border length of all 4� l masks is minimal. For two l-tuples x and y, let Æ(x; y) be
the number of positions in which x and y differ. Clearly, the overall border length
of all masks equals 2

P
Æ(x; y), where the sum is taken over all pairs of neigh-

boring probes on the array. This observation establishes the connection between
minimization of border length and Gray codes.

An l-bit Gray code is defined as a permutation of the binary numbers between
0 and 2l�1 such that neighboring numbers have exactly one differing bit, as do the
first and last numbers. For example, the 4-bit binary reflected Gray code is shown
below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

This Gray code can be generated recursively, starting with the 1-bit Gray code

G1 = f0; 1g;

5.12. MANUFACTURE OF DNA ARRAYS 89

ATG

AAA

AAT

AAC AAG

ATC

ATA

ATT

AGA

AGT

AGG

ACAACT

ACC

ACG

AAA AAT AAG AAC

ATA ATT ATG ATC

ACA ACT ACG ACC

AGA AGT AGG ACC

AGC

border length=58

border length=16

Masks for VLSIPS

Figure 5.12: Two masks with different border lengths.

as follows. For an l-bit Gray code

Gl = fg1; g2; :::; g2l�1; g2lg;
define an (l + 1)-bit Gray code as follows:

Gl+1 = f0g1; 0g2; :::; g2l�1; 0g2l ; 1g2l ; 1g2l�1; :::; 1g2; 1g1g:
The elements of Gl are simply copied with 0s added to the front, then reversed with
1s added to the front. Clearly, all elements in Gl+1 are distinct, and consecutive
elements in Gl+1 differ by exactly one bit.

We are interested in a two-dimensional Gray code composed of strings of
length l over a four-letter alphabet. In other words, we would like to generate a
2l-by-2l matrix in which each of the 4l l-tuples is present at a position (i; j), and

90 CHAPTER 5. DNA ARRAYS

each pair of adjacent l-tuples (horizontally or vertically) differs in exactly one posi-
tion. Such a Gray code can be generated from the one-digit two-dimensional Gray
code

G1 = A T
G C

as follows. For an l-digit two-dimensional Gray code

Gl = g1;1 . . . g1;2l
.
g2l;1 . . . g2l;2l

define the (l + 1)-digit two-dimensional Gray code as

Gl+1 = Ag1;1 . . . Ag1;2l Tg1;2l . . . Tg1;1
.

Ag2l;1 . . . Ag2l;2l Tg2l;2l . . . Tg2l;1

Gg2l;1 . . . Gg2l;2l Cg2l;2l . . . Cg2l;1
.
Gg1;1 . . . Gg1;2l Cg1;2l . . . Cg1;1

In particular,

G2 = AA AT TT TA
AG AC TC TG
GG GC CC CG
GA GT CT CA

The elements of Gl are copied into the upper left quadrant of Gl+1, then re-
flected horizontally and vertically into the three adjacent quadrants. As, T s, Cs,
and Gs are placed in front of the elements in the upper left, upper right, lower right,
and lower left quadrant, respectively.

The construction above is one of many possible Gray codes. Two-dimensional
Gray codes can be generated from any pair of one-dimensional Gray codes G1 and
G2 by taking the two-dimensional product G(i; j) = G1(i) � G2(j), where � is a

5.13. SOME OTHER PROBLEMS AND APPROACHES 91

shuffle operation (an arbitrary fixed shuffling like that of two decks of cards). The
simplest shuffling is the concatenation of G1(i) and G2(j).

For uniform arrays, Gray-code masks have minimal overall border lengths
among all masks, and the ratio of the border length of the Gray-code mask to
the border length of the standard mask approaches 1

2 (Feldman and Pevzner,
1994 [99]).

5.13 Some Other Problems and Approaches

5.13.1 SBH with universal bases

Preparata et al., 1999 [280] pushed the idea of multiprobe arrays further and de-
scribed the arrays that achieve the information-theoretic lower bound for the num-
ber of probes required for unambiguous reconstruction of an arbitrary string of
length n. These arrays use universal bases such as inosine that stack correctly
without binding and play a role of “don’t care” symbols in the probes. The de-
sign of these arrays is similar to the design of gapped arrays with more elaborate
patterns of gaps. Another approach to pooling in SBH was proposed by Hubbell,
2000 [171].

5.13.2 Adaptive SBH

The idea of adaptive SBH can be explained with the following example. Imagine a
super-programmer who implements very complicated software to compute a super-
number. After the first run on SuperPC, he learns that a cycle in his program
presents a bottleneck, and it will take a hundred years before the super-number is
computed. The usual approach to overcome this problem in the software industry is
to analyze the time-consuming cycle, localize the bottleneck, and write new faster
software (or modify the old). However, if the super-programmer is expensive (he
is these days!), this may not be the best approach. A different approach would be
to analyze the time-consuming cycle and to build new hardware that executes the
bottleneck cycle so fast that we could compute the super-number with the existing
software. Of course, it makes sense only if the cost of building a new SuperPC is
lower than the cost of the super-programmer.

For adaptive SBH, a DNA array is the computer and DNA is the program.
We are not at liberty to change the program (DNA fragment), but we can build
new arrays after we learn about the bottlenecks in sequence reconstruction. Skiena
and Sundaram, 1995 [316] and Margaritas and Skiena, 1995 [232] studied error-
free adaptive SBH and came up with elegant theoretical bounds for the number of
rounds needed for sequence reconstruction. This idea was further developed by
Kruglyak, 1998 [210].

92 CHAPTER 5. DNA ARRAYS

5.13.3 SBH-style shotgun sequencing
Idury and Waterman, 1995 [175] suggested using the Eulerian path SBH approach
for sequence assembly in traditional DNA sequencing. The idea is simple and
elegant: treat every read of length n as n � l + 1 l-tuples for sufficiently large l
(i.e., l = 30). Since most 30-tuples are unique in the human genome, this approach
leads to a very efficient sequencing algorithm in the case of error-free data. Idury
and Waterman, 1995 [175] also attempted to adapt this algorithm for the case of
sequencing errors.

5.13.4 Fidelity probes for DNA arrays
One current approach to quality control in DNA array manufacturing is to synthe-
size a small set of test probes that detect variation in the manufacturing process.
These fidelity probes consist of identical copies of the same probe, but they are
deliberately manufactured using different steps of the manufacturing process. A
known target is hybridized to these probes, and the hybridization results reflect the
quality of the manufacturing process. It is desirable not only to detect variations,
but also to analyze the variations that occur, indicating in what step manufacture
went wrong. Hubbell and Pevzner, 1999 [172] describe a combinatorial approach
that constructs a small set of fidelity probes that not only detect variations, but also
point out the erroneous manufacturing steps.

Chapter 6

Sequence Comparison

6.1 Introduction

Mutation in DNA is a natural evolutionary process: DNA replication errors cause
substitutions, insertions, and deletions of nucleotides, leading to “editing” of DNA
texts. Similarity between DNA sequences can be a clue to common evolutionary
origin (as with the similarity between globin genes in humans and chimpanzees)
or a clue to common function (as with the similarity between the �-sys oncogene
and the growth-stimulating hormone).

Establishing the link between cancer-causing genes and a gene involved in nor-
mal growth and development (Doolittle, 1983 [89], Waterfield, 1983 [353]) was
the first success story in sequence comparison. Oncogenes are genes in viruses
that cause a cancer-like transformation of infected cells. Oncogene �-sys in the
simian sarcoma virus causes uncontrolled cell growth and leads to cancer in mon-
keys. The seemingly unrelated growth factor PDGF is a protein that stimulates cell
growth. When these genes were compared, significant similarity was found. This
discovery confirmed a conjecture that cancer may be caused by a normal growth
gene being switched on at the wrong time.

Levenshtein, 1966 [219] introduced the notion of edit distance between strings
as the minimum number of edit operations needed to transform one string into an-
other, where the edit operations are insertion of a symbol, deletion of a symbol, and
substitution of a symbol for another one. Most DNA sequence comparison algo-
rithms still use this or a slightly different set of operations. Levenshtein introduced
a definition of edit distance but never described an algorithm for finding the edit dis-
tance between two strings. This algorithm has been discovered and re-discovered
many times in different applications ranging from speech processing (Vintsyuk,
1968 [347]) to molecular biology (Needleman and Wunsch, 1970 [251]). Although
the details of the algorithms are slightly different in different applications, they all
are variations of dynamic programming.

93

94 CHAPTER 6. SEQUENCE COMPARISON

Finding differences (edit distance) between sequences is often equivalent to
finding similarities between these sequences. For example, if edit operations are
limited to insertions and deletions (no substitutions), the edit distance problem is
equivalent to the Longest Common Subsequence (LCS) Problem. Mathematicians
became interested in the LCS Problem long before the dynamic programming al-
gorithm for sequence comparison was discovered. Studies of the symmetric group
revealed surprising connections between representation theory and the problem of
finding the LCS between two permutations. The first algorithm for this problem
was described by Robinson, 1938 [287]. Robinson’s work was forgotten until the
1960s, when Schensted, 1961 [306] and Knuth, 1970 [201] re-discovered the rela-
tionships between the LCS and Young tableaux.

Although most algorithmic aspects of sequence comparison are captured by the
LCS Problem, biologists prefer using alignments for DNA and protein sequence
comparison. The alignment of the strings V and W is a two-row matrix such that
the first (second) row contains the characters of V (W) in order, interspersed with
some spaces. The score of an alignment is defined as the sum of the scores of its
columns. The column score is often positive for coinciding letters and negative for
distinct letters.

In the early papers on sequence alignment, scientists attempted to find the sim-
ilarity between entire strings V and W , i.e., global alignment. This is meaningful
for comparisons between members of the same protein family, such as globins,
that are very conserved and have almost the same length in organisms ranging
from fruit flies to humans. In many biological applications, the score of alignment
between substrings of V and W may be larger than the score of alignment between
the entire strings. This problem is known as the local alignment problem. For
example, homeobox genes, which regulate embryonic development, are present in
a large variety of species. Although homeobox genes are very different in differ-
ent species, one region of them–called homeodomain–is highly conserved. The
question arises how to find this conserved area and ignore the areas that show very
little similarity. Smith and Waterman, 1981 [320] proposed a clever modification
of dynamic programming that solves the local alignment problem.

Back in 1983, it was surprising to find similarities between a cancer-causing
gene and a gene involved in normal growth and development. Today, it would be
even more surprising not to find any similarity between a newly sequenced gene
and the huge GenBank database. However, GenBank database search is not as
easy now as it was 20 years ago. When we are trying to find the closest match to
a gene of length 103 in a database of size 109 even quadratic dynamic program-
ming algorithms may be too slow. One approach is to use a fast parallel hardware
implementation of alignment algorithms; another one is to use fast heuristics that
usually work well but are not guaranteed to find the closest match.

Many heuristics for fast database search in molecular biology use the same fil-
tering idea. Filtering is based on the observation that a good alignment usually

6.1. INTRODUCTION 95

A T - C - T G A T
- T G C A T - A -

Alignment:

0

1

2

3

4

4

T G C A T A

A

T

C

T

G

A

T

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

1 2 3 4 5 6

1

2

3

4

5

6

7

2 3 4 3 4 5

2 3 4 3 4

2 3 3 4 5

3 4 3 4 4

4 3 4 5 4 5

5 4 5 4 5

6 5 6 5 5

V and W have a subsequence TCTA in common V can be transformed into W by deleting A,G,T and inserting G,A
Computing similarity s(V,W)=4 Computing distance d(V,W)=5

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0 0 1 1 1

1 1 1 1 22

1

1

1

1

1

1 2 2 2 2

1

2

2

2

2

2

2

2

2 3 3

2 3 3

3

3

3 4

4 4

T G C A T A

A

T

C

T

G

A

T

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

0

Figure 6.1: Dynamic programming algorithm for computing longest common subsequence.

includes short identical or very similar fragments. Thus one can search for such
short substrings and use them as seeds for further analysis. The filtration idea
for fast sequence comparison goes back to the early 1970s, well before the pop-
ular FASTA and BLAST algorithms were invented. Knuth, 1973 [202] suggested
a method for pattern matching with one mismatch based on the observation that
strings differing by a single error must match exactly in either the first or the sec-
ond half. For example, approximate pattern matching of 9-tuples with one error
can be reduced to the exact pattern matching of 4-tuples with further extending
of the 4-tuple matches into 9-tuple approximate matches. This provides an op-
portunity for filtering out the positions that do not share common 4-tuples, a large
portion of all pairs of positions. The idea of filtration in computational molecular
biology was first described by Dumas and Ninio, 1982 [92], and then was taken
significantly further by Wilbur and Lipman, 1983 [368] and Lipman and Pearson,
1985 [225] in their FASTA algorithm. It was further developed in BLAST, now a
dominant database search tool in molecular biology (Altschul et al., 1990 [5]).

96 CHAPTER 6. SEQUENCE COMPARISON

6.2 Longest Common Subsequence Problem

Define a common subsequence of strings V = v1 : : : vn and W = w1 : : : wm as a
sequences of indices

1 � i1 < : : : < ik � n

and a sequences of indices

1 � j1 < : : : < jk � m

such that
vit = wjt for 1 � t � k:

Let s(V;W) be the length (k) of a longest common subsequence (LCS) of V and
W . Clearly, d(V;W) = n+m� 2s(V;W) is the minimum number of insertions
and deletions needed to transform V into W . Figure 6.1 presents an LCS of length
4 for the strings V = ATCTGAT and W = TGCATA and a shortest sequence
of 2 insertions and 3 deletions transforming V into W .

A simple dynamic programming algorithm to compute s(V;W) has been dis-
covered independently by many authors. Let si;j be the length of LCS between
the i-prefix Vi = v1 : : : vi of V and the j-prefix Wj = w1 : : : wj of W . Let
si;0 = s0;j = 0 for all 1 � i � n and 1 � j � m. Then, si;j can be computed by
the following recurrency:

si;j = max

8><
>:
si�1;j

si;j�1

si�1;j�1 + 1; if vi = wj

The first (second) term corresponds to the case when vi (wj) is not present in the
LCS of Vi and Wj , and the third term corresponds to the case when both vi and wj

are present in the LCS of Vi and Wj (vi matches wj). The dynamic programming
table in Figure 6.1(left) presents the computation of the similarity score s(V;W)
between V and W , while the table in Figure 6.1(right) presents the computation of
edit distance between V and W . The edit distance d(V;W) is computed according
to the initial conditions di;0 = i, d0;j = j for all 1 � i � n and 1 � j � m and
the following recurrency:

di;j = min

8><
>:
di�1;j + 1
di;j�1 + 1
di�1;j�1 if vi = wj

The length of an LCS between V and W can be read from the element (n;m)
of the dynamic programming table. To construct an LCS, one has to keep the infor-
mation on which of the three quantities (si�1;j , si;j�1, or si�1;j�1+1) corresponds

6.2. LONGEST COMMON SUBSEQUENCE PROBLEM 97

to the maximum in the recurrence for si;j and backtrack through the dynamic pro-
gramming table. The following algorithm achieves this goal by introducing the
pointers , ", and-, corresponding to the above three cases:

LCS (V;W)
for i 1 to n

si;0 0
for i 1 to m

s0;i 0
for i 1 to n

for j 1 to m
if vi = wj

98 CHAPTER 6. SEQUENCE COMPARISON

6.3 Sequence Alignment

Let A be ak-letter alphabet, and letV andW be two sequences overA. Let
A0 = A [f�g be an extended alphabet, where0�0 denotesspace. An alignment
of stringsV = v1; : : : vn andW = w1; : : : ; wm is a2 � l matrixA (l � n;m),
such that the first (second) row ofA contains the characters ofV (W) in order
interspersed withl � n (l �m) spaces (Figure 6.1(bottom)). We assume that no
column of the alignment matrix contains two spaces. The columns of the alignment
containing a space are calledindels, and the columns containing a space in the
first (second) row are calledinsertions (deletions). The columns containing the
same letter in both rows are calledmatches, while the columns containing different
letters are calledmismatches. The score of a column containing symbolsx andy
from the extended alphabet is defined by a(k + 1) � (k + 1) matrix defining the
similarity scoresÆ(x; y) for every pair of symbolsx andy fromA0. The score of the
alignment is defined as the sum of the scores of its columns. The simplest matrix
Æ assumes premiumsÆ(x; x) = 1 for the matches and penalizes every mismatch
by Æ(x; y) = �� and every insertion or deletion byÆ(x;�) = Æ(�; x) = ��. In
this case thescoreof the alignment is defined as# matches –�# mismatches –
�# indels. The Longest Common Subsequence Problem is the alignment problem
with the parameters� = 1, � = 0. The common matrices for protein sequence
comparison,Point Accepted Mutations (PAM)andBLOSUM, reflect the frequency
with which amino acidx replaces amino acidy in evolutionary related sequences
(Dayhoff et al., 1978 [82], Altschul, 1991 [6], Henikoff and Henikoff, 1992 [158]).

The (global)sequence alignmentproblem is to find the alignment of sequences
V andW of maximal score. The corresponding recurrency for the scoresi;j of
optimal alignment betweenVi andWj is

si;j = max

8><
>:
si�1;j + Æ(vi;�)
si;j�1 + Æ(�; wj)
si�1;j�1 + Æ(vi; wj)

Every alignment ofV andW corresponds to a path in theedit graphof se-
quencesV andW (Figure 6.2). Therefore, the sequence alignment problem cor-
responds to thelongest path problemfrom the source to the sink in thisdirected
acyclic graph.

6.4 Local Sequence Alignment

Frequently, biologically significant similarities are present in certain parts of DNA
fragments and are not present in others. In this case biologists attempt to maximize
s(vi : : : vi0 ; wj : : : wj0) where the maximum is taken over all substringsvi : : : vi0 of
V andwj : : : wj0 of W .

6.4. LOCAL SEQUENCE ALIGNMENT 99

A

T

C

T

G

A

T

T G C A T A

deletions:

mismatches:

insertions:

matches:

source

sink

Figure 6.2: Edit graph. The weights of insertion and deletion edges are��, the weights of

mismatch edges are��, and the weights of match edges are 1.

The global alignment problem corresponds to finding the longest path between
vertices(0; 0) and (n;m) in the edit graph, while the local alignment problem
corresponds to finding the longest path among paths between arbitrary vertices
(i; j) and(i0; j0) in the edit graph. A straightforward and inefficient approach to this
problem is to find the longest path between every pair of vertices(i; j) and(i0; j0).
Instead of finding the longest path from every vertex(i; j), the local alignment
problem can be reduced to finding the longest paths from the source by adding
edges of weight0 from the source to every other vertex. These edges provide
a “free” jump from the source to any other vertex(i; j). A small difference in
the following recurrency reflects this transformation of the edit graph (Smith and
Waterman, 1981 [320]):

si;j = max

8>>><
>>>:
0
si�1;j + Æ(vi;�)
si;j�1 + Æ(�; wj)
si�1;j�1 + Æ(vi; wj)

100 CHAPTER 6. SEQUENCE COMPARISON

The largest value ofsi;j represents the score of the local alignment ofV andW
(rather thansn;m for global alignment).

Optimal local alignment reports only the longest path in the edit graph. At
the same time several local alignments may have biological significance and the
methods are sought to findk best non-overlapping local alignments (Waterman
and Eggert, 1987 [359], Huang et al., 1990 [168]). These methods are particularly
important for comparison of multi-domain proteins sharing similar blocks that are
shuffled in one protein as compared to another. In this case, a single local alignment
representing all significant similarities does not exist.

6.5 Alignment with Gap Penalties

Mutations are usually manifestations of errors in DNA replication. Nature frequent-
ly deletes or inserts entire substrings as a unit, as opposed to deleting or inserting
individual nucleotides. Agap in alignment is defined as a continuous sequence of
spaces in one of the rows. It is natural to assume that the score of a gap consisting
of x spaces is not just the sum of scores ofx indels, but rather a more general func-
tion. Foraffine gap penalties, the score for a gap of lengthx is�(�+ �x), where
� > 0 is the penalty for the introduction of the gap and� > 0 is the penalty for
each symbol in the gap. Affine gap penalties can be accommodated by introduc-
ing long vertical and horizontal edges in the edit graph (e.g., an edge from(i; j) to
(i+x; j) of length�(�+�x)) and further computing the longest path in this graph.
Since the number of edges in the edit graph for affine gap penalties increases, at
first glance it looks as though the running time for the alignment algorithm also
increases fromO(n2) to O(n3). However, the following three recurrences keep
the running time down:

#
si;j= max

(#
si�1;j ��
si�1;j � (�+ �)

!
s i;j= max

(!
s i;j�1 ��
si;j�1 � (�+ �)

si;j = max

8>><
>>:
si�1;j�1 + Æ(vi; wj)
#
si;j!
s i;j

The variable
#
si;j computes the score for alignment betweenVi andWj ending with

a deletion (i.e., a gap inW), while the variable
!
s i;j computes the score for align-

ment ending with an insertion (i.e., a gap inV). The first term in the recurrences for

6.6. SPACE-EFFICIENT SEQUENCE ALIGNMENT 101

#
si;j and

!
s i;j corresponds to extending the gap, while the second term corresponds

to initiating the gap. Although affine gap penalties is the most commonly used
model today, some studies indicate that non-linear gap penalties may have some
advantages over the affine ones (Waterman, 1984 [356], Gonnet et al., 1992 [133]).
Efficient algorithms for alignment with non-linear gap penalties were proposed by
Miller and Myers, 1988 [236] and Galil and Giancarlo, 1989 [116].

6.6 Space-Efficient Sequence Alignment

In comparison of long DNA fragments, the limited resource in sequence alignment
is not time but space. Hirschberg, 1975 [163] proposed adivide-and-conquerap-
proach that performs alignment in linear space for the expense of just doubling the
computational time.

The time complexity of the dynamic programming algorithm for sequence
alignment is roughly the number of edges in the edit graph, i.e.,O(nm). The
space complexity is roughly the number of vertices in the edit graph, i.e.,O(nm).
However, if we only want to compute the score of the alignment (rather than the
alignment itself), then the space can be reduced to just twice the number of ver-
tices in a single column of the edit graph, i.e.,O(n). This reduction comes from the
observation that the only values needed to compute the alignment scoress�;j (col-
umn j) are the alignment scoress�;j�1 (columnj � 1). Therefore, the alignment
scores in the columns beforej � 1 can be discarded while computing alignment
scores for columnsj; j + 1; : : :. In contrast, computing the alignment (i.e., finding
the longest path in the edit graph) requires backtracking through the entire matrix
(si;j). Therefore, the entire backtracking matrix needs to be stored, thus leading to
theO(nm) space requirement.

The longest path in the edit graph connects thestart vertex(0; 0) with thesink
vertex(n;m) and passes through an (unknown)middle vertex(i; m2) (assume for
simplicity thatm is even). Let’s try to find its middle vertex instead of trying to
find the entire longest path. This can be done in linear space by computing the
scoress�;m

2
(lengths of the longest paths from(0; 0) to (i; m2) for 0 � i � n) and

the scores of the paths from(i; m2) to (n;m). The latter scores can be computed
as the scores of the pathssreverse�;m

2

from (n;m) to (i; m2) in the reverse edit graph
(i.e., the graph with the directions of all edges reversed). The valuesi;m

2
+ sreversei;m

2

is the length of the longest path from(0; 0) to (n;m) passing through the vertex
(i; m2). Therefore,maxi(si;m

2
+ sreversei;m

2

) computes the length of the longest path
and identifies a middle vertex.

Computing these values requires the time equal to the area of the left rectangle
(from column1 to m

2) plus the area of the right rectangle (from columnm2 + 1
to m) and the spaceO(n) (Figure 6.3). After the middle vertex(i; m2) is found,

102 CHAPTER 6. SEQUENCE COMPARISON

the problem of finding the longest path from(0; 0) to (n;m) can be partitioned
into two subproblems: finding the longest path from(0; 0) to the middle vertex
(i; m2) and finding the longest path from the middle vertex(i; m2) to (n;m). In-
stead of trying to find these paths, we first try to find the middle vertices in the
corresponding rectangles (Figure 6.3). This can be done in the time equal to the
area of these rectangles, which is two times smaller than the area of the original
rectangle. Computing in this way, we will find the middle vertices of all rectangles
in time area + area

2 + area
4 + : : : � 2 � area and therefore compute the longest

path in timeO(nm) and spaceO(n):

Path (source; sink)
if source andsink are in consecutive columns

output the longest path from thesource to thesink
else

middle middle vertex betweensource andsink
Path (source;middle)
Path (middle; sink)

6.7 Young Tableaux

An increasing subsequenceof a permutation� = x1x2 : : : xn is a sequence of
indices1 � i1 < : : : < ik � n such thatxi1 < xi2 : : : < xik . Decreasing subse-
quences are defined similarly. Finding thelongest increasing subsequence(LIS) is
equivalent to finding the LCS between� and the identity permutation12 : : : n. It
is well known that every permutation onn elements has either an increasing or a
decreasing subsequence of length at least

p
n. This result is closely related to the

non-dynamic programming approach to the LCS that is described below.
A partition of integern is a sequence of positive integers�1 � �2 � : : : � �l

such that
Pi=l

i=1 �i = n. If � = (�1�2 : : : �l) is a partition ofn, then we write� `
n. Suppose� = (�1; �2; : : : ; �l) ` n. Then theYoung diagramor shape�, is an
array ofn cells intol left-justified rows with rowi containing�i cells for1 � i � l.
The leftmost diagram in Figure 6.4 presents the Young diagram for(4; 2; 1; 1) ` 8,
while the rightmost one presents the Young diagram for(4; 2; 2; 1) ` 9. A Young
tableau(or simply tableauof shape�) is an array obtained by replacing the cells
of the Young diagram� with the numbers1; 2; : : : ; n bijectively (rightmost table
in Figure 6.4). A tableau� is standard if its rows and columns are increasing
sequences. Sagan, 1991 [292] is an excellent introduction to combinatorics of
Young tableaux, and our presentation follows this book.

A bitableauis a pair of standard Young tableaux with the same Young diagram
�. The Robinson-Schensted-Knuth algorithm (RSK) describes an explicit bijection

6.7. YOUNG TABLEAUX 103

(0,0)

n

m

(n,m)

(0,0)

n

m

(n,m)

i

(0,0)

n

m

(n,m)

(0,0)

n

m

(n,m)

(0,0)

n

m

(n,m)

(0,0)

n

m

(n,m)

m/2 m/2

middle

middle

middle

Linear-Space Sequence Alignment

Figure 6.3:Space-efficient sequence alignment. The computational time (area of solid rectangles)

decreases by a factor of 2 at every iteration.

between bitableaux withn cells and the symmetric groupSn (all permutations of
ordern). It was first proposed (in rather fuzzy terms) by Robinson, 1938 [287]
in connection with representation theory. Schensted, 1961 [306] re-discovered and
clearly described this algorithm on a purely combinatorial basis. Later, Knuth,
1970 [201] generalized the algorithm for the case of the LCS.

104 CHAPTER 6. SEQUENCE COMPARISON

3

5

7

1 2 8

4 7

6

9

1 2 8

4 7

6

9

1 2 8

4

6

9

5 3

5

3 1 2 8

4

6

9

3

5

7

Figure 6.4:Row insertion of3 into Young tableaux.

1 3 5 7

2 6

4

1 3 4 7

2 5

6

4 2

4

2 3

4

2 3 6

4

2 3 5

4 6

1 3 5

2 6

4

1 1

2

1

2

3 1 3 4

2

1 3 4

2 5

1 3 4

2 5

6

4 2 3 6 5 1 7
RSK

1 3 5 7

2 6

4

1 3 4 7

2 5

6,

insertion
tableaux

Pk

recording
tableaux

Qk

Figure 6.5:RSK algorithm for permutation� = 4236517.

Let P be apartial tableau, i.e., a Young diagram with distinct entries whose
rows and columns increase. For an arrayR and an elementx, defineRx+ as the
smallest element ofR greater thanx andRx� as the largest element ofR smaller
thanx. Forx not inP , definerow insertionof x intoP by the following algorithm:

R the first row ofP
While x is less than some element of rowR

ReplaceRx+ by x in R.
x Rx+

R next row down.
Placex at the end of rowR.

The result of row insertingx into P is denotedrx(P). Note that the insertion
rules ensure thatrx(P) still has increasing rows and columns (Figure 6.4).

The bijection between permutations and bitaubleaux is denoted as�
RSK!

(P;Q) where� 2 Sn andP;Q are standard�-tableaux,� ` n. For a permu-

6.7. YOUNG TABLEAUX 105

tation� = x1 : : : xn we construct a sequence of tableaux

(P0; Q0) = (;; ;); (P1 ; Q1); : : : ; (Pn; Qn) = (P;Q)

wherex1; : : : xn areinsertedinto theP 0s and1; : : : ; n areplacedin theQ0s so that
shape ofPi coincides with the shape ofQi for all i.

Placement of an element in a tableau is even easier than insertion. Suppose
thatQ is a partial tableau and that(i; j) is an outer corner ofQ. If k is greater
than every element ofQ, thento placek in Q at cell (i; j), merely setQi;j = k
(Figure 6.5).

Finally we describe how to build the sequence of bitableaux(Pi; Qi) from
� = x1 : : : xn. Assuming that(Pk�1; Qk�1) has already been constructed, define
Pk = rxk(Pk�1) andQk as the result of placement ofk intoQk�1 at the cell(i; j)
where the insertion terminates (Figure 6.5). We callP the insertiontableau andQ
therecordingtableau.

Given the rightmost tableauRx(P) in Figure 6.4 and the position of the last
added element (7), can we reconstruct the leftmost tableauP in Figure 6.4? Since
element 7 was bumped from the previous row byR7� = 5 (see RSK algorithm),
we can reconstruct the second tableau in Figure 6.4. Since element 5 was bumped
from the first row by the elementR5� = 3, we can reconstruct the original tableau
P . This observation implies the RSK theorem:

Theorem 6.1 The map�
RSK! (P;Q) is a bijection between elements ofSn and

pairs of standard tableaux of the same shape� ` n.

Proof Construct an inverse bijection(P;Q) RSK! � by reversing the RSK al-
gorithm step by step. We begin by defining(Pn; Qn) = (P;Q). Assuming
that (Pk; Qk) has been constructed, we will findxk (the k-th element of�) and
(Pk�1; Qk�1). Find the cell(i; j) containingk in Qk. Since this is the largest ele-
ment inQk, Pi;j must have been the last element to be displaced in the construction
of Pk. We can use the following procedure todeletePi;j fromP . For convenience,
we assume the existence of an empty zeroth row above the first row ofPk.

Setx Pi;j and erasePi;j
R the(i� 1)-st row ofPk
While R is not the zeroth row ofPk

ReplaceRx� by x in R.
x Rx�
R next row up.

xk x.

106 CHAPTER 6. SEQUENCE COMPARISON

It is easy to see thatPk�1 isPk after the deletion process just described is com-
plete andQk�1 is Qk with thek removed. Continuing in this way, we eventually
recover all the elements of� in reverse order.

Lemma 6.1 If � = x1 : : : xn and xk entersPk�1 in columnj, then the longest
increasing subsequence of� ending inxk has lengthj.

Proof We induct onk. The result is trivial fork = 1, so suppose it holds for all
values up tok � 1.

First, we need to show the existence of an increasing subsequence of lengthj
ending inxk. Let y be the element ofPk�1 in cell (1; j � 1). Theny < xk, since
xk enters in columnj. Also, by induction, there is an increasing subsequence of
lengthj � 1 ending iny. Combining this subsequence withxk we get the desired
subsequence of lengthj.

Now we prove that there cannot be a longer increasing subsequence ending in
xk. If such a subsequence exists, letxi be its element precedingxk. By induction,
whenxi is inserted it enters in some column (weakly) to the right of columnj.
Thus the elementy in cell (1; j) of Pi satisfiesy � xi < xk. However, the entries
in a given position of a tableau never increase with subsequent insertions (see RSK
algorithm). Thus the element in cell(1; j) of Pk�1 is smaller thanxk, contradicting
the fact thatxk displaces it.

This lemma implies the following:

Theorem 6.2 The length of the longest increasing subsequence of permutation�
is the length of the first row ofP (�).

6.8 Average Length of Longest Common Subsequences

Let V andW be two sets ofn-letter strings over the same alphabet. GivenV,W
and a probability measurep onV �W, we are interested in theaverage lengthof
LCS, which is

s(n) =
X

V 2V;W2W
s(V;W) � p(V;W):

wheres(V;W) is the length of the LCS betweenV andW . Two examples of the
LCS average length problem are of particular interest.

Longest increasing subsequence in random permutationsper(n). V contains
only the string(1; : : : ; n),W contains all permutations of lengthn, andp(V;W) =

6.8. AVERAGE LENGTH OF LONGEST COMMON SUBSEQUENCES107

1
n! . The problem of findingsper(n) was raised by Ulam, 1961 [341]. Hammersley,
1972 [150] proved that

lim
n!1

sper(n)p
n

= sper

wheresper is a constant. Even before the convergence had been proven, Baer and
Brock, 1968 [15] had conjectured thatsper = 2 on the basis of extensive computa-
tions. Hammersley, 1972 [150] proved that�

2 � sper � e. Later, Kingman, 1973
[198] improved the bounds to1:59 < c < 2:49. Logan and Shepp, 1977 [227]
and Vershik and Kerov, 1977 [342] proved thatsper = 2 by conducting a techni-
cally challenging analysis of asymptotics of random Young tableaux and by using
theorems 6.1 and 6.2.

Longest common subsequencesk(n) in a k-letter alphabet. Both V andW
contain allkn n-letter words in ak-letter alphabet, andp(V;W) = 1

kn�kn . Chvatal
and Sankoff, 1975 [70] noticed that

lim
n!1

sk(n)

n
= sk

wheresk is a constant. They gave lower and upper bounds forsk that were later
improved by Deken, 1979, 1983 [83, 84] and Chvatal and Sankoff, 1983 [71].

In the 1980s, two conjectures aboutsk were stated:

Sankoff-Mainville conjecture [305]: limk!1(sk �
p
k) = 2

Arratia-Steele conjecture [328]: sk = 2
1+
p
k

These conjectures can be formulated as statements about the length of the first row
of Young tableaux. Instead of finding the length of the first row, one may try to
find a limited shape of Young tableaux yielding simultaneously all characteristics
of the Young tableaux, in particular, the length of the first row. At first glance,
this problem looks more general and difficult than simply finding the length of the
first row. However, the proofsper = 2 revealed a paradoxical situation: it may be
easier to find a limited shape of the entire Young tableaux than to find the expected
length of a particular row usingad hoccombinatorial/probability arguments. In
particular, anad hoccombinatorial solution of the Ulam problem is still unknown.

Recently, there has been an avalanche of activity in studies of longest increas-
ing subsequences. Aldous and Diaconis, 1995 [2] used interacting particle repre-
sentation (modeled by the LIS in a sequence ofn independent random real numbers
uniformly distributed in an interval) to give a different proof thatsper = 2. Baik et
al., 1999 [21] proved thatsper(n) = 2

p
n� �n1=6 + o(n1=6) where� = 1:711:::

Let �n be the set of all shapes withn cells. Denote an insertion tableauxP
corresponding to a permutation� asP (�) and consider the set of permutations

108 CHAPTER 6. SEQUENCE COMPARISON

� = f� : P (�) containsn in the first rowg. For a given shape� with n cells,
let �� = f� : P (�) containsn in the first row andP (�) has shape� g. Given a
random permutation� 2 Sn, let pn be the probability thatP (�) containsn in the
first row.

Lemma 6.2 pn � 1p
n

.

Proof If � is a shape, we denote as�+ the shape derived from� by adding a new
cell to the end of the first row. Observe that the number of standard tableaux of
shape� 2 �n with n in the first row equals the number of standard tableaux of
shape� 2 �n�1 where�+ = �. Let f� be the number of Young tableaux of shape
�. According to the RSK theorem,

j�j =
X
�2�n

j��j =
X

�2�n�1

f� � f�+

wheref� is the number of Young tableaux of shape�. It implies the following:

pn =
j�j
n!

=
X

�2�n�1

f� � f�+
n!

=
X

�2�n�1

(n� 1)!

n!

f� � f�+
f� � f�

f� � f�
(n� 1)!

=

X
�2�n�1

1

n

f�+
f�

p(�)

According to the RSK theorem,p(�) = f��f�
(n�1)! is the probability that a random

permutation� 2 Sn�1 corresponds to a shape�. DenotingE(X) = pn, the

mean value of the random variableX = 1
n

f�+
f�

. Applying the inequalityE(X) �p
E(X2), we derive

p2n �
X

�2�n�1

1

n � n �
f�+ � f�+
f� � f�

f� � f�
(n� 1)!

=
X

�2�n�1

1

n � n!f�+ � f�+ =

1

n

X
�2�n�1

f�+ � f�+
n!

=
1

n

X
�2�n�1

p(�+) � 1

n

X
�2�n

p(�) � 1

n

since�+ ranges over all� 2 �n with the length of the first row larger than the
length of the second row.

The following theorem was proven (and apparently never published) by Ver-
shik and Kerov in late 1970s. The first published proof appeared much later (Pilpel,
1990 [276]).

6.9. GENERALIZED SEQUENCE ALIGNMENT AND DUALITY 109

Theorem 6.3 sper � 2.

Proof Given� 2 Sn, letpk(n) be the probability that elementk appears in the first
row ofP (�). Notice thatpk(n) = pk (the elements1; : : : ; k of a random permuta-
tion in Sn are evenly distributed over all possible relative orderings). According to
lemma 6.2, the expected length of the first row ofP (�) is

r1 =
nX

k=1

pk(n) =
nX

k=1

pk �
nX

k=1

1p
k
:

As 1p
k
� 2(
p
k �pk � 1), we deriver1 � 2

p
n. Since the length of the first row

of P (�) equals the length of the longest increasing subsequence of�, sper � 2.

6.9 Generalized Sequence Alignment and Duality

A partially ordered setis a pair(P;�) such thatP is a set and� is a transitive
and irreflexive binary relationonP , i.e.,p � q andq � r imply p � r. A chain
p1 � p2 : : : � pt is a subset ofP where any two elements are comparable, and an
antichainis a subset where no two elements are comparable. Partial orders� and
�� are calledconjugateif for any two distinctp1; p2 2 P the following condition
holds:

p1 andp2 are�-comparable() p1 andp2 are��-incomparable

We are interested inlongest�-sequences, i.e., chains of maximal length in�
(generalized sequence alignment). Let I = f1; 2 : : : ; ng andJ = f1; 2 : : : ;mg
andP � I � J . Our interest is in the comparison of the two sequencesV =
v1v2 : : : vn andW = w1w2 : : : wm with P = f(i; j) : vi = wjg. Let p1 = (i1; j1)
andp2 = (i2; j2) be two arbitrary elements inI � J . Denote

�(p1; p2) = (�i;�j) = (i2 � i1; j2 � j1):

Consider a few examples of partial orders onI � J (corresponding chains are
shown in Figure 6.6). Partial orders�1 and�4 as well as partial orders�2 and�3

are conjugate.

� Common subsequences(CS):

p1 �1 p2 , �i > 0;�j > 0

� Common forests(CF):

p1 �2 p2 , �i � 0;�j � 0

110 CHAPTER 6. SEQUENCE COMPARISON

J

J

J

J

J

J

J

J

CS

CF

CIS

CIF

Figure 6.6:Chains in partial orders CS, CF, CIS, and CIF.

� Common inverted subsequences(CIS):

p1 �3 p2 , �i > 0;�j < 0

� Common inverted forests(CIF):

p1 �4 p2 , �i � 0;�j � 0

Let C be a family of subsets of a setP . C0 � C is called acoverof P if each
p 2 P is contained in at least one of the subsetsC 2 C0. The number of elements
in C0 is called thesize of the coverC0, and a cover of minimum size is called
a minimum coverof P by C. The following theorem was proved by Dilworth,
1950 [86].

Theorem 6.4 LetP be a partially ordered set. The size of the minimum cover of
P by chains is equal to the size of a maximal antichain inP .

Lemma 6.3 Let� and�� be conjugate partial orders onP . Then the length of a
longest�-sequence inP equals the size of a minimum cover ofP by��-sequences.

6.10. PRIMAL-DUAL APPROACH TO SEQUENCE COMPARISON 111

Proof According to Dilworth’s theorem, the length of a longest antichain in��
equals the size of a minimum cover ofP by��-chains. As� and�� are conjugate,
each antichain in�� is a chain in�, and each chain in� is an antichain in��.
Therefore, the length of a longest�-sequence inP equals the size of a minimum
cover ofP by��-sequences.

Since CS and CIF represent conjugate partial orders, lemma 6.3 implies the
following (Pevzner and Waterman, 1993 [273]):

Theorem 6.5 The length of the longest CS equals the size of a minimum cover by
CIF.

Consider a binary relation onP defined by

p1 < p2 () p1 � p2 or p1 �� p2:

Lemma 6.4 < is a linear order onP .

Proof We first prove thatp1 < p2 andp2 < p3 impliesp1 < p3. If p1 < p2 and
p2 < p3, then one of the following conditions holds:

(i) p1 � p2 andp2 � p3,

(ii) p1 � p2 andp2 �� p3,
(iii) p1 �� p2 andp2 � p3,

(iv) p1 �� p2 andp2 �� p3.
In case (i),p1 � p2 andp2 � p3 imply p1 � p3, and thereforep1 < p3. In

case (ii),p1 � p2 andp2 �� p3 imply neitherp3 � p1 nor p3 �� p1. (In the
first case,p3 � p1 andp1 � p2 imply p3 � p2, contradictingp2 �� p3. In the
second case,p2 �� p3 andp3 �� p1 imply p2 �� p1, contradictingp1 � p2).
Thereforep1 � p3 or p1 �� p3, which impliesp1 < p3. Notice that cases (iii) and
(iv) are symmetric to (ii) and (i) respectively, so we have shown that relation< is
transitive. The lemma follows from the observation that for each pairp1; p2, either
p1 < p2 or p2 < p1.

6.10 Primal-Dual Approach to Sequence Comparison

Theorem 6.5 reveals a relation between the LCS and the minimum cover problem
and leads to the idea of using minimum covers to find LCS. Below we describe a

112 CHAPTER 6. SEQUENCE COMPARISON

non-dynamic programming algorithm for simultaneous solution of the generalized
alignment and minimum cover problems (Pevzner and Waterman, 1993 [273]).

Let P = p1p2 : : : pl be an arbitrary ordering of the elements ofP , andPi =
p1p2 : : : pi. Let Ci = fC1; C2; : : : ; Cjg be a cover ofPi by ��-sequences, and
let pmax1 ; pmax2 ; : : : ; pmaxj be the��-maximum elements inC1; C2; : : : ; Cj , corre-
spondingly. Letk be the minimum index (1 � k � j) fulfilling the following
condition:

pmaxk �� pi+1; (6.1)

and if condition (6.1) fails for allk, setk = j + 1. For convenience, defineCj+1
as an empty set. The COVER algorithm constructs a coverCi+1 from Ci by adding
pi+1 toCk. If k < j + 1, COVER enlargesCk:

Ci+1 = fC1; C2; : : : ; Ck�1; Ck
[
fpi+1g; Ck+1; : : : ; Cjg:

If k = j + 1, COVER addsfpi+1g as a new��-sequence to the coverCi+1:
Ci+1 = fC1; C2; : : : ; Cj ; Cj+1 = fpi+1g g:

The algorithm also keeps abacktrack:

b(pi+1) =

(
pmaxk�1 ; if k > 1
;; otherwise

Starting with an empty coverC0, COVER constructs a coverCl of P after l
iterations, and the size of this cover depends on the ordering ofP . The size of the
coverCl is an upper bound for the length of the longest�-sequence. The following
theorem shows that ifP is the ordering ofP in <, then COVER is a primal-dual
algorithm for simultaneous solutions of the longest�-sequence problem and the
minimum cover by��-sequences problem.

Theorem 6.6 If P = p1p2 : : : pl is the ordering ofP in<, then COVER constructs
a minimum coverCl = fC1; C2; : : : ; Ctg of P by��-sequences. The backtrack
b(p) defines a longest�-sequence of lengtht for eachp 2 Ct.

Proof We show that for eachi (1 � i � l), the coverCi = fC1; C2; : : : ; Cjg
satisfies the condition

8k > 1;8p 2 Ck : b(p) � p: (6.2)

Trivially, this condition holds forC1. We suppose that it holds forCi and prove
it for Ci+1. Consider two cases:

6.11. SEQUENCE ALIGNMENT AND INTEGER PROGRAMMING 113

� Case 1.k < j + 1 (condition (6.1)). In this caseb(pi+1) = pmaxk�1 . Since
P is the<-ordering,pmaxk�1 < pi+1, and therefore eitherpmaxk�1 � pi+1 or
pmaxk�1 �� pi+1. Sincek is the minimum index fulfillingpmaxk �� pi+1,
pmaxk�1 � pi+1, and therefore condition (6.2) holds forCi+1.

� Case 2.k = j + 1. In this caseb(pi+1) = pmaxj . SinceP is the<-ordering,
eitherpmaxj � pi+1 or pmaxj �� pi+1. Sincek = j + 1, condition (6.1) fails
for eachk � j. Therefore,pmaxj � pi+1, and condition (6.2) holds forCi+1.

Obviously each coverCl = fC1; C2; : : : ; Ctg fulfilling condition (6.2) deter-
mines (through the backtrack) a�-sequence of lengtht for eachp 2 Ct. According
to lemma 6.3, each such sequence is a�-longest sequence, andCl is a minimum
cover ofP by��-sequences.

For the LCS betweenn-letter sequences, the COVER algorithm can be imple-
mented inO(nL) time, whereL is the length of the longest common subsequence,
or inO((l+n) log n) time, wherel is the total number of matches between two se-
quences. Improvements to the classical dynamic programming algorithm for find-
ing LCS have been suggested by Hirschberg, 1977 [164] and Hunt and Szymanski,
1977 [174]. In fact, both the Hirschberg and the Hunt-Szymanski algorithms can be
viewed as implementations of the COVER algorithm with various data structures.
��-chains in COVER correspond to thek-candidatesin Hirschberg’s algorithm.
Maximal elements of��-chains in COVER correspond to thedominant matches
in the Apostolico, 1986 [9] improvement of Hunt-Szymanski’s algorithm.

6.11 Sequence Alignment and Integer Programming

Duality for the LCS is closely related to a newpolyhedralapproach to sequence
comparison suggested by Reinert et al., 1997 [283]. They express the alignment
problem as an integer linear program and report that this approach to multiple
alignment can solve instances that are beyond present dynamic programming ap-
proaches. Below we describe the relationship between the LCS problem and inte-
ger programming.

Let P be a set with partial order�, and let�� be a conjugate partial order.
Let xe be the weight associated withe 2 P . In the case of the LCS of sequences
v1 : : : vn andw1; : : : wm, P is the set of pairs of positionse = (i; j) such that
vi = wj andxe = 1 if and only if the positionsi andj are matched in the LCS. The
LCS problem can be formulated as the following integer programming problem:P

xe2� xe � 1 for every (maximal) antichain� in PP
e2P xe ! max

114 CHAPTER 6. SEQUENCE COMPARISON

Let y� be a variable associated with a maximal antichain� in P . The dual
program for the above problem is as follows:P

e2� y� � 1 for everye 2 PP
� y� ! min

Since antichains in� are chains in��, the above program is theMinimum Path
Cover Problemin a directed acyclic graph representing the conjugate partial order
��, which is known to have an integer solution (Cormen et al., 1989 [75]).

6.12 Approximate String Matching

Approximate string matching withk mismatches involves a stringt1 : : : tn, called
the text, a shorter string,q1 : : : qp, called thequery, and integersk andm. The
query matching problenis to find allm-substrings of the queryqi : : : qi+m�1 and
the texttj : : : tj+m�1 that match with at mostk mismatches. In the casep = m,
thequery matchingproblem yields theapproximate string matching problem with
k-mismatches.

The approximate string matching problem withk-mismatches has been inten-
sively studied in computer science. Fork = 0, it reduces to classical string match-
ing, which is solvable inO(n) time (Knuth et al., 1977 [203], Boyer and Moore,
1977 [45]). Fork > 0, the naive brute-force algorithm for approximate string
matching runs inO(nm) time. Linear-time algorithms for approximate string
matching were devised by Ivanov, 1984 [177] and Landau and Vishkin, 1985 [213].
For a fixed-size alphabet, the worst-case running time of these algorithms isO(kn).

Although these algorithms yield the best worst-case performance, they are far
from being the best in practice (Grossi and Luccio, 1989 [140]). Consequently,
several filtration-based approaches have emphasized the expected running time,
in contrast to the worst-case running time (Baeza-Yates and Gonnet, 1989 [16],
Grossi and Luccio, 1989 [140], Tarhio and Ukkonen, 1990 [334], Baeza-Yates and
Perleberg, 1992 [17], Wu and Manber, 1992 [371]).

Using filtration algorithms for approximate string matching involves a two-
stage process. The first stage preselects a set of positions in the text that arepo-
tentially similar to the query. The second stage verifies each potential position,
rejecting potential matches with more thank mismatches. Denote asp the number
of potential matches found at the first stage of the algorithm. Preselection is usually
done in�n + O(p) time, where� is a small constant. If the number of potential
matches is small and potential match verification is not too slow, this method yields
a significant speed up.

The idea of filtration for the string matching problem first was described by
Karp and Rabin, 1987 [189] for the casek = 0. Fork > 0, Owolabi and McGregor,
1988 [258] used the idea ofl-tuple filtration based on the simple observation that
if a query approximately matches a text, then they share at least onel-tuple for

6.13. COMPARING A SEQUENCE AGAINST A DATABASE 115

sufficiently largel. All l-tuples shared by query and text can be easily found by
hashing. If the number of sharedl-tuples is relatively small, they can be verified,
and allreal matches withk mismatches can be rapidly located.

l-tuple filtration is based on the following simple observation:

Lemma 6.5 If the stringsx1 : : : xm andy1 : : : ym match with at mostk mismatches
then they share anl-tuple for l = b m

k+1c, i.e., xi : : : xi+l�1 = yj : : : yj+l�1 for
some1 � i; j � m� l + 1.

This lemma motivates anl-tuple filtration algorithm for query matching withk
mismatches:

FILTRATION Algorithm Detection of allm-matches between a query and a text
with up tok mismatches.

� Potential match detection. Find all matches ofl-tuples in both the query and
the text forl = b m

k+1c.
� Potential match verification. Verify each potential match by extending it to

the left and to the right until either (i) the firstk + 1 mismatches are found
or (ii) the beginning or end of the query or the text is found.

Lemma 6.5 guarantees that FILTRATION findsall matches of lengthm with
k or fewer mismatches. Potential match detection in FILTRATION can be imple-
mented by hashing. The running time of FILTRATION is�n+O(pm), wherep is
the number of potential matches detected at the first stage of the algorithm and�
is a small constant. For a Bernoulli text withA equiprobable letters, the expected
number of potential matches is roughlyE(p) = nq

Al
, yielding a fast algorithm for

largeA andl.

6.13 Comparing a Sequence Against a Database

A dot-matrix for sequencesV andW is simply a matrix with each entry either
0 or 1, where a1 at position(i; j) indicates that thel-tuples starting at thei-th
position ofV and thej-th position ofW coincide. A popular protein database
search tool, FASTA (Lipman and Pearson, 1985 [225]), usesl-tuple filtration with
a usual setup ofl = 2 (in amino acid alphabet). The positions ofl-tuples present in
both strings form an (implicit) dot-matrix representation of similarities between the
strings. FASTA further assembles ones on the same diagonals of this dot-matrix
and attempts to group close diagonals together.

Using sharedl-tuples for finding similarities has some disadvantages. BLAST
(Altschul et al., 1990 [5]), the dominant database search tool in molecular biology,

116 CHAPTER 6. SEQUENCE COMPARISON

uses substitution matrices to improve the construction of (implicit) dot-matrices
for further analysis of diagonals. Essentially, it attempts to improve the filtra-
tion efficiency of FASTA by introducing more stringent rules to locate fewer and
better potential matches. Another BLAST feature is the use of Altschul-Dembo-
Karlin statistics (Karlin and Altschul, 1990 [186], Dembo and Karlin, 1991 [85])
for estimates of statistical significance. For any twol-tuplesx1 : : : xl andy1 : : : yl,
BLAST defines thesegment scoreas

Pl
i=1 Æ(xi; yi), whereÆ(x; y) is the similar-

ity score between amino acidsx andy. A maximal segment pair(MSP) is a pair
of l-tuples with the maximum score over all segment pairs in two sequences. A
molecular biologist may be interested in all conserved segments, not only in their
highest scoring pair. A segment pair islocally maximalif its score cannot be im-
proved either by extending or by shortening both segments.

BLAST attempts to find all locally maximal segment pairs in the query se-
quence and the database with scores above some set threshold. The choice of the
threshold is guided by Altschul-Dembo-Karlin statistics, which allows one to iden-
tify the lowest value of segment score that is unlikely to happen by chance. BLAST
reports sequences that either have a segment score above the threshold or that do
not have a segment score above a threshold but do have several segment pairs that
in combination are statistically significant.

BLAST abandons the idea ofl-tuple filtration and uses a different strategy to
find potential matches. It finds alll-tuples that have scores above a threshold with
somel-tuple in the query. This can be done either directly—by finding all ap-
proximate occurrences of substrings from the query in the database—or in a more
involved way. For example, if the threshold is high enough, then the set of such
strings is not too large, and the database can be searched for exact occurrences
of the strings from this set. This is a well-studied combinatorial pattern matching
problem, and the fast Aho and Corasick, 1975 [1] algorithm locates the occurrences
of all these strings in the database. After the potential matches are located, BLAST
attempts to extend them to see whether the resulting score is above the threshold.
Altschul et al., 1997 [7] further improved BLAST by allowing insertions and dele-
tions and combining matches on the same and close diagonals.

6.14 Multiple Filtration

For Bernoulli texts withA equiprobable letters, define thefiltration efficiencyof
a filtration algorithm as the ratioE(r)E(p) of the expected number of matches withk
mismatchesE(r) to the expected number of potential matchesE(p). For example,
for k = 1, the efficiency of thel-tuple filtration,� A�1

Adm
2
e , decreases rapidly asm

andA increase. This observation raises the question of devising a filtration method
with increased filtration efficiency. The larger the efficiency ratio, the shorter the
running time of the verification stage of filtration algorithm.

6.14. MULTIPLE FILTRATION 117

gapsize

size

Gapped 4-tuple with gapsize 3 and size 10 starting at position 4

Figure 6.7:A gapped 4-tuple.

Pevzner and Waterman, 1995 [274] described an algorithm that allows the ex-
ponential reduction of the number of potential matches at the expense of a linear
increase in the filtration time. This significantly reduces the time of the verifica-
tion stage of the FILTRATION algorithm for the cost of linearly increased time at
the detection stage. Taking into account that verification is frequently more time-
consuming than detection, the technique provides a trade-off for an optimal choice
of filtration parameters.

A set of positionsi; i+ t; i+2t; : : : ; i+ jt; : : : ; i+ (l� 1)t is called agapped
l-tuplewith gapsizet andsize1 + t(l � 1) (Figure 6.7). Continuousl-tuples can
be viewed as gappedl-tuples with gapsize1 and sizel. If an l-tuple shared by
a pattern and a text starts at positioni of the pattern and positionj of the query,
we call (i; j) thecoordinateof the l-tuple. Define thedistanced(v1; v2) between
l-tuples with coordinates(i1; j1) and(i2; j2) as

d(v1; v2) =

(
i1 � i2; if i1 � i2 = j1 � j2
1; otherwise.

Multiple filtration is based on the following observation:

Lemma 6.6 Let stringsx1 : : : xm andy1 : : : ym match with at mostk mismatches
and l = b m

k+1c. Then these strings share both a continuousl-tuple and a gapped
l-tuple with gapsizek + 1, with distanced between them satisfying the condition
�k � d � m� l.

This lemma is the basis of adouble-filtration algorithm for query matching
with k mismatches:

DOUBLE-FILTRATION Algorithm Detection of allm-matches between a que-
ry and a text with up tok mismatches.

� Potential match detection. Find all continuousl-tuple matches between the
query and the text that are within the distance�k � d � m � l from a
gappedl-tuple with gapsizek + 1 match.

118 CHAPTER 6. SEQUENCE COMPARISON

gapped 6-tuple

continuous 6-tuple

continuous 6-tuple

Figure 6.8: Every 9-match with one error contains either a continuous 6-match or a gapped 6-

match.

� Potential match verification. Verify each potential match by extending it to
the left and to the right until either (i) the firstk + 1 mismatches are found
or (ii) the beginning or end of the query or the text is found.

Lemma 6.6 guarantees that DOUBLE-FILTRATION findsall matches withk
mismatches. The efficiency of double filtration is approximatelyA

l�Æ

m(1� 1

A
)

times

greater than the efficiency ofl-tuple filtration for a wide range of parameters (here,
Æ = d l

k+1e).
Approximate pattern matching of9-tuples with one error can be reduced to

exact pattern matching of4-tuples. We call it a reduction from a (9,1) pattern
matching to a (4,0) pattern matching. Can we reduce a (9,1) pattern matching to
a (6,0) pattern matching, thus improving the efficiency of the filtration? The an-
swer is yes if we consider gapped 6-tuples as in Figure 6.8. Another question is
whether we can achieve a speedup through reduction from(m; k) pattern matching
to (m0; k0) matching for0 < k0 < k. Exploring this problem led to the devel-
opment of sublinear pattern matching algorithms (Chang and Lawler, 1994 [62],
Myers, 1994 [245]).

6.15 Some Other Problems and Approaches

6.15.1 Parametric sequence alignment

Sequence alignment is sensitive to the choice of insertion/deletion and substitution
penalties, and incorrect choice of these parameters may lead to biologically incor-
rect alignments. Understanding the influence of the parameters on the resulting
alignment and choosing appropriate alignments are very important for biological
applications. In the simplest model, when the alignment score is defined as#
matches –�# mismatches –�# indels, different values of(�; �) correspond to
different optimal alignments. However, some regions in(�; �)-space correspond

6.15. SOME OTHER PROBLEMS AND APPROACHES 119

to the same optimal alignment. In fact,(�; �)-space can be decomposed into con-
vex polygons such that any two points in the same polygon correspond to the same
optimal alignment (Fitch and Smith, 1983 [107]). Waterman et al., 1992 [360],
Gusfield et al., 1994 [146] and Zimmer and Lengauer, 1997 [379] described effi-
cient algorithms for computing a polygonal decomposition of the parameter space.

6.15.2 Alignment statistics and phase transition
Arratia and Waterman, 1989 [13] studied the statistical properties of the local align-
ment score of two random sequences. It turned out that the statistics of alignment
heavily depends on the choice of indel and mismatch penalties. The local align-
ment score grows first logarithmically and then linearly with the length of the se-
quences, depending on gap penalties. Those two regions of growth are referred to
as the “log region” and as “linear region,” and the curve between these regions is
called thephase transitioncurve.

Let v1 : : : vn andw1 : : : wn be two random i.i.d. strings. LetSn = Sn(�; Æ)
andHn = Hn(�; Æ) be random variables corresponding to the score (# matches –
�# mismatches –�# indels) of the global and local alignments of these strings.

Arratia and Waterman, 1994 [14] showed that

a = a(�; Æ) = lim
n!1

Sn
n

exists in probability. Moreover,fa = 0g = f(�; Æ) : a(�; Æ) = 0g is a contin-
uous phase transition curve separating[0;1]2 into two components:fa < 0g =
f(�; Æ) : a(�; Æ) < 0g andfa > 0g = f(�; Æ) : a(�; Æ) > 0g.

