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Preface

In 1985 I was looking for a job in Moscow, Russia, and I was facing a difficult
choice. On the one hand I had an offer from a prestigious Electrical Engineering
Institute to do research in applied combinatorics. On the other hand there was
Russian Biotechnology Center NIIGENETIKA on the outskirts of Moscow, which
was building a group in computational biology. The second job paid half the salary
and did not even have a weekly “zakaz,” a food package that was the most impor-
tant job benefit in empty-shelved Moscow at that time. I still don’t know what
kind of classified research the folks at the Electrical Engineering Institute did as
they were not at liberty to tell me before I signed the clearance papers. In contrast,
Andrey Mironov at NIIGENETIKA spent a few hours talking about the algorith-
mic problems in a new futuristic discipline called computational molecular biol-
ogy, and I made my choice. I never regretted it, although for some time I had to
supplement my income at NIIGENETIKA by gathering empty bottles at Moscow
railway stations, one of the very few legal ways to make extra money in pre-per-
estroika Moscow.

Computational biology was new to me, and I spent weekends in Lenin’s
library in Moscow, the only place I could find computational biology papers. The
only book available at that time was Sankoff and Kruskal’s classical Time Warps,
String Edits and Biomolecules: The Theory and Practice of Sequence
Comparison. Since Xerox machines were practically nonexistent in Moscow in
1985, 1 copied this book almost page by page in my notebooks. Half a year later I
realized that [ had read all or almost all computational biology papers in the world.
Well, that was not such a big deal: a large fraction of these papers was written by
the “founding fathers” of computational molecular biology, David Sankoff and
Michael Waterman, and there were just half a dozen journals I had to scan. For the
next seven years I visited the library once a month and read everything published
in the area. This situation did not last long. By 1992 I realized that the explosion
had begun: for the first time I did not have time to read all published computa-
tional biology papers.
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Since some journals were not available even in Lenin’s library, I sent requests
for papers to foreign scientists, and many of them were kind enough to send their
preprints. In 1989 I received a heavy package from Michael Waterman with a
dozen forthcoming manuscripts. One of them formulated an open problem that I
solved, and I sent my solution to Mike without worrying much about proofs. Mike
later told me that the letter was written in a very “Russian English” and impossi-
ble to understand, but he was surprised that somebody was able to read his own
paper through to the point where the open problem was stated. Shortly afterward
Mike invited me to work with him at the University of Southern California, and in
1992 1 taught my first computational biology course.

This book is based on the Computational Molecular Biology course that |
taught yearly at the Computer Science Department at Pennsylvania State
University (1992—-1995) and then at the Mathematics Department at the University
of Southern California (1996-1999). It is directed toward computer science and
mathematics graduate and upper-level undergraduate students. Parts of the book
will also be of interest to molecular biologists interested in bioinformatics. I also
hope that the book will be useful for computational biology and bioinformatics
professionals.

The rationale of the book is to present algorithmic ideas in computational biol-
ogy and to show how they are connected to molecular biology and to biotechnol-
ogy. To achieve this goal, the book has a substantial “computational biology with-
out formulas” component that presents biological motivation and computational
ideas in a simple way. This simplified presentation of biology and computing aims
to make the book accessible to computer scientists entering this new area and to
biologists who do not have sufficient background for more involved computa-
tional techniques. For example, the chapter entitled Computational Gene Hunting
describes many computational issues associated with the search for the cystic
fibrosis gene and formulates combinatorial problems motivated by these issues.
Every chapter has an introductory section that describes both computational and
biological ideas without any formulas. The book concentrates on computational
ideas rather than details of the algorithms and makes special efforts to present
these ideas in a simple way. Of course, the only way to achieve this goal is to hide
some computational and biological details and to be blamed later for “vulgariza-
tion” of computational biology. Another feature of the book is that the last section
in each chapter briefly describes the important recent developments that are out-
side the body of the chapter.



PevznerFm.gxd 6/14/2000 12:26 PM Page XV $

PREFACE XV

Computational biology courses in Computer Science departments often start
with a 2- to 3-week “Molecular Biology for Dummies” introduction. My observa-
tion is that the interest of computer science students (who usually know nothing
about biology) diffuses quickly if they are confronted with an introduction to biol-
ogy first without any links to computational issues. The same thing happens to biol-
ogists if they are presented with algorithms without links to real biological prob-
lems. I found it very important to introduce biology and algorithms simultaneously
to keep students’ interest in place. The chapter entitled Computational Gene
Hunting serves this goal, although it presents an intentionally simplified view of
both biology and algorithms. I have also found that some computational biologists
do not have a clear vision of the interconnections between different areas of com-
putational biology. For example, researchers working on gene prediction may have
a limited knowledge of, let’s say, sequence comparison algorithms. I attempted to
illustrate the connections between computational ideas from different areas of
computational molecular biology.

The book covers both new and rather old areas of computational biology. For
example, the material in the chapter entitled Computational Proteomics, and most
of material in Genome Rearrangements, Sequence Comparison and DNA Arrays
have never been published in a book before. At the same time the topics such as
those in Restriction Mapping are rather old-fashioned and describe experimental
approaches that are rarely used these days. The reason for including these rather
old computational ideas is twofold. First, it shows newcomers the history of ideas
in the area and warns them that the hot areas in computational biology come and
go very fast. Second, these computational ideas often have second lives in differ-
ent application domains. For example, almost forgotten techniques for restriction
mapping find a new life in the hot area of computational proteomics. There are a
number of other examples of this kind (e.g., some ideas related to Sequencing By
Hybridization are currently being used in large-scale shotgun assembly), and I feel
that it is important to show both old and new computational approaches.

A few words about a trade-off between applied and theoretical components in
this book. There is no doubt that biologists in the 21st century will have to know
the elements of discrete mathematics and algorithms—at least they should be able
to formulate the algorithmic problems motivated by their research. In computa-
tional biology, the adequate formulation of biological problems is probably the
most difficult component of research, at least as difficult as the solution of the
problems. How can we teach students to formulate biological problems in com-
putational terms? Since I don’t know, I offer a story instead.

o
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Twenty years ago, after graduating from a university, I placed an ad for
“Mathematical consulting” in Moscow. My clients were mainly Cand. Sci.
(Russian analog of Ph.D.) trainees in different applied areas who did not have a
good mathematical background and who were hoping to get help with their diplo-
mas (or, at least, their mathematical components). I was exposed to a wild collec-
tion of topics ranging from “optimization of inventory of airport snow cleaning
equipment” to “scheduling of car delivery to dealerships.” In all those projects the
most difficult part was to figure out what the computational problem was and to
formulate it; coming up with the solution was a matter of straightforward applica-
tion of known techniques.

I will never forget one visitor, a 40-year-old, polite, well-built man. In contrast
to others, this one came with a differential equation for me to solve instead of a
description of his research area. At first [ was happy, but then it turned out that the
equation did not make sense. The only way to figure out what to do was to go back
to the original applied problem and to derive a new equation. The visitor hesitated
to do so, but since it was his only way to a Cand. Sci. degree, he started to reveal
some details about his research area. By the end of the day I had figured out that he
was interested in landing some objects on a shaky platform. It also became clear to
me why he never gave me his phone number: he was an officer doing classified
research: the shaking platform was a ship and the landing objects were planes. I
trust that revealing this story 20 years later will not hurt his military career.

Nature is even less open about the formulation of biological problems than
this officer. Moreover, some biological problems, when formulated adequately,
have many bells and whistles that may sometimes overshadow and disguise the
computational ideas. Since this is a book about computational ideas rather than
technical details, I intentionally used simplified formulations that allow presenta-
tion of the ideas in a clear way. It may create an impression that the book is too
theoretical, but I don’t know any other way to teach computational ideas in biol-
ogy. In other words, before landing real planes on real ships, students have to learn
how to land toy planes on toy ships.

I’d like to emphasize that the book does not intend to uniformly cover all areas
of computational biology. Of course, the choice of topics is influenced by my taste
and my research interests. Some large areas of computational biology are not cov-
ered—most notably, DNA statistics, genetic mapping, molecular evolution, pro-
tein structure prediction, and functional genomics. Each of these areas deserves a
separate book, and some of them have been written already. For example,
Waterman 1995 [357] contains excellent coverage of DNA statistics, Gusfield

o
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1997 [145] includes an encyclopedia of string algorithms, and Salzberg et al. 1998
[296] has some chapters with extensive coverage of protein structure prediction.
Durbin et al. 1998 [93] and Baldi and Brunak 1997 [24] are more specialized
books that emphasize Hidden Markov Models and machine learning. Baxevanis
and Ouellette 1998 [28] is an excellent practical guide in bioinformatics directed
more toward applications of algorithms than algorithms themselves.

I’d like to thank several people who taught me different aspects of computa-
tional molecular biology. Andrey Mironov taught me that common sense is per-
haps the most important ingredient of any applied research. Mike Waterman was
a terrific teacher at the time I moved from Moscow to Los Angeles, both in sci-
ence and life. In particular, he patiently taught me that every paper should pass
through at least a dozen iterations before it is ready for publishing. Although this
rule delayed the publication of this book by a few years, I religiously teach it to
my students. My former students Vineet Bafna and Sridhar Hannenhalli were kind
enough to teach me what they know and to join me in difficult long-term projects.
I also would like to thank Alexander Karzanov, who taught me combinatorial opti-
mization, including the ideas that were most useful in my computational biology
research.

I would like to thank my collaborators and co-authors: Mark Borodovsky,
with whom I worked on DNA statistics and who convinced me in 1985 that com-
putational biology had a great future; Earl Hubbell, Rob Lipshutz, Yuri Lysov,
Andrey Mirzabekov, and Steve Skiena, my collaborators in DNA array research;
Eugene Koonin, with whom I tried to analyze complete genomes even before the
first bacterial genome was sequenced; Norm Arnheim, Mikhail Gelfand, Melissa
Moore, Mikhail Roytberg, and Sing-Hoi Sze, my collaborators in gene finding;
Karl Clauser, Vlado Dancik, Maxim Frank-Kamenetsky, Zufar Mulyukov, and
Chris Tang, my collaborators in computational proteomics; and the late Eugene
Lawler, Xiaoqiu Huang, Webb Miller, Anatoly Vershik, and Martin Vingron, my
collaborators in sequence comparison.

I am also thankful to many colleagues with whom I discussed different aspects
of computational molecular biology that directly or indirectly influenced this
book: Ruben Abagyan, Nick Alexandrov, Stephen Altschul, Alberto Apostolico,
Richard Arratia, Ricardo Baeza-Yates, Gary Benson, Piotr Berman, Charles
Cantor, Radomir Crkvenjakov, Kun-Mao Chao, Neal Copeland, Andreas Dress,
Radoje Drmanac, Mike Fellows, Jim Fickett, Alexei Finkelstein, Steve Fodor,
Alan Frieze, Dmitry Frishman, Israel Gelfand, Raffaele Giancarlo, Larry
Goldstein, Andy Grigoriev, Dan Gusfield, David Haussler, Sorin Istrail, Tao Jiang,

o
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Sampath Kannan, Samuel Karlin, Dick Karp, John Kececioglu, Alex Kister,
George Komatsoulis, Andrzey Konopka, Jenny Kotlerman, Leonid Kruglyak, Jens
Lagergren, Gadi Landau, Eric Lander, Gene Myers, Giri Narasimhan, Ravi Ravi,
Mireille Regnier, Gesine Reinert, Isidore Rigoutsos, Mikhail Roytberg, Anatoly
Rubinov, Andrey Rzhetsky, Chris Sander, David Sankoff, Alejandro Schaffer,
David Searls, Ron Shamir, Andrey Shevchenko, Temple Smith, Mike Steel,
Lubert Stryer, Elizabeth Sweedyk, Haixi Tang, Simon Tavar' e, Ed Trifonov,
Tandy Warnow, Haim Wolfson, Jim Vath, Shibu Yooseph, and others.

It has been a pleasure to work with Bob Prior and Michael Rutter of the MIT
Press. I am grateful to Amy Yeager, who copyedited the book, Mikhail Mayofis
who designed the cover, and Oksana Khleborodova, who illustrated the steps of
the gene prediction algorithm. I also wish to thank those who supported my
research: the Department of Energy, the National Institutes of Health, and the
National Science Foundation.

Last but not least, many thanks to Paulina and Arkasha Pevzner, who were
kind enough to keep their voices down and to tolerate my absent-mindedness
while I was writing this book.



Chapter 1

Computational Gene Hunting

1.1 Introduction

Cystic fibrosis is a fatal disease associated with recurrent respiratory infections and
abnormal secretions. The disease is diagnosed in children with a frequency of 1
per 2500. One per 25 Caucasians carries a faulty cystic fibrosis gene, and children
who inherit faulty genes from both parents become sick.

In the mid-1980s biologists knew nothing about the gene causing cystic fibro-
sis, and no reliable prenatal diagnostics existed. The best hope for a cure for many
genetic diseases rests with finding the defective genes. The search for the cystic
fibrosis (CF) gene started in the early 1980s, and in 1985 three groups of scien-
tists simultaneously and independently proved that the CF gene resides on the 7th
chromosome. In 1989 the search was narrowed to a short area of the 7th chromo-
some, and the 1,480-amino-acids-long CF gene was found. This discovery led to
efficient medical diagnostics and a promise for potential therapy for cystic fibrosis.
Gene hunting for cystic fibrosis was a painstaking undertaking in late 1980s. Since
then thousands of medically important genes have been found, and the search for
many others is currently underway. Gene hunting involves many computational
problems, and we review some of them below.

1.2 Genetic Mapping

Like cartographers mapping the ancient world, biologists over the past three deca-
des have been laboriously charting human DNA. The aim is to position genes and
other milestones on the various chromosomes to understand the genome’s geogra-

phy.
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When the search for the CF gene started, scientists had no clue about the na-
ture of the gene or its location in the genome. Gene hunting usually starts with
genetic mapping, which provides an approximate location of the gene on one of
the human chromosomes (usually within an area a few million nucleotides long).
To understand the computational problems associated with genetic mapping we use
an oversimplified model of genetic mapping in uni-chromosomal robots. Every ro-
bot has n genes (in unknown order) and every gene may be either in state O or in
state 1, resulting in two phenotypes (physical traits): red and brown. If we assume
that n = 3 and the robot’s three genes define the color of its hair, eyes, and lips,
then 000 is all-red robot (red hair, red eyes, and red lips), while 111 is all-brown
robot. Although we can observe the robots’ phenotypes (i.e., the color of their hair,
eyes, and lips), we don’t know the order of genes in their genomes. Fortunately,
robots may have children, and this helps us to construct the robots’ genetic maps.

A child of robots m ... my, and fi ... fp iseitherarobot my ... m; fiy1... fn
orarobot fi ... fimt1 ... my for some recombination position i, with 0 < 1 < n.
Every pair of robots may have 2(n + 1) different kinds of children (some of them
may be identical), with the probability of recombination at position 7 equal to

1

(n+1)"

Genetic Mapping Problem Given the phenotypes of a large number of children
of all-red and all-brown robots, find the gene order in the robots.

Analysis of the frequencies of different pairs of phenotypes allows one to de-
rive the gene order. Compute the probability p that a child of an all-red and an
all-brown robot has hair and eyes of different colors. If the hair gene and the eye
gene are consecutive in the genome, then the probability of recombination between
these genes is nL-H If the hair gene and the eye gene are not consecutive, then the
probability that a child has hair and eyes of different colors is p = 7#1’ where ¢ is
the distance between these genes in the genome. Measuring p in the population of
children helps one to estimate the distances between genes, to find gene order, and
to reconstruct the genetic map.

In the world of robots a child’s chromosome consists of two fragments: one
fragment from mother-robot and another one from father-robot. In a more accu-
rate (but still unrealistic) model of recombination, a child’s genome is defined as a
mosaic of an arbitrary number of fragments of a mother’s and a father’s genomes,
such as my...m;fix1... fjmjp1...myfryr.... In this case, the probability of
recombination between two genes is proportional to the distance between these
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genes and, just as before, the farther apart the genes are, the more often a recom-
bination between them occurs. If two genes are very close together, recombination
between them will be rare. Therefore, neighboring genes in children of all-red
and all-brown robots imply the same phenotype (both red or both brown) more
frequently, and thus biologists can infer the order by considering the frequency of
phenotypes in pairs. Using such arguments, Sturtevant constructed the first genetic
map for six genes in fruit flies in 1913.

Although human genetics is more complicated than robot genetics, the silly ro-
bot model captures many computational ideas behind genetic mapping algorithms.
One of the complications is that human genes come in pairs (not to mention that
they are distributed over 23 chromosomes). In every pair one gene is inherited
from the mother and the other from the father. Therefore, the human genome
may contain a gene in state 1 (red eye) on one chromosome and a gene in state 0
(brown eye) on the other chromosome from the same pair. If F ... F,|Fy ... F,
represents a father genome (every gene is present in two copies F; and F;) and
M ... M,|M; ... M, represents a mother genome, then a child genome is rep-
resented by fi... fn|m1...my,, with f; equal to either F; or F; and m; equal
to either M; or M;. For example, the father 11|00 and mother 00|00 may have
four different kinds of children: 11|00 (no recombination), 10|00 (recombination),
01]00 (recombination), and 00|00 (no recombination). The basic ideas behind hu-
man and robot genetic mapping are similar: since recombination between close
genes is rare, the proportion of recombinants among children gives an indication
of the distance between genes along the chromosome.

Another complication is that differences in genotypes do not always lead to
differences in phenotypes. For example, humans have a gene called ABO blood
type which has three states—A, B, and O—in the human population. There exist
six possible genotypes for this gene—AA, AB, AO, BB, BO, and OO—but only
four phenotypes. In this case the phenotype does not allow one to deduce the
genotype unambiguously. From this perspective, eye colors or blood types may
not be the best milestones to use to build genetic maps. Biologists proposed using
genetic markers as a convenient substitute for genes in genetic mapping. To map a
new gene it is necessary to have a large number of already mapped markers, ideally
evenly spaced along the chromosomes.

Our ability to map the genes in robots is based on the variability of pheno-
types in different robots. For example, if all robots had brown eyes, the eye gene
would be impossible to map. There are a lot of variations in the human genome
that are not directly expressed in phenotypes. For example, if half of all humans
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had nucleotide A at a certain position in the genome, while the other half had nuc-
leotide " at the same position, it would be a good marker for genetic mapping.
Such mutation can occur outside of any gene and may not affect the phenotype at
all. Botstein et al., 1980 [44] suggested using such variable positions as genetic
markers for mapping. Since sampling letters at a given position of the genome is
experimentally infeasible, they suggested a technique called restriction fragment
length polymorphism (RFLP) to study variability.

Hamilton Smith discovered in 1970 that the restriction enzyme Hindll cleaves
DNA molecules at every occurrence of a sequence GTGCAC or GTTAAC (re-
striction sites). In RFLP analysis, human DNA is cut by a restriction enzyme like
HindlIl at every occurrence of the restriction site into about a million restriction
fragments, each a few thousand nucleotides long. However, any mutation that af-
fects one of the restriction sites (GTGCAC or GTTAAC for HindII) disables one of
the cuts and merges two restriction fragments A and B separated by this site into a
single fragment A + B. The crux of RFLP analysis is the detection of the change
in the length of the restriction fragments.

Gel-electrophoresis separates restriction fragments, and a labeled DNA probe
is used to determine the size of the restriction fragment hybridized with this probe.
The variability in length of these restriction fragments in different individuals serves
as a genetic marker because a mutation of a single nucleotide may destroy (or
create) the site for a restriction enzyme and alter the length of the corresponding
fragment. For example, if a labeled DNA probe hybridizes to a fragment A and
a restriction site separating fragments A and B is destroyed by a mutation, then
the probe detects A + B instead of A. Kan and Dozy, 1978 [183] found a new
diagnostic for sickle-cell anemia by identifying an RFLP marker located close to
the sickle-cell anemia gene.

RFLP analysis transformed genetic mapping into a highly competitive race
and the successes were followed in short order by finding genes responsible for
Huntington’s disease (Gusella et al., 1983 [143]), Duchenne muscular dystrophy
(Davies et al., 1983 [81]), and retinoblastoma (Cavenee et al., 1985 [60]). In a
landmark publication, Donis-Keller et al., 1987 [88] constructed the first RFLP
map of the human genome, positioning one RFLP marker per approximately 10
million nucleotides. In this study, 393 random probes were used to study RFLP in
21 families over 3 generations. Finally, a computational analysis of recombination
led to ordering RFLP markers on the chromosomes.

In 1985 the recombination studies narrowed the search for the cystic fibrosis
gene to an area of chromosome 7 between markers met (a gene involved in cancer)
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and D7S8 (RFLP marker). The length of the area was approximately 1 million
nucleotides, and some time would elapse before the cystic fibrosis gene was found.
Physical mapping follows genetic mapping to further narrow the search.

1.3 Physical Mapping

Physical mapping can be understood in terms of the following analogy. Imagine
several copies of a book cut by scissors into thousands of pieces. Each copy is cut
in an individual way such that a piece from one copy may overlap a piece from
another copy. For each piece and each word from a list of key words, we are told
whether the piece contains the key word. Given this data, we wish to determine the
pattern of overlaps of the pieces.

The process starts with breaking the DNA molecule into small pieces (e.g.,
with restriction enzymes); in the CF project DNA was broken into pieces roughly
50 Kb long. To study individual pieces, biologists need to obtain each of them
in many copies. This is achieved by cloning the pieces. Cloning incorporates a
fragment of DNA into some self-replicating host. The self-replication process then
creates large numbers of copies of the fragment, thus enabling its structure to be
investigated. A fragment reproduced in this way is called a clone.

As a result, biologists obtain a clone library consisting of thousands of clones
(each representing a short DNA fragment) from the same DNA molecule. Clones
from the library may overlap (this can be achieved by cutting the DNA with dis-
tinct enzymes producing overlapping restriction fragments). After a clone library
is constructed, biologists want to order the clones, i.e., to reconstruct the relative
placement of the clones along the DNA molecule. This information is lost in the
construction of the clone library, and the reconstruction starts with fingerprinting
the clones. The idea is to describe each clone using an easily determined finger-
print, which can be thought of as a set of “key words” for the clone. If two clones
have substantial overlap, their fingerprints should be similar. If non-overlapping
clones are unlikely to have similar fingerprints then fingerprints would allow a
biologist to distinguish between overlapping and non-overlapping clones and to
reconstruct the order of the clones (physical map). The sizes of the restriction
fragments of the clones or the lists of probes hybridizing to a clone provide such
fingerprints.

To map the cystic fibrosis gene, biologists used physical mapping techniques
called chromosome walking and chromosome jumping. Recall that the CF gene
was linked to RFLP D7S8. The probe corresponding to this RFLP can be used
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to find a clone containing this RFLP. This clone can be sequenced, and one of its
ends can be used to design a new probe located even closer to the CF gene. These
probes can be used to find new clones and to walk from D7S8 to the CF gene. After
multiple iterations, hundreds of kilobases of DNA can be sequenced from a region
surrounding the marker gene. If the marker is closely linked to the gene of interest,
eventually that gene, too, will be sequenced. In the CF project, a total distance of
249 Kb was cloned in 58 DNA fragments.

Gene walking projects are rather complex and tedious. One obstacle is that not
all regions of DNA will be present in the clone library, since some genomic regions
tend to be unstable when cloned in bacteria. Collins et al., 1987 [73] developed
chromosome jumping, which was successfully used to map the area containing the
CF gene.

Although conceptually attractive, chromosome walking and jumping are too
laborious for mapping entire genomes and are tailored to mapping individual genes.
A pre-constructed map covering the entire genome would save significant effort for
mapping any new genes.

Different fingerprints lead to different mapping problems. In the case of finger-
prints based on hybridization with short probes, a probe may hybridize with many
clones. For the map assembly problem with n clones and m probes, the hybridiza-
tion data consists of an n X m matrix (d;;), where d;; = 1 if clone C; contains
probe pj, and d;; = 0 otherwise (Figure 1.1). Note that the data does not indicate
how many times a probe occurs on a given clone, nor does it give the order of
occurrence of the probes in a clone.

The simplest approximation of physical mapping is the Shortest Covering
String Problem. Let S be a string over the alphabet of probes p1, ..., pm. A string
S covers a clone C' if there exists a substring of S' containing exactly the same set
of probes as C' (order and multiplicities of probes in the substring are ignored). A
string in Figure 1.1 covers each of nine clones corresponding to the hybridization
data.

Shortest Covering String Problem Given hybridization data, find a shortest
string in the alphabet of probes that covers all clones.

Before using probes for DNA mapping, biologists constructed restriction maps
of clones and used them as fingerprints for clone ordering. The restriction map of
a clone is an ordered list of restriction fragments. If two clones have restriction
maps that share several consecutive fragments, they are likely to overlap. With
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Figure 1.1: Hybridization data and Shortest Covering String.

this strategy, Kohara et al., 1987 [204] assembled a restriction map of the E. coli
genome with 5 million base pairs.

To build a restriction map of a clone, biologists use different biochemical tech-
niques to derive indirect information about the map and combinatorial methods to
reconstruct the map from these data. The problem often might be formulated as
recovering positions of points when only some pairwise distances between points
are known.

Many mapping techniques lead to the following combinatorial problem. If X
is a set of points on a line, then AX denotes the multiset of all pairwise distances
between points in X: AX = {|z; —z2|: z1,22 € X}. In restriction mapping a
subset £ C AX, corresponding to the experimental data about fragment lengths,
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is given, and the problem is to reconstruct X from the knowledge of E alone. In
the Partial Digest Problem (PDP), the experiment provides data about all pairwise
distances between restriction sites and £ = AX.

Partial Digest Problem Given AX, reconstruct X.

The problem is also known as the furnpike problem in computer science. Sup-
pose you know the set of all distances between every pair of exits on a highway.
Could you reconstruct the “geography” of that highway from these data, i.e., find
the distances from the start of the highway to every exit? If you consider instead of
highway exits the sites of DNA cleavage by a restriction enzyme, and if you man-
age to digest DNA in such a way that the fragments formed by every two cuts are
present in the digestion, then the sizes of the resulting DNA fragments correspond
to distances between highway exits.

For this seemingly trivial puzzle no polynomial algorithm is yet known.

1.4 Sequencing

Imagine several copies of a book cut by scissors into 10 million small pieces. Each
copy is cut in an individual way so that a piece from one copy may overlap a piece
from another copy. Assuming that 1 million pieces are lost and the remaining 9
million are splashed with ink, try to recover the original text. After doing this
you’ll get a feeling of what a DNA sequencing problem is like. Classical sequenc-
ing technology allows a biologist to read short (300- to 500-letter) fragments per
experiment (each of these fragments corresponds to one of the 10 million pieces).
Computational biologists have to assemble the entire genome from these short frag-
ments, a task not unlike assembling the book from millions of slips of paper. The
problem is complicated by unavoidable experimental errors (ink splashes).

The simplest, naive approximation of DNA sequencing corresponds to the fol-
lowing problem:

Shortest Superstring Problem Given a set of strings s1, ..., Sy, find the shortest
string s such that each s; appears as a substring of s.

Figure 1.2 presents two superstrings for the set of all eight three-letter strings in
a 0-1 alphabet. The first (trivial) superstring is obtained by concatenation of these
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eight strings, while the second one is a shortest superstring. This superstring is re-
lated to the solution of the “Clever Thief and Coding Lock” problem (the minimum
number of tests a thief has to conduct to try all possible k-letter passwords).

SHORTEST SUPERSTRING PROBLEM

set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

concatenation
. 000 001 010 011 100 101 110 111
superstring
010
110
011
shortest 000

. 0001110100
superstring | 001 |

111

101
100

Figure 1.2: Superstrings for the set of eight three-letter strings in a 0-1 alphabet.

Since the Shortest Superstring Problem is known to be NP-hard, a number
of heuristics have been proposed. The early DNA sequencing algorithms used a
simple greedy strategy: repeatedly merge a pair of strings with maximum overlap
until only one string remains.

Although conventional DNA sequencing is a fast and efficient procedure now,
it was rather time consuming and hard to automate 10 years ago. In 1988 four
groups of biologists independently and simultaneously suggested a new approach
called Sequencing by Hybridization (SBH). They proposed building a miniature
DNA Chip (Array) containing thousands of short DNA fragments working like the
chip’s memory. Each of these short fragments reveals some information about
an unknown DNA fragment, and all these pieces of information combined to-
gether were supposed to solve the DNA sequencing puzzle. In 1988 almost no-
body believed that the idea would work; both biochemical problems (synthesizing
thousands of short DNA fragments on the surface of the array) and combinatorial
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problems (sequence reconstruction by array output) looked too complicated. Now,
building DNA arrays with thousands of probes has become an industry.

Given a DNA fragment with an unknown sequence of nucleotides, a DNA ar-
ray provides [-tuple composition, i.e., information about all substrings of length [
contained in this fragment (the positions of these substrings are unknown).

Sequencing by Hybridization Problem Reconstruct a string by its [-tuple com-
position.

Although DNA arrays were originally invented for DNA sequencing, very few
fragments have been sequenced with this technology (Drmanac et al., 1993 [90]).
The problem is that the infidelity of hybridization process leads to errors in de-
riving [-tuple composition. As often happens in biology, DNA arrays first proved
successful not for a problem for which they were originally invented, but for dif-
ferent applications in functional genomics and mutation detection.

Although conventional DNA sequencing and SBH are very different ap-
proaches, the corresponding computational problems are similar. In fact, SBH
is a particular case of the Shortest Superstring Problem when all strings si, ..., S,
represent the set of all substrings of s of fixed size. However, in contrast to the
Shortest Superstring Problem, there exists a simple linear-time algorithm for the
SBH Problem.

1.5 Similarity Search

After sequencing, biologists usually have no idea about the function of found
genes. Hoping to find a clue to genes’ functions, they try to find similarities be-
tween newly sequenced genes and previously sequenced genes with known func-
tions. A striking example of a biological discovery made through a similarity
search happened in 1984 when scientists used a simple computational technique to
compare the newly discovered cancer-causing v-sys oncogene to all known genes.
To their astonishment, the cancer-causing gene matched a normal gene involved in
growth and development. Suddenly, it became clear that cancer might be caused
by a normal growth gene being switched on at the wrong time (Doolittle et al.,
1983 [89], Waterfield et al., 1983 [353]).

In 1879 Lewis Carroll proposed to the readers of Vanity Fair the following
puzzle: transform one English word into another one by going through a series
of intermediate English words where each word differs from the next by only one
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letter. To transform head into tasl one needs just four such intermediates: head —
heal — teal — tell — tall — tail. Levenshtein, 1966 [219] introduced a notion
of edit distance between strings as the minimum number of elementary operations
needed to transform one string into another where the elementary operations are
insertion of a symbol, deletion of a symbol, and substitution of a symbol by another
one. Most sequence comparison algorithms are related to computing edit distance
with this or a slightly different set of elementary operations.

Since mutation in DNA represents a natural evolutionary process, edit distance
is a natural measure of similarity between DNA fragments. Similarity between
DNA sequences can be a clue to common evolutionary origin (like similarity be-
tween globin genes in humans and chimpanzees) or a clue to common function
(like similarity between the v-sys oncogene and a growth-stimulating hormone).

If the edit operations are limited to insertions and deletions (no substitutions),
then the edit distance problem is equivalent to the longest common subsequence
(LCS) problem. Given two strings V = vy ...v, and W = w; ... wy,, a common
subsequence of V and W of length £ is a sequence of indices 1 <11 < ... <4 <
nand 1 < j; <... < jx < m such that

vit:wjtforlgtgk

Let LC'S(V, W) be the length of a longest common subsequence (LCS) of V' and
W. For example, LC'S (ATCTGAT, TGCATA)=4 (the letters forming the LCS
are in bold). Clearly n +m — 2LCS(V, W) is the minimum number of insertions
and deletions needed to transform V into W.

Longest Common Subsequence Problem Given two strings, find their longest
common subsequence.

When the area around the cystic fibrosis gene was sequenced, biologists com-
pared it with the database of all known genes and found some similarities between
a fragment approximately 6500 nucleotides long and so-called ATP binding pro-
teins that had already been discovered. These proteins were known to span the cell
membrane multiple times and to work as channels for the transport of ions across
the membrane. This seemed a plausible function for a CF gene, given the fact that
the disease involves abnormal secretions. The similarity also pointed to two con-
served ATP binding sites (ATP proteins provide energy for many reactions in the
cell) and shed light on the mechanism that is damaged in faulty CF genes. As a re-
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sult the cystic fibrosis gene was called cystic fibrosis transmembrane conductance
regulator.

1.6 Gene Prediction

Knowing the approximate gene location does not lead yet to the gene itself. For
example, Huntington’s disease gene was mapped in 1983 but remained elusive until
1993. In contrast, the CF gene was mapped in 1985 and found in 1989.

In simple life forms, such as bacteria, genes are written in DNA as continuous
strings. In humans (and other mammals), the situation is much less straightfor-
ward. A human gene, consisting of roughly 2,000 letters, is typically broken into
subfragments called exons. These exons may be shuffled, seemingly at random,
into a section of chromosomal DNA as long as a million letters. A typical human
gene can have 10 exons or more. The BRCA! gene, linked to breast cancer, has 27
exons.

This situation is comparable to a magazine article that begins on page 1, con-
tinues on page 13, then takes up again on pages 43, 51, 53, 74, 80, and 91, with
pages of advertising and other articles appearing in between. We don’t understand
why these jumps occur or what purpose they serve. Ninety-seven percent of the
human genome is advertising or so-called “junk” DNA.

The jumps are inconsistent from species to species. An “article” in an insect
edition of the genetic magazine will be printed differently from the same article
appearing in a worm edition. The pagination will be completely different: the in-
formation that appears on a single page in the human edition may be broken up into
two in the wheat version, or vice versa. The genes themselves, while related, are
quite different. The mouse-edition gene is written in mouse language, the human-
edition gene in human language. It’s a little like German and English: many words
are similar, but many others are not.

Prediction of a new gene in a newly sequenced DNA sequence is a difficult
problem. Many methods for deciding what is advertising and what is story depend
on statistics. To continue the magazine analogy, it is something like going through
back issues of the magazine and finding that human-gene “stories” are less likely
to contain phrases like “for sale,” telephone numbers, and dollar signs. In contrast,
a combinatorial approach to gene prediction uses previously sequenced genes as a
template for recognition of newly sequenced genes. Instead of employing statis-
tical properties of exons, this method attempts to solve the combinatorial puzzle:
find a set of blocks (candidate exons) in a genomic sequence whose concatenation
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(splicing) fits one of the known proteins. Figure 1.3 illustrates this puzzle for a
“genomic” sequence

"twas brilliant thrilling morning and the slimy hellish lithe doves

gyrated and gambled nimbly in the waves

whose different blocks “make up” Lewis Carroll’s famous “target protein”:

"t was brillig, and the slithy toves did gyre and gimble in the wabe

'T WAS BRILLIG, AND THE SLITHY TOVES DID GYRE  AND GIMBLE IN THE WABE

T WAS BRILLIG, AND THE SL{{THE DOVES GYRATED AND GAMBLED|[N THE WAVE

T WAS BRILLIG, AND THE SL{{THE DOVES GYRATED NIMBLY IN THE WAVE

T HRILLING (AND| {HEL LISH| |DOVES GYRATED AND GAMBLED|IN THE WAVE

T HR [LLING [AND| |HEL LISH| [DOVES GYRATED NIMBLY IN THE WAVE

— —1
IF WAS IBRILLI KNT THRILLIP# MORNIN | G, HE S 1T MY [ HELLISH ||LIfT HE (@0\"}58 GYRATED [AND GAMBLED |NIMBLY |INTHE WAVES

Figure 1.3: Spliced Alignment Problem: block assemblies with the best fit to the Lewis Carroll’s

“target protein.”
This combinatorial puzzle leads to the following

Spliced Alignment Problem Let GG be a string called genomic sequence, T be a
string called target sequence, and B be a set of substrings of G. Given G, T, and
B, find a set of non-overlapping strings from 3 whose concatenation fits the target
sequence the best (i.e., the edit distance between the concatenation of these strings
and the target is minimum among all sets of blocks from B).
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1.7 Mutation Analysis

One of the challenges in gene hunting is knowing when the gene of interest has
been sequenced, given that nothing is known about the structure of that gene. In
the cystic fibrosis case, gene predictions and sequence similarity provided some
clues for the gene but did not rule out other candidate genes. In particular, three
other fragments were suspects. If a suspected gene were really a disease gene, the
affected individuals would have mutations in this gene. Every such gene will be
subject to re-sequencing in many individuals to check this hypothesis. One mu-
tation (deletion of three nucleotides, causing a deletion of one amino acid) in the
CF gene was found to be common in affected individuals. This was a lead, and
PCR primers were set up to screen a large number of individuals for this muta-
tion. This mutation was found in 70% of cystic fibrosis patients, thus convincingly
proving that it causes cystic fibrosis. Hundreds of diverse mutations comprise the
additional 30% of faulty cystic fibrosis genes, making medical diagnostics of cys-
tic fibrosis difficult. Dedicated DNA arrays for cystic fibrosis may be very efficient
for screening populations for mutation.

Similarity search, gene recognition, and mutation analysis raise a number of
statistical problems. If two sequences are 45% similar, is it likely that they are
genuinely related, or is it just a matter of chance? Genes are frequently found
in the DNA fragments with a high frequency of CG dinucleotides (CG-islands).
The cystic fibrosis gene, in particular, is located inside a CG-island. What level
of CG-content is an indication of a CG-island and what is just a matter of chance?
Examples of corresponding statistical problems are given below:

Expected Length of LCS Problem Find the expected length of the LCS for two
random strings of length n.

String Statistics Problem Find the expectation and variance of the number of
occurrences of a given string in a random text.

1.8 Comparative Genomics

As we have seen with cystic fibrosis, hunting for human genes may be a slow and
laborious undertaking. Frequently, genetic studies of similar genetic disorders in
animals can speed up the process.
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Waardenburg’s syndrome is an inherited genetic disorder resulting in hearing
loss and pigmentary dysplasia. Genetic mapping narrowed the search for the Waar-
denburg’s syndrome gene to human chromosome 2, but its exact location remained
unknown. There was another clue that directed attention to chromosome 2. For
a long time, breeders scrutinized mice for mutants, and one of these, designated
splotch, had patches of white spots, a disease considered to be similar to Waarden-
burg’s syndrome. Through breeding (which is easier in mice than in humans) the
splotch gene was mapped to mouse chromosome 2. As gene mapping proceeded it
became clear that there are groups of genes that are closely linked to one another
in both species. The shuffling of the genome during evolution is not complete;
blocks of genetic material remain intact even as multiple chromosomal rearrange-
ments occur. For example, chromosome 2 in humans is built from fragments that
are similar to fragments from mouse DNA residing on chromosomes 1, 2, 6, 8, 11,
12, and 17 (Figure 1.4). Therefore, mapping a gene in mice often gives a clue to
the location of a related human gene.