For the case of(�; Æ) 2 fa > 0g, Arratia and Waterman, 1994 [14] showed,
that limn!1

Hn(�;Æ)
n = a(�; Æ). For the case of(�; Æ) 2 fa < 0g, they introduced

a constantb = b(�; Æ) such that

lim
n!1Pf(1 � �)b <

Hn(�; Æ)

log(n)
< (2 + �)bg = 1:

The problem of computinga(�; Æ) for (�; Æ) 2 fa > 0g is difficult. In par-
ticular, computinga(0; 0) would solve the Steele-Arratia conjecture. See Vingron
and Waterman, 1994 [346] and Bundschuh and Hwa, 1999 [52] for estimates of
alignment significance and parameter choice in both the “log region” and the “lin-
ear region”, and see Waterman and Vingron, 1994 [365] for a fast algorithm to
compute the probability that a local alignment score is the result of chance alone.

6.15.3 Suboptimal sequence alignment
The optimal alignment is sometimes not the biologically correct one, and ‘ methods
are sought to generate a set of�-suboptimal alignments whose deviation from

120 CHAPTER 6. SEQUENCE COMPARISON

the optimal is at most� (Waterman, 1983 [355]). The problem is equivalent to
finding suboptimal paths in the edit graph (Chao, 1994 [63], Naor and Brutlag,
1994 [250]).

6.15.4 Alignment with tandem duplications
Although most alignment algorithms consider only insertions, deletions, and sub-
stitutions, other mutational events occur.Tandem duplicationis a mutational event
in which a stretch of DNA is duplicated to produce one or more new copies, each
copy following the preceding one in a contiguous fashion. This mutation is a rather
common one, making up an estimated10% of the human genome. Tandem re-
peats have been implicated in a number of inherited human diseases, including
Huntington’s disease. Benson, 1997 [30] suggested an efficient algorithm for se-
quence alignment with tandem duplications. Algorithms fordetectingtandem re-
peats were proposed by Landau and Schmidt, 1993 [212], Milosavljevic and Jurka,
1993 [237], and Benson, 1998 [31].

6.15.5 Winnowing database search results
In database searches matches to biologically important regions are frequently ob-
scured by other matches. A large number of matches in one region of the se-
quence may hide lower-scoring but important matches occurring elsewhere. Since
database search programs often report a fixed number of top matches and truncate
the output, rules are needed to select a subset of the matches that reveal all impor-
tant results. The problem is modeled by a list of intervals (alignment regions) with
associated alignment scores. If intervalI is contained in intervalJ with a higher
score, thenI is dominatedby J . Thewinnowing problemis to identify and discard
intervals that are dominated by a fixed number of other intervals. Berman et al.,
1999 [34] implemented a version of BLAST that solves the winnowing problem in
O(n logn) time, wheren is the number of intervals.

6.15.6 Statistical distance between texts
LetX be a set of strings—for example, the set of alll-tuples (Blaisdell, 1988 [36])
or gappedl-tuples (Mironov and Alexandrov, 1988 [239]) for a smalll. Given a
stringx 2 X and a textT , definex(T) as the number (or frequency) of occurrences
of x in T . Blaisdell, 1988 [36] and Mironov and Alexandrov, 1988 [239] defined
thestatistical distancebetween textsV andW as

d(V;W) =

sX
x2X

(x(V)� x(W))2

well before Internet search engines started to use related measures to find similar
pages on the Web. The efficiency of statistical distance for finding similarities was

6.15. SOME OTHER PROBLEMS AND APPROACHES 121

studied by Pevzner, 1992 [266]. The advantage of the statistical distance method
over BLAST is the speed: statistical distance can be computed very fast with data-
base pre-processing. The disadvantage is that statistical distance can miss weak
similarities that do not preserve sharedl-tuples. As a result, the major application
of such algorithms is in “database versus database” comparisons, such as EST clus-
tering. To achieve the very high speed required for large EST databases, the statis-
tical distance approach was recently implemented with suffix arrays (Burkhardt et
al., 1999 [55]).

6.15.7 RNA folding
RNAs adopt sophisticated 3-dimensional structures that are important for signal
recognition and gene regulation. Pairs of positions in RNA with complementary
Watson-Crick bases can form bonds. Bonds(i; j) and (i0; j0) are interleaving if
i < i0 < j < j0 and non-interleaving otherwise. In a very naive formulation of the
RNA folding problem, one tries to find a maximum set of non-interleaving bonds.
The problem can be solved by dynamic programming (Nussinov et al., 1978 [253],
Waterman, 1978 [354]). In a more adequate model, one attempts to find an RNA
fold with minimum energy (Zuker and Sankoff, 1984 [381], Waterman and Smith,
1986 [363], Zuker, 1989 [380]). However, these algorithms are not very reliable.
A more promising approach is to derive an RNA fold through multiple alignment
of related RNA molecules. Eddy and Durbin, 1994 [95] studied a problem of RNA
multiple alignment that takes fold information into account.

Chapter 7

Multiple Alignment

7.1 Introduction

The goal of protein sequence comparison is to discover “biological” (i.e., struc-
tural or functional) similarities among proteins. Biologically similar proteins may
not exhibit a strong sequence similarity, and one would like to recognize the struc-
tural/functional resemblance even when the sequences are very different. If se-
quence similarity is weak, pairwise alignment can fail to identify biologically re-
lated sequences because weak pairwise similarities may fail the statistical test for
significance. Simultaneous comparison of many sequences often allows one to find
similarities that are invisible in pairwise sequence comparison. To quote Hubbard
et al., 1996 [170] “pairwise alignment whispers... multiple alignment shouts out
loud.”

Straightforward dynamic programming solves the multiple alignment problem
for k sequences of lengthn. Since the running time of this approach isO((2n)k), a
number of different variations and some speedups of the basic algorithm have been
devised (Sankoff, 1975 [298], Sankoff, 1985 [299], Waterman et al., 1976 [364]).
However, the exact multiple alignment algorithms for largek are not feasible
(Wang and Jiang, 1994 [351]), and many heuristics for suboptimal multiple align-
ment have been proposed.

A natural heuristic is to compute
�k
2

�
optimal pairwise alignments of thek

strings and combine them together in such a way that induced pairwise alignments
are close to the optimal ones. Unfortunately, it is not always possible to combine
pairwise alignments into multiple alignments, since some pairwise alignments may
be incompatible. As a result, many multiple alignment algorithms attempt to com-
bine some compatible subset of optimal pairwise alignments into a multiple align-
ment. This can be done for some small subsets of all

�k
2

�
pairwise alignments.

The problem is deciding which subset of pairwise alignments to choose for this
procedure.

123

124 CHAPTER 7. MULTIPLE ALIGNMENT

The simplest approach uses pairwise alignment to iteratively add one string
to a growing multiple alignment. Feng and Doolittle, 1987 [100] use the pair of
strings with greatest similarity and “merge” them together into a new string follow-
ing the principle “once a gap, always a gap.” As a result, the multiple alignment of
k sequences is reduced to the multiple alignment ofk�1 sequences. Many other it-
erative multiple alignment algorithms use similar strategies (Barton and Sternberg,
1987 [27], Taylor, 1987 [336], Bains, 1986 [22], Higgins et al., 1996 [162]).

Although the Feng and Doolittle, 1987 [100] algorithm works well for close
sequences, there is no “performance guarantee” for this method. The first “perfor-
mance guarantee” approximation algorithm for multiple alignment, with approxi-
mation ratio2� 2

k , was proposed by Gusfield, 1993 [144]. The idea of the algorithm
is based on the notion of compatible alignments and uses the principle “once a gap,
always a gap.”

Feng and Doolittle, 1987 [100] and Gusfield, 1993 [144] use optimal pairwise
(2-way) alignments as building blocks for multiplek-way alignments. A natu-
ral extension of this approach is to use optimal3-way (or l-way) alignments as
building blocks fork-way alignments. However, this approach faces some combi-
natorial problems since it is not clear how to define compatiblel-way alignments
and how to combine them. Bafna et al., 1997 [18] devised an algorithm for this
problem with approximation ratio2� l

k .

Biologists frequently depict similarities between two sequences in the form
of dot-matrices. A dot-matrix is simply a matrix with each entry either0 or 1,
where a1 at position(i; j) indicates some similarity between thei-th position of
the first sequence and thej-th position of the second one. The similarity criteria
vary from being purely combinatorial (e.g., a match of lengthm with at mostk
mismatches starting at positioni of the first sequence andj of the second one) to
using correlation coefficients between physical parameters of amino acids. How-
ever, no criterion is perfect in its ability to distinguish “real” (biologically relevant)
similarities from chance similarities (noise). In biological applications, noise dis-
guises the real similarities, and the problem is determining how to filter noise from
dot-matrices.

The availability of several sequences sharing biologically relevant similarities
helps in filtering noise from dot-matrices. Whenk sequences are given, one can
calculate(k2) pairwise dot-matrices. If allk sequences share a region of similarity,

then this region should be visible in all(k2) dot-matrices. At the same time, noise
is unlikely to occur consistently among all the dot-matrices. The practical problem
is to reverse this observation: given the(k2) dot-matrices, find similarities shared
by all or almost all of thek sequences and filter out the noise. Vingron and Argos,
1991 [344] devised an algorithm for assembling ak-dimensional dot-matrix from
2-dimensional dot-matrices.

7.2. SCORING A MULTIPLE ALIGNMENT 125

7.2 Scoring a Multiple Alignment

LetA be a finitealphabetand leta1; : : : ; ak bek sequences (strings) overA. For
convenience, we assume that each of these strings containsn characters. LetA0
denoteASf�g, where0�0 denotes space. Analignmentof stringsa1; :::; ak is
specified by ak � m matrix A, wherem � n. Each element of the matrix is a
member ofA0, and each rowi contains the characters ofai in order, interspersed
with m � n spaces. We also assume that every column of the multiple alignment
matrix contains at least one symbol fromA. The score of multiple alignment is
defined as the sum of scores of the columns and the optimal alignment is defined
as the alignment that minimizes the score.

The score of a column can be defined in many different ways. The intuitive
way is to assign higher scores to the columns with large variability of letters. For
example, in themultiple shortest common supersequenceproblem, the score of a
column is defined as the number of different characters fromA in this column.
In the multiple longest common subsequenceproblem, the score of a column is
defined as�1 if all the characters in the column are the same, and0 otherwise. In
the more biologically adequateminimum entropyapproach, the score of multiple
alignment is defined as the sum of entropies of the columns. The entropy of a
column is defined as

�
X
x2A0

px log px

wherepx is the frequency of letterx 2 A0 in a columni. The more variable the
column, the higher the entropy. A completely conserved column (as in the multiple
LCS problem) would have minimum entropy 0.

The minimal entropy score captures the biological notion of good alignment,
but it is hard to efficiently analyze in practice. Below we describeDistance from
ConsensusandSum-of-Pairs (SP)scores, which are easier to analyze.

� Distance from Consensus.The consensus of an alignment is a string of the
most common characters in each column of the multiple alignment. The
Distance from Consensusscore is defined as the total number of characters
in the alignment that differ from the consensus character of their columns.

� Sum-of-Pairs (SP-score). For a multiple alignmentA = (aih), the induced
score of pairwise alignmentAij for sequencesai andaj is

s(Aij) =
mX
h=1

d(aih; ajh);

whered specifies thedistancebetween elements ofA0. The Sum-of-Pairs
score(SP-score) for alignmentA is given by

P
i;j s(Aij). In this definition,

126 CHAPTER 7. MULTIPLE ALIGNMENT

the score of alignmentA is the sum of the scores ofprojectionsof A onto all
pairs of sequencesai andaj . We assume the metric properties for distance
d, so thatd(x; x) = 0 andd(x; z) � d(x; y) + d(y; z) for all x; y, andz in
A0.

7.3 Assembling Pairwise Alignments

Feng and Doolittle, 1987 [100] use the pair of strings with greatest similarity and
“merge” them together into a new string following the principle “once a gap, al-
ways a gap.” As a result, the multiple alignment ofk sequences is reduced to the
multiple alignment ofk � 1 sequences (one of them corresponds to the merged
strings). The motivation for the choice of the closest strings at the early steps
of the algorithm is that close strings provide the most reliable information about
alignment.

Given an alignmentA of sequencesa1; :::; ak and an alignmentA0 of some
subset of the sequences, we say thatA is compatiblewith A0 if A aligns the char-
acters of the sequences aligned byA0 in the same way thatA0 aligns them. Feng
and Doolittle, 1987 [100] observed that given any tree in which each vertex is la-
beled with a distinct sequenceai, and given pairwise alignments specified for each
tree edge, there exists a multiple alignment of thek sequences that is compatible
with each of the pairwise alignments. In particular, this result holds for a star onk
vertices, i.e., a tree withcentervertex andk � 1 leaves.

Lemma 7.1 For any star and any specified pairwise alignmentsA1; : : : ; Ak�1 on
its edges, there is an alignmentA for thek sequences that is compatible with each
of the alignmentsA1; :::; Ak�1.

Given a starG, define astar-alignmentAG as an alignment compatible with
optimal pairwise alignments on the edges of this star. The alignmentAG optimizes
k � 1 among(k2) pairwise alignments in SP-score. The question of how good the
star alignment is remained open until Gusfield, 1993 [144] proved that if the star
G is chosen properly, the star alignment approximates the optimal alignment with
ratio2� 2

k .
Let G(V;E) be an (undirected) graph, and let
(i; j) be a (fixed) shortest

path between verticesi 6= j 2 V of length d(i; j). For an edgee 2 E, de-
fine the communication costc(e) as the number of shortest paths
(i; j) in G that
use edgee. For example, the communication cost of every edge in a star with
k vertices isk � 1. Define the communication cost of the graphG as c(G) =P

e2E c(e) =
P

i6=j2V d(i; j). Thecomplete graphon k verticesHk has a mini-

mum communication cost ofc(G) = k(k�1)
2 among allk-vertex graphs. We call

b(G) = c(G)
c(Hk)

= 2 c(G)
k(k�1) thenormalized communication costof G. For a star with

7.4. APPROXIMATION ALGORITHM FOR MULTIPLE ALIGNMENTS 127

k vertices,b(G) = 2 � 2
k . Feng and Doolittle, 1987 [100] use a tree to combine

pairwise alignments into a multiple alignment, and it turns out that the normalized
communication cost of this tree is related to the approximation ratio of the resulting
heuristic algorithm.

DefineC(G) = (cij) as ak � k matrix with cij = c(e) if (i; j) is an edgee in
G andcij = 0 otherwise. Theweighted sum-of-pairs scorefor alignmentA is

X
i;j

cij � s(Aij)

.
For notational convenience, we use thematrix dot productto denote scores of

alignments. Thus, lettingS(A) = (s(Aij)) be the matrix of scores of pairs of
sequences, the weighted sum-of-pairs score isC(G) � S(A). Letting E be the
unit matrix consisting of all 1s except the main diagonal consisting of all 0s, the
(unweighted) sum-of-pairs score of alignmentA isE � S(A).

The pairwise scores of an alignment inherit the triangle inequality property
from the distance matrix. That is, for any alignmentA, s(Aij) � s(Aik)+ s(Akj),
for all i; j, andk. This observation implies the following:

Lemma 7.2 For any alignmentA of k sequences and a starG, E � S(A) �
C(G)� S(A).

7.4 Approximation Algorithm for Multiple Alignments

Let G be a collection of stars in ak-vertex graph. We say that the collectionG is
balancedif

P
G2G C(G) = pE for some scalarp > 1. For example, a collection of

k stars withk different center vertices is a balanced collection withp = 2(k � 1).
SinceC(G) is non-zero only at the edges of the starG, and since star alignment
AG induces optimal alignments on edges ofG,

C(G)� S(AG) � C(G)� S(A)

for any alignmentA.

Lemma 7.3 If G is a balanced set of stars, then

min
G�G

C(G)� S(AG) � p

jGj min
A

E � S(A)

128 CHAPTER 7. MULTIPLE ALIGNMENT

Proof We use an averaging argument.

minG2G C(G)� S(AG) � 1
jGj
P

G2G C(G)� S(AG)

� 1
jGj �

P
G2G C(G)� S(A) = p

jGj �E � S(A)

Here the inequality holds for an arbitrary alignmentA, and in particular, it holds
for an optimal alignment.

Lemmas 7.2 and 7.3 motivate theAlign algorithm:

1. Construct a balanced set of stars,G.

2. For each starG in G, assemble a star alignmentAG.

3. Choose a starG such thatC(G) � S(AG) is the minimum over all stars in
G.

4. ReturnAG.

Theorem 7.1 (Gusfield, 1993 [144]) Given a balanced collection of starsG, Align
returns an alignment with a performance guarantee of2 � 2=k in O(k � n2 � jGj)
time.

Proof Note that pjGj =
C(G)�E
E�E = 2� 2

k . Align returns the alignmentAG that is op-
timal for a starG 2 G, and for which the smallest score,minG2G C(G)� S(AG),
is achieved. Lemmas 7.2 and 7.3 imply thatE � S(AG) � C(G) � S(AG) ��
2� 2

k

�
�minAE � S(A).

7.5 Assemblingl-way Alignments

An l-star G = (V;E) on k vertices is defined byr = k�1
l�1 cliques of sizel whose

vertex sets intersect in only onecentervertex (Figure 7.1). For a 3-star withk =
2t + 1 vertices,c(G) = (2t � 1)2t + t andb(G) = 2 � 3

k . For anl-star with

k = (l� 1)t+1 vertices,c(G) = ((l� 1)t+1� l+1)(l� 1)t+ t(l(l�1)2 � l+1)

andb(G) = 2� l
k . The communication cost of an edgee in anl-starG with center

c is

c(e) =

(
k � l + 1; if e is incident toc
1; otherwise.

7.5. ASSEMBLINGL-WAY ALIGNMENTS 129

Note that for the communication cost matrix of anl-starG,

C(G)�E = (k � l + 1) � (k � 1) +
k � 1

l� 1

l � 1

2

!
=

k

2

!
�
�
2� l

k

�

Figure 7.1:5-star with four cliques.

LetA1 : : : ; Ar be alignments for ther cliques in thel-star, with eachAi align-
ing l sequences. A construction similar to Feng and Doolittle, 1987 [100] implies
an analog of lemma 7.1:

Lemma 7.4 For anyl-star and any specified alignmentsA1; :::; Ar for its cliques,
there is an alignmentA for the k sequences that is compatible with each of the
alignmentsA1; :::; Ar .

One can generalize theAlign algorithm forl-stars and prove analogs of lemmas 7.2
and 7.3. As a result, theorem 7.1 can be generalized forl-stars, thus leading to an
algorithm with the performance guarantee equal to the normalized communication
cost ofl-stars, which is2� l

k . The running time of this algorithm isO(k(2n)ljGj).
Therefore, the problem is finding a small balanced set ofl-starsG.

We have reduced the multiple alignment problem to that of finding an optimal
alignment for each clique in eachl-star in a balanced setG. How hard is it to
find a balanced setG? A trivial candidate is simply the set of alll-stars, which is
clearly balanced by symmetry. Forl = 2, Gusfield, 1993 [144] exploited the fact
that there are onlyk 2-stars to construct a multiple alignment algorithm with an
approximation ratio of2� 2

k . This is really a special case, as forl > 2, the number
of l-stars grows exponentially withk, making the algorithm based on generation of
all l-stars computationally infeasible. Constructing asmallbalanced set ofl-stars

130 CHAPTER 7. MULTIPLE ALIGNMENT

is not trivial. Pevzner, 1992 [265] solved the case ofl = 3 by mapping the problem
to maximum matching in graphs. Bafna et al., 1997 [18] further designed a2� l

k
approximation algorithm for arbitraryl.

7.6 Dot-Matrices and Image Reconstruction

Given k sequences, it is easy to generate(k2) pairwise dot-matrices. It is much
harder to assemble these pairwise dot-matrices into ak-dimensional dot-matrix
and to find regions of similarity shared by all or almost allk sequences. To address
this problem, Vihinen, 1988 [343] and Roytberg, 1992 [290] proposed “superim-
posing” pairwise dot-matrices by choosing one reference sequence and relating all
others to it. Below we describe the Vingron and Argos, 1991 [344] algorithm for
assembling ak-dimensional dot-matrix from 2-dimensional dot-matrices.

We represent the problem of assembling pairwise similarities in a simple geo-
metric framework. ConsiderM integer points ink-dimensional space,

(i11; : : : ; i
1
k); : : : ; (i

M
1 ; : : : ; iMk);

for which we do not know the coordinates. Suppose we observe the projections of
these points onto each pair of dimensionss andt, 1 � s < t � k:

(i1s; i
1
t); : : : ; (i

M
s ; iMt)

as well as some other points (noise). Suppose also that we cannot distinguish points
representingreal projections from ones representing noise. Thek-dimensional
image reconstructionproblem is to reconstructM k-dimensional points given(k2)
projections (with noise) onto coordinatess andt for 1 � s < t � k.

In this construction, each similarity (consensus element) shared byk biologi-
cal sequences corresponds to an integer point(i1; : : : ik) in k-dimensional space,
whereis is the coordinate of the consensus in thes-th sequence,1 � s � k. In
practice, it is hard to find the integer points(i1; : : : ; ik) corresponding to consen-
suses. On the other hand, it is easy to find (though with considerable noise) the
projections(is; it) of all consensuses(i1; : : : ik) onto every pair of coordinatess
andt. This observation establishes the link between the multiple alignment prob-
lem and thek-dimensional image reconstruction problem.

From the given dots in the side-planes, we propose to keep only those that
fulfill the following criterion of consistency: the point(i; j) in projections; t is
called consistentif for every other dimensionu there exists an integerm such
that (i;m) belongs to the projections; u and(j;m) belongs to the projectiont; u
(Gotoh, 1990 [135]). Obviously each “real” point, i.e., each one that was generated
as a projection of ak-dimensional point, is consistent. In contrast, random points
representing noise are expected to be inconsistent. This observation allows one to
filter out most (though possibly not all) of the noise and leads to the Vingron and
Argos, 1991 [344] algorithm that multiplies and compares dot-matrices.

7.7. MULTIPLE ALIGNMENT VIA DOT-MATRIX MULTIPLICATION 131

7.7 Multiple Alignment via Dot-Matrix Multiplication

We model the collection of
�k
2

�
dot-matrices as ak-partite graphG(V1[V2[: : :[

Vk; E), whereVi is the set of positions in thei-th sequence. We join the vertex
i 2 Vs with j 2 Vt by an (undirected) edgee if there exists a dot at position(i; j)
of the dot-matrix comparing sequencess andt. An edgee 2 E will be written as
e = (s; ijt; j) to indicate that it joins verticesi 2 Vs andj 2 Vt. We denote atrian-
gle formed by three edges(s; ijt; j); (t; jju;m), and(s; iju;m) as(s; ijt; jju;m).
We now define an edge(s; ijt; j) to beconsistentif for everyu 6= s; t, 1 � u � k
there exists a triangle(s; ijt; jju;m) for somem. A subsetE0 � E is calledcon-
sistentif for all edges(s; ijt; j) 2 E0 there exist triangles(s; ijt; jju;m), 8u 6= s; t,
1 � u � k, with all edges of these triangles inE0. Thek-partite graphG is defined
asconsistentif its edge-set is consistent. Clearly, ifG0(V;E0) andG00(V;E00) are
consistent graphs, then theirunionG(V;E0 [E00) is consistent. Therefore, we can
associate with anyk-partite graph a unique maximal consistent subgraph. Our in-
terest is in the following:

Graph Consistency Problem Find the maximal consistent subgraph of ann-
partite graph.

The dot-matrix for sequencess andt is defined asadjacencymatrixAst:

(Ast)ij =

(
1; if (s; ijt; j) 2 E
0; otherwise

Each such matrix corresponds to a subset ofE, and we will apply the operations
[;\; and� to the matricesAst. We reformulate the above definition of consistency
in terms of boolean multiplication (denoted by “Æ”) of the adjacency matrices (Vin-
gron and Argos, 1991 [344]). Ak-partite graph is consistent if and only if

Ast � Asu Æ Aut 8s; t; u : 1 � s; t; u � k; s 6= t 6= u: (7.1)

Characterization (7.1) suggests the following simple procedure to solve the
consistency problem: keep only those 1s in the adjacency matrix that are present
both in the matrix itself and in all productsAsu Æ Aut. Doing this once for all
adjacency matrices will also change the matrices used for the products. This leads
to the iterative matrix multiplication algorithm (superscripts distinguish different
iterations) that starts with the adjacency matricesA

(0)
st := Ast of the givenk-partite

graph and defines:

A
(l+1)
st := A

(l)
st \ (

\
u6=s;t

A(l)
su Æ A(l)

ut):

132 CHAPTER 7. MULTIPLE ALIGNMENT

Once this is done for all indicess and t, the process is repeated until at some
iterationm A

(l+1)
st = A

(l)
st for all 1 � s; t � k.

The dot-matrix multiplication algorithm (Vingron and Argos, 1991 [344]) con-
verges to the maximal consistent subgraph and requiresO(L3k3) time per iteration
(L is the length of the sequences). Since the number of iterations may be very large,
Vingron and Pevzner, 1995 [345] devised an algorithm running in timeO(L3k3)
overall, which is equivalent to the run-time of only one iteration of the matrix-
multiplication algorithm. In practical applications the input data for the algorithm
are sparse matrices, which makes the algorithm even faster. Expressed in the over-
all numberM of dots in all(k2) dot-matrices, the running time isO(kLM).

7.8 Some Other Problems and Approaches

7.8.1 Multiple alignment via evolutionary trees
It often happens that in addition to sequencesa1; : : : ; ak, biologists know (or as-
sume that they know) the evolutionary history (represented by anevolutionary tree)
of these sequences. In this case,a1; : : : ; ak are assigned to the leaves of the tree,
and the problem is to reconstruct the ancestral sequences (corresponding to internal
vertices of the tree) that minimize the overall number of mutations on the edges of
the tree. The score of an edge in the tree is the edit distance between sequences
assigned to its endpoints, and the score of the evolutionary tree is the sum of edge
scores over all edges of the tree. The optimal multiple alignment for a given evo-
lutionary tree is the assignment of sequences to internal vertices of the tree that
produces the minimum score (Sankoff, 1975 [298]). Wang et al., 1996 [352] and
Wang and Gusfield, 1996 [350] developed performance guarantee approximation
algorithms for evolutionary tree alignment.

7.8.2 Cutting corners in edit graphs
Carrillo and Lipman, 1988 [58] and Lipman et al., 1989 [224] suggested a branch-
and-bound technique for multiple alignment. The idea of this approach is based on
the observation that if one of the pairwise alignments imposed by a multiple align-
ment is bad, then the overall multiple alignment won’t have a good score. This ob-
servation implies that “good” multiple alignment imposes “good” pairwise align-
ments, thus limiting a search to the vicinity of a main diagonal in ak-dimensional
alignment matrix.

Chapter 8

Finding Signals in DNA

8.1 Introduction

Perhaps the first signal in DNA was found in 1970 by Hamilton Smith after the
discovery of the Hind II restriction enzyme. The palindromic site of the restriction
enzyme is a signal that initiates DNA cutting. Finding the sequence of this site was
not a simple problem in 1970; in fact, Hamilton Smith published two consecutive
papers on Hind II, one on enzyme purification and the other one on finding the
enzyme’s recognition signal (Kelly and Smith, 1970 [196]).

Looking back to the early 1970s, we realize that Hamilton Smith was lucky:
restriction sites are the simplest signals in DNA. Thirty years later, they remain
perhaps the only signals that we can reliably find in DNA. Most other signals (pro-
moters, splicing sites, etc.) are so complicated that we don’t yet have good models
or reliable algorithms for their recognition.

Understanding gene regulation is a major challenge in computational biology.
For example, regulation of gene expression may involve a protein binding to a
region of DNA to affect transcription of an adjacent gene. Since protein-DNA
binding mechanisms are still insufficiently understood to allowin silico prediction
of binding sites, the common experimental approach is to locate the approximate
position of the binding site. These experiments usually lead to identification of a
DNA fragment of lengthn that contains a binding site (an unknownmagic word)
of length l � n. Of course, one such experiment is insufficient for finding the
binding site, but a sample of experimentally found DNA fragments gives one hope
of recovering the magic word.

In its simplest form, the signal finding problem (and the restriction enzyme site
problem in particular) can be formulated in the following way. Suppose we are
given a sample ofK sequences, and suppose there is an (unknown) magic word
that appears at different (unknown) positions in those sequences. Can we find the
magic word?

133

134 CHAPTER 8. FINDING SIGNALS IN DNA

A common-sense approach to the magic word problem is to test all words of
length l and to find those that appear in all (or almost all) sequences from the
sample (Staden, 1989 [326], Wolfertstetter et al., 1996 [370], Tompa, 1999 [338]).
If the magic word is the only word that appears that frequently in the sample, then
the problem is (probably) solved. Otherwise we should increasel and repeat the
procedure.

The described approach usually works fine for short continuous words such as
GAATTC, the restriction site of EcoRI. However, if the length of sequences in the
sample nears46, random words may start competing with the magic word, since
some of them may appear in many sequences simply by chance. The situation
becomes even more difficult if the nucleotide frequencies in the sample have a
skewed distribution.

The problem gets even more complicated when the magic word has gaps, as
in CCAN9TGG, the site of the Xcm I restriction enzyme (N stands for any nuc-
leotide, andN9 indicates a gap of length 9 in the site). Of course, we can try to
enumerate all patterns with gaps, but the computational complexity of the problem
grows very rapidly, particularly if we allow for patterns with many gaps. Even
finding the relatively simple “letter-gap-letter-gap-letter” magic word is not that
simple anymore; at least it warranted another pattern-finding paper by Hamilton
Smith and colleagues 20 years after the discovery of the first restriction site pattern
(Smith et al., 1990 [318]). Another daunting recognition task is to find signals like
PumCN40�2000PumC, the recognition site of McrBC Endonuclease (Pu stands
for A orG).

While the above problems are not simple, the real biological problems in signal
finding are much more complicated. The difficulty is that biological signals may
be long, gapped, and fuzzy. For example, the magic word forE.coli promoters is
TTGACAN17TATAAT . Enumeration and check of all patterns of this type is
hardly possibly due to computational complexity. However, even if we enumerated
all patterns of this type, it would be of little help since the pattern above represents
an ideal promoter but never occurs in known promoter sequences. Rather, it is a
consensus of all known promoters: neither consensus bases nor spacing between
the two parts of the signal are conserved. In other words, the description of the
magic word in this case is something like “12 non-degenerate positions with one
gap and a maximum of 4 mismatches.” There is no reliable algorithm to find this
type of signal yet. The shortcoming of the existing algorithms is that, for subtle
signals, they often converge to local minima that represent random patterns rather
than a signal.

8.2 Edgar Allan Poe and DNA Linguistics

When William Legrand from Edgar Allan Poe’s novel “The Gold-Bug” found a
parchment written by the pirate Captain Kidd:

8.2. EDGAR ALLAN POE AND DNA LINGUISTICS 135

5 3 zzy3 0 5)) 6 * ; 4 8 2 6) 4z.) 4 z) : 8 0 6 * ; 4 8y8 {6 0)) 8
5 ; 1 z(; : z* 8 y8 3 (8 8) 5 *y; 4 6 (8 8 * 9 6 * ? ; 8) *z(; 4 8 5
) ; 5 * y2 : * z(; 4 9 5 6 * 2 (5 * - - 4) 8{8 * ; 4 0 6 9 2 8 5) ;) 6y8
) 4 zz; 1 (z9 ; 4 8 0 8 1 ; 8 : 8z1 ; 4 8y8 5 ; 4) 4 8 5y5 2 8 8 0 6
* 8 1 (z9 ; 4 8 ; (8 8 ; 4 (z? 3 4 ; 4 8) 4z; 1 6 1 ; : 1 8 8 ;z? ;

his friend told him, “Were all the jewels of Golconda awaiting me upon my so-
lution of this enigma, I am quite sure that I should be unable to earn them.” Mr.
Legrand responded, “It may well be doubted whether human ingenuity can con-
struct an enigma of the kind which human ingenuity may not, by proper applica-
tion, resolve.” He noticed that a combination of three symbols—; 4 8—appeared
very frequently in the text. He also knew that Captain Kidd’s pirates spoke English
and that the most frequent English word is “the.” Assuming that ; 4 8 coded for
“the,” Mr. Legrand deciphered the parchment note and found the pirate treasure
(and a few skeletons as well). After this insight, Mr. Legrand had a slightly easier
text to decipher:

5 3 zzy3 0 5)) 6 * T H E 2 6) Hz.) H z) : E 0 6 * T H E yE{6 0)) E
5 T 1 z(T : z* E yE 3 (E E) 5 *yT 4 6 (E E * 9 6 * ? T E) *z(T H E 5
) T 5 * y2 : * z(T H 9 5 6 * 2 (5 * - - H) E{E * T H 0 6 9 2 E 5) T) 6yE
) H zzT 1 (z9 T H E 0 E 1 T E : Ez1 T H EyE 5 T H) H E 5y5 2 E E 0 6
* E 1 (z9 T H E T (E E T H (z? 3 H T H E) HzT 1 6 1 T : 1 E E Tz? T

You may try to figure out what codes for “(” and complete the deciphering.
DNA texts are not easy to decipher, and there is little doubt that Nature can

construct an enigma of the kind which human ingenuity may not resolve. How-
ever, DNA linguistics borrowed Mr. Legrand’s scientific method, and a popular
approach in DNA linguistics is based on the assumption that frequent or rare words
may correspond to signals in DNA. If a word occurs considerably more (or less)
frequently than expected, then it becomes a potential “signal,” and the question
arises as to the “biological” meaning of this word (Brendel et al., 1986 [47], Burge
et al., 1992 [53]). For example, Gelfand and Koonin, 1997 [124] showed that the
most avoided 6-palindrome in the archaeonM.jannaschiiis likely to be the recog-
nition site of a restriction-modification system.

DNA linguistics is at the heart of thepattern-drivenapproach to signal find-
ing, which is based on enumerating all possible patterns and choosing the most
frequent or the fittest (Brazma et al., 1998 [46]) among them. The fitness mea-
sures vary from estimates of the statistical significance of discovered signals to the
information content of the fragments that approximately match the signal. The
pattern-driven approach includes the following steps:

� Define the fitness measure (e.g., frequency).

136 CHAPTER 8. FINDING SIGNALS IN DNA

� Calculate the fitness of each word with respect to a sample of DNA frag-
ments.

� Report the fittest words as potential signals.

A problem with the pattern-driven approach is efficiency, since the search space
for patterns of lengthl is jAjl, whereA is the alphabet. To prune the search, one can
use the idea behind the Karp-Miller-Rosenberg algorithm (Karp et al., 1972 [188]),
which is based on the observation that if a string appears ink sequences, then all
of its substrings appear in at leastk sequences. Therefore, every frequent string
can be assembled from frequent substrings. For example, a simple way to do this
is to create a list of all frequent2l-tuples from the list of all frequentl-tuples by
concatenating every pair of frequentl-tuples and subsequently checking the fre-
quency of these concatenates. Another approach to this problem is to usesuffix
trees(Gusfield, 1997 [145]).

To find frequent and rare words in a text, one has to compute the expected
valueE(W) and the variance�2(W) for the number of occurrences (frequency) of
every wordW . Afterwards, the frequent and rare words are identified as the words
with significant deviations from expected frequencies. In many DNA linguistics
papers, the variance�2(W) of the number of occurrences of a word in a text was
erroneously assumed to beE(W).

Finding the probability ofk occurrences of a word in a text involves an
apparatus of generating functions and complex analysis (Guibas and Odlyzko,
1981 [141]). The difficulty is that the probability of a word’s occurrence in a
text depends not only on the length of the word, but also on the structure of the
word overlaps defined by theautocorrelation polynomial(Guibas and Odlyzko,
1981 [141]). For example, the distribution of the number of occurrences of AAA
(autocorrelation polynomial1 + x+ x2) differs significantly from the distribution
of the number of occurrences of of ATA (autocorrelation polynomial1 + x2) even
in a random Bernoulli text with equiprobable letters (overlapping words paradox).
Below we discuss the best bet for simpletons explaining the overlapping words
paradox.

8.3 The Best Bet for Simpletons

The overlapping words paradox is the basis ofthe best bet for simpletons, studied
by John Conway. The best bet for simpletons starts out with two players who
select words of lengthl in a 0-1 alphabet. Player I selects a sequenceA of l heads
or tails, and Player II, knowing whatA is, selects another sequenceB of lengthl.
The players then flip a coin until eitherA orB appears as a block ofl consecutive
outcomes. The game will terminate with probability 1.

8.4. THE CONWAY EQUATION 137

“Funny you don’t gamble none, ain’t it in your blood?”, Shorty said to Smoke
(in Jack London’s “Smoke Bellew”) one night in Elkhorn. Smoke answered, “It is.
But the statistics are in my head. I like an even break for my money.”

At first glance it looks as thoughA andB have an even break for their money.
Even if somebody realizes that some words are stronger than others in this game, it
looks as thoughA should win after choosing the “strongest” word. The intriguing
feature of the game is the fact that ifl � 3, then no matter whatA is, Player II can
choose a wordB that beatsA. One more surprise is that the best bet for simpletons
is a non-transitive game:A beatsB andB beatsC does not implyA beatsC
(remember rock, paper, and scissors?).

SupposeA chooses 00 andB chooses 10. After two tosses eitherA wins (00),
orB wins (10), or the game will continue (01 or 11). However, it makes little sense
for A to continue the game sinceB will win anyway! Therefore, the odds ofB
overA in this game are 3:1.

The analysis of the best bet for simpletons is based on the notion of acorre-
lation polynomial(Guibas and Odlyzko, 1981 [141]). Given twol-letter wordsA
andB, thecorrelation of A andB, to be denoted byAB = (c0; : : : ; cl�1), is an
l-letter boolean word (Figure 8.1). Thei-th bit of AB is defined to be 1 if the
(n� i)-prefix (the firstn� i letters) ofB coincides with the(n� i)-suffix (the last
n� i letters) ofA. Otherwise, thei-th bit ofAB is defined to be 0. Thecorrelation
polynomialof A andB is defined asKAB(t) = c0+ c1 � t1+ : : :+ cl�1 � tl�1. We
also denoteKAB = KAB(

1
2).

John Conway suggested the following elegant formula to compute the odds that
B will win over A:

KAA �KAB

KBB �KBA

Conway’s proof of this formula was never published. Martin Gardner, 1974 [118]
wrote about this formula:

I have no idea why it works. It just cranks out the answer as if by magic, like so many of Conway’s
other algorithms.

The proofs of this formula were given independently by Li, 1980 [222] us-
ing martingales and by Guibas and Odlyzko, 1981 [141] using generating func-
tions. In the next section we give a short proof of the Conway equation (Pevzner,
1993 [268]).

8.4 The Conway Equation

LetAB = (c0; : : : ; cl�1) be a correlation ofA andB, and letcm1
; : : : ; cmk

be the
bits of AB equal to 1. Denote asHAB the set ofk prefixes ofA = a1 : : : al of

138 CHAPTER 8. FINDING SIGNALS IN DNA

Y Y X Y Y X

Y Y X Y Y X

Y Y X Y Y X

Y Y X Y Y X

Y Y X Y Y X

Y Y X Y Y X

A=

B=

X Y Y X Y Y A B

0

1

0

0

1

1

H
AB

AB (1/2)=1/2+1/16+1/32=P(K

K AB=t + t + t
1 4

shift=0

shift=1

shift=2

shift=3

shift=4

shift=5

5

HAB)

={X, XYYX, XYYXY}

Figure 8.1:Correlation polynomial of wordsA andB (AB = (010011)) and the setHAB.

lengthm1; : : : ;mk (Figure 8.1):

(a1 : : : am1
); (a1 : : : am1

: : : am2
); : : : ; (a1 : : : am1

: : : am2
: : : : : : amk

):

Given two wordsX andY , we denote asX � Y theconcatenationof X and
Y: Given two sets of wordsX = fXg andY = fY g, we denote asX � Y the set
of wordsfX � Y g containing all concatenations of words fromX and words from
Y. The setX � Y containsjX j � jYj words (perhaps with repeats).

We denote asP (X) = 1
2l

the probability of a booleanl-letter wordX to
represent the result ofl head-or-tail trials. For a set of wordsX = fXg, denote

P (X) =
X
X�X

P (X)

8.4. THE CONWAY EQUATION 139

We will use the following simple observation:

Lemma 8.1 KAB(
1
2) = P (HAB):

A wordW is anA-victory if it containsA in the end and does not containB. A
wordW is anA-previctoryif W �A is anA-victory. We defineSA to be the set of
all A-previctories.B-victories, B-previctories, and the setSB of all B-previctories
are defined similarly.

The idea of the proof is to consider allno-victorywords:

T = fT : T is neitherA-victory norB-victoryg:
Every wordT �A for T�T corresponds to either anA-victory or aB-victory. If T �
A corresponds to anA-victory, thenT can be represented in the formA-previctory
* HAA, whereHAA�HAA (Figure 8.2a). IfT � A corresponds to aB-victory,
thenT can be represented in the formB-previctory * HBA, whereHBA�HBA

(Figure 8.2b). This implies the following representation of no-victories.

Lemma 8.2 T = T1 = (SB � HBA)
S
(SA � HAA).

Similarly, every wordT � B for T�T corresponds to either anA-victory or a
B-victory. If T � B corresponds to anA-victory, thenT can be represented in the
formA-previctory *HAB, whereHAB�HAB (Figure 8.2c). IfT � B corresponds
to aB-victory, thenT can be represented in the formB-previctory *HBB , where
HBB�HBB (Figure 8.2d). This implies another representation of no-victories:

Lemma 8.3 T = T2 = (SA � HAB)
S
(SB � HBB).

Theorem 8.1 The odds thatB wins overA is KAA�KAB

KBB�KBA
:

Proof Lemmas 8.1 and 8.3 imply that the overall probability of words in the set
T2 is

P (T2) = P (SA � HAB) + P (SB � HBB) =

P (SA) � P (HAB) + P (SB) � P (HBB) =

P (SA) �KAB + P (SB) �KBB :

Similarly, lemmas 8.1 and 8.2 imply

P (T1) = P (SB) �KBA + P (SA) �KAA:

According to lemmas 8.2 and 8.3,T1 andT2 represent the same setT ; therefore,
P (T1) = P (T2) and

P (SA) �KAB + P (SB) �KBB = P (SB) �KBA + P (SA) �KAA:

This implies
P (SB)
P (SA) =

KAA �KAB

KBB �KBA
:

140 CHAPTER 8. FINDING SIGNALS IN DNA

T A

A

T A

B

T B

A

T B

B

A-previctory H

H

B-previctory

A-previctory

B-previctory H

H

AA

BA

AB

BB

a.

b.

c.

d.

Figure 8.2:Different representations of words from the setsT � fAg andT � fBg.

8.5 Frequent Words in DNA

Formulas for the varianceV ar(W) of the number of occurrences of a wordW
in a Bernoulli text were given by Gentleman and Mullin, 1989 [126] and Pevzner
et al., 1989 [269]. For a Bernoulli text of lengthn in an l-letter alphabet with

8.5. FREQUENT WORDS IN DNA 141

equiprobable letters,

V ar(W) =
n

lk
� (2 �KWW (

1

l
)� 1� 2k � 1

lk
)

wherek is the length of wordW andKWW (t) is the correlation polynomial of
wordsW andW (autocorrelation polynomial of W).

To derive this formula, consider (for the sake of simplicity) a circular text of
lengthn in anl-letter alphabet with the probability of every letter at every position
equal to1

l . For a fixedk-letter wordW , define a random variablexi as 1 ifW
starts at thei-th position of the text and as0 otherwise. Denote the mean ofxi
asp = 1

lk
. The number of occurrences ofW in the text is given by the random

variable

X =
nX
i=1

xi

with mean

E(X) =
nX
i=1

E(xi) = np

and variance

V ar(X) = E(X2)�E(X)2 =
X

f1�i;j�ng
E(xixj)�E(xi)E(xj):

Let d(i; j) be the (shortest) distance between positionsi andj in a circular text.
Then

V ar(X) =
X

f(i;j): d(i;j)�kg
E(xixj)�E(xi)E(xj)+

X
f(i;j): d(i;j)=0g

E(xixj)�E(xi)E(xj)+

X
f(i;j): 0<d(i;j)<kg

E(xixj)�E(xi)E(xj):

Since random variablesxi andxj are independent ford(i; j) � k, the first term
in the above formula is0, the second term is simplyn(p � p2), and the last term
can be rewritten as follows:X

f(i;j): 0<d(i;j)<kg
E(xixj)�E(xi)E(xj) =

142 CHAPTER 8. FINDING SIGNALS IN DNA

nX
i=1

k�1X
t=1

X
fj: d(i;j)=tg

E(xixj)�E(xi)E(xj)

For a fixedt, E(xixi+t) equalsp 1
lt if the t-th coefficient of the correlationWW

equals 1, and0 otherwise. We can then writeE(xixi+t) = ctp
1
lt , and since for

everyi there are exactly two positionsj with d(i; j) = t,

k�1X
t=1

X
fj: d(i;j)=tg

E(xixj) =

2p
k�1X
t=1

ct
1

lt
= 2p(KWW (

1

l
)� 1):

Therefore,X
f(i;j): 0<d(i;j)<kg

E(xixj)�E(xi)E(xj) =
nX
i=1

(2p(KWW (
1

l
)�1)�2(k�1)p2) =

np(2KWW (
1

l
)� 2� 2(k � 1)p)

and

V ar(X) = np(2KWW (
1

l
)� 1� (2k � 1)p):

This result demonstrates that the variance of the frequency of occurrences
varies significantly between words even for Bernoulli texts. In particular, for a
4-letter alphabet with equal probabilities of lettersA; T;G; andC,

V ar(AA)

V ar(AT)
=

21

13
and

V ar(AAA)

V ar(ATG)
=

99

59
:

Therefore, ignoring the overlapping words paradox leads to about200% mistakes
in estimations of statistical significance while analyzing frequent words. For 2-
letter alphabets Pur/Pyr or S/W, ignoring the overlapping words paradox leads to
500%(!) mistakes in estimations of statistical significance (V ar(SS)

V ar(SW) =
5
1).

The above formulas allow one to compute the variance for Bernoulli texts.
Fousler and Karlin, 1987 [112], Stuckle et al., 1990 [330], and Kleffe and
Borodovsky, 1992 [199] presented approximation formulas allowing one to cal-
culate the variance for texts generated by Markov chains. Prum et al., 1995 [281]
obtained the normal limiting distribution for the number of word occurrences in
the Markovian Model. Finally, Regnier and Szpankowski, 1998 [282] studied ap-
proximate word occurrences and derived the exact and asymptotic formulas for the
mean, variance, and probability of approximate occurrences.

8.6. CONSENSUS WORD ANALYSIS 143

8.6 Consensus Word Analysis

For a wordW and a sampleS, denote asW (S) the number of sequences from
S that containW . If a magic word appears in the sample exactly, then a simple
count ofW (S) for everyl-letter wordW would detect the magic word as the most
frequent one. The problem gets more complicated when up tok errors (i.e., mis-
matches) in the magic word are allowed. For this case Waterman et al., 1984 [358]
and Galas et al., 1985 [115] suggestedconsensus wordanalysis, which is essen-
tially an approximate word count. For every wordW they defined a neighborhood
consisting of all words within distancek fromW and counted occurrences of words
from the neighborhood in the sample. They also introduced the idea ofweighted
occurrencesand assigned higher weight to neighbors with fewer errors. Using con-
sensus word analysis, Galas et al., 1985 [115] were able to detect theTTGACA
andTATAAT consensus sequences in theE. coli promoter signal.

LetDH(s; t) be the Hamming distance between two stringss andt of the same
length. Mirkin and Roberts, 1993 [238] showed that approximate word count is, in
some sense, equivalent to the following:

Consensus String ProblemGiven a sampleS = fs1; : : : ; sng of sequences and
an integerl, find amedianstring s of length l and a substringti of length l from
eachsi, minimizing

Pn
i=1 dH(s; ti).

Li et al., 1999 [221] showed that the Consensus String Problem is NP-hard and
gave a polynomial time approximation scheme (PTAS) for this problem. The algo-
rithm is based on the notion of amajority string. Given a collectiont1; : : : ; tn of n
strings of lengthl, the majority string fort1; : : : ; tn is the strings whosei-th letter
is the most frequent letter amongn i-th letters int1; : : : ; tn. Li et al., 1999 [221]
devised a PTAS for the Consensus String Problem that is based on choosing the
majority string for everyr length-l substringsti1 ; : : : ; tir of fs1; : : : ; sng.

It is often convenient to concatenate multiple sequences from a sampleS into a
single composite sequence, converting the problem of finding the consensus string
into the problem of finding the most frequent string in the text. A naive approach
to this problem is to find the number of occurrencesW (T) of everyl-letter string
W in textT . Apostolico and Preparata, 1996 [10] devised an efficient algorithm for

String Statistics Problem Given a textT and an integerl, find W (T) for each
l-letter stringW .

The String Statistics Problem gets difficult if we consider approximate string
occurrences. LetWk(T) be the number of approximate occurrences ofW in T
with up to k mismatches. We are unaware of an efficient algorithm to solve the
following:

144 CHAPTER 8. FINDING SIGNALS IN DNA

Frequent String Problem Given textT and integersl andk, find anl-letter string
W maximizingWk(T) among alll-letter words.

Consensus word analysis is an example of asequence-drivenapproach to sig-
nal finding. A sequence-driven approach does not enumerate all the patterns, but
instead considers only the patterns that are present in the sample. Given a collec-
tion of frequent wordsW1 in a sampleS1 and a collection of frequent wordsW2 in
a sampleS2, one can intersectW1 andW2 to obtain a collection of frequent words
in S1 [S2. Given a sample ofn sequences, one can view it as a set ofn samples
and start combining sets of frequent words until all the sequences are combined.
Particular sequence-driven approaches differ in the way the sets to be combined
are chosen and in the way the sets are combined.

8.7 CG-islands and the “Fair Bet Casino”

The most infrequent dinucleotide in many genomes isCG. The reason is thatC
within CG is typically methylated, and the resulting methyl-C has a tendency to
mutate intoT . However, the methylation is suppressed around genes in the areas
calledCG-islandswhereCG appears relatively frequently. The question arises of
how to define and findCG-islands in a genome.

FindingCG-islands is not very different from the following “gambling” prob-
lem (Durbin et al., 1998 [93]). A dealer in a “Fair Bet Casino” may use either a
fair coin or a biased coin that has a probability of3

4 of a head. For security reasons,
the dealer does not tend to change coins—it happens relatively rarely, with a prob-
ability of 0.1. Given a sequence of coin tosses, find out when the dealer used the
biased coin and when he used a fair coin.

First, let’s solve the problem under the assumption that the dealer never changed
the coin. The question is what coin, fair (p+(0) = p+(1) = 1

2) or biased (p�(0) =
1
4 ; p

�(1) = 3
4), he used. If the resulting sequence of tosses isx = x1 : : : xn,

then the probability that it was generated with a fair coin isP (xjfair coin) =Qn
i=1 p

+(xi) = 1
2n . The probability thatx was generated with a biased coin is

P (xjbiased coin) = Qn
i=1 p

�(xi) = 1
4n�k

3k

4k
= 3k

4n , wherek is the number of 1s
in x. As a result, whenk < n

log2 3
, the dealer most likely used a fair coin, and when

k > n
log2 3

, he most likely used a biased coin. We can define the log-odds ratio as
follows:

log2
P (xjfair coin)
P (xjbiased coin) =

kX
i=1

log2
p+(xi)

p�(xi)
= n� k log2 3

8.8. HIDDEN MARKOV MODELS 145

A naive approach to findingCG-islands is to calculate log-odds ratios for each
sliding window of a fixed length. The windows that receive positive scores are
potentialCG-islands. The disadvantage of such an approach is that we don’t know
the length ofCG-islands in advance. Hidden Markov Models represent a different
probabilistic approach to this problem (Churchill, 1989 [69]).

8.8 Hidden Markov Models

A Hidden Markov Model(HMM) M is defined by an alphabet
P

, a set of (hidden)
statesQ, a matrix of state transition probabilitiesA, and a matrix of emission
probabilitiesE, where

� P is an alphabet of symbols.

� Q is a set of states that emit symbols from the alphabet
P

.

� A = (akl) is ajQj � jQj matrix of state transition probabilities.

� E = (ek(b)) is ajQj � jP j matrix of emission probabilities.

Tossing the coin in the “Fair Bet Casino” corresponds to the following HMM:

� P = f0; 1g, corresponding to tail (0) or head (1).

� Q = fF;Bg, corresponding to a fair or biased coin.

� aFF = aBB = 0:9, aFB = aBF = 0:1

� eF (0) =
1
2 , eF (1) = 1

2 , eB(0) = 1
4 , eB(1) = 3

4

A path� = �1 : : : �n in the HMMM is a sequence of states. For example, if
a dealer used the fair coin for the first three and the last three tosses and the biased
coin for five tosses in between, the corresponding path is FFFBBBBBFFF. The
probability that a sequencex was generated by the path� (given the modelM) is

P (xj�) =
nY
i=1

P (xij�i)P (�ij�i+1) = a�0;�1 �
nY
i=1

e�i(xi) � a�i;�i+1

where for convenience we introduce�0 and�n+1 as the fictitious initial and termi-
nal statesbegin andend.

This model defines the probabilityP (xj�) for a given sequencex and a given
path�. However, only the dealer knows the real sequence of states� that emitted
x. We therefore say that the path ofx is hidden and face the following

146 CHAPTER 8. FINDING SIGNALS IN DNA

Decoding Problem Find an optimal path�� = argmax� P (xj�) for x, such that
P (xj�) is maximized.

The solution of the decoding problem is provided by the Viterbi, 1967 [348]
algorithm, which is a variation of the Bellman, 1957 [29] dynamic programming
approach. The idea is that the optimal path for the(i + 1)-prefix x1 : : : xi+1 of
x uses a path for ani-prefix of x that is optimal among the paths ending in an
(unknown) state�i = k 2 Q.

Definesk(i) as the probability of the most probable path for the prefixx1 : : : xi
that ends with statek (k 2 Q and1 � i � n). Then

sl(i+ 1) = el(xi+1) �max
k2Q
fsk(i) � aklg:

We initializesbegin(0) = 1 andsk(0) = 0 for k 6= begin. The value ofP (xj��) is

P (xj��) = max
k2Q

sk(n)ak;end:

The Viterbi algorithm runs inO(njQj) time. The computations in the Viterbi algo-
rithm are usually done in logarithmic scoresSl(i) = log sl(i) to avoid overflow:

Sl(i+ 1) = log el(xi+1) + max
k2Q
fSk(i) + log(akl)g

Given a sequence of tossesx, what is the probability that the dealer had a
biased coin at momenti? A simple variation of the Viterbi algorithm allows one to
compute the probabilityP (�i = kjx). Let fk(i) be the probability of emitting the
prefixx1 : : : xi and reaching the state�i = k. Then

fk(i) = ek(xi) �
X
l2Q

fl(i� 1) � alk:

The only difference between thisforward algorithmand the Viterbi algorithm is
that “max” sign in the Viterbi algorithm changes into the

P
sign in the forward

algorithm. Backward probabilitybk(i) is defined as the probability of being at state
�i = k and emitting the suffixxi+1 : : : xn. Thebackward algorithmuses a similar
recurrency:

bk(i) =
X
l2Q

el(xi+1) � bl(i+ 1) � akl

Finally, the probability that the dealer had a biased coin at momenti is given by

P (�i = kjx) = P (x; �i = k)

P (x)
=

fk(i) � bk(i)
P (x)

whereP (x; �i = k) is the probability ofx under the assumption thatxi was pro-
duced in statek andP (x) =

P
� P (xj�).

8.9. THE ELKHORN CASINO AND HMM PARAMETER ESTIMATION 147

8.9 The Elkhorn Casino and HMM Parameter Estimation

The preceding analysis assumed that we knew the state transition and emission
probabilities of the HMM. The most difficult problem in applications of HMMs
is that these parameters are unknown and need to be estimated. It is easy for an
intelligent gambler to figure out that the dealer in the “Fair Bet Casino” is using
a biased coin. One way to find this out is to notice that 0 and 1 have different
expected frequencies (3

8 and 5
8 correspondingly) and the ratio of 0s to 1s in a day-

long sequence of tosses is suspiciously low. However, it is much more difficult
to estimate the transition and emission probabilities of the corresponding HMM.
Smoke, in Jack London’s “Smoke Bellew,” made one of the first attempts to figure
out the transition probabilities of a roulette wheel in the Elkhorn casino. After long
hours and days spent watching the roulette wheel the night came when Smoke
proclaimed that he was ready to beat the system. Don’t try to do it again in Las
Vegas; the gambling technology has changed.

Let� be a vector combining the unknown transition and emission probabilities
of the HMMM. Given a stringx, defineP (xj�) as the probability ofx given the
assignment of parameters�. Our goal is to find�� such that

�� = argmax
�

P (xj�):

Usually, instead of a single stringx, a collection oftraining sequencesx1; : : : ; xm

is given and the goal is to maximize

�� = argmax
�

mY
j=1

P (xjj�):

This is an optimization of a continuous function in multidimensional parameter
space�. The commonly used algorithms for parameter optimization are heuristics
that use a local improvement strategy in the parameter space. If the path�1 : : : �n
corresponding to the observed statesx1 : : : xn is known, then we can scan the se-
quences and compute the empirical estimates for transition and emission probabil-
ities. If Akl is the number of transitions from statek to l andEk(b) is the number
of timesb is emitted from statek then, the maximum likelihood estimators are

akl =
AklP
q2QAkq

ek(b) =
Ek(b)P

�2
PEk(�)

:

Usually, the state sequence�1 : : : �n is unknown, and in this case, an iterative
local improvement strategy called theBaum-Welchalgorithm is commonly used
(Baldi and Brunak, 1997 [24]).

148 CHAPTER 8. FINDING SIGNALS IN DNA

Begin EndM MM1 nj

Dj

Ij

Figure 8.3:Profile HMM.

8.10 Profile HMM Alignment

Given a family of functionally related biological sequences, one can search for
new members of the family using pairwise alignments between family members
and sequences from a database. However, this approach may fail to find distantly
related sequences. An alternative approach is to use the whole set of functionally
related sequences for the search.

A Profile is the simplest representation of a family of related proteins that is
given by multiple alignment. Given ann-column multiple alignment of strings in
alphabetA, a profileP is anjAj � n matrix that specifies the frequencyei(a) of
each charactera from the alphabetA in column i (Gribskov et al., 1987 [139]).
Profiles can be compared and aligned against each other since the dynamic pro-
gramming algorithm for aligning two sequences works if both of the input se-
quences are multiple alignments (Waterman and Perlwitz, 1984 [362]).

HMMs can also be used for sequence comparison (Krogh et al., 1994 [208],
Sonnhammer et al., 1997 [324]), in particular for aligning a sequence against a
profile. The simplest HMM for a profileP containsn sequentially linkedmatch
statesM1; : : : ;Mn with emission probabilitiesei(a) taken from the profileP
(Fig 8.3). The probability of a stringx1 : : : xn given the profileP is

Qn
i=1 ei(xi).

To model insertions and deletions we addinsertionstatesI0; : : : ; In anddeletion

8.11. GIBBS SAMPLING 149

statesD1; : : : ;Dn to the HMM and assume that

eIj (a) = p(a)

wherep(a) is the frequency of the occurrence of the symbola in all the sequences.
The transition probabilities between matching and insertion states can be defined
in the affine gap penalty model by assigningaMI ; aIM , andaII in such a way that
log(aMI) + log(aIM) equals the gap creation penalty andlog(aII) equals the gap
extension penalty. The (silent) deletion states do not emit any symbols.

DefinevMj (i) as the logarithmic likelihood score of the best path for matching
x1 : : : xi to profile HMM P ending withxi emitted by the stateMj . DefinevIj (i)
andvDj (i) similarly. The resulting dynamic programming recurrency is, of course,
very similar to the standard alignment recurrency:

vMj (i) = log
eMj

(xi)

p(xi)
+ max

8><
>:
vMj�1(i� 1) + log(aMj�1;Mj

)

vIj�1(i� 1) + log(aIj�1;Mj
)

vDj�1(i� 1) + log(aDj�1;Mj
)

The valuesvIj (i) andvDj (i) are defined similarly.

8.11 Gibbs Sampling

Lawrence et al., 1993 [217] suggested usingGibbs samplingto find patterns in
sequences. Given a set of sequencesx1; : : : ; xm in an alphabetA and an integer
w, the problem is to find a substring of lengthw in eachxi in such a way that the
similarity betweenm substrings is maximized.

Let a1; : : : ; am be the starting indices of the chosen substrings inx1; : : : ; xm,
respectively. Denote asqij the frequency with which the symboli occurs at the
j-th position of the substrings.

Gibbs sampling is an iterative procedure that at each iteration discards one
sequence from the alignment and replaces it with a new one. Gibbs sampling starts
with randomly choosing substrings of lengthw in each ofm sequencesx1; : : : ; xm

and proceeds as follows.

� At the beginning of every iteration, a substring of lengthw in each ofm
sequencesx1; : : : ; xm is chosen.

� Randomly choose one of the sequencesxr uniformly at random.

� Create a frequency matrix(qij) from the remainingm� 1 substrings.

150 CHAPTER 8. FINDING SIGNALS IN DNA

� For each positioni in xr, calculate the probabilitypi =
Qw
j=0 qxri+j;j that the

substring starting at this position is generated by profile(qij) (xri+j denotes
a symbol at positioni+ j of sequencexr).

� Choose the starting positioni of the new substring inxr randomly, with
probability proportional topi.

Although Gibbs sampling is known to work in specific cases, it may, similarly to
the Baum-Welch algorithm, converge to a local maximum. Since the described pro-
cedure (Lawrence et al., [217]) does not allow for insertions and deletions, Rocke
and Tompa, 1998 [288] generalized this method for handling gaps in a pattern.

8.12 Some Other Problems and Approaches

8.12.1 Finding gapped signals

Rigoutsos and Floratos, 1998 [285] addressed the problem of finding gapped sig-
nals in a text. A gapped string is defined as a string consisting of an arbitrary
combination of symbols from the alphabet and “don’t care” symbols. A gapped
stringP is called an< l;w >-string if every substring ofP of length l contains
at leastw symbols from the alphabet. The TERESIAS algorithm (Rigoutsos and
Floratos, 1998 [285]) finds allmaximal< l;w >-patterns that appear in at least
K sequences in the sample in a two-stage approach. At the firstscanningstage, it
finds all short strings of lengthl with at leastw symbols from the alphabet that ap-
pear at leastK times in the sample. At the secondconvolutionstage, it assembles
these short strings into maximal(l; w)-strings.

8.12.2 Finding signals in samples with biased frequencies

The magic word problem becomes difficult if the signal is contained in only a frac-
tion of all sequences and if the background nucleotide distribution in the sample
is skewed. In this case, searching for a signal with the maximum number of oc-
currences may lead to the patterns composed from the most frequent nucleotides.
These patterns may not be biologically significant. For example, if A has a of fre-
quency70% and T, G, and C have frequencies of10%, then poly(A) may be the
most frequent word, thus disguising the real magic word.

To find magic words in biased samples, many algorithms userelative entropy
to highlight the magic word among the words composed from frequent nucleotides.
Given a magic word of lengthk, the relative entropy is defined as

kX
j=1

X
r=A;T;G;C

prj log2
prj
br

8.12. SOME OTHER PROBLEMS AND APPROACHES 151

whereprj is the frequency of nucleotider in positionj among magic word occur-
rences andbr is the background frequency ofr.

Relative entropy is a good measure for comparing two magic words that have
the same number of occurrences in the sample, but not a good measure if the words
appear in vastly different numbers of sequences. Hertz and Stormo, 1999 [159] and
Tompa, 1999 [338] addressed this problem by designing criteria that account for
both number of occurrences and background distribution.

8.12.3 Choice of alphabet in signal finding
Karlin and Ghandour, 1985 [187] observed that there is no way to know beforehand
which choice of alphabet is good for revealing signals in DNA or proteins. For
example,WSWS : : :WSWS may be a very strong signal, that is hard to find
in the standard A,T, G, C alphabet. This problem was addressed by Sagot et al.,
1997 [293].

Chapter 9

Gene Prediction

9.1 Introduction

In the 1960s, Charles Yanofsky, Sydney Brenner, and their collaborators showed
that a gene and its protein product are colinear structures with direct correlation be-
tween triplets of nucleotides in the gene and amino acids in the protein. However,
the concept of the gene as a synthetic string of nucleotides did not live long. Over-
lapping genes and genes-within-genes were discovered in the late 1960s. These
studies demonstrated that the computational problem of gene prediction is far from
simple. Finally, the discovery of split human genes in 1977 created a computational
gene prediction puzzle.

Eukaryotic genomes are larger and more complex than prokaryotic genomes.
This does not come as a surprise since one would expect to find more genes in
humans than in bacteria. However, the genome size of many eukaryotes does not
appear to be related to genetic complexity; for example, the salamander genome
is 10 times larger than the human genome. This paradox was resolved by the
discovery that eukaryotes contain not only genes but also large amounts of DNA
that do not code for any proteins (“junk” DNA). Moreover, most human genes are
interrupted by junk DNA and are broken into pieces called exons. The difference
in the sizes of the salamander and human genomes thus reflects larger amounts of
junk DNA and repeats in the genome of salamander.

Split genes were first discovered in 1977 independently by the laboratories of
Phillip Sharp and Richard Roberts during studies of the adenovirus (Berget et al.,
1977 [32], Chow et al., 1977 [67]). The discovery was such a surprise that the
paper by Richard Roberts’ group had an unusually catchy title for the academic
Cell magazine: “An amazing sequence arrangement at the 5’ end of adenovirus 2
messenger RNA.” Berget et al., 1977 [32] focused their experiments on an mRNA
that encodes a viral protein known as the hexon. To map the hexon mRNA on viral
genome, mRNA was hybridized to adenovirus DNA and the hybrid molecules were

153

154 CHAPTER 9. GENE PREDICTION

analyzed by electron microscopy. Strikingly, the mRNA-DNA hybrids formed in
this experiment displayed three loop structures, rather than the continuous duplex
segment suggested by the classical “continuous gene” model. Further hybridization
experiments revealed that the hexon mRNA is built from four separate fragments of
the adenovirus genome. These four exons in the adenovirus genome are separated
by three “junk” fragments calledintrons. The discovery of split genes (splicing)
in the adenovirus was quickly followed by evidence that mammalian genes also
have split structures (Tilghman et al., 1978 [337]). These experimental studies
raised a computational gene prediction problem that is still unsolved: human genes
comprise only3% of the human genome, and no existingin silico gene recognition
algorithm provides reliable gene recognition.

After a new DNA fragment is sequenced, biologists try to find genes in this
fragment. The traditional statistical way to attack this problem has been to look
for features that appear frequently in genes and infrequently elsewhere. Many
researchers have used a more biologically oriented approach and attempted to rec-
ognize the locations of splicing signals at exon-intron junctions. The goal of such
an approach is characterization of sites on RNA where proteins and ribonucleopro-
teins involved in splicing apparatus bind/interact. For example, the dinucleotides
AG andGT on the left and right sides of exons are highly conserved. The sim-
plest way to represent a signal is to give a consensus pattern consisting of the most
frequent nucleotide at each position of an alignment of specific signals. Although
catalogs of splice sites were compiled in the early 1980s, the consensus patterns are
not very reliable for discriminating true sites from pseudosites since they contain
no information about nucleotide frequencies at different positions. Ed Trifonov
invented an example showing another potential pitfall of consensus:

MELON
MANGO
HONEY
SWEET
COOKY

—–
MONEY

The frequency information is captured byprofiles (or Position Weight Matrices)
that assign frequency-based scores to each possible nucleotide at each position of
the signal. Unfortunately, using profiles for splice site prediction has had limited
success, probably due to cooperation between multiple binding molecules. At-
tempts to improve the accuracy of gene prediction led to applications of neural
networks and Hidden Markov Models for gene finding.

Large-scale sequencing projects have motivated the need for a new generation
of algorithms for gene recognition. The similarity-based approach to gene predic-
tion is based on the observation that a newly sequenced gene has a good chance

9.2. STATISTICAL APPROACH TO GENE PREDICTION 155

of having an already known relative in the database (Bork and Gibson, 1996 [41]).
The flood of new sequencing data will soon make this chance even greater. As a
result, the trend in gene prediction in the late 1990s shifted from statistics-based
approaches to similarity-based and EST-based algorithms. In particular, Gelfand
et al., 1996 [125] proposed a combinatorial approach to gene prediction, that uses
related proteins to derive the exon-intron structure. Instead of employing statistical
properties of exons, this method attempts to solve a combinatorial puzzle: to find a
set of substrings in a genomic sequence whose concatenation (splicing) fits one of
the known proteins.

After predictions are made, biologists attempt to experimentally verify them.
This verification usually amounts to full-length mRNA sequencing. Since this pro-
cess is rather time-consuming,in silico predictions find their way into databases
and frequently lead to annotation errors. We can only guess the amount of incor-
rectly annotated sequences in GenBank, but it is clear that the number of genes that
have been annotated without full-length mRNA data (and therefore are potentially
erroneous) may be large. The problems of developing an “annotation-ready” gene
prediction algorithm and correcting these errors remain open.

9.2 Statistical Approach to Gene Prediction

The simplest way to detect potential coding regions is to look atOpen Reading
Frames (ORFs). An ORF is a sequence of codons in DNA that starts with a Start
codon, ends with a Stop codon, and has no other Stop codons inside. One expects
to find frequent Stop codons in non-coding DNA simply because 3 of 64 possible
codons are translation terminators. The average distance between Stop codons in
“random” DNA is 64

3 � 21, much smaller than the number of codons in an average
protein (roughly 300). Therefore, long ORFs point out potential genes (Fickett,
1996 [105]), although they fail to detect short genes or genes with short exons.

Many gene prediction algorithms rely on recognizing the diffuse regularities in
protein coding regions, such as bias incodon usage. Codon usage is a 64-mer vec-
tor giving the frequencies of each of 64 possiblecodons(triples of nucleotides) in
a window. Codon usage vectors differ between coding and non-coding windows,
thus enabling one to use this measure for gene prediction (Fickett, 1982 [104],
Staden and McLachlan, 1982 [327]). Gribskov et al., 1984 [138] use a likelihood
ratio approach to compute the conditional probabilities of the DNA sequence in
a window under a coding and under a non-coding random sequence hypothesis.
When the window slides along DNA, genes are often revealed as peaks of the like-
lihood ratio plots. A better coding sensor is thein-frame hexamer count, which is
similar to three fifth-order Markov models (Borodovsky and McIninch, 1993 [42]).
Fickett and Tung, 1992 [106] evaluated many such coding measures and came
to the conclusion that they give a rather low-resolution picture of coding-region
boundaries, with many false positive and false negative assignments. Moreover,

156 CHAPTER 9. GENE PREDICTION

application of these techniques to eukaryotes is complicated by the exon-intron
structure. The average length of exons in vertebrates is 130 bp, and thus exons are
often too short to produce peaks in the sliding window plot.

Codon usage, amino acid usage, periodicities in coding regions and other sta-
tistical parameters (see Gelfand, 1995 [123] for a review) probably have nothing in
common with the way the splicing machinery recognizes exons. Many researchers
have used a more biologically oriented approach and attempted to recognize the
locations of splicing signals at exon-intron junctions (Brunak et al., 1991 [50]).
There exists a (weakly) conserved sequence of eight nucleotides at the boundary
of an exon and an intron (5’ ordonorsplice site) and a sequence of four nucleotides
at the boundary of intron and exon (3’ oracceptorsplice site). Unfortunately, pro-
files for splice site prediction have had limited success, probably due to cooperation
between multiple binding molecules. Profiles are equivalent to a simple type of
neural network called perceptron. More complicated neural networks (Uberbacher
and Mural, 1991 [339]) and Hidden Markov Models (Krogh et al., 1994 [209],
Burge and Karlin, 1997 [54]) capture the statistical dependencies between sites
and improve the quality of predictions.

Many researchers have attempted to combine coding region and splicing sig-
nal predictions into a signal framework. For example, a splice site prediction is
more believable if signs of a coding region appear on one side of the site but not
the other. Because of the limitations of individual statistics, several groups have
developed gene prediction algorithms that combine multiple pieces of evidence
into a single framework (Nakata et al., 1985 [249], Gelfand, 1990 [121], Guigo
et al., 1992 [142], Snyder and Stormo, 1993 [321]). Practically all of the existing
statistics are used in the Hidden Markov Model framework of GENSCAN (Burge
and Karlin, 1997 [54]). This algorithm not only merges splicing site, promoter,
polyadenylation site, and coding region statistics, but also takes into account their
non-homogeneity. This has allowed the authors to exceed the milestone of90%
accuracy for statistical gene predictions. However, the accuracy decreases signifi-
cantly for genes with many short exons or with unusual codon usage.

9.3 Similarity-Based Approach to Gene Prediction

The idea of a similarity-based approach to gene detection was first stated in Gish
and States, 1993 [129]. Although similarity search was in use for genedetection
(i.e., answering the question of whether a gene is present in a given DNA frag-
ment) for a long time, the potential of similarity search for geneprediction (i.e.,
not only for detection but for detailed prediction of the exon-intron structure as
well) remained largely unexplored until the mid-1990s. Snyder and Stormo, 1995
[322] and Searls and Murphy, 1995 [313] made the first attempts to incorporate
similarity analysis into gene prediction algorithms. However, the computational

9.4. SPLICED ALIGNMENT 157

complexity of exploring all exon assemblies on top of sequence alignment algo-
rithms is rather high.

Gelfand et al., 1996 [125] proposed a spliced alignment approach to the exon
assembly problem, that uses related proteins to derive the exon-intron structure.
Figure 9.1a illustrates the spliced alignment problem for the “genomic” sequence

It was brilliant thrilling morning and the slimy hellish lithe doves

gyrated and gambled nimbly in the waves

whose different blocks make up the famous Lewis Carroll line:

0t was brillig; and the slithy toves did gyre and gimble in the wabe

The Gelfand et al., 1996 [125] approach is based on the following idea (illus-
trated by Oksana Khleborodova). Given a genomic sequence (Figure 9.2), they first
find a set ofcandidate blocksthat contains alltrue exons (Figure 9.3). This can
be done by selecting all blocks between potentialacceptoranddonor sites (i.e.,
between AG and GT dinucleotides) with furtherfiltering of this set (in a way that
does not lose the actual exons). The resulting set of blocks can contain many false
exons, of course, and currently it is impossible to distinguish all actual exons from
this set by a statistical procedure. Instead of trying to find the actual exons, Gelfand
et al., 1996 [125] select a relatedtarget protein in GenBank (Figure 9.4) and ex-
plore all possible block assemblies with the goal of finding an assembly with the
highest similarity score to the target protein (Figure 9.5). The number of different
block assemblies is huge (Figures 9.6, 9.7, and 9.8), but thespliced alignmental-
gorithm, which is the key ingredient of the method, scans all of them in polynomial
time (Figure 9.9).

9.4 Spliced Alignment

Let G = g1 : : : gn be a string, and letB = gi : : : gj andB0 = gi0 : : : gj0 be sub-
strings ofG. We writeB � B0 if j < i0, i.e., ifB ends beforeB0 starts. A sequence
� = (B1; : : : ; Bp) of substrings ofG is achain if B1 � B2 � � � � � Bp. We de-
note theconcatenationof strings from the chain� as�� = B1 � B2 � : : : � Bp.
Given two stringsG andT , s(G;T) denotes the score of theoptimal alignment
betweenG andT .

Let G = g1 : : : gn be a string calledgenomic sequence, T = t1 : : : tm be
a string calledtarget sequence, andB = fB1; : : : Bbg be a set of substrings of
G calledblocks. GivenG;T , andB, the spliced alignment problemis to find a
chain� of strings fromB such that the scores(��; T) of the alignment between

158 CHAPTER 9. GENE PREDICTION

’T W AS B R I L L I G, AND T H E S L I T H T OVE S DI D GYRE NDA GI M B L E I N T H E W AB E

T HR I L L I AND H E L H OVE SNG I SL D I N T H E W A EGYRAT E D VM B LNI Y

I NGYRAT E D T H E W A EVM B LNI Y

T HR I L L I AND H E L H OVE SNG I SL D

W AS BT R I L L I G, AND T H E S L T H E OVE SDW AS B R I L L I G, AND T H E S L T H E OVE ST D

W AS BT R I L L I G, AND T H E S L T H OVE SDW AS B R I L L I G, AND T H E S L T H E OVE ST D GYRAT NDAE DGYRAT NDAE D M B L EGA I N T H E W AVEI N T H E W A EVD

GYRAT NDAE DGYRAT NDAE D M B L EGA I N T H E W AVEI N T H E W A EVD

IT WAS BRILLI THRILLING MORNIN G, AND THE S L I MY HELLISH L I T HE DOVES GYRATED AND GAMBLED NIMBLY IN THE WAVESA N T

E

Y

Figure 9.1:Spliced alignment problem: a) block assemblies with the best fit to Lewis Carroll’s

line, b) corresponding alignment network, and c) equivalent transformation of the alignment net-

work.

the concatenation of these strings and the target sequence is maximum among all
chains of blocks fromB.

A naive approach to the spliced alignment problem is to detect all relatively
high similarities between each block and the target sequence and to assemble these
similarities into an optimal subset of compatible similar fragments. The shortcom-
ing of this approach is that the number of blocks is typically very large and the
endpoints of the similarity domains are not well defined.

Gelfand et al., 1996 [125] reduced the exon assembly problem to the search
of a path in a directed graph (Figure 9.1b). Vertices in this graph correspond to
the blocks, edges correspond to potential transitions between blocks, and the path
weight is defined as the weight of the optimal alignment between the concatenated

9.4. SPLICED ALIGNMENT 159

Figure 9.2:Studying genomic sequence.

blocks of this path and the target sequence. Note that the exon assembly problem
is different from the standard minimum path problem (the weights of vertices and
edges in the graph are not even defined).

LetBk = gm : : : gi : : : gl be a substring ofG containing a positioni. Define the
i-prefixof Bk asBk(i) = gm : : : gi. For a blockBk = gm : : : gl, letfirst(k) = m,
last(k) = l, andsize(k) = l �m+ 1. LetB(i) = fk : last(k) < ig be the set
of blocks ending (strictly) before positioni in G. Let � = (B1; : : : ; Bk; : : : ; Bt)
be a chain such that some blockBk contains positioni. Define��(i) as a string

160 CHAPTER 9. GENE PREDICTION

Figure 9.3:Filtering candidate exons.

��(i) = B1 �B2 � : : : � Bk(i). Let

S(i; j; k) = max
all chains� containing blockBk

s(��(i); T (j)):

The following recurrence computesS(i; j; k) for 1 � i � n, 1 � j � m, and
1 � k � b. For the sake of simplicity we consider sequence alignment withlinear
gap penalties and defineÆ(x; y) as a similarity score for every pair of amino acids
x andy andÆindel as a penalty for insertion or deletion of amino acids.

9.4. SPLICED ALIGNMENT 161

Figure 9.4:Finding a target protein.

S(i; j; k) = max

8>>>><
>>>>:

S(i� 1; j � 1; k) + Æ(gi; tj); if i 6= first(k)
S(i� 1; j; k) + Æindel; if i 6= first(k)
maxl2B(first(k)) S(last(l); j � 1; l) + Æ(gi; tj); if i = first(k)
maxl2B(first(k)) S(last(l); j; l) + Æindel; if i = first(k)
S(i; j � 1; k) + Æindel

(9.1)
After computing the 3-dimensional tableS(i; j; k), the score of the optimal

spliced alignment is
max
k

S(last(k);m; k):

162 CHAPTER 9. GENE PREDICTION

Figure 9.5:Using the target protein as a template for exon assembly.

The spliced alignment problem also can be formulated as anetworkalignment
problem (Kruskal and Sankoff, 1983 [211]). In this formulation, each blockBk

corresponds to a path of lengthsize(k) between verticesfirst(k) andlast(k), and
paths corresponding to blocksBk andBt are joined by an edge(last(k); f irst(t))
if Bk � Bt (Figure 9.1b). The network alignment problem is to find a path in the
network with the best alignment to the target sequence.

Gelfand et al., 1996 [125] reduced the number of edges in the spliced alignment
graph by making equivalent transformations of the described network, leading to a
reduction in time and space. Define

P (i; j) = max
l2B(i)

S(last(l); j; l):

9.4. SPLICED ALIGNMENT 163

Figure 9.6:Assembling.

Then (9.1) can be rewritten as

S(i; j; k) = max

8>>>>><
>>>>>:

S(i� 1; j � 1; k) + Æ(gi; tj); if i 6= first(k)
S(i� 1; j; k) + Æindel; if i 6= first(k)
P (first(k); j � 1) + Æ(gi; tj); if i = first(k)
P (first(k); j) + Æindel; if i = first(k)
S(i; j � 1; k) + Æindel

(9.2)

where

P (i; j) = max

(
P (i� 1; j)
maxk: last(k)=i�1 S(i� 1; j; k)

(9.3)

164 CHAPTER 9. GENE PREDICTION

Figure 9.7:And assembling...

The network corresponding to (9.2) and (9.3) has a significantly smaller num-
ber of edges (Figure 9.1c), thus leading to a practical implementation of the spliced
alignment algorithm.

The simplest approach to the construction of blocksB is to generate all frag-
ments between potential splicing sites represented byAG (acceptor site) andGT
(donor site), with the exception of blocks with stop codons in all three frames.
However, this approach creates a problem since it generates many short blocks.
Experiments with the spliced alignment algorithm have revealed that incorrect pre-
dictions for distant targets are frequently associated with themosaic effectcaused
by very short potential exons. The problem is that these short exons can be easily
combined together to fit any target protein. It is easier to “make up” a given sen-

9.4. SPLICED ALIGNMENT 165

Figure 9.8:And assembling..............

tence from a thousand random short strings than from the same number of longer
strings. For example, with high probability, the phrase “filtration of candidate ex-
ons” can be made up from a sample of a thousand random two-letter strings (“fi,”
“lt,” “ra,” etc. are likely to be present in this sample). The probability that the
same phrase can be made up from a sample of the same number of random five-
letter strings is close to zero (even finding a string “filtr” in this sample is unlikely).
This observation explains the mosaic effect: if the number of short blocks is high,
chains of these blocks can replace actual exons in spliced alignments, thus leading
to predictions with an unusually large number of short exons. To avoid the mosaic
effect, the candidate exons are subjected to some (weak) filtering procedure; for
example, only exons with high coding potential may be retained.

166 CHAPTER 9. GENE PREDICTION

Figure 9.9:Selecting the best exon assembly.

After the optimal block assembly is found, the hope is that it represents the cor-
rect exon-intron structure. This is almost guaranteed if a protein sufficiently similar
to the one encoded in the analyzed fragment is available: 99% correlation with the
actual genes can be obtained from targets with distances of up to 100 PAM (40%
similarity). The spliced alignment algorithm provides very accurate predictions if
even a distantly related protein is available: predictions at 160 PAM (25% simi-
larity) are still reliable (95% correlation). If a related mammalian protein for an
analyzed human gene is known, the accuracy of gene predictions in this fragment
is as high as97%�99%, and it is95%; 93%, and91% for related plant, fungal, and
prokaryotic proteins, respectively (Mironov et al., 1998 [242]). Further progress
in gene prediction has been achieved by using EST data for similarity-based gene

9.5. REVERSE GENE FINDING AND LOCATING EXONS IN CDNA 167

GENETIC

MAPPING

GENE TO

AREA X

ISOLATE AND

ORDER

GENOMIC CLONES

FROM AREA X

SELECT GENOMIC

CLONES FOR

SEQUENCING

USE GENOMIC

SEQUENCES FOR

EXON PREDICTION;

VERIFICATION

GENOMIC SEQUENCING

cDNA BASED GENE

ISOLATE AND SEQUENCE cDNA ANALYSIS

MUTATION

OF EXONS

Use ExonPCR to

and adjacent

intronic regions

USE GENOMIC AND

cDNA SEQUENCES

TO FIND EXONS

AND ADJACENT

INTRONIC

REGIONS

OF DISEASE

USE cDNA TO

find exons

Figure 9.10:Positional cloning and ExonPCR.

prediction. In particular, using EST assemblies, Mironov et al., 1999 [240] found
a large number of alternatively spliced genes.

9.5 Reverse Gene Finding and Locating Exons in cDNA

Gene finding often follows thepositional cloningparadigm:

genomic DNA sequencing! exon structure! mRNA! protein

In positional cloning projects, genomic sequences are the primary sources of in-
formation for gene prediction, mutation detection, and further search for disease-
causing genes. The shift from positional cloning to thecandidate gene library
paradigm is reversing the traditional gene-finding pathway into the following:

protein/mRNA! exon structure! limited genomic DNA sequencing

Consequently, modern gene discovery efforts are shifting from single-gene po-
sitional cloning to analysis of polygenic diseases with candidate gene libraries of
hundred(s) of genes. The genes forming a candidate gene library may come from
different sources, e.g., expression analysis, antibody screening, proteomics, etc. Of
course, hundred(s) of positional cloning efforts are too costly to be practical.

A positional cloning approach to finding a gene responsible for a disease starts
with genetic mapping and proceeds to the detection of disease-related mutations.
A multitude of steps are required that include genomic cloning of large DNA frag-
ments, screening cDNA libraries, cDNA isolation, subcloning of the large genomic
clones for sequencing, etc. (Figure 9.10). In many gene-hunting efforts, the ma-
jor motivation for the genomic subcloning and sequencing steps is to determine

168 CHAPTER 9. GENE PREDICTION

the gene’s exon-intron boundaries. This step is often critical to searches for mu-
tations (or polymorphisms) associated with a disease gene. It requires the design
of intronic PCR primers flanking each exon. Traditionally, the exon boundaries
are obtained by comparing the cDNA and genomic sequences. The whole process
can be time-consuming and may involve multiple subcloning steps and extensive
sequencing.

ExonPCR (Xu et al., 1998 [372]) is an alternative experimental protocol that
explores the “reverse” gene-finding pathway and provides a fast transition from
finding cDNA to mutation detection (Figure 9.10). ExonPCR finds the “hidden”
exon boundaries in cDNA (rather than in genomic DNA) and does not require se-
quencing of genomic clones. In the first step, ExonPCR locates the approximate
positions of exon boundaries in cDNA by PCR on genomic DNA using primers de-
signed from the cDNA sequence. The second step is to carry out ligation-mediated
PCR to find the flanking intronic regions. As a consequence, the DNA sequencing
effort can be vastly reduced.

The computational approaches to finding exon boundaries in cDNA (Gelfand,
1992 [122], Solovyev et al., 1994 [323]) exploredsplicing shadows(i.e., parts of
the splicing signals present in exons). However, since the splicing shadow signals
are very weak, the corresponding predictions are unreliable. ExonPCR is an ex-
perimental approach to finding exon boundaries in cDNA that uses PCR primers
in a series of adaptive rounds. Primers are designed from the cDNA sequence and
used to amplify genomic DNA. Each pair of primers serves as a query asking the
question whether, in the genomic DNA, there exists an intron or introns between
the primer sequences. The answer to this query is provided by comparison of the
length of PCR products in the cDNA and genomic DNA. If these lengths coincide,
the primers belong to the same exon; otherwise, there exists an exon boundary
between the corresponding primers. Each pair of primers gives a yes/no answer
without revealing the exact positions of exon boundaries. The goal is to find the
positions of exon boundaries and to minimize both the number of primers and the
number of rounds. Different types of strategies may be used, and the problem is
similar to the “Twenty Questions” game with genes. The difference with a par-
lor game is that genes have a “no answer” option and sometimes may give a false
answer and restrict the types of possible queries. This is similar to the “Twenty
Questions Game with a Liar” (Lawler and Sarkissian, 1995 [216]) but involves
many additional constraints including lower and upper bounds on the length of
queries (distance between PCR primers).

ExonPCR attempts to devise a strategy that minimizes the total number of PCR
primers (to reduce cost) and at the same time minimizes the number of required
rounds of PCR experiments (to reduce time). However, these goals conflict with
each other. A minimum number of primer pairs is achieved in a sequential “di-
chotomy” protocol where only one primer pair is designed in every round based
on the results of earlier rounds of experiments. This strategy is unrealistic since

9.6. THE TWENTY QUESTIONS GAME WITH GENES 169

it leads to an excessive number of rounds. An alternative, “single-round” protocol
designs all possible primer pairs in a single round, thus leading to an excessively
large number of primers. Since these criteria are conflicting, ExonPCR searches
for a trade-off between the dichotomy strategy and the single-round strategy.

9.6 The Twenty Questions Game with Genes

In its simplest form, the problem can be formulated as follows: given an (unknown)
setI of integers in the interval[1; n], reconstruct the setI by asking the minimum
number of queries of the form “does a given interval contain an integer fromI?”
In this formulation, interval[1; n] corresponds to cDNA,I corresponds to exon
boundaries in cDNA, and the queries correspond to PCR reactions defined by a pair
of primers. A non-adaptive (and trivial) approach to this problem is to generate
n single-position queries: does an interval[i; i] contain an integer fromI? In
an adaptive approach, queries are generated in rounds based on results from all
previous queries (only one query is generated in every round).

For the sake of simplicity, consider the case when the number of exon bound-
ariesk is known. Fork = 1, the optimal algorithm for this problem requires at
leastlgn queries and is similar to Binary Search (Cormen et al., 1989 [75]). For
k > 1, it is easy to derive the lower bound on the number of queries used by any
algorithm for this problem, which utilizes the decision tree model. The decision
tree model assumes sequential computations using one query at a time. Assume
that every vertex in the decision tree is associated with allk-point sets (k-sets) that
are consistent with all the queries on the path to this vertex. Since every leaf in the
decision tree contains only onek-set, the number of leaves is

�n
k

�
. Since every tree

of heighth has at most2h leaves, the lower bound on the height of the (binary)
decision tree ish � lg

�n
k

�
. In the biologically relevant casek << n, the minimum

number of queries is approximatelyk lgn� k lg k. If a biologist tolerates an error
� in the positions of exon boundaries, the lower bound on the number of queries
is approximatelyk lg n

� � k lg k. The computational and experimental tests of Ex-
onPCR have demonstrated that it comes close to the theoretical lower bound and
that about 30 primers and 3 rounds are required for finding exon boundaries in a
typical cDNA sequence.

9.7 Alternative Splicing and Cancer

Recent studies provide evidence that oncogenic potential in human cancer may be
modulated by alternative splicing. For example, the progression of prostate cancer
from an androgen-sensitive to an androgen-insensitive tumor is accompanied by a
change in the alternative splicing of fibroblast growth factor receptor 2 (Carstens
et al., 1997 [59]). In another study, Heuze et al., 1999 [160] characterized a promi-
nent alternatively spliced variant for Prostate Specific Antigene, the most important

170 CHAPTER 9. GENE PREDICTION

marker available today for diagnosing and monitoring patients with prostate cancer.
The questions of what other important alternatively spliced variants of these and
other genes are implicated in cancer remains open. Moreover, the known alterna-
tive variants of genes implicated in cancer were found by chance in a case-by-case
fashion.

Given a gene, how can someone findall alternatively spliced variants of this
gene? The problem is far from simple since alternative splicing is very frequent in
human genes (Mironov et al., 1999 [240]), and computational methods for alterna-
tive splicing prediction are not very reliable.

The first systematic attempt to elucidate the splicing variants of genes impli-
cated in (ovarian) cancer was undertaken by Hu et al., 1998 [167]. They proposed
long RT-PCR to amplify full-length mRNA and found a new splicing variant for the
human multidrug resistance gene MDR1 and the major vault protein (MVP). This
method is well suited to detecting a few prominent variants using fixed primers
but will have difficulty detecting rare variants (since prominent variants are not
suppressed). It also may fail to identify prominent splicing variants that do not
amplify with the selected primer pair.

The computational challenges of finding all alternatively spliced variants (an
Alternative Splicing Encyclopediaor ASE) can be explained with the following
example. If a gene with three exons has an alternative variant that misses an in-
termediate exon, then some PCR products in the cDNA library will differ by the
length of this intermediate exon. For example, a pair of primers, one from the mid-
dle of the first exon and another from the middle of the last exon, will give two
PCR products that differ by the length of the intermediate exon. This will lead to
detection of both alternatively spliced variants.

Of course, this is a simplified and naive description that is used for illustration
purposes only. The complexity of the problem can be understood if one considers
a gene with 10 exons with one alternative sliding splicing site per exon. In this
case, the number of potential splicing variants is at least210, and it is not clear
how to find the variants that are present in the cell. The real problem is even more
complicated, since some of these splicing variants may be rare and hard to detect
by PCR amplification.

Figure 9.11 illustrates the problem of building an ASE for the “genomic” se-
quence

0twas brilliant thrilling morning and the slimy hellish lithe doves

gyrated and gambled nimbly in the waves

whose alternatively spliced variants “make up” different mRNAs that are similar
to the Lewis Carroll’s famous “mRNA”:

0t was brillig; and the slithy toves did gyre and gimble in the wabe

9.8. SOME OTHER PROBLEMS AND APPROACHES 171

The “exon assembly” graph (Figure 9.11) has an exponential number of paths,
each path representing a potential splicing variant. The problem is to figure out
which paths correspond to real splicing variants. For example, one can check
whether there exists a splicing variant that combines the potential exons X and
Y represented byT WAS BRILLI and G; AND THE SL with aspan-
ning primerXY that spans both X and Y (for example,BRILLIG; AND T). In
practice, an XY-primer is constructed by concatenation of the last 10 nucleotides
of exon X with first 10 nucleotides of exon Y. Pairing XY with another primer
(e.g., one taken from the end of exon Y) will confirm or reject the hypothesis about
the existence of a splicing variant that combines exons X and Y. Spanning primers
allow one to trim the edges in the exon assembly graph that are not supported by
experimental evidence. Even after some edges of the graph are trimmed, this ap-
proach faces the difficult problem of deciding which triples, quadruples, etc. of
exons may appear among alternatively spliced genes. Figure 9.11 presents a rel-
atively simple example of an already trimmed exon assembly graph with just five
potential exons and five possible paths: ABCDE, ACDE, ABDE, ABCE, and ACE.
The only spanning primers for the variant ACE are AC and CE. However, these
spanning primers (in pairs with some other primers) do not allow one to confirm
or rule out the existence of the ACE splicing variant. The reason is that the pres-
ence of a PCR product amplified by a primer pair involving, let’s say, AC, does not
guarantee the presence of the ACE variant, since this product may come from the
ACBD alternative variant. Similarly, the CE primer may amplify an ABCE splicing
variant. If we are lucky, we can observe a relatively short ACE PCR product, but
this won’t happen if ACE is a relatively rare variant. The solution would be given
by forming a pair of spanning primers involvingbothAC and CE. This primer pair
amplifies ACE but does not amplify any other splicing variants in Figure 9.11.

The pairs of primers that amplify variant X but do not amplify variant Y are
called X+Y- pairs. One can use X+Y- pairs to detect some rare splicing variant
X in the background of a prominent splicing variant Y. However, the problem of
designing a reliable experimental and computational protocol for finding all alter-
native variants remains unsolved.

9.8 Some Other Problems and Approaches

9.8.1 Hidden Markov Models for gene prediction
The process of breaking down a DNA sequence into genes can be compared to the
process of parsing a sentence into grammatical parts. This naive parsing metaphor
was pushed deeper by Searls and Dong, 1993 [312], who advocated a linguistic ap-
proach to gene finding. This concept was further developed in the Hidden Markov
Models approach for gene prediction (Krogh et al., 1994 [209]) and culminated in

172 CHAPTER 9. GENE PREDICTION

’T W AS B R I L L I G, AND T H E S L I T H T OVE S DI D GYRE NDA GI M B L E I N T H E W AB E

T HR I L L I AND H E L H OVE SNG I SL D I N T H E W A EGYRAT E D VM B LNI Y

I NGYRAT E D T H E W A EVM B LNI Y

T HR I L L I AND H E L H OVE SNG I SL D

W AS BT R I L L I G, AND T H E S L T H E OVE SDW AS B R I L L I G, AND T H E S L T H E OVE ST D

W AS BT R I L L I G, AND T H E S L T H E OVE SDW AS B R I L L I G, AND T H E S L T H E OVE ST D GYRAT NDAE DGYRAT NDAE D M B L EGA I N T H E W AVEI N T H E W A EVD

GYRAT NDAE DGYRAT NDAE D M B L EGA I N T H E W AVEI N T H E W A EVD

IT WAS BRILLI THRILLING MORNIN G, AND THE S L I MY HELLISH L I T HE DOVES GYRATED AND GAMBLED NIMBLY IN THE WAVESA N T

A B

C

D

E

X Y

Y

Figure 9.11:Constructing an Alternative Splicing Encyclopedia (ASE) from potential exons. Four

different splicing variants (above) correspond to four paths (shown by bold edges) in the exon as-

sembly graph. The overall number of paths in this graph is large, and the problem is how to identify

paths that correspond to real splicing variants. The graph at the bottom represents the trimmed exon

assembly graph with just five potential splicing variants (paths).

the program GENSCAN (Burge and Karlin, 1997 [54]). HMMs for gene finding
consist of many blocks, with each block recognizing a certain statistical feature.
For example, profile HMMs can be used to model acceptor and donor sites. Codon
statistics can be captured by a different HMM that uses Start codons asstart state,
codons as intermediate states, and Stop codon asend state. These HMMs can be
combined together as in the Burge and Karlin, 1997 [54] GENSCAN algorithm.
In a related approach, Iseli et al., 1999 [176] developed the ESTScan algorithm for
gene prediction in ESTs.

9.8. SOME OTHER PROBLEMS AND APPROACHES 173

9.8.2 Bacterial gene prediction
Borodovsky et al., 1986 [43] were the first to apply Markov chains for bacterial
gene prediction. Multiple bacterial sequencing projects created the new compu-
tational challenge ofin silico gene prediction in the absence of any experimen-
tal analysis. The problem is that in the absence of experimentally verified genes,
there are no positive or negative test samples from which to learn the statistical
parameters for coding and non-coding regions. Frishman et al., 1998 [113] pro-
posed the “similarity-first” approach, which first finds fragments in bacterial DNA
that are closely related to fragments from a database and uses them as the initial
training set for the algorithm. After the statistical parameters for genes that have
related sequences are found, they are used for prediction of other genes in an iter-
ative fashion. Currently, GenMark (Hayes and Borodovsky, 1998 [157]), Glimmer
(Salzberg et al., 1998 [295]), and Orpheus (Frishman et al., 1998 [113]) combine
the similarity-based and statistics-based approaches.

Chapter 10

GenomeRearrangements

10.1 Introduction

Genome Comparison versus Gene ComparisonIn the late 1980s, Jeffrey Palmer
and his colleagues discovered a remarkable and novel pattern of evolutionary
change in plant organelles. They compared the mitochondrial genomes ofBrassica
oleracea(cabbage) andBrassica campestris(turnip), which are very closely re-
lated (many genes are 99% identical). To their surprise, these molecules, which are
almost identical in genesequences, differ dramatically in geneorder (Figure 10.1).
This discovery and many other studies in the last decade convincingly proved that
genome rearrangements represent a common mode of molecular evolution.

Every study of genome rearrangements involves solving a combinatorial “puz-
zle” to find a series ofrearrangementsthat transform one genome into another.
Three such rearrangements “transforming” cabbage into turnip are shown in Fig-
ure 10.1. Figure 1.5 presents a more complicatedrearrangement scenarioin which
mouse X chromosome is transformed into human X chromosome. Extreme conser-
vation of genes on X chromosomes across mammalian species (Ohno, 1967 [255])
provides an opportunity to study the evolutionary history of X chromosome inde-
pendently of the rest of the genomes. According to Ohno’s law, the gene content
of X chromosomes has barely changed throughout mammalian development in the
last125 million years. However, the order of genes on X chromosomes has been
disrupted several times.

It is not so easy to verify that the six evolutionary events in Figure 1.5 represent
a shortestseries ofreversalstransforming the mouse gene order into the human
gene order on the X chromosome. Finding a shortest series of reversals between
the gene order of the mitochondrial DNAs of wormAscaris suumand humans
presents an even more difficult computational challenge (Figure 10.2).

In cases of genomes consisting of a small number of “conserved blocks,”
Palmer and his co-workers were able to find the most parsimonious rearrangement

175

176 CHAPTER 10. GENOME REARRANGEMENTS

(turnip)

(cabbage)

1 2 3 4 5

-2-3-4-51

1 -5 4 -3 -2

2-34-51

B. campestris

B. oleracea

Figure 10.1:“Transformation” of cabbage into turnip.

scenarios. However, for genomes consisting of more than 10 blocks, exhaustive
search over all potential solutions is far beyond the capabilities of “pen-and-pencil”
methods. As a result, Palmer and Herbon, 1988 [259] and Makaroff and Palmer,
1988 [229] overlooked the most parsimonious rearrangement scenarios in more
complicated cases such as turnip versus black mustard or turnip versus radish.

The traditional molecular evolutionary technique is agenecomparison, in
which phylogenetic trees are being reconstructed based on point mutations of a
single gene (or a small number of genes). In the “cabbage and turnip” case, the
gene comparison approach is hardly suitable, since the rate of point mutations in
cabbage and turnip mitochondrial genes is so low that their genes are almost identi-
cal. Genome comparison(i.e., comparison of gene orders) is the method of choice
in the case of very slowly evolving genomes. Another example of an evolutionary
problem for which genome comparison may be more conclusive than gene com-
parison is the evolution of rapidly evolving viruses.

Studies of the molecular evolution of herpes viruses have raised many more
questions than they’ve answered. Genomes of herpes viruses evolve so rapidly that
the extremes of present-day phenotypes may appear quite unrelated; the similarity
between many genes in herpes viruses is so low that it is frequently indistinguish-
able from background noise. Therefore, classical methods of sequence comparison
are not very useful for such highly diverged genomes; ventures into the quagmire
of the molecular phylogeny of herpes viruses may lead to contradictions, since dif-
ferent genes give rise to different evolutionary trees. Herpes viruses have from 70
to about 200 genes; they all share seven conserved blocks that are rearranged in
the genomes of different herpes viruses. Figure 10.3 presents different arrange-
ments of these blocks in Cytomegalovirus (CMV) and Epstein-Barr virus (EBV)
and a shortest series of reversals transforming CMV gene order into EBV gene

10.1. INTRODUCTION 177

12 31 34 28 26 17 29 4 9 36 18 35 19 1 16 14 32 33 22 15 11 27 5 2013 30 23 10 6 3 24 21 8 25 2 7

20 5 27 11 15 22 33 32 14 16 119 35 18 36 9 4 29 17 26 28 34 31 12 13 30 23 10 6 3 24 21 8 25 2 7

1 16 14 32 33 22 1511 27 5 20 19 35 18 36 9 4 29 17 26 28 34 31 12 13 30 23 10 6 3 24 21 8 25 2 7

1 16 15 22 33 32 14 11 27 5 20 19 35 18 369 4 29 17 26 28 34 31 12 13 30 23 10 6 3 24 21 8 25 2 7

1 16 15 36 18 35 19 20 5 27 11 1432 33 22 9 4 29 17 26 28 34 31 12 13 30 23 10 6 3 24 21 8 25 2 7

1 16 15 1411 27 5 20 19 35 18 36 32 33 22 9 4 29 17 26 28 34 3112 13 30 23 10 6 3 24 21 8 25 2 7

1 16 15 14 31 34 28 2617 29 4 9 22 33 32 36 18 35 19 20 5 27 11 12 13 30 23 10 6 3 24 21 8 25 2 7

1 26 28 34 31 14 15 16 17 29 4 9 22 33 32 36 1835 19 20 5 27 11 12 13 30 23 10 6 3 24 21 8 25 2 7

1 26 28 18 36 32 33 22 9 4 2917 16 15 14 31 34 35 19 20 5 27 11 12 13 30 23 10 6 3 24 21 8 25 2 7

1 26 28 294 9 22 33 32 36 18 17 16 15 14 31 34 35 19 20 5 27 11 12 13 3023 10 6 3 24 21 8 25 2 7

1 26 28 29 30 13 12 1127 5 20 19 35 34 31 14 15 16 17 18 36 32 33 22 9 4 23 10 6 3 24 21 8 25 2 7

1 26 11 12 13 30 29 28 275 20 19 35 34 31 14 15 16 17 18 36 32 33 22 9 4 23 10 6 3 24 21 8 25 2 7

1 26 27 28 2930 13 12 11 5 20 19 35 34 3114 15 16 17 18 36 32 33 22 9 4 23 10 6 3 24 21 8 25 2 7

1 26 27 28 29 30 31 34 35 19 205 11 12 13 14 15 16 17 18 36 32 33 22 94 23 10 6 3 24 21 8 25 2 7

1 26 27 28 29 30 3134 35 19 20 9 2233 32 36 18 17 16 15 14 13 12 11 5 4 23 10 6 3 24 21 8 25 2 7

1 26 27 28 29 30 3122 9 20 19 35 34 3332 36 18 17 16 15 14 13 12 11 5 4 23 10 6 3 24 21 8 25 2 7

1 26 27 28 29 30 31 32 33 34 3519 20 9 22 3618 17 16 15 14 13 12 11 5 4 23 10 6 3 24 21 8 25 2 7

1 26 27 28 29 30 31 32 33 34 35 36 22 920 19 18 17 16 15 14 13 12 11 5 4 23 10 6 3 2421 8 25 2 7

1 26 27 28 29 30 31 32 33 34 35 36 22 924 3 6 10 23 4 5 11 12 13 14 15 16 17 18 19 20 21 825 2 7

1 26 27 28 29 30 31 32 33 34 35 3622 9 8 21 20 19 18 17 16 15 14 13 12 11 5 4 23 10 6 3 24 25 2 7

1 26 27 28 29 30 31 32 33 34 35 36 8 9 22 21 20 19 18 17 16 15 14 13 12 11 5 423 10 6 324 25 2 7

1 26 27 28 29 30 31 32 33 34 35 36 8 9 22 21 20 19 18 17 16 15 14 13 12 11 5 4 36 10 23 24 25 27

1 26 27 28 29 30 31 32 33 34 35 36 8 9 22 21 20 19 18 17 16 15 14 13 12 11 5 4 3 225 24 23 10 6 7

1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 21 22 9 836 35 34 33 32 31 30 29 28 27 26 25 24 23 10 6 7

1 2 3 4 511 12 13 14 15 16 17 18 19 20 21 229 8 7 6 10 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 2 3 4 5 6 7 8 922 21 20 19 18 17 16 15 14 13 12 11 1023 24 25 26 27 28 29 30 31 32 33 34 35 36
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Figure 10.2:A most parsimonious rearrangement scenario for transformation of wormAscaris

Suummitochondrial DNA into human mitochondrial DNA (26 reversals).

order (Hannenhalli et al., 1995 [152]). The number of such large-scale rearrange-
ments (five reversals) is much smaller than the number of point mutations between
CMV and EBV (hundred(s) of thousands). Therefore, the analysis of such rear-
rangements at thegenomelevel may complement the analysis at thegenelevel
traditionally used in molecular evolution. Genome comparison has certain mer-
its and demerits as compared to classical gene comparison: genome comparison
ignores actual DNA sequences of genes, while gene comparison ignores gene or-
der. The ultimate goal would be to combine the merits of both genome and gene
comparison in a single algorithm.

178 CHAPTER 10. GENOME REARRANGEMENTS

1

2

3

5

4

6

7

1 2 3 4 76 5

1 2 3 5 4 6 7

1 2 3 7 4 5 6

1 2 3 7 4 5 6

1 2 3 7 4 5 6

1 2 3 6 75 4

(b)

BKRF3(U-DNA glycosylase)

BDRF1(terminase)

BDLF1(glycoprotein)

BcLF1(capsid protein)

BXRF1(?)

BVRF2(capsid protein)

BALF4(glycoprotein)

BALF2(major DBP)

BFLF1(envelope glycoprotein)

BORF1(RDPR1)

(U-DNA glycosylase) UL114

(terminase) UL89_2

(capsid protein) UL86

(glycoprotein) UL85

(capsid protein) UL80

(?) UL76

(major DBP) UL57

(glycoprotein) UL55

(envelope glycoprotein) UL52

(RDPR1) UL45

1

2

3

7

4

5

6

Cytomegalovirus (CMV) Epstein-Barr Virus (EBV)

BSLF1(primase)

BLLF3(?)

(?) UL72

(primase) UL70

(DNA polymerase) UL54

BALF5(DNA polymerase)

(a)

Figure 10.3:Comparative genome organization (a) and the shortest series of rearrangements trans-

forming CMV gene order into EBV gene order (b).

The analysis of genome rearrangements in molecular biology was pioneered in
the late 1930s by Dobzhansky and Sturtevant, who published a milestone paper pre-
senting a rearrangement scenario with 17 inversions for the species ofDrosophila
fruit fly (Dobzhansky and Sturtevant, 1938 [87]). With the advent of large-scale
mapping and sequencing, the number ofgenome comparisonproblems is rapidly
growing in different areas, including viral, bacterial, yeast, plant, and animal evo-
lution.

Sorting by Reversals A computational approach based on comparison of gene
orders was pioneered by David Sankoff (Sankoff et al., 1990, 1992 [302, 304] and
Sankoff, 1992 [300]). Genome rearrangements can be modeled by a combinatorial
problem of sorting by reversals, as described below. The order of genes in two

10.1. INTRODUCTION 179

organisms is represented by permutations� =�1�2 : : : �n and� = �1�2 : : : �n. A
reversal�(i; j) of an interval[i; j] is the permutation

1 2 : : : i� 1 i i+ 1 : : : j� 1 j j + 1 : : : n
1 2 : : : i� 1 j j� 1 : : : i+ 1 i j + 1 : : : n

!

Clearly�(i; j) has the effect of reversing the order of�i�i+1 : : : �j and transform-
ing�1 : : : �i�1�i : : : �j�j+1 : : : �n into���(i; j) = �1 : : : �i�1�j : : : �i�j+1 : : : �n.

Given permutations� and�, thereversal distance problemis to find a series of
reversals�1; �2; : : : ; �t such that� ��1 ��2 � � � �t = � andt is minimal. We callt the
reversal distancebetween� and�. Sorting� by reversalsis the problem of finding
the reversal distanced(�) between� and the identity permutation(12 : : : n).

Computer scientists have studied a relatedsorting by prefix reversalsproblem
(also known as thepancake flipping problem): given an arbitrary permutation�,
finddpref (�), which is the minimum number of reversals of the form�(1; i) sorting
�. The pancake flipping problem was inspired by the following “real-life” situation
described by Harry Dweigter:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different
sizes. Therefore, when I deliver them to a customer, on the way to a table I rearrange them (so that
the smallest winds up on top, and so on, down to the largest at the bottom) by grabbing several from
the top and flipping them over, repeating this (varying the number I flip) as many times as necessary.
If there aren pancakes, what is the maximum number of flips that I will ever have to use to rearrange
them?

Bill Gates (an undergraduate student at Harvard in late 1970s, now at Mi-
crosoft) and Cristos Papadimitriou made the first attempt to solve this problem
(Gates and Papadimitriou, 1979 [120]). They proved that theprefix reversal diam-
eterof the symmetric group,dpref (n) = max�2Sn dpref(�), is less than or equal
to 5

3n + 5
3 , and that for infinitely manyn, dpref(n) � 17

16n. The pancake flipping
problem still remains unsolved.

The Breakpoint Graph What makes it hard to sort a permutation? In the very first
computational studies of genome rearrangements, Watterson et al., 1982 [366] and
Nadeau and Taylor, 1984 [248] introduced the notion of abreakpointand noticed
some correlations between the reversal distance and the number of breakpoints. (In
fact, Sturtevant and Dobzhansky, 1936 [331] implicitly discussed these correlations
60 years ago!) Below we define the notion of a breakpoint.

Let i � j if ji � jj = 1. Extend a permutation� = �1�2 : : : �n by adding
�0 = 0 and�n+1 = n + 1. We call a pair of elements (�i, �i+1), 0 � i � n,
of � anadjacencyif �i � �i+1, and abreakpointif �i 6� �i+1 (Figure 10.4). As
the identity permutation has no breakpoints, sorting by reversals corresponds to

180 CHAPTER 10. GENOME REARRANGEMENTS

eliminating breakpoints. An observation that every reversal can eliminateat most
2 breakpoints immediately implies thatd(�) � b(�)

2 , whereb(�) is the number of
breakpoints in�. Based on the notion of a breakpoint, Kececioglu and Sankoff,
1995 [194] found an approximation algorithm for sorting by reversals with per-
formance guarantee2. They also devised efficient bounds, solving the reversal
distance problem almost optimally forn ranging from30 to 50. This range covers
the biologically important case of animal mitochondrial genomes.

However, the estimate of reversal distance in terms of breakpoints is very in-
accurate. Bafna and Pevzner, 1996 [19] showed that another parameter (size of a
maximum cycle decomposition of the breakpoint graph) estimates reversal distance
with much greater accuracy.

Thebreakpoint graphof a permutation� is an edge-colored graphG(�) with
n+ 2 verticesf�0; �1; : : : ; �n; �n+1g � f0; 1; : : : ; n; n+ 1g. We join vertices�i
and�i+1 by a black edge for0 � i � n. We join vertices�i and�j by a gray
edge if�i � �j. Figure 10.4 demonstrates that a breakpoint graph is obtained by a
superposition of a black path traversing the vertices0; 1; : : : ; n; n+ 1 in the order
given by permutation� and a gray path traversing the vertices in the order given
by the identity permutation.

A cyclein an edge-colored graphG is calledalternating if the colors of every
two consecutive edges of this cycle are distinct. In the following, by cycles we
mean alternating cycles. A vertexv in a graphG is calledbalancedif the number of
black edges incident tov equals the number of gray edges incident tov. A balanced
graph is a graph in which every vertex is balanced. ClearlyG(�) is a balanced
graph: therefore, it contains an alternating Eulerian cycle. Therefore, there exists
acycle decompositionof G(�) into edge-disjoint alternating cycles (every edge in
the graph belongs to exactly one cycle in the decomposition). Cycles in an edge
decomposition may be self-intersecting. The breakpoint graph in Figure 10.4 can
be decomposed into four cycles, one of which is self-intersecting. We are interested
in the decomposition of the breakpoint graph into amaximumnumberc(�) of edge-
disjoint alternating cycles. For the permutation in Figure 10.4,c(�) = 4.

Cycle decompositions play an important role in estimating reversal distance.
When we apply a reversal to a permutation, the number of cycles in a maxi-
mum decomposition can change by at most one (while the number of breakpoints
can change by two). Bafna and Pevzner, 1996 [19] proved the boundd(�) �
n + 1 � c(�), which is much tighter than the bound in terms of breakpoints
d(�) � b(�)=2. For most biological examples,d(�) = n + 1 � c(�), thus re-
ducing the reversal distance problem to the maximal cycle decomposition problem.

Duality Theorem for Signed Permutations Finding a maximal cycle decompo-
sition is a difficult problem. Fortunately, in the more biologically relevant case of
signed permutations,this problem is trivial. Genes aredirectedfragments of DNA,

10.1. INTRODUCTION 181

2 3 1 4 6 5 7

2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

0 2 3 1 4 6 5 7

permutation:

black path

THE BREAKPOINT GRAPH

Superposition of black and gray paths forms

gray path

0

adjacencies

breakpoints

of the breakpoint graph

CYCLE DECOMPOSITION

extend the
permutation by
0 in the beginning

 into four cycles

and n+1 in the end

Figure 10.4:Breakpoints, breakpoint graph, and maximum cycle decomposition.

182 CHAPTER 10. GENOME REARRANGEMENTS

and a sequence ofn genes in a genome is represented by asignedpermutation on
f1; : : : ng with a + or � sign associated with every element of�. For example,
the gene order forB. oleraceapresented in Figure 10.1 is modeled by the signed
permutation(+1� 5 + 4 � 3 + 2). In the signed case, every reversal of fragment
[i; j] changes both the order and the signs of the elements within that fragment
(Figure 10.1). We are interested in the minimum number of reversalsd(�) re-
quired to transform a signed permutation� into the identity signed permutation
(+1 + 2 : : : + n).

Bafna and Pevzner, 1996 [19] noted that the concept of a breakpoint graph
extends naturally to signed permutations by mimicking every directed elementi by
two undirected elementsia andib, which substitute for the tail and the head of the
directed elementi (Figure 10.5).

For signed permutations, the boundd(�) � n + 1 � c(�) approximates the
reversal distance extremely well for both simulated and biological data. This in-
triguing performance raises the question of whether the boundd(�) � n+1�c(�)
overlooks another parameter (in addition to the size of a maximum cycle decompo-
sition) that would allow closing the gap betweend(�) andn+1�c(�). Hannenhalli
and Pevzner, 1995 [154] revealed another “hidden” parameter (number ofhurdles
in �) making it harder to sort a signed permutation and showed that

n+ 1� c(�) + h(�) � d(�) � n+ 2� c(�) + h(�) (10.1)

whereh(�) is the number of hurdles in�. They also proved the duality theorem for
signed permutations and developed a polynomial algorithm for computingd(�).

Unsigned Permutations and Comparative Physical Mapping Since sorting
(unsigned) permutations by reversals is NP-hard (Caprara, 1997 [57]), many re-
searchers have tried to devise a practical approximation algorithm for sorting (un-
signed permutations) by reversals.

A blockof � is an interval�i : : : �j containing no breakpoints, i.e.,(�k; �k+1)
is an adjacency for0 � i � k < j � n+1. Define astrip of � as a maximal block,
i.e., a block�i : : : �j such that(�i�1; �i) and(�j ; �j+1) are breakpoints. A strip of
one element is called asingleton, a strip of two elements is called a2-strip, and a
strip with more than two elements is called along strip. It turns out that singletons
cause a major challenge in sorting unsigned permutations by reversals.

A reversal�(i; j) cuts a strip�k : : : �l if either k < i � l or k � j < l.
A reversal cutting a strip separates elements that are consecutive in the identity
permutation. Therefore, it is natural to expect that for every permutation� there
exists an (optimal) sorting of� by reversals that does not cut strips. This, how-
ever, is false. Permutation3412 requires three reversals if we do not cut strips, and
yet it can be sorted with two:3412 ! 1432 ! 1234. Kececioglu and Sankoff,
1993 [192] conjectured that every permutation has an optimal sorting by rever-
sals that does not cut long strips and does not increase the number of breakpoints.

10.1. INTRODUCTION 183

3 1 5 2 6 4

+3 -1 +5 +2 -6 +4

0 3a 3b 71b 1a 5a 5b 2a 2b 6b 6a 4a 4b

0 3a 3b
1b

5a 5b 2a 2b
6b 6a

4a 4b 7
1a

CYCLE DECOMPOSITION IS UNIQUE!
(every vertex has degree 2)

 Breakpoint graph of signed permutations

SIGNED PERMUTATION

BREAKPOINT GRAPH(UNSIGNED PERMUTATION)

BREAKPOINT GRAPH(SIGNED PERMUTATION)

Figure 10.5:Modeling a signed permutation by an unsigned permutation.

Since the identity permutation has no breakpoints, sorting by reversals corresponds
to eliminating breakpoints. From this perspective, it is natural to expect that for ev-
ery permutation there exists an optimal sorting by reversals that never increases
the number of breakpoints. Hannenhalli and Pevzner, 1996 [155] proved both the
“reversals do not cut long strips” and the “reversals do not increase the number of
breakpoints” conjectures by using the duality theorem for signed permutations.