Despite some differences in appearance and habits, men and mice are geneti-
cally very similar. In a pioneering paper, Nadeau and Taylor, 1984 [248] estimated
that surprisingly few genomic rearrangements (178 £ 39) have happened since the
divergence of human and mouse 80 million years ago. Mouse and human genomes
can be viewed as a collection of about 200 fragments which are shuffled (rear-
ranged) in mice as compared to humans. If a mouse gene is mapped in one of
those fragments, then the corresponding human gene will be located in a chromo-
somal fragment that is linked to this mouse gene. A comparative mouse-human
genetic map gives the position of a human gene given the location of a related
mouse gene.

Genome rearrangements are a rather common chromosomal abnormality which
are associated with such genetic diseases as Down syndrome. Frequently, genome
rearrangements are asymptomatic: it is estimated that 0.2% of individuals carry an
asymptomatic chromosomal rearrangement.

The analysis of genome rearrangements in molecular biology was pioneered
by Dobzhansky and Sturtevant, 1938 [87], who published a milestone paper pre-
senting a rearrangement scenario with 17 inversions for the species of Drosophila
fruit fly. In the simplest form, rearrangements can be modeled by using a combina-
torial problem of finding a shortest series of reversals to transform one genome
into another. The order of genes in an organism is represented by a permuta-
tion m = mmy...m,. A reversal p(i,j) has the effect of reversing the order
of genes m;m;q...m; and transforms 7 = 7y ... T ... TTj41 ... T, INtO



16 CHAPTER 1. COMPUTATIONAL GENE HUNTING
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Figure 1.4: Man-mouse comparative physical map.

- p(i,J) = T ... M_1Tj... TTj41 ... T, Figure 1.5 presents a rearrangement
scenario describing a transformation of a human X chromosome into a mouse X
chromosome.

Reversal Distance Problem Given permutations 7 and o, find a series of reversals
P1,02,---,p¢such that - py - po--- pp = o and t is minimum.
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Mouse Human
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Figure 1.5: “Transformation” of a human X chromosome into a mouse X chromosome.

1.9 Proteomics

In many developing organisms, cells die at particular times as part of a normal
process called programmed cell death. Death may occur as a result of a failure to
acquire survival factors and may be initiated by the expression of certain genes.
For example, in a developing nematode, the death of individual cells in the nervous
system may be prevented by mutations in several genes whose function is under
active investigation. However, the previously described DNA-based approaches
are not well suited for finding genes involved in programmed cell death.

The cell death machinery is a complex system that is composed of many genes.
While many proteins corresponding to these candidate genes have been identified,
their roles and the ways they interact in programmed cell death are poorly under-
stood. The difficulty is that the DNA of these candidate genes is hard to isolate,
at least much harder than the corresponding proteins. However, there are no reli-
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able methods for protein sequencing yet, and the sequence of these candidate genes
remained unknown until recently.

Recently a new approach to protein sequencing via mass-spectrometry emerged
that allowed sequencing of many proteins involved in programmed cell death. In
1996 protein sequencing led to the identification of the FLICE protein, which is
involved in death-inducing signaling complex (Muzio et al., 1996 [244]). In this
case gene hunting started from a protein (rather than DNA) sequencing, and sub-
sequently led to cloning of the FLICE gene. The exceptional sensitivity of mass-
spectrometry opened up new experimental and computational vistas for protein
sequencing and made this technique a method of choice in many areas.

Protein sequencing has long fascinated mass-spectrometrists (Johnson and Bie-
mann, 1989 [182]). However, only now, with the development of mass spectrom-
etry automation systems and de novo algorithms, may high-throughout protein se-
quencing become a reality and even open a door to “proteome sequencing”. Cur-
rently, most proteins are identified by database search (Eng et al., 1994 [97], Mann
and Wilm, 1994 [230]) that relies on the ability to “look the answer up in the back
of the book”. Although database search is very useful in extensively sequenced
genomes, a biologist who attempts to find a new gene needs de novo rather than
database search algorithms.

In a few seconds, a mass spectrometer is capable of breaking a peptide into
pieces (ions) and measuring their masses. The resulting set of masses forms the
spectrum of a peptide. The Peptide Sequencing Problem 1is to reconstruct the
peptide given its spectrum. For an “ideal” fragmentation process and an “ideal”
mass-spectrometer, the peptide sequencing problem is simple. In practice, de novo
peptide sequencing remains an open problem since spectra are difficult to interpret.

In the simplest form, protein sequencing by mass-spectrometry corresponds to
the following problem. Let A be the set of amino acids with molecular masses
m(a), a € A. A (parent) peptide P = p1,...,py, is a sequence of amino acids,
and the mass of peptide P is m(P) = > m(p;). A partial peptide P' C P is
a substring p; ...p; of P of mass 3=, ,<; m(pt). Theoretical spectrum E(P) of
peptide P is a set of masses of its partial peptides. An (experimental) spectrum
S = {s1,...,5m} is a set of masses of (fragment) ions. A match between spec-
trum S and peptide P is the number of masses that experimental and theoretical
spectra have in common.

Peptide Sequencing Problem Given spectrum S and a parent mass m, find a
peptide of mass m with the maximal match to spectrum S.
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Restriction Mapping

2.1 Introduction

Hamilton Smith discovered in 1970 that the restriction enzyme Hindll cleaves DNA
molecules at every occurrence of a sequence GTGCAC or GTTAAC (Smith and
Wilcox, 1970 [319]). Soon afterward Danna et al., 1973 [80] constructed the
first restriction map for Simian Virus 40 DNA. Since that time, restriction maps
(sometimes also called physical maps) representing DNA molecules with points of
cleavage (sites) by restriction enzymes have become fundamental data structures
in molecular biology.

To build a restriction map, biologists use different biochemical techniques to
derive indirect information about the map and combinatorial methods to recon-
struct the map from these data. Several experimental approaches to restriction
mapping exist, each with its own advantages and disadvantages. They lead to dif-
ferent combinatorial problems that frequently may be formulated as recovering
positions of points when only some pairwise distances between points are known.

Most restriction mapping problems correspond to the following problem. If X
is a set of points on a line, let AX denote the multiset of all pairwise distances
between points in X: AX = {|z1 — z2| : z1,2z2 € X}. In restriction mapping
some subset £ C AX corresponding to the experimental data about fragment
lengths is given, and the problem is to reconstruct X from E.

For the Partial Digest Problem (PDP), the experiment provides data about all
pairwise distances between restriction sites (£ = AX). In this method DNA is
digested in such a way that fragments are formed by every two cuts. No poly-
nomial algorithm for PDP is yet known. The difficulty is that it may not be
possible to uniquely reconstruct X from AX: two multisets X and Y are ho-

19
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mometric if AX = AY. For example, X, —X (reflection of X) and X + a
for every number « (translation of X) are homometric. There are less trivial ex-
amples of this non-uniqueness; for example, the sets {0,1,3,8,9,11,13,15} and
{0,1,3,4,5,7,12,13,15} are homometric and are not transformed into each other
by reflections and translations (strongly homometric sets). Rosenblatt and Sey-
mour, 1982 [289] studied strongly homometric sets and gave an elegant pseudo-
polynomial algorithm for PDP based on factorization of polynomials. Later Skiena
et al., 1990 [314] proposed a simple backtracking algorithm which performs very
well in practice but in some cases may require exponential time.

The backtracking algorithm easily solves the PDP problem for all inputs of
practical size. However, PDP has never been the favorite mapping method in bio-
logical laboratories because it is difficult to digest DNA in such a way that the cuts
between every two sites are formed.

Double Digest is a much simpler experimental mapping technique than Partial
Digest. In this approach, a biologist maps the positions of the sites of two restric-
tion enzymes by complete digestion of DNA in such a way that only fragments
between consecutive sites are formed. One way to construct such a map is to mea-
sure the fragment lengths (not the order) from a complete digestion of the DNA
by each of the two enzymes singly, and then by the two enzymes applied together.
The problem of determining the positions of the cuts from fragment length data is
known as the Double Digest Problem or DDP.

For an arbitrary set X of n elements, let X be the set of n — 1 distances
between consecutive elements of X. In the Double Digest Problem, a multiset
X C [0,¢] is partitioned into two subsets X = A{JB with0 € A,Band t €
A, B, and the experiment provides three sets of length: A, dB, and 0.X (A and B
correspond to the single digests while X corresponds to the double digest). The
Double Digest Problem is to reconstruct A and B from these data.

The first attempts to solve the Double Digest Problem (Stefik, 1978 [329]) were
far from successful. The reason for this is that the number of potential maps and
computational complexity of DDP grow very rapidly with the number of sites. The
problem is complicated by experimental errors, and all DDP algorithms encounter
computational difficulties even for small maps with fewer than 10 sites for each
restriction enzyme.

Goldstein and Waterman, 1987 [130] proved that DDP is NP-complete and
showed that the number of solutions to DDP increases exponentially as the num-
ber of sites increases. Of course NP-completeness and exponential growth of the
number of solutions are the bottlenecks for DDP algorithms. Nevertheless, Schmitt
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and Waterman, 1991 [309] noticed that even though the number of solutions grows
very quickly as the number of sites grows, most of the solutions are very similar
(could be transformed into each other by simple transformations). Since mapping
algorithms generate a lot of “very similar maps,” it would seem reasonable to par-
tition the entire set of physical maps into equivalence classes and to generate only
one basic map in every equivalence class. Subsequently, all solutions could be gen-
erated from the basic maps using simple transformations. If the number of equiv-
alence classes were significantly smaller than the number of physical maps, then
this approach would allow reduction of computational time for the DDP algorithm.

Schmitt and Waterman, 1991 [309] took the first step in this direction and intro-
duced an equivalence relation on physical maps. All maps of the same equivalence
class are transformed into one another by means of cassette transformations. Nev-
ertheless, the problem of the constructive generation of all equivalence classes for
DDP remained open and an algorithm for a transformation of equivalent maps was
also unknown. Pevzner, 1995 [267] proved a characterization theorem for equiva-
lent transformations of physical maps and described how to generate all solutions
of a DDP problem. This result is based on the relationships between DDP solutions
and alternating Eulerian cycles in edge-colored graphs.

As we have seen, the combinatorial algorithms for PDP are very fast in practice,
but the experimental PDP data are hard to obtain. In contrast, the experiments for
DDP are very simple but the combinatorial algorithms are too slow. This is the
reason why restriction mapping is not a very popular experimental technique today.

2.2 Double Digest Problem

Figure 2.1 shows “DNA” cut by restriction enzymes A and B. When Danna et al.,
1973 [80] constructed the first physical map there was no experimental technique
to directly find the positions of cuts. However, they were able to measure the sizes
(but not the order!) of the restriction fragments using the experimental technique
known as gel-electrophoresis. Through gel-electrophoresis experiments with two
restriction enzymes A and B (Figure 2.1), a biologist obtains information about
the sizes of restriction fragments 2, 3, 4 for A and 1, 3, 5 for B, but there are many
orderings (maps) corresponding to these sizes (Figure 2.2 shows two of them). To
find out which of the maps shown in Figure 2.2 is the correct one, biologists use
Double Digest A + B—<cleavage of DNA by both enzymes, A and B. Two maps
presented in Figure 2.2 produce the same single digests A and B but different
double digests A + B (1, 1, 2,2,3 and 1, 1, 1, 2, 4). The double digest that fits
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Physical map

( restriction enzymes A and B )

4 ]
enzyme A
3| 4 |2

DNAT v Ay

Figure 2.1: Physical map of two restriction enzymes. Gel-electrophoresis provides information
about the sizes (but not the order) of restriction fragments.

experimental data corresponds to the correct map. The Double Digest Problem

is to find a physical map, given three “stacks” of fragments: A, B, and A + B
(Figure 2.3).

Which map is correct?

4
enzyme A
1 3 4 2 4 3 2
2 Map 1 | | |
2 1 5 3 5 3
3 enzyme B

Figure 2.2: Data on A and B do not allow a biologist to find a true map. A + B data help to find
the correct map.
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2.3 Multiple Solutions of the Double Digest Problem

Figure 2.3 presents two solutions of the Double Digest Problem. Although they
look very different, they can be transformed one into another by a simple opera-
tion called cassette exchange (Figure 2.4). Another example of multiple solutions
is given in Figure 2.5. Although these solutions cannot be transformed into one
another by cassette exchanges, they can be transformed one into another through
a different operation called cassette reflection (Figure 2.6). A surprising result is
that these two simple operations, in some sense, are sufficient to enable a transfor-
mation between any two “similar” solutions of the Double Digest Problem.

A+BH

1]

A

1

B P

p

2 P

3 P

Ca ] 3 p

T 3 3

5 [ 7 | 4
—s 1 | 8 | ——

Double Digest Problem:
given A, B, and A+B, find a physical map

1 4 3 5 2 4 5 3

1 2 [1{1]| 2 |11 4 2 2 2 |1 4 3
3 1 3 2 8 3 -

1 4 5 2 4 3 5 3

1| 2 2 |1 4 2 2 |11 2 [1]1 4 3
3 3 8 1 3 2 7

Multiple DDP solutions

Figure 2.3: The Double Digest Problem may have multiple solutions.

A physical map is represented by the ordered sequence of fragments of single
digests Ay,..., A, and Bi,...,B,, and double digest C1,...,C; (Figure 2.4).
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Cassette exchange
e m————
1 4 3 5 2 4 5 3
3 11| 3 2 8 3 7

P--- - a» a» o
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3 3 8 1] 3 |2 7
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Figure 2.4: Cassette exchange. The upper map is defined by the ordered sequences of fragment
sizes for restriction enzyme A ({1,4,3,5,2,4,5,3}), restriction enzyme B ({3,1,3,2,8,3,7}),
and restriction enzymes A + B = C' ({1,2,1,1,2,1,1,4,2,2,2,1,4, 3}). The interval I = [3,7]
defines the set of double digest fragments Ic = {C3,C4,C5,Cs,C7} of length 1, 1,2, 1, 1. I¢
defines a cassette (I4,Ip) where T4 = {As, A3, As} = {4,3,5} and Ip = {B»,Bs,Bs} =
{1,3,2}. The left overlap of (I4,Ip) equals ma —mp = 1 — 3 = —2. The right overlap of
(Ia,IB)equals 13 — 9 = 4.

For an interval I = [i,j] with 1 < i < j <[, define Ic = {Cy: i<k <j}
as the set of fragments between C; and C. The cassette defined by I¢ is the pair
of sets of fragments (14, Ip), where I4 and Ip are the sets of all fragments of A
and B respectively that contain a fragment from I (Figure 2.4). Let m 4 and mp
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A+B

B K
1|
1
A 2 2
[1] 3 2
3 3 2
3 [ 4 ] [ 3 ]
12 | | 6 | | 6 |
il 3 12 3
11 2 | 2 6 3 (1] 2 |1
2 4 6 3 3 1
1l 3 12 3
11| 2 |1 3 6 2 2 |1
2 3 3 6 4 1

Multiple DDP solutions

(one more example)

Figure 2.5: Multiple DDP solutions that cannot be transformed into one another by cassette ex-

change.

be the starting positions of the leftmost fragments of I4 and Ip respectively. The
left overlap of (I4,Ip) is the distance m 4 — mp. The right overlap of (14, Ip) is
defined similarly, by substituting the words “ending” and “rightmost” for the words
“starting” and “leftmost” in the definition above.

Suppose two cassettes within the solution to DDP have the same left overlaps
and the same right overlaps. If these cassettes do not intersect (have no common
fragments), then they can be exchanged as in Figure 2.4, and one obtains a new
solution of DDP. Also, if the left and right overlaps of a cassette (14, Ip) have
the same size but different signs, then the cassette may be reflected as shown in
Figure 2.6, and one obtains a new solution of DDP.
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Cassette reflection

| 3 12 3
1] 2 | 2 6 3 (1| 2 [1
2 4 6 3 3 |1
-_—
1| 3 12 3
1] 2 1] 3 6 2 (2 (U
2 3 3 6 4 1

Figure 2.6: Cassette reflection. The left and the right overlaps have the same size but different

signs.

Schmitt and Waterman, 1991 [309] raised the question of how to transform one
map into another by cassette transformations. The following section introduces a
graph-theoretic technique to analyze the combinatorics of cassette transformations
and to answer the Schmitt-Waterman question.

2.4 Alternating Cycles in Colored Graphs

Consider an undirected graph G(V, E) with the edge set E edge-colored in [ col-
ors. A sequence of vertices P = 212 .. . T, is called apath in G if (z;, zi11) € E
forl <7< m—1. Apath P is called a cycle if z; = x,,. Paths and cycles can be
vertex self-intersecting. We denote P~ = %, Tip—1 - - - 1.

A path (cycle) in G is called alternating if the colors of every two consecutive
edges (zj,z;+1) and (z;41,z;+2) of this path (cycle) are distinct (if P is a cycle
we consider (z,,—1, ) and (z1,z2) to be consecutive edges). A path (cycle)
P in G is called Eulerian if every e € FE is traversed by P exactly once. Let
d,.(v) be the number of c-colored edges of E incident to v and d(v) = YL_; d..(v)
be the degree of vertex v in the graph G. A vertex v in the graph G is called
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balanced if max. d.(v) < d(v)/2. A balanced graph is a graph whose every vertex
is balanced.

Theorem 2.1 (Kotzig, 1968 [206]) Let G be a colored connected graph with even
degrees of vertices. Then there is an alternating Eulerian cycle in G if and only if
G is balanced.

Proof To construct an alternating Eulerian cycle in G, partition d(v) edges incident
to vertex v into d(v)/2 pairs such that two edges in the same pair have different
colors (it can be done for every balanced vertex). Starting from an arbitrary edge in
G, form a trail C'y using at every step an edge paired with the last edge of the trail.
The process stops when an edge paired with the last edge of the trail has already
been used in the trail. Since every vertex in GG has an even degree, every such trail
starting from vertex v ends at v. With some luck the trail will be Eulerian, but if
not, it must contain a node w that still has a number of untraversed edges. Since
the graph of untraversed edges is balanced, we can start from w and form another
trail Co from untraversed edges using the same rule. We can now combine cycles
C1 and C as follows: insert the trail C' into the trail C at the point where w is
reached. This needs to be done with caution to preserve the alternation of colors
at vertex w. One can see that if inserting the trail C5 in direct order destroys the
alternation of colors, then inserting it in reverse order preserves the alternation of
colors. Repeating this will eventually yield an alternating Eulerian cycle. ]

We will use the following corollary from the Kotzig theorem:

Lemma 2.1 Let G be a bicolored connected graph. Then there is an alternating
Eulerian cycle in G if and only if d1(v) = da(v) for every vertex in G.

2.5 Transformations of Alternating Eulerian Cycles

In this section we introduce order transformations of alternating paths and demon-
strate that every two alternating Eulerian cycles in a bicolored graph can be trans-
formed into each other by means of order transformations. This result implies the
characterization of Schmitt-Waterman cassette transformations.
LetFF=...xz...y...xz...y...bean alternating path in a bicolored graph G.
Vertices x and y partitions F' into five subpaths F' = F Fo F3F, F5 (Figure 2.7).
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Figure 2.7: Order exchange.

The transformation F' = F| Fy F3Fy Fy, — F* = | F,F3F, F5 is called an order
exchange if F'* is an alternating path.

Let F = ...z...x...be an alternating path in a bicolored graph G. Vertex z
partition F' into three subpaths F' = F F5 F5 (Figure 2.8). The transformation F' =
Fi\F,F3 — F* = F\Fy F3 is called an order reflection if F* is an alternating
path. Obviously, the order reflection /' — F™* in a bicolored graph exists if and
only if F5 is an odd cycle.