Biologists derive gene orders either by sequencing entire genomes or by us-
ing comparative physical mapping. Sequencing provides information about the
directions of genes and allows one to represent a genome by a signed permutation.
However, sequencing of entire genomes is still expensive, and most currently avail-

184 CHAPTER 10. GENOME REARRANGEMENTS

21 3 4 5

1 4 2-5 -3

(cabbage)

(turnip)

Comparative physical maps of cabbage and turnip

B. campestris

B. oleracea

Figure 10.6:Comparative physical map of cabbage and turnip (unsigned permutation) and corre-

sponding signed permutation.

able experimental data on gene orders are based on comparative physical maps.
Physical maps usually do not provide information about the directions of genes,
and therefore lead to representation of a genome as anunsignedpermutation�.
Biologists try to derive a signed permutation from this representation by assign-
ing a positive (negative) sign to increasing (decreasing) strips of� (Figure 10.6).
The “reversals do not cut long strips” property provides a theoretical substantiation
for such a procedure in the case of long strips. At the same time, for 2-strips this
procedure might fail to find an optimal rearrangement scenario. Hannenhalli and
Pevzner, 1996 [155] pointed to a biological example for which this procedure fails
and described an algorithm fixing this problem.

Permutations without singletons are calledsingleton-freepermutations. The
difficulty in analyzing such permutations is posed by an alternative,“to cut or not
to cut” 2-strips. A characterization of a set of 2-strips“to cut” (Hannenhalli and
Pevzner, 1996 [155]) leads to a polynomial algorithm for sorting singleton-free
permutations and to a polynomial algorithm for sorting permutations with a small
number of singletons. The algorithm can be applied to analyze rearrangement
scenarios derived from comparative physical maps.

Low-resolution physical maps usually contain many singletons and, as a result,
rearrangement scenarios for such maps are hard to analyze. The Hannenhalli and
Pevzner, 1996 [155] algorithm runs in polynomial time if the number of single-
tons isO(logn). This suggests thatO(log n) singletons is the desired trade-off of
resolution for comparative physical mapping in molecular evolution studies. If the
number of singletons is large, a biologist might choose additional experiments (
i.e., sequencing of some areas) to resolve the ambiguities in gene directions.

10.1. INTRODUCTION 185

translocation fissionreversal
+5+6+7+8

+1+2+3+4

+9+10+11

-3-2-1+4

+5+6+7+8

+9+10+11

-3-2-1+4

+5+6+7+11

+9+10+8

+9
-3-2-1+4+5+6+7+11

+9+10+8

ΓΠ
-3-2-1+4+5+6+7+11

+10+8

fusion

Figure 10.7:Evolution of genome� into genome�.

Rearrangements of Multichromosomal GenomesWhen the Brothers Grimm
described a transformation of a man into a mouse in the fairy tale “Puss in Boots,”
they could hardly have anticipated that two centuries later humans and mice would
be the most genetically studied mammals. Man-mouse comparative physical map-
ping started 20 years ago, and currently a few thousand pairs of homologous genes
are mapped in these species. As a result, biologists have found that the related
genes in man and mouse are not chaotically distributed over the genomes, but form
“conserved blocks” instead. Current comparative mapping data indicate that both
human and mouse genomes are comprised of approximately 150 blocks which are
“shuffled” in humans as compared to mice (Copeland et al., 1993 [74]). For exam-
ple, the chromosome 7 in the human can be viewed as a mosaic of different genes
from chromosomes 2, 5, 6, 11, 12, and 13 in the mouse (Fig 1.4). Shuffling of
blocks happens quite rarely (roughly once in a million years), thus giving biolo-
gists hope of reconstructing a rearrangement scenario of human-mouse evolution.
In their pioneering paper, Nadeau and Taylor, 1984 [248] estimated that surpris-
ingly few genomic rearrangements (178� 39) have happened since the divergence
of human and mouse 80 million years ago.

In the model we consider, every gene is represented by an integer whosesign
(“+” or “–”) reflects thedirection of the gene. Achromosomeis defined as ase-
quenceof genes, while agenomeis defined as asetof chromosomes. Given two
genomes� and�, we are interested in a most parsimonious scenario ofevolution
of � into �, i.e., the shortest sequence of rearrangement events (defined below) re-
quired to transform� into �. In the following we assume that� and� contain the
same set of genes. Figure 10.7 illustrates four rearrangement events transforming
one genome into another.

Let � = f�(1); : : : ; �(N)g be a genome consisting ofN chromosomes and
let �(i) = (�(i)1 : : : �(i)ni), ni being the number of genes in thei-th chromo-
some. Every chromosome� can be viewed either from “left to right” (i.e., as
� = (�1 : : : �n)) or from “right to left” (i.e., as�� = (��n : : : � �1)), leading
to two equivalent representations of the same chromosome (i.e., thedirectionsof
chromosomes are irrelevant). The four most common elementary rearrangement
events in multichromosomal genomes arereversals, translocations, fusions, and
fissions, defined below.

186 CHAPTER 10. GENOME REARRANGEMENTS

Let � = �1 : : : �n be a chromosome and1 � i � j � n. A reversal�(�; i; j)
on a chromosome� rearranges the genesinside� = �1 : : : �i�1�i : : : �j�j+1 : : : �n
and transforms� into �1 : : : �i�1 � �j : : : � �i�j+1 : : : �n. Let� = �1 : : : �n and
� = �1 : : : �m be two chromosomes and1 � i � n + 1, 1 � j � m + 1.
A translocation�(�; �; i; j) exchanges genesbetweenchromosomes� and� and
transforms them into chromosomes�1 : : : �i�1�j : : : �m and�1 : : : �j�1�i : : : �n
with (i�1)+(m� j+1) and(j�1)+(n� i+1) genes respectively. We denote
as� � � the genome obtained from� as a result of a rearrangement (reversal or
translocation)�. Given genomes� and�, thegenomic sorting problemis to find a
series of reversals and translocations�1; : : : ; �t such that� � �1 � � � �t = � andt is
minimal. We callt thegenomic distancebetween� and�. TheGenomic distance
problemis the problem of finding the genomic distanced(�;�) between� and�.

A translocation�(�; �; n + 1; 1) concatenates the chromosomes� and�, re-
sulting in a chromosome�1 : : : �n�1 : : : �m and anemptychromosome;. This
special translocation, leading to a reduction in the number of (non-empty) chromo-
somes, is known in molecular biology as afusion. The translocation�(�; ;; i; 1)
for 1 < i < n “breaks” a chromosome� into two chromosomes(�1 : : : �i�1) and
(�i : : : �n). This translocation, leading to an increase in the number of (non-empty)
chromosomes, is known as afission. Fusions and fissions are rather common in
mammalian evolution; for example, the major difference in the overall genome
organization of humans and chimpanzees is the fusion of two chimpanzee chromo-
somes into one human chromosome.

Kececioglu and Ravi, 1995 [191] made the first attempt to analyze rearrange-
ments of multichromosomal genomes. Their approximation algorithm addresses
the case in which both genomes contain the same number of chromosomes. This is
a serious limitation, since different organisms (in particular humans and mice) have
different numbers of chromosomes. From this perspective, every realistic model
of genome rearrangements should include fusions and fissions. It turns out that fu-
sions and fissions present a major difficulty in analyzing genome rearrangements.
Hannenhalli and Pevzner, 1995 [153] proved the duality theorem for multichromo-
somal genomes, which computes genomic distance in terms of seven parameters
reflecting different combinatorial properties of sets of strings. Based on this result
they found a polynomial algorithm for this problem.

The idea of the analysis is to concatenateN chromosomes of� and� into
permutations� and
, respectively, and to mimic genomic sorting of� into � by
sorting� into
 by reversals. The difficulty with this approach is that there exist
N !2N different concatenates for� and�, and only some of them, calledoptimal
concatenates, mimic anoptimal sorting of� into �. Hannenhalli and Pevzner,
1995 [153] introduced techniques calledflippingandcappingof chromosomes that
allow one to find an optimal concatenate.

Of course, gene orders for just two genomes are hardly sufficient to delineate
a correct rearrangement scenario. Comparative gene mapping has made possible

10.2. THE BREAKPOINT GRAPH 187

the generation of comparative maps for many mammalian species (O’Brien and
Graves, 1991 [254]). However, the resolution of these maps is significantly lower
than the resolution of the human-mouse map. Since comparative physical mapping
is rather laborious, one can hardly expect that the tremendous effort involved in
obtaining the human-mouse map will be repeated for other mammalian genomes.
However, an experimental technique calledchromosome paintingallows one to
derive gene order without actually building an accurate “gene-based” map. In the
past, the applications of chromosome painting were limited to primates (Jauch et
al., 1992 [178]); attempts to extend this approach to other mammals were not suc-
cessful because of the DNA sequence diversity between distantly related species.
Later, Scherthan et al., 1994 [307] developed an improved version of chromosome
painting, calledZOO-FISH, that is capable of detecting homologous chromosome
fragments in distant mammalian species. Using ZOO-FISH, Rettenberger et al.,
1995 [284] quickly completed the human-pig chromosome painting project and
identified 47 conserved blocks common to human and pig. The success of the
human-pig chromosome painting project indicates that gene orders of many mam-
malian species can be generated with ZOO-FISH inexpensively, thus providing an
invaluable new source of data to attack the 100-year-old problem of mammalian
evolution.

10.2 The Breakpoint Graph

Cycle decomposition is a rather exotic notion that at first glance has little in
common with genome rearrangements. However, the observation that a reversal
changes the number of cycles in a maximum decomposition by at most one allows
us to bound the reversal distance in terms of maximum cycle decomposition.

Theorem 10.1 For every permutation� and reversal�, c(��)� c(�) � 1.

Proof An arbitrary reversal�(i; j) involves four vertices of the graphG(�) and
leads to replacing two black edgesDEL = f(�i�1; �i); (�j ; �j+1)g by the black
edgesADD = f(�i�1; �j); (�i; �j+1)g.

If these two black edges inADD belong to the same cycle in a maximum cycle
decomposition ofG(��), then a deletion of that cycle yields a cycle decomposition
of G(�) with at leastc(��) � 1 cycles. Therefore,c(�) � c(��)� 1.

On the other hand, if the black edges inADD belong to different cyclesC1

andC2 in a maximum cycle decomposition ofG(��), then deletingC1 [C2 gives
a set of edge-disjoint cycles of sizec(��) � 2 in the graphG(��) n (C1 [C2).
Clearly, the set of edges(C1 [C2 [DEL) n ADD forms a balanced graph and
must contain at least one cycle. Combining this cycle with the previously obtained
c(��) � 2 cycles, we obtain a cycle decomposition ofG(�) = (G(��) n (C1 [

188 CHAPTER 10. GENOME REARRANGEMENTS

C2)) [(C1 [C2 [DEL n ADD) into at leastc(��)� 1 cycles.

Theorem 10.1, together with the observation thatc(�) = n+ 1 for the identity
permutation�, immediately impliesd(�) � c(�)� c(�) � n+ 1� c(�):

Theorem 10.2 For every permutation�, d(�) � n+ 1� c(�).

10.3 “Hard-to-Sort” Permutations

Defined(n) = max�2Sn d(�) to be thereversal diameterof the symmetric group
of ordern. Gollan conjectured thatd(n) = n�1 and that only one permutation
n
and its inverse permutation
�1n requiren � 1 reversals to be sorted. TheGollan
permutation, in one-line notation, is defined as follows:

n =

(
(3; 1; 5; 2; 7; 4; : : : ; n� 3; n� 5; n� 1; n� 4; n; n� 2); n even
(3; 1; 5; 2; 7; 4; : : : ; n� 6; n� 2; n� 5; n; n� 3; n� 1); n odd

Bafna and Pevzner, 1996 [19] proved Gollan’s conjecture by showing thatc(
n) =
2 and applying theorem 10.2. Further, they demonstrated that the reversal distance
between two random permutations is very close to the reversal diameter of the sym-
metric group, thereby indicating that reversal distance provides a good separation
between related and non-related sequences in molecular evolution studies.

We show that the breakpoint graphG(
n) has at most two disjoint alternating
cycles. The subgraph ofG(
n) formed by verticesf4; 5; : : : ; n � 5; n � 4g has
a regular structure (Figure 10.8). Direct the black edges of an arbitrary cycle in
this subgraph from the bottom to the top and all gray edges from the top to the
bottom. Note that in this orientation all edges are directed either- or. or #, and
therefore walking along the edges of this cycle slowly but surely leads to the left.
How would we return to the initial vertex? we can do so only after reaching one of
the “irregular” vertices (1 and 3), which serve as “turning points.” The following
lemma justifies this heuristic argument.

Lemma 10.1 Every alternating cycle inG(
n) contains the vertex1 or 3.

Proof Let i be the minimal odd vertex of an alternating cycleX in G(
n). Con-
sider the sequencei; j; k of consecutive vertices inX, where(i; j) is black and
(j; k) is gray. If i > 5, thenj = i � 3 or j = i � 5 andk = j + 1 or k = j � 1
(Figure 10.8), implying thatk is odd andk < i, a contradiction. Ifi = 5, then
j = 2 andk is either1 or 3, a contradiction. Therefore,i is either1 or 3.

Theorem 10.3 (Gollan conjecture) For everyn, d(
n) = d(
�1n) = n� 1.

10.4. EXPECTED REVERSAL DISTANCE 189

1 3 75 9 11 13

2 4 6 100 8 12

1 3 75 9 11 13

2 4 6 100 8 12 14

Figure 10.8:G(
12) andG(
13).

Proof Forn � 2, the claim is trivial. Forn > 2, partition the vertex set ofG(
n)
intoVl = f0; 1; 3g andVr. From lemma 10.1 and the fact that there is no cycle con-
tained inVl, we see that every alternating cycle must contain at least two edges from
the cut(Vl; Vr). As the cut(Vl; Vr) consists of four edges((1; 2); (1; 5); (3; 2), and
(3; 4)), the maximum number of edge-disjoint alternating cycles in a cycle decom-
position ofG(
n) is at most42 = 2.

From theorem 10.2,d(
n) � n + 1 � c(
n) � n � 1. On the other hand,
d(
n) � n� 1, since there exists a simple algorithm sorting everyn-element per-
mutation inn� 1 steps. Finally note thatd(
�1n) = d(
n).

Bafna and Pevzner, 1996 [19] also proved that
n and
�1n are the only permu-
tations inSn with a reversal distance ofn� 1.

Theorem 10.4 (strong Gollan conjecture) For everyn,
n and
�1n are the only
permutations that requiren� 1 reversals to be sorted.

10.4 Expected Reversal Distance

For any permutation� 2 Sn, consider a set of cycles that form a maximum de-
composition and partition them by size. Letci(�) denote the number of alternating
cycles of lengthi in a maximum decomposition, that do not include either vertex0
or n+ 1. Let Æ � 2 be the number of alternating cycles in a maximum decompo-
sition that include either vertex0 or n+ 1. Then,

c(�) =

2(n+1)X
i=2

ci(�) + Æ: (10.2)

Fork � 2(n+1), let us consider cycles in the decomposition whose size is at least
k. The number of such cycles isc(�)�Pk�1

i=2 ci(�)�Æ. Now, the breakpoint graph
of � has exactly2(n + 1) edges. From this and the fact that the cycles are edge
disjoint, we have

190 CHAPTER 10. GENOME REARRANGEMENTS

8k � 2(n+ 1); c(�)�
k�1X
i=2

ci(�)� Æ � 1

k

2(n+ 1)�

k�1X
i=2

ici(�)

!
(10.3)

and

8k � 2(n+ 1); c(�) � 1

k

2(n+ 1) +

k�1X
i=2

(k � i)ci(�)

!
+ Æ: (10.4)

Theorem 10.2, inequality (10.4), andÆ � 2 imply that for allk � 2(n+1), we can
boundd(�) as

d(�) �
�
1� 2

k

�
(n+ 1)� 1

k

k�1X
i=2

(k � i)ci(�)

!
� 2 (10.5)

�
�
1� 2

k

�
(n+ 1)�

k�1X
i=2

ci(�)

!
� 2: (10.6)

Consider a permutation� chosen uniformly at random. Denote the expected num-
ber of cycles of lengthi in a maximum cycle decomposition ofG(�) byE(ci(�)) =
1
n!

P
�2Sn ci(�). If we can boundE(ci(�)), we can use (10.6) above to get a lower

bound on the expected reversal distance. Lemma 10.2 provides such a bound,
which is, somewhat surprisingly, independent ofn. Note that there is a slight am-
biguity in the definition ofE(ci(�)), which depends on the choice of a maximum
cycle decomposition for each� 2 Sn. This does not affect lemma 10.2, however,
which holds for an arbitrary cycle decomposition.

Lemma 10.2 E(ci(�)) � 2i

i .

Proof A cycle of lengthi = 2t containst black edges (unordered pairs of vertices)
of the form

f(x0t; x1); (x01; x2); (x02; x3); : : : ; (x0t�1; xt)g, with xj � x0j :

Consider the setx1; x2; : : : ; xt. First, we claim that in every maximum cycle de-
composition,x1; x2; : : : ; xt are all distinct. To see this, consider the casexk = xl,
for some1 � k < l � t. Then,(x0k; xk+1); (x

0
k+1; xk+2); : : : ; (x

0
l�1; xl = xk)

form an alternating cycle, which can be detached to give a larger decomposition.
We have n!

(n�t)! ways of selecting the ordered set,x1; x2; : : : ; xt. Once this is

fixed we have a choice of at most two elements for each of thex0j, giving a bound

10.4. EXPECTED REVERSAL DISTANCE 191

of 2t n!
(n�t)! on the number of cycles of length2t. Note however that we count each

(2t)-cycle2t times, therefore a tighter bound for the number of cycles of length2t

is 2t

2t
n!

(n�t)! .
Choose an arbitrary(2t)-cycle. The number of permutations in which this

cycle can occur is no more than the number of ways of permuting the remaining
n� 2t elements plus thet pairs that form the cycle. Additionally, each pair can be
flipped to give a different order, which gives at most2t(n� t)! permutations. Letp
be the probability that an arbitrary(2t)-cycle is present in a random permutation.

Thenp � 2t(n�t)!
n! and

E(ci(�)) = E(c2t(�)) �
X

fall (2t)�cyclesg
p � 22t

2t
=

2i

i
:

Cycles of length 2 correspond to adjacencies in permutation�. There are a total
of 2n ordered adjacencies. Any such pair occurs in exactly(n� 1)! permutations,
so the probability that it occurs in a random permutation is1

n . Thus, the expected
number of adjacencies is2nn andE(c2) = 2. Note that the expected number of
breakpoints in a random permutation isn� 1.

We use lemma 10.2 andE(c2) = 2 to get a bound on the expected reversal
diameter:

Theorem 10.5 (Bafna and Pevzner, 1996 [19])E(d(�)) �
�
1� 4:5

log n

�
n.

Proof From inequality (10.6), for allk � 2(n+ 1),

E(d(�)) �
�
1� 2

k

�
(n+1)�

k�1X
i=2

E(ci)�2 �
�
1� 2

k

�
(n+1)�

k�1X
i=4

2i=i�4 �
�
1� 2

k

�
(n+ 1)�Pk�1

i=4 2
i + 24 � 24

4� 4 � n� 2n
k �

�
1� 2

k

�
� 2k + 1 + 8 �

n� 2n

k
� 2k:

Choosek = log n
log n . Then2k � n

k , and

E(d(�)) �

1� 3

log n
log n

!
n �

�
1� 4:5

logn

�
n for n � 216.

192 CHAPTER 10. GENOME REARRANGEMENTS

Lemma 10.2 and inequality (10.5) fork = 10 imply thatE(d(�)) �
�
1� 4:5

logn

�
n

for 19 < n < 216. For1 � n � 19,
�
1� 4:5

log n

�
n < 1.

10.5 Signed Permutations

Let ~� be asignedpermutation off1; : : : ; ng, i.e., a permutation with a+ or� sign
associated with each element. Define a transformation from a signed permutation
~� of ordern to an (unsigned) permutation� of f1; : : : ; 2ng as follows. To model
the signs of elements in~�, replace the positive elements+x by 2x � 1; 2x and
the negative elements�x by 2x; 2x � 1 (Figure 10.9c). We call the unsigned
permutation� the imageof the signed permutation~�. In the breakpoint graph
G(�), elements2x � 1 and2x are joined by both black and gray edges for1 �
x � n. Each such pair of a black and a gray edge defines a cycle of length 2 in
the breakpoint graph. Clearly, there exists a maximal cycle decomposition ofG(�)
containing all thesen cycles of length 2. Define the breakpoint graphG(~�) of a
signed permutation~� as the breakpoint graphG(�) with these2n edges excluded.
Observe that inG(~�) every vertex has degree2 (Figure 10.9c), and therefore the
breakpoint graph of a signed permutation is a collection of disjoint cycles. Denote
the number of such cycles asc(~�). We observe that the identity signed permutation
of ordern maps to the identity (unsigned) permutation of order2n, and the effect
of a reversal on~� can be mimicked by a reversal on�, thus implyingd(~�) � d(�).

In the following, by a sorting of the image� = �1�2 : : : �2n of a signed per-
mutation~�, we mean a sorting of� by reversals�(2i+ 1; 2j) that “cut” only after
even positions of� (between�2k�1 and�2k for 1 � k � n). The effect of a
reversal�(2i + 1; 2j) on � can be mimicked by a reversal�(i + 1; j) on ~�, thus
implying thatd(~�) = d(�) if cuts between�2i�1 and�2i are forbidden. In the
following, all unsigned permutations we consider are images of some signed per-
mutations. For convenience we extend the term “signed permutation” to unsigned
permutations� = (�1�2 : : : �2n) such that�2i�1 and�2i are consecutive numbers
for 1 � i � n. A reversal�(i; j) on� is legal if i is odd andj is even. Notice that
any reversal on a signed permutation corresponds to a legal reversal on its image,
and vice versa. In the following, by reversals we mean legal reversals.

Given an arbitrary reversal�, denote�c � �c(�; �) = c(��) � c(�) (in-
crease in the size of the cycle decomposition). Theorem 10.1 implies that for every
permutation� and reversal�, �c � �c(�; �) � 1. We call a reversalproper if
�c = 1.

If we were able to find a proper reversal for every permutation, then we would
optimally sort a permutation� in n+ 1� c(�) steps. However, for a permutation
� = +3+2+1 there is no proper reversal, and therefore, it cannot be sorted inn+
1� c(�) = 2 steps (optimal sorting of this permutation is shown in Figure 10.10).

10.6. INTERLEAVING GRAPHS AND HURDLES 193

This indicates that besides the number of cycles there exists another “obstacle” to
sorting by reversals. The permutation� = +3 + 2 + 1 contains ahurdle that
presents such a “hidden” obstacle to sorting by reversal. The notion of a hurdle
will be defined in the next section.

We say that a reversal�(i; j) acts on black edges(�i�1; �i) and (�j; �j+1)
in G(�). �(i; j) is a reversal (acting) on a cycleC of G(�) if the black edges
(�i�1; �i) and (�j ; �j+1) belong toC. A gray edgeg is oriented if a reversal
acting on two black edges incident tog is proper andunorientedotherwise. For
example, gray edges(8; 9) and(22; 23) in Fig 10.9c are oriented, while gray edges
(4; 5) and(18; 19) are unoriented.

Lemma 10.3 Let (�i; �j) be a gray edge incident to black edges(�k; �i) and
(�j; �l). Then(�i; �j) is oriented if and only ifi� k = j � l.

A cycle in G(�) is oriented if it has an oriented gray edge and unoriented
otherwise. CyclesC andF in Figure 10.9c are oriented, while cyclesA;B;D,
andE are unoriented. Clearly, there is no proper reversal acting on an unoriented
cycle.

10.6 Interleaving Graphs and Hurdles

Gray edges(�i; �j) and(�k; �t) in G(�) areinterleaving,if the intervals[i; j] and
[k; t] overlap but neither of them contains the other. For example, edges(4; 5) and
(18; 19) in Figure 10.9c are interleaving, while edges(4; 5) and(22; 23), as well
as(4; 5) and(16; 17), are non-interleaving. CyclesC1 andC2 are interleavingif
there exist interleaving gray edgesg1 2 C1 andg2 2 C2.

Let C� be the set of cycles in the breakpoint graph of a permutation�. Define
an interleavinggraphH�(C�;I�) of � with the edge set

I� = f(C1; C2) : C1 andC2 are interleaving cycles inG(�)g:
Figure 10.9d shows an interleaving graphH� consisting of three connected com-
ponents. The vertex set ofH� is partitioned intoorientedandunorientedvertices
(cycles inC�). A connected component ofH� is oriented if it has at least one
oriented vertex andunorientedotherwise. For a connected componentU , define
leftmost and rightmost positions ofU as

Umin = min
�i2C2U

i and Umax = max
�i2C2U

:

For example, the componentU containing cyclesB, C, andD in Figure 10.9c has
leftmost vertex�2 = 6 and rightmost vertex�13 = 17; therefore,[Umin; Umax] =
[2; 13].

194 CHAPTER 10. GENOME REARRANGEMENTS

+3 -5 +8 -6 +4 -7 +9 +2 +1 +10 -11

oriented cycle
non-oriented cycle

FB
D

C

black edge
gray edge

A

B

C

D

E F

A E

(b)

(c)

(d)

3 5 8 6 4 7 9 2 1 10 11

(a)

8 9 10 117654321

3 5 6 7 9 2 1 10 114 8

3 6 7 9 2 1 10 1184 5

3 6 9 2 1 10 114 5 7 8

2 1 10 113456789

3 5 8 6 4 7 9 2 1 10 11

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19 20 22 21 23

0 12

Figure 10.9:(a) Optimal sorting of a permutation(3 5 8 6 4 7 9 2 1 10 11) by five reversals and (b)

breakpoint graph of this permutation; (c) Transformation of a signed permutation into an unsigned

permutation� and the breakpoint graphG(�); (d) Interleaving graphH� with two oriented and one

unoriented component.

+1 -3 -2+3 +2 +1 +3 -1 -2 +1 +2 +3

Figure 10.10:Optimal sorting of permutation� = +3 + 2 + 1 involves a non-proper reversal.

10.6. INTERLEAVING GRAPHS AND HURDLES 195

U

U’ U’’

0 1 2 3 45 6 7 89 10 11 1213 14 15 16 17

+5 +7 +6 +8 +1 +3 +2 +4

U’

0 17

2 +4 +3 +5 +7 +6 +8 +1

3 4 7 8 5 6 9 10 13 14 11 12 15 16 1 2

U

U’’

(b)

(a)

Figure 10.11:(a) Unoriented componentU separatesU 0 andU 00 by virtue of the edge(0; 1); (b)

HurdleU does not separateU 0 andU 00.

We say that a componentU separatescomponentsU 0; U 00 in � if there exists a
gray edge(�i; �j) in U such that[U 0

min; U
0
max] � [i; j], but [U 00

min; U
00
max] 6� [i; j].

For example, the componentU in Figure 10.11a separates the componentsU 0 and
U 00.

Let � be a partial order on a setP . An elementx 2 P is called aminimal
element in� if there is no elementy 2 P with y � x. An elementx 2 P is the
greatestin � if y � x for everyy 2 P .

Consider the set of unoriented componentsU� in H�, and define thecontain-
mentpartial order on this set, i.e.,U � W if [Umin; Umax] � [Wmin;Wmax] for
U;W 2 U�. A hurdle is defined as an unoriented component that is either a min-
imal hurdle or the greatest hurdle, where aminimal hurdleU 2 U� is a minimal
element in� and thegreatest hurdlesatisfies the following two conditions: (i)U is
the greatest element in� and(ii) U does not separate any two hurdles. Leth(�) be
theoverall number of hurdles in�. Permutation� in Figure 10.9c has one unori-
ented component andh(�) = 1. Permutation� in Figure 10.11b has two minimal
and one greatest hurdle (h(�) = 3). Permutation� in Figure 10.11a has two mini-
mal and no greatest hurdle (h(�) = 2), since the greatest unoriented componentU
in Figure 10.11a separatesU 0 andU 00.

The following theorem further improves the bound for sorting signed permuta-
tions by reversals:

Theorem 10.6 For arbitrary (signed) permutation�, d(�) � n+1�c(�)+h(�).

Proof Given an arbitrary reversal�, denote�h � �h(�; �) = h(��) � h(�).
Clearly, every reversal� acts on black edges of at most two hurdles, and therefore
� may “destroy” at most two minimal hurdles. Note that if� destroys two minimal

196 CHAPTER 10. GENOME REARRANGEMENTS

hurdles inU�, then� cannot destroy the greatest hurdle inU� (see condition (ii)
in the definition of the greatest hurdle). Therefore�h � �2 for every reversal�.

Theorem 10.1 implies that�c 2 f�1; 0; 1g. If �c = 1, then� acts on an
oriented cycle and hence does not affect any hurdles in�. Therefore�h = 0 and
�(c� h) � �c��h = 1. If �c = 0, then� acts on a cycle and therefore affects
at most one hurdle (see condition (ii) in the definition of the greatest hurdle). This
implies�h � �1 and�(c � h) � 1. If �c = �1, then�(c � h) � 1, since
�h � �2 for every reversal�.

Therefore, for an arbitrary reversal�, �(c � h) � 1. This, together with the
observation thatc(�) = n+ 1 andh(�) = 0 for the identity permutation�, implies
d(�) � (c(�) � h(�)) � (c(�) � h(�)) = n+ 1� c(�) + h(�).

Hannenhalli and Pevzner, 1995 [154] proved that the lower boundd(�) �
n+ 1� c(�) + h(�) is very tight. As a first step toward the upper boundd(�) �
n+1�c(�)+h(�)+1, we developed a technique calledequivalent transformations
of permutations.

10.7 Equivalent Transformations of Permutations

The complicated interleaving structure of long cycles in breakpoint graphs poses
serious difficulties for analyzing sorting by reversals. To get around this prob-
lem we introduce equivalent transformations of permutations, based on the follow-
ing idea. If a permutation� � �(0) has a long cycle, transform it into a new
permutation�(1) by “breaking” this long cycle into two smaller cycles. Con-
tinue with �(1) in the same manner and form a sequence of permutations� �
�(0); �(1); : : : ; �(k) � �, ending with asimple(i.e., having no long cycles) per-
mutation. This section demonstrates that these transformations can be arranged in
such a way that every sorting of� mimics a sorting of� with the same number
of reversals. The following sections show how to optimally sort simple permuta-
tions. Optimal sorting of thesimplepermutation� mimics optimal sorting of the
arbitrary permutation�, leading to a polynomial algorithm for sorting by reversals.

Let b = (vb; wb) be a black edge andg = (wg; vg) be a gray edge belong-
ing to a cycleC = : : : ; vb; wb; : : : ; wg; vg; : : : in the breakpoint graphG(�) of a
permutation�. A (g; b)-split of G(�) is a new grapĥG(�) obtained fromG(�) by

� removing edgesg andb,

� adding two new verticesv andw,

� adding two new black edges(vb; v) and(w;wb),

� adding two new gray edges(wg; w) and(v; vg).

10.7. EQUIVALENT TRANSFORMATIONS OF PERMUTATIONS 197

b (g,b)-split

v vg

C

g

w
g w

b
vb v

g
w

g
w

b w

C1

v
b

C2

Figure 10.12:Example of a(g; b)-split.

Figure 10.12 shows a(g; b)-split transforming a cycleC in G(�) into cyclesC1

andC2 in Ĝ(�). If G(�) is a breakpoint graph of a signed permutation�, then
every(g; b)-split of G(�) corresponds to the breakpoint graph of a signedgener-
alizedpermutation�̂ such thatĜ(�) = G(�̂). Below we define generalized per-
mutations and describe thepaddingprocedure to find a generalized permutation�̂
corresponding to a(g; b)-split ofG.

A generalized permutation� = �1�2 : : : �n is a permutation of arbitrary dis-
tinct reals (instead of permutations ofintegersf1; 2; : : : ; ng). In this section, by
permutations we mean generalized permutations, and byidentity generalized per-
mutationwe mean a generalized permutation� = �1�2 : : : �n with �i < �i+1
for 1 � i � n � 1. Extend a permutation� = �1�2 : : : �n by adding�0 =
min1�i�n �i � 1 and�n+1 = max1�i�n �i + 1. Elements�j and�k of � are
consecutiveif there is no element�l such that�j < �l < �k for 1 � l � n.
Elements�i and�i+1 of � areadjacentfor 0 � i � n. Thebreakpoint graphof
a (generalized) permutation� = �1�2 : : : �n is defined as the graph on vertices
f�0; �1; : : : ; �n; �n+1g with black edges between adjacent elements that are not
consecutive and gray edges between consecutive elements that are not adjacent.
Obviously the definition of the breakpoint graph for generalized permutations is
consistent with the notion of the breakpoint graph described earlier.

Let b = (�i+1; �i) be a black edge andg = (�j ; �k) be a gray edge belonging
to a cycleC = : : : ; �i+1; �i; : : : ; �j ; �k; : : : in the breakpoint graphG(�). Define
� = �k � �j and letv = �j +

�
3 andw = �k � �

3 . A (g; b)-padding of
� = (�1�2 : : : �n) is a permutation onn+2 elements obtained from� by inserting
v andw after thei-th element of� (0 � i � n):

�̂ = �1�2 : : : �ivw�i+1 : : : �n

Note thatv andw are both consecutive and adjacent in�̂, thus implying that if
� is (the image of) a signed permutation , then�̂ is also (the image of) a signed
permutation. The following lemma establishes the correspondence between(g; b)-
paddings and(g; b)-splits. y

Lemma 10.4 Ĝ(�) = G(�̂).
yOf course, a(g; b)-padding of a permutation� = (�1�2 : : : �n) on f1; 2; : : : ; ng can be mod-

198 CHAPTER 10. GENOME REARRANGEMENTS

If g andb are non-incident edges of alongcycleC in G(�), then the(g; b)-padding
breaksC into two smaller cycles inG(�̂). Therefore paddings may be used to
transform an arbitrary permutation� into a simple permutation. Note that the
number of elements in̂� is n̂ = n + 1 andc(�̂) = c(�) + 1. Below we prove
that for every permutation with a long cycle, there exists a padding on non-incident
edges of this cycle such thath(�̂) = h(�), thus indicating that padding provides
a way to eliminate long cycles in a permutation without changing the parameter
n+ 1� c(�) + h(�). First we need a series of technical lemmas.

Lemma 10.5 Let a(g; b)-padding on a cycleC in G(�) delete the gray edgeg and
add two new gray edgesg1 andg2. If g is oriented, then eitherg1 or g2 is oriented
in G(�̂). If C is unoriented, then bothg1 andg2 are unoriented inG(�̂).

Lemma 10.6 Let a(g; b)-padding break a cycleC in G(�) into cyclesC1 andC2

in G(�̂). ThenC is oriented if and only if eitherC1 or C2 is oriented.

Proof Note that a(g; b)-padding preserves the orientation of gray edges inG(�̂)
that are “inherited” fromG(�) (lemma 10.3). IfC is oriented, then it has an ori-
ented gray edge. If this edge is different fromg, then it remains oriented in a
(g; b)-padding of�, and therefore a cycle (C1 or C2) containing this edge is ori-
ented. Ifg = (wg; vg) is the only oriented gray edge inC, then(g; b)-padding
adds two new gray edges ((wg; w) and(v; vg)) to G(�̂), one of which is oriented
(lemma 10.5). Therefore a cycle (C1 orC2) containing this edge is oriented.

If C is an unoriented cycle, then all edges ofC1 andC2 “inherited” from C
remain unoriented. Lemma 10.5 implies that new edges ((wg; w) and(v; vg)) in
C1 andC2 are also unoriented.

The following lemma shows that paddings preserve the interleaving of gray edges.

Lemma 10.7 Let g0 and g00 be two gray edges ofG(�) different fromg. Theng0
and g00 are interleaving in� if and only if g0 and g00 are interleaving in a(g; b)-
padding of�.

This lemma immediately implies

Lemma 10.8 Let a(g; b)-padding break a cycleC in G(�) into cyclesC1 andC2

in G(�̂). Then every cycleD interleaving withC in G(�) interleaves with either
C1 or C2 in G(�̂).

eled as a permutation̂� = (�̂1�̂2 : : : �̂ivw�̂i+1 : : : �̂n) onf1; 2; : : : ; n+2g wherev = �j+1; w =
�k + 1, and�̂i = �i + 2 if �i > minf�j ; �kg and�̂i = �i otherwise. Generalized permutations
were introduced to make the following “mimicking” procedure more intuitive.

10.7. EQUIVALENT TRANSFORMATIONS OF PERMUTATIONS 199

Proof Let d 2 D andc 2 C be interleaving gray edges inG(�). If c is different
from g, then lemma 10.7 implies thatd andc are interleaving inG(�̂), and there-
foreD interleaves with eitherC1 or C2. If c = g, then it is easy to see that one
of the new gray edges inG(�̂) interleaves withd, and thereforeD interleaves with
eitherC1 orC2 in G(�̂).

Lemma 10.9 For every gray edgeg there exists a gray edgef interleaving withg
in G(�) .

Lemma 10.10 LetC be a cycle inG(�) andg 62 C be a gray edge inG(�). Then
g interleaves with an even number of gray edges inC.

A (g; b)-padding� transforming� into �̂ (i.e., �̂ = � � �) is safeif it acts on
non-incident edges of a long cycle andh(�) = h(�̂). Clearly, every safe padding
breaks a long cycle into two smaller cycles.

Theorem 10.7 If C is a long cycle inG(�), then there exists a safe(g; b)-padding
acting onC.

Proof If C has a pair of interleaving gray edgesg1; g2 2 C, then removing these
edges transformsC into two paths. SinceC is a long cycle, at least one of these
paths contains a gray edgeg. Pick a black edgeb from another path and consider
the (g; b)-padding transforming� into �̂ (clearlyg andb are non-incident edges).
This (g; b)-padding breaksC into cyclesC1 andC2 in G(�̂), with g1 andg2 be-
longing to different cyclesC1 andC2. By lemma 10.7,g1 andg2 are interleaving,
thus implying thatC1 andC2 are interleaving. Also, this(g; b)-padding does not
“break” the componentK in H� containing the cycleC since by lemma 10.8,
all cycles fromK belong to the component ofH�̂ containingC1 andC2. More-
over, according to lemma 10.6, the orientation of this component inH� andH�̂

is the same. Therefore the chosen(g; b)-padding preserves the set of hurdles, and
h(�) = h(�̂).

If all gray edges ofC are mutually non-interleaving, thenC is an unoriented
cycle. Lemmas 10.9 and 10.10 imply that there exists a gray edgee 2 C 0 inter-
leaving with at least two gray edgesg1; g2 2 C. Removingg1 andg2 transforms
C into two paths, and sinceC is a long cycle, at least one of these paths contains a
gray edgeg. Pick a black edgeb from another path and consider the(g; b)-padding
of �. This padding breaksC into cyclesC1 andC2 in G(�̂), with g1 andg2 be-
longing to different cyclesC1 andC2. By lemma 10.7, bothC1 andC2 interleave
with C 0 in �̂. Therefore, this(g; b)-padding does not break the componentK in
H� containingC andC 0. Moreover, according to lemma 10.6, bothC1 andC2 are
unoriented, thus implying that the orientation of this component inH� andH�̂ is

200 CHAPTER 10. GENOME REARRANGEMENTS

the same. Therefore, the chosen(g; b)-padding preserves the set of hurdles, and
hence,h(�) = h(�̂).

A permutation� is equivalentto a permutation� (� ; �) if there exists
a series of permutations� � �(0); �(1); : : : ; �(k) � � such that�(i + 1) =
�(i) � �(i) for a safe(g; b)-padding�(i) acting on�i (0 � i � k � 1).

Theorem 10.8 For every permutation there exists an equivalent simple permuta-
tion.

Proof Define thecomplexityof a permutation� as
P

C2C� (l(C)� 2), whereC� is
the set of cycles inG(�) andl(C) is the length of a cycleC. The complexity of a
simple permutation is 0. Note that every padding on non-incident edges of a long
cycleC breaksC into cyclesC1 andC2 with l(C) = l(C1)+ l(C2)�1. Therefore

(l(C)� 2) = (l(C1)� 2) + (l(C2)� 2) + 1;

implying that a padding on non-incident edges of a cycle reduces the complexity
of permutations. This observation and theorem 10.7 imply that every permutation
with long cycles can be transformed into a permutation without long cycles by a
series of paddings preservingb(�)� c(�) + h(�).

Let �̂ be a(g; b)-padding of�, and let� be a reversal acting on two black
edges of̂�. Then� can be mimicked on� by ignoring the padded elements. We
need a generalization of this observation. A sequence of generalized permutations
� � �(0); �(1); : : : ; �(k) � � is called ageneralized sortingof � if � is the
identity (generalized) permutation and�(i + 1) is obtained from�(i) either by a
reversal or by a padding. Note that reversals and paddings in a generalized sorting
of � may interleave.

Lemma 10.11 Every generalized sorting of� mimics a (genuine) sorting of� with
the same number of reversals.

Proof Ignore padded elements.

In the following, we show how to find a generalized sorting of a permutation
� by a series of paddings and reversals containingd(�) reversals. Lemma 10.11
implies that this generalized sorting of� mimics an optimal (genuine) sorting of�.

10.8 Searching for Safe Reversals

Recall that for an arbitrary reversal,�(c� h) � 1 (see the proof of theorem 10.6).
A reversal� is safeif �(c�h) = 1. The first reversal in Figure 10.10 is not proper

10.8. SEARCHING FOR SAFE REVERSALS 201

but it is safe (since�c = 0 and�h = �1). Figure 10.14 presents examples of safe
(�c = 1;�h = 0) and unsafe (�c = 1;�h = 1) reversals. In the following, we
prove the existence of a safe reversal acting on a cycle in an oriented component
by analyzing actions of reversals on simple permutations. In this section, by cycles
we meanshortcycles and by permutations we mean simple permutations.

Denote the set of all cycles interleaving with a cycleC in G(�) asV (C) (i.e.,
V (C) is the set of vertices adjacent toC in H�). Define the sets of edges in the
subgraph ofH� induced byV (C)

E(C) = f(C1; C2) : C1; C2 2 V (C) andC1 interleaves withC2 in �g
and its complement

E(C) = f(C1; C2) : C1; C2 2 V (C) andC1 does not interleave withC2 in �g:
A reversal� acting on an oriented (short) cycleC “destroys”C (i.e., removes

the edges ofC from G(�)) and transforms every other cycle inG(�) into a corre-
sponding cycle on the same vertices inG(��). As a result,� transforms the inter-
leaving graphH�(C�; I�) of � into the interleaving graphH��(C� nC;I��) of ��.
This transformation results in complementing the subgraph induced byV (C), as
described by the following lemma (Figure 10.13). We denoteI� = I� n f(C;D) :
D 2 V (C)g.
Lemma 10.12 Let� be a reversal acting on an oriented (short) cycleC. Then

� I�� = (I� n E(C)) [E(C), i.e., � removes edgesE(C) and adds edges
E(C) to transformH� intoH��, and

� � changes the orientation of a cycleD 2 C� if and only ifD 2 V (C).
Lemma 10.12 immediately implies the following:

Lemma 10.13 Let � be a reversal acting on a cycleC, and letA, andB be non-
adjacent vertices inH��. Then(A;B) is an edge inH� if and only ifA;B 2
V (C).

Let K be an oriented component ofH�, and letR(K) be a set of reversals
acting on oriented cycles fromK. Assume that a reversal� 2 R(K) “breaks”K
into a number of connected componentsK1(�);K2(�); : : : in H�� and that the first
m of these components are unoriented. Ifm > 0, then� may be unsafe, since
some of the componentsK1(�); : : : ;Km(�) may form new hurdles in��, thus
increasingh(��) as compared toh(�) (Figure 10.14). In the following, we show
that there is flexibility in choosing a reversal from the setR(K), allowing one to
substitute a safe reversal� for an unsafe reversal�.

202 CHAPTER 10. GENOME REARRANGEMENTS

-2 +6 -4 -8

A

B

E

D

+7 -9 -3 +1 -5-2 +6 +5 -1 +3 +9 -7 -4 -8

C
A

B D

E

C

A

B

E

D

reversal on cycle C

D
EA

B
breakpoint

interleaving
 graph

graph

Figure 10.13:Reversal on a cycleC complements the edges between the neighbors ofC and

changes the orientation of each cycle neighboringC in the interleaving graph.

+4 -2

+4 +3 +1+4 +3 +1 -5 -2

+4 +3 +1 -5 -2 +5 -1 -3

+2 +5

safe reversal

unsafe reversal

creates an unoriented component (hurdle)

Figure 10.14:Examples of safe and unsafe reversals.

Lemma 10.14 Let� and� be reversals acting on two interleaving oriented cycles
C andC 0, respectively, inG(�). If C 0 belongs to an unoriented componentK1(�)
in H��, then

� every two vertices outsideK1(�) that are adjacent inH�� are also adjacent
in H��, and

� the orientation of vertices outsideK1(�) does not change inH�� as com-
pared toH��.

Proof Let D andE be two vertices outsideK1(�) connected by an edge inH��.
If one of these vertices, sayD, does not belong toV (C) in H�, then lemma 10.13

10.8. SEARCHING FOR SAFE REVERSALS 203

implies (i)(C 0;D) is not an edge inH� and (ii)(D;E) is an edge inH�. Therefore,
by lemma 10.12, reversal� preserves the edge(D;E) in H��. If both vertices
D andE belong toV (C), then lemma 10.12 implies that(D;E) is not an edge
in H�. Since vertexC 0 and verticesD;E are in different components ofH��,
lemma 10.13 implies that(C 0;D) and (C 0; E) are edges inH�. Therefore, by
lemma 10.12,(D;E) is an edge inH��. In both cases,� preserves the edge
(D;E) in H�� and the first part of the lemma holds.

Lemma 10.13 implies that for every vertexD outsideK1(�),D 2 V (C) if and
only if D 2 V (C 0). This observation and lemma 10.12 imply that the orientation
of vertices outsideK1(�) does not change inH�� as compared toH��.

Lemma 10.15 Every unoriented component in the interleaving graph (of a simple
permutation) contains at least two vertices.

Proof By lemma 10.9, every gray edge inG(�) has an interleaving gray edge.
Therefore every unoriented (short) cycle inG(�) has an interleaving cycle.

Theorem 10.9 For every oriented componentK in H�, there exists a (safe) rever-
sal � 2 R(K) such that all componentsK1(�);K2(�); : : : are oriented inH��.

Proof Assume that a reversal� 2 R(K) “breaks”K into a number of connected
componentsK1(�);K2(�); : : : in H�� and that the firstm of these components are
unoriented. Denote the overall number of vertices in these unoriented components
asindex(�) =

Pm
i=1 jKi(�)j, wherejKi(�)j is the number of vertices inKi(�).

Let � be a reversal such that

index(�) = min
�2R(K)

index(�):

This reversal acts on a cycleC and breaksK into a number of components. If all
these components are oriented (i.e.,index(�) = 0) the theorem holds. Otherwise,
index(�) > 0, and letK1(�); : : : ;Km(�) (m � 1) be unoriented components in
H��. Below we find another reversal� 2 R(K) with index(�) < index(�), a
contradiction.

Let V1 be the set of vertices of the componentK1(�) in H��. Note thatK1(�)
contains at least one vertex fromV (C), and consider the (non-empty) setV =
V1\V (C) of vertices from componentK1(�) adjacent toC in H�. SinceK1(�) is
an unoriented component in��, all cycles fromV are oriented in� and all cycles
from V1 nV are unoriented in� (lemma 10.12). LetC 0 be an (oriented) cycle inV ,
and let� be the reversal acting onC 0 in G(�). Lemma 10.14 implies that fori � 2,
all edges of the componentKi(�) in H�� are preserved inH��, and the orientation

204 CHAPTER 10. GENOME REARRANGEMENTS

of vertices inKi(�) does not change inH�� as compared toH��. Therefore, all
unoriented componentsKm+1(�);Km+2(�); : : : of �� “survive” in ��, and

index(�) � index(�):

Below we prove that there exists a reversal� acting on a cycle fromV such that
index(�) < index(�), a contradiction.

If V1 6= V (C), then there exists an edge between an (oriented) cycleC 0 2 V
and an (unoriented) cycleC 00 2 V1 n V in G(�). Lemma 10.12 implies that a
reversal� acting onC 0 in � orients the cycleC 00 in G(�). This observation and
lemma 10.14 imply that� reducesindex(�) by at least 1 as compared toindex(�),
a contradiction.

If V1 = V (C) (all cycles ofK1 interleave withC), then there exist at least two
vertices inV (C) (lemma 10.15). Moreover, there exist (oriented) cyclesC 0; C 00 2
V1 such that(C 0; C 00) are not interleaving in� (otherwise, lemma 10.12 would im-
ply thatK1(�) has no edges, a contradiction to the connectivity ofK1(�)). Define
� as a reversal acting onC 0. Lemma 10.12 implies that� preserves the orientation
of C 00, thus reducingindex(�) by at least 1 as compared toindex(�), a contradic-
tion.

The above discussion implies that there exists a reversal� 2 R(K) such
that index(�) = 0, i.e., � does not create new unoriented components. Then
�c(�; �) = 1 and�h(�; �) = 0, implying that� is safe.

10.9 Clearing the Hurdles

If � has an oriented component, then theorem 10.9 implies that there exists a safe
reversal in�. In this section we search for a safe reversal in the absence of any
oriented component. Let� be a partial order on a setP . We say thatx is covered
by y in P if x � y and there is no elementz 2 P for which x � z � y.
The cover graph
 of � is an (undirected) graph with vertex setP and edge set
f(x; y) : x; y 2 P andx is covered byyg.

LetU� be the set of unoriented components inH�, and let[Umin; Umax] be the
interval between the leftmost and rightmost positions in an unoriented component
U 2 U�. DefineUmin = minU2U� Umin andUmax = maxU2U� Umax, and let
[Umin; Umax] be the interval between the leftmost and rightmost positions among
all the unoriented components of�. LetU be an (artificial) component associated
with the interval[Umin; Umax].

DefineU� as the set ofjU�j + 1 elements consisting ofjU�j elementsfU :
U 2 U�g combined with an additional elementU . Let���� be thecontainment
partial order onU� defined by the ruleU � W if and only if [Umin; Umax] �

10.9. CLEARING THE HURDLES 205

[Wmin;Wmax] forU;W 2 U�. If there exists thegreatestunoriented componentU
in � (i.e., [Umin; Umax] = [Umin; Umax]), we assume that there exist two elements
(“real” componentU and “artificial” componentU) corresponding to the greatest
interval and thatU �� U . Let
� be thetree representing the cover graph of the
partial order�� onU� (Figure 10.15a). Every vertex in
� exceptU is associated
with an unoriented component inU�. In the case in which� has the greatest hurdle,
we assume that the leafU is associated with this greatest hurdle (i.e., in this case
there aretwo verticescorresponding to the greatest hurdle, leafU , and its neighbor,
the greatest hurdleU 2 U�). Every leaf in
� corresponding to a minimal element
in �� is a hurdle. IfU is a leaf in
�, it is not necessarily a hurdle (for example,
U is a leaf in
� but is not a hurdle for the permutation� shown in Figure 10.11a).
Therefore, the number of leaves in
� coincides with the number of hurdlesh(�)
except whenz

� there exists only one unoriented component in� (in this case
� consists of
two copies of this component and has two leaves, whileh(�) = 1), or

� there exists the greatest element inU� that is not a hurdle; i.e., this element
separates other hurdles (in this case, the number of leaves equalsh(�) + 1).

Every hurdle can be transformed into an oriented component by a reversal on
an arbitrary cycle in this hurdle (Figure 10.10). Such an operation “cuts off” a leaf
in the cover graph, as described in the following lemma.

Lemma 10.16 (Hurdle cutting) Every reversal� on a cycle in a hurdleK cuts off
the leafK from the cover graph of�, i.e.,
�� =
� nK.

Proof If � acts on an unoriented cycle of a componentK in �, thenK remains
“unbroken” in��. Also, lemma 10.9 implies that every reversal on an (unoriented)
cycle of an (unoriented) componentK orients at least one cycle inK. Therefore,
� transformsK into an oriented component in�� and deletes the leafK from the
cover graph.

Reversals cutting hurdles are not always safe. A hurdleK 2 U� protects
a non-hurdleU 2 U� if deleting K from U� transformsU from a non-hurdle
into a hurdle (i.e.,U is a hurdle inU� n K). A hurdle in� is a superhurdleif it
protects a non-hurdleU 2 U� and asimple hurdleotherwise. ComponentsM , N ,
andU in Figure 10.15a are simple hurdles, while componentL is a superhurdle
(deletingL transforms non-hurdleK into a hurdle). In Figure 10.16a all three
hurdles are superhurdles, while in Figure 10.16b there are two superhurdles and

zAlthough the addition of an “artificial” componentU might look a bit strange and unnecessary,
we will find below that such an addition greatly facilitates the analysis of technical details.

206 CHAPTER 10. GENOME REARRANGEMENTS

merging hurdles L and M

0 1 2 7 8 9 101213 14 1143 4445 46 202133 3435 3637 38 39 40 41 42 4722 19

"real" greatest element

U "artificial" greatest element

(a)

(b)

"real" greatest element

U "artificial" greatest element

U

L

K

N

P

M

U

N

3 4515 16 17 18 23 24 25 262829 31 3230 276

0 1 2 7 8 1213 14 1143 4445 46 10 32 31 26 25 30 29 18 152328 279 202133 3435 3637 38 39 40 41 42 4722 1924 17 4 3 6 5 16

Figure 10.15: (a) A cover graph
� of a permutation� with “real” unoriented components

K;L;M;N; P , andU and an “artificial” componentU ; (b) A reversal�merging hurdlesL andM in

� transforms unoriented componentsL;K; P , andM into an oriented component that “disappears”

from
��. This reversal transforms unoriented cycles(32; 33; 36; 37; 32) and(10; 11; 14; 15; 10) in

� into an oriented cycle(15; 14; 11; 10; 32; 33; 36; 37; 15) in ��. LCA(L;M) = LCA(L;M) =

U andPATH(A;F) = fL;K;U; P;Mg.

one simple hurdle (note that the cover graphs in Figure 10.16a and Figure 10.16b
are the same!). The following lemma immediately follows from the definition of a
simple hurdle.

Lemma 10.17 A reversal acting on a cycle of a simple hurdle is safe.

Proof Lemma 10.16 implies that for every reversal� acting on a cycle of a simple
hurdle,b(�) = b(��), c(�) = c(��), andh(��) = h(�) � 1, implying that� is
safe.

Unfortunately, a reversal acting on a cycle of a superhurdle is unsafe, since it
transforms a non-hurdle into a hurdle, implying�(c� h) = 0. Below we define a

10.9. CLEARING THE HURDLES 207

new operation (hurdles merging) allowing one to search for safe reversals even in
the absence of simple hurdles.

If L andM are two hurdles in�, definePATH(L;M) as the set of (unori-
ented) components on the (unique) path from leafL to leafM in the cover graph

�. If bothL andM areminimalelements in�,

defineLCA(L;M) as an (unoriented) component that is theleast common
ancestorof L andM , and defineLCA(L;M) as theleast common ancestorof
L andM which does not separateL andM . If L corresponds to thegreatest
hurdleU , there are two elementsU andU in U� corresponding to the same (great-
est) interval[Umin; Umax] = [Umin; Umax]. In this case, defineLCA(L;M) =
LCA(L;M) = U . LetG(V;E) be a graph,w 2 V andW � V . A contraction of
W intow in G is defined as a new graph with vertex setV n (W nw) and edge set
f(p(x); p(y)) : (x; y) 2 Eg, wherep(v) = w if v 2 W , andp(v) = v otherwise.
Note that ifw 2 W , then a contraction reduces the number of vertices inG by
jW j � 1, while if w 62W , the number of vertices is reduced byjW j.

LetL andM be two hurdles in�, and let
� be the cover graph of�. We define

�(L;M) as the graph obtained from
� by the contraction ofPATH(L;M) into
LCA(L;M) (loops in the graph
�(L;M) are ignored). Note that when

LCA(L;M) = LCA(L;M);

�(L;M) corresponds to deleting the elements ofPATH(L;M) n LCA(L;M)
from the partial order��, while when

LCA(L;M) 6= LCA(L;M);

�(L;M) corresponds to deleting the entire setPATH(L;M) from��.

Lemma 10.18 (Hurdles merging) Let� be a permutation with cover graph
�,
and let� be a reversal acting on black edges of (different) hurdlesL andM in
�. Then� acts on
� as the contraction ofPATH(L;M) into LCA(L;M), i.e.,

�� =
�(L;M).

Proof The reversal� acts on black edges of the cyclesC1 2 L andC2 2 M in
G(�) and transformsC1 andC2 into an oriented cycleC in G(��) (Figure 10.15).
It is easy to verify that every cycle interleaving withC1 or C2 in G(�) interleaves
with C in G(��). This implies that� transforms hurdlesL andM in � into parts
of an oriented component in��, and, thereforeL andM “disappear” from
��.

Moreover, every (unoriented) component fromPATH(L;M) n LCA(L;M)
has at least one cycle interleaving withC in G(��). This implies that every such
component in� becomes a part of an oriented component in��, and therefore
“disappears” from
��. Every component fromU� n PATH(L;M) remains

208 CHAPTER 10. GENOME REARRANGEMENTS

unoriented in��. ComponentLCA(L;M) remains unoriented if and only if
LCA(L;M) = LCA(L;M). Every component that is covered by a vertex from
PATH(L;M) in �� will be covered byLCA(L;M) in ���.

We writeU < W for hurdlesU andW if the rightmost position ofU is smaller
than the rightmost position ofW , i.e.,Umax < Wmax. Order the hurdles of� in
increasing order of their rightmost positions

U(1) < : : : < U(l) � L < : : : < U(m) �M < : : : < U(h(�))

and define the sets of hurdles

BETWEEN(L;M) = fU(i) : l < i < mg
and

OUTSIDE(L;M) = fU(i) : i 62 [l;m]g:

Lemma 10.19 Denote� be a reversal merging hurdlesL andM in �. If both sets
of hurdlesBETWEEN(L;M) andOUTSIDE(L;M) are non-empty, then� is
safe.

Proof U 0 2 BETWEEN(L;M) andU 00 2 OUTSIDE(L;M). Lemma 10.18
implies that the reversal� deletes the hurdlesL andM from
�. There is also
a danger that� may add a new hurdleK in �� by transformingK from a non-
hurdle in� into a hurdle in��. If this is the case,K does not separateL andM
in � (otherwise, by lemma 10.18,K would be deleted from��). Without loss of
generality, we assume thatL < U 0 < M .

If K is aminimalhurdle in��, then eitherL �� K or M �� K (otherwiseK
would be a hurdle in�). SinceK does not separateL andM in �, L �� K and
M �� K. SinceU 0 is sandwiched betweenL andM ,U 0 �� K. Thus,U 0 ��� K,
a contradiction to the minimality ofK in ��.

If K is the greatesthurdle in��, then eitherL;M 6�� K or L;M �� K
(if it were the case thatL 6�� K andM �� K, according to lemma 10.18,K
would be deleted from��). If L;M 6�� K, thenL < U 0 �� K < M , i.e.,K is
sandwiched betweenL andM . ThereforeU 00 lies outsideK in � andU 00 6��� K,
a contradiction. IfL;M �� K then, sinceK is a non-hurdle in�, K separates
L;M from another hurdleN . ThereforeK separatesU 0 from N . Since bothN
andU 0 “survive” in ��, K separatesN andU 0 in ��, a contradiction.

Therefore,� deletes hurdlesL andM from
� and does not add a new hurdle
in ��, thus implying that�h = �2. Sinceb(��) = b(�) andc(��) = c(�) � 1,
�(b� c+ h) = �1 and the reversal� is safe.

10.10. DUALITY THEOREM FOR REVERSAL DISTANCE 209

Lemma 10.20 If h(�) > 3, then there exists a safe reversal merging two hurdles
in �.

Proof Orderh(�) hurdles of� in increasing order of their rightmost positions and
let L andM be the first and(1 + h(�)

2)-th hurdles in this order. Sinceh(�) > 3,
both setsBETWEEN(L;M) andOUTSIDE(L;M) are non-empty, and by
lemma 10.19, the reversal� mergingL andM is safe.

Lemma 10.21 If h(�) = 2, then there exists a safe reversal merging two hurdles
in �. If h(�) = 1, then there exists a safe reversal cutting the only hurdle in�.

Proof If h(�) = 2, then
� either is a path graph or contains the greatest compo-
nent separating two hurdles in�. In both cases, merging the hurdles in� is a safe
reversal (lemma 10.18). Ifh(�) = 1, then lemma 10.16 provides a safe reversal
cutting the only hurdle in�.

The previous lemmas show that hurdles merging provides a way to find safe re-
versals even in the absence of simple hurdles. On a negative note, hurdles merging
does not provide a way to transform a superhurdle into a simple hurdle.

Lemma 10.22 Let� be a reversal in� merging two hurdlesL andM . Then every
superhurdle in� (different fromL andM) remains a superhurdle in��.

Proof Let U be a superhurdle in� (different fromL andM) protecting a non-
hurdleU 0. Clearly, ifU 0 is a minimal hurdle inU� n U , thenU remains a super-
hurdle in��. If U 0 is the greatest hurdle inU� n U , thenU 0 does not separate
any hurdles inU� n U . ThereforeU 0 does not belong toPATH(L;M) and hence
“survives” in �� (lemma 10.18). This implies thatU 0 remains protected byU in
��.

10.10 Duality Theorem for Reversal Distance

Lemmas 10.20 and 10.21 imply that unless
� is a homeomorph of the3-star (a
graph with three edges incident on the same vertex), there exists a safe reversal
in �. On the other hand, if at least one hurdle in� is simple, then lemma 10.17
implies that there exists a safe reversal in�. Therefore, the only case in which a
safe reversal might not exist is when
� is a homeomorph of the 3-star with three
superhurdles, called a3-fortress(Figure 10.16b).

Lemma 10.23 If � is a reversal destroying a 3-fortress� (i.e., �� is not a 3-
fortress) then� is unsafe.

210 CHAPTER 10. GENOME REARRANGEMENTS

"artificial" greatest elementU

(b)

(a)

"artificial" greatest element

U

U

U

L M

superhurdle superhurdle

superhurdle superhurdle

L M

superhurdle

simple hurdle

Figure 10.16:The permutation in (a) is a 3-fortress, while the permutation in (b), with the same

cover graph, is not a fortress (hurdleU is not a superhurdle).

Proof Every reversal on a permutation� can reduceh(�) by at most 2 and the
only operation that can reduce the number of hurdles by 2 is merging of hurdles.
On the other hand, lemma 10.18 implies that merging of hurdles in a 3-fortress can
reduceh(�) by at most 1. Therefore,�h � �1. Note that for every reversal that
does not act on edges of thesamecycle,�c = �1, and therefore, every reversal
that does not act on edges of the same cycle in a 3-fortress is unsafe.

If � acts on a cycle in an unoriented component of a 3-fortress, then it does not
reduce the number of hurdles. Since�c = 0 for a reversal on an unoriented cycle,
� is unsafe.

If � acts on a cycle in an oriented component of a 3-fortress, then it does not
destroy any unoriented components in� and does not reduce the number of hurdles.
If � increases the number of hurdles, then�h � 1 and�c � 1 imply that � is
unsafe. If the number of hurdles in�� remains the same, then every superhurdle in
� remains a superhurdle in��, thus implying that�� is a 3-fortress, a contradiction.

10.10. DUALITY THEOREM FOR REVERSAL DISTANCE 211

Lemma 10.24 If � is a 3-fortress, thend(�) = n+ 1� c(�) + h(�) + 1.

Proof Lemma 10.23 implies that every sorting of 3-fortress contains at least one
unsafe reversal. Therefored(�) � b(�)� c(�) + h(�) + 1.

If � has oriented cycles, all oriented components in� can be destroyed by safe
paddings (theorem 10.7) and safe reversals in oriented components (theorem 10.9)
without affecting unoriented components.

If � is a 3-fortress without oriented cycles, then an (unsafe) reversal� merging
arbitrary hurdles in� leads to a permutation�� with two hurdles (lemma 10.18).
Once again, oriented cycles appearing in�� after such merging can be destroyed
by safe paddings and safe reversals in oriented components (theorems 10.7 and
10.9), leading to a permutation� with h(�) = 2. Theorems 10.7 and 10.9 and
lemma 10.21 imply that� can be sorted by safe paddings and safe reversals.
Hence, there exists a generalized sorting of� such that all paddings and all re-
versals but one in this sorting are safe. Therefore, this generalized sorting contains
n+1�c(�)+h(�)+1 reversals. Lemma 10.11 implies that the generalized sorting
of � mimics an optimal (genuine) sorting of� by d(�) = n+1� c(�) +h(�) + 1
reversals.

In the following, we try to avoid creating 3-fortresses in the course of sorting
by reversals. If we are successful in this task, the permutation� can be sorted in
n + 1 � c(�) + h(�) reversals. Otherwise, we show how to sort� in n + 1 �
c(�) + h(�) + 1 reversals and prove that such permutations cannot be sorted with
a smaller number of reversals. A permutation� is called afortressif it has an odd
number of hurdles and all of these hurdles are superhurdles.

Lemma 10.25 If � is a reversal destroying a fortress� with h(�) superhurdles
(i.e.,�� is not a fortress withh(�) superhurdles), then either� is unsafe or�� is a
fortress withh(�) � 2 superhurdles.

Proof Every reversal acting on a permutation can reduce the number of hurdles by
at most two, and theonlyoperation that can reduce the number of hurdles by two is
a merging of hurdles. Arguments similar to the proof of lemma 10.23 demonstrate
that if � does not merge hurdles, then� is unsafe. If a safe reversal� does merge
(super)hurdlesL andM in �, then lemma 10.18 implies that this reversal reduces
the number of hurdles by two, and, ifh(�) > 3, does not create new hurdles.
Also, lemma 10.22 implies that every superhurdle in� exceptL andM remains a
superhurdle in��, thus implying that�� is a fortress withh(�)�2 superhurdles.

Lemma 10.26 If � is a fortress, thend(�) � n+ 1� c(�) + h(�) + 1.

212 CHAPTER 10. GENOME REARRANGEMENTS

Proof Lemma 10.25 implies that every sorting of� either contains an unsafe re-
versal or gradually decreases the number of superhurdles in� by transforming a
fortress withh (super)hurdles into a fortress withh� 2 (super)hurdles. Therefore,
if a sorting of� uses only safe reversals, then it will eventually lead to a 3-fortress.
Therefore, by lemma 10.23, every sorting of a fortress contains at least one unsafe
reversal, and hence,d(�) � n+ 1� c(�) + h(�) + 1.

Finally, we formulate the duality theorem for sorting signed permutations by
reversals:

Theorem 10.10 (Hannenhalli and Pevzner, 1995 [154]) For every permutation�,

d(�) =

(
n+ 1� c(�) + h(�) + 1; if � is a fortress
n+ 1� c(�) + h(�); otherwise.

Proof If � has an even number of hurdles, then safe paddings (theorem 10.7),
safe reversals in oriented components (theorem 10.9), and safe hurdles merging
(lemmas 10.20 and 10.21) lead to a generalized sorting of� byn+1�c(�)+h(�)
reversals.

If � has an odd number of hurdles, at least one of which is simple, then there
exists a safe reversal cutting this simple hurdle (lemma 10.17). This safe reversal
leads to a permutation with an even number of hurdles. Therefore, similar to the
previous case, there exists a generalized sorting of� using only safe paddings and
n+ 1� c(�) + h(�) safe reversals.

Therefore, if� is not a fortress, there exists a generalized sorting of� byn+1�
c(�) + h(�) reversals. Lemma 10.11 implies that this generalized sorting mimics
optimal (genuine) sorting of�.

If � is a fortress there exists a sequence of safe paddings (theorem 10.7),
safe reversals in oriented components (theorem 10.9), and safe hurdle mergings
(lemma 10.20) leading to a 3-fortress that can be sorted by a series of reversals
having at most one unsafe reversal. Therefore, there exists a generalized sorting of
� usingn+1�c(�)+h(�)+1 reversals. Lemma 10.26 implies that this generalized
sorting mimics optimal (genuine) sorting of� with d(�) = n+1�c(�)+h(�)+1
reversals.

This theorem explains the mystery of the astonishing performance of approxi-
mation algorithms for sorting signed permutations by reversals. A simple explana-
tion for this performance is that the boundd(�) � n+1� c(�) is extremely tight,
sinceh(�) is small for “random” permutations.

10.11. ALGORITHM FOR SORTING BY REVERSALS 213

10.11 Algorithm for Sorting by Reversals

Lemmas 10.11, 10.20, 10.17, and 10.21 and theorems 10.7, 10.9, and 10.10 moti-
vate the algorithmReversal Sort, which optimally sorts signed permutations.

ReversalSort(�)
1. while� is not sorted
2. if � has a long cycle
3. select a safe(g; b)-padding� of � (theorem 10.7)
4. else if� has an oriented component
5. select a safe reversal� in this component (theorem 10.9)
6. else if� has an even number of hurdles
7. select a safe reversal� merging two hurdles in� (lemmas 10.20 and 10.21)
8. else if� has at least one simple hurdle
9. select a safe reversal� cutting this hurdle in� (lemmas 10.17 and 10.21)
10. else if� is a fortress with more than three superhurdles
11. select a safe reversal� merging two (super)hurdles in� (lemma 10.20)
12. else =� � is a 3-fortress�=
13. select an (un)safe reversal� merging two arbitrary (super)hurdles in�
14. � � � �
15. endwhile
16. mimic (genuine) sorting of� by the computed generalized sorting of�
(lemma 10.11)

Theorem 10.11Reversal Sort(�) optimally sorts a permutation� of ordern in
O(n4) time.

Proof Theorem 10.10 implies thatReversal Sort provides a generalized sorting
of � by a series of reversals and paddings containingd(�) reversals. Lemma 10.11
implies that this generalized sorting mimics an optimal (genuine) sorting of� by
d(�) reversals.

Note that every iteration of thewhile loop inReversal Sort reduces the quan-
tity complexity(�) + 3d(�) by at least 1, thus implying that the number of iter-
ations ofReversal Sort is bounded by4n. The most “expensive” iteration is a
search for a safe reversal in an oriented component. Since for simple permutations
it can be implemented inO(n3) time, the overall running time ofReversal Sort
isO(n4).

Below we describe a simpler version ofReversal Sort that does not use
paddings and runs inO(n5) time. Define

f(�) =

(
1; if � is a fortress
0; otherwise.

214 CHAPTER 10. GENOME REARRANGEMENTS

A reversal� is valid if �(c � h � f) = 1. The proofs of theorem 10.6 and
lemma 10.26 imply that�(c� h� f) � �1. This observation and theorem 10.10
imply the following:

Theorem 10.12For every permutation�, there exists a valid reversal in�. Every
sequence of valid reversals sorting� is optimal.

Theorem 10.12 motivates the simple version ofReversal Sort, which is very
fast in practice:

Reversal Sort Simple(�)
1. while� is not sorted
2. select a valid reversal� in � (theorem 10.12)
3. � � � �
4. endwhile

10.12 Transforming Men into Mice

Analysis of rearrangements in multichromosomal genomes makes use of the dual-
ity theorem for unichromosomal genomes (Hannenhalli and Pevzner, 1995 [154])
and two additional ideas called chromosomeflipping and capping. In studies
of genome rearrangements in multichromosomal genomes, achromosomeis de-
fined as asequenceof genes, while agenomeis defined as aset of chromo-
somes. Let� = f�(1); : : : ; �(N)g be a genome consisting ofN chromosomes,
and let�(i) = �(i)1 : : : �(i)ni , ni be the number of genes in thei-th chromo-
some. Every chromosome� can be viewed either from “left to right” (i.e., as
� = �1 : : : �n) or from “right to left” (i.e., as�� = ��n : : :� �1), leading to two
equivalent representations of the same chromosome. From this perspective, a 3-
chromosomal genomef�(1); �(2); �(3)g is equivalent tof�(1);��(2); �(3)g or
f��(1); �(2);��(3)g, i.e., thedirectionsof chromosomes are irrelevant. The four
most common elementary rearrangement events in multichromosomal genomes are
reversals, translocations, fusions, andfissions.

We distinguish betweeninternal reversals, which do not involve the ends of
the chromosomes (i.e., the reversals�(�; i; j) of ann-gene chromosome� with
1 < i � j < n), andprefix reversals, involving ends of the chromosomes (i.e.,
either i = 1 or j = n). A translocation isinternal if it is neither a fusion nor a
fission.

For a chromosome� = �1 : : : �n, the numbers+�1 and��n are calledtails
of �. Note that changing the direction of a chromosome does not change the set of
its tails. Tails in anN -chromosomal genome� comprise the setT (�) of 2N tails.
In this section we considerco-tailedgenomes� and� with T (�) = T (�). For
co-tailed genomes, internal reversals and translocations are sufficient for genomic

10.12. TRANSFORMING MEN INTO MICE 215

sorting— i.e., prefix reversals, fusions, and fissions can be ignored (the validity of
this assumption will become clear later). For chromosomes� = �1 : : : �n and� =
�1 : : : �m, denote the fusion�1 : : : �n�1 : : : �m as�+� and the fusion(�1 : : : �n�
�m : : : � �1) as� � �. Given an ordering of chromosomes(�(1); : : : ; �(N)) in a
genome� and aflip vectors = (s(1); : : : ; s(N)) with s(i) 2 f�1;+1g, one can
form a concatenateof � as a permutation�(s) = s(1)�(1) + : : : + s(N)�(N)

on
PN

i=1 ni elements. Depending on the choice of a flip vector, there exist2N

concatenates of� for each ofN ! orderings of chromosomes in�. If the order of
chromosomes in a genome� is fixed we call� anorderedgenome.

In this section we assume without loss of generality, that� = (
1; : : : ;
N)
is an (ordered) genome and that
 =
1 + : : : +
N is the identity permutation.
We denoted(�) � d(�;�) and call the problem of a genomic sorting of� into �
simply asorting of a genome�.

We use the following idea to analyze co-tailed genomes. Given a concatenate�
of a genome�, one can optimally sort� by reversals. Every reversal in this sorting
corresponds to a reversal or a translocation in a (not necessarily optimal) sorting of
the genome�. For example, a translocation�(�; �; i; j) acting on chromosomes
� = �1 : : : �n and� = �1 : : : �m (Figure10.17 can be alternatively viewed as a
reversal�(� � �; i; n + (m � j + 1)) acting on� � � (and vice versa). Define
an optimal concatenateof � as a concatenate� with minimum reversal distance
d(�) among all concatenates of�. Below we prove that sorting of an optimal
concatenate of� mimics an optimal sorting of a genome�. This approach reduces
the problem of sorting� to the problem of finding an optimal concatenate of�.

In the following, by the number of cycles, we mean the number of cycles of
length greater than 2, i.e.,c(�)�a(�), wherea(�) is the number of adjacencies (ev-
ery adjacency is a cycle of length 2). Sinceb(�) = n+1� a(�), the Hannenhalli-
Pevzner theorem can be reformulated asd(�) = b(�)�c(�)+h(�)+f(�), where
f(�) = 1 if � is a fortress andf(�) = 0 otherwise.

Let � be a concatenate of� = (�(1); : : : ; �(N)). Every tail of�(i) corre-
sponds to two vertices of the breakpoint graphG(�), exactly one of which is a
boundary (either leftmost or rightmost) vertex among the vertices of the chromo-
some�(i) in the concatenate�. We extend the termtail to denote such vertices in
G(�). An edge in a breakpoint graphG(�) of a concatenate� is interchromosomal
if it connects vertices in different chromosomes of�, andintrachromosomaloth-
erwise. A component of� is interchromosomalif it contains an interchromosomal
edge, andintrachromosomalotherwise.

Every interchromosomal black edge inG(�) connects two tails. Letbtail(�)
(notice thatbtail(�) = N � 1) be the number of interchromosomal black edges
in G(�). Note that for co-tailed genomes, tails inG(�) are adjacent only to tails,
and hence a cycle containing a tail contains only tails. Letctail(�) be the number
of cycles ofG(�) containing tails. Defineb(�) = b(�) � btail(�) (notice that

216 CHAPTER 10. GENOME REARRANGEMENTS

A1

B1 B2

A2 A1

B1

B2

A2

A1 A2 -B2 -B1 A1 B2 -B1-A2

translocation

reversal

concatenation concatenation

Translocations and reversals of concatenates

Figure 10.17:Translocations can be mimicked by reversals in a concatenated genome.

b(�) = n�N andb(�) = n� 1) andc(�) = c(�)� ctail(�).
Consider the set of intrachromosomal unoriented componentsIU� in �. Hur-

dles, superhurdles, and fortresses for the setIU� are calledknots, superknots,and
fortresses-of-knotsrespectively. Letk(�) be the number of knots in a concatenate
� of �. Definef(�) = 1 if � is a fortress-of-knots, andf(�) = 0 otherwise.
Clearly,b(�), c(�), k(�), andf(�) do not depend on the choice of a concatenate
�.

Lemma 10.27 For co-tailed genomes� and�, d(�) � b(�) � c(�) + k(�) +
f(�).

Proof A more involved version of the proof of lemma 10.26.

Concatenates�(s) and�(s0) of an (ordered) genome� arei-twins if the di-
rections of all chromosomes except thei-th one in�(s) and�(s0) coincide, i.e.,

10.12. TRANSFORMING MEN INTO MICE 217

s(i) = �s0(i) ands(j) = s0(j) for j 6= i. A chromosome�(i) is properly flipped
in �(s) if all interchromosomal edges originating in this chromosome belong to
oriented components in�(s). A concatenate� is properly flippedif every chro-
mosome in� is properly flipped. The following lemma proves the existence of a
properly flipped concatenate.

Lemma 10.28 If a chromosome�(i) is not properly flipped in� = �(s), then it is
properly flipped in thei-twin�0 of�. Moreover, every properly flipped chromosome
in � remains properly flipped in�0.

Proof Let g be an interchromosomal gray edge in� originating in the chromosome
�(i) and belonging to an unoriented component in�. Note that the orientation of
any interchromosomal gray edge originating at�(i) is different in� as compared
to �0 (i.e., a non-oriented edge in� becomes oriented in�0, and vice versa). Since
all edges interleaving withg in � are unoriented, every interchromosomal edge
originating at�(i) and interleaving withg in � is oriented in�0.

All interchromosomal edges originating in�(i) that are not interleaving withg
in � interleave withg in �0. Sinceg is oriented in�0, all such edges belong to an
oriented component containingg in �0. Therefore,�(i) is properly flipped in�0.

Let�(j) be a properly flipped chromosome in�. If �(j) is not properly flipped
in �0, then there exists an interchromosomal unoriented componentU having an in-
terchromosomal gray edge originating at�(j) in �0. If U does not have an edge
originating at�(i) in �0, thenU is an unoriented component in�, implying that
�(j) was not properly flipped in�, a contradiction. IfU has an (unoriented) gray
edgeh originating at�(i), then clearly, this edge does not interleave withg in �0.
Therefore,h interleaves withg in � andh is oriented in�, thus implying thatg
belonged to an oriented component in�, a contradiction.

Lemma 10.28 implies the existence of a properly flipped concatenate� = �(s)
with h(�) = k(�) andf(�) = f(�). Below we show that there exists a sorting of
� by b(�) � c(�) + h(�) + f(�) reversals that mimics a sorting of� by b(�) �
c(�) + k(�) + f(�) internal reversals and translocations.

Theorem 10.13 (Hannenhalli and Pevzner, 1995 [153]) For co-tailed genomes�
and�, d(�;�) � d(�) = b(�)� c(�) + k(�) + f(�).

Proof Assume the contrary, and let� be a genome with a minimum value of
b(�)� c(�) + h(�) + f(�) among the genomes for which the theorem fails. Let
� be a properly flipped concatenate of� with a minimal value ofbtail(�)�ctail(�)
among all properly flipped concatenates of�.

If btail(�) = ctail(�) (i.e., every interchromosomal black edge is involved in a
cycle of length 2), then there exists an optimal sorting of� by b(�)�c(�)+k(�)+

218 CHAPTER 10. GENOME REARRANGEMENTS

f(�) reversals that act on intrachromosomal black edges (Hannenhalli and Pevzner,
1995 [154]). Every such reversal� can be mimicked as an internal reversal or an
internal translocation on�, thus leading to a sorting of� by b(�)� c(�)+k(�)+
f(�) internal reversals/translocations. Since� is a properly flipped concatenate,
b(�) = b(�) + btail(�), c(�) = c(�) + ctail(�), h(�) = k(�), andf(�) = f(�).
Therefore, optimal sorting of� mimics an optimal sorting of� by b(�)� c(�) +
k(�) + f(�) internal reversals/translocations.

If btail(�) > ctail(�), then there exists an interchromosomal black edge in-
volved in a cycle of length greater than 2, and this edge belongs to an oriented com-
ponent in� (since every interchromosomal black edge belongs to an oriented com-
ponent in a properly flipped concatenate). Hannenhalli and Pevzner, 1995 [154]
proved that if there exists an oriented component in�, then there exists a rever-
sal � in � acting on the black edges of an oriented cycle in this component such
that c(��) = c(�) + 1. Moreover, this reversal does not create new unoriented
components in��, andh(��) = h(�) andf(��) = f(�). Note that every cy-
cle containing tails of chromosomes belongs to an oriented component in� and
consists entirely of edges between tails. Therefore,� acts either on two intrachro-
mosomal black edges or on two interchromosomal black edges belonging to some
oriented cycle of this component.

A reversal� acting on two interchromosomal black edges can be viewed as a
transformation of a concatenate� of

� = (�(1); : : : ; �(i � 1); �(i); : : : ; �(j); �(j + 1); : : : ; �(N))

into a concatenate��0 = �0(s0), where�0 is a new ordering

(�(1); : : : ; �(i � 1); �(j); : : : ; �(i); �(j + 1); : : : ; �(N))

of the chromosomes and

s0 = (s(1); : : : ; s(i� 1);�s(j); : : : ;�s(i); s(j + 1); : : : ; s(N)):

Therefore,btail(��) � ctail(��) = btail(�) � (ctail(�) + 1) and�� is a properly
flipped concatenate of�, a contradiction to the minimality ofbtail(�)� ctail(�).

If reversal� acts on two intrachromosomal black edges, then�� is a properly
flipped concatenate of��, implying that

b(�)�c(�)+k(�)+f(�) = (b(�)�btail(�))�(c(�)�ctail(�))+h(�)+f(�) =
(b(��) � btail(��))� (c(��) � 1� ctail(��)) + h(��) + f(��) =

b(��)� c(��) + h(��) + f(��) + 1 .

Sinceb(�)�c(�)+k(�)+f(�) > b(��)�c(��)+h(��)+f(��), the theorem
holds for the genome��. Therefore,d(�) � d(��)+1 = b(�)� c(�)+k(�)+
f(�).

10.13. CAPPING CHROMOSOMES 219

A B

fusion

fission

A B
translocation

A

B

A

B

adding
empty
chromosome

adding
empty
genes

Translocations and fusions/fissions

Figure 10.18:Fusions/fissions can be mimicked by translocations by introducing empty chromo-

somes.

10.13 Capping Chromosomes

We now turn to the general case in which genomes� and� might have different
sets of tails and different number of chromosomes. Below we describe an algorithm
for computingd(�;�) that is polynomial in the number of genes but exponential in
the number of chromosomes. This algorithm leads to the (truly) polynomial-time
algorithm that is described in the following sections.

Let � and� be two genomes withM andN chromosomes. Without loss of
generality, assume thatM � N and extend� by N �M empty chromosomes
(Figure 10.18). As a result,� = f�(1); : : : ; �(N)g and� = f
(1); : : : ;
(N)g
contain the same number of chromosomes. Letfcap0; : : : ; cap2N�1g be a set of
2N distinct positive integers (calledcaps) that are different from the genes of�
(or equivalently,�). Let �̂ = f�̂(1); : : : ; �̂(N)g be a genome obtained from� by
adding caps to the ends of each chromosome, i.e.,

�̂(i) = cap2(i�1); �(i)1; : : : ; �(i)ni ; cap2(i�1)+1:

Note that every reversal/translocation in� corresponds to aninternal reversal/trans-
location in�̂. If this translocation is a fission, we assume that there are enough
empty chromosomes in� (the validity of this assumption will become clear later).

Every sorting of� into � induces a sorting of̂� into a genome

�̂ = f
̂(1); : : : ;
̂(N)g
(called acappingof �), where

̂(i) = ((�1)jcapj ;
̂(i)1; : : : ;
̂(i)mi
; (�1)k+1capk)

220 CHAPTER 10. GENOME REARRANGEMENTS

for 0 � j; k � 2N � 1. Genomeŝ� and�̂ are co-tailed, sinceT (�̂) = T (�̂) =S2N�1
i=0 (�1)icapi. There exist(2N)! different cappings of�, each capping defined

by the distribution of2N caps of�̂ in �̂. Denote the set of(2N)! cappings of
� as�. The following lemma leads to an algorithm for computing genomic dis-
tance that is polynomial in the number of genes but exponential in the number of
chromosomesN .

Lemma 10.29 d(�;�) = min�̂2� b(�̂; �̂)� c(�̂; �̂) + k(�̂; �̂) + f(�̂; �̂):

Proof Follows from theorem 10.13 and the observation that every sorting of�̂ into
a genomê� 2 � by internal reversals/translocations induces a sorting of� into �.

Let �̂ and
̂ be arbitrary concatenates of (ordered) cappings�̂ and �̂. Let
G(�̂; �̂) be a graph obtained fromG(�̂;
̂) by deleting all tails (vertices ofG(�̂;
̂))
of genomê� (or equivalently,̂�) fromG(�̂;
̂). Different cappingŝ� correspond to
different graphsG(�̂; �̂). GraphG(�̂; �̂) has2N vertices corresponding to caps;
gray edges incident on these vertices completely define the capping�̂. Therefore,
deleting these2N gray edges transformsG(�̂; �̂) into a graphG(�;�) that does
not depend on cappinĝ� (Figure 10.19a, b, c, and d).

GraphG(�;�) contains2N vertices of degree 1 corresponding to2N caps
of � (called�-caps) and2N vertices of degree 1 corresponding to2N tails of�
(called�-tails). Therefore,G(�;�) is a collection of cycles and2N paths, each
path starting and ending with a black edge. A path is a��-path (��-path) if it
starts and ends with�-caps (�-tails), and a��-path if it starts with a�-cap and
ends with a�-tail. A vertex inG(�;�) is a��-vertexif it is a �-cap in a��-path,
and a��-vertex if it is a �-cap in a��-path. ��- and��-vertices are defined
similarly (see Figure 10.19d).

Every cappinĝ� corresponds to adding2N gray edges to the graphG(�;�),
each edge joining a�-cap with a�-tail. These edges transformG(�;�) into the
graphG(�̂; �̂) corresponding to a cappinĝ� (Figure 10.19e).

Defineb(�;�) as the number of black edges inG(�;�), and definec(�;�)
as the overall number of cycles and paths inG(�;�). The parameterb(�;�) =
b(�̂; �̂) does not depend on capping�̂. Clearly,c(�̂; �̂) � c(�;�), with c(�̂; �̂) =
c(�;�) if every path inG(�;�) is “closed” by a gray edge inG(�̂; �̂). The ob-
servation that every cycle inG(�̂; �̂) containing a��-path contains at least one
more path leads to the inequalityc(�̂; �̂) � c(�;�) � p(�;�), wherep(�;�) is
the number of��-paths (or equivalently,��-paths) inG(�;�).

We define the notions of interleaving cycles/paths, oriented and unoriented
components, etc. in the graphG(�;�) in the usual way by making no distinction

10.14. CAPS AND TAILS 221

between cycles and paths inG(�;�). We say that a vertex�j is insidea compo-
nentU of � if j 2 [�Umin; �Umax]. An intrachromosomal component for genomes
� and� is called areal component if it has neither a�-cap nor a�-tail inside.

For genomes� and�, defineRU(�;�) as the set of real components and de-
fineIU(�;�) as the set of intrachromosomal components (as defined by the graph
G(�;�)). ClearlyRU(�;�) � IU(�;�). Hurdles, superhurdles, and fortresses
for the setRU(�;�) are calledreal-knots, super-real-knots, andfortresses-of-real-
knots. LetRK be the set of real-knots (i.e., hurdles for the setRU(�;�)), and let
K be the set of knots (i.e., hurdles for the setIU(�;�)). A knot from the set
K n RK is asemi-knotif it does not contain a��- or ��-vertex inside. Clearly,
every semi-knot contains a��-path (otherwise, it would be a real-knot). Denote
the number of real-knots and semi-knots for genomes� and� as r(�;�) and
s(�;�), respectively. Clearlyk(�̂; �̂) � r(�;�), implying that

b(�̂; �̂)� c(�̂; �̂) + k(�̂; �̂) � b(�;�)� c(�;�) + p(�;�) + r(�;�):

However, this bound is not tight, since it assumes that there exists a capping�̂ that
simultaneously maximizesc(�̂; �̂) and minimizesk(�̂; �̂). Taking s(�;�) into
account leads to a better bound for genomic distance that is at most 1 rearrangement
apart from the genomic distance.

10.14 Caps and Tails

Genomes� and� arecorrelated if all the real-knots inG(�;�) are located on
the same chromosome andnon-correlatedotherwise. In this section we restrict
our analysis to non-correlated genomes (it turns out that the analysis of correlated
genomes involves some additional technical difficulties) and prove a tight bound
for d(�;�) (this bound leads to a rather complicated potential function used in the
proof of the duality theorem):

b(�;�)� c(�;�) + p(�;�) + r(�;�) + ds(�;�)
2
e � d(�;�) �

b(�;�)� c(�;�) + p(�;�) + r(�;�) + ds(�;�)
2
e+ 1

The following lemmas suggest a way to connect some paths inG(�;�) by oriented
edges.

Lemma 10.30 For every��-path and��-path inG(�;�), there exists either an
interchromosomal or an oriented gray edge that joins these paths into a��-path.

222 CHAPTER 10. GENOME REARRANGEMENTS

Lemma 10.31 For every two unoriented��-paths located on the same chromo-
some, there exists an oriented gray edge that joins these paths into a��-path.

In a search for an optimal capping, we first ignore the termf(�̂; �̂) in lemma 10.29
and find a capping whose genomic distanced(�̂; �̂) is within 1 from the optimal.
The following theorem suggests a way to find such an “almost optimal” capping�̂.

Theorem 10.14min�̂2� b(�̂; �̂) � c(�̂; �̂) + k(�̂; �̂) = b(�;�) � c(�;�) +

p(�;�) + r(�;�) + d s(�;�)2 e.

Proof Every cappinĝ� defines a transformation ofG(�;�) intoG(�̂; �̂) by con-
secutively adding2N gray edges toG(�;�): G(�;�) = G0

g1! G1
g2! : : :

g2N!
G2N = G(�̂; �̂): For a graphGi, the parametersbi = b(Gi), ci = c(Gi), pi =
p(Gi), ri = r(Gi), andsi = s(Gi) are defined in the same way as for the graph
G0 = G(�;�). For a parameter�, define��i as�i � �i�1, i.e.,�ci = ci � ci�1,
etc. Denote�i = (ci�pi� ri�d si2 e)� (ci�1�pi�1� ri�1�d si�1

2 e). Below we
prove that�i � 0 for 1 � i � 2N , i.e., adding a gray edge does not increase the
parameterc(�;�) � p(�;�)� r(�;�)� d s(�;�)2 e. For a fixedi, we ignore index
i, i.e., denote� = �i, etc.

Depending on the edgegi, the following cases are possible (the analysis below
assumes that� and� are non-correlated):

Case 1: edgegi “closes” a ��-path (i.e., gi connects a��-vertex with a
��-vertex within the same��-path). If this vertex is the only��-vertex in a
semi-knot, then�c = 0;�p = 0;�r = 1, and�s = �1 (note that this might
not be true for correlated genomes). Otherwise�c = 0;�p = 0;�r = 0, and
�s = 0. In both cases,� � 0.

Case 2: edgegi connects a��-vertex with a��-vertex in a different��-path.
This edge “destroys” at most two semi-knots, and�c = �1;�p = 0;�r = 0,
and�s � �2. Therefore� � 0.

Case 3: edgegi connects a��-vertex with a��-vertex (or a��-vertex with
a��-vertex). This edge “destroys” at most one semi-knot, and�c = �1;�p =
0;�r = 0, and�s > �2. This implies� � 0.

Case 4: edgegi connects a��-vertex with a��-vertex. This edge cannot
destroy any semi-knots, and�c = �1;�p = �1;�r = 0, and�s � 0. This
implies� � 0.

Note thatb2N = b(�̂; �̂) = b(�;�) = b0, c2N = c(�̂; �̂), p2N = 0, s2N = 0,
andr2N = k(�̂; �̂). Therefore,b(�̂; �̂)�c(�̂; �̂)+k(�̂; �̂) = b2N �c2N +p2N+
r2N+d s2N2 e � b0�c0+p0+r0+d s02 e = b(�;�)�c(�;�)+p(�;�)+r(�;�)+

d s(�;�)2 e.

10.15. DUALITY THEOREM FOR GENOMIC DISTANCE 223

We now prove that there exists a capping�̂ such that

b(�̂; �̂)�c(�̂; �̂)+k(�̂; �̂) = b(�;�)�c(�;�)+p(�;�)+r(�;�)+ds(�;�)
2
e

by constructing a sequence of2N gray edgesg1; : : : ; g2N connecting�-caps with
�-tails inG(�;�) such that�i = 0 for all 1 � i � 2N .

Assume that the firsti � 1 such edges are already found, and letGi�1 be the
result of adding thesei � 1 edges toG(�;�). If Gi�1 has a��-path, then it
has a��-path as well, and by lemma 10.30, there exists an interchromosomal or
oriented gray edge joining these paths into an oriented��-path. Clearly�c = �1,
�p = �1, �r = 0, and�s = 0 for this edge, implying� = 0.

If Gi�1 has at least two semi-knots (i.e.,si�1 > 1), let v1 andv2 be a��-
and a��-vertex in different semi-knots. Ifv1 andv2 are in different chromosomes
of �, then the gray edgegi = (v1; v2) “destroys” both semi-knots. Therefore
�c = �1;�p = 0;�r = 0;�s = �2, and� = 0. If v1 andv2 belong to the
same chromosome, then by lemma 10.31 there exists an oriented gray edge joining
these paths into an oriented��-path. This gray edge destroys two semi-knots.
Therefore,� = 0 in this case also.

If Gi�1 has the only semi-knot, letP1 be a��-path in this semi-knot. If
it is the only��-path in the semi-knot, then for an edgegi “closing” this path,
�c = 0;�p = 0;�r = 1, and�s = �1, implying that� = 0. Otherwise,
�c = 0;�p = 0;�r = 0, and�s = 0, implying that� = 0.

If Gi�1 has neither a��-path nor a semi-knot, then letgi be an edge closing
an arbitrary��-path inGi�1. Sincegi does not belong to a semi-knot,�c =
0;�p = 0;�r = 0;�s = 0, and� = 0. Therefore, the constructed sequence of
edgesg1; : : : ; g2N transformsG(�;�) intoG(�̂; �̂) such thatb(�̂; �̂)� c(�̂; �̂)+
k(�̂; �̂) = b(�;�) � c(�;�) + p(�;�) + r(�;�) + d s(�;�)2 e.

Since0 � f(�;�) � 1, lemma 10.29 and theorem 10.14 imply thatb(�;�)�
c(�;�) + p(�;�) + r(�;�) + d s(�;�)2 e is within one rearrangement from the
genomic distanced(�;�) for non-correlated genomes. In the following section
we close the gap betweenb(�;�) � c(�;�) + p(�;�) + r(�;�) + d s(�;�)2 e and
d(�;�) for arbitrary genomes.

10.15 Duality Theorem for Genomic Distance

The major difficulty in closing the gap betweenb(�;�) � c(�;�) + p(�;�) +

r(�;�) + d s(�;�)2 e andd(�;�) is “uncovering” remaining “obstacles” in the du-
ality theorem. It turns out that the duality theorem involves seven (!) parameters,

224 CHAPTER 10. GENOME REARRANGEMENTS

making it very hard to explain an intuition behind it. Theorem 10.14 provides such
an intuition for the first five parameters. Two more parameters are defined below.

A component inG(�;�) containing a��-path issimpleif it is not a semi-knot.

Lemma 10.32 There exists an optimal cappinĝ� that closes all��-paths in sim-
ple components.

Let G be a graph obtained fromG(�;�) by closing all��-paths in simple
components. Without confusion we can use the termsreal-knots, super-real-knots,
andfortress-of-real-knots inG and definerr(�;�) as the number of real-knots in
G. Note thatrr(�;�) does not necessarily coincide withr(�;�).

Correlated genomes� and� form aweak-fortress-of-real-knotsif (i) they have
an odd number of real-knots inG , (ii) one of the real-knots is the greatest real-knot
in G, (iii) every real-knot but the greatest one is a super-real-knot inG, and (iv)
s(�;�) > 0. Notice that a weak-fortress-of-real-knots can be transformed into a
fortress-of-real-knots by closing��-paths contained in one of the semi-knots.
Define two more parameters as follows:

fr(�;�) =

8>><
>>:
1;

if � and � form a fortress-of-
real-knots or a weak-fortress-of-
real-knots inG

0; otherwise

gr(�;�) =

8<
: 1;

if there exists the greatest real-
knot inG ands(�;�) > 0

0; otherwise

The following theorem proves thatGenomic Sort (Figure 10.20) solves the
genomic sorting problem. The running time ofGenomic Sort (dominated by the
running time of sorting signed permutations by reversals) isO(n4), wheren is the
overall number of genes.

Theorem 10.15 (Hannenhalli and Pevzner, 1995[153])

d(�;�) =

b(�;�)� c(�;�) + p(�;�) + rr(�;�) + ds(�;�)� gr(�;�) + fr(�;�)

2
e:

10.15. DUALITY THEOREM FOR GENOMIC DISTANCE 225

+10+9+11+12

+5+6+7+8

+1+2+3+4

-9-10+11+12

+5+6+7+8

+1+2+3+4

+9-10+11+12

+1+2+3+4

+5+6+7+8

+9+10+11+12

+5+6+7+8

+1+2+3+4

Γ

translocation

Π
fission

+10+9+11+12

-3-2

+10+9+11+8

-3-2
-3-2-1+4+5+6+7+8

+10+9+11+12
+10+9+11+12

-3-2-1+4

-1+4+5+6+7+12 -1+4+5+6+7+8 +5+6+7+8

fusion

reversal

reversal reversal reversal

chromosome 3

ΠΓ

ΓΓ
ΠΠ

ΠΓΠΓ

Genomes Cappings Concatenates

Π:

Γ: γ:

π:Π:

Γ:

^

^

G (Π,Γ)

G (π,γ)^

G (Π,Γ)

^

^ ^

^

^

(f)

(e)

(d)

(c)

(b)

(a)

(-3-2)(-1+4+5+6+7+12)(+10+9+11+8)

(+1+2+3+4)(+5+6+7+8)(+9+10+11+12)

(+13-3-2+14)(+15-1+4+5+6+7+12+16)(+17+10+9+11+8+18)

(+13+1+2+3+4+14)(+15+5+6+7+8+16)(+17+9+10+11+12+18)

+13-3-2+14+15-1+4+5+6+7+12+16+17+10+9+11+8+18

+13+1+2+3+4+14+15+5+6+7+8+16+17+9+10+11+12+18

0 +13 -3 -2 +14 +15 -1 +4 +5 +6 +7 +12 +16 +17 +10 +9 +11 +8 +18 19

+11+9+10+17+12+7 +16+6+5+15 +4-1+14-2-3

-3 -2 +14 +15 -1 +4 +5 +6

-3 -2 +14 +15 -1 +4 +5 +6

+7 +12 +16 +17 +10 +9

+7 +12 +16 +17 +10 +9 +11
chromosome 3

chromosome 1

chromosome 1 chromosome 2

chromosome 2chromosome 1

chromosome 2

chromosome 3chromosome 2

-path

-path -path -path ΠΓ-path -path

semi-knot

+11
chromosome 3

+13

+13

+13

+8

+8

+8 +18

+18

+18

chromosome 1

Figure 10.19:(a) Genomes� and�, cappings�̂ and �̂, and concatenateŝ� and
̂. (b) Graph

G(�̂;
̂). Tails are shown as white boxes. (c) GraphG(�̂; �̂) is obtained fromG(�̂;
̂) by deleting the

tails. Caps are shown as white circles. (d) GraphG(�;�) with four cycles and six paths (c(�;�) =

10). �-caps are shown as boxes, while�-tails are shown by diamonds. For genomes� and�,

b(�;�) = 15, r(�;�) = 0, p(�;�) = 1, s(�;�) = 1, andgr(�;�) = fr(�;�) = 0. Therefore,

d(�;�) = 15�10+1+0+d 1�0+0

2
e = 7. (e) GraphG(�̂; �̂) corresponding to an optimal capping

of �̂ = (+13+ 1+ 2+ 3+ 4� 15)(�14 + 5 + 6 + 7 + 8 + 18)(+17 + 9+ 10 + 11 + 12 + 16).

Added gray edges are shown by thick dashed lines. (f) Optimal sorting of� into � with seven

rearrangements.

226 CHAPTER 10. GENOME REARRANGEMENTS

Genomic Sort (�;�)
1. Construct the graphG = G(�;�)
2. Close all��-paths in simple components ofG(�;�) (lemma 10.32)
3. Close all but one��-path in components having more than one��-path inside them
4. whileG contains a path
5. if there exists a��-path inG
6. find an interchromosomal or an oriented edgeg joining this��-path with a��-path

(lemma 10.30)
7. elseifG has more than 2 semi-knots
8. find an interchromosomal or an oriented edgeg joining��-paths

in any two semi-knots (lemma 10.31)
9. elseifG has 2 semi-knots
10. if G has the greatest real-knot
11. find an edgeg closing the��-path in one of these semi-knots
12. else
13. find an interchromosomal or an oriented edgeg joining ��-paths

in these semi-knots (lemma 10.31)
14. elseifG has 1 semi-knot
15. find edgeg closing the��-path in this semi-knot
16. else
17. find edgeg closing arbitrary��-path
18. add edgeg to the graphG, i.e.,G G+ fgg
19. find a cappinĝ� defined by the graphG = G(�̂; �̂)
20. sort genomê� into �̂ (theorem 10.14)
21. sorting of�̂ into �̂ mimics sorting of� into�

Figure 10.20:AlgorithmGenomic Sort.

10.16 Genome Duplications

Doubling of the entire genome is a common and lethal accident of reproduction.
However, if this doubling can be resolved in the organism and fixed as a normal
state in a population, it represents the duplication of theentire genome. Such an
event may even lead to evolutionary advantages, since a double genome has two
copies of each gene that can evolve independently. Since genes may develop novel
functions, genome duplication may lead to rapid evolutionary progress. There is
evidence that the vertebrate genome underwent duplications two hundred million
years ago (Ohno et al., 1968 [256]), with more recent duplications in some verte-
brate lines (Postlethwait, 1998 [278]). Comparative genetic maps of plant genomes
also reveal multiple duplications (Paterson et al., 1996 [260]).

Yeast sequencing revealed evidence for an ancient doubling of the yeast genome
a hundred million years ago (Wolfe and Shields, 1997 [369]). Originally, the du-

10.17. SOME OTHER PROBLEMS AND APPROACHES 227

plicated genome contained two identical copies of each chromosome, but through
inversions, translocations, fusions and fissions these two copies got disrupted. The
solution to the problem of reconstructing of the gene order in the ancient yeast
genome prior to doubling was proposed by El-Mabrouk et al., 1999 [96].

A rearranged duplicated genome contains two copies of each gene. The
genome duplicationproblem is to calculate the minimum number of transloca-
tions required to transform a rearranged duplicated genome into someperfect du-
plicated genomewith an even number of chromosomes that contains two identi-
cal copies of each chromosome. For example, a rearranged duplicated genome
fabc; def; aef; dbcg consisting of four chromosomes can be transformed into a
perfect duplicated genomefabc; def; abc; defg by a single translocation of chro-
mosomesaef anddbc. El-Mabrouk et al., 1999 [96] proposed a polynomial al-
gorithm for thegenome duplicationproblem in the case when the rearrangement
operations are translocations only. The algorithm uses the Hannenhalli, 1995 [151]
duality theorem regarding the translocation distance between multichromosomal
genomes. The problem of devising a more adequate genome duplication analysis
with both translocations and reversals remains unsolved.

10.17 Some Other Problems and Approaches

10.17.1 Genome rearrangements and phylogenetic studies

Sankoff et al., 1992 [304] pioneered the use of rearrangement distance for molec-
ular evolution studies. A generalization of the genomic distance problem for mul-
tiple genomes corresponds to the following:

Multiple Genomic Distance Problem Given a set of permutations�1; : : : ; �k,
find a permutation� such that

P
i=1;k d(�

i; �) is minimal (d is the distance be-
tween genomes�i and�).

In the case in whichd(�; �) is a reversal distance between� and�, the Multiple
Genomic Distance Problem has been shown to be NP-hard (Caprara, 1999 [56]).
Similarly to evolutionary tree multiple alignment, there exists a generalization of
the Multiple Genomic Distance Problem for the case when a phylogenetic tree is
not known in advance (Figure 10.21). Since Multiple Genomic Distance is diffi-
cult in the case of reversal distance, most genomic molecular evolution studies are
based onbreakpoint distance. The breakpoint distanced(�; �) between permuta-
tions� and� is defined as the number of breakpoints in���1. Although Multiple
Genomic Distance in this formulation is also NP-hard, Sankoff and Blanchette,
1998 [301] suggested practical heuristics for this problem.

228 CHAPTER 10. GENOME REARRANGEMENTS

+A-B+C+D+E-F-G+H+J+L-P-O+Y+S+R+Q+T-U+V

deletion/divergence (WX, MN, K, I)reversal(+S+R+Q+T)

+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-Q-R-S+T-U+V+W+X+Y

reversal(-Q-R-S)

-U+V+W-Y-X+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-T-Q-R-S

-U+V+W-Y-X+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-T-Q-R-S

+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-Q-R-S+T-U+V+W+X+Y

+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P+S+R+Q+T-U+V+W+X+Y

+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-Q-R-S+T-U+V+W+X+Y

+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-Q-R-S+T-U+V+W+X+Y

+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-Q-R-S+T-U+V+W+X+Y

reversal(+X+Y)

transposition(-U+V+W-Y-X) ? circular genome

transposition (Y)

reversal(-L)

reversal(+O+P)

CMV(Human CytomegaloVirus)

-U+V+W-Y-X+A-B+C+D+E-F-G+H-I+J-K-L-M+N+O+P-T-Q-R-S

HVS(HerpesVirus Saimiri)

VZV(Varicella Zoster Virus)

HSV(Herpes Simplex Virus)
EHV(Equine HerpesVirus)

EBV(Epstein Barr Virus)

Evolution of Herpes Viruses

Figure 10.21:Putative scenario of herpes virus evolution.

10.17.2 Fast algorithm for sorting by reversals
Berman and Hannenhalli, 1996 [33] and Kaplan et al., 1997 [185] devised fast
algorithms for sorting signed permutations by reversals. The Kaplan et al.,
1997 [185] quadratic algorithm bypasses the equivalent transformations step of
the Hannenhalli-Pevzner algorithm and explores the properties of the interleaving
graph ofgray edges(rather than the interleaving graph of cycles). This leads to a
more elegant, simple proof of theorem 10.10.

Chapter 11

Computational Proteomics

11.1 Introduction

In a few seconds, a mass-spectrometer is capable of breaking a peptide into frag-
ments and measuring their masses (the spectrum of the peptide). The peptide se-
quencing problem is to derive the sequence of a peptide given its spectrum. For an
ideal fragmentation process (each peptide is cleaved between every two consecu-
tive amino acids) and an ideal mass-spectrometer, the peptide sequencing problem
is simple. In practice, the fragmentation processes are far from ideal, thus making
de novopeptide sequencing difficult.

Database search is an alternative tode novopeptide sequencing, and mass-
spectrometry is very successful in identification of proteins already present in
genome databases (Patterson and Aebersold, 1995 [261]). Database search in
mass-spectrometry (Mann and Wilm, 1994 [230], Eng et al., 1994 [97], Taylor
and Johnson, 1997 [335], Fenyo et al., 1998 [101]) relies on the ability to “look
the answer up in the back of the book” when studying genomes of extensively se-
quenced organisms. An experimental spectrum can be compared with theoretical
spectra for each peptide in a database, and the peptide from the database with the
best fit usually provides the sequence of the experimental peptide. In particular,
Eng et al., 1994 [97] identified proteins from the class II MHC complex, while
Clauser et al., 1999 [72] identified proteins related to the effects of preeclampsia.
However, in light of the dynamic nature of samples introduced to a mass spectrom-
eter and potential multiple mutations and modifications, the reliability of database
search methods that rely on precise or almost precise matches may be called into
question.De novoalgorithms that attempt to interpret tandem mass spectra in the
absence of a database are invaluable for identification of unknown proteins, but
they are most useful when working with high-quality spectra.

Since proteins are parts of complex systems of cellular signalling and metabolic
regulation, they are subject to an almost uncountable number of biological modi-

229

230 CHAPTER 11. COMPUTATIONAL PROTEOMICS

fications (such as phosphorylation and glycosylation) and genetic variations (Goo-
ley and Packer, 1997 [134], Krishna and Wold, 1998 [207]). For example, at least
1,000 kinases exist in the human genome, indicating that phosphorylation is a com-
mon mechanism for signal transmission and enzyme activation. Almost all protein
sequences are post-translationally modified, and as many as 200 types of modifica-
tions of amino acid residues are known. Since currently post-translational modifi-
cations cannot be inferred from DNA sequences, finding them will remain an open
problem even after the human genome is completed. This also raises a challenging
computational problem for the post-genomic era: given a very large collection of
spectra representing the human proteome, find out which of 200 types of modifi-
cations are present in each human gene.

Starting from the classical Biemann and Scoble, 1987 [35] paper, there have
been a few success stories in identifying modified proteins by mass-spectrometry.
The computational analysis of modified peptides was pioneered by Mann and
Wilm, 1994 [230] and Yates et al., 1995 [374], [373]. The problem is particu-
larly important since mass-spectrometry techniques sometimes introduce chemical
modifications to native peptides and make these peptides “invisible” to database
search programs. Mann and Wilm, 1994[230] used a combination of a partialde
novo algorithm and database search in theirPeptide Sequence Tagapproach. A
Peptide Sequence Tag is a short, clearly identifiable substring of a peptide that
is used to reduce the search to the peptides containing this tag. Yates et al.,
1995 [374] suggested an exhaustive search approach that (implicitly) generates
a virtual database of all modified peptides for a small set of modifications and
matches the spectrum against this virtual database. It leads to a large combina-
torial problem, even for a small set of modification types. Another limitation is
that extremely bulky modifications such as glycosylation disrupt the fragmentation
pattern and would not be amenable to analysis by this method.

Mutation-tolerant database search in mass-spectrometry can be formulated as
follows: given an experimental spectrum, find the peptide that best matches the
spectrum among the peptides that are at mostk mutations apart from a database
peptide. This problem is far from simple since very similar peptides may have very
different spectra. Pevzner et al., 2000 [270] introduced a notion of spectral similar-
ity that led to an algorithm that identifies related spectra even if the corresponding
peptides have multiple modifications or mutations. The algorithm reveals potential
peptide modifications without an exhaustive search and therefore does not require
generating a virtual database of modified peptides.

Although database search is very useful, a biologist who attempts to clone a
new gene based on mass spectrometry data needsde novorather than database
matching algorithms. However, until recently, sequencing by mass-spectrometry
was not widely practiced and had a limited impact on the discovery of new pro-
teins. There are precious few examples of cloning of a gene on the basis of mass-
spectrometry-derived sequence information alone (Lingner et al., 1997 [223]).

11.2. THE PEPTIDE SEQUENCING PROBLEM 231

The recent progress inde novopeptide sequencing, combined with automated
mass spectrometry data acquisition, may open a door to “proteome sequencing.”
Long stretches of protein sequences could be assembled following the generation
and sequencing of overlapping sets of peptides from treatment of protein mixtures
with proteolytic enzymes of differing specificity. Complete protein sequence de-
termination has already been demonstrated with such a strategy on a single protein
(Hopper et al., 1989 [166]).

11.2 The Peptide Sequencing Problem

Let A be the set of amino acids with molecular massesm(a), a 2 A. A peptide
P = p1; : : : ; pn is a sequence of amino acids, and the (parent) mass of peptideP
is m(P) =

P
m(pi). A partial peptideP 0 is a substringpi : : : pj of P of massP

i�t�jm(pt).
Peptide fragmentation in atandem mass-spectrometercan be characterized by

a set of numbers� = fÆ1; : : : ; Ækg representingion-types. A Æ-ion of a partial
peptideP 0 � P is a modification ofP 0 that has massm(P 0) � Æ. For tandem
mass-spectrometry, thetheoretical spectrum of peptideP can be calculated by
subtracting all possible ion-typesÆ1; : : : ; Æk from the masses of all partial peptides
of P (every partial peptide generatesk masses in the theoretical spectrum). An
(experimental) spectrumS = fs1; : : : ; smg is a set of masses of (fragment) ions.
Thematchbetween spectrumS and peptideP is the number of masses that the ex-
perimental and theoretical spectra have in common (shared peaks count). Dancik
et al., 1999 [79] addressed the following

Peptide Sequencing ProblemGiven spectrumS, the set of ion-types�, and the
massm, find a peptide of massm with the maximal match to spectrumS.

Denote partialN-terminalpeptidep1; : : : ; pi asPi and partialC-terminalpep-
tidepi+1; : : : ; pn asP�

i , i = 1; : : : ; n. In practice, a spectrum obtained by tandem
mass-spectrometry (MS/MS) consists mainly of some of theÆ-ions of partial N-
terminal and C-terminal peptides. To reflect this, a theoretical MS/MS spectrum
consists only of ions of N-terminal and C-terminal peptides (Figure 11.1). For
example, the most frequent N-terminal ions are usuallyb-ions (bi corresponds to
Pi with Æ = �1) and the most frequent C-terminal ions are usuallyy-ions (yi
corresponds toP�

i with Æ = 19). Other frequent N-terminal ions for an ion-trap
mass-spectrometer (a, b–H2O, and b–NH3) are shown in Figure 11.2. Also, instead
of the shared peaks count, the existing database search andde novoalgorithms use
more sophisticated objective functions (such as the weighted shared peaks count).

232 CHAPTER 11. COMPUTATIONAL PROTEOMICS

Spectrum with C-terminal ions

G-57
P-97

F-147
N-114

A-71

57 154 301 415

A-71
N-114

F-147
P-97

G-57

71 185 332 429 486486

57 486332 48671 154 185 301 415 429

superposition

N-terminal peptide ladder C-terminal peptide ladder

Theoretical spectrum of peptide GPFNA

57 154 301 415 486

b-H
2
O ion

a ion
a-NH 3 ion

Spectrum with N-terminal ions

71 185 332 429 486

y ion
y-2H2O ion

Theoretical spectrum

Figure 11.1:Theoretical MS/MS spectrum of peptide GPFNA with parent mass57+97+147 +

114 + 71 = 486.

11.3 Spectrum Graphs

The development of peptide sequencing algorithms have followed either exhaus-
tive search or spectrum graph paradigms. The former approach (Sakurai et al.,
1984 [294]) involves the generation of all amino acid sequences and correspond-
ing theoretical spectra. The goal is to find a sequence with the best match be-
tween the experimental and theoretical spectra. Since the number of sequences
grows exponentially with the length of the peptide, different pruning techniques
have been designed to limit the combinatorial explosion in global methods. Prefix
pruning (Hamm et al., 1986 [149], Johnson and Biemann, 1989 [182], Zidarov et
al., 1990 [378], Yates et al., 1991 [375]) restricts the computational space to se-
quences whose prefixes match the experimental spectrum well. The difficulty with
the prefix approach is that pruning frequently discards the correct sequence if its
prefixes are poorly represented in the spectrum. Another problem is that the spec-
trum information is used onlyafter the potential peptide sequences are generated.

Spectrum graph approaches tend to be more efficient because they use spec-
tral informationbeforeany candidate sequence is evaluated. In this approach, the

11.3. SPECTRUM GRAPHS 233

Figure 11.2:Typical fragmentation patterns in tandem mass-spectrometry.

peaks in a spectrum are transformed into aspectrum graph(Bartels, 1990 [26],
Fernández-de-Coss´ıo et al., 1995 [103], Taylor and Johnson, 1997 [335], Dancik
et al., 1999 [79]). The peaks in the spectrum serve as vertices in the spectrum
graph, while the edges of the graph correspond to linking vertices differing by the
mass of an amino acid. Each peak in an experimental spectrum is transformed into
several vertices in a spectrum graph; each vertex represents a possible fragment
ion-type assignment for the peak. The Peptide Sequencing Problem is thus cast
as finding the longest path in the resulting directed acyclic graph. Since efficient
algorithms for finding the longest paths in directed acyclic graphs are known (Cor-
men et al., 1989 [75]), such approaches have the potential to efficiently prune the
set of all peptides to the set of high-scoring paths in the spectrum graph.

The spectrum graph approach is illustrated in Figure 11.3. Since “meaningful”
peaks in the spectrum are generated from a peptide ladder (masses of partial pep-
tides) byÆ-shifts, one might think that reverseÆ-shifts will reconstruct the ideal
spectrum, thus leading to peptide sequencing. Figure 11.3 illustrates that this is not
true and that a more careful analysis (based on the notion of a spectrum graph) of
reverseÆ-shifts is required.

Assume, for the sake of simplicity, that an MS/MS spectrumS = fs1; : : : ; smg
consists mainly ofN -terminal ions, and transform it into a spectrum graphG�(S)

234 CHAPTER 11. COMPUTATIONAL PROTEOMICS

1
3

-3
-1

but create a ladder of peaks instead

Analysis of strong peaks in the spectrum graph

Peptide ladder

3 types of fragment ions correspond to shifts {0, 1, 3}

Spectrum after shifts

Reverse shifts {0, -1, -3}

Reverse shifts do not reconstruct the peptide ladder

This ladder corresponds to vertices of the spectrum graph

 leads to reconstruction of the peptide ladder

Figure 11.3:Reverse shifts create a set of vertices in the spectrum graph. “Strong peaks” (shown

by solid bars) correspond to peaks that are obtained by multiple reverse shifts.

(Bartels, 1990 [26]). Vertices of the graph are integerssi+Æj representing potential
masses of partial peptides. Every peak of spectrums 2 S generatesk vertices
V (s) = fs + Æ1; : : : ; s + Ækg. The set of vertices of a spectrum graph, then, is
fsinitialg[V (s1)[� � �[V (sm)[fsfinalg, wheresinitial = 0 andsfinal = m(P).

11.3. SPECTRUM GRAPHS 235

S
E

Q
U

E
N

C
E

T
M

N
W

F

J O P

X
Y

K
T

Figure 11.4:Multiple paths in a spectrum graph.