Theorem 2.2 Every two alternating Eulerian cycles in a bicolored graph G can
be transformed into each other by a series of order transformations (exchanges
and reflections).
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Fi F3

Order reflection

Fi F3

Figure 2.8: Order reflection.

Proof Let X and Y be two alternating Eulerian cycles in G. Consider the set
of alternating Eulerian cycles C obtained from X by all possible series of order
transformations. Let X* = x1 ...z, be a cycle in C having the longest common
prefix with Y = yy...ym, e, z1...2¢p = y1...y; for I < m. If | = m, the
theorem holds: otherwise let v = 2; = y; (i.e., 1 = (v,z;41) and e3 = (v, Y14 1)
are the first different edges in X* and Y, respectively (Figure 2.9)).

Since X* and Y are alternating paths, the edges e; and e, have the same color.
Since X* is Eulerian path, X* contains the edge es. Clearly, e2 succeeds ey in X*,
There are two cases (Figure 2.9) depending on the direction of the edge eg in the
path X* (toward or from vertex v):

Case 1. Edge es = (y;y1,v) in the path X* is directed toward v. In this
case X* = X1...0Tj41...Yi+1 V... Tm. Since the colors of the edges e; and
ez coincide, the transformation X* = F1FyF3 — F1F; F3 = X** is an order
reflection (Figure 2.10). Therefore X** € C and at least (I 4 1) initial vertices in
X* and Y coincide, a contradiction to the choice of X*.

Case 2. Edge ea = (v,y;4+1) in the path X* is directed from v. In this case,
vertex v partitions the path X™* into three parts, prefix X; ending at v, cycle Xo,
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Edge e, in X* is directed toward v Edge e, in X* is directed from v

Figure 2.9: Two cases in theorem 2.

F3 F3
F1 el F1 e]

order exchange -

Figure 2.10: Case 1: Order exchange.

and suffix X3 starting at v. It is easy to see that X5 and X3 have a vertex z; = z
(I < j < k < m) in common (otherwise, ¥ would not be an Eulerian cycle).
Therefore, the cycle X* can now be rewritten as X* = F| Fy F3 Fy F5 (Figure 2.11).

Consider the edges (x, zk4+1) and (z;_1,2;) that are shown by thick lines in
Figure 2.11. If the colors of these edges are different, then X** = F| FyF3F5F5
is the alternating cycle obtained from X* by means of the order exchange shown
in Figure 2.11 (top). At least (I + 1) initial vertices of X** and Y coincide, a
contradiction to the choice of X*.
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order exchange
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Figure 2.11: Case 2: Depending on the colors of the thick edges, there exists either an order
exchange or two order reflections transforming X ™ into a cycle with a longer common prefix with
Y.

If the colors of the edges (z, Z;41) and (z;_1,2;) coincide (Figure 2.11, bot-
tom), then X** = F|F,F, F; F5 is obtained from X™* by means of two order
reflections g and h:

F\FyF3FyFy 2 FyFy(F3Fy)” F5 = F\FyFy Fy Fs LN

Atleast (I + 1) initial vertices of X** and Y coincide, a contradiction to the choice
of X*. ]
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2.6 Physical Maps and Alternating Eulerian Cycles

This section introduces fork graphs of physical maps and demonstrates that every
physical map corresponds to an alternating Eulerian path in the fork graph.

Consider a physical map given by (ordered) fragments of single digests A and
B and double digest C = A+DB: {Ay,..., A}, {B1,...,Bn},and {Cy,...,C;}.
Below, for the sake of simplicity, we assume that A and B do not cut DNA at the
same positions, i.e., | = n + m — 1. A fork of fragment A; is the set of double
digest fragments C; contained in A;:

F(Al) = {Cj : Cj C AZ'}

(a fork of B; is defined analogously). For example, F'(A3) consists of two frag-
ments C5 and Cj of sizes 4 and 1 (Figure 2.12). Obviously every two forks F'(A;)
and F'(B;) have at most one common fragment. A fork containing at least two
fragments is called a multifork.

Leftmost and rightmost fragments of multiforks are called border fragments.
Obviously, C} and Cj are border fragments.

Lemma 2.2 Every border fragment, excluding C and Cj, belongs to exactly two
multiforks F'(A;) and F(Bj). Border fragments Cy and C) belong to exactly one
multifork.

Lemma 2.2 motivates the construction of the fork graph with vertex set of
lengths of border fragments (two border fragments of the same length correspond
to the same vertex). The edge set of the fork graph corresponds to all multiforks
(every multifork is represented by an edge connecting the vertices corresponding
to the length of its border fragments). Color edges corresponding to multiforks of
A with color A and edges corresponding to multiforks of B with color B (Fig-
ure 2.12).

All vertices of G are balanced, except perhaps vertices |C| and |C;| which
are semi-balanced, i.e., |[dA(|C1]) — dB(|C1])| = |da(|Ci|) — dB(|Ci|)] = 1. The
graph G may be transformed into a balanced graph by adding an edge or two edges.
Therefore G contains an alternating Eulerian path.

Every physical map (A, B) defines an alternating Eulerian path in its fork
graph. Cassette transformations of a physical map do not change the set of forks
of this map. The question arises whether two maps with the same set of forks can
be transformed into each other by cassette transformations. Fig 2.12 presents two
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A Ao A3 Ay Ajg

-A > -A1q A3 Ay Asg

3 1121 3 4 11 2| 3 4

BIE'BZE B3

By Bs

Figure 2.12: Fork graph of a physical map with added extra edges B; and Aj. Solid (dotted)
edges correspond to multiforks of A (B). Arrows on the edges of this (undirected) graph follow
the path B1 A1 B2A>B3 A3 By Ay Bs As, corresponding to the map at the top. A map at the bottom
By — Ay — B — A1 B3 A3 B4 A4 Bs As is obtained by changing the direction of edges in the triangle

A1, B, A (cassette reflection).

maps with the same set of forks that correspond to two alternating Eulerian cycles
in the fork graph. It is easy to see that cassette transformations of the physical
maps correspond to order transformations in the fork graph. Therefore every al-
ternating Eulerian path in the fork graph of (A, B) corresponds to a map obtained
from (A, B) by cassette transformations (Theorem 2.2).
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2.7 Partial Digest Problem

The Partial Digest Problem is to reconstruct the positions of n restriction sites
from the set of the () distances between all pairs of these sites. If AX is the
(multi)set of distances between all pairs of points of X, then the PDP problem is
to reconstruct X given AX. Rosenblatt and Seymour, 1982 [289] gave a pseudo-
polynomial algorithm for this problem using factoring of polynomials. Skiena et
al., 1990 [314] described the following simple backtracking algorithm, which was
further modified by Skiena and Sundaram, 1994 [315] for the case of data with
erTors.

First find the longest distance in A X, which decides the two outermost points
of X, and then delete this distance from A X. Then repeatedly position the longest
remaining distance of AX. Since for each step the longest distance in AX must
be realized from one of the outermost points, there are only two possible positions
(left or right) to put the point. At each step, for each of the two positions, check
whether all the distances from the position to the points already selected are in
AX. If they are, delete all those distances before going to next step. Backtrack if
they are not for both of the two positions. A solution has been found when AX is
empty.

For example, suppose AX = {2,2,3,3,4,5,6,7,8,10}. Since AX includes
all the pairwise distances, then [AX| = (7)), where n is the number of points in the
solution. First set L = AX and z; = 0. Since 10 is the largest distance in L, it is
clear that x5 = 10. Removing distance z5 — z; = 10 from L, we obtain

X ={0,10} L={2,2,3,3,4,5,6,7,8}.

The largest remaining distance is 8. Now we have two choices: either 4 = 8
or ¢35 = 2. Since those two cases are mirror images of each other, without loss of
generality, we can assume xzo = 2. After removal of distances x5 — z2 = 8 and
To — x1 = 2 from L, we obtain

X ={0,2,10} L=1{2,3,3,4,5,6,7}.

Since 7 is the largest remaining distance, we have either x4, = 7 or x3 = 3. If
3 = 3, distance 3 — x2 = 1 must be in L, but it is not, so we can only set x4 = 7.
After removing distances x5 — 4 = 3, x4 — 22 = 5, and x4 — z; = 7 from L, we
obtain
X ={0,2,7,10} L=1{2,3,4,6}.
Now 6 is the largest remaining distance. Once again we have two choices:
either x3 = 4 or 3 = 6. If x3 = 6, the distance x4 — 3 = 1 must be in L,
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but it is not. So that leaves us only the choice zz3 = 4 and provides a solution
{0,2,4,7,10} of the Partial Digest Problem.

The pseudo-code for the described algorithm is given below. Here the func-
tion Delete_Max(L) returns the maximum value of L and removes it from list L,
and two global variables X and width are used. A(X,Y") is the (multi)set of all
distances between a point of X and a point of Y.

set X

int width

Partial_Digest(List L)
width = Delete_Max(L)
X ={0, width}
Place(L)

Place(List L)
if L = () then
output solution X
exit
y = Delete_Max(L)
if A({y},X) C L then

X =XU{y}
Place(L \ A({y}, X)) /* place a point at right position */
X=X \{y} /* backtracking */

if A({width —y}, X) C L then
X = X U{width — y}
Place(L \ A({width — y}, X)) /* place a point at left position */
X = X \ {width — y} /* backtracking */

This algorithm runs in O(n? logn) expected time if L arises from real points
in general positions, because in this case at each step, one of the two choices will
be pruned with probability 1. However, the running time of the algorithm may be
exponential in the worst case (Zhang, 1994 [377]).

2.8 Homometric Sets

It is not always possible to uniquely reconstruct a set X from AX. Sets A and B
are homometric if AA = AB. Let U and V be two multisets. It is easy to verify
that the multisets U +V = {u+v:ueUwv e V}iandU -V ={u—-v:u €
U,v € V} are homometric. The example presented in Figure 2.13 arises from this
construction for U = {6,7,9} and V = {—6,2,6}.
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Figure 2.13: Homometric sets U + V = {0,1,3,8,9,11,12,13,15} and U — V =
{0,1,3,4,5,7,12,13,15}.

It is natural to ask if every pair of homometric sets represents an instance of
this construction. The answer is negative: the homometric sets {0,1,2,5,7,9,12}
and {0,1,5,7,8,10,12} provide a counterexample. Nevertheless this conjecture
is true if we define U and V' as “multisets with possibly negative multiplicities.”

Given a multiset of integers A = {a;}, let A(z) = >, % be a generating
function for A. Tt is easy to see that the generating function for AA is AA(z) =
A(z)A(z™!). Let A(z) and B(x) be generating functions for multisets A and B
such that A(x) = U(x)V (z) and B(z) = U(x)V (z~!). Then A(z)A(z~!) =
B(z)B(z ') = U(z)V(2)U(z ')V (z '), implying that A and B are homomet-
ric.

Theorem 2.3 (Rosenblatt and Seymour, 1982 [289]) Two sets A and B are homo-
metric if and only if there exist generating functions U (x) and V (z) and an integer

8 such that A(xz) = U(z)V (z) and B(z) = 28U (z)V (z~1).
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Proof Let A and B be homometric sets. Let P(z) be the greatest common di-
visor of A(z) and B(z) and let A(z) = P(z)Qa(z) and B(z) = P(x)Qp(x),
where Q 4(z) and Qp(z) are relatively prime. Let V() be the greatest common
divisor of Q4(x) and Qp(z~!) and let Q4(z) = V(z)Sa(z) and Qp(z 1) =
V(x )SB( ), where Sa(z) and Sp(z) are relatively prime. Clearly S4(x) and
Sa(z~1) are relatively prime to both Sp(z) and Sp(z~!).

Since A and B are homometric,

P(2)V(2)Sa(@)P(z~" )V (27)Sa(2™") = P(2)V (z7")Sp(a™")P(z™")V (2)Sp(x)

implying that S4(z)Sa(z~!) = Sp(z)Sp(z~ ) Since S4(z) and Sa(z ') are
relatively prime to both Sp(x) and Sp(z '), Sa(z) = £2® and Sp(x) = +xb.
Therefore, A(z) = +x°P(z)V () and B(z) = +2°P(x)V (2~!). Substitution
U(x) = +2°P(x) proves the theorem. ]

It can happen that some of the coefficients in the decomposition given in the-
orem 2.3 are negative, corresponding to multisets with negative multiplicities. For
example, if A = {0, 1,2, 5 7,9,12} and B = {50, 1,5, 7 8, 10 12}, U(x) =
(l+z+2?+23+2+2° +$)andV — 2% + 1°)

We say that a set A is reconstructible if whenever Bis homometric to A, we
have B = A+ {v} or B = —A+ {v} for anumber v. A set A is called symmetric
if —A = A+ v for some number v. A polynomial A(z) is symmetric if the
corresponding set is symmetric, i.e., A(z~!) = 2V A(z). Theorem 2.3 implies the
following:

Theorem 2.4 A set A is reconstructible if and only if A(z) has at most one prime
factor (counting multiplicities) that is not symmetric.

Rosenblatt and Seymour, 1982 [289] gave the following pseudo-polynomial
algorithm for the Partial Digest Problem with . points. Given a set of (7)) distances
AA = {d;}, we form the generating function AA(z) = n + 3;(z% + z~%). We
factor this polynomial into irreducibles over the ring of polynomials with integer
coefficients using a factoring algorithm with runtime polynomial in max; d;. The
solution A(z) of the PDP problem must have a form AA(z) = A(z)A(z™!).
Therefore, we try all 27" possible subsets S of the F' irreducible nonreciprocal
factors of AA(z) as putative factors of A(z). As a result, we find a set of all the
possible sets A(x). Finally, we eliminate the sets A(x) with negative coefficients
and sort to remove possible redundant copies.
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2.9 Some Other Problems and Approaches

2.9.1 Optical mapping

Schwartz et al., 1993 [311] developed the optical mapping technique for construc-
tion of restriction maps. In optical mapping, single copies of DNA molecules are
stretched and attached to a glass support under a microscope. When restriction en-
zymes are activated, they cleave the DNA molecules at their restriction sites. The
molecules remain attached to the surface, but the elasticity of the stretched DNA
pulls back the molecule ends at the cleaved sites. These can be identified under
the microscope as tiny gaps in the fluorescent line of the molecule. Thus a “pho-
tograph” of the DNA molecule with gaps at the positions of cleavage sites gives a
snapshot of the restriction map.

Optical mapping bypasses the problem of reconstructing the order of restriction
fragments, but raises new computational challenges. The problem is that not all
sites are cleaved in each molecule (false negative) and that some may incorrectly
appear to be cut (false positive). In addition, inaccuracies in measuring the length
of fragments, difficulties in analyzing proximal restriction sites, and the unknown
orientation of each molecule (left to right or vice versa) make the reconstruction
difficult. In practice, data from many molecules is gathered to build a consensus
restriction map.

The problem of unknown orientation was formalized as Binary Flip-Cut (BFC)
Problem by Muthukrishnan and Parida, 1997 [243]. In the BFC problem, a set of
n binary 0-1 strings is given (each string represents a snapshot of a DNA molecule
with 1s corresponding to restriction sites). The problem is to assign a flip or no-flip
state to each string so that the number of consensus sites is minimized. A site is
called a consensus under the assignment of flips if at least cn 1s are present at that
site if the molecules are flipped accordingly, for some small constant parameter c.

Handling real optical mapping data is considerably harder than the BFC prob-
lem. Efficient algorithms for the optical mapping problem were developed by
Anantharaman et al., 1997 [8], Karp and Shamir, 1998 [190], and Lee et al.,
1998 [218].

2.9.2 Probed Partial Digest mapping

Another technique used to derive a physical map leads to the Probed Partial Di-
gest Problem (PPDP). In this method DNA is partially digested with a restriction
enzyme, thus generating a collection of DNA fragments between any two cutting
sites. Afterward a labeled probe, which attaches to the DNA between two cut-
ting sites, is hybridized to the partially digested DNA, and the sizes of fragments
to which the probe hybridizes are measured. The problem is to reconstruct the
positions of the sites from the multiset of measured lengths.

In the PPDP problem, multiset X C [—s, ] is partitioned into two subsets
X = AU B with A C [—s,0] and B C [0, t] corresponding to the restriction sites
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to the left and to the right of the probe. The PPDP experiment provides the multiset
E={b—a : a€ A bec B}. The problem is to find X given E. Newberg and
Naor, 1993 [252] showed that the number of PPDP solutions can grow quickly, at
least more quickly than n'72.






Chapter 3

Map Assembly

3.1 Introduction

The map assembly problem can be understood in terms of the following analogy.
Imagine several copies of a book cut by scissors into thousands of pieces. Each
copy is cut in an individual way such that a piece from one copy may overlap a
piece from another copy. For each piece and each word from a list of key words,
we are told whether the piece contains the key word. Given this data, we wish to
determine the pattern of overlaps of the pieces.

Double Digest and Partial Digest techniques allow a biologist to construct re-
striction (physical) maps of small DNA molecules, such as viral, chloroplast, or
mitochondrial DNA. However, these methods do not work (experimentally or com-
putationally) for large DNA molecules. Although the first restriction map of a viral
genome was constructed in 1973, it took more than a decade to construct the first
physical maps of a bacterial genome by assembling restriction maps of small frag-
ments. To study a large DNA molecule, biologists break it into smaller pieces, map
or fingerprint each piece, and then assemble the pieces to determine the map of the
entire molecule. This mapping strategy was originally developed by Olson et al.,
1986 [257] for yeast and by Coulson et al., 1986 [76] for nematode. However, the
first large-scale physical map was constructed by Kohara et al., 1987 [204] for E.
Coli bacteria.

Mapping usually starts with breaking a DNA molecule into small pieces using
restriction enzymes. To study individual pieces, biologists obtain many identical
copies of each piece by cloning them. Cloning incorporates a fragment of DNA
into a cloning vector, a small, artificially constructed DNA molecule that originates
from a virus or other organism. Cloning vectors with DNA inserts are introduced
into a bacterial self-replicating host. The self-replication process then creates an
enormous number of copies of the fragment, thus enabling its structure to be inves-
tigated. A fragment reproduced in this way is called a clone.

41
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As a result, biologists obtain a clone library consisting of thousands of clones
(each representing a short DNA fragment) from the same DNA molecule. Clones
from the clone library may overlap (overlapping can be achieved by using a few
restriction enzymes). After the clone library is constructed biologists want to order
the clones, i.e., to reconstruct the relative placement of the clones along the DNA
molecule. This information is lost in the construction of the clone library, and
the process of reconstruction starts with fingerprinting the clones. The idea is to
describe each clone using an easily determined fingerprint, which can be thought
of as a set of “key words” present in a clone. If two clones have substantial overlap,
their fingerprints should be similar. If non-overlapping clones are unlikely to have
similar fingerprints then fingerprints would allow a biologist to distinguish between
overlapping and non-overlapping clones and to reconstruct the order of the clones.
The following fingerprints have been used in many mapping projects.

e Restriction maps. The restriction map of a clone provides an ordered list of
restriction fragments. If two clones have restrictions maps that share several
consecutive fragments, they are likely to overlap. With this strategy Kohara
et al., 1987 [204] constructed a physical map of the E. coli genome.

e Restriction fragment sizes. Restriction fragment sizes are obtained by cutting
a clone with a restriction enzyme and measuring the sizes of the resulting
fragments. This is simpler than constructing a restriction map. Although an
unordered list of fragment sizes contains less information than an ordered
list, it still provides an adequate fingerprint. This type of fingerprint was
used by Olson et al., 1986 [257] in the yeast mapping project.

e Hybridization data. In this approach a clone is exposed to a number of
probes, and it is determined which of these probes hybridize to the clone.
Probes may be short random sequences or practically any previously identi-
fied piece of DNA. One particularly useful type of probe is the Sequence Tag
Site (STS). STSs are extracted from the DNA strand itself, often from the
endpoints of clones. Each STS is sufficiently long that it is unlikely to occur
a second time on the DNA strand; thus, it identifies a unique site along the
DNA strand. Using STS mapping, Chumakov et al., 1992 [68] and Foote et
al., 1992 [111] constructed the first physical map of the human genome.