Two verticesu andv are connected by a directed edge fromu to v if v � u is the
mass of some amino acid and the edge islabeledby this amino acid. If we look
at vertices as potentialN -terminal peptides, the edge fromu to v implies that the
sequence atv may be obtained by extending the sequence atu by one amino acid
(Figures 11.4 and 11.5).

A spectrumS of a peptideP is calledcompleteif S contains at least one ion-
type corresponding toPi for every1 � i � n. The use of a spectrum graph is
based on the observation that for a complete spectrum there exists a path of length
n from sinitial to sfinal in G�(S) that is labeled byP . This observation casts
the tandem mass-spectrometry Peptide Sequencing Problem as one of finding the
correct path in the set of all paths.

Unfortunately, experimental spectra are frequently incomplete. Another prob-
lem is that MS/MS experiments performed with the same peptide but a different
type of mass-spectrometers will produce significantly different spectra. Differ-
ent ionization methods have a dramatic impact on the propensities for producing
particular fragment ion-types. Therefore, every algorithm for peptide sequenc-
ing should be adjusted for a particular type of mass-spectrometer. To address this
problem, Dancik et al., 1999 [79] described an algorithm for anautomaticlearn-
ing of ion-types from a sample of experimental spectra of known sequences. They
introduced theoffset frequency function, which evaluates the ion-type tendencies
for particular mass-spectrometers and leads to an instrument-independent peptide
sequencing algorithm.

236 CHAPTER 11. COMPUTATIONAL PROTEOMICS

Figure 11.5: Noise in a spectrum generates many “false” edges and vertices in the spectrum

graph and disguises edges corresponding to the real peptide sequence. Sequence reconstruction

corresponds to finding an optimal path in the spectrum graph.

11.4 Learning Ion-Types

If the ion-types� = fÆ1; : : : ; Ækg produced by a given mass-spectrometer are not
known, the spectrum cannot be interpreted. Below we show how to learn the set
� and ion propensities from a sample of experimental spectra of known sequences
withoutany prior knowledge of the fragmentation patterns.

LetS = fs1; : : : ; smg be a spectrum corresponding to the peptideP . A partial
peptidePi and a peaksj have an offsetxij = m(Pi) � sj; we can treatxij as a
random variable. Since the probability of offsets corresponding to “real” fragment
ions is much greater than the probability of random offsets, the peaks in the em-
pirical distribution of the offsets reveal fragment ions. The statistics of offsets over
all ions and all partial peptides provides a reliable learning algorithm for ion-types
(Dancik et al., 1999 [79]).

Given spectrumS, offsetx, and precision", letH(x; S) be the number of pairs
(Pi; sj), i = 1; : : : ; n � 1, j = 1; : : : ;m that have offsetm(Pi) � sj within dis-
tance" from x. Theoffset frequency functionis defined asH(x) =

P
S H(x; S),

11.5. SCORING PATHS IN SPECTRUM GRAPHS 237

N-term, charge 1 C-term, charge 1

−60 −40 −20 0 20 40 60
0

5

10

15

20

25

30

35

b

b−H
2
O

b−NH
3

a

Offset

R
el

at
iv

e
C

ou
nt

s

−60 −40 −20 0 20 40 60
0

5

10

15

20

25

30

35
y

y−H
2
O

y−NH
3

Offset

Figure 11.6:Offset frequency function for N-terminal (left) and C-terminal (right) peptides. Hor-

izontal axes represent offsets between peaks in spectra and masses of partial peptide molecules.

Vertical axes represent normalized offset counts, with 1 being the average count.

where the sum is taken over all spectra from the learning sample (Figure11.6).
To learn about C-terminal ions, we do the same for pairs(P�

i ; sj). Offsets� =
fÆ1; : : : ; Ækg corresponding to peaks ofH(x) represent the ion-types produced by
a given mass-spectrometer.

Peaks in a spectrum differ inintensity, and one has to set a threshold for distin-
guishing the signal from noise in a spectrum prior to transforming it into a spectrum
graph. Low thresholds lead to excessive growth of the spectrum graph, while high
thresholds lead to fragmentation of the spectrum graph. The offset frequency func-
tion allows one to set up the intensity thresholds in a rigorous way (Dancik et al.,
1999 [79]).

11.5 Scoring Paths in Spectrum Graphs

The goal of scoring is to quantify how well a candidate peptide “explains” a spec-
trum and to choose the peptide that explains the spectrum the best. Ifp(P; S) is the
probability that a peptideP produces spectrumS, then the goal is to find a peptide
P maximizingp(P; S) for a given spectrumS. Below we describe a probabilistic
model, evaluatep(P; S), and derive a scoring schema for paths in the spectrum
graph. The longest path in the weighted spectrum graph corresponds to the peptide
P that “explains” spectrumS the best.

In a probabilistic approach, tandem mass-spectrometry is characterized by a set
of ion-types� = fÆ1; : : : ; Ækg and their probabilitiesfp(Æ1); : : : ; p(Æk)g such that
Æi-ions of a partial peptide are produced independently with probabilitiesp(Æi). A
mass-spectrometer also produces a “random” (chemical or electronic) noise that

238 CHAPTER 11. COMPUTATIONAL PROTEOMICS

in any position may generate a peak with probabilityqR. Therefore, a peak at a
position corresponding to aÆi-ion is generated with probabilityqi = p(Æi) + (1 �
p(Æi))qR, which can be estimated from the observed empirical distributions. A
partial peptide may theoretically have up tok corresponding peaks in the spectrum.
It has allk peaks with probability

Qk
i=1 qi, and it has no peaks with probabilityQk

i=1(1�qi). The probabilistic model defines the probabilityp(P; S) that a peptide
P produces a spectrumS. Below we describe how to computep(P; S) and derive
scoring that leads to finding a peptide maximizingp(P; S) for a given spectrumP .

Suppose that a candidate partial peptidePi produces ionsÆ1; : : : ; Æl (“present”
ions) and does not produce ionsÆl+1; : : : ; Æk (“missing” ions) in the spectrumS.
The l “present” ions will result in a vertex in the spectrum graph corresponding
to Pi. How should we score this vertex? A naive approach would be to use a
“premium for explained ions” approach, suggesting that the score for this vertex
should be proportional toq1 � � � ql or maybeq1qR � � �

ql
qR

to normalize the probabilities
against the noise. However, such an approach has a serious deficiency, and signif-
icant improvement results from a different, “premium for present ions, penalty for
missing ions” approach. The (probability) score of the vertex is then given by

q1
qR
� � � ql

qR

(1� ql+1)

(1� qR)
� � � (1� qk)

(1� qR)
:

We explain the role of this principle for the resolution of a simple alternative
between dipeptide GG and amino acid N of the same mass. In the absence of a
penalty for missing ions, GG is selected over N in the presence ofany peak sup-
porting the position of the first G (even a very weak one corresponding to random
noise). Such a rule leads to many wrong GG-abundant interpretations and indicates
that a better rule is to vote for GG if it is supported by major ion-types with suf-
ficient intensities, which is automatically enforced by “premium for present ions,
penalty for missing ions” scoring.

For the sake of simplicity, we assume that all partial peptides are equally likely
and ignore the intensities of peaks. We discretize the space of all masses in the
interval from 0 to the parent massm(P) = M , denoteT = f0; : : : ;Mg, and
represent the spectrum as anM -mer vectorS = fs1; : : : ; sMg such thatst is the
indicator of the presence or absence of peaks at positiont (st = 1 if there is a peak
at positiont andst = 0 otherwise). For a given peptideP and positiont, st is a
0-1 random variable with probability distributionp(P; st).

Let Ti = fti1; : : : ; tikg be the set of positions that represent�-ions of a partial
peptidePi where� = fÆ1; : : : ; Ækg. LetR = T nSi Ti be the set of positions that
are not associated with any partial peptides. The probability distributionp(P; st)
depends on whethert 2 Ti or t 2 R. For a positiont = tij 2 Ti, the probability

11.6. PEPTIDE SEQUENCING AND ANTI-SYMMETRIC PATHS 239

p(P; st) is given by

p(P; st) =

(
qj ; if st = 1 (a peak at positiont)
1� qj ; otherwise.

(11.1)

Similarly, for t 2 R, the probabilityp(P; st) is given by

pR(P; st) =

(
qR ; if st = 1 (random noise at positiont)
1� qR ; otherwise.

(11.2)

The overall probability of “noisy” peaks in the spectrum is
Q
t2R pR(P; st).

Let p(Pi; S) =
Q
t2Ti p(P; st) be the probability that a peptidePi produces a

given spectrum at positions from the setTi (all other positions are ignored). For
the sake of simplicity, assume that each peak of the spectrum belongs only to one
setTi and that all positions are independent. Then

p(P; S) =
MY
t=1

p(P; st) =

nY
i=1

p(Pi; S)

!Y
t2R

pR(P; st):

For a given spectrumS, the value
Q
t2T pR(P; st) does not depend onP , and

the maximization ofp(P; S) is the same as the maximization of

p(P; S)

pR(S)
=

nQ
i=1

kQ
j=1

p(P; stij)
Q
t2R

pR(P; st)Q
t2T

pR(P; st)
=

nY
i=1

kY
j=1

p(P; stij)

pR(P; stij)

wherepR(S) =
Q
t2T

pR(P; st).

In logarithmic scale, the above formula implies the additive “premium for pres-
ent ions, penalty for missing ions” scoring of vertices in the spectrum graph (Dan-
cik et al., 1999 [79]).

11.6 Peptide Sequencing and Anti-Symmetric Paths

After the weighted spectrum graph is constructed, we cast the Peptide Sequencing
Problem as thelongest path problem in a directed acyclic graphwhich is solved
by a fast linear time algorithm. Unfortunately, this simple algorithm does not quite
work in practice. The problem is that every peak in the spectrum may be interpreted
as either an N-terminal ion or a C-terminal ion. Therefore, every “real” vertex
(corresponding to a massm) has a “fake”twin vertex (corresponding to a mass

240 CHAPTER 11. COMPUTATIONAL PROTEOMICS

m(P) �m). Moreover, if the real vertex has a high score, then its fake twin also
has a high score. The longest path in the spectrum graph then tends to includeboth
the real vertex and its fake twin since they both have high scores. Such paths do not
correspond to feasible protein reconstructions and should be avoided. However, the
known longest path algorithms do not allow us to avoid such paths.

Therefore, the reduction of the Peptide Sequencing Problem to the longest path
problem described earlier is inadequate. Below we formulate theanti-symmetric
longest pathproblem, which adequately models the peptide sequence reconstruc-
tion.

LetG be a graph and letT be a set offorbidden pairsof vertices ofG (twins).
A path inG is called anti-symmetric if it contains at most one vertex from ev-
ery forbidden pair. Theanti-symmetric longest path problemis to find a longest
anti-symmetric path inG with a set of forbidden pairsT . Unfortunately, the anti-
symmetric longest path problem is NP-hard (Garey and Johnson, 1979 [119]), in-
dicating that efficient algorithms for solving this problem are unlikely. However,
this negative result does not imply that there is no hope of finding an efficient al-
gorithm for tandem mass-spectrometry peptide sequencing, since this problem has
aspecial structureof forbidden pairs.

Vertices in a spectrum graph are modeled by numbers that correspond to masses
of potential partial peptides. Two forbidden pairs of vertices(x1; y1) and(x2; y2)
arenon-interleavingif the intervals(x1; y1) and(x2; y2) do not interleave. A graph
G with a set of forbidden pairs is calledproper if every two forbidden pairs of ver-
tices are non-interleaving.

The tandem mass-spectrometry Peptide Sequencing Problem corresponds to
the anti-symmetric longest path problem in a proper graph. Dancik et al., 1999 [79]
proved that there exists an efficient algorithm for anti-symmetric longest path prob-
lem in a proper graph.

11.7 The Peptide Identification Problem

Pevzner et al., 2000 [270] studied the following

Peptide Identification Problem Given a database of peptides, spectrumS, set of
ion-types�, and parameterk, find a peptide with the maximal match to spectrum
S that is at mostk mutations or modifications apart from a database entry.

The major difficulty in the Peptide Identification Problem comes from the fact
that very similar peptidesP1 andP2 may have very different spectraS1 andS2.
Our goal is to define a notion of spectral similarity that correlates well with se-
quence similarity. In other words, ifP1 andP2 are a few substitutions, insertions,
deletions, or modifications apart, the spectral similarity betweenS1 andS2 should
be high. The shared peaks count is, of course, an intuitive measure of spectral

11.8. SPECTRAL CONVOLUTION 241

similarity. However, this measure diminishes very quickly as the number of mu-
tations increases, thus leading to limitations in detecting similarities in an MS/MS
database search. Moreover, there are many correlations between spectra of related
peptides and only a small portion of them is captured by the “shared peaks” count.
The PEDANTA algorithm (Pevzner et al., 2000 [270]) capturesall correlations be-
tween related spectra for anyk and handles the cases in which mutations in the pep-
tide significantly change the fragmentation pattern. For example, replacing amino
acids like H, K, R, and P may dramatically alter the fragmentation. Even in an
extreme case—as when a single mutation changes the fragmentation pattern from
“only b-ions” to “only y-ions”—PEDANTA still reveals the similarity between the
corresponding spectra.

11.8 Spectral Convolution

Let S1 andS2 be two spectra. Definespectral convolutionS2 	 S1 = fs2 � s1 :
s1 2 S1; s2 2 S2g and let(S2 	 S1)(x) be the multiplicity of elementx in this
set. In other words,(S2 	 S1)(x) is the number of pairss1 2 S1; s2 2 S2 such
that s2 � s1 = x. If M(P) is the parent mass of peptideP with the spectrum
S, thenSR = M(P) � S is the reversed spectrumof S (every b-ion (y-ion)
in S corresponds to a y-ion (b-ion) inSR). The reversed spectral convolution
(S2	SR1)(x) is the number of pairss1 2 S1; s2 2 S2 such thats2+s1�M(P) =
x.

To illustrate the idea of this approach, consider two copiesP1 andP2 of the
same peptide. The number of peaks in common betweenS1 andS2 (shared peaks
count) is the value ofS2 	 S1 atx = 0. Many MS/MS database search algorithms
implicitly attempt to find a peptideP in the database that maximizesS2 	 S1 at
x = 0, whereS2 is an experimental spectrum andS1 is a theoretical spectrum of
peptideP . However, if we start introducingk mutations inP2 as compared toP1,
the value ofS2 	 S1 atx = 0 quickly diminishes. As a result, the discriminating
power of the shared peaks count falls significantly atk = 1 and almost disappears
atk > 1.

The peaks in spectral convolution allow one to detect mutations and modifica-
tions without an exhaustive search. LetP2 differ fromP1 by only mutation (k = 1)
with amino acid differenceÆ =M(P2)�M(P1). In this case,S2	S1 is expected
to have two approximately equal peaks atx = 0 andx = Æ. If the mutation
ocurrs at positiont in the peptide, then the peak atx = 0 corresponds tobi-ions
for i < t andyi-ions fori � t. The peak atx = Æ corresponds tobi-ions for i � t
andyi-ions for i < t. A mutation inP2 that changesM(P1) by Æ also “mutates”
the spectrumS2 by shifting some peaks byÆ. As a result, the number of shared
peaks betweenS1 and “mutated”S2 may increase as compared to the number of
shared peaks betweenS1 andS2. This increase is bounded by(S2 	 S1)(Æ), and

242 CHAPTER 11. COMPUTATIONAL PROTEOMICS

(S2 	 S1)(0) + (S2 	 S1)(Æ) is an upper bound on the number of shared peaks
betweenS1 and “mutated”S2.

The other set of correlations between spectra of mutated peptides is captured
by the reverse spectral convolutionS2 	 SR1 , reflecting the pairings of N-terminal
and C-terminal ions.S2 	 SR1 is expected to have two peaks at thesamepositions
0 andÆ.

Now assume thatP2 andP1 are two substitutions apart, one with mass differ-
enceÆ1 and another with mass differenceÆ � Æ1. These mutations generate two
new peaks in the spectral convolution atx = Æ1 and atx = Æ � Æ1. For uniform
distribution of mutations in a random peptide, the ratio of the expected heights of
the peaks at0; Æ; Æ1; Æ � Æ1 is 2 : 2 : 1 : 1.

To increase the signal-to-noise ratio, we combine the peaks in spectral and
reverse spectral convolution:

S = S2 	 S1 + S2 	 SR1

Furthermore, we combine the peaks at0 and Æ (as well as atÆ1 andÆ � Æ1) by
introducing theshift function

F (x) =
1

2
(S(x) + S(Æ � x)):

Note thatF (x) is symmetric around the axisx = Æ
2 with F (0) = F (Æ) and

F (Æ1) = F (Æ � Æ1). We are interested in the peaks ofF (x) for x � Æ
2 .

Definex1 = Æ = M(P2) � M(P1) and y1 = F (Æ) = F (0). Let y2 =
F (x2); y3 = F (x3); : : : ; yk = F (xk) be thek � 1 largest peaks ofF (x) for
x � Æ=2 andx 6= Æ. Define

SIMk(S1; S2) =
kX
i=1

yi

as an estimate of the similarity between spectraS1 andS2 under the assumption
that the corresponding peptides arek mutations apart.SIMk is usually the overall
height ofk highest peaks of the shift function. For example,SIM1(S1; S2) = y1
is an upper bound for the number of shared peaks betweenS1 and “mutated”S2 if
k = 1 mutation inP2 is allowed.

Although spectral convolution helps to identify mutated peptides, it has a seri-
ous limitation which is described below.

Let
S = f10; 20; 30; 40; 50; 60; 70; 80; 90; 100g

11.9. SPECTRAL ALIGNMENT 243

be a spectrum of peptideP , and assume for simplicity thatP produces only b-ions.
Let

S0 = f10; 20; 30; 40; 50; 55; 65; 75; 85; 95g
and

S00 = f10; 15; 30; 35; 50; 55; 70; 75; 90; 95g
be two theoretical spectra corresponding to peptidesP 0 andP 00 from the database.
Which peptide (P 0 or P 00) fits spectrumS the best? The shared peaks count does
not allow one to answer this question, since bothS0 andS00 have five peaks in
common withS. Moreover, the spectral convolution also does not answer this
question, since bothS 	 S0 andS 	 S00 (and corresponding shift functions) reveal
strong peaks of the same height at0 and5. This suggests that bothP 0 andP 00
can be obtained fromP by a single mutation with mass difference 5. However,
a more careful analysis shows that although this mutation can be realized forP 0
by introducing a shift 5 after mass 50, it cannot be realized forP 00. The major
difference betweenS0 andS00 is that the matching positions inS0 come in clumps
while the matching positions inS00 don’t. Below we describe the spectral alignment
approach, which addresses this problem.

11.9 Spectral Alignment

Let A = fa1; : : : ; ang be an ordered set of natural numbersa1 < a2 : : : < an.
A shift �i transformsA into fa1; : : : ai�1; ai + �i; : : : ; an + �ig. We consider
only the shifts that do not change the order of elements, i.e., the shifts with�i �
ai�1 � ai. Given setsA = fa1; : : : ; ang andB = fb1; : : : ; bmg, we want to find a
series ofk shifts ofA that makeA andB as similar as possible. Thek-similarity
D(k) between setsA andB is defined as the maximum number of elements in
common between these sets afterk shifts. For example, a shift�56 transforms

S = f10; 20; 30; 40; 50; 60; 70; 80; 90; 100g
into

S0 = f10; 20; 30; 40; 50; 55; 65; 75; 85; 95g;
and thereforeD(1) = 10 for these sets. The set

S00 = f10; 15; 30; 35; 50; 55; 70; 75; 90; 95g
has five elements in common withS (the same asS0) but there is no shift trans-
forming S into S00, andD(1) = 6. Below we describe a dynamic programming
algorithm for computingD(k).

Define aspectral productA
 B as anan � bm two-dimensional matrix with
nm 1s corresponding to all pairs of indices(ai; bj) and remaining elements being

244 CHAPTER 11. COMPUTATIONAL PROTEOMICS

10 20 30 40 50 55 65 75 85 95

10

20

30

40

50

60

70

80

90

100

10 15 30 35 50 55 70 75 90 95

10

20

30

40

50

60

70

80

90

100

Figure 11.7:SpectrumS can be transformed intoS0 by a single mutation andD(1) = 10 (left

matrix). SpectrumS cannot be transformed intoS00 by a single mutation andD(1) = 6 (right

matrix).

zeroes. The number of 1s at the main diagonal of this matrix describes the shared
peaks count between spectraA andB, or in other words,0-similarity betweenA
andB. Figure 11.7 shows the spectral productsS
S0 andS
S00 for the example
from the previous section. In both cases the number of 1s on the main diagonal
is the same, andD(0) = 5. TheÆ-shifted peaks count is the number of 1s on the
diagonal(i; i+Æ). The limitation of the shift function is that it considers diagonals
separately without combining them into feasible mutation scenarios.k-similarity
between spectra is defined as the maximum number of 1s on a path through the
spectral matrix that uses at mostk + 1 diagonals, andk-optimal spectral align-
mentis defined as a path using thesek + 1 diagonals. For example,1-similarity is
defined by the maximum number of 1s on a path through this matrix that uses at
most two diagonals. Figure 11.7 reveals that the notion of 1-similarity allows one
to find out thatS is closer toS0 than toS00, since in the first case the 2-diagonal
path covers 10 ones (left matrix), versus 6 in the second case (right matrix). Fig-
ure 11.8 illustrates that the spectral alignment allows one to detect more and more
subtle similarities between spectra by increasingk. Below we describe a dynamic
programming algorithm for spectral alignment.

LetAi andBj be thei-prefix ofA andj-prefix ofB, correspondingly. Define
Dij(k) as thek-similarity betweenAi andBj such that the last elements ofAi

andBj are matched. In other words,Dij(k) is the maximum number of 1s on a

11.10. ALIGNING PEPTIDES AGAINST SPECTRA 245

path to(ai; bj) that uses at mostk + 1 diagonals. We say that(i0; j0) and(i; j)
are co-diagonal if ai � ai0 = bj � bj0 and that(i0; j0) < (i; j) if i0 < i and
j0 < j. To take care of the initial conditions, we introduce a fictitious element
(0; 0) with D0;0(k) = 0 and assume that(0; 0) is co-diagonal with any other(i; j).
The dynamic programming recurrency forDij(k) is

Dij(k) = max
(i0;j0)<(i;j)

(
Di0j0(k) + 1; if (i0; j0) and(i; j) are co-diagonal
Di0j0(k � 1) + 1; otherwise.

Thek-similarity betweenA andB is given byD(k) = maxijDij(k).
The described dynamic programming algorithm for spectral alignment is rather

slow (running timeO(n4k) for n-element spectra), and below we describe an
O(n2k) algorithm for solving this problem. Definediag(i; j) as the maximal co-
diagonal pair of(i; j) such thatdiag(i; j) < (i; j). In other words,diag(i; j) is
the position of the previous 1 on the same diagonal as(ai; bj) or (0; 0) if such a
position does not exist. Define

Mij(k) = max(i0;j0)�(i;j)Di0j0(k):

Then the recurrency forDij(k) can be re-written as

Dij(k) = max

(
Ddiag(i;j)(k) + 1;

Mi�1;j�1(k � 1) + 1:

The recurrency forMij(k) is given by

Mij(k) = max

8><
>:
Dij(k)
Mi�1;j(k)
Mi;j�1(k)

The described transformation of the dynamic programming graph is achieved by
introducing horizontal and vertical edges that provide switching between diago-
nals (Figure 11.9). The score of a path is the number of 1s on this path, whilek
corresponds to the number of switches (number of used diagonals minus 1).

11.10 Aligning Peptides Against Spectra

The simple description above hides many details that make the spectral align-
ment problem difficult. A spectrum is usually a combination of an increasing (N-
terminal ions) and a decreasing (C-terminal ions) number series. These series form

246 CHAPTER 11. COMPUTATIONAL PROTEOMICS

δ
1

δ

δ
1
+δ

2

7 11 13 19 22 25 31 33 38

7

11

15

18

21

24

30

38

43

Figure 11.8:Aligning spectra. The shared peaks count reveals onlyD(0) = 3 matching peaks

on the main diagonal, while spectral alignment reveals more hidden similarities between spectra

(D(1) = 5 andD(2) = 8) and detects the corresponding mutations.

two diagonals in the spectral productS
S, the main diagonal and the perpendicu-
lar diagonal, which corresponds to pairings of N-terminal and C-terminal ions. The
described algorithm does not capture this detail and deals with the main diagonal
only.

11.10. ALIGNING PEPTIDES AGAINST SPECTRA 247

7 11 13 19 22 25 31 33 38

7

11

15

18

21

24

30

38

43

Figure 11.9:Modification of a dynamic programming graph leads to a fast spectral alignment

algorithm.

To combine N-terminal and C-terminal series together, we work with(S1 [
SR1)
 (S2 [SR2), whereSR is the reversed spectrum of peptideP . This transfor-
mation creates a “b-version” for every y-ion and a “y-version” for every b-ion, thus
increasing noise (since every noisy peak is propagated twice). Another and even
more serious difficulty is that every 1 in the spectral product will have a reversed

248 CHAPTER 11. COMPUTATIONAL PROTEOMICS

twin, and only one of these twins should be counted in the feasible spectral align-
ment. Ignoring this problem may lead to infeasible solutions that are sorted out in
the anti-symmetric path approach (Dancik et al., 1999 [79]).

The described algorithm also does not capture all the relevant details in the case
of the “sequence against the spectrum” comparison. In this case the horizontal and
vertical arcs in the dynamic programming graph (Figure 11.9) are limited by the
possible shifts reflecting mass differences between amino acids participating in
the mutation. LetP = p1 : : : pn be a peptide that we compare with the spectrum
S = fs1; : : : ; smg. Thed-prefix of spectrumS contains all peaks ofS with si � d.
We introduce a new variableHi;d(k) that describes the “best” transformation of the
i-prefix of peptideP into thed-prefix of spectrumS with at mostk substitutions
in Pi. More precisely,Hi;d(k) describes the number of 1s on the optimal path with
k shifts between diagonals from(0; 0) to the position(i; d) of the properly defined
“peptide versus spectrum”P
 S matrix. For the sake of simplicity, assume that
the theoretical spectrum ofP contains only b-ions.

Let Hi;d(k) be the “best” transformation ofPi into Sd with k substitutions
(i.e., a transformation that uses the maximum number of 1s on a path with at most
k shifts between diagonals). However, in this case, the jumps between diagonals
are not arbitrary but are restricted by mass differences of mutated amino acids (or
mass differences corresponding to chemical modifications). Below we describe the
dynamic programming algorithm for the case of substitutions (deletions, insertions,
and modifications lead to similar recurrencies). Definex(d) = 1 if d 2 S and
x(d) = 0 otherwise. ThenHi;d(k) is described by the following recurrency (m(a)
is the mass of amino acida):

Hi;d(k) = max

(
Hi�1;d�m(pi)(k) + x(d)

maxa=1;20Hi;d�(m(a)�m(pi))(k � 1)

11.11 Some Other Problems and Approaches

11.11.1 From proteomics to genomics
Mass-spectrometry is very successful for the identification of proteins whose genes
are contained in sequence databases. However,de novointerpretation of tandem
mass-spectra remained a complex and time-consuming problem and, as a result,
mass-spectrometry has not yet had a significant impact for discovery ofnewgenes.
As recently as in 1995, Mann and Wilm (Mann and Wilm, 1995 [231]) remarked
that they cannot find an example in the literature of a gene that was cloned on the
basis of MS/MS-derived sequence informationalone. This situation changed in
the last 5 years, in particular, the reverse genetics studies of the catalytic subunit of
telomerase (Lingner et al., 1997 [223]) required de novo sequencing of 14 peptides
with further design of PCR primers for gene amplification.

11.11. SOME OTHER PROBLEMS AND APPROACHES 249

11.11.2 Large-scale protein analysis
Complex protein mixtures can be separated by highly-resolving two-dimensional
gel-electrophoresis. After separation, the identity of each “spot” (peptide) in 2-
D gel is unknown and has to be identified by mass-spectrometry. This approach
requires efficient methods for extracting resulting peptides from the gel and trans-
ferring them into mass-spectrometer.

Chapter 12

Problems

12.1 Introduction

Molecular biology has motivated many interesting combinatorial problems. A few
years ago Pevzner and Waterman, 1995 [275] compiled a collection of 57 open
problems in computational molecular biology. Just five years later a quarter of
them have been solved. For this reason I don’t explicitly say which of the problems
below are open: they may be solved by the time you read this sentence.

12.2 Restriction Mapping

Suppose a DNA molecule is digested twice, by two restriction enzymes. The in-
terval graph of resulting fragments is abipartite interval graph(Waterman and
Griggs, 1986 [361]).

Problem 12.1 Design an efficient algorithm to recognize a bipartite interval
graph.

Problem 12.2 Letv be a vertex of even degree in a balanced colored graph. Prove
that d(v) edges incident tov can be partitioned intod(v)=2 pairs such that edges
in the same pair have different colors.

Let P = x1 : : : xm be a path in anl-colored balanced graphG(V;E). A color
c is critical for P if (i) it is different from the color of the last edge(xm�1; xm) in
P and (ii) it is the most frequent color among the edges ofE nEP incident toxm
(EP denotes the edge set of pathP). The edges of the setE n EP incident toxm
and having a critical color are called thecritical edges. A path is called critical if
it is obtained by choosing a critical edge at every step.

Problem 12.3 Show how to use critical paths for constructing alternating Eule-
rian cycles.

251

252 CHAPTER 12. PROBLEMS

The following problem asks for an analog of the BEST theorem for bicolored
graphs.

Problem 12.4 Find the number of alternating Eulerian cycles in a bicolored Eu-
lerian graph.

8 20 24 5

8 15 3 18 6 5

24 19 12

0 8 24 27 44 5550

8 19 23 5

24 20 11

8 16 3 17 6 5

DIAGRAMS AND PHYSICAL MAPS

Diagram D

Map M

Diagram D(M)

Figure 12.1:Diagrams and physical maps.

Most algorithms for the Double Digest Problem are based on generation and
analysis of hypotheses about the order of restriction fragments in a physical map.
Each such hypothesis corresponds to amapping diagramD showing the order of
sites and fragment lengths (Figure 12.1). Note that the coordinates of the sites
are not shown in the mapping diagram. A physical mapM provides informa-
tion about both the order and the coordinates of the sites. Every physical map
corresponds to a diagramD(M) (Figure 12.1) with the lengths of the fragments
corresponding to the distances between sites. The opposite is not true; not every
diagram corresponds to a physical map. The question then arises of how to con-
struct a physical map that best approximates the diagram. LetD = (d1; : : : ; dn)
andM = (m1; : : : ;mn) be the lengths of all the fragments in diagramsD and

12.2. RESTRICTION MAPPING 253

D(M) given in the same order. The distance between diagramD and mapM is

d(D;M) = max
i=1;n

jdi �mij:

For example, in Figure 12.1,D = (8; 20; 24; 5; 24; 19; 12; 8; 15; 3; 18; 6; 5), M =
(8; 19; 23; 5; 24; 20; 11; 8; 16; 3; 17; 6; 5), andd(D;M) = 1. Thediagram adjust-
ment problemis to find a map within a shortest distance from a diagram:

Problem 12.5 Given a diagramD, find a mapM minimizingd(D;M).

Problem 12.6 Given two maps from the same equivalence class, find a shortest
series of cassette transformations to transform one map into another.

A generalization of the Double Digest Problem is to have three enzymesA,B,
andC and to get experimental data about the lengths of the fragments insingle
digestionsA, B, andC, doubledigestionsAB, BC, andCA, andtriple digestion
ABC. Such an experiment leads to theMultiple Digest Problem.

Problem 12.7 Find a physical map of three enzymesA, B, andC given provided
six sets of experimental data (digestionsA, B, C, AB, BC, CA, andABC).

Problem 12.8 Characterize cassette transformations of multiple maps (three or
more enzymes).

The Rosenblatt and Seymour, 1982 [289] PDP algorithm is pseudo-polynomial.

Problem 12.9 Does a polynomial algorithm exist for PDP?

Skiena et al., 1990 [314] proved that the maximum numberH(n) of strongly
homometric sets onn elements is bounded by12n

0:6309 � H(n) � 1
2n

2:5. The
upper bound seems to be rather pessimistic.

Problem 12.10 Derive tighter bounds forH(n).

Problem 12.11 Prove that every 5-point set is reconstructible.

Problem 12.12 Design an efficient algorithm for the Probed Partial Digest Prob-
lem.

Problem 12.13 Derive upper and lower bounds for the maximum number of solu-
tions for ann-site Probed Partial Digest Problem.

254 CHAPTER 12. PROBLEMS

The input to the optical mapping problem is a 0-1n � m matrix S = (sij)
where each row corresponds to a DNA molecule (straight or reversed), each column
corresponds to a position in that molecule, andsij = 1 if there is a cut in positionj
of moleculei. The goal is to reverse the orientation of a subset of molecules (subset
of rows inS) and to declare a subset of thet columns “real cut sites” so that the
number of ones in cut site columns is maximized (Karp and Shamir, 1998 [190]).

A naive approach to this problem is to findt columns with a large proportion of
ones and declare them potential cut sites. However, in this approach every real site
will have a reversed twin. Letw(i; j) be the number of molecules with both cut
sitesi andj present (in either direct or reverse orientation). In a different approach,
a graph on verticesf1; : : : ;mg is constructed and two vertices are connected by an
edge(i; j) of weightw(i; j).

Problem 12.14 Establish a connection between optical mapping and the anti-sym-
metric longest path problem.

12.3 Map Assembly

Problem 12.15 Find the number of different interleavings ofn clones.

An interleaving ofn clones can be specified by a sequence of integersa1 : : : an,
whereai is the number of clones that end before the clonei starts. For example, the
interleaving of nine clones in Figure 3.2 corresponds to the sequence000112267.
Not every sequence of integersa1 : : : an specifies a valid interleaving. Moreover,
if a probe specifies a run[i; j] of clones, this run implies the inequalitiesaj � i�1
(clonesj andi overlap) andaj+1 � i� 1 (clonesi� 1 andj + 1 do not overlap).

Problem 12.16 Formulate the Shortest Covering String Problem with a given or-
der of clones as a linear integer program, and solve it.

Problem 12.17 Let k be the maximal number of pairwise disjoint intervals in a
collection of intervalsI on a line. Prove that there existk points on the line such
that each interval inI contains at least one of these points.

The intersection graphs corresponding to collections of arcs on a circle are
calledcircular-arc graphs. If a collection of arcs on a circle does not cover some
point x on the circle, then thecircular-arc graphof this collection is an interval
graph (cut the circle atx and straighten it out).

Problem 12.18 Design an efficient algorithm to recognize circular-arc graphs.

12.3. MAP ASSEMBLY 255

Problem 12.19 If N random clones of lengthL are chosen from a genome of
lengthG, the expected fraction of the genome represented in these clones is ap-
proximately1� ec, wherec = NL

G is the coverage.

In cosmid contig mapping(Zhang et al., 1994 [376]), clone overlap information
is generated from hybridization data. A set of clones is placed on a filter for colony
hybridization, and the filter is probed with a clone that has been radioactively la-
beled. This process produces overlap information as to which probes overlap with
other clones. If only a subset of clones are used as probes, overlap information
is not available between clones that are not probes. A graph is aprobe interval
graph if its vertex set can be partitioned into subsetsP (clones used as probes) and
N (clones not used as probes), with an interval assigned to each vertex, such that
two vertices are adjacent if and only if ‘their corresponding intervals overlap and
at least one of the vertices is inP (McMorris et al., 1998 [235]).

Problem 12.20 Devise an algorithm to recognize probe interval graphs.

Inner Product Mapping(Perlin and Chakravarti, 1993 [263]) is a clone map-
ping approach that probes a set of radiation hybrid clones twice, once with BACs
and once with STSs, to obtain a map of BACs relative to STSs. Inner Product Map-
ping requires two sets of data: a hybrid screening matrix with STSs and a hybrid
screening matrix with BACs.

Problem 12.21 Given hybrid screening matrices with STSs and BACs, construct a
map of BACs relative to STSs.

Elements�i�j�k for 1 � i < j < k � n form anordered triple in a per-
mutation� = �1 : : : �n. Let �(�) be a collection of all

�n
3

�
ordered triples for�.

Radiation hybrid mapping motivates the following problem:

Problem 12.22 Given an arbitrary setT of ordered triples of ann-element set,
find a permutation� such thatT � �(�).

Elements�i�j�k form anunordered tripleif either 1 � i < j < k � n or
1 � k < j < i � n. Let�(�) be a collection of all unordered triples for�.

Problem 12.23 Given an arbitrary setT of unordered triples of ann-element set,
find a permutation� such thatT � �(�).

256 CHAPTER 12. PROBLEMS

12.4 Sequencing

The simplest heuristic for the Shortest Superstring Problem is the GREEDY al-
gorithm: repeatedly merge a pair of strings with maximum overlap until only one
string remains. Tarhio and Ukkonen, 1988 [333] defined thecompressionof an SSP
algorithm as the number of symbols saved by this algorithm compared to plainly
concatenating all the strings.

Problem 12.24 Prove that the GREEDY algorithm achieves at least1
2 the com-

pression of an optimal superstring, i.e.,GREEDY compression
optimal compression � 1

2 .

A performance guarantee with respect to compression does not imply a perfor-
mance guarantee with respect to length. Since an example for which the approxi-
mation ratio of GREEDY is worse than 2 is unknown, Blum et al., 1994 [37] raised
the following conjecture:

Problem 12.25 Prove that GREEDY achieves a performance guarantee of 2.

Let S = fs1; : : : ; sng be a collection of linear strings andC = fc1; : : : ; cmg
be a collection of circular strings. We say thatC is acirculation of S if every si is
contained in one of the circular stringscj for 1 � j � m. The length of circulation
jCj =Pm

j=1 jcj j is the overall length of the strings fromC.
Problem 12.26 Find the shortest circulation for a collection of linear strings.

Let P = fs1; : : : ; smg be a set ofpositivestrings andN = ft1; : : : ; tkg be a
set ofnegativestrings. We assume that no negative stringti is a substring of any
positive stringsj. A consistent superstringfor (P;N) is a strings such that each
si is a substring ofs and noti is a substring ofs (Jiang and Li, 1994 [180]).

Problem 12.27 Design an approximation algorithm for the shortest consistent su-
perstring problem.

Short fragments read by sequencing contain errors that lead to complications in
fragment assembly. Introducing errors leads toshortestk-approximate superstring
problem(Jiang and Li, 1996 [181]):

Problem 12.28 Given a setS of strings, find a shortest stringw such that each
stringx in S matches some substring ofw with at mostk errors.

Suppose we are given a setS of n randomstrings of a fixed sizel in anA-
letter alphabet. Ifn is large (of the order ofAl), the length of the shortest common
superstringE(S) for the setS is of the ordern. If n is small,E(S) is of the order
n � l.

12.5. DNA ARRAYS 257

Problem 12.29 EstimateE(S) as a function ofl, n, andA.

Given stringss andt, overlap(s; t) is the length of a maximal prefix ofs that
matches a suffix oft.

Problem 12.30 Given a collection of i.i.d. stringsfs1; : : : ; sng of fixed length,
find the distribution ofmaxfoverlap(si; sj) : 1 � i 6= j � ng.

Given a collection of readsS = fs1; : : : ; sng from a DNA sequencing project
and an integerl, the spectrum ofS is a setSl of all l-tuples from stringss1; : : : ; sn.
Let� be an upper bound on the number of errors in each DNA read. One approach
to the fragment assembly problem is to first correct the errors in each read and then
assemble the correct reads into contigs. This motivates the following problem:

Problem 12.31 GivenS, �, andl, introduce up to� corrections in each string in
S in such a way thatjSlj is minimized.

12.5 DNA Arrays

Problem 12.32 Prove that the information-theoretic lower bound for the number
of probes needed to unambiguously reconstruct an arbitrary string of lengthn is

(n).

Problem 12.33 Devise an algorithm for SBH sequence reconstruction by data
with errors (false positive and false negative).

Given two strings with the samel-tuple composition, thedistancebetween
them is the length of theshortestseries of transpositions transforming one into the
other.

Problem 12.34 Devise an algorithm for computing or approximating the distance
between two strings with the samel-tuple composition.

Problem 12.35 What is the largest distance between twon-letter strings with the
samel-tuple composition?

Continuous stacking hybridizationassumes an additional hybridization of short
probes that continuously extends duplexes formed by the target DNA fragment and
the probes from the sequencing array. In this approach, additional hybridization
with a shortm-tuple on the arrayC(k) provides information about some(k+m)-
tuples contained in the sequence.

258 CHAPTER 12. PROBLEMS

Problem 12.36 Given a spectrumS that does not provide an unambiguous SBH
reconstruction, determine a minimum number of continuous stacking hybridization
experiments needed to unambiguously reconstruct the target fragment.

Problem 12.37 Reconstruct the sequence of a DNA fragment given a spectrumS
and the results of additional continuous stacking hybridizations.

A reduced binary arrayof orderl is an array with memory2 � 2l composed of
all multiprobes of two kinds

fW;Sg; fW;Sg; : : : ; fW;Sg;| {z }
l

and fR;Y g; fR;Y g; : : : ; fR;Y g| {z }
l

:

For example, forl = 2, the reduced binary array consists of 8 multiprobes:WW ,
WS, SW , SS;RR;RY; Y R, andY Y . Each multiprobe is a pool of four dinu-
cleotides.

Problem 12.38 Compute the branching probability of reduced binary arrays and
compare it with the branching probability of uniform arrays.

We call an arrayk-boundedif all probes in the array have a length of at most
k.

Problem 12.39 Givenm andk, find ak-bounded array withm (multi)probes max-
imizing the resolving power.

An easier version of the previous problem is the following:

Problem 12.40 Do binary arraysCbin(k � 1) provide asymptotically the best re-
solving power among allk-bounded arrays?

Although binary arrays provide better resolving power than uniform arrays, an
efficient algorithm for reconstruction of a DNA fragment from its spectrum over a
binary array is still unknown.

Problem 12.41 Does there exist a polynomial algorithm for SBH sequence recon-
struction by binary arrays?

The proof of theorem 5.6 considers the switchsi+1 atx; y and the switchsi at
z; u. The proof implicitly assumes that the sets of verticesfx; yg andfz; ug do not
overlap.

Problem 12.42 Adjust the proof for the case in which these sets do overlap.

12.6. SEQUENCE COMPARISON 259

Let L be a set of strings. Consider a setE (strings precedence data) of all
ordered pairs of differentl-tuples such that they occur in some string fromL in
the given order but at arbitrary distances. Chetverin and Kramer, 1993 [66] sug-
gested thenested strand hybridizationapproach to DNA arrays, which results in
the following problem (Rubinov and Gelfand, 1995 [291]):

Problem 12.43 ReconstructL given strings precedence data.

Two-dimensional Gray codes are optimal for minimizing the border length of
uniform DNA arrays. However, for anarbitrary array, the problem of minimizing
the overall border lengths of photolithographic masks remains unsolved.

Problem 12.44 Find an arrangement of probes in an (arbitrary) array minimizing
the overall border lengths of masks for photolithographic array design.

12.6 Sequence Comparison

Fitting a sequenceV into a sequenceW is a problem of finding a substringW 0 of
W that maximizes the score of alignments(V;W 0) among all substrings ofW .

Problem 12.45 Devise an efficient algorithm for the fitting problem.

Problem 12.46 Estimate the number of different alignments between twon-letter
sequences.

Problem 12.47 Devise an algorithm to compute the number of distinct optimal
alignments between a pair of strings.

Problem 12.48 For a pair of stringsv1 : : : vn andw1 : : : wm show how to com-
pute, for each(i; j), the value of the best alignment that aligns the charactervi
with characterwj.

Problem 12.49 For a parameterk, compute the global alignment between two
strings, subject to the constraint that the alignment contains at mostk gaps (blocks
of consecutive indels).

The k-difference alignmentproblem is to find the best global alignment of
stringsV andW containing at mostk mismatches, insertions, or deletions.

Problem 12.50 Devise anO(kn) k-difference global alignment algorithm for com-
paring twon-letter strings.

Chao et al., 1992 [64] described an algorithm for aligning two sequences within
a diagonal band that requires onlyO(nw) computation time andO(n) space, where
n is the length of the sequences andw is the width of the band.

260 CHAPTER 12. PROBLEMS

Problem 12.51 Can an alignment within a diagonal band be implemented with
O(w) space?

Myers and Miller, 1988 [246] studied the following:

Problem 12.52 Develop a linear-space version of global sequence alignment with
affine gap penalties.

Huang and Miller, 1991 [169] studied the following:

Problem 12.53 Develop a linear-space version of the local alignment algorithm.

In the space-efficient approach to sequence alignment, the original problem of
sizen�m is reduced to two subproblems of sizesi� m

2 and(n� i)� m
2 . In a fast

parallel implementation of sequence alignment, it is desirable to have abalanced
partitioning that breaks the original problem into sub-problems of equal sizes.

Problem 12.54 Design a space-efficient alignment algorithm with balanced par-
titioning.

The score of a local alignment is not normalized over the length of the match-
ing region. As a result, a local alignment with score 100 and length 100 will be
chosen over a local alignment with score 99 and length 10, although the latter one
is probably more important biologically. To reflect the length of the local align-
ment in scoring, the scores(I; J) of local alignment involving substringsI and
J may be adjusted by dividings(I; J) by the total length of the aligned regions:
s(I;J)
jIj+jJj . Thenormalized local alignmentproblem is to find substringsI andJ that

maximize s(I;J)
jIj+jJj among all substringsI andJ with jIj + jJ j � k, wherek is a

threshold for the minimal overall length ofI andJ .

Problem 12.55 Devise an algorithm for solving the normalized local alignment
problem.

A stringX is called asupersequenceof a stringV if V is a subsequence ofX.

Problem 12.56 Given stringsV andW , devise an algorithm to find the shortest
supersequence for bothV andW .

LetP be a pattern of lengthn, and letT be a text of lengthm. Thetandem re-
peatproblem is to find an interval inT that has the best global alignment with some
tandem repeat ofP . Let Pm be the concatenation ofP with itself m times. The
tandem repeat problem is equivalent to computing the local alignment betweenPm

andT , and the standard local alignment algorithm solves this problem inO(nm2)
time.

12.6. SEQUENCE COMPARISON 261

Problem 12.57 Find an approach that solves the tandem repeat problem inO(nm)
time.

An alignment of circular strings is defined as an alignment of linear strings
formed by cutting (linearizing) these circular strings at arbitrary positions.

Problem 12.58 Find an optimal alignment (local and global) of circular strings.

A local alignment between two different stringsA andB finds a pair of sub-
strings, one inA and the other inB, with maximum similarity. Suppose that we
want to find a pair of (non-overlapping) substringswithin stringA with maximum
similarity (optimal inexact repeat problem). Computing the local alignment be-
tweenA and itself does not solve the problem, since the resulting alignment may
correspond to overlapping substrings. This problem was studied by Miller (un-
published manuscript) and later by Kannan and Myers, 1996 [184] and Schmidt,
1998 [308].

Problem 12.59 Devise an algorithm for the optimal inexact repeat problem.

Schoniger and Waterman, 1992 [310] extended the range of edit operations in
sequence alignment to includenon-overlappingreversals in addition to insertions,
deletions, and substitutions.

Problem 12.60 Devise an efficient algorithm for sequence alignment with non-
overlapping reversals.

In thechimeric alignmentproblem (Komatsoulis and Waterman, 1997 [205]), a
stringV and a database of stringsW = fW1; : : : WNg are given, and the problem
is to findmax1�i6=j�N s(V;Wi �Wj) whereWi �Wj is the concatenation ofWi

andWj.

Problem 12.61 Devise an efficient algorithm for the chimeric alignment problem.

Problem 12.62 Show that in any permutation ofn distinct integers, there is either
an increasing subsequence of length at least

p
n or a decreasing subsequence of

length at least
p
n.

A Catalan sequence is a permutationx1 : : : x2n of n ones andn zeros such
that for any prefixx1 : : : xi, the number of ones is at least as great as the number
of zeros. Then-th CatalannumberCn is the number of such sequences.

Problem 12.63 Prove the following:

262 CHAPTER 12. PROBLEMS

� Cn is the number of standard Young tableaux with two rows of lengthn.

� Cn is the number of permutations� 2 Sn with a longest decreasing subse-
quence of length at most 2.

� Cn is the number of sequences of positive integers1 � a1 � a2 � : : : � an
such thatai � i for all i.

Problem 12.64 Prove the recurrenceCn+1 = CnCo + Cn�1C1 + : : :+ CoCn.

Problem 12.65 Prove that the length of the longest decreasing subsequence of
permutation� is the length of the first column of the Young tableauP (�).

A subsequence� of permutation� is k-increasingif, as a set, it can be written
as

� = �1 [�2 [: : : [�k
where any given�i is an increasing subsequence of�.

Problem 12.66 Devise an algorithm to find longestk-increasing subsequences.

Chang and Lampe [61] suggested an analog of the Sankoff-Mainville conjec-
ture for the case of the edit distanced(V;W) betweenn-letter i.i.d. stringsV and
W :

Problem 12.67 For random i.i.d.n-letter strings in ak-letter alphabet,

Expectation(d(V;W))

n
= 1� 1p

k
+ o(

1p
k
):

Gusfield et al., 1994 [146] proved that the number of convex polygons in the pa-
rameter space decomposition forglobal alignment is bounded byO(n2=3), where
n is the length of the sequences. Fernandez-Baca et al., 1999 [102] studied the
following:

Problem 12.68 Generate a pair of sequences of lengthn that have an order of

(n2=3) regions in the decomposition of the parameter space.

For a fixed-length alphabet, no examples of sequences with
(n2=3) regions in
the parameter space decomposition are known.

Problem 12.69 Improve the boundO(n2=3) on the number of regions in space
decomposition for global alignment in the case of a bounded alphabet.

12.6. SEQUENCE COMPARISON 263

Problem 12.70 Derive bounds for the expected number of regions in space de-
composition for global alignment of two random sequences of lengthn.

Problem 12.71 Generalize bounds for the number of regions in space decomposi-
tion for the case of multiple alignment.

Parameter space decomposition for local alignment usually contains more re-
gions than parameter space decomposition for global alignment. Vingron and Wa-
terman, 1994 [346] studied the links between the parametric sequence alignment
and the phase transition. In this connection, it is interesting to study the parameter
decomposition of logarithmic area.

Problem 12.72 Derive bounds for the expected number of regions in space de-
composition of logarithmic area for local alignment of two random sequences of
lengthn.

The Gusfield et al., 1994 [146] algorithm for parametric sequence alignment
of two sequences runs inO(R + E) time per region, whereR is the number of
regions in the parametric decomposition andE is the time needed to perform a
single alignment. In the case of unweighted scoring schemes,R = O(E), so the
cost per region isO(E). When one uses a weight matrix, little is known aboutR.
Gusfield formulated the following:

Problem 12.73 Estimate the number of regions in a convex decomposition in the
case of weight matrices.

Problem 12.74 Devise a fast algorithm for space decomposition in the case of
weight matrices.

Sinceenergyparameters for RNA folding are estimated with errors, it would be
useful to study parametric RNA folding. For example, comparison of regions cor-
responding to cloverleafs for tRNA parameter space decomposition would provide
an estimate of the accuracy of currently used RNA energy parameters.

Problem 12.75 Develop an algorithm for parametric RNA folding.

LetSn(�; Æ) be a random variable corresponding to the score (# matches –�#
mismatches –�# indels) of the global alignment between two random i.i.d. strings
of lengthn. Arratia and Waterman, 1994 [14] defineda(�; Æ) = limn!1

Sn(�;Æ)
n

and demonstrated thatfa = 0g = f(�; Æ) : a(�; Æ) = 0g is a continuous phase
transition curve.

Problem 12.76 Characterize the curvea(�; Æ) = 0.

264 CHAPTER 12. PROBLEMS

12.7 Multiple Alignment

Problem 12.77 Devise a space-efficient algorithm for multiple alignment.

Problem 12.78 Devise an algorithm that assembles multiple alignments from 3-
way alignments.

Problem 12.79 Construct an example for which the Vingron-Argos matrix multi-
plication algorithm requires
(L) iterations, whereL is the length of sequences.

Jiang and Li, 1994 [180] formulated the following:

Problem 12.80 Can shortest common supersequences (SCSs) and longest com-
mon supersequences (LCSs) on binary alphabets be approximated with a ratio bet-
ter than2?

One could argue that the notion of NP-completeness is somewhat misleading
for some computational biology problems, because it is insensitive to the limited
parameter ranges that are often important in practice. For example, in many appli-
cations, we would be happy with efficient algorithms for multiple alignment with
k � 10. What we currently have is theO((2n)k) dynamic programming algo-
rithm. The NP-completeness of the multiple alignment problem tells us almost
nothing about what to expect if we fix our attention on the range ofk � 10. It
could even be the case that there is a linear-time algorithm for every fixed value
of k! For example, it would be entirely consistent with NP-completeness if the
problem could be solved in timeO(2kn).

The last decade has seen the development of algorithms that are particularly
applicable to problems such as multiple alignment for fixed parameter ranges. We
presently do not know whether the complexity obtained by dynamic programming
is the “last word” on the complexity of the multiple alignment problem (Bodlaender
et al., 1995 [38]). Mike Fellows formulated the following conjecture:

Problem 12.81 The longest common subsequence problem fork sequences in a
fixed-size alphabet can be solved in timef(k)n� where� is independent ofk.

12.8 Finding Signals in DNA

Problem 12.82 Describe a winning strategy forB in the best bet for simpletons.

Problem 12.83 Describe the best strategy forA in the best bet for simpletons (i.e.,
the strategy that minimizes losses).

12.9. GENE PREDICTION 265

If a coin in the best bet for simpletons is biased (e.g.,p(0) > p(1)), it makes
sense forA to choose a word such as0 : : : 0 to improve the odds.

Problem 12.84 Study the best bet for simpletons with a biased coin. DoesB still
have an advantage overA in this case?

Problem 12.85 Derive the variance of the number of occurrences of a given word
in the case of linear strings.

Problem 12.86 Devise an approximation algorithm for the consensus word prob-
lem.

The Decoding Problem can be formulated as a longest path problem in a di-
rected acyclic graph. This motivates a question about a space-efficient version of
the Viterbi algorithm.

Problem 12.87 Does there exist a linear-space algorithm for the decoding prob-
lem?

12.9 Gene Prediction

The spliced alignment algorithm finds exons in genomic DNA by using a related
protein as a template. What if a template is not a protein but other (uninterpreted)
genomic DNA? In particular, can we use (unannotated) mouse genomic DNA to
predict human genes?

Problem 12.88 Generalize the spliced alignment algorithm for alignment of one
genomic sequence against another.

Problem 12.89 Generalize the similarity-based approach to gene prediction for
the case in which multiple similar proteins are available.

Sze and Pevzner, 1997 [332] formulated the following:

Problem 12.90 Modify the spliced alignment algorithm for finding suboptimal
spliced alignments.

The “Twenty Questions Game with a Liar” assumes that every answer in the
game is false with probabilityp. Obviously, ifp = 1

2 , the game is lost since the liar
does not communicate any information to us.

Problem 12.91 Design an efficient strategy for the “Twenty Questions Game with
a Liar” that findsk unknown integers from the interval[1; n] if the probability of a
false answer isp 6= 1

2 .

266 CHAPTER 12. PROBLEMS

Problem 12.92 Estimate the expected number of questions in the “Twenty Ques-
tions Game with a Liar” if the probability of a false answer isp 6= 1

2 .

Problem 12.93 Design experimental and computational protocols to find all al-
ternatively spliced variants for a given genomic sequence.

The observation that PCR-based queries can be used to test a potentially ex-
ponential number of hypotheses about splicing variants leads to a reformulation of
the above problem.

Problem 12.94 Given a graphG(V;E) with a collectionC of (unknown) paths,
reconstructC by asking the minimum number of queries of the form: “Does a
collectionC contain a path passing through verticesv andw fromG?”

Let S be a fixed set of probes, and letC be a DNA sequence. A fingerprint
of C is a subset of probes fromS that hybridize withC. Let G be a genomic
sequence containing a gene represented by a cDNA cloneC. Mironov and Pevzner,
1999 [241] studied the following fingerprint-based gene recognition problem:

Problem 12.95 Given a genomic sequenceG and the fingerprint of the corre-
sponding cDNA cloneC, predict a gene inG (i.e., predict all exons inG).

12.10 Genome Rearrangements

Sorting by reversals corresponds to eliminating breakpoints. However, for some
permutations (such as 563412), no reversal reduces the number of breakpoints. All
three strips (maximal intervals without breakpoints) in 563412 are increasing.

Problem 12.96 Prove that if an unsigned permutation has a decreasing strip, then
there is a reversal that reduces the number of breakpoints by at least one.

A 2-greedy algorithm for sorting� by reversals chooses reversals� and� such
that the number of breakpoints in� � � � � is minimal among all pairs of reversals.

Problem 12.97 Prove that 2-greedy is a performance guarantee algorithm for
sorting by reversals.

In the case in which the sequence of genes contains duplications, sortingper-
mutationsby reversals is transformed into sortingwordsby reversals. For example,
the shortest sequence of reversals to transform the word 43132143 into the word
42341314 involves two inversions:43132143! 42313143! 42341314.

12.10. GENOME REARRANGEMENTS 267

Problem 12.98 Devise a performance guarantee algorithm for sorting words by
reversals.

Kececioglu and Sankoff, 1994 [193] studied the bounds for the diameterD(n)
in the case of signed permutations and proved thatn� 1 � D(n) � n. They also
conjectured the following:

Problem 12.99 For signed circular permutations,D(n) = n for sufficiently large
n.

Problem 12.100 Characterize the set of “hard-to-sort” signed permutations onn
elements such thand(�) = D(n).

Problem 12.101 Improve the lower bound and derive an upper bound for the ex-
pected reversal distance.

Problem 12.102 Estimate the variance of reversal distance.

Gates and Papadimitriou, 1979 [120] conjectured that a particular permutation
onn elements requires at least19

16n reversals to be sorted. Heydari and Sudborough,
1997 [161] disproved their conjecture by describing18

16n + 2 reversals sorting the
Gates-Papadimitriou permutation.

Problem 12.103 Find the prefix reversal diameter of the symmetric group.

Genomes evolve not only by inversions but bytranspositionsas well. For a
permutation�, a transposition�(i; j; k) (defined for all1 � i < j � n+ 1 and all
1 � k � n + 1 such thatk 62 [i; j]) “inserts” an interval[i; j � 1] of � between
�k�1 and�k. Thus�(i; j; k) corresponds to the permutation0

B@ 1 : : : i� 1 i i+1 j-2 j-1 j . . . k-1 k : : : n

1 : : : i� 1 j . . . k-1 i i+1 j-2 j-1 k : : : n

1
CA

Given permutations� and�, the transposition distanceis the length of the
shortest series of transpositions�1; �2; : : : ; �t transforming� into� ��1 ��2 � � � �t =
�. Sorting� by transpositionsis the problem of finding the transposition distance
d(�) between� and the identity permutation{. Bafna and Pevzner, 1998 [20]
devised a1:5 performance guarantee algorithm for sorting by transpositions and
demonstrated that the transposition diameterDt(n) of the symmetric group is
bounded byn2 � Dt(n) � 3n

4 .

Problem 12.104 Find the transposition diameter of the symmetric group.

268 CHAPTER 12. PROBLEMS

The well-known variant of sorting by transpositions is sorting by transpositions
�(i; i + 1; i + 2) where the operation is an exchange of adjacent elements. A
simple bubble-sort algorithm solves this problem for linear permutations. Solving
the problem for circular permutations is more difficult.

Problem 12.105 Design an algorithm for sorting circular permutations by ex-
changes of adjacent elements.