The STS technique leads to mapping with unique probes. If the probes are
short random sequences, they may hybridize with DNA at many positions, thus
leading to mapping with non-unique probes. For the map assembly problem with
n clones and m probes, the experimental data is an . X m matrix D = (d;;), where
d;; = 1 if clone C; contains probe p;, and d;; = 0 otherwise (Figure 1.1). Note
that the data does not indicate how many times a probe occurs on a given clone,
nor does it give the order of the probes along the clones. A string .S covers a clone
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C' if there exists a substring of S’ containing exactly the same set of probes as C
(the order and multiplicities of probes in the substring are ignored). The string in
Figure 1.1 covers each of nine clones corresponding to the hybridization matrix D.
The Shortest Covering String Problem is to find a shortest string in the alphabet of
probes that covers all clones.

The Shortest Covering String Problem is NP-complete. However, if the order
of clones is fixed, it can be solved in polynomial time. Alizadeh et al., 1995 [3]
suggested a local improvement strategy for the Shortest Covering String Problem
that is based on finding optimal interleaving for a fixed clone order.

Given a set of intervals on the line, one can form the interval graph of the set
by associating a vertex of the graph with each interval and joining two vertices by
an edge if the corresponding intervals overlap (Figure 3.2). In the case of unique
probes, every error-free hybridization matrix defines an interval graph on the vertex
set of clones in which clones ¢ and j are joined by an edge if they have a probe in
common. The study of interval graphs was initiated by Benzer, who obtained data
on the overlaps between pairs of fragments of bacteriophage T4 DNA. He was
successful in arranging the overlap data in a way that implied the linear nature of
the gene. Benzer’s problem can be formulated as follows: Given information about
whether or not two fragments of a genome overlap, is the data consistent with the
hypothesis that the genes are arranged in linear order? This is equivalent to the
question of whether the overlap graph is an interval graph.

Interval graphs are closely related to matrices with the consecutive ones prop-
erty. A (0,1) matrix has the consecutive ones property if its columns can be per-
muted in such a way that 1s in each row occur in consecutive positions. In the
case of unique probes, every error-free hybridization matrix has the consecutive
ones property (the required permutation of columns corresponds to ordering probes
from left to right). Given an arbitrary matrix, we are interested in an algorithm
to test whether it has the consecutive ones property. Characterization of interval
graphs and matrices with the consecutive ones property was given by Gilmore and
Hoffman, 1964 [128] and Fulkerson and Gross, 1965 [114]. Booth and Leuker,
1976 [40] developed a data structure called a PQ)-tree that leads to a linear-time
algorithm for recognition of the consecutive ones property. Given an error-free
hybridization matrix, the Booth-Leuker algorithm constructs a compact represen-
tation of all correct orderings of probes in linear time. However, their approach
does not tolerate experimental errors. Alizadeh et al., 1995 [3] devised an alterna-
tive simple procedure for probe ordering. In the presence of experimental errors
the procedure may fail, but in most cases it remains a good heuristic for the con-
struction of probe ordering.

The most common type of hybridization error is a false negative, where the
incidence between a probe and a clone occurs but is not observed. In addition,
the hybridization data are subject to false positives and errors due to clone abnor-
malities. Different cloning technologies suffer from different clone abnormalities.
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Early clone libraries were based on bacteriophage A vectors and accommodated up
to 25 Kb of DNA. Cosmids represent another vector that combines DNA sequences
from plasmids and a region of A genome. With cosmids, the largest size of a DNA
insert is 45 Kb, and it would take 70,000 cosmids to cover the human genome. To
reduce this number, Yeast Artificial Chromosomes (YAC) were developed to clone
longer DNA fragments (up to 1,000 Kb). Although YACs have been used in many
mapping projects, there are a number of clone abnormalities associated with them.
The most common abnormality is chimerism. A chimeric clone consists of two
distinct segments of DNA joined together by an error in a cloning process. It is
estimated that 10-60% of clones in YAC libraries are chimeric. Chimeras may
arise by co-ligation of different DNA fragments or by recombination of two DNA
molecules. Another problem with YACs is that many clones are unstable and tend
to delete internal regions. BAC (Bacterial Artificial Chromosome) cloning sys-
tems based on the E. coli genome significantly reduce the chimerism problem as
compared to YACs.

A true ordering of probes corresponds to a permutation 7 of columns of the
hybridization matrix D, which produces a matrix D,. Each row of D, corre-
sponding to a normal clone contains one block of 1s, and each row corresponding
to a chimeric clone contains two blocks of 1s. Define a gap as a block of zeroes in a
row, flanked by ones. The number of gaps in D, is equal to the number of chimeric
clones. A false negative error typically splits a block of ones into two parts, thus
creating a gap. A false positive error typically splits a gap into two gaps. Thus the
number of gaps in D, tends to be approximately equal to the number of chimeric
clones plus the number of hybridization errors. This suggests a heuristic principle
that a permutation of the columns that minimizes the number of gaps will corre-
spond to a good probe ordering (Alizadeh et al., 1995 [3], Greenberg and Istrail,
1995 [137]). Minimizing the number of gaps can be cast as a Traveling Salesman
Problem called the Hamming Distance TSP in which the cities are the columns
of D together with an additional column of all zeroes, and the distance between
two cities is the Hamming distance between the corresponding columns, i.e., the
number of positions in which the two columns differ (Figure 3.1).

3.2 Mapping with Non-Unique Probes

Physical mapping using hybridization fingerprints with short probes was suggested
by Poustka et al., 1986 [279]. The advantage of this approach is that probe genera-
tion is cheap and straightforward. However, the error rate of hybridization experi-
ments with short probes is very high, and as a result, there were very few successful
mapping projects with non-unique probes (Hoheisel et al., 1993 [165]). Hybridiza-
tion errors and a lack of good algorithms for map construction were the major
obstacles to using this method in large-scale mapping projects. Recently, Alizadeh
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PROBES
C F D G A B E

CLONES: 5 [ 1 | 1L |1 |1

0

Figure 3.1: Shortest cycle for the Hamming Distance TSP corresponding to the hybridization ma-
trix in Figure 1.1 with a different order of columns. The shown minimum cycle defines the ordering
of clones with the minimum number of gaps. Clones 1, 3, and 4 in this ordering are chimeric.

et al., 1995 [3] and Mayraz and Shamir, 1999 [234] designed algorithms that work
well in the presence of hybridization errors.

A placement is an assignment of an interval on the line [0, N] to each clone
(the line [0, N] corresponds to the entire DNA molecule). An interleaving is a
specification of the linear ordering of the 2n endpoints of these n intervals. An
interleaving may be viewed as an equivalence class of placements with a common
topological structure. Given matrix D, the map assembly problem is to determine
the most likely interleaving (Alizadeh et al., 1995 [3]):

Alizadeh et al., 1995 [3] gave a precise meaning to the notion “most likely”
for the Lander and Waterman, 1988 [214] stochastic model and showed that it cor-
responds to the shortest covering string. In this model, clones of the same length
are thrown at independent random positions along the DNA, and the probes along
the DNA are positioned according to mutually independent Poisson processes. Al-
izadeh et al., 1995 [3] devised a maximum likelihood function for this model. The
simplest approximation of this function is to find an interleaving that minimizes
the number of occurrences of probes needed to explain the hybridization data, the
Shortest Covering String Problem.

In the following discussion, we assume that no clone properly contains another.
A string S covers a permutation of clones 7 if it covers all clones in the order given
by 7. A string ABACBACDBCE covers the permutation (3,2,4,1) of clones
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C1, Co, C5, Cy that hybridize with the following probes A, B, C, D, E:
Cl - {B,C,E}, 02 - {A,B,C,D}, C3 - {A,B,C}, C4 - {B,C,D}

Let ¢(m) be the length of the shortest string covering 7. Figure 1.1 presents a
shortest covering string for the permutation = = (1, 2,...,9) of length ¢(7w) = 15.
Alizadeh et al., 1995 [3] devised a polynomial algorithm for finding ¢(7) and a
local improvement algorithm for approximating min, ¢(m).

9
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Figure 3.2: Atomic intervals.

The endpoints of clones partition the line into a number of atomic intervals,
where an atomic interval is a maximal interval that contains no clone endpoints
(Figure 3.2). Every atomic interval is contained in clones i,...,J, where 7 (j)
represents the leftmost (rightmost) clones containing the atomic interval. We de-
note such atomic interval as [i,j]. Intervals [4,j] and [/, j'] are conflicting if
i < i < j' < j. Note that every set of atomic intervals is conflict-free, i.e.,
contains no conflicting intervals (once again, we assume that no clone properly
contains another).

A set of intervals Z = ([i,j]) is consistent if there exists an interleaving of
clones with respect to which every interval in Z is atomic.
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Lemma 3.1 A set of intervals is consistent if and only if it is conflict-free.

Proof Induction on the number of clones. []

For the data presented in Figure 1.1, the clones containing a probe A are orga-
nized into two runs: [1,2] and [6,8]. Every probe A in a covering string defines
an atomic interval [4, j] in the corresponding interleaving of clones and therefore
generates one run of length j — 4 + 1 in the A-column of the hybridization matrix.
Therefore A appears at least twice in every covering string. It gives a lower bound
of2+2+2+14+2+4+ 1+ 1= 11 for the length of the shortest covering string.
However, there is no covering string of length 11 since some of the runs in the
hybridization matrix are conflicting (for example, a run [3, 5] for C conflicts with
arun [2, 8] for G). Note that every covering string of length ¢ defines a consistent
set of £ runs (intervals). On the other hand, every consistent set of ¢ runs defines a
covering string of length ¢. This observation and lemma 3.1 imply that the Short-
est Covering String Problem can be reformulated as follows: sub-partition a set
of runs for a hybridization matrix into a conflict-free set with a minimum number
of runs. For example, a way to avoid a conflict between runs [3, 5] and [2, 8] is to
sub-partition the run [2, 8] into [2, 5] and [6, 8]. This sub-partitioning still leaves the
interval [7, 7] for E in conflict with intervals [6, 8] for A, [3, 9] for D, and [6, 8] for
G. After sub-partitioning of these three intervals, we end up with the conflict-free
set of 11 + 4 = 15 runs (right matrix in Figure 1.1). These 15 runs generate the
shortest covering string:

[1,1][1,2][2,3] [2,4] [2,5] 3,5] [3,6] [3,7] [6,7] [6,7] [7,7] [7,8] [8,8] [8,8] [8,9]
e e e e e i i e
C A E B G (& F D A G E B A G D

Below we describe a greedy approach to sub-partitioning that produces the shortest
covering string. Let [i, 5] and [i', '] be two conflicting runs with ¢ < ¢/ < j' < j
and minimal j° among all conflicting runs. Clearly, [i, j] has to be cut “before”
4’ in every sub-partitioning (i.e., in every subpartitioning of [i, j] there exists an
interval [i,¢] with ¢ < j'). This observation suggests a sub-partitioning strategy
based on cutting every interval “as late as possible” to avoid the conflicts. More
precisely, for a given run [4, j], let Z be a set of intervals contained in [7, j]. Let ¢ be
a maximal number of mutually non-overlapping intervals from Z such that [i1, ji]
is an interval with minimal j; in Z, [i2, j2] is an interval with minimal jo among
intervals with 49 > j; in Z, ..., and [iy, j¢] is an interval with minimal j; among
intervals with 7; > j;_; in Z. At first glance, it looks like the partition of the run
['L?J] into £+ 1 runs [iajl]a [.71 + 17j2]7 [,72 + 17j3]7 RRE [jtfl + 17jt]7 [Jt + 17.7] leads
to the solution of the Shortest Covering String Problem. Unfortunately, that is not
true, as an example in Figure 3.3 (proposed by Tao Jiang) illustrates. However,
a simple modification of the last interval among these ¢ + 1 intervals leads to the
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solution of the problem (see Figure 3.3 for an example). Note that the shortest
covering string in this case has a clone with a double occurrence of the probe D.

PROBES PROBES
AB CDXF GH AB CDXF G H
aAl WL
) ! ) 1

CLONES @f? CLONES @f?

zoll lel
5 J . J

Invalid sub-partition Valid sub-partiton
interval [44] for D conflicts with interval [3,5] for F - interval [2,4] for D is broken into- overlapping runs [2,3] and [34]
to avoid a conflict with interval 3,5] for F

SHORTEST COVERING STRING

ABC
BCD
CDXDF
DFG
FGH

Figure 3.3: Shortest covering string may contain clones with probe repeats (such as CDXDF).

3.3 Mapping with Unique Probes

Let {1,...,m} be the set of probes, and let C; be the set of clones incident with
probe ¢. A clone X contains a clone Y if the set of probes incident with X (strictly)
contains the set of probes incident with Y. In the following, we assume that the set
of clones satisfies the following conditions:

e Non-inclusion. There is no clone containing another clone.
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e Connectedness. For every partition of the set of probes into two non-empty
sets A and B, there exist probes i € A and j € B such that C; N Cj is not
empty.

e Distinguishability. C; # C; for i # j.

There is no essential loss of generality in these assumptions, since any set of clones
may be filtered by eliminating the clones containing inside other clones. The fol-
lowing lemma reformulates the consecutive ones property:

Lemma 3.2 Let (1,...,m) be the correct ordering of the probes and 1 < i < j <
k < m. Then, in the error-free case, |C; N C;| > |C; N Cy| and |Cy N Cj| >
|Ci N Ci-

Given a probe ¢, how can we find adjacent probes ¢ — 1 and 7 + 1 in the correct
ordering of probes? Lemma 3.2 suggests that these probes are among the probes
that maximize |C; N Ci|—i.e., either |C; N Cj_i| = maxy,; |C; N Cy| or |C; N
Cit1| = maxy»; |C; N Cy|. If maxy; |C; N Cy| is achieved for only probe k, then
either k = i—1or k = i+1. If max;; |C;NC}| is achieved for a few probes, then
it is easy to see that one of them with minimal |C}| corresponds to 7 — 1 or 7 + 1.
These observations lead to an efficient algorithm for ordering the probes that starts
from an arbitrary probe 7 and attempts to find an adjacent probe (- — 1 or ¢ 4 1) at
the next step. At the (k + 1)-th step, the algorithm attempts to extend an already
found block of & consecutive probes to the right or to the left using lemma 3.2.

For each probe i, define the partial ordering >; of the set of probes j >; k if
either

|C; N Cj| > |C; N Cy

or

|Cz N C]| = |Cz ﬂCk| ;é(l)and |C]| < |Ck|

Clearly, if 7 >; k, then probe £ does not lie between probe ¢ and probe j in the true
ordering. Moreover, a maximal element in >; is either ¢ — 1 or ¢ + 1.

Let N (7) be the set of probes that occur together with probe i on at least one
clone.

Lemma 3.3 The true ordering of probes is uniquely determined up to reversal by
the requirement that the following properties hold for each 1:

e The probes in N (i) occur consecutively in the ordering as a block B(%).

e Starting at probe i and moving to the right or to the left, the probes in B(i)
form a decreasing chain in the partial order ;.
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The lemma motivates the following algorithm, which finds the true ordering
of probes (Alizadeh et al., 1995 [4]). Throughout the algorithm the variable 7 =
Tfirst - - - Mast denotes a sequence of consecutive probes in the true ordering. At
the beginning, 7 is initialized to the sequence consisting of a single probe. Each
step adjoins one element to 7 as follows:

e If every element in N (7;,4) lies in 7, replace the sequence 7 by its reversal.

e Choose a probe £ ¢  that is greatest in the ordering >, , among probes
in N(myqst). I Ta5e >k 7pirst, append k to the end of ; otherwise, append
k to the beginning of .

The algorithm stops when 7 contains all probes. Lemma 3.2 implies that after
every step, the probes in 7 form a consecutive block in the true ordering. Since a
new element is adjoined to 7 at every step, the algorithm gives the true ordering
m after m steps. Alizadeh et al., 1995 [4] report that a simple modification of this
algorithm performs well even in the presence of hybridization errors and chimeric
clones.

3.4 Interval Graphs

Golumbic, 1980 [132] is an excellent introduction to interval graphs, and our pre-
sentation follows that book.

A triangulated graph is a graph in which every simple cycle of length larger
than 3 has a chord. The “house” graph in Figure 3.4 is not triangulated because it
contains a chordless 4-cycle.

Lemma 3.4 Every interval graph is triangulated.

Not every triangulated graph is an interval graph; for example, the star graph in
Figure 3.4 is not an interval graph (prove it!). An undirected graph has a transitive
orientation property if each edge can be assigned a direction in such a way that the
resulting directed graph G(V, E) satisfies the following condition for every triple
of vertices a,b,c: (a,b) € E and (b,c) € E imply (a,c¢) € E. An undirected
graph that is transitively orientable is called a comparability graph (Figure 3.4).
The complement of the star graph in Figure 3.4 is not a comparability graph.

Lemma 3.5 The complement of an interval graph is a comparability graph.

Proof For non-overlapping intervals [i, 7] and [¢', j'] with j < ¢/, direct the corre-
sponding edge in the complement of the interval graph as [¢, j] — [i’, j']. [ ]
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Figure 3.4: (i) The house graph is not an interval graph because it is not triangulated. (ii) The star
graph is not an interval graph because its complement is not a comparability graph. (iii) Transitive

orientation of a graph “A.”

A complete graph is a graph in which every pair of vertices forms an edge.
A clique of a graph G is a complete subgraph of G. A clique is maximal if it
is not contained inside any other clique. The graph in Figure 3.2 has five maxi-
mal cliques: {1,2,3}, {2,3,4,5}, {3,4,5,6,7}, {7,8} and {8,9}. The following
theorem establishes the characterization of interval graphs:

Theorem 3.1 (Gilmore and Hoffiman, 1964 [128]) Let G be an undirected graph.
The following statements are equivalent.

(i) G is an interval graph.

(ii) G is a triangulated graph and its complement is a comparability graph.

(iii) The maximal cliques of G can be linearly ordered such that for every vertex x
of G, the maximal cliques containing x occur consecutively.

Proof (i) — (ii) follows from lemmas 3.4 and 3.5.

(ii) — (iii). Let G(V, FE) be a triangulated graph and let F' be a transitive
orientation of the complement @(V, E) Let A; and As be maximal cliques of G.
Clearly, there exists an edge in F' with one endpoint in A; and another endpoint in
Ag (otherwise A; U As would form a clique of G). It is easy to see that all edges
of £ connecting A; with Ay have the same orientation. (Hint: if edges (a1, as2)
and (a}, afy) connect A; and A as in Figure 3.5(left), then at least one of the edges
(a1, al) and (a’, az) belongs to E. Which way is it oriented?) Order the maximal
cliques according to the direction of edges in F: A; < As if and only if there
exists an edge of F' connecting A; and A, and oriented toward As. We claim that
this ordering is transitive and therefore defines a linear order of cliques.
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Suppose that A; < Ay and Ay < As. Then there exist edges (a1, ab) and
(af,a3) in F with ay € A;, db,aly € Ag, and a3 € As (Figure 3.5(right)). If
either (a),a3) & F or (a1,ay) ¢ F, then (a1,a3) € F and A; < As. Therefore,
assume that the edges (a1, a%), (af, a}), and (ah, a3) are all in E. Since G contains
no chordless 4-cycle, (a1,a3) ¢ E, and the transitivity of F' implies (a1,a3) € F.
Thus A; < As, proving that the cliques are arranged in linear order.