Problem 12.106 Every circular permutation can be sorted in2dn�12 ebn�12 c ex-
changes of adjacent elements.

We represent a circular permutation as elements�1 : : : �n equally spaced on a
circle. Figure 12.2 presents circular permutations� = �1 : : : �n and� = �1 : : : �n
positioned on two concentric circles andn edgese1 : : : en such thatei joins element
i in � with elementi in �. We call such a representation of� and� anembedding,
and we are interested in embeddings minimizing the numberC of crossingedges.
Edges in an embedding can be directed either clockwise or counterclockwise; no-
tice that the overall number of crossing edges depends on the choice of directions.
For example, the embedding in Figure 12.2a corresponds toC = 2, while the
embedding in Figure 12.2b corresponds toC = 3. An n-mer direction vector
v = v1; : : : vn with vi 2 f+1;�1g defines an embedding by directing an edgeei
clockwise ifvi = +1 and counterclockwise otherwise.

For convenience we choose the “twelve o’clock” vertex on a circle to represent
a “starting” point of a circular permutation. Choosing an elementr as a starting
point of � defines arotation of �. For the sake of simplicity, we assume that
� = 1 : : : n is the identity permutation and that the starting point of� is 1.

1

2

3

4

5

6

1

2

3

4

5
6

1

2

3

4

5

6

1

2

3

4

5
6

Figure 12.2:Crossing edges in embeddings.

Every rotation of� with r as a starting point and every vectorv define an
embedding with a number ofcrossingedgesC(r;v). Sankoff and Goldstein,
1989 [303] studied the followingoptimal embeddingproblem:

12.11. COMPUTATIONAL PROTEOMICS 269

Problem 12.107 Find
min
r;v

C(r;v):

Letdij(�) be the distance from elementi to elementj in permutation� counted
clockwise. Thelengthof a clockwise edgeei is defined aŝ{ = (d1i(�) � d1i(�))
mod(n), while the length of a counterclockwise edge is defined as�{ = n� {̂. For a
rotationr, define acanonicaldirection vectorv(r) = (v1(r) : : : vn(r)) according
to the rule thatvi(r) = +1 if clockwise edgeei is shorter than counterclockwise
edgeei (i.e., if {̂ < �{) and�1 otherwise.

Problem 12.108 Prove

min
r

C(r;v(r)) � dn� 1

2
ebn� 1

2
c:

Problem 12.109 Prove that for every0 � r � n� 1, circular permutation� can
be sorted in at mostC(r;v(r)) exchanges of adjacent elements.

AnA-permutation onn elements is a permutation off1; 2; : : : ; ng interspersed
with letters from an alphabetA. For example, 3aa1baa4a52b is anA-permutation
of 31452 withA = fa; bg. A reversal of anA-permutation is valid if its start-
ing and ending elements coincide. An identityA-permutation is a permutation in
which f1; 2; : : : ; ng appear in order (with arbitrary assignment of elements from
A).

Problem 12.110 Design a test deciding whether anA-permutation can be sorted
by valid reversals.

Problem 12.111 Design an algorithm for sortingA-permutations by valid rever-
sals.

12.11 Computational Proteomics

Mass-spectrometry has become a source of new protein sequences, some of them
previously unknown at the DNA level. This raises the problem of bridging gap
between proteomics and genomics, i.e., problem of sequencing DNA based on
information derived from large-scale MS/MS peptide sequencing. This problem
is complicated since peptides sequenced by mass-spectrometry may come in short
pieces with potential ambiguities (such as transposition of adjacent amino acids
and wild cards).

270 CHAPTER 12. PROBLEMS

Problem 12.112 Given a set of peptides (with ambiguities) from a given protein,
design experimental and computational protocols to find the genomic sequence
corresponding to this protein.

Problem 12.113 Design an algorithm for searching peptides with ambiguities in
protein databases.

Consider a mixture of (unknown) proteins subject to complete digestion by a
protease (e.g., trypsin). This results in a collection of peptides ranging in length
from 10 to 20 amino acids, and the problem is to decide which peptides belong to
the same proteins and to reconstruct the order of peptides in each of the proteins.
The mass-spectrometer is capable of (partial) sequencing of all peptides in the
mixture, but it is typically unknown which peptides come from the same protein
and what the order is of peptides in the proteins. Protein sequencing of protein
mixtures is a problem of assembling peptides into individual proteins.

Problem 12.114 Devise experimental and computational protocols for sequencing
protein mixtures by mass-spectrometry.

The spectrum graph approach tode novopeptide sequencing does not take into
account internal ions and multiple-charged ions.

Problem 12.115 Devise a peptide sequencing algorithm taking into account inter-
nal and multiple-charged ions.

LetM(P) be the set of masses of all partial peptides of peptideP . Using diges-
tion ofP by different non-specific proteases, one can obtain a set of experimentally
measured masses of partial peptidesM �M(P).

Problem 12.116 Given a set of massesM �M(P), reconstructP .

Accurate determination of the peptide parent mass is extremely important inde
novopeptide sequencing. An error in parent mass leads to systematic errors in the
masses of vertices for C-terminal ions, thus making peptide reconstruction difficult.
In practice, the offsets between the real peptide masses (given by the sum of amino
acids of a peptide) and experimentally observed parent masses are frequently so
large that errors in peptide reconstruction become almost unavoidable.

Problem 12.117 Given an MS/MS spectra (without parent mass), devise an algo-
rithm that estimates the parent mass.

Chapter 13

All You Need to Know about Molecular Biology

Well, not really, of course, see Lewin, 1999 [220] for an introduction.
DNA is a string in the four-letter alphabet ofnucleotidesA, T, G, and C. The

entire DNA of a living organism is called itsgenome. Living organisms (such as
humans) have trillions of cells, and each cell contains the same genome. DNA
varies in length from a few million letters (bacteria) to a few billion letters (mam-
mals). DNA forms a helix, but that is not really important for this book. What is
more important is that DNA is usually double-stranded, with one strand being the
Watson-Crick complement(T pairs with A and C pairs with G) of the other, like
this:

A T G C T C A G G
j j j j j j j j j
T A C G A G T C C

DNA makes the workhorses of the cell calledproteins. Proteins are short
strings in theamino acid20-letter alphabet. The human genome makes roughly
100,000 proteins, with each protein a few hundred amino acids long. Bacteria
make 500—1500 proteins, this is close to the lower bound for a living organism
to survive. Proteins are made by fragments of DNA calledgenesthat are roughly
three times longer than the corresponding proteins. Why three? Because every
three nucleotides in the DNA alphabet code one letter in the protein alphabet of
amino acids. There are43 = 64 triplets (codons), and the question arises why
nature needs so many combinations to code 20 amino acids. Well, genetic code
(Figure 13.1) is redundant, not to mention that there existStopcodons signaling
the end of protein.

Biologists divide the world of organisms intoeukaryotes(whose DNA is en-
closed into a nucleus) andprokaryotes. A eukaryotic genome is usually not a single
string (as in prokaryotes), but rather a set of strings calledchromosomes. For our

271

272 ALL YOU NEED TO KNOW ABOUT MOLECULAR BIOLOGY

purposes, the major difference to remember between prokaryotes and eukaryotes is
that in prokaryotes genes are continuous strings, while they are broken into pieces
(called exons) in eukaryotes. Human genes may be broken into as many as 50
exons, separated by seemingly meaningless pieces calledintrons.

A gene broken into many pieces still has to produce the corresponding protein.
To accomplish this, cells have to cut off the introns and concatenate all the exons
together. This is done inmRNA, an intermediary molecule similar to short, single-
stranded DNA, in a process calledtranscription. There are signals in DNA to start
transcription that are calledpromoters. The protein-synthesizing machinery then
translatescodons in mRNA into a string of amino acids (protein). In the laboratory,
mRNA can also be used as a template to make a complementary copy calledcDNA
that is identical to the original gene with cut-out introns.

PHE

LEU

LEU

ILE

MET

VAL

SER

PRO

THR

ALA

TYR

Stop

HIS

GLN

ASN

LYS

ASP

GLU

CYS

Stop

TRP

ARG

SER

ARG

GLY

T

C

A

G

T C A G

Second position

F
ir

st
 p

os
it

io
n

TTT

TTC

TTA

TTG

CTT

CTC

CTA

CTG

ATT

ATC

ATA

ATG

GTT

GTC

GTA

GTG

TCT

TCC

TCA

TCG

TAT

TAC

TAA

TAG

TGT

TGC

TGA

TGG

CCT

CCC

CCA

CCG

CAT

CAC

CAA

CAG

CGT

CGC

CGA

CGG

ACT

ACC

ACA

ACG

AAT

AAC

AAA

AAG

AGT

AGC

AGA

AGG

GCT

GCC

GCA

GCG

GAT

GAC

GAA

GAG

GGT

GGC

GGA

GGG

Figure 13.1:Genetic code.

Over the years biologists have learned how to make many things with DNA.
They have also learned how to copy DNA in large quantities for further study.
One way to do this,PCR (polymerase chain reaction), is the Gutenberg printing
press of DNA. PCR amplifies a short (100 to 500-nucleotide) DNA fragment and
produces a large number of identical strings. To use PCR, one has to know a
pair of short (20 to 30-letter) strings flanking the area of interest and design two

PCR primers, synthetic DNA fragments identical to these strings. Why do we need
a large number of short identical DNA fragments? From a computer science per-
spective, having the same string in 1018 copies does not mean much; it does not
increase the amount of information. It means a lot to biologists however, since
most biological experiments require using a lot of strings. For example, PCR can
be used to detect the existence of a certain DNA fragment in a DNA sample.

Another way to copy DNA is to clone it. In contrast to PCR, cloning does not
require any prior information about flanking primers. However, in cloning, biolo-
gists do not have control over what fragment of DNA they amplify. The process
usually starts with breaking DNA into small pieces. To study an individual piece,
biologists obtain many identical copies of each piece by cloning the pieces.
Cloning incorporates a fragment of DNA into a cloning vector. A cloning vector is
a DNA molecule (usually originated from a virus or DNA of a higher organism)
into which another DNA fragment can be inserted. In this operation, the cloning
vector producing an does not lose its ability for self-replication. Vectors introduce
foreign DNA into host cells (such as bacteria) where they can be reproduced in
large quantities. The self-replication process creates a large number of copies of
the fragment, thus enabling its structure to be investigated. A fragment reproduced
in this way is called a clone. Biologists can make clone libraries consisting of
thousands of clones (each representing a short, randomly chosen DNA fragment)
from the same DNA molecule.

Restriction enzymes are molecular scissors that cut DNA at every occurrence
of certain words. For example, the BamHI restriction enzyme cuts DNA into
restriction fragments at every occurrence of GGATCC. Proteins also can be cut
into short fragments (called peptides) by another type of scissors, called proteases.

The process of joining two complementary DNA strands into a double-stranded
molecule is called hybridization. Hybridization of a short probe complementary to
a known DNA fragment can be used to detect the presence of this DNA fragment.
A probe is a short, single-stranded, fluorescently labeled DNA fragment that is
used to detect whether a complementary sequence is present in a DNA sample.
Why do we need to fluorescently label the probe? If a probe hybridizes to a DNA
fragment, then we can detect this using a spectroscopic detector.

Gel-electrophoresis is a technique that allows biologists to measure the size of
DNA fragments without sequencing them. DNA is a negatively charged molecule
that migrates toward a positive pole in the electric field. The speed of migration is
a function of fragment size, and therefore, measurement of the migration distances
allows biologists to estimate the sizes of DNA fragments.

ALL YOU NEED TO KNOW ABOUT MOLECULAR BIOLOGY 273

PevznerBm.qxd 6/14/2000 12:28 PM Page 273

Bibliography

[1] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communication of ACM, 18:333�340, 1975.

[2] D.J. Aldous and P. Diaconis. Hammersley�s interacting particle process and
longest increasing subsequences. Probability Theory and Related Fields,
103:199�213, 1995.

[3] F. Alizadeh, R.M. Karp, L.A. Newberg, and D.K. Weisser. Physical map-
ping of chromosomes: A combinatorial problem in molecular biology.
Algorithmica, 13:52�76, 1995.

[4] F. Alizadeh, R.M. Karp, D.K. Weisser, and G. Zweig. Physical mapping of
chromosomes using unique probes. Journal of Computational Biology,
2:159�184, 1995.

[5] S. Altschul, W. Gish, W. Miller, E. Myers, and J. Lipman. Basic local align-
ment search tool. Journal of Molecular Biology, 215:403�410, 1990.

[6] S.F. Altschul. Amino acid substitution matrices from an information theo-
retic perspective. Journal of Molecular Biology, 219:555�565, 1991.

[7] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D.J. Lipman. Gapped Blast and Psi-Blast: a new generation of protein
database search programs. Nucleic Acids Research, 25:3389�3402, 1997.

[8] T.S. Anantharaman, B. Mishra, and D.C. Schwartz. Genomics via optical
mapping. II: Ordered restriction maps. Journal of Computational Biology,
4:91�118, 1997.

[9] A. Apostolico. Improving the worst-case performance of the Hunt-
Szymanski strategy for the longest common subsequence of two strings.
Information Processing Letters, 23:63�69, 1986.

275

PevznerBm.qxd 6/14/2000 12:28 PM Page 275

276 BIBLIOGRAPHY

[10] A. Apostolico and F. Preparata. Data structures and algorithms for the string
statistics problem.Algorithmica, 15:481–494, 1996.

[11] R. Arratia, E.S. Lander, S. Tavare, and M.S. Waterman. Genomic mapping
by anchoring random clones: a mathematical analysis.Genomics, 11:806–
827, 1991.

[12] R. Arratia, D. Martin, G. Reinert, and M.S. Waterman. Poisson process ap-
proximation for sequence repeats, and sequencing by hybridization.Journal
of Computational Biology, 3:425–464, 1996.

[13] R. Arratia and M.S. Waterman. The Erd¨os-Rényi strong law for pattern
matching with a given proportion of mismatches.Annals of Probability,
17:1152–1169, 1989.

[14] R. Arratia and M.S. Waterman. A phase transition for the score in match-
ing random sequences allowing deletions.Annals of Applied Probability,
4:200–225, 1994.

[15] R. Baer and P. Brock. Natural sorting over permutation spaces.Math.
Comp., 22:385–410, 1968.

[16] R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching. In
Proceedings of the Twelfth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 168–175, Cam-
bridge, Massachussets, 1989.

[17] R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximate string
matching. InThird Annual Symposium on Combinatorial Pattern Matching,
volume 644 ofLecture Notes in Computer Science, pages 185–192, Tucson,
Arizona, April/May 1992. Springer-Verlag.

[18] V. Bafna, E.L. Lawler, and P.A. Pevzner. Approximation algorithms for
multiple sequence alignment.Theoretical Computer Science, 182:233–244,
1997.

[19] V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25:272–289, 1996.

[20] V. Bafna and P.A. Pevzner. Sorting by transpositions.SIAM Journal on
Discrete Mathematics, 11:224–240, 1998.

[21] J. Baik, P.A. Deift, and K. Johansson. On the distribution of the length of
the longest subsequence of random permutations.Journal of the American
Mathematical Society, 12:1119–1178, 1999.

BIBLIOGRAPHY 277

[22] W. Bains. Multan: a program to align multiple DNA sequences.Nucleic
Acids Research, 14:159–177, 1986.

[23] W. Bains and G. Smith. A novel method for nucleic acid sequence determi-
nation. Journal of Theoretical Biology, 135:303–307, 1988.

[24] P. Baldi and S. Brunak.Bioinformatics: The Machine Learning Approach.
The MIT Press, 1997.

[25] E. Barillot, B. Lacroix, and D. Cohen. Theoretical analysis of library
screening using an N-dimensional pooling strategy.Nucleic Acids Research,
19:6241–6247, 1991.

[26] C. Bartels. Fast algorithm for peptide sequencing by mass spectroscopy.
Biomedical and Environmental Mass Spectrometry, 19:363–368, 1990.

[27] G.J. Barton and M.J.E. Sternberg. A strategy for the rapid multiple align-
ment of protein sequences.Journal of Molecular Biology, 198:327–337,
1987.

[28] A. Baxevanis and B.F. Ouellette.Bioinformatics: A Practical Guide to the
Analysis of Genes and Proteins. Wiley-Interscience, 1998.

[29] R. Bellman.Dynamic Programming. Princeton University Press, 1957.

[30] G. Benson. Sequence alignment with tandem duplication. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editors,Proceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB-
97), pages 27–36, Santa Fe, New Mexico, January 1997. ACM Press.

[31] G. Benson. An algorithm for finding tandem repeats of unspecified pattern
size. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors,Proceedings of
the Second Annual International Conference on Computational Molecular
Biology (RECOMB-98), pages 20–29, New York, New York, March 1998.
ACM Press.

[32] S.M. Berget, C. Moore, and P.A. Sharp. Spliced segments at the 5’ termi-
nus of adenovirus 2 late mRNA.Proceedings of the National Academy of
Sciences USA, 74:3171–3175, 1977.

[33] P. Berman and S. Hannenhalli. Fast sorting by reversal. InSeventh Annual
Symposium on Combinatorial Pattern Matching, volume 1075 ofLecture
Notes in Computer Science, pages 168–185, Laguna Beach, California, June
1996. Springer-Verlag.

278 BIBLIOGRAPHY

[34] P. Berman, Z. Zhang, Y.I. Wolf, E.V. Koonin, and W. Miller. Winnowing
sequences from a database search. In S. Istrail, P.A. Pevzner, and M.S. Wa-
terman, editors,Proceedings of the Third Annual International Conference
on Computational Molecular Biology (RECOMB-99), pages 50–58, New
York, New York, March 1999. ACM Press.

[35] K. Biemann and H.A. Scoble. Characterization of tandem mass spectrome-
try of structural modifications in proteins.Science, 237:992–998, 1987.

[36] B.E. Blaisdell. A measure of the similarity of sets of sequences not requiring
sequence alignment.Proceedings of the National Academy of Sciences USA,
16:5169–5174, 1988.

[37] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approxima-
tion of shortest superstrings.Journal of the ACM, 41:630–647, 1994.

[38] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The pa-
rameterized complexity of sequence alignment and consensus.Theoretical
Computer Science, 147:31–54, 1995.

[39] M. Boehnke, K. Lange, and D.R. Cox. Statistical methods for multipoint
radiation hybrid mapping.American Journal of Human Genetics, 49:1174–
1188, 1991.

[40] K.S. Booth and G.S. Leuker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms.Journal of
Computer and System Sciences, 13:335–379, 1976.

[41] P. Bork and T.J. Gibson. Applying motif and profile searches.Methods in
Enzymology, 266:162–184, 1996.

[42] M. Borodovsky and J. McIninch. Recognition of genes in DNA sequences
with ambiguities.BioSystems, 30:161–171, 1993.

[43] M. Yu. Borodovsky, Yu.A. Sprizhitsky, E.I. Golovanov, and A.A. Alexan-
drov. Statistical features in theE. coli genome functional domains primary
structure III. Computer recognition of protein coding regions.Molecular
Biology, 20:1144–1150, 1986.

[44] D. Botstein, R.L. White, M. Skolnick, and R.W. Davis. Construction of a ge-
netic linkage map in man using restriction fragment length polymorphisms.
American Journal of Human Genetics, 32:314–331, 1980.

[45] R.S. Boyer and J.S. Moore. A fast string searching algorithm.Communica-
tion of ACM, 20:762–772, 1977.

BIBLIOGRAPHY 279

[46] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the
automatic discovery of patterns in biosequences.Journal of Computational
Biology, 5:279–305, 1998.

[47] V. Brendel, J.S. Beckman, and E.N. Trifonov. Linguistics of nucleo-
tide sequences: morphology and comparison of vocabularies.Journal of
Biomolecular Structure and Dynamics, 4:11–21, 1986.

[48] D. Breslauer, T. Jiang, and Z. Jiang. Rotations of periodic strings and short
superstrings.Journal of Algorithms, 24:340–353, 1997.

[49] N. Broude, T. Sano, C. Smith, and C. Cantor. Enhanced DNA sequencing
by hybridization. Proceedings of the National Academy of Sciences USA,
91:3072–3076, 1994.

[50] S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA
donor and acceptor sites from the DNA sequence.Journal of Molecular
Biology, 220:49–65, 1991.

[51] W.J. Bruno, E. Knill, D.J. Balding, D.C. Bruce, N.A. Doggett, W.W.
Sawhill, R.L. Stallings, C.C. Whittaker, and D.C. Torney. Efficient pool-
ing designs for library screening.Genomics, 26:21–30, 1995.

[52] R. Bundschuh and T. Hwa. An analytic study of the phase transition line in
local sequence alignment with gaps. In S. Istrail, P.A. Pevzner, and M.S. Wa-
terman, editors,Proceedings of the Third Annual International Conference
on Computational Molecular Biology (RECOMB-99), pages 70–76, Lyon,
France, April 1999. ACM Press.

[53] C. Burge, A.M. Campbell, and S. Karlin. Over- and under-representation
of short oligonucleotides in DNA sequences.Proceedings of the National
Academy of Sciences USA, 89:1358–1362, 1992.

[54] C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic DNA.Journal of Molecular Biology, 268:78–94, 1997.

[55] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vin-
gron. q-gram based database searching using a suffix array. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editors,Proceedings of the Third Annual
International Conference on Computational Molecular Biology (RECOMB-
99), pages 77–83, Lyon, France, April 1999. ACM Press.

[56] A. Caprara. Formulations and complexity of multiple sorting by reversals.
In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors,Proceedings of the

280 BIBLIOGRAPHY

Third Annual International Conference on Computational Molecular Biol-
ogy (RECOMB-99), pages 84–93, Lyon, France, April 1999. ACM Press.

[57] A. Caprara. Sorting by reversals is difficult. In S. Istrail, P.A. Pevzner, and
M.S. Waterman, editors,Proceedings of the First Annual International Con-
ference on Computational Molecular Biology (RECOMB-97), pages 75–83,
Santa Fe, New Mexico, January 1997. ACM Press.

[58] H. Carrillo and D. Lipman. The multiple sequence alignment problem in
biology. SIAM Journal on Applied Mathematics, 48:1073–1082, 1988.

[59] R.P. Carstens, J.V. Eaton, H.R. Krigman, P.J. Walther, and M.A. Garcia-
Blanco. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2)
in human prostate cancer.Oncogene, 15:3059–3065, 1997.

[60] W.K. Cavenee, M.F. Hansen, M. Nordenskjold, E. Kock, I. Maumenee, J.A.
Squire, R.A. Phillips, and B.L. Gallie. Genetic origin of mutations predis-
posing to retinoblastoma.Science, 228:501–503, 1985.

[61] W.I. Chang and J. Lampe. Theoretical and empirical comparisons of approx-
imate string matching algorithms. InThird Annual Symposium on Combina-
torial Pattern Matching, volume 644 ofLecture Notes in Computer Science,
pages 175–184, Tucson, Arizona, April/May 1992. Springer-Verlag.

[62] W.I. Chang and E.L. Lawler. Sublinear approximate string matching and
biological applications.Algorithmica, 12:327–344, 1994.

[63] K.M. Chao. Computing all suboptimal alignments in linear space. InFifth
Annual Symposium on Combinatorial Pattern Matching, volume 807 ofLec-
ture Notes in Computer Science, pages 31–42, Asilomar, California, 1994.
Springer-Verlag.

[64] K.M. Chao, W.R. Pearson, and W. Miller. Aligning two sequences within a
specified diagonal band.Computer Applications in Biosciences, 8:481–487,
1992.

[65] M. Chee, R. Yang, E. Hubbel, A. Berno, X.C. Huang, D. Stern, J. Winkler,
D.J. Lockhart, M.S. Morris, and S.P.A. Fodor. Accessing genetic informa-
tion with high density DNA arrays.Science, 274:610–614, 1996.

[66] A. Chetverin and F. Kramer. Sequencing of pools of nucleic acids on
oligonucleotide arrays.BioSystems, 30:215–232, 1993.

[67] L.T. Chow, R.E. Gelinas, T.R. Broker, and R.J. Roberts. An amazing se-
quence arrangement at the 5’ ends of adenovirus 2 messenger RNA.Cell,
12:1–8, 1977.

BIBLIOGRAPHY 281

[68] I. Chumakov, P. Rigault, S. Guillou, P. Ougen A. Billaut, G. Guasconi,
P. Gervy, I. LeGall, P. Soularue, and L. Grinas et al. Continuum of overlap-
ping clones spanning the entire human chromosome 21q.Nature, 359:380–
387, 1992.

[69] G. Churchill. Stochastic models for heterogeneous DNA sequences.Bulletin
of Mathematical Biology, 51:79–94, 1989.

[70] V. Chvátal and D. Sankoff. Longest common subsequences of two random
sequences.Journal of Applied Probability, 12:306–315, 1975.

[71] V. Chvatal and D. Sankoff. An upper-bound techniques for lengths of com-
mon subsequences. In D. Sankoff and J.B. Kruskal, editors,Time Warps,
String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, pages 353–357. Addison-Wesley, 1983.

[72] K.R. Clauser, P.R. Baker, and A.L. Burlingame. The role of accurate mass
measurement (+/– 10ppm) in protein identification strategies employing MS
or MS/MS and database searching.Analytical Chemistry, 71:2871–2882,
1999.

[73] F.S. Collins, M.L. Drumm, J.L. Cole, W.K. Lockwood, G.F. Vande Woude,
and M.C. Iannuzzi. Construction of a general human chromosome jumping
library, with application to cystic fibrosis.Science, 235:1046–1049, 1987.

[74] N.G. Copeland, N.A. Jenkins, D.J. Gilbert, J.T. Eppig, L.J. Maltals, J.C.
Miller, W.F. Dietrich, A. Weaver, S.E. Lincoln, R.G. Steen, L.D. Steen, J.H.
Nadeau, and E.S. Lander. A genetic linkage map of the mouse: Current
applications and future prospects.Science, 262:57–65, 1993.

[75] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms.
The MIT Press, 1989.

[76] A. Coulson, J. Sulston, S. Brenner, and J. Karn. Toward a physical map of
the genome of the nematode,Caenorhabditis elegans. Proceedings of the
National Academy of Sciences USA, 83:7821–7825, 1986.

[77] D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radia-
tion hybrid mapping: a somatic cell genetic method for constructing high-
resolution maps of mammalian chromosomes.Science, 250:245–250, 1990.

[78] E. Czabarka, G. Konjevod, M. Marathe, A. Percus, and D.C. Torney. Al-
gorithms for optimizing production DNA sequencing. InProceedings of
the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2000), pages 399–408, San Francisco, California, 2000. SIAM Press.

282 BIBLIOGRAPHY

[79] V. Dancik, T. Addona, K. Clauser, J. Vath, and P.A. Pevzner. De novo pep-
tide sequencing via tandem mass spectrometry.Journal of Computational
Biology, 6:327–342, 1999.

[80] K.J. Danna, G.H. Sack, and D. Nathans. Studies of simian virus 40 DNA.
VII. a cleavage map of the SV40 genome.Journal of Molecular Biology,
78:263–276, 1973.

[81] K.E. Davies, P.L. Pearson, P.S. Harper, J.M. Murray, T. O’Brien, M. Sar-
farazi, and R. Williamson. Linkage analysis of two cloned DNA sequences
flanking the Duchenne muscular dystrophy locus on the short arm of the
human X chromosome.Nucleic Acids Research, 11:2303–2312, 1983.

[82] M.A. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary
change in proteins. InAtlas of Protein Sequence and Structure, chapter 5,
pages 345–352. 1978.

[83] J. Deken. Some limit results for longest common subsequences.Discrete
Mathematics, 26:17–31, 1979.

[84] J. Deken. Probabilistic behavior of longest common subsequence length. In
D. Sankoff and J.B. Kruskal, editors,Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison, pages 359–
362. Addison-Wesley, 1983.

[85] A. Dembo and S. Karlin. Strong limit theorem of empirical functions for
large exceedances of partial sums of i.i.d. variables.Annals of Probability,
19:1737–1755, 1991.

[86] R.P. Dilworth. A decomposition theorem for partially ordered sets.Annals
of Mathematics, 51:161–165, 1950.

[87] T. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes of
Drosophila pseudoobscura. Genetics, 23:28–64, 1938.

[88] H. Donis-Keller, P. Green, C. Helms, S. Cartinhour, B. Weiffenbach,
K. Stephens, T.P. Keith, D.W. Bowden, D.R. Smith, and E.S. Lander. A
genetic linkage map of the human genome.Cell, 51:319–337, 1987.

[89] R.F. Doolittle, M.W. Hunkapiller, L.E. Hood, S.G. Devare, K.C. Robbins,
S.A. Aaronson, and H.N. Antoniades. Simian sarcoma virus onc gene, v-
sis, is derived from the gene (or genes) encoding a platelet-derived growth
factor. Science, 221:275–277, 1983.

BIBLIOGRAPHY 283

[90] R. Drmanac, S. Drmanac, Z. Strezoska, T. Paunesku, I. Labat, M. Zeremski,
J. Snoddy, W.K. Funkhouser, B. Koop, and L. Hood. DNA sequence de-
termination by hybridization: a strategy for efficient large-scale sequencing.
Science, 260:1649–1652, 1993.

[91] R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of
megabase plus DNA by hybridization: theory of the method.Genomics,
4:114–128, 1989.

[92] J. Dumas and J. Ninio. Efficient algorithms for folding and comparing nu-
cleic acid sequences.Nucleic Acids Research, 10:197–206, 1982.

[93] R. Durbin, S. Eddy, A. Krogh, and G. Mitchinson.Biological Sequence
Analysis. Cambridge University Press, 1998.

[94] M. Dyer, A. Frieze, and S. Suen. The probability of unique solutions of
sequencing by hybridization.Journal of Computational Biology, 1:105–
110, 1994.

[95] S.R. Eddy and R. Durbin. RNA sequence analysis using covariance models.
Nucleic Acids Research, 22:2079–2088, 1994.

[96] N. El-Mabrouk, D. Bryant, and D. Sankoff. Reconstructing the pre-doubling
genome. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors,Proceed-
ings of the Third Annual International Conference on Computational Molec-
ular Biology (RECOMB-99), pages 154–163, Lyon, France, April 1999.
ACM Press.

[97] J. Eng, A. McCormack, and J. Yates. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database.
Journal of American Society for Mass Spectometry, 5:976–989, 1994.

[98] G.A. Evans and K.A. Lewis. Physical mapping of complex genomes by cos-
mid multiplex analysis.Proceedings of the National Academy of Sciences
USA, 86:5030–5034, 1989.

[99] W. Feldman and P.A. Pevzner. Gray code masks for sequencing by hy-
bridization. Genomics, 23:233–235, 1994.

[100] D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite
to correct phylogenetic trees.Journal of Molecular Evolution, 25:351–360,
1987.

[101] D. Fenyo, J. Qin, and B.T. Chait. Protein identification using mass spectro-
metric information.Electrophoresis, 19:998–1005, 1998.

284 BIBLIOGRAPHY

[102] D. Fernandez-Baca, T. Seppalainen, and G. Slutzki. Bounds for parametric
sequence comparison. InSixth International Symposium on String Process-
ing and Information Retrieval, pages 55–62, Cancun, Mexico, September
1999. IEEE Computer Society.

[103] J. Fern´andez-de Coss´ıo, J. Gonzales, and V. Besada. A computer program to
aid the sequencing of peptides in collision-activated decomposition experi-
ments.Computer Applications in Biosciences, 11:427–434, 1995.

[104] J.W. Fickett. Recognition of protein coding regions in DNA sequences.
Nucleic Acids Research, 10:5303–5318, 1982.

[105] J.W. Fickett. Finding genes by computer: the state of the art.Trends in
Genetics, 12:316–320, 1996.

[106] J.W. Fickett and C.S. Tung. Assessment of protein coding measures.Nucleic
Acids Research, 20:6441–6450, 1992.

[107] W.M. Fitch and T.F. Smith. Optimal sequence alignments.Proceedings of
the National Academy of Sciences USA, 80:1382–1386, 1983.

[108] H. Fleischner.Eulerian Graphs and Related Topics. Elsevier Science Pub-
lishers, 1990.

[109] S.P.A. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, and C.L.
Adams. Multiplex biochemical assays with biological chips.Nature,
364:555–556, 1993.

[110] S.P.A. Fodor, J.L. Read, M.S. Pirrung, L. Stryer, A.T. Lu, and D. Solas.
Light-directed spatially addressable parallel chemical synthesis.Science,
251:767–773, 1991.

[111] S. Foote, D. Vollrath, A. Hilton, and D.C. Page. The human Y chromosome:
overlapping DNA clones spanning the euchromatic region.Science, 258:60–
66, 1992.

[112] D. Fousler and S. Karlin. Maximum success duration for a semi-markov
process.Stochastic Processes and their Applications, 24:203–210, 1987.

[113] D. Frishman, A. Mironov, H.W. Mewes, and M.S. Gelfand. Combining
diverse evidence for gene recognition in completely sequenced bacterial
genomes.Nucleic Acids Research, 26:2941–2947, 1998.

[114] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15:835–856, 1965.

BIBLIOGRAPHY 285

[115] D.J. Galas, M. Eggert, and M.S. Waterman. Rigorous pattern-recognition
methods for DNA sequences. Analysis of promoter sequences from Es-
cherichia coli.Journal of Molecular Biology, 186:117–128, 1985.

[116] Z. Galil and R. Giancarlo. Speeding up dynamic programming with appli-
cations to molecular biology.Theoretical Computer Science, 64:107–118,
1989.

[117] J. Gallant, D. Maier, and J. Storer. On finding minimal length superstrings.
Journal of Computer and System Science, 20:50–58, 1980.

[118] M. Gardner. On the paradoxial situations that arise from nontransitive rela-
tionships.Scientific American, pages 120–125, October 1974.

[119] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[120] W.H. Gates and C.H. Papadimitriou. Bounds for sorting by prefix reversals.
Discrete Mathematics, 27:47–57, 1979.

[121] M.S. Gelfand. Computer prediction of exon-intron structure of mammalian
pre-mRNAs.Nucleic Acids Research, 18:5865–5869, 1990.

[122] M.S. Gelfand. Statistical analysis and prediction of the exonic structure of
human genes.Journal of Molecular Evolution, 35:239–252, 1992.

[123] M.S. Gelfand. Prediction of function in DNA sequence analysis.Journal of
Computational Biology, 2:87–115, 1995.

[124] M.S. Gelfand and E.V. Koonin. Avoidance of palindromic words in bacterial
and archaeal genomes: a close connection with restriction enzymes.Nucleic
Acids Research, 25:2430–2439, 1997.

[125] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene recognition via spliced
sequence alignment.Proceedings of the National Academy of Sciences USA,
93:9061–9066, 1996.

[126] J.F. Gentleman and R.C. Mullin. The distribution of the frequency of oc-
currence of nucleotide subsequences, based on their overlap capability.Bio-
metrics, 45:35–52, 1989.

[127] W. Gillett, J. Daues, L. Hanks, and R. Capra. Fragment collapsing and split-
ting while assembling high-resolution restriction maps.Journal of Compu-
tational Biology, 2:185–205, 1995.

286 BIBLIOGRAPHY

[128] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs
and of interval graphs.Canadian Journal of Mathematics, 16:539–548,
1964.

[129] W. Gish and D.J. States. Identification of protein coding regions by database
similarity search.Nature Genetics, 3:266–272, 1993.

[130] L. Goldstein and M.S. Waterman. Mapping DNA by stochastic relaxation.
Advances in Applied Mathematics, 8:194–207, 1987.

[131] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P.
Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloom-
field, and E.S. Lander. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring.Science, 286:531–537,
1999.

[132] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[133] G.H. Gonnet, M.A. Cohen, and S.A. Benner. Exhaustive matching of the
entire protein sequence database.Science, 256:1443–1445, 1992.

[134] A. Gooley and N. Packer. The importance of co- and post-translational mod-
ifications in proteome projects. In W. Wilkins, K. Williams, R. Appel, and
D. Hochstrasser, editors,Proteome Research: New Frontiers in Functional
Genomics, pages 65–91. Springer-Verlag, 1997.

[135] O. Gotoh. Consistency of optimal sequence alignments.Bulletin of Mathe-
matical Biology, 52:509–525, 1990.

[136] P. Green. Documentation for phrap. http://bozeman.mbt.washington.edu/
phrap.docs/phrap.html.

[137] D.S. Greenberg and S. Istrail. Physical mapping by STS hybridization: al-
gorithmic strategies and the challenge of software evaluation.Journal of
Computational Biology, 2:219–273, 1995.

[138] M. Gribskov, J. Devereux, and R.R. Burgess. The codon preference plot:
graphic analysis of protein coding sequences and prediction of gene expres-
sion. Nucleic Acids Research, 12:539–549, 1984.

[139] M. Gribskov, M. McLachlan, and D. Eisenberg. Profile analysis: detec-
tion of distantly related proteins.Proceedings of the National Academy of
Sciences USA, 84:4355–4358, 1987.

BIBLIOGRAPHY 287

[140] R. Grossi and F. Luccio. Simple and efficient string matching withk mis-
matches.Information Processing Letters, 33:113–120, 1989.

[141] L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching and non-
transitive games.Journal of Combinatorial Theory, Series A, 30:183–208,
1981.

[142] R. Guigo, S. Knudsen, N. Drake, and T.F. Smith. Prediction of gene struc-
ture. Journal of Molecular Biology, 226:141–157, 1992.

[143] J.F. Gusella, N.S. Wexler, P.M. Conneally, S.L. Naylor, M.A. Anderson,
R.E. Tanzi, P.C. Watkins, K. Ottina, M.R. Wallace, A.Y. Sakaguchi, A.B.
Young, I. Shoulson, E. Bonilla, and J.B. Martin. A polymorphic DNA
marker genetically linked to Huntington’s disease.Nature, 306:234–238,
1983.

[144] D. Gusfield. Efficient methods for multiple sequence alignment with guar-
anteed error bounds.Bulletin of Mathematical Biology, 55:141–154, 1993.

[145] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[146] D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of
sequence alignment.Algorithmica, 12:312–326, 1994.

[147] D. Gusfield, R. Karp, L. Wang, and P. Stelling. Graph traversals, genes and
matroids: An efficient case of the travelling salesman problem.Discrete
Applied Mathematics, 88:167–180, 1998.

[148] J.G. Hacia, J.B. Fan, O. Ryder, L. Jin, K. Edgemon, G. Ghandour, R.A.
Mayer, B. Sun, L. Hsie, C.M. Robbins, L.C. Brody, D. Wang, E.S. Lander,
R. Lipshutz, S.P. Fodor, and F.S. Collins. Determination of ancestral alle-
les for human single-nucleotide polymorphisms using high-density oligonu-
cleotide arrays.Nature Genetics, 22:164–167, 1999.

[149] C.W. Hamm, W.E. Wilson, and D.J. Harvan. Peptide sequencing program.
Computer Applications in Biosciences, 2:115–118, 1986.

[150] J.M. Hammersley. A few seedlings of research. InProceedings of the Sixth
Berkeley Symposium on Mathematical Statististics and Probabilities, pages
345–394, Berkeley, California, 1972.

[151] S. Hannenhalli. Polynomial algorithm for computing translocation distance
between genomes. InSixth Annual Symposium on Combinatorial Pattern
Matching, volume 937 ofLecture Notes in Computer Science, pages 162–
176, Helsinki, Finland, June 1995. Springer-Verlag.

288 BIBLIOGRAPHY

[152] S. Hannenhalli, C. Chappey, E. Koonin, and P.A. Pevzner. Genome sequence
comparison and scenarios for gene rearrangements: A test case.Genomics,
30:299–311, 1995.

[153] S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polyno-
mial algorithm for genomic distance problem). InProceedings of the 36th
Annual IEEE Symposium on Foundations of Computer Science, pages 581–
592, Milwaukee, Wisconsin, 1995.

[154] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (poly-
nomial algorithm for sorting signed permutations by reversals). InProceed-
ings of the 27th Annual ACM Symposium on the Theory of Computing, pages
178–189, 1995 (full version appeared in Journal of ACM, 46: 1–27, 1999).

[155] S. Hannenhalli and P.A. Pevzner. To cut ... or not to cut (applications of
comparative physical maps in molecular evolution). InSeventh Anuual
ACM-SIAM Symposium on Discrete Algorithms, pages 304–313, Atlanta,
Georgia, 1996.

[156] S. Hannenhalli, P.A. Pevzner, H. Lewis, S. Skeina, and W. Feldman. Posi-
tional sequencing by hybridization.Computer Applications in Biosciences,
12:19–24, 1996.

[157] W.S. Hayes and M. Borodovsky. How to interpret an anonymous bacte-
rial genome: machine learning approach to gene identification.Genome
Research, 8:1154–1171, 1998.

[158] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Sciences USA,
89:10915–10919, 1992.

[159] G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences.Bioinformatics,
15:563–577, 1999.

[160] N. Heuze, S. Olayat, N. Gutman, M.L. Zani, and Y. Courty. Molecular
cloning and expression of an alternative hKLK3 transcript coding for a vari-
ant protein of prostate-specific antigen.Cancer Research, 59:2820–2824,
1999.

[161] M. H. Heydari and I. H. Sudborough. On the diameter of the pancake net-
work. Journal of Algorithms, 25:67–94, 1997.

[162] D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for mul-
tiple sequence alignments.Methods in Enzymology, 266:383–402, 1996.

BIBLIOGRAPHY 289

[163] D.S. Hirschberg. A linear space algorithm for computing maximal common
subsequences.Communication of ACM, 18:341–343, 1975.

[164] D.S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of ACM, 24:664–675, 1977.

[165] J.D. Hoheisel, E. Maier, R. Mott, L. McCarthy, A.V. Grigoriev, L.C. Schalk-
wyk, D. Nizetic, F. Francis, and H. Lehrach. High resolution cosmid and P1
maps spanning the 14 Mb genome of the fission yeastS. pombe. Cell,
73:109–120, 1993.

[166] S. Hopper, R.S. Johnson, J.E. Vath, and K. Biemann. Glutaredoxin from
rabbit bone marrow.Journal of Biological Chemistry, 264:20438–20447,
1989.

[167] Y. Hu, L.R. Tanzer, J. Cao, C.D. Geringer, and R.E. Moore. Use of long
RT-PCR to characterize splice variant mRNAs.Biotechniques, 25:224–229,
1998.

[168] X. Huang, R.C. Hardison, and W. Miller. A space-efficient algorithm for
local similarities.Computer Applications in Biosciences, 6:373–381, 1990.

[169] X. Huang and W. Miller. A time-efficient, linear-space local similarity algo-
rithm. Advances in Applied Mathematics, 12:337–357, 1991.

[170] T.J. Hubbard, A.M. Lesk, and A. Tramontano. Gathering them into the fold.
Nature Structural Biology, 4:313, 1996.

[171] E. Hubbell. Multiplex sequencing by hybridization.Journal of Computa-
tional Biology, 8, 2000.

[172] E. Hubbell and P.A. Pevzner. Fidelity probes for DNA arrays. InPro-
ceedings of the Seventh International Conference on Intelligent Systems for
Molecular Biology, pages 113–117, Heidelberg, Germany, August 1999.
AAAI Press.

[173] T.J. Hudson, L.D. Stein, S.S. Gerety, J. Ma, A.B. Castle, J. Silva, D.K.
Slonim, R. Baptista, L. Kruglyak, S.H. Xu, X. Hu, A.M.E. Colbert,
C. Rosenberg, M.P. Reeve-Daly, S. Rozen, L. Hui, X. Wu, C. Vestergaard,
K.M. Wilson, and J.S. Bae et al. An STS-based map of the human genome.
Science, 270:1945–1954, 1995.

[174] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest
common subsequences.Communication of ACM, 20:350–353, 1977.

290 BIBLIOGRAPHY

[175] R.M. Idury and M.S. Waterman. A new algorithm for DNA sequence as-
sembly.Journal of Computational Biology, 2:291–306, 1995.

[176] C. Iseli, C.V. Jongeneel, and P. Bucher. ESTScan: a program for detecting,
evaluating and reconstructing potential coding regions in EST sequences. In
Proceedings of the Seventh International Conference on Intelligent Systems
for Molecular Biology, pages 138–148, Heidelberg, Germany, August 6-10
1999. AAAI Press.

[177] A.G. Ivanov. Distinguishing an approximate word’s inclusion on Turing
machine in real time.Izvestiia Academii Nauk SSSR, Series Math., 48:520–
568, 1984.

[178] A. Jauch, J. Wienberg, R. Stanyon, N. Arnold, S. Tofanelli, T. Ishida, and
T. Cremer. Reconstruction of genomic rearrangements in great apes gibbons
by chromosome painting.Proceedings of the National Academy of Sciences
USA, 89:8611–8615, 1992.

[179] T. Jiang and R.M. Karp. Mapping clones with a given ordering or interleav-
ing. Algorithmica, 21:262–284, 1998.

[180] T. Jiang and M. Li. Approximating shortest superstrings with constraints.
Theoretical Computer Science, 134:473–491, 1994.

[181] T. Jiang and M. Li. DNA sequencing and string learning.Mathematical
Systems Theory, 29:387–405, 1996.

[182] R.J. Johnson and K. Biemann. Computer program (SEQPEP) to aid in
the interpretation of high-energy collision tandem mass spectra of peptides.
Biomedical and Environmental Mass Spectrometry, 18:945–957, 1989.

[183] Y.W. Kan and A.M. Dozy. Polymorphism of DNA sequence adjacent to
human beta-globin structural gene: relationship to sickle mutation.Pro-
ceedings of the National Academy of Sciences USA, 75:5631–5635, 1978.

[184] S.K. Kannan and E.W. Myers. An algorithm for locating nonoverlapping re-
gions of maximum alignment score.SIAM Journal on Computing, 25:648–
662, 1996.

[185] H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and simpler algorithm for
sorting signed permutations by reversals. InProceedings of the Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 344–351, New
Orleans, Louisiana, January 1997.

BIBLIOGRAPHY 291

[186] S. Karlin and S.F. Altschul. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes.Proceed-
ings of the National Academy of Sciences USA, 87:2264–2268, 1990.

[187] S. Karlin and G. Ghandour. Multiple-alphabet amino acid sequence com-
parisons of the immunoglobulin kappa-chain constant domain.Proceedings
of the National Academy of Sciences USA, 82:8597–8601, 1985.

[188] R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of re-
peated patterns in strings, trees and arrays. InProceedings of the Fourth
Annual ACM Symposium on Theory of Computing, pages 125–136, Denver,
Colorado, May 1972.

[189] R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31:249–260, 1987.

[190] R.M. Karp and R. Shamir. Algorithms for optical mapping. In S. Istrail, P.A.
Pevzner, and M.S. Waterman, editors,Proceedings of the Second Annual
International Conference on Computational Molecular Biology (RECOMB-
98), pages 117–124, New York, New York, March 1998. ACM Press.

[191] J. Kececioglu and R. Ravi. Of mice and men: Evolutionary distances be-
tween genomes under translocation. InProceedings of the 6th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 604–613, New York, New
York, 1995.

[192] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the
reversal distance between two permutations. InFourth Annual Symposium
on Combinatorial Pattern Matching, volume 684 ofLecture Notes in Com-
puter Science, pages 87–105, Padova, Italy, 1993. Springer-Verlag.

[193] J. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome
inversion distance. InFifth Annual Symposium on Combinatorial Pattern
Matching, volume 807 ofLecture Notes in Computer Science, pages 307–
325, Asilomar, California, 1994. Springer-Verlag.

[194] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the
inversion distance between two permutations.Algorithmica, 13:180–210,
1995.

[195] J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA se-
quence assembly.Algorithmica, 13:7–51, 1995.

292 BIBLIOGRAPHY

[196] T.J. Kelly and H.O. Smith. A restriction enzyme fromHemophilus influen-
zae. II. Base sequence of the recognition site.Journal of Molecular Biology,
51:393–409, 1970.

[197] K. Khrapko, Y. Lysov, A. Khorlin, V. Shik, V. Florent’ev, and A. Mirz-
abekov. An oligonucleotide hybridization approach to DNA sequencing.
FEBS Letters, 256:118–122, 1989.

[198] J.F.C. Kingman. Subadditive ergodic theory.Annals of Probability, 6:883–
909, 1973.

[199] J. Kleffe and M. Borodovsky. First and second moment of counts of words
in random texts generated by Markov chains.Computer Applications in
Biosciences, 8:433–441, 1992.

[200] M. Knill, W.J. Bruno, and D.C. Torney. Non-adaptive group testing in the
presence of errors.Discrete Applied Mathematics, 88:261–290, 1998.

[201] D.E. Knuth. Permutations, matrices and generalized Young tableaux.Pacific
Journal of Mathematics, 34:709–727, 1970.

[202] D.E. Knuth. The Art of Computer Programming, chapter 2. Addison-
Wesley, second edition, 1973.

[203] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6:323–350, 1977.

[204] Y. Kohara, K. Akiyama, and K. Isono. The physical map of the whole E. coli
chromosome: application of a new strategy for rapid analysis and sorting of
a large genomic library.Cell, 50:495–508, 1987.

[205] G.A. Komatsoulis and M.S. Waterman. Chimeric alignment by dynamic
programming: Algorithm and biological uses. InProceedings of the
First Annual International Conference on Computational Molecular Biol-
ogy (RECOMB-97), pages 174–180, Santa Fe, New Mexico, January 1997.
ACM Press.

[206] A. Kotzig. Moves without forbidden transitions in a graph.Matematicky
Casopis, 18:76–80, 1968.

[207] R.G. Krishna and F. Wold. Posttranslational modifications. In R.H. An-
geletti, editor,Proteins - Analysis and Design, pages 121–206. Academic
Press, 1998.

BIBLIOGRAPHY 293

[208] A. Krogh, M. Brown, I.S. Mian, K. Sj¨olander, and D. Haussler. Hidden
Markov models in computational biology: Applications to protein model-
ing. Journal of Molecular Biology, 235:1501–1531, 1994.

[209] A. Krogh, I.S. Mian, and D. Haussler. A Hidden Markov Model that finds
genes in E. coli DNA.Nucleic Acids Research, 22:4768–4778, 1994.

[210] S. Kruglyak. Multistage sequencing by hybridization.Journal of Computa-
tional Biology, 5:165–171, 1998.

[211] J.B. Kruskal and D. Sankoff. An anthology of algorithms and concepts for
sequence comparison. In D. Sankoff and J.B. Kruskal, editors,Time Warps,
String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, pages 265–310. Addison-Wesley, 1983.

[212] G.M. Landau and J.P. Schmidt. An algorithm for approximate tandem re-
peats. InFourth Annual Symposium on Combinatorial Pattern Matching,
volume 684 ofLecture Notes in Computer Science, pages 120–133, Padova,
Italy, 2-4 June 1993. Springer-Verlag.

[213] G.M. Landau and U. Vishkin. Efficient string matching in the presence of
errors. In26th Annual Symposium on Foundations of Computer Science,
pages 126–136, Los Angeles, California, October 1985.

[214] E.S. Lander and M.S. Waterman. Genomic mapping by fingerprinting ran-
dom clones: a mathematical analysis.Genomics, 2:231–239, 1988.

[215] K. Lange, M. Boehnke, D.R. Cox, and K.L. Lunetta. Statistical methods for
polyploid radiation hybrid mapping.Genome Research, 5:136–150, 1995.

[216] E. Lawler and S. Sarkissian. Adaptive error correcting codes based on coop-
erative play of the game of “Twenty Questions Game with a Liar”. InPro-
ceedings of Data Compression Conference DCC ‘95, page 464, Los Alami-
tos, California, 1995. IEEE Computer Society Press.

[217] C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and
J.C. Wootton. Detecting subtle sequence signals: a Gibbs sampling strategy
for multiple alignment.Science, 262:208–214, October 1993.

[218] J.K. Lee, V. Dancik, and M.S. Waterman. Estimation for restriction sites
observed by optical mapping using reversible-jump Markov chain Monte
Carlo. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors,Proceedings
of the Second Annual International Conference on Computational Molecu-
lar Biology (RECOMB-98), pages 147–152, New York, New York, March
1998. ACM Press.

294 BIBLIOGRAPHY

[219] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals.Soviet Physics Doklady, 6:707–710, 1966.

[220] B. Lewin. Genes VII. Oxford University Press, 1999.

[221] M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. In
Proceedings of the 31st ACM Annual Symposium on Theory of Computing,
pages 473–482, Atlanta, Georgia, May 1999.

[222] S.Y.R. Li. A martingale approach to the study of ocurrence of sequence
patterns in repeated experiments.Annals of Probability, 8:1171–1176, 1980.

[223] J. Lingner, T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and T.R.
Cech. Reverse transcriptase motifs in the catalytic subunit of telomerase.
Science, 276:561–567, 1997.

[224] D.J. Lipman, S. F Altschul, and J.D. Kececioglu. A tool for multiple se-
quence alignment.Proceedings of the National Academy of Sciences USA,
86:4412–4415, 1989.

[225] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity
searches.Science, 227:1435–1441, 1985.

[226] R.J. Lipshutz, D. Morris, M. Chee, E. Hubbell, M.J. Kozal, N. Shah,
N. Shen, R. Yang, and S.P.A. Fodor. Using oligonucleotide probe arrays
to access genetic diversity.Biotechniques, 19:442–447, 1995.

[227] B.F. Logan and L.A. Shepp. A variational problem for random Young
tableaux.Advances in Mathematics, 26:206–222, 1977.

[228] Y. Lysov, V. Florent’ev, A. Khorlin, K. Khrapko, V. Shik, and A. Mirz-
abekov. DNA sequencing by hybridization with oligonucleotides.Doklady
Academy Nauk USSR, 303:1508–1511, 1988.

[229] C.A. Makaroff and J.D. Palmer. Mitochondrial DNA rearrangements and
transcriptional alterations in the male sterile cytoplasm of Ogura radish.
Molecular Cellular Biology, 8:1474–1480, 1988.

[230] M. Mann and M. Wilm. Error-tolerant identification of peptides in sequence
databases by peptide sequence tags.Analytical Chemistry, 66:4390–4399,
1994.

[231] M. Mann and M. Wilm. Electrospray mass-spectrometry for protein charac-
terization.Trends in Biochemical Sciences, 20:219–224, 1995.

BIBLIOGRAPHY 295

[232] D. Margaritis and S.S. Skiena. Reconstructing strings from substrings in
rounds. InProceedings of the 36th Annual Symposium on Foundations of
Computer Science, pages 613–620, Los Alamitos, California, October 1995.

[233] A.M. Maxam and W. Gilbert. A new method for sequencing DNA.Pro-
ceedings of the National Academy of Sciences USA, 74:560–564, 1977.

[234] G. Mayraz and R. Shamir. Construction of physical maps from oligonu-
cleotide fingerprints data.Journal of Computational Biology, 6:237–252,
1999.

[235] F.R. McMorris, C. Wang, and P. Zhang. On probe interval graphs.Discrete
Applied Mathematics, 88:315–324, 1998.

[236] W. Miller and E.W. Myers. Sequence comparison with concave weighting
functions.Bulletin of Mathematical Biology, 50:97–120, 1988.

[237] A. Milosavljevic and J. Jurka. Discovering simple DNA sequences by the
algorithmic significance method.Computer Applications in Biosciences,
9:407–411, 1993.

[238] B. Mirkin and F.S. Roberts. Consensus functions and patterns in molecular
sequences.Bulletin of Mathematical Biology, 55:695–713, 1993.

[239] A.A. Mironov and N.N. Alexandrov. Statistical method for rapid homology
search.Nucleic Acids Research, 16:5169–5174, 1988.

[240] A.A. Mironov, J.W. Fickett, and M.S. Gelfand. Frequent alternative splicing
of human genes.Genome Research, 9:1288–1293, 1999.

[241] A.A. Mironov and P.A. Pevzner. SST versus EST in gene recognition.Mi-
crobial and Comparative Genomics, 4:167–172, 1999.

[242] A.A. Mironov, M.A. Roytberg, P.A. Pevzner, and M.S. Gelfand. Per-
formance guarantee gene predictions via spliced alignment.Genomics,
51:332–339, 1998.

[243] S. Muthukrishnan and L. Parida. Towards constructing physical maps by
optical mapping: An effective, simple, combinatorial approach. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editors,Proceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB-
97), pages 209–219, Santa Fe, New Mexico, January 1997. ACM Press.

296 BIBLIOGRAPHY

[244] M. Muzio, A.M. Chinnaiyan, F.C. Kischkel, K. O’Rourke, A. Shevchenko,
J. Ni, C. Scaffidi, J.D. Bretz, M. Zhang, R. Gentz, M. Mann, P.H. Krammer,
M.E. Peter, and V.M. Dixit. FLICE, a novel FADD-homologous ICE/CED-
3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing sig-
naling complex.Cell, 85:817–827, 1996.

[245] E.W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12:345–374, 1994.

[246] E.W. Myers and W. Miller. Optimal alignments in linear space.Computer
Applications in Biosciences, 4:11–17, 1988.

[247] G. Myers. Whole genome shotgun sequencing.IEEE Computing in Science
and Engineering, 1:33–43, 1999.

[248] J.H. Nadeau and B.A. Taylor. Lengths of chromosomal segments conserved
since divergence of man and mouse.Proceedings of the National Academy
of Sciences USA, 81:814–818, 1984.

[249] K. Nakata, M. Kanehisa, and C. DeLisi. Prediction of splice junctions in
mRNA sequences.Nucleic Acids Research, 13:5327–5340, 1985.

[250] D. Naor and D. Brutlag. On near-optimal alignments of biological se-
quences.Journal of Computational Biology, 1:349–366, 1994.

[251] S.B. Needleman and C.D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins.Journal
of Molecular Biology, 48:443–453, 1970.

[252] L. Newberg and D. Naor. A lower bound on the number of solutions to the
probed partial digest problem.Advances in Applied Mathematics, 14:172–
183, 1993.

[253] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for
loop matchings.SIAM Journal on Applied Mathematics, 35:68–82, 1978.

[254] S. O’Brien and J. Graves. Report of the committee on comparative gene
mapping in mammals. Cytogenetics and Cell Genetics, 58:1124–1151,
1991.

[255] S. Ohno.Sex chromosomes and sex-linked genes. Springer-Verlag, 1967.

[256] S. Ohno, U. Wolf, and N.B. Atkin. Evolution from fish to mammals by gene
duplication.Hereditas, 59:708–713, 1968.

BIBLIOGRAPHY 297

[257] M.V. Olson, J.E. Dutchik, M.Y. Graham, G.M. Brodeur, C. Helms,
M. Frank, M. MacCollin, R. Scheinman, and T. Frank. Random-clone strat-
egy for genomic restriction mapping in yeast.Proceedings of the National
Academy of Sciences USA, 83:7826–7830, 1986.

[258] O. Owolabi and D.R. McGregor. Fast approximate string matching.Soft-
ware Practice and Experience, 18:387–393, 1988.

[259] J.D. Palmer and L.A. Herbon. Plant mitochondrial DNA evolves rapidly in
structure, but slowly in sequence.Journal of Molecular Evolution, 27:87–
97, 1988.

[260] A.H. Paterson, T.H. Lan, K.P. Reischmann, C. Chang, Y.R. Lin, S.C.
Liu, M.D. Burow, S.P. Kowalski, C.S. Katsar, T.A. DelMonte, K.A. Feld-
mann, K.F. Schertz, and J.F. Wendel. Toward a unified genetic map of
higher plants, transcending the monocot-dicot divergence.Nature Genet-
ics, 15:380–382, 1996.

[261] S.D. Patterson and R. Aebersold. Mass spectrometric approaches for the
identification of gel-separated proteins.Electrophoresis, 16:1791–1814,
1995.

[262] H. Peltola, H. Soderlund, and E. Ukkonen. SEQAID: a DNA sequence as-
sembling program based on a mathematical model.Nucleic Acids Research,
12:307–321, 1984.