Let Ay,..., A, be the linear ordering of maximal cliques. Suppose there exist
cliques A; < A; < Ay withx € A;, x ¢ Ajand ¢ € Ay. Since € Aj, there is
a vertex y € Aj such that (z,y) € E. But A; < Aj implies (z,y) € F, whereas
A; < Ay, implies (y,z) € F, a contradiction.

(iii) — (i). For each vertex z, let I(z) denote the set of all maximal cliques of
G that contain . The sets I(x), for z € V, form the intervals of the interval graph
G. ]

Theorem 3.1 reduces the problem of recognition of an interval graph to the
problems of recognition of triangulated and comparability graphs (Fulkerson and
Gross, 1965 [114], Pnueli et al., 1971 [277]).
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Figure 3.5: Proof of theorem 3.1.
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3.5 Mapping with Restriction Fragment Fingerprints

The simplest case of mapping with restriction fragment fingerprints is Single Com-
plete Digest (SCD) mapping (Olson et al., 1986 [257]). In this case the fingerprint
of a clone is a multiset of the sizes of its restriction fragments in a digest by a
restriction enzyme. An SCD map (Figure 3.6) is a placement of clones and restric-
tion fragments consistent with the given SCD data (Gillett et al., 1995 [127]).

SCD Mapping Problem Find a most compact map (i.e., a map with the minimum
number of restriction fragments) that is consistent with SCD data.

Bl 1

DL 1
SCD mapping with fingerprints : A={5, 7, 7}, B={5,6,7,8}, C={5,6,7,8}, D={5,6,9}.
The most compact map has cardinality 7 (top); another possible map has cardinality 9 (bottom).

:0:° : @g

Clone-fragment graph Path cover corresponding to the most compact map

© © ©

Figure 3.6: SCD mapping.

The problem of finding the most compact map is NP-hard. In practice the
fingerprints of clones often provide strong statistical evidence that allows one to
estimate the ordering of clones. Jiang and Karp, 1998 [179] studied the problem of
finding a most compact map for clones with a given ordering.

Assume that no clone contains another clone, and assume that every clone starts
and ends with the restriction enzyme site. Jiang and Karp, 1998 [179] formulated
SCD mapping with known clone ordering as a constrained path cover problem on
a special multistage graph. Let S = {51, ..., S, } be an instance of SCD mapping,



54 CHAPTER 3. MAP ASSEMBLY

where each S; is a multiset representing the fingerprint of the i-th clone in the
clone ordering by the left endpoints. A labeled multistage graph G (called a clone-
fragment graph) consists of n stages, with the i-th stage containing |S;| vertices.
At stage i, G has a vertex for each element x of S; (including duplicates), with
label z. Two vertices are connected if they are at adjacent stages and have identical
labels (Figure 3.6).

Intuitively, a path in G specifies a set of restriction fragments on consecutive
clones that can be placed at the same location in a map. We denote a path running
through stages i, ..., j as simply [i, j]

A path cover is a collection of paths such that every vertex is contained in
exactly one path. Clearly, any map for S corresponds to a path cover of G' of
the same cardinality (Figure 3.6 presents a path cover of cardinality 7). But the
converse is not true; for example, the clone-fragment graph in Figure 3.6 has a
path cover of cardinality 6 that does not correspond to any map. The reason is that
some paths are in conflict (compare with lemma 3.1). Paths [i, ] and [i’, j'] are
conflicting if 1 < 7' < j' < j. A path cover is conflict-free if it has no conflicting
paths.

A path cover of G is consistent if it corresponds to a map of S with the same
cardinality. Similarly to lemma 3.1:

Lemma 3.6 A path cover is consistent if and only if it is conflict-free.

Hence, constructing a most compact map of S is equivalent to finding a small-
est conflict-free path cover of GG. Although the problem of finding the smallest
conflict-free path cover of G is similar to the Shortest Covering String Problem,
their computational complexities are very different. Jiang and Karp, 1998 [179]
described a 2-approximation algorithm for SCD mapping with a given ordering of
clones.

3.6 Some Other Problems and Approaches

3.6.1 Lander-Waterman statistics

When a physical mapping project starts, biologists have to decide how many clones
they need to construct a map. A minimum requirement is that nearly all of the
genome should be covered by clones. In one of the first mapping projects, Olson
et al., 1986 [257] constructed a library containing n = 4946 clones. Each clone
carried a DNA fragment of an average length of L = 15,000 nucleotides. This
clone library represented a DNA molecule of length G = 2-107; i.e., each nucleo-
tide was represented in & 4 clones on average. The number ¢ = % is called
the coverage of a clone library. A typical library provides a coverage in the range
of 5-10. When this project started, it was not clear what percentage of the yeast
genome would be covered by 4946 clones.
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Lander and Waterman, 1988 [214] studied a probabilistic model in which clones
of the same length were thrown at independent random positions along the DNA.
Define a gap as an interval that is not covered by any clones, and a contig as a
maximal interval without gaps. Lander and Waterman, 1988 [214] demonstrated
that the expected number of gaps is = ne © and that the expected fraction of DNA
not covered by any clone is =~ e~ ¢. The Olson et al., 1986 [257] mapping project
resulted in 1422 contigs, which comes close to the Lander-Waterman estimate of
1457 contigs. Arratia et al., 1991 [11] further developed the Lander-Waterman
statistics for the case of hybridization fingerprints.

3.6.2 Screening clone libraries

A naive approach to obtaining a hybridization matrix for n clones and m probes
requires n X m hybridization experiments. The aim of pooling is to reduce the
number of experiments that are needed to obtain the hybridization matrix. If the
number of 1s in a hybridization matrix is small (as is the case for mapping with
unique probes), then most experiments return negative results. It is clear that pool-
ing clones in groups and testing probes against these pools may save experimental
efforts.

Assume for simplicity that y/n is an integer, and view n clones as elements
of a y/n x y/n array. Pool together clones corresponding to every row and every
column of this array. The resulting set consists of 2,/n pools, each pool containing
\/n clones. This reduces experimental efforts from n x m to 24/n x m hybridiza-
tion but makes the computational problem of map assembly more difficult (Evans
and Lewis, 1989 [98] and Barillot et al., 1991 [25]). Chumakov et al., 1992 [68]
used this pooling strategy for the construction of the first human physical map.
Computational analysis of pooling strategies is related to the following problem:

Group Testing Problem Find the distinguished members of a set of objects £ by
asking the minimum number of queries of the form “Does the set () C £ contain a
distinguished object?”

Asking the query corresponds to testing the pool (set of clones) with a probe.
For mapping applications, it is most cost-effective to ask queries in parallel (non-
adaptive group testing). Bruno et al., 1995 [51] advocated a “random k-set design”
pooling strategy that has advantages over the row-column pooling design. In the
“random k-set design,” each clone occurs in & pools, and all choices of the k& pools
are equally likely. See Knill et al., 1998 [200] for analysis of non-adaptive group
testing in the presence of errors.

3.6.3 Radiation hybrid mapping

Radiation hybrid (RH) mapping (Cox et al., 1990 [77]) is an experimental strategy
that uses random pooling that occurs in nature. RH mapping involves exposing
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human cells to radiation, which breaks each chromosome into random fragments.
These fragments are then “rescued” by fusing the human cells with hamster cells
that incorporate a random subset of the human DNA fragments into their chromo-
somes. One can think about human fragments as clones and about hamster cells
as pools of these clones. The resulting hybrid cell can be grown into a cell line
containing a pool of the fragment from the human genome. Figure 3.7 presents
an RH mapping experiment with three hybrid cell lines and four probes (markers)
that results in a 4 x 3 hybrid screening matrix. The Radiation Hybrid Mapping
Problem is to reconstruct marker order from the hybrid screening matrix (Slonim
etal., 1997 [317]).

Radiation Hybrid Mapping

A B C D

chromosome B S - S—
hybrid
panel

At - +
hybrid

B+ - +
screening

C - + -
vectors

D+ + -

Figure 3.7: Hybrid screening matrix.

If the radiation-induced breaks occur uniformly at random across the chro-
mosome, then breaks between closely located markers (like A and B) are rare.
This implies that they are co-retained, i.e., that the hybrid cell contains either both
of them or neither of them. This observation allows one to elucidate closely lo-
cated markers and to use arguments similar to genetic mapping for probe ordering
(Boehnke et al., 1991 [39], Lange et al., 1995 [215]). Slonim et al., 1997 [317]
used the Hidden Markov Models approach for RH mapping and built the frame-
work of an RH map by examining the triplets of markers. The most likely order of
triples of markers can be estimated from the hybrid screening matrix. The example
in Figure 3.7 may result in a subset of triples ABC, ABD, ACD and BCD, and
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the problem is to find a string (ABCD) that contains these triples as subsequences.
The problem is complicated by the presence of incorrectly ordered triples and the
unknown orientation of triples (the marker order (A-B-C or C-B-A) for triple ABC
is not known).






Chapter 4

Sequencing

4.1 Introduction

At a time when the Human Genome Project is nearing completion, few people re-
member that before DNA sequencing even started, scientists routinely sequenced
proteins. Frederick Sanger was awarded his first Nobel Prize for determining the
amino acid sequence of insulin, the protein used to treat diabetes. Sequencing in-
sulin in the late 1940s looked more challenging than sequencing an entire bacterial
genome looks today. The computational aspects of protein sequencing at that time
are very similar to the computational aspects of modern DNA sequencing. The
difference is mainly in the length of the sequenced fragments. In the late 1940s
biologists learned how to chop one amino acid at a time from the end of a protein
and read this amino acid afterward. However, it worked only for a few amino acids
from the end, since after 4-5 choppings the results were hard to interpret. To get
around this problem Sanger digested insulin with proteases and sequenced each
of the resulting fragments. He then used these overlapping fragments to recon-
struct the entire sequence, exactly like in the DNA sequencing “break - read the
fragments - assemble” method today:

Gly Ile Val Glu
Ile Val Glu Gln
Gln Cys Cys Ala
Gly Ile Val Glu Gln Cys Cys Ala

Edman degradation that chopped and sequenced one terminal amino acid at a time
became the dominant protein sequencing method for the next 20 years, and by the
late 1960s protein sequencing machines were on the market.

Sanger’s protein sequencing method influenced the work on RNA sequencing.
The first RNA was sequenced in 1965 with the same “break - read the fragments -
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assemble” approach. It took Holley and collaborators at Cornell University seven
years to determine the sequence of 77 nucleotides in tRNA. For many years af-
terward DNA sequencing was done by first transcribing DNA to RNA and then
sequencing RNA.

DNA sequencing methods were invented independently and simultaneously in
Cambridge, England and Cambridge, Massachusetts. In 1974 Russian scientist
Andrey Mirzabekov was visiting Walter Gilbert’s lab at Harvard University and
found a way to selectively break DNA at A and G. Later on, Maxam and Gilbert
found a method to break DNA at every C and T. After measuring the lengths of the
resulting fragments in four separate reactions, they were able to sequence DNA.

Sanger’s method takes advantage of how cells make copies of DNA. Cells copy
DNA letter by letter, adding one base at a time; Sanger realized that he could make
a ladder of DNA fragments of different sizes if he “starved” the reaction of one of
the four bases needed to make DNA. The cell would copy the DNA until the point
where it ran out of one of the bases. For a sequence ACGTAAGCTA, starving at
T would produce the fragments ACG and ACGTAAGC. By running four starva-
tion experiments for A, T, G, and C and separating the resulting DNA fragments
by length, one can read DNA. Later Sanger found chemicals that were inserted in
place of A, T, G, or C but caused a growing DNA chain to end, preventing further
growth. As a result, by 1977 two independent DNA sequencing techniques were
developed (Sanger et al., 1977 [297] and Maxam and Gilbert, 1977 [233]) that cul-
minated in sequencing of a 5,386-nucleotide virus and a Nobel Prize in 1980. Since
then the amount of DNA sequencing data has been increasing exponentially, and
in 1989 the Human Genome Project was launched. It is aimed at determining the
approximately 100,000 human genes that comprise the entire 3 billion nucleotides
of the human genome. Genetic texts are likely to become the main research tools
of biologists over the next decades.

Similar to protein sequencing 50 years ago, modern biologists are able to se-
quence short (300- to 500-nucleotide) DNA fragments which have to be assembled
into continuous genomes. The conventional shotgun sequencing starts with a sam-
ple of a large number of copies of a long DNA fragment (i.e., 50 Kb long). The
sample is sonicated, randomly partitioning each fragment into inserts, and the in-
serts that are too small or too large are removed from further consideration. A
sample of the inserts is then cloned into a vector with subsequent infection of a
bacterial host with a single vector. After the bacterium reproduces, it creates a
bacterial colony containing millions of copies of the vector and its associated in-
sert. As a result, the cloning process results in the production of a sample of a
given insert that is sequenced, typically by the Sanger et al., 1977 [297] method.
Usually, only the first 300 to 500 nucleotides of the insert can be interpreted from
this experiment. To assemble these fragments, the biologists have to solve a tricky
puzzle, not unlike trying to assemble the text of a book from many slips of paper.
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4.2 Overlap, Layout, and Consensus

After short DNA fragments (reads) are sequenced, we want to assemble them to-
gether and reconstruct the entire DNA sequence of the clone (fragment assembly
problem). The Shortest Superstring Problem is an overly simplified abstraction
that does not capture the real fragment assembly problem, since it assumes perfect
data and may collapse DNA repeats. The human genome contains many repeats;
for example, a 300 bp Alu sequence is repeated (with 5-15% variation) about a
million times in the human genome. Fortunately, different copies of these repeats
mutated differently in the course of evolution, and as a result, they are not exact
repeats. This observation gives one a chance to assemble the sequence even in the
presence of repeats.

Another complication is the unknown orientation of substrings in the fragment
assembly problem. The DNA is double-stranded, and which of the two strands
is actually represented by a subclone depends on the arbitrary way the insert is
oriented in the vector. Thus it is unknown whether one should use a substring or
its Watson-Crick complement in the reconstruction.

The earlier sequencing algorithms followed the greedy strategy and merged the
strings together (starting with the strings with the strongest overlaps) until only one
string remained. Most fragment assembly algorithms include the following three
steps (Peltola et al., 1984 [262], Kececioglu and Myers, 1995 [195]):

e Overlap. Finding potentially overlapping fragments.
e Layout. Finding the order of fragments.
e Consensus. Deriving the DNA sequence from the layout.

The overlap problem is to find the best match between the suffix of one se-
quence and the prefix of another. If there were no sequencing errors, then we
would simply find the longest suffix of one string that exactly matches the prefix
of another string. However, sequencing errors force us to use a variation of the
dynamic programming algorithm for sequence alignment. Since errors are small
(1-3%), the common practice is to use filtration methods and to filter out pairs of
fragments that do not share a significantly long common substring.

Constructing the layout is the hardest step in DNA sequence assembly. One can
view a DNA sequence of a fragment as an extensive fingerprint of this fragment
and use the computational ideas from map assembly. Many fragment assembly
algorithms select a pair of fragments with the best overlap at every step. The score
of overlap is either the similarity score or a more involved probabilistic score as
in the popular Phrap program (Green, 1994 [136]). The selected pair of fragments
with the best overlap score is checked for consistency, and if this check is accepted,
the two fragments are merged. At the later stages of the algorithm the collections
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of fragments (contigs)-rather than individual fragments—are merged. The difficulty
with the layout step is deciding whether two fragments with a good overlap really
overlap (i.e., their differences are caused by sequencing errors) or represent a repeat
in a genome (i.e., their differences are caused by mutations).

The simplest way to build the consensus is to report the most frequent character
in the substring layout that is (implicitly) constructed after the layout step is com-
pleted. More sophisticated algorithms optimally align substrings in small windows
along the layout. Alternatively, Phrap (Green, 1994 [136]) builds the consensus
sequence as a mosaic of the best (in terms of some probabilistic scores) segments
from the layout.

4.3 Double-Barreled Shotgun Sequencing

The shotgun sequencing approach described earlier was sequencing cosmid-size
DNA fragments on the order of 50 Kb in the early 1990s. As a result, the Human
Genome Project originally pursued the “clone-by-clone” strategy, which involved
physical mapping, picking a minimal tiling set of clones that cover the genome,
and shotgun-sequencing each of the clones in the tiling set.

DNA sequencing moved toward the entire 1800 Kb H. Influenzae bacterium
genome in mid-1990s. Inspired by this breakthrough, Weber and Myers, 1997 [367]
proposed using the shotgun approach to sequence the entire human genome. A year
later, a company named Celera Genomics was formed with a goal of completing
shotgun sequencing of the human genome by the year 2001.

However, fragment assembly becomes very difficult in large-scale sequencing
projects, such as sequencing the entire fruit fly genome. In this case, the standard
fragment assembly algorithms tend to collapse repeats that are located in different
parts of the genome. Increasing the length of the read would solve the problem,
but the sequencing technology has not significantly improved the read length yet.
To get around this problem, biologists suggested a virtual increase in the length of
the read by a factor of two by obtaining a pair of reads separated by a fixed-size
gap. In this method, inserts of approximately the same length are selected, and
both ends of the inserts are sequenced. This produces a pair of reads (called mates)
in opposite orientation at a known approximate distance from each other.

Repeats represent a major challenge for whole-genome shotgun sequencing.
Repeats occur at several scales. For example, in the human T-cell receptor locus,
there are five closely located repeats of the trypsinogen gene, which is 4 Kb long
and varies 3—5% between copies. These repeats are difficult to assemble since reads
with unique portions outside the repeat cannot span them. The human genome
contains an estimated 1 million Alu repeats (300 bp) and 200,000 LIN E repeats
(1000 bp), not to mention that an estimated 25% of human genes are present in at
least two copies.
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The computational advantage of double-barreled DNA sequencing is that it is
unlikely that both reads of the insert will lie in a large-scale DNA repeat (Roach et
al., 1995 [286]). Thus the read in a unique portion of DNA determines which copy
of a repeat its mate is in.

Double-barreled shotgun sequencing can be further empowered by using STS
maps for fragment assembly. An STS is a unique 300-bp DNA fragment, and the
available STS maps order tens of thousands of STSs along human chromosomes
(Hudson et al., 1995 [173]). Since the approximate distance between consecutive
STSs is known, the positions of STSs can serve as checkpoints in fragment assem-
bly (Weber and Myers, 1997 [367], Myers, 1999 [247]).

The ambitious projects of genomic double-barreled shotgun sequencing raise
a challenge of “finishing” sequencing in the areas that remain uncovered after the
shotgun stage is completed. Any reasonable amount of shotgun sequencing will
leave insufficiently sequenced areas. These areas will include both sequenced ar-
eas with low coverage and gaps of unknown length. Finishing is done by walking
experiments that use primers from the already sequenced contigs to extend a se-
quenced region by one read length. Optimization of DNA sequencing requires
a trade-off between the amount of shotgun sequencing and walking experiments.
Another problem is where to walk in order to meet the minimum coverage criteria.