[263] M. Perlin and A. Chakravarti. Efficient construction of high-resolution phys-
ical maps from yeast artificial chromosomes using radiation hybrids: inner
product mapping.Genomics, 18:283–289, 1993.

[264] P.A. Pevzner. l-tuple DNA sequencing: computer analysis.Journal of
Biomolecular Structure and Dynamics, 7:63–73, 1989.

[265] P.A. Pevzner. Multiple alignment, communication cost, and graph matching.
SIAM Journal on Applied Mathematics, 52:1763–1779, 1992.

[266] P.A. Pevzner. Statistical distance between texts and filtration methods in
rapid similarity search algorithm.Computer Applications in Biosciences,
8:121–27, 1992.

[267] P.A. Pevzner. DNA physical mapping and alternating Eulerian cycles in
colored graphs.Algorithmica, 13:77–105, 1995.

298 BIBLIOGRAPHY

[268] P.A. Pevzner. DNA statistics, overlapping word paradox and Conway equa-
tion. In H.A. Lim, J.W. Fickett, C.R. Cantor, and R.J. Robbins, editors,
Proceedings of the Second International Conference on Bioinformatics, Su-
percomputing, and Complex Genome Analysis, pages 61–68, St. Petersburg
Beach, Florida, June 1993. World Scientific.

[269] P.A. Pevzner, M.Y. Borodovsky, and A.A. Mironov. Linguistics of nucleo-
tide sequences. I: The significance of deviations from mean statistical char-
acteristics and prediction of the frequencies of occurrence of words.Journal
of Biomolecular Structure and Dynamics, 6:1013–1026, 1989.

[270] P.A. Pevzner, V. Dancik, and C.L. Tang. Mutation-tolerant protein iden-
tification by mass-spectrometry. In R. Shamir, S. Miyano, S. Istrail, P.A.
Pevzner, and M.S. Waterman, editors,Proceedings of the Fourth Annual
International Conference on Computational Molecular Biology (RECOMB-
00), pages 231–236, Tokyo, Japan, April 2000. ACM Press.

[271] P.A. Pevzner and R. Lipshutz. Towards DNA sequencing chips. InProceed-
ings of the 19th International Conference on Mathematical Foundations of
Computer Science, volume 841 ofLecture Notes in Computer Science, pages
143–158, Kosice, Slovakia, 1994.

[272] P.A. Pevzner, Y. Lysov, K. Khrapko, A. Belyavski, V. Florentiev, and
A. Mirzabekov. Improved chips for sequencing by hybridization.Journal
of Biomolecular Structure and Dynamics, 9:399–410, 1991.

[273] P.A. Pevzner and M.S. Waterman. Generalized sequence alignment and du-
ality. Advances in Applied Mathematics, 14(2):139–171, 1993.

[274] P.A. Pevzner and M.S. Waterman. Multiple filtration and approximate pat-
tern matching.Algorithmica, 13:135–154, 1995.

[275] P.A. Pevzner and M.S. Waterman. Open combinatorial problems in com-
putational molecular biology. InThird Israeli Symposium on the Theory of
Computing and Systems, Tel-Aviv, Israel, January 1995.

[276] S. Pilpel. Descending subsequences of random permutations.Journal of
Combinatorial Theory, Series A, 53:96–116, 1990.

[277] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and
identification of permutation graphs.Canadian Journal of Mathematics,
23:160–175, 1971.

BIBLIOGRAPHY 299

[278] J.H. Postlethwait, Y.L. Yan, M.A. Gates, S. Horne, A. Amores, A. Brownlie,
A. Donovan, E.S. Egan, A. Force, Z. Gong, C. Goutel, A. Fritz, R. Kelsh,
E. Knapik, E. Liao, B. Paw, D. Ransom, A. Singer, M. Thomson, T.S. Ab-
duljabbar, P. Yelick, D. Beier, J.S. Joly, D. Larhammar, and F. Rosa et al.
Vertebrate genome evolution and the zebrafish gene map.Nature Genetics,
345-349:18, 1998.

[279] A. Poustka, T. Pohl, D.P. Barlow, G. Zehetner, A. Craig, F. Michiels,
E. Ehrich, A.M. Frischauf, and H. Lehrach. Molecular approaches to mam-
malian genetics.Cold Spring Harbor Symposium on Quantitative Biology,
51:131–139, 1986.

[280] F.P. Preparata, A.M. Frieze, and E. Upfal. On the power of universal bases
in sequencing by hybridization. In S. Istrail, P.A. Pevzner, and M.S. Water-
man, editors,Proceedings of the Third Annual International Conference on
Computational Molecular Biology (RECOMB-99), pages 295–301, Lyon,
France, April 1999. ACM Press.

[281] B. Prum, F. Rudolphe, and E. De Turckheim. Finding words with unex-
pected frequences in DNA sequences.Journal of Royal Statistical Society,
Series B, 57:205–220, 1995.

[282] M. Regnier and W. Szpankowski. On the approximate pattern occurrences in
a text. InCompression and Complexity of Sequences 1997, pages 253–264,
1998.

[283] K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J.D. Kececioglu.
A branch-and-cut algorithm for multiple sequence alignment. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editors,Proceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB-
97), pages 241–250, Santa Fe, New Mexico, January 1997. ACM Press.

[284] G. Rettenberger, C. Klett, U. Zechner, J. Kunz, W. Vogel, and H. Hameister.
Visualization of the conservation of synteny between humans and pigs by
hetereologous chromosomal painting.Genomics, 26:372–378, 1995.

[285] I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological
sequences.Bioinformatics, 14:55–67, 1998.

[286] J.C. Roach, C. Boysen, K. Wang, and L. Hood. Pairwise end sequencing: a
unified approach to genomic mapping and sequencing.Genomics, 26:345–
353, 1995.

[287] G.de E. Robinson. On representations of the symmetric group.American
Journal of Mathematics, 60:745–760, 1938.

300 BIBLIOGRAPHY

[288] E. Rocke and M. Tompa. An algorithm for finding novel gapped motifs in
DNA sequences. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors,
Proceedings of the Second Annual International Conference on Computa-
tional Molecular Biology (RECOMB-98), pages 228–233, New York, New
York, March 1998. ACM Press.

[289] J. Rosenblatt and P.D. Seymour. The structure of homometric sets.SIAM
Journal on Alg. Discrete Methods, 3:343–350, 1982.

[290] M.A. Roytberg. A search for common pattern in many sequences.Computer
Applications in Biosciences, 8:57–64, 1992.

[291] A.R. Rubinov and M.S. Gelfand. Reconstruction of a string from substring
precedence data.Journal of Computational Biology, 2:371–382, 1995.

[292] B.E. Sagan.The Symmetric Group: Representations, Combinatorial Algo-
rithms, and Symmetric Functions. Wadsworth Brooks Cole Mathematics
Series, 1991.

[293] M.F. Sagot, A. Viari, and H. Soldano. Multiple sequence comparison—a
peptide matching approach.Theoretical Computer Science, 180:115–137,
1997.

[294] T. Sakurai, T. Matsuo, H. Matsuda, and I. Katakuse. PAAS 3: A computer
program to determine probable sequence of peptides from mass spectromet-
ric data.Biomedical Mass Spectrometry, 11:396–399, 1984.

[295] S.L. Salzberg, A.L. Delcher, S. Kasif, and O. White. Microbial gene identifi-
cation using interpolated Markov models.Nucleic Acids Research, 26:544–
548, 1998.

[296] S.L. Salzberg, D.B. Searls, and S. Kasif.Computational Methods in Molec-
ular Biology. Elsevier, 1998.

[297] F. Sanger, S. Nilken, and A.R. Coulson. DNA sequencing with chain termi-
nating inhibitors. Proceedings of the National Academy of Sciences USA,
74:5463–5468, 1977.

[298] D. Sankoff. Minimum mutation tree of sequences.SIAM Journal on Applied
Mathematics, 28:35–42, 1975.

[299] D. Sankoff. Simultaneous solution of the RNA folding, alignment and pro-
tosequence problems.SIAM Journal on Applied Mathematics, 45:810–825,
1985.

BIBLIOGRAPHY 301

[300] D. Sankoff. Edit distance for genome comparison based on non-local op-
erations. InThird Annual Symposium on Combinatorial Pattern Matching,
volume 644 ofLecture Notes in Computer Science, pages 121–135, Tucson,
Arizona, 1992. Springer-Verlag.

[301] D. Sankoff and M. Blanchette. Multiple genome rearrangements. In S. Is-
trail, P.A. Pevzner, and M.S. Waterman, editors,Proceedings of the Sec-
ond Annual International Conference on Computational Molecular Biology
(RECOMB-98), pages 243–247, New York, New York, March 1998. ACM
Press.

[302] D. Sankoff, R. Cedergren, and Y. Abel. Genomic divergence through gene
rearrangement. InMolecular Evolution: Computer Analysis of Protein and
Nucleic Acid Sequences, chapter 26, pages 428–438. Academic Press, 1990.

[303] D. Sankoff and M. Goldstein. Probabilistic models of genome shuffling.
Bulletin of Mathematical Biology, 51:117–124, 1989.

[304] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. Lang, and R. Cedergren.
Gene order comparisons for phylogenetic inference: Evolution of the mito-
chondrial genome.Proceedings of the National Academy of Sciences USA,
89:6575–6579, 1992.

[305] D. Sankoff and S. Mainville. Common subsequences and monotone subse-
quences. In D. Sankoff and J.B. Kruskal, editors,Time Warps, String Edits,
and Macromolecules: The Theory and Practice of Sequence Comparison,
pages 363–365. Addison-Wesley, 1983.

[306] C. Schensted. Longest increasing and decreasing subsequences.Canadian
Journal of Mathematics, 13:179–191, 1961.

[307] H. Scherthan, T. Cremer, U. Arnason, H. Weier, A. Lima de Faria, and
L. Fronicke. Comparative chromosomal painting discloses homologous seg-
ments in distantly related mammals.Nature Genetics, 6:342–347, 1994.

[308] J.P. Schmidt. All highest scoring paths in weighted grid graphs and their
application to finding all approximate repeats in strings.SIAM Journal on
Computing, 27:972–992, 1998.

[309] W. Schmitt and M.S. Waterman. Multiple solutions of DNA restriction map-
ping problem.Advances in Applid Mathematics, 12:412–427, 1991.

[310] M. Schoniger and M.S. Waterman. A local algorithm for DNA sequence
alignment with inversions.Bulletin of Mathematical Biology, 54:521–536,
1992.

302 BIBLIOGRAPHY

[311] D.C. Schwartz, X. Li, L.I. Hernandez, S.P. Ramnarain, E.J. Huff, and Y.K.
Wang. Ordered restriction maps of Saccharomyces cerevisiae chromosomes
constructed by optical mapping.Science, 262:110–114, 1993.

[312] D. Searls and S. Dong. A syntactic pattern recognition system for DNA se-
quences. In H.A. Lim, J.W. Fickett, C.R. Cantor, and R.J. Robbins, editors,
Proceedings of the Second International Conference on Bioinformatics, Su-
percomputing, and Complex Genome Analysis, pages 89–102, St. Petersburg
Beach, Florida, June 1993. World Scientific.

[313] D. Searls and K. Murphy. Automata-theoretic models of mutation and align-
ment. InProceedings of the Third International Conference on Intelligent
Systems for Molecular Biology, pages 341–349, Cambridge, England, 1995.

[314] S.S. Skiena, W.D. Smith, and P. Lemke. Reconstructing sets from interpoint
distances. InProceedings of Sixth Annual Symposium on Computational
Geometry, pages 332–339, Berkeley, California, June, 1990.

[315] S.S. Skiena and G. Sundaram. A partial digest approach to restriction site
mapping.Bulletin of Mathematical Biology, 56:275–294, 1994.

[316] S.S. Skiena and G. Sundram. Reconstructing strings from substrings.Jour-
nal of Computational Biology, 2:333–354, 1995.

[317] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome
maps with radiation hybrids. In S. Istrail, P.A. Pevzner, and M.S. Water-
man, editors,Proceedings of the First Annual International Conference on
Computational Molecular Biology (RECOMB-97), pages 277–286, Santa
Fe, New Mexico, January 1997. ACM Press.

[318] H.O. Smith, T.M. Annau, and S. Chandrasegaran. Finding sequence mo-
tifs in groups of functionally related proteins.Proceedings of the National
Academy of Sciences USA, 87:826–830, 1990.

[319] H.O. Smith and K.W. Wilcox. A restriction enzyme from Hemophilus in-
fluenzae. I. Purification and general properties.Journal of Molecular Biol-
ogy, 51:379–391, 1970.

[320] T.F. Smith and M.S. Waterman. Identification of common molecular subse-
quences.Journal of Molecular Biology, 147:195–197, 1981.

[321] E.E. Snyder and G.D. Stormo. Identification of coding regions in genomic
DNA sequences: an application of dynamic programming and neural net-
works. Nucleic Acids Research, 21:607–613, 1993.

BIBLIOGRAPHY 303

[322] E.E. Snyder and G.D. Stormo. Identification of protein coding regions in
genomic DNA.Journal of Molecular Biology, 248:1–18, 1995.

[323] V.V. Solovyev, A.A. Salamov, and C.B. Lawrence. Predicting internal exons
by oligonucleotide composition and discriminant analysis of spliceable open
reading frames.Nucleic Acids Research, 22:5156–63, 1994.

[324] E.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: a comprehensive
database of protein domain families based on seed alignments.Proteins,
28:405–420, 1997.

[325] E. Southern. United Kingdom patent application GB8810400. 1988.

[326] R. Staden. Methods for discovering novel motifs in nucleic acid seqences.
Computer Applications in Biosciences, 5:293–298, 1989.

[327] R. Staden and A.D. McLachlan. Codon preference and its use in identifying
protein coding regions in long DNA sequences.Nucleic Acids Research,
10:141–156, 1982.

[328] J.M. Steele. An Efron-Stein inequality for nonsymmetric statistics.Annals
of Statistics, 14:753–758, 1986.

[329] M. Stefik. Inferring DNA structure from segmentation data.Artificial Intel-
ligence, 11:85–144, 1978.

[330] E.E. Stuckle, C. Emmrich, U. Grob, and P.J. Nielsen. Statistical analysis of
nucleotide sequences.Nucleic Acids Research, 18:6641–6647, 1990.

[331] A.H. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of
wild races of Drosophila pseudoobscura, and their use in the study of the
history of the species.Proceedings of the National Academy of Sciences
USA, 22:448–450, 1936.

[332] S.H. Sze and P.A. Pevzner. Las Vegas algorithms for gene recognition: sub-
otimal and error tolerant spliced alignment.Journal of Computational Biol-
ogy, 4:297–310, 1997.

[333] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for construct-
ing shortest common superstrings.Theoretical Computer Science, 57:131–
145, 1988.

[334] J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string
matching. In J.R. Gilbert and R. Karlsson, editors,Proceedings of the

304 BIBLIOGRAPHY

Second Scandinavian Workshop on Algorithm Theory, number 447 in Lec-
ture Notes in Computer Science, pages 348–359, Bergen, Norway, 1990.
Springer-Verlag.

[335] J.A. Taylor and R.S. Johnson. Sequence database searches viade novopep-
tide sequencing by tandem mass spectrometry.Rapid Communications in
Mass Spectrometry, 11:1067–1075, 1997.

[336] W.R. Taylor. Multiple sequence alignment by a pairwise algorithm.Com-
puter Applications in Biosciences, 3:81–87, 1987.

[337] S.M. Tilghman, D.C. Tiemeier, J.G. Seidman, B.M. Peterlin, M. Sullivan,
J.V. Maizel, and P. Leder. Intervening sequence of DNA identified in the
structural portion of a mouse beta-globin gene.Proceedings of the National
Academy of Sciences USA, 75:725–729, 1978.

[338] M. Tompa. An exact method for finding short motifs in sequences with
application to the Ribosome Binding Site problem. InProceedings of the
Seventh International Conference on Intelligent Systems for Molecular Bi-
ology, pages 262–271, Heidelberg, Germany, August 1999. AAAI Press.

[339] E. Uberbacher and R. Mural. Locating protein coding regions in human
DNA sequences by a multiple sensor - neural network approach.Proceed-
ings of the National Academy of Sciences USA, 88:11261–11265, 1991.

[340] E. Ukkonen. Approximate string matching withq-grams and maximal
matches.Theoretical Computer Science, 92:191–211, 1992.

[341] S. Ulam. Monte-Carlo calculations in problems of mathematical physics. In
Modern mathematics for the engineer, pages 261–281. McGraw-Hill, 1961.

[342] A.M. Vershik and S.V. Kerov. Asymptotics of the Plancherel measure of the
symmetric group and the limiting form of Young tableaux.Soviet Mathe-
matical Doklady, 18:527–531, 1977.

[343] M. Vihinen. An algorithm for simultaneous comparison of several se-
quences.Computer Applications in Biosciences, 4:89–92, 1988.

[344] M. Vingron and P. Argos. Motif recognition and alignment for many se-
quences by comparison of dot-matrices.Journal of Molecular Biology,
218:33–43, 1991.

[345] M. Vingron and P.A. Pevzner. Multiple sequence comparison and consis-
tency on multipartite graphs.Advances in Applied Mathematics, 16:1–22,
1995.

BIBLIOGRAPHY 305

[346] M. Vingron and M.S. Waterman. Sequence alignment and penalty choice.
Review of concepts, studies and implications.Journal of Molecular Biology,
235:1–12, 1994.

[347] T.K. Vintsyuk. Speech discrimination by dynamic programming.Comput.,
4:52–57, 1968.

[348] A. Viterbi. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm.IEEE Transactions on Information Theory,
13:260–269, 1967.

[349] D.G. Wang, J.B. Fan, C.J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghan-
dour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie,
T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M.S. Morris,
N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T.J. Hudson,
and E.S. Lander et al. Large-scale identification, mapping, and genotyp-
ing of single-nucleotide polymorphisms in the human genome.Science,
280:1074–1082, 1998.

[350] L. Wang and D. Gusfield. Improved approximation algorithms for tree align-
ment. InSeventh Annual Symposium on Combinatorial Pattern Matching,
volume 1075 ofLecture Notes in Computer Science, pages 220–233, Laguna
Beach, California, 10-12 June 1996. Springer-Verlag.

[351] L. Wang and T. Jiang. On the complexity of multiple sequence alignment.
Journal of Computational Biology, 1:337–348, 1994.

[352] L. Wang, T. Jiang, and E.L. Lawler. Approximation algorithms for tree
alignment with a given phylogeny.Algorithmica, 16:302–315, 1996.

[353] M.D. Waterfield, G.T. Scrace, N. Whittle, P. Stroobant, A. Johnsson,
A. Wasteson, B. Westermark, C.H. Heldin, J.S. Huang, and T.F. Deuel.
Platelet-derived growth factor is structurally related to the putative trans-
forming protein p28sis of simian sarcoma virus.Nature, 304:35–39, 1983.

[354] M.S. Waterman. Secondary structure of single-stranded nucleic acids.Stud-
ies in Foundations and Combinatorics, Advances in Mathematics Supple-
mentary Studies, 1:167–212, 1978.

[355] M.S. Waterman. Sequence alignments in the neighborhood of the optimum
with general application to dynamic programming.Proceedings of the Na-
tional Academy of Sciences USA, 80:3123–3124, 1983.

[356] M.S. Waterman. Efficient sequence alignment algorithms.Journal of Theo-
retical Biology, 108:333–337, 1984.

306 BIBLIOGRAPHY

[357] M.S. Waterman.Introduction to Computational Biology. Chapman Hall,
1995.

[358] M.S. Waterman, R. Arratia, and D.J. Galas. Pattern recognition in several
sequences: consensus and alignment.Bulletin of Mathematical Biology,
46:515–527, 1984.

[359] M.S. Waterman and M. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA–rRNA comparisons.Journal of Molecular
Biology, 197:723–728, 1987.

[360] M.S. Waterman, M. Eggert, and E. Lander. Parametric sequence compar-
isons. Proceedings of the National Academy of Sciences USA, 89:6090–
6093, 1992.

[361] M.S. Waterman and J.R. Griggs. Interval graphs and maps of DNA.Bulletin
of Mathematical Biology, 48:189–195, 1986.

[362] M.S. Waterman and M.D. Perlwitz. Line geometries for sequence compar-
isons.Bulletin of Mathematical Biology, 46:567–577, 1984.

[363] M.S. Waterman and T.F. Smith. Rapid dynamic programming algorithms
for RNA secondary structure.Advances in Applied Mathematics, 7:455–
464, 1986.

[364] M.S. Waterman, T.F. Smith, and W.A. Beyer. Some biological sequence
metrics.Advances in Mathematics, 20:367–387, 1976.

[365] M.S. Waterman and M. Vingron. Rapid and accurate estimates of statistical
significance for sequence data base searches.Proceedings of the National
Academy of Sciences USA, 91:4625–4628, 1994.

[366] G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome
inversion problem.Journal of Theoretical Biology, 99:1–7, 1982.

[367] J. Weber and G. Myers. Whole genome shotgun sequencing.Genome Re-
search, 7:401–409, 1997.

[368] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid
protein data banks.Proceedings of the National Academy of Sciences USA,
80:726–730, 1983.

[369] K.H. Wolfe and D.C. Shields. Molecular evidence for an ancient duplication
of the entire yeast genome.Nature, 387:708–713, 1997.

[370] F. Wolfertstetter, K. Frech, G. Herrmann, and T. Werner. Identification of
functional elements in unaligned nucleic acid sequences. Computer Appli-
cations in Biosciences, 12:71�80, 1996.

[371] S. Wu and U. Manber. Fast text searching allowing errors. Communication
of ACM, 35:83�91, 1992.

[372] G. Xu, S.H. Sze, C.P. Liu, P.A. Pevzner, and N. Arnheim. Gene hunting
without sequencing genomic clones: finding exon boundaries in cDNAs.
Genomics, 47:171�179, 1998.

[373] J. Yates, J. Eng, and A. McCormack. Mining genomes: Correlating tandem
mass-spectra of modified and unmodified peptides to sequences in nucleo-
tide databases. Analytical Chemistry, 67:3202�3210, 1995.

[374] J. Yates, J. Eng, A. McCormack, and D. Schieltz. Method to correlate tan-
dem mass spectra of modified peptides to amino acid sequences in the pro-
tein database. Analytical Chemistry, 67:1426�1436, 1995.

[375] J. Yates, P. Griffin, L. Hood, and J. Zhou. Computer aided interpretation of
low energy MS/MS mass spectra of peptides. In J.J. Villafranca, editor,
Techniques in Protein Chemistry II, pages 477�485. Academic Press, 1991.

[376] P. Zhang, E.A. Schon, S.G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and P.E.
Bourne. An algorithm based on graph theory for the assembly of contigs in
physical mapping. Computer Applications in Biosciences, 10:309�317, 1994.

[377] Z. Zhang. An exponential example for a partial digest mapping algorithm.
Journal of Computational Biology, 1:235�239, 1994.

[378] D. Zidarov, P. Thibault, M.J. Evans, and M.J. Bertrand. Determination of the
primary structure of peptides using fast atom bombardment mass spectrom-
etry. Biomedical and Environmental Mass Spectrometry, 19:13�16, 1990.

[379] R. Zimmer and T. Lengauer. Fast and numerically stable parametric align-
ment of biosequences. In S. Istrail, P.A. Pevzner, and M.S. Waterman, edi-
tors, Proceedings of the First Annual International Conference on Compu-
tational Molecular Biology (RECOMB-97), pages 344�353, Santa Fe, New
Mexico, January 1997. ACM Press.

[380] M. Zuker. RNA folding. Methods in Enzymology, 180:262�288, 1989.

[381] M. Zuker and D. Sankoff. RNA secondary structures and their prediction.
Bulletin of Mathematical Biology, 46:591�621, 1984.

BIBLIOGRAPHY 307

PevznerBm.qxd 6/14/2000 12:29 PM Page 307

Index

2-in-2-out graph, 80
2-optimal Eulerian cycle, 78
2-path, 78

acceptor site, 156
adaptive SBH, 91
adjacency, 179
affine gap penalties, 100
Aho-Corasick algorithm, 116
alignment, 94, 98
alignment score, 94, 98
alternating array, 84
alternating cycle, 26, 180
alternative splicing, 169
Alu repeat, 61
amino acid, 271
anti-symmetric path, 240
antichain, 109
approximate string matching, 114
Arratia-Steele conjecture, 107
atomic interval, 46
autocorrelation polynomial, 136

backtracking, 97
backtracking algorithm for PDP, 20
backward algorithm, 146
Bacterial Artificial Chromosome, 44
balanced collection of stars, 127
balanced graph, 27, 180
balanced partitioning, 260
balanced vertex, 27, 70

Baum-Welch algorithm, 147
best bet for simpletons, 136
BEST theorem, 72
binary array, 83
Binary Flip-Cut Problem, 38
bipartite interval graph, 251
bitableau, 102
BLAST, 115
BLOSUM matrix, 98
border length of mask, 88
bounded array, 258
branching probability, 85
breakpoint, 179
breakpoint graph, 179

candidate gene library, 167
capping of chromosomes, 186
cassette exchange, 23
cassette reflection, 23
cassette transformations, 21
Catalan number, 75, 261
Catalan sequence, 261
cDNA, 272
CG-island, 144
chain, 109
chimeric alignment problem, 261
chimeric clone, 44
chromosome, 185, 271
chromosome painting, 187
chromosome walking, 5
circular-arc graph, 254

309

PevznerBm.qxd 6/14/2000 12:29 PM Page 309

clique, 51
clone abnormalities, 43
clone library, 5
cloning, 5, 273
cloning vector, 41, 273
co-tailed genomes, 214
codon, 271
codon usage, 155
common forests, 109
common inverted forests, 110
common inverted subsequences, 110
communication cost, 126
comparability graph, 50
comparative genetic map, 15
compatible alignments, 126
complete graph, 51
conflict-free interval set, 46
conjugate partial orders, 109
consecutive ones property, 43
consensus (in fragment assembly), 61
Consensus String Problem, 143
consensus word analysis, 143
consistent edge, 131
consistent graph, 131
consistent set of intervals, 46
contig, 62
continuous stacking hybridization, 75
correlation polynomial, 137
cosmid, 44
cosmid contig mapping, 255
cover, 110
cover graph, 204
coverage, 54
critical path, 251
crossing edges in embedding, 268
cycle decomposition, 180
cystic fibrosis, 1

DDP, 20
decision tree, 169
Decoding Problem, 146, 265
decreasing subsequence, 102

310 INDEX

deletion, 98
diagram adjustment, 253
Dilworth theorem, 110
Distance from Consensus, 125
divide-and-conquer, 101
DNA, 271
DNA array, 9, 65
DNA read, 61
donor site, 156
dot-matrix, 124
Double Digest Problem, 20
double filtration, 117
double-barreled sequencing, 62
double-stranded DNA, 271
duality, 113
dynamic programming, 96

edit distance, 11, 93
edit graph, 98
embedding, 268
emission probability, 145
equivalent transformations, 196
eukaryotes, 271
Euler set of 2-paths, 78
Euler switch, 78
Eulerian cycle, 26, 70
Eulerian graph, 70
exon, 12, 153, 272
ExonPCR, 168
extendable sequence, 85

FASTA, 115
fidelity probes, 92
filtering in database search, 94
filtration efficiency, 116
filtration in string matching, 114
filtration of candidate exons, 165
fingerprint of clone, 42
finishing phase of sequencing, 63
fission, 185
fitting alignment, 259
flip vector, 215

PevznerBm.qxd 6/14/2000 12:29 PM Page 310

flipping of chromosomes, 186
fork, 32
fork graph, 32
fortress, 209�INDEX 311
fortress-of-knots, 216
forward algorithm, 146
fragment assembly problem, 61
Frequent String Problem, 144
fusion, 185

gap, 100
gap penalty, 100
gapped l-tuple, 117
gapped array, 83
gapped signals, 150
gel-electrophoresis, 273
gene, 271
generalized permutation, 197
generalized sequence alignment, 109
generating function, 36
genetic code, 271
genetic mapping, 2
genetic markers, 3
GenMark, 173
genome, 271
genome comparison, 176
genome duplication, 226
genome rearrangement, 15, 175
genomic distance, 186
genomic sorting, 215
GENSCAN, 172
Gibbs sampling, 149
global alignment, 94
Gollan permutation, 188
Graph Consistency Problem, 131
Gray code, 88
Group Testing Problem, 55

Hamiltonian cycle, 69
Hamiltonian path, 66
Hamming Distance TSP, 44
hexamer count, 155

INDEX 311

Hidden Markov Model, 145
hidden state, 145
HMM, 145
homometric sets, 20, 35
Human Genome Project, 60
hurdle, 182, 193, 195
hybrid screening matrix, 56
hybridization, 67, 273
hybridization fingerprint, 6

image reconstruction, 130
increasing subsequence, 102
indel, 98
inexact repeat problem, 261
Inner Product Mapping, 255
insertion, 98
interchromosomal edge, 215
interleaving, 45
interleaving cycles, 193
interleaving edges, 193
interleaving graph, 193
internal reversal, 214
internal translocation, 214
interval graph, 43
intrachromosomal edge, 215
intron, 154, 272
ion-type, 231

junk DNA, 153

k-similarity, 243
knot, 216
l-star, 128
l-tuple composition, 66
l-tuple filtration, 115
Lander-Waterman statistics, 54
layout of DNA fragments, 61
light-directed array synthesis, 88
LINE repeat, 62
local alignment, 94, 99
Longest Common Subsequence, 11,

94

PevznerBm.qxd 6/14/2000 12:29 PM Page 311

Longest Increasing Subsequence, 102
longest path problem, 98, 233

magic word problem, 134
mapping with non-unique probes, 42
mapping with unique probes, 42
mask for array synthesis, 88
mass-spectrometry, 18
match, 98
mates, 62
matrix dot product, 127
maximal segment pair, 116
memory of DNA array, 83
minimal entropy score, 125
minimum cover, 110
mismatch, 98
mosaic effect, 164
mRNA, 272
MS/MS, 231
multifork, 32
Multiple Digest Problem, 253
Multiple Genomic Distance Problem,

227
multiprobe, 82
multiprobe array, 85

nested strand hybridization, 259
network alignment, 162
normalized local alignment, 260
nucleotide, 271

offset frequency function, 236
Open Reading Frame (ORF), 155
optical mapping, 38, 254
optimal concatenate, 215
order reflection, 28
order exchange, 28
oriented component, 193
oriented cycle (breakpoint graph), 193
oriented edge (breakpoint graph), 193
overlapping words paradox, 136

312 INDEX

padding, 197
PAM matrix, 98
pancake flipping problem, 179
parameter estimation for HMM, 147
parametric alignment, 118, 262
Partial Digest Problem, 8
partial peptide, 18
partial tableau, 104
partially ordered set, 109
partition of integer, 102
path cover, 53
path in HMM, 145
pattern-driven approach, 135
PCR, 272
PCR primer, 273
PDP, 312
peptide, 273
Peptide Identification Problem, 240
Peptide Sequence Tag, 230
Peptide Sequencing Problem, 18, 231
phase transition curve, 119, 263
phenotype, 2
physical map, 5
placement, 45
polyhedral approach, 113
pooling, 55
positional cloning, 167
Positional Eulerian Path Problem, 82
positional SBH, 81
post-translational modifications, 230
PQ-tree, 43
prefix reversal diameter, 179
probe, 4, 273
probe interval graph, 255
Probed Partial Digest Mapping, 38
profile, 148
profile HMM alignment, 148
prokaryotes, 271
promoter, 272
proper graph, 240
proper reversal, 192
protease, 273

PevznerBm.qxd 6/14/2000 12:29 PM Page 312

protein, 271
protein sequencing, 18, 59
PSBH, 81
purine, 83
pyrimidines, 83

query matching problem, 114

Radiation Hybrid Mapping, 55
re-sequencing, 66
rearrangement scenario, 175
recombination, 2
reconstructible set, 37
reduced binary array, 258
repeat (in DNA), 61
resolving power of DNA array, 82
restriction enzyme, 4, 273
restriction fragment length polymorph-

ism, 4
restriction fragments, 273
restriction map, 6
restriction site, 4
reversal, 15, 175
reversal diameter, 188
reversal distance, 16, 179
reversed spectrum, 241
RFLP, 4
RNA folding, 121, 263
rotation of string, 77
row insertion, 104
RSK algorithm, 102

safe reversal, 200
Sankoff-Mainville conjecture, 107
SBH, 9, 65
score of multiple alignment, 125
semi-balanced graph, 71
semi-knot, 224
Sequence Tag Site, 42
sequence-driven approach, 144
Sequencing by Hybridization, 9, 65
shape (of Young tableau), 102

INDEX 313

shared peaks count, 231
shortest common supersequence, 125
Shortest Covering String Problem, 6,

43
Shortest Superstring Problem, 8, 68
signed permutations, 180
similarity score, 96
simple permutation, 196
Single Complete Digest (SCD), 53
singleton, 182
singleton-free permutation, 184
sorting by prefix reversals, 179
sorting by reversals, 178
sorting by transpositions, 267
sorting words by reversals, 266
SP-score, 125
spanning primer, 171
spectral alignment, 243
spectral convolution, 241
spectral product, 243
spectrum (mass-spectrometry), 18
spectrum graph, 232
spectrum of DNA fragment, 68
spectrum of peptide, 229
spliced alignment, 13, 157
splicing, 154
splicing shadow, 168
standard Young tableau, 102
star-alignment, 126
Start codon, 155
state transition probability, 145
statistical distance, 120
Stop codon, 155, 271
String Statistics Problem, 143
strings precedence data, 259
strip in permutation, 182
strongly homometric sets, 20
STS, 42
STS map, 63
suboptimal sequence alignment, 119
Sum-of-Pairs score, 125
superhurdle, 205

PevznerBm.qxd 6/14/2000 12:29 PM Page 313

superknot, 216
supersequence, 260
symmetric polynomial, 37
symmetric set, 37

tails of chromosome, 214
tandem duplication, 120
tandem repeat problem, 260
theoretical spectrum, 231
tiling array, 66
transcription, 272
transitive orientation, 50
translation, 272
translocation, 185
transposition distance, 267
transposition of string, 77
Traveling Salesman Problem, 44, 68
triangulated graph, 50
TSP, 68
Twenty Questions Game, 168

uniform array, 82
universal bases, 91
unoriented component, 193
unoriented edge, 193

valid reversal, 214
Viterbi algorithm, 146
VLSIPS, 87

Watson-Crick complement, 67, 271
winnowing problem, 120

YAC, 4 4
Young diagram, 102
Young tableau, 102

314 INDEX

PevznerBm.qxd 6/14/2000 12:29 PM Page 314

	preface.pdf
	pÃà†i¬Ð5·˘6ıêZ®ýrF�}@‰P
	/vÑ�²˛<b˘áÔžÑ	ïÏ+Bò�þ¶
ƒÒ¹øþª�`ł�˙|¼ÉOJu|
	ÿ[qShT��
	pú�ı{îÐGp�¢½
	pﬂœ—˛ÍD4�Ÿµ¯	¯
	pÅ�H¿�A(Ô»
	Ðz65ì$Û^Łß

	/wîðò×¨ÚiÌÓı:â`?¾ 8öh0d8Ç¦x>Œ³ÂÏ¾§HıbÕ-Z¬eﬂﬂÐúu÷"zpŁ™˝3ªÑlﬁÒOVó}Œfà–�<ÙÚâ9ÏÆù"�]włÿs)�¶˙ﬁﬁôe¢»Ùª¢û��ﬁHÖ}°`P�þŠ!â0ykÓmdŽb©³

	chap1.pdf
	cÅË^>cC�æÖç”?f
	/þ"–T’”<=
E}Ä¡
å9hõ�s�Cé�–î’�92"!á‚a=
	ÇŁÔ'�Ü’ªÈ˙lÍ��
	¢8&0ÏÇ#−'`•S
	¼7º	å‘@æÈ#íø��
	¸˚…˜˙�Ã˙¡�
	þ¼¼�•8�łG/�JÏÐ
	p��ÔˇıÂââKÁ�
	p¼ë·Ò‹Áòãô�VáÀ2�
	p¢š
¬�°°Êä�^
	Œqwxâè{Úłù£¾¬
	’20K~�¬�ã—X
	pagƒå±
q&ÛÃ�q
	µ=ž¢º˘łî[‚¦˚K6ﬁï˚
	pÏ^?S>ê‚�ùp
	�˚�ûíF;w3�œb
	‚í*s‘)�Á�ì�œ•
	p¦�5RwC‡\
	paÚp:¸R�Ì˜;

	†bÖXM�ª˜È&�aAÅÑV$.Â˘¬ê´WGéýöFýøé˝éà(¸—'rêÇ�i˛.3ûÅS®:2ST7_�iDt¾−�táÄ(œÁj"oÏÁ¤gÁZ“Ð¶.…¥þÐ6©p
�|íü¾ﬂôc)L¸Zê€‚+

	chap2.pdf
	ŸÍF%œ˛kb¬H»áMÌÅx@
	Ò�ÉT¦%k(Głð?àùæž*ÒÊ	‹aÒ>�I¨`s©oŠ«ÏBâ;?´úµ+~ˆz
	ŠÒ„`Å7jæ®í˚%�†
	pagè�t�»
	ß¥É?ÏÁb�3z ¬¶v-ÿ
	pa§ƒ÷E˚Î&9;h
	ë±„š!�wô<Öà�øô
	¼�¯�cJj�©Ù
	®u£‹+Ùmé¢‰Â¹>a
	pa��åÃ˚Oë˜Ì˜
	£�“v.œ/è��
�×
	‚Ôµ6I¶ÐŸ©ZÈáâúÐ×�
	„‹¥�^Æ±�uÍÜšÏ|€g
	¢�–M�™¤¶áÉÒD]ê�
	õ—â�Ûáƒ�[¼$ðŒ¿-úR%L
	„�¤r]ÎRþþÖ�¥w‚·
	p�YÁı»žã÷’�^‹ÏtŁR
	pageÕ›/�ÓÚE
	pag…˚Œàï+ðX•¸
	pû�åaGo%Í¶K
	ÀŁ"cÂjÏ¥=‹ï�ˇ|R
	pa¼⁄U�±Ïﬁ6X�š
	pa½öï=ü�&�^w–D²

	™¨¤Û©?¬ﬂÌò·)�„¿ÅNåiOÚ3xzR˝wÎšk%/@�c»A�>ïÀ+ž’ÄŽyŽ3Ä4Åýi
�6·	ËÐ�óÖt'lµB7…qMÓ<üˆöïï�¥„ �Ø{]£§®6aÞw¸íÍ?øOß¶�¥©ÉgŒZc3¾h˝ü�ó

	chap3.pdf
	Łnjä©|ó3®<¡ßžû¡á#˚W
	/v«dÚg»ï3�fæìJ¹5Å$¤⁄ˆH2±í“²]?!ˆ|ÿ�˛žñ¾�1e
	�„®�ÔÓÔ=‡vüôæaŸ¢
	p×�U×8¾Å…�
	û\9Ì\WÎ�ü}
	ÏBÞ�Zp”y˙ï
	pòµ.-Y‘í��
	p”g�z¥^	�

	pØÀ¬œ|ò�ˆ£Û5‘�
	ò�!ã9QÚKÖ›
	§Èéà'�ÌÙ;Ó�ïò�³¿Ð
	−þ¢ﬂf%ös�‚~Nùüia{
	ø�âúw�Gugﬁ‘Lu-�
	Îl`�è€–f	ﬂZ−™ô*
	pag§O.èê�ÎÒ
	ÊT(Lø¡zDKÝ0ï`
	–E›L?�<ò7—ô
	¥-«ÁsÎû�`’Ðå�ž�ÑÉ
	©ÄLÎ‡¾5�À�KØO“B⁄.

	/w÷˜Ã7�¯Í%�(ú?ŒÃà÷–ÃÂÂ˜EgµÛZß“ï�„î�ðÇÙÝjDË5¯ÀŠu×�§±Tu˚µ)—˚‰
ØºQ"˘ÜÂÎuFLO-œxÞl�M†Š†Û‹�ú€QW?jD"Å¥“í±[Š€›H‚ƒŽˆ¸˘˚¹B¤‰omèÉ(“øw‚¶

	chap4.pdf
	−Œ�b¦�LÂQ.+%�Û1WÍ
	Š|P©™‹ÏíôÑŒØâ•#ˆYð5f©�¿Ò¸8?Ù:Í®ïõ‘˛ìkòÄ�õûá'$\'ôA
	pý5Ç<4üŠ��
	éžZ„"¤(°ÅÂ§^c®
	ºÇ(˜´f'XÌÀÍÞ
	Ô‡áûjSHn˜®>ÁXó
	paž€ùg(e8ŁŽ8

	ÏØ.ù¬ûI9t��ıU-/šÀÖí¼pØ ¤ÀÈé†sØ�ÐÀìà"�øÖ×KˇrH¥žðûŠÞał`àb�ýôˆiÞ^¬âÎHì^J”’ …1¶<óºü�%#¸\ÜŽKÜ;h²Æu®F2¿Ë�Nfï
>–\aõ•ÛãÆîiƒ~Ý¦[—�ûöãª"q

	chap5.pdf
	c€\•ıNàÿþLr+˝¶¬”+(Åa´
	¿š=ú‡Àq‡òV�—Oy#œÔ@ßLè^⁄aDà“dãß)]·�ðÄbd¹�—¿¢á0
	page¯“?Ô�Ô
	page 3
	pÞł�ë”�B>t�öæÕ
	ŁôîTx	�¬z�
±
	™(¾‹üƒéÿÑ�Doù‰oÿ
	‘⁄Rm´Šb`Ã5Á˝U�
	ﬁµ��‘⁄�d…°Íßfm
	pa€{N˙gâ
	p�¥jﬂøL‘W…‹E‹³ð
	�Æ-¿á„Ë©lZÅHR2×Ã¨Ø	
	±Çñš.•à·8½xÂY�ŁÿQ`‘
	Þ:„]ÐÔo�ÜtÉ^7Ü�
	paýù™È"� e˙p²“T
	ü7²jªÔÚJÊqþdÎê5‘Š
	pa¿í0�1å,À⁄
	ŽıèQ�Úvš�R:9]óÇ
	píj€ñ�kY2©xHr
	Î�W¼“Cê−Ö¸µ�€ªG
	Þ~0ÌJ½�¨°‘3Zù
	ùø_Œ‚w=·¡˙56%Ø˘
	Öî~IÓÍ�ˆŒg
UÌ�⁄
	pŁ÷-¿ô!MvËIìD�ò
	paû¯}›m‰q^äép
	pÙ¼¡2ìÞr‚Ü��$��XI
	à®�⁄†��yłÝÞ±÷‡{
	½ŸÎ�ä1Œ3X�''eÝ�Åþ
	pageﬁt1†�

	žRsÊ”™úY�?Ÿ˛€_�J�‰
Ù
SÚÏ ¸�Ž�µ®Ønhçÿ½³�=þ]Õº=˜š;iœ�CßK{�™��¹ÒŒ²î�æ!ªLfÇ¢¬Æò6O×éCð�¾ôájÔx�]1Í¸|�’/2˙±5Žs¨»�)L-ﬂÐH

	chap6.pdf
	±r&Ñh/¦¬FT9¼Bv
gæ
	‰8–�ÛôhÔ±\è�ZŸ¾‹ÒûöO¹\±í¤äe¶ÈÑ¦9ÌB˜Sˇ©œ3!R�8y5¥˛–
	ý?›gôNˇöQ�¿×
	“?.p.‡Ë*xv
	p·Æß�;˘ã‡Łj

	paã\-[�9
	páx6˜•ä;•°
	£�m‡TM�öÏd
	pÓWXﬂ-e©mk
	îfHŸÄ"<.�lÚº
	p¥œh��ł�Ÿ
£�ì
	çC„/‰f†Îàz�f…R8
	pagÐ)Z€ê‰nõ
	Ä!ÇÉ›�az�³VS˚rY
	p§2ˇš¤+aqtV�¦
	pa›ß´™�|�ŁtG`Üp
	€ł]Ü§˝ù‚íM�¸�g3¥×
	p¸WÒ�7˙1w»�
	ªó=X1þ@e�©ªöÁ
	ö�'euÍÓYÍ�yäW
	pŁœ¢�QÜ�Ç�âFﬁçš
	pagì�5–ùøoø
	pag¹MôKKŠ‘<
	î�/8}"¯y�RG
	Ê�ª−£‡hˆ“Ł°ŁÆÔaàž
	p¨�£Ô'¢Ôg�æ•Û&u
	p“ÏÃxzıs~$ÜeÃjë
	paŁq[9{¾C
	pag⁄Ê�¿š�−ð€·
	·&-Ò'Ê0Y�z¸º¿
	êî¯"(Ì„‘µz¼ƒð.éÏÉ

	/we„Þè‡+�ýÜgŽöúÈùÇ#‰™Q⁄®Úãa3ó¥œsu �>�º©ŠMs7ÇßÓ€*ufD�ˇ?“]��−ÿÔSY\ŁUHŠÊª}†MY‘³.äÆµWuÐ…Ñe^Ûß�6ﬂ�ãùqjÖŁN³
[ÙÜæÜžXz�ãG|ü
J‘

	chap7.pdf
	€Ôé+�<�¨g¾«�ín~Ë\
	/vaÄc'uÈ:
ˆ��$lGœ0�íE…¼a�c_øã
	©�…Œ5“ùÿ�ÓjÖÔ¢
	pagÅ@ª»�€h
	page‡ìC8�°
	Àı|Ÿ�óÏÇ?SfãØ€
	¼łjÑ_)â<_�-î
	pÿ�ðnÓÈ�¤ÀmY
	Ð^•˝ïZÞ-ã%9&
	pþWa`ø,5B¯
	page¨k��}

	/we�pIÁ
^�’R¾º�Öl�(Uﬁi=Tm„]|¥’8_Á“ ½¦×”§−4ÆªwlÚâA-ŁŠuPå!á€eõ�:4î^Y^E�3n[fcCþÌ(Ê�¹£Ò·Gü�›¢°²¡eœ‹zM“-B−ył#£Xø†�äj3Ï1

	chap8.pdf
	ch³›Ø®�‘5/ð‡ÈUŁ;ðH	2Ø
	©‡ÜÒ½Þ	¤?+¶c6Í¥¦17þﬁ>È��h¿ŸQDë)'ˇ%h¥’G§’�íú¥1%}
	¼õ\�VNﬂhÅ7
	·1šñI—Î£ñ�ùIú+
	page Î˛r
	på�
ã¯À−$ılJ
	‰UÞã9;Ñl¸Vc’
	pa¨ÄU5¹¨�¡
	ûÐËÆæV}¯>ö�WB]¹1
	ÐÑ(·ø:ÙP±PÏœv1
	p”~ˆ4²jﬂÓ¦o
	Á´ŸÿzJ£æ�&!ŠOˇ/_›
	pagıÛpÛúò_Ó�t
	Ùß��¤†�ÏÒ¨¾ôOÛnAÉ
	�fÒ�˝Y˙4V´Ê
	ÃV+•��Ï�'¬*8—
	pagüëá:ì&ÂÃ�ł
	pa��Û’�˜¯Në%�
	¿÷x,˜M2“ý™�
	paÁ,ü¥*dDtË-A
	pæ�ºªúÿ¼öÇKﬂ˜Ì¾÷1

	³Ê–−hªO�óKóqÍÈºâž•‰Ë�µ�ŠËßÞ´™>÷�—!‰�õ³¨d:Ì^x57�¢þå6‚‰—/NÆ^´ﬁ6)4Ö'#™ãâ�"W�Bó
…KZÕﬂn79fL’9-Àh÷q�ﬂü¾* ÿßGzóH†ÂD¤œŒÆ”š�KuëIQ„	ò™ƒwôøT°

	chap9.pdf
	c¶ !°Çµ`Ž=‚5•W,'(~Ø
	��Âı©Uˆ‰¿°¼½y×ä�8‰½gÙ�éL]−f‚Tł‘ºm…`°Q‚@‚˛ûr¿—ı¡PC
	pÿÄýł+¢éÈÄñ#=¢
	‘ÕÎ¼Šjû©−JDk��c˛
	paë¦ï´µJc–DÖÛ{
	pageÔˇ]ø
	p“~�ƒ�Ì?×Kí�‡�
	p…�´�6Krô»
	page â_î
	áðØc�0žN]˝¹Â
	ŽêøÔ�7æ˙ﬁ
M�#C}Ýí
	pageÊ¨iH9−1
	pa¦ﬁ�¤Ýì³R�#ùÖ�
	page ⁄b�x
	öL|±›gä“m”·��Od
	Ö�ÅVàÁ((dióW�gÈ
	p«Gº¬˛'†ô9§:?
	pageÝÊ�.Gﬂn
	paÇÉë�ëm‚ËÇ£�—ü
	pÁ˙Æ‘
�–»È−ü|
	pÐ6·�³}*·�ì,H
	°ÑZF`ð@õ}1µvl
	pageý¬˝DcÇr

	/ŁŠC�\—Z˙n™„Ï¦‰ÌeÖ‚��Nq�ý�ƒçÆ1ÉÈ]�¥Æ�!…^@VæW�‡Ã?»���I�−Ã�ÒOô¹õ⁄§„A¯é'D€i]�B®©<ò�ﬁ®ô™`[„�÷fc%8?•¸“‚Fé�ØÙ�h^‘sŸì�˜ëýÍµ

	chap10.pdf
	chaØBpÕ¹§łúÿ(ýz®i×uy
	úëäı\ããüA:»”÷øUàùú|(ÁÕ‡úÛ�«_·,�€g?�°�ss“Är
i�™ˇ�,®º
	pÎ¶<¡
�¼µƒF£
	êün�0©vS0œ¦¼
	pa‘{
�×\
	p³-˙m
�ô
	—x¯Ołµ�›®ÝEyI~
	põÝ©Œ}@I˘wneøÉ
	pÖ®Ðëg�öÌ��ﬂŸí
	pøíg„då
7	¶t
	pag†Ł-~ÊŽ�®
	p‰˝ã‹˙àë{]¡+Â�G
	pô*aEé/5³—°
	pÃüäÜÕØ�AelîòN›�´€ß
	æÝˆS	ÃëE¥~æKˆnµ
	pÜŁ~�•�ˆ¹À¥÷C
	pa‰U�è�Ärd™
	page Í¤@Oâè
	º²Í§tÁßwrt� 7!ê�É³±
	Í�aÓ	bÊP>©˝�Æ
	pÓ−�!wâˆr!RxŽjL
	Ã%Rd¡¥t*‹Ü�Ül
	pîð�˙]”;hä”P=
	pageÃ¶²a}�u†!
	¥è>Æ2ð�ZV«aüıê�
	pÙ%Ü&—œUı4½Ó�,«
	÷60¸W¶jýÕ[Žÿþ
	page„êõžƒÞÐ„G
	ú(wúW˛ˆ®��Ð
	�Ek§C<rìÊ…'
	p‰`gI$BžÕ
	³Pé¥�È»fbU−ºH�‘–F
	§ł4Rÿ�Ä4ıÛ�ÎÞﬂ±
	pag©ù
0¾)è…
	¡ÿÌyD ¾£I]A�¡³î
	äg=y#Ëj�Ò�¤
	p¡%qÈŽúÛ5ie+X-Õ
	Œ£»àÀœ'¼8=A¿(°Š:R„V
	pª›v¶g.CcükÖ«
	pı	��3§š<À]
	ïâã�˜�?*è§;%*
	úšÄU�Ö›Ré–}Pñ_†ðÞ
	ÿ‘*õ@¨2;JÿM2łÂ˝
	paÄ˙(7>��
	·Íƒw'Ÿ}/©&�1?¼ﬁ
	ŸßÍ�Šy”¹³/\}º‰‚ŠÓ
	p”{Æ®šêÎ%|[˛Šá…8õ
	page—3uJê
	paõÝµ‚Łt{Rš,s�>€ò
	¨1¿Ó$³lèä�GV+mæ
	paﬁO¤`�!©˙ö
	pagÍønﬁ8¶¬u”k
	÷˜±9Ÿ/¥ËzŒPVâ³¿
	º&û`á‘.{¦:ÓÒ{Ú²
	Þx$!eoÆ–K„K

	Èłe$�EÑ÷�ıüç
ÞŠš‘ﬁ+Úq��)8çŠˇÇQ‚›ÖÊn‡×y�5sWâ¥¸ñÅ⁄y»®º‚Głf<�vh›è†HmØ˚Âé‡oí�Ð’ÃD‹°Ó«ýQ-ˇ*�×h¾ü˚÷‹áih'.à“ß�]łÓ⁄Z·x˚ÿ}¯œ4¢¨%oÍžÃùxÞ

	chap11.pdf
	chap11.p°�yÉ
	/var¥	oÃ�;ˆŁÆA
ª†
ﬁ��]8\|¡®¬�&i	q�¥
	®mKô#ƒÂí‰!c¡
	Èá�ç]×vb5vEeÁq
	¶(\ ì‘�Ò?HS¨
	³´¹‰0õ„DC−ÂeÞ}�Í
	p×š�MN+tûG
	ÅùŒÀ—÷O°‰ÉÀOg
Ê6k'
	žä,P$l.‹�m
	page äÙ3
	paËT¶WÄGOÛKBÓ
	‹¥�úé�™ﬁC¦ôô.ŽÜÒü
	í=Ø.@ORÝiØ˝
	paÚ´×M¤Û™iŸT�<F
	Í
¾Ý‹ﬂ=˚v°½¨©«Â6]
	paï</å^Úå�,
	Øë+ÇÝmE“rëûÿ���
	paæJ;Ì�¸ILŸ
	ú�<d©
��[¯fâÏ
	paÖ—M6A��å�
	pŠNè3CŁ*QL®ÀQ
	põ�²‚ËÅŽ>¼ł|ß�šd¿
	‡©´\FŒc/�6�P�½¥

	ªÑ„Ó¦—�·8í«å=��¯p¸W�fðC?Ñ’�Ðˆ³\Ú2�ùR�ÓH\Ý#±sÛŁ˛ñ�è¢¿NŒèT’<´−Ñ~.�Þ˝�šTÉ›øÃËÀ����7ïq›mKôLŒ)ıÍê;îpufA÷rg——ØAX>�«Í�L»}X�Oæk†

	chap12.pdf
	cha»Š©nô‚|Œæý°þñ}p¸P
	ÿà@³z!
6.łR,»˚lP%q¦sf�]XVŸÚ�ôˆÍ#n
	´…Gn™
r2¾ßø"
	ù�{éàßJ”Lï˛»*Ç
	úÃ(ýD¯¼/îï¤Jå<
	pagŁ�¡ÚÂ*~
	p™w¦¾T¤{qb3=
	‚;¤Lµ˜Ï˜D�E“
	çNE�o¡;˜9o
	pag¿
kÖ
	«äÛk$íÒøbz−©¢ÍÊ8�
	§�kbÊÚ�îFu��%
	łçûÄj°Æﬁ<�Aá¹ÓµÁÚUÁ
	ÿ|¯*�6ñxËÿ�÷h
	±}žDbi�„łnw
	paÅ¨–•Ûm=�ËñÊJÆ�+
	p§¡p?1�Ïæ¿Â
	³Ö»�#ï0Âû®¡€Ó¯Ê
	Ô¶)†Þ;‘•�ôô�á−AÜŸ
	pag€ˇŠ"ËŸ†L
	ÒŸ<î�Ãpãù,˜|£�×

	œÚ.pá¹−ZbÉŒ¸¾ˆ	mß°tÏ=©Ž¼�šŸñ•Vg„�g|¯/Q.Ò¦�6JsG� 'ð¦ƒÐ´ Re;ŒÙÄÈmâb�łš(ÕÛdÛ ‘ñ@·ˇ¦"Ýè‰�UÁ#èæ·�ı'Ùiõ‡žÏŽçW]TÒ
"3„áîF6�ö

	chap13.pdf
	Ç‰>ìûl�»œ±SÒ−�rNï‹€ºCHtÃ
	/ýÖˇaC�Lł3ÜA¥¨ïšü£öOî÷G.ý�‡¤…´�>3U–FZà”	ﬂ3†²	
	pa¸Ë�ìÕà"ðeK
	pag×8æ¯O‰°
	pagÎ>ãrçê»

	/¢˚Ws’´$N�XÇ��õÄÿbÀ�§àgíìy�‰ž¤e
�XóÏÖý„B¥NŸı<Z/d?9xõv⁄ªy5ØƒWñÇ‡ZìƒèˆWI-ª]?‹ó{›Æ[ê×™I;2=−˘ûƒÀfäŁœ.3ˇnO�—˘�	üY�ﬂ�y

	bibliography.pdf
	è
uÚüp�ü#â¾e�Ù'/Cg��BÕ´Þ•$Õ�8�j˙
	/Âò¢!Y¸mÜâ˛ÞöŠ{ﬂóú
¨t¾PœVññA
+T�%tœ>�fkEó`á˚|−(
	ızéÁü��ãæ¡ˆ|¿Z
	pŠS¸Ú�(bé2Tí
	pßê+ì¥Ù�zvðÉíÎ
	Æ��ÚEpG¿Õn
	Ö´øÎ[Y �©S•�žL
	page¶Ł¯2ÜU
	íïŽˇ⁄*â4²!îñH®
	pa¥UÂ‹þ&h,ü�
	pË˙ë”ÑÑÿ^qwÐÖ-fÔî
	pašõ˚û<f²�il’
	×z@ú4�)Ý�÷y
	¸�Ùr¸ö˝ˆªN�˙bÔ¡›˙
	pù˘ÿ'ò€á1H−ŽO‹N
	páˇÆuz�0�wô
	ª�;�”˙Œ«(…œ'Ë
	püõº
€`pg°ÀôO¿{
	ƒÿhJÕkmZ¦�õ³Ì
	paŒ?
±scqﬁ}
	¦/�wv⁄¿â{¿˙–ï
	p�¸-�Húz1Q:�†
	pÿLCÕSâˇ¬Ù-�
	øloErb”.Łá´
	‚$�i½�ž�¸L�…

	î6Z-E
˝rD
	©å»�¾�ÉV…ý�Ÿ|-˘¿þ
	pÞ˜ç–‰Åo§ƒ„dýàE@8
	Çƒ{�+*ﬂ¿1ÒßŽ¿
	page¦=Š�TqZ
	pa�,Î"~ÝÕ_3
	page‹0&0K
	¾|Ðµ¸Ó�*\ƒŠE=�›�ž
	äJ°#Þ“Pà÷�=Õæ‚"
	pÜ€•
�i_ÃÃìt¸

	þuõŒ�Ì8ü�¶f¾0G�*Zýòw†çbj6”úÌÁ]�'(‘œNßºè;ZLˇñ5©�{x±–NÙÑ �cÊH°D�òJ½ü;–ê¨â”ÒµÇ±Vï¤Týž×h§«¬önëe�Rr.ÃX�'ó˘p�”!{®®Ž©å(

	index.pdf
	ÓåM`Hê{B¹äÜT¼ä¦dS
	ÝÈ7R’/e²’Ë@§¬®Uïﬁ1�(˝d¶VOÛÓŒéç—l˙+Û'^5AÂsÃ*
	pêº�ˇ�vªþç
	p×HÊÊ~5ŒDÂ÷Z
	p÷êíû»ð�‚x²ÞÂzR�
	paîîìG~#ŽVıÛ
	pa‡“˜Cô×^�

	Ê§Gõµ’ZA³˜�ðåZÏ;@Nì�²ð§•ÿèÞßV~ó±Ï¤Hã�Îx³tÙï«s/*›��>��]7…Ý¸˜né”D˜oÜVìŸÆ»—¢yñEfb^Ês˚,BƒüŽù4.Ê±�À=ýr7�šQ��ãô
ú
èK¾[ô�kCVLÔ«�ôf