4.4 Some Other Problems and Approaches

4.4.1 Shortest Superstring Problem

Blum et al., 1994 [37] devised an algorithm that finds a superstring that is no more
than three times the optimal length. Later Breslauer et al., 1997 [48] described an
algorithm with a 2.596 approximation ratio. The question about the approxima-
tion ratio of a simple greedy algorithm that merges a pair of strings with maximum
overlap remains open. No one has produced an example showing that this algo-
rithm produces a superstring more than twice as long as an optimal one. Thus it is
conjectured that the greedy algorithm is a 2-approximation.

4.4.2 Finishing phase of DNA sequencing

The minimum requirement for production of accurate DNA sequences is to have at
least three clones covering every DNA position and to use majority rule in consen-
sus construction. However, every genomic sequencing project is likely to result in
DNA fragments with low clone coverage. Once the locations of these regions have
been established, there is a need for a further finishing phase that is usually done
by genome walking. The set of sequenced DNA reads defines a position coverage
that is the number of reads covering position x in DNA. Given a requirement of k-
fold redundant coverage, the goal of the finishing phase is to find a minimum set of
walking-sequenced reads increasing the coverage to k for every position (Czabarka
et al., 2000 [78]).






Chapter 5

DNA Arrays

5.1 Introduction

When the Human Genome Project started, DNA sequencing was a routine but
time-consuming and hard-to-automate procedure. In 1988 four groups of biolo-
gists independently and simultaneously suggested a completely new sequencing
technique called Sequencing by Hybridization (SBH). SBH involves building a
miniature DNA array (also known as DNA chips) containing thousands of short
DNA fragments attached to a surface. Each of these short fragments reveals some
information about an unknown DNA fragment, and all these pieces of informa-
tion combined together are supposed to sequence DNA fragments. In 1988 almost
nobody believed that the idea would work; both biochemical problems (synthesiz-
ing thousands of short DNA fragments on the array) and combinatorial problems
(sequence reconstruction by array output) looked too complicated. Shortly after
the first paper describing DNA arrays was published, Science magazine wrote that
given the amount of work involved in synthesizing a DNA array, “it would sim-
ply be substituting one horrendous task for another.” It was not a good prognosis:
a major breakthrough in DNA array technology was made by Fodor et al., 1991
[110]. Their approach to array manufacturing is based upon light-directed polymer
synthesis, which has many similarities to computer chip manufacturing. Using
this technique, building an array with all 4! probes of length [ requires just 4 - [
separate reactions. With this method, in 1994, a California-based biotechnology
company, Affymetrix, built the first 64-Kb DNA array. Shortly afterward building
1-Mb arrays became a routine, and the idea of DNA arrays was transformed from
an intellectual game into one of the most promising new biotechnologies, one that
revolutionized medical diagnostics and functional genomics.

Every probe p in a DNA array queries a target (unknown) DNA fragment by
answering the question of whether p hybridizes with this fragment. Given an un-
known DNA fragment, an array provides information about all strings of length [
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contained in this fragment (/-tuple composition of the fragment) but does not pro-
vide information about the positions of these strings. Combinatorial algorithms are
then used to reconstruct the sequence of the fragment from its [-tuple composition.

The SBH problem can be cast as a Hamiltonian path problem, i.e., the problem
of finding a path in a graph that visits every vertex exactly once. The vertices of
the graph correspond to [-tuples and the edges correspond to pairs of overlapping [-
tuples. However, this reduction does not lead to an efficient SBH algorithm, since
efficient algorithms for the Hamiltonian path problem are unknown. The SBH
problem was actually solved long ago— centuries before the study of molecular bi-
ology even existed—by ... Leonhard Euler, the great 18th-century mathematician.
Of course, he didn’t know he was solving the SBH problem; he was just trying to
solve — the “Seven Bridges of Konigsberg” puzzle. Konigsberg was located on a
few islands connected by seven bridges (Figure 5.1), and Euler got interested in the
problem of finding a path that traveled over each bridge exactly once. The solution
of this problem heralded the birth of graph theory and, two centuries later, resulted
in the solution of many combinatorial problems; SBH is one of them.

Although DNA arrays were originally proposed as an alternative to conven-
tional gel-based DNA sequencing, de novo sequencing with DNA arrays is still a
difficult problem. The primary obstacles in applications of DNA arrays for DNA
sequencing are inaccuracies in interpreting hybridization data: distinguishing per-
fect matches from highly stable mismatches. This is a particularly difficult problem
for short (8- to 10-nucleotide) probes used in de novo sequencing.

As a result, DNA arrays found more applications in re-sequencing and muta-
tion detection (which can be done with longer probes) than in de novo sequencing.
In this case the problem is to find the differences between the (known) wild type
gene and a mutated (useful) gene. Relatively long (20-nucleotide) probes can be
designed to reliably detect mutations and to bypass the still unsolved problem of
distinguishing perfect matches from highly stable mismatches. These probes are
usually variations of probes hybridizing with known DNA fragment. For exam-
ple, each 20-tuple in DNA may correspond to four probes: the wild type, and
three middle-mutations with a central position replaced by one of the alternative
nucleotides. Lipshutz et al., 1995 [226] described such tiling arrays for detect-
ing mutations in the HIV virus. Although no threshold of hybridization signal can
distinguish between perfect and imperfect matches, the distinction between these
signals is achieved if we compare the hybridization intensities of a probe with the
hybridization intensities of its middle-mutations.

Tiling arrays can be used to explore the genetic diversity of entire populations.
Analysis of mutations in human mitochondrial DNA has greatly influenced studies
of human evolution and genetic diseases. These studies involve re-sequencing hu-
man mitochondrial DNA in many individuals to find the mutations. Because of the
cost of conventional sequencing, most of the studies were limited to short hyper-
variable regions totaling ~ 600 base pairs. Chee et al., 1996 [65] designed a tiling
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array for the entire human mitochondrial genome (16,569 base pairs) and were able
to successfully detect three disease-causing mutations in a mtDNA sample from a
patient with Leber’s hereditary optic neuropathy. Prefabricated mtDNA arrays al-
low us to re-sequence DNA in many individuals and provide an efficient and fast
technology for molecular evolution studies (Hacia et al., 1999 [148]). Other appli-
cations of DNA arrays include functional genomics (monitoring gene expression)
and genetic mapping (Golub et al., 1999 [131] , Wang et al., 1998 [349]).
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Figure 5.1: Bridges of Konigsberg.

5.2 Sequencing by Hybridization

DNA Arrays, or DNA Chips, were proposed simultaneously and independently by
Bains and Smith, 1988 [23], Drmanac et al., 1989 [91], Lysov et al, 1988 [228],
and Southern, 1988 [325]. The inventors of DNA arrays suggested using them for
DNA sequencing, and the original name for this technology was DNA Sequencing
by Hybridization (SBH). SBH relies on the hybridization of an (unknown) DNA
fragment with a large array of short probes. Given a short (8- to 30-nucleotide)
synthetic fragment of DNA, called a probe, and a single-stranded target DNA frag-
ment, the target will bind (hybridize) to the probe if there is a substring of the
target that is the Watson-Crick complement of the probe (A is complementary to
T and G is complementary to C). For example, a probe ACCGTGGA will hy-
bridize with a target CCCTGGCACCTA since it is complementary to the substring
TGGCACCT of the target. In this manner, probes can be used to test the unknown
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target DNA and determine its [-tuple composition. The simplest DNA array, C(1),
contains all probes of length [ and works as follows (Figure 5.2):

e Attach all possible probes of length [ (/=8 in the first SBH papers) to the
surface, each probe at a distinct and known location. This set of probes is
called the DNA array.

e Apply a solution containing a fluorescently labeled DNA fragment to the
array.

e The DNA fragment hybridizes with those probes that are complementary to
substrings of length [ of the fragment.

e Detect probes hybridizing with the DNA fragment (using a spectroscopic
detector) and obtain /-tuple composition of the DNA fragment.

e Apply a combinatorial algorithm to reconstruct the sequence of the DNA
fragment from the [-tuple composition.

The “all 8-tuples” DNA array C(8) requires synthesizing 4% = 65, 536 probes.
It did look like a horrendous task in 1988 when DNA arrays were first proposed.

5.3 SBH and the Shortest Superstring Problem

SBH provides information about /-tuples present in DNA, but does not provide in-
formation about the positions of these [-tuples. Suppose we are given all substrings
of length [ of an unknown string (/-tuple composition or spectrum of a DNA frag-
ment). How do we reconstruct the target DNA fragment from this data?

SBH may be considered a special case of the Shortest Superstring Problem. A
superstring for a given set of strings s1, . .., Sy, 1S a string that contains each s; as
a substring. Given a set of strings, finding the shortest superstring is NP-complete
(Gallant et al., 1980 [117]).

Define overlap(s;,s;) as the length of a maximal prefix of s; that matches a
suffix of s;. The Shortest Superstring Problem can be cast as a Traveling Salesman
Problem in a complete directed graph with m vertices corresponding to strings s;
and edges of length —overlap(s;, s;). SBH corresponds to the special case when
all substrings s, ..., s, have the same length. [-tuples p and q overlap if the last
[ — 1 letters of p coincide with the first [ — 1 letters of ¢, i.e., overlap(p,q) =
[ — 1. Given the spectrum S of a DNA fragment, construct the directed graph
H with vertex set S and edge set £ = {(p,q) : pand q overlap}. The graph
H is formed by the lightest edges (of length —(I — 1)) of the previously defined
complete directed graph. There is a one-to-one correspondence between paths that
visit each vertex of H at least once and DNA fragments with the spectrum S. The
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Figure 5.2: Hybridization of TATCCGTTT with DNA array C(4).

spectrum presented in Figure 5.3 yields a path-graph H. In this case, the sequence
reconstruction ATGCAGGTCC corresponds to the only path

ATG - TGC - GCA —- CAG - AGG —- GGT — GTC - TCC

visiting all vertices of H. A path in a graph visiting every vertex exactly once is
called a Hamiltonian path.

The spectrum shown in Figure 5.4 yields a more complicated graph with two
Hamiltonian paths corresponding to two possible reconstructions.
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Sequence reconstruction (Hamiltonian path approach)

S={ ATG AGG TGC TCC GIC GGT GCA CAG |

H

Vertices: I-tuples from the spectrum S. Edges: overlapping l-tuples.

Path visiting ALL VERTICES corresponds to sequence reconstruction ~ ATGCAGGTCC

Figure 5.3: SBH and the Hamiltonian path problem.

For larger DNA fragments, the overlap graphs become rather complicated and
hard to analyze. The Hamiltonian path problem is NP-complete, and no efficient
algorithm for this problem is known. As a result, the described approach is not
practical for long DNA fragments.

5.4 SBH and the Eulerian Path Problem

As we have seen, the reduction of the SBH problem to the Hamiltonian path prob-
lem does not lead to efficient algorithms. Fortunately, a different reduction to the
Eulerian path problem leads to a simple linear-time algorithm for sequence recon-
struction. The idea of this approach is to construct a graph whose edges (rather
than vertices, as in the previous construction) correspond to [-tuples and to find a
path in this graph visiting every edge exactly once. In this approach a graph G on
the set of all (I — 1)-tuples is constructed (Pevzner, 1989 [264]). An (I — 1)-tuple
v is joined by a directed edge with an (I — 1)-tuple w if the spectrum contains an
[-tuple for which the first [ — 1 nucleotides coincide with v and the last [ — 1 nu-
cleotides coincide with w (Figure 5.5). Each probe from the spectrum corresponds
to a directed edge in G but not to a vertex as in H (compare Figures 5.3 and 5.5).
Therefore, finding a DNA fragment containing all probes from the spectrum cor-
responds to finding a path visiting all edges of G, Eulerian path. Finding Eulerian
paths is a well-known and simple problem.

A directed graph G is Eulerian if it contains a cycle that traverses every directed
edge of G exactly once. A vertex v in a graph is balanced if the number of edges
entering v equals the number of edges leaving v: indegree(v) = outdegree(v).
The following theorem gives a characterization of Eulerian graphs:
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Multiple sequence reconstructions (Hamiltonian path approach)

S={ ATG TGG TGC GIG GGC GCA GCG CGT |

H

ATGCGTGGCA

N e

ATGGCGTGCA

Figure 5.4: Spectrum S yields two possible reconstructions corresponding to distinct Hamiltonian
paths.

Theorem 5.1 A connected graph is Eulerian if and only if each of its vertices is
balanced.

The SBH problem is equivalent to finding an Eulerian path in a graph. A vertex
v in a graph is called semi-balanced if |indegree(v) — outdegree(v)| = 1. The
Eulerian path problem can be reduced to the Eulerian cycle problem by adding an
edge between two semi-balanced vertices.

Theorem 5.2 A connected graph has an Eulerian path if and only if it contains at
most two semi-balanced vertices and all other vertices are balanced.

To construct an Eulerian cycle, start from an arbitrary edge in G and form a
“random” trail by extending the already existing trail with arbitrary new edges.
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This procedure ends when all edges incident to a vertex in G are used in the trail.
Since every vertex in G is balanced, every such trail starting at vertex v will end at
v. With some luck the trail will be Eulerian, but this need not be so. If the trail is
not Eulerian, it must contain a vertex w that still has a number of untraversed edges.
Note that all vertices in the graph of untraversed edges are balanced and, therefore,
there exists a random trail starting and ending at w and containing only untraversed
edges. One can now enlarge the random trail as follows: insert a random trail of
untraversed edges from w at some point in the random trail from v where w is
reached. Repeating this will eventually yield an Eulerian cycle. This algorithm can
be implemented in linear time (Fleischner, 1990 [108]).

Sequence reconstruction (Eulerian path approach)

S={ATG, TGG, TGC, GTG, GGC, GCA, GCG , CGT}
Vertices correspond to (I-1)-tuples.
Edges correspond to I-tuples from the spectrum

GT CG
AT TG GC CA
G
GT CG GT CG
AT TG GC CA AT G GC CA
G G
ATGGCGTGCA ATGCGTGGCA

Paths visiting ALL EDGES correspond to sequence reconstructions

Figure 5.5: SBH and the Eulerian path problem.

The number of different sequence reconstructions in SBH is bounded by the
number of Eulerian cycles (paths). The formula for the number of Eulerian cycles
in a directed graph is known as the BEST theorem (Fleischner, 1990 [108]). Let G
be a directed Eulerian graph with adjacency matrix A = (a;;), where a;; = 1 if
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there is an edge from vertex ¢ into vertex j in G, and a;; = 0 otherwise (Figure 5.6).
Define a matrix M by replacing the i-th diagonal entry of — A by indegree(i) for
all i. An i-cofactor of a matrix M is the determinant det(M;) of the matrix M;,
obtained from M by deleting its ¢-th row and s-th column. All cofactors of the
matrix M have the same value, denoted ¢(G).

Theorem 5.3 The number of Eulerian cycles in an Eulerian graph G(V, E) is
c(G) - H (degree(v) —1)!

veEV

There exists an easy way to check whether for a given spectrum there exists
a unique sequence reconstruction. Decompose an Eulerian graph G into simple
cycles C1, ..., (Y4, i.e., cycles without self-intersections. Each edge of G is used
in exactly one cycle (vertices of G may be used in many cycles). For these cycles,
define the intersection graph G on t vertices C1,...,C; where C; and C; are
connected by k edges if and only if they have k vertices in common.

Theorem 5.4 Graph G has only one Eulerian cycle if and only if the intersection
graph G is a tree.

0100 1 -10 0
0011 0 2 -1-1
G A‘1100M‘-1-120
0010 00 -11

Figure 5.6: Each cofactor of the matrix M is 2. The number of Eulerian cycles in graph G is
2-0!-11-11-0'=2.

The Eulerian path approach works in the case of error-free SBH experiments.
However, even in this case, multiple Eulerian paths may exist, leading to multiple
reconstructions. For real experiments with DNA arrays, the errors in the spectra
make reconstruction even more difficult. In addition, repeats of length [ complicate
the analysis since it is hard to determine the multiplicity of [-tuples from hybridiza-
tion intensities.

Figure 5.7 presents the same spectrum as in Figure 5.5 with two trinucleotides
missing (false negative) and two possible reconstructions (only one of them is cor-
rect). The situation becomes even more complicated in the case of non-specific
hybridization, when the spectrum contains [-tuples absent in a target DNA frag-
ment (false positive). Several biochemical approaches to the elimination of non-
specific hybridization in SBH experiments attempt to better discriminate between
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perfect and imperfect matches. However, DNA array hybridization data are still
much more ambiguous than computer scientists and biologists would like them to
be.

Sequence reconstruction (false negative errors)

S={ATG, ***, TGC,GTG,GGC,GCA, ***, CGT}

GT CG
TG GC

AT CA

G

Figure 5.7: Sequence reconstruction in the case of missing I-tuples (false negative).

5.5 Probability of Unique Sequence Reconstruction

What is probability that a DNA fragment of length n can be uniquely reconstructed
by a DNA array C'(1)? Or, in other words, how big must [ be to uniquely reconstruct
a random sequence of length n from its [-tuple spectrum? For the sake of simplic-
ity, assume that the letters of the DNA fragment are independent and identically
distributed with probability p = % for each of A, T, G, andC'.

A crude heuristic is based on the observation that [-tuple repeats often lead
to non-unique reconstructions. There are about (%)p' potential repeats of length
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[ corresponding to pairs of positions in the DNA fragment of length n. Solving
(3)p! = 1 yields a rough estimate I = log. (%) for the minimal probe length

P
needed to reliably reconstruct an n-letter sequence from its [-tuple spectrum. The
maximal length of DNA fragment that can be reconstructed with a C'([) array can

be roughly estimated as V2 - 4!

A more careful analysis reveals that [-tuple repeats are not the major cause
of non-unique reconstructions (Dyer et al., 1994 [94]). The most likely cause
is an interleaved pair of repeated (I — 1)-tuples (repeats of AGTC and TTGG
in Figure 5.9 interleave). Therefore, repeats of length [ — 1 should be consid-
ered. Another observation is that repeats may form clumps, and something like
“maximal repeats” of length [ — 1 should be considered. The expected number
of such repeats is about A ~ (3)(1 — p)p'~'. A Poisson approximation takes the

form P{k repeats} = e*/\)‘k—f. Arratia et al., 1996 [12] showed that when there
are k repeats, the probability of having no interleaved pair is ~ %Z)C:&, where

Ck = k%—l (Qkk ) is the k-th Catalan number. Averaging over k reveals that the prob-

ability of unique reconstruction for an n-letter sequence from its /-tuple spectrum
is approximately

& @k o Mk +1)!

Arratia et al., 1996 [12] transformed these heuristic arguments into accurate esti-
mates for resolving power of DNA arrays.

5.6 String Rearrangements

Figure 5.8 presents two DNA sequences with the same SBH spectrum. The graph
G corresponding to the spectrum in Figure 5.8 contains a branching vertex TG. We
don’t know which 3-tuple (TGC or TGG) follows ATG in the original sequence
and cannot distinguish between the correct and the incorrect reconstructions. An
additional biochemical experiment (for example, hybridization of a target DNA
fragment with ATGC) would find the correct reconstruction (the sequence at the
top of Figure 5.8 contains ATGC, while the sequence at the bottom does not).
Additional biochemical experiments to resolve branchings in the reconstruc-
tion process were first proposed by Southern, 1988 [325] (using a longer probe for
each branching vertex) and Khrapko et al., 1989 [197] (continuous stacking hy-
bridization). Continuous stacking hybridization assumes an additional hybridiza-
tion of short probes that continuously extends duplexes formed by the target DNA
fragment and the probes from the array. In this approach, additional hybridization
with an m-tuple on the array C(I) provides information about some (I + m)-tuples



76 CHAPTER 5. DNA ARRAYS
S={ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}

GT CG
first
reconstruction:
ATGCGTGGCA O CA
AT TG GC
GG
GT CG
second
reconstruction:
ATGGCGTGCA CA
AT TG GC
GG

An additional experiment with ATGC reveals the correct reconstruction:

if ATGC hybridizes with a target - ATGCGTGGCA
if ATGC does not hybridize with a target - ATGGCGTGCA

Figure 5.8: Additional biochemical experiments resolve ambiguities in sequence reconstruction.

contained in the target DNA sequence. Computer simulations suggest that con-
tinuous stacking hybridization with only three additional experiments provides an
unambiguous reconstruction of a 1000-bp fragment in 97% of cases.

To analyze additional biochemical experiments, one needs a characterization
of all DNA sequences with the given spectrum. In the very first studies of DNA
arrays, biologists described string rearrangements that do not change the spectrum
of the strings (Drmanac et., 1989 [91]). However, the problem of characterizing
all these rearrangements remained unsolved. Ukkonen, 1992 [340] conjectured
that every two strings with the same [-tuple spectrum can be transformed into each
other by simple transformations called transpositions and rotations (Figure 5.9).
In the following, by “a string written in [-tuple notation,” we mean a string writ-
ten as a sequence of its [-tuples. For example, the 2-tuple notation for the string
ATGGGC is AT TG GG GG GC. Ukkonen, 1992 [340] conjectured that any two
strings with the same l-tuple composition can be transformed into each other by
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Equivalent sequence transformations

gta AGTC]cgggc [TTGG tagaAGTClaaattta[ITGG at

gta AGTC TGG taga AGTC|cgggc[TTGG at

transposition

AGTCgtaTTGG tagaAGTC

TTGG tagaAGTCgtaTTGG

rotation

Figure 5.9: Ukkonen’s transformations (I = 5).

simple operations called transpositions and rotations.
If a string

(written in (I — 1)-tuple notation) contains interleaving pairs of (I — 1)-tuples z
and z, then the string ...z ... z...z...z... where ... and ... change places is

called a transposition of s. If s = ... x...x ... x ..., where z is an (I — 1)-tuple,
wealsocall ...z ... x...x...atransposition of s. If a string

S=2X...Z2 ... T
~—

(written in (I — 1)-tuple notation) starts and ends with the same (I — 1)-tuple z,
then the string 2z ... z...z is called a rotation of s.

Clearly, transpositions and rotations do not change [-tuple composition.

Theorem 5.5 (Pevzner, 1995 [267]) Every two strings with the same [-tuple com-
position can be transformed into each other by transpositions and rotations.
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Proof Strings with a given [-tuple composition correspond to Eulerian paths in
the directed graph G (Figure 5.10). Graph G either is Eulerian or contains an
Eulerian path. Notice that only if G is Eulerian does there exist a rotation of the
corresponding string. In this case the rotations correspond simply to a choice of
the initial vertex of an Eulerian cycle.

Substitute each directed edge ¢ = (v, w) in G with two (undirected) edges,
(v,a) colored white and (a,w) colored black (Figure 5.10). Obviously each alter-
nating path in the new graph G* is a directed path in G and vice versa. According
to theorem 2.2, order exchanges and reflections generate all Eulerian paths in G*
and, therefore, all strings with a given [/-tuple composition. Notice that Ukkonen’s
transpositions correspond to order exchanges in G*. On the other hand, every cycle
in G* is even; therefore there are no order reflections in G*. This proves Ukkonen’s
conjecture that transpositions and rotations generate all strings with a given [-tuple
composition. ]

5.7 2-optimal Eulerian Cycles

A 2-path (v1,v9,v3) in a directed graph is a path consisting of two directed edges
(v1,v2) and (ve, v3). Every Eulerian cycle in a graph G(V, E) defines a set of | E|
2-paths corresponding to every pair of consecutive edges in this cycle. A set of |E|
2-paths is valid if every edge of E appears in this set twice: once as the beginning
of a 2-path and once as the end of a 2-path. Every valid set of 2-paths defines a
decomposition of E into cycles. A valid set of 2-paths defining an Eulerian cycle
is called an Euler set of 2-paths.

Let G be a directed Eulerian graph with a weight w(v;v9v3) assigned to every
2-path (vyv9v3) in G. The weight of an Eulerian cycle C = vy . .. vy, is the sum of
the weights of its 2-paths w(C) = ™7 w(v;vi11vi42) (We assume that v, = v;
and vy, 41 = v2). The 2-optimal Eulerian cycle problem is to find an Eulerian cycle
of maximal weight (Gusfield et al., 1998 [147]).

Let

C=..70W0...0yw...00cW...
N——

(S433
S

Y

be an Eulerian cycle in G traversing vertices = and y in an interleaving order. An
order exchange transforming C into

YWw...00W. .. TYw . . .

S>>

C'=...Tzw...

{

is called an Euler switch of C at z,y. Every two Eulerian cycles in a directed
graph can be transformed into each other by means of a sequence of Euler switches
(Pevzner, 1995 [267]).
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I-tuple composition: ATG, AGC, ACT, TGA, TGG, GAG, GGG, GGC, GCC, CAC, CTG

CT/M CA

%)
GC CC

Eulerian directed graph

C

AT TG

240

GA AG

Two alternating Eulerian paths correspond to two sequence reconstructions

?C\' cA cr ?c\' cA
T @”?

I PO

CcC AT CC
GA (... .—@AG GA (... .—@AG
A TG G GC AC TG A GC C A TG A GC AC TG G GC C

Figure 5.10: Ukkonen’s conjecture. The sequence (Eulerian path) on the right is obtained from
the sequence on the left by a transposition defined by the interleaving pairs of dinucleotides TG and
GC.

We denote an Euler switch of C at z:,y as s = s(z,y) and write C' = s - C.
An Euler switch s of C' at z, y transforms four 2-paths in C'

— = = A

VTW, VYW, VTW vyw
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into four 2-paths in C’

~ —

vrw, Vyw, VW, ﬁyﬁ).
Denote
Ag(s) = w(vzw) + w(vzrw) — w(vzw) — w(vTW)

= w(vyw) + w(ﬁy{b) — w(vyw) — w(@y[b)

and A(s) = Ayz(s)+Ay(s). A(s) is the change in the weight of the Eulerian cycle
C' as compared to C'. An Euler switch s is increasing for cycle C if w(s - C) >
w(C).

Consider a valid set of 2-paths S containing four 2-paths:

—_ = = A

A switch of this set at vertices z, y is a new valid set of 2-paths that contains instead
of the above four 2-paths the following ones:

~ —

AR = A =

VW, VYW, VLW, VYWw.

If S is an Euler set of 2-paths then a switch of S is called non-Euler if it transforms
S into a non-Euler set of 2-paths. For example, a switch at x,y of a set of 2-

aths corresponding to the Euler cycle ... 0zw...0zW ... 0yw...0yw... is a
p p g y VLW. .. 070 ... 0YW...0Yw

non-Euler switch.
Gusfield et al., 1998 [147] studied the 2-optimal Eulerian cycle problem in
2-in-2-out directed graphs, i.e., in graphs with maximal degree 2.

Theorem 5.6 Every two Eulerian cycles in a 2-in-2-out graph can be transformed
into each other by means of a sequence of Euler switches si,...s; such that
A(s1) > A(s2) > ... > Alsy).

Proof Let sq,...,s; be a sequence of Euler switches transforming C' into C* such
that the vector (A(sy1), A(s2), ..., A(sy)) is lexicographically maximal among all
sequences of Euler switches transforming C into C*. If this vector does not satisfy
the condition A(sy) > A(sg) > ... > A(s), then A(s;) < A(siqq1) for 1 <
i <t—1 LetC' = s;_1---5.C. If the switch s;,1 is an Euler switch in C’
(i.e., change of the system of 2-paths in C’ imposed by s;,1 defines an Eulerian
cycle), then sy,...,S;_1,5;+1 is lexicographically larger than sy,...,s;-1,5;, a
contradiction. (Pevzner, 1995 [267] implies that there exists a transformation of
C into C* with the prefix si,...s; 1,8;4+1.) Therefore, the switch s;y1 at =,y
is not an Euler switch in C’. This implies that the occurrences of z and y in
C' are non-interleaving: C' = ...x...x...y...y.... On the other hand, since
the switch s; at z,u is an Euler switch in C’, the occurrences of z and u in C’
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are interleaving: C' = ...z...u...z...u.... We need to consider all kinds of
interleaving arrangements of the four vertices x,y, z, and u in C’. The condition
that s;11 is an Euler switch in s; - C’ (i.e., s; moves vertices z and y in such a way
that they become interleaving in s; - C’) makes most of these cases invalid (in fact,
this is the key idea of the proof). It is easy to see that all valid arrangements of
z,y, 2z, and u in C" are “equivalent” to the arrangement

In this case s; “inserts” x between the occurrences of y, thus making = and y
interleaving:

!
$;-C'=...2. .. 0...0...Y. ... T...U...Y...

Note that in this case the switches s" at z,y and s” at z, u are also Euler switches
in C'. Moreover, A(s;) + A(sit1) = A(s') + A(s") Without loss of generality,
assume that A(s') > A(s"). Then

A(s") + A(") _ Alsi) + Alsiyr)

!
> —
Als) 2 2 2

> A(si)

Therefore, the vector (A(s1),...,A(s;—1),A(s")) is lexicographically larger than
the vector (A(sy),...,A(si—1),A(s;)), a contradiction. ]

Theorem 5.6 implies the following:

Theorem 5.7 (Gusfield et al., 1998 [147]) If C' is an Eulerian cycle that is not
2-optimal then there exists an increasing Euler switch of C.

The proof of theorem 5.6 also implies that in the case when all weights of
2-paths are distinct, a greedy algorithm choosing at every step the switch with
maximal weight leads to a 2-optimal Eulerian cycle.

5.8 Positional Sequencing by Hybridization

Although DNA arrays were originally proposed for DNA sequencing, the resolv-
ing power of DNA arrays is rather low. With 64-Kb arrays, only DNA fragments
as long as 200 bp can be reconstructed in a single SBH experiment. To improve
the resolving power of SBH, Broude et al., 1994 [49] suggested Positional SBH
(PSBH), allowing (with additional experimental work) measurement of approxi-
mate positions of every [-tuple in a target DNA fragment. Although this makes the
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reconstruction less ambiguous, polynomial algorithms for PSBH sequence recon-
struction are unknown. PSBH can be reduced to computing Eulerian path with an
additional restriction that the position of any edge in the computed Eulerian path
should be in the range of positions associated with the edge.

PSBH motivates the Positional Eulerian Path Problem. The input to the Po-
sitional Eulerian Path Problem is an Eulerian graph G(V, E) in which every edge
is associated with a range of integers and the problem is to find an Eulerian path
€1,...,e g in G such that the range of e; contains i:

Positional Eulerian Path Problem Given a directed multigraph G(V, E) and an
interval I, = {l., he}, le < he associated with every edge e € E, find an Eulerian
path ey, ..., e in G such that [, <7 < b, for 1 <i < |E]|.

Hannenhalli et al., 1996 [156] showed that the Positional Eulerian Path Prob-
lem is NP-complete. On a positive note, they presented polynomial algorithms to
solve a special case of PSBH, where the range of the allowed positions for any
edge is bounded by a constant (accurate experimental measurements of positions
in PSBH).

Steven Skiena proposed a slightly different formulation of the PSBH problem
that models the experimental data more adequately. For this new formulation, the
2-optimal Eulerian path algorithm described in the previous section provides a so-
lution.

Experimental PSBH data provide information about the approximate positions
of [-tuples, but usually do not provide information about the error range. As a re-
sult, instead of an interval {l., h} associated with each edge, we know only the ap-
proximate position 1, associated with each edge. In a different and more adequate

formulation of the PSBH problem, the goal is to minimize Zli'o |(Me;py — Me;)|s
where me, = 0 and me,, ., = |E| + 1. For every pair of consecutive edges e, ¢’

in G, define the weight of the corresponding 2-path as |m, — m.|. The PSBH
problem is to find a 2-optimal Eulerian path of minimal weight.

5.9 Design of DNA Arrays

Since the number of features on a DNA array is fixed, we are interested in the
design of a smallest set of probes sufficient to sequence almost all strings of a
given length. Suppose that the number of positions m on a DNA array is fixed
and the problem is to devise m probes to provide the maximum resolving power of
a DNA array. It turns out that the uniform arrays C(I) containing all [-tuples are
rather redundant. Pevzner and Lipshutz, 1994 [271] introduced new arrays with
improved resolving power as compared to uniform arrays. These arrays are based
on the idea of pooling probes into multiprobes: synthesizing a set of diverse probes
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at every address on the array. A multiprobe is a set of probes located at a single
address of an array. A DNA fragment hybridizes with a multiprobe if it hybridizes
with at least one probe in the multiprobe. For example, WW S is a multiprobe
consisting of eight probes:

AAG, AAC, ATG, ATC, TAG, TAC, TTA, TTC

(W stands for A or T', while S stands for G or C'). RY R is a multiprobe consisting
of eight probes:

AT A, ATG, ACA, ACG,GTA,GTC,GCA,GCG

(R stands for purines A or G, while Y stands for pyrimidines T or C). TX G is a
multiprobe consisting of four probes:

TAG,TTG,TGG,TCG

(X stands for any nucleotide-A, T, G, or ().

An array is now defined as a set of multiprobes C, each multiprobe being a
set of probes. The memory |C| of the array is the number of multiprobes in C.
Each DNA sequence F' defines a subset of array C' consisting of the multiprobes
hybridizing with F' (spectrum of F in C):

Fo = {p € C : multiprobe p contains a probe occurring in sequence F'}
( F stands for the sequence complementary to F).

The binary array Cyin(l) is the array with memory |Cyin(1))] = 2 - 2! - 4
composed of all multiprobes of two kinds:

{W.S} (WS}, (W, S},{N}and {RY} {R.Y}, ... {RY},{N}
l l

where N is a specified nucleotide A, T, G, or C. Each probe is a mixture of 2/ probes
of length [ + 1. For example, the array C;,, (1) consists of the 16 multiprobes

WA,WC,WG,WT,SA,SC,SG, ST, RA, RC, RG,RT,Y A,YC,YG,YT.

Each multiprobe is a pool of two dinucleotides (Figure 5.11).
The gapped array Cyqp (1) (Pevzner et al., 1991 [272]) is the array with memory

|Cyap(l)| = 2 - 4" composed of all multiprobes of two kinds:

NlNQ...Nl anleNg...Nl,lXX...XNl
-1
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Binary arrays

R=(AG) Y=(T.C)

W=AT} | A || T ]

s=(6,c) || G | | ¢ |]

every string of length 1in {W,S} or {R,Y} alphabet
is a pool of 21 strings in {A,T,G,C} alphabet

A A

W,... W T R,... R T
{51 {sHg) ey M)

[ times C [ times C

WS - sub-array RY - sub-array

Figure 5.11: Binary arrays.

where IV; is a specified base and X is an unspecified base. Each multiprobe of the
first kind consists of the only probe of length [; each multiprobe of the second kind
consists of 4/~ probes of length 2/ — 1.

The alternating array Cgy;(1) is the array with memory |Cy (1) = 2 - 4' com-
posed of all multiprobes of two kinds:

NlXNQX . NZ_QXNl_lXNl and NlXNQX . Nl—ZXNl—lNl-
Each multiprobe of the first kind consists of 4*~! probes of length 2k — 1, while
each multiprobe of the second kind consists of 4*~2 probes of length 2k — 2.
5.10 Resolving Power of DNA Arrays

Consider the sequence F' = X ... X1 XmXm+1-.. X, and assume that its
prefix F, = X1 X2...X,, has already been reconstructed. We will estimate the
probability of unambiguously extending the prefix to the right by one nucleotide.
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Since F}, is a possible reconstruction of the first m nucleotides of F',
(F m)C C Fe.

There are four ways of extending F,,: F,,, A, F,,,T, F,,,G, and F,,,C. We define an
extension of F},, by a nucleotide N as a possible extension if

(FrN)c C Fo. (5.1

We call the sequence F' extendable after m with respect to array C' if the condition
(5.1) holds for exactly one of the four nucleotides; otherwise F' is called non-
extendable.

Define ¢(C, F,m) as

€(C,F,m) = 0, if F 1s.extendable after m with respect to the array C'

1, otherwise
The branching probability p(C,n,m) is the probability that a random n-sequence
is non-extendable after the m-th nucleotide upon reconstruction with array C, i.e.,

1

p(C,n,m) = 4_71, ZE(CvFam)
F

where the sum is taken over all 4" sequences F’ of length n.

Let us fix m and denote p(C,n)=p(C,n,m). Obviously, p(C,n) is an in-
creasing function of n. For a given probability p, the maximum n satisfying
the condition p(C,n) < p is the maximal sequence length 1., (C,p) allow-
ing an unambiguous extending with branching probability below p. We demon-
strate that for uniform arrays, 7mqe,(C,p) & 3 - |C| - p, while for binary arrays

Nmaz(C,p) = \/% -|C| - \/p. Therefore, the new arrays provide a factor %

improvement in the maximal sequence length as compared to the uniform arrays.
For p = 0.01 and binary 64-Kb arrays, n,q; =~ 1800, versus nq.; ~ 210 for
uniform arrays.

5.11 Multiprobe Arrays versus Uniform Arrays

Consider the sequence F' = X ... X1 XmXm+1-.. X, and assume that its
prefix Fp, = X;...X,, has already been reconstructed. Denote the last (I — 1)-
tuple in £, as V = X119 ... Xy, For the sake of simplicity we suppose I < m
and | < n < 4 =|C(1)].

The sequence F' is non-extendable after m using C(I) if the spectrum F
contains a V'Y; [-tuple (here, Y; is an arbitrary nucleotide different from X,,41).
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Therefore, p(C(l),n) = 1 — P{VY1,VY2, VY3 & Fg(}. Assume that the prob-

ability of finding each of the 4/ I-tuples at a given position of F is equal to %. The
probability that the spectrum of F' does not contain V'Y; can be roughly estimated
as (1 — ﬁ)"‘l“ (ignoring potential self-overlaps (Pevzner et al., 1989 [269]) and
marginal effects). The probability that the spectrum of F' contains neither VY7, nor

V'Ys, nor VY3 can be estimated as ((1 — ﬁ)(”_l“))?’. Therefore

p(C(l),n) =1 — P{VY1,VYy, VY3 & F} =

1 3n 3n
1—((1— )"y 2 = . 2
Therefore )
nmaw(C(l)ap) ~ g : |C(l)|p

Now we estimate p(Ch;y, (1), n) for n < [|Chin(1)||. Denote the last [-tuple in
the prefix Fy, as V = Xy, 141, .., Xm, and let Viyrg and Viy be V written in the
{W,S} and {R, Y} alphabets, respectively. In this case the ambiguity in recon-
struction arises when the spectrum F, . ;) contains both a VyygY; multiprobe and
a Vry'Y; multiprobe for Y; # X, 1. Assume that the probability of finding a mul-
tiprobe from Cy;,, (1) at a given position of F' is % and ignore self-overlaps. Then
the probability that the spectrum of F' does not contain Vy;gY; can be roughly es-
timated as (1 — ﬁ)”*l. Therefore the probability that the spectrum of F' contains
both VY7 and Vgiy Y] is

1

G-

h (1= (1 - m)n_l) ol ol
Similarly to (5.2) we derive the following:
P(Coin(l),n) = P{VwsY; € Fg,, 1y and VryY; € Fg,, 1y} =
2
4.20.4.2
Therefore, for Cy;y, (1),

)3z3- no.on _ 12n?
4-20 4.2 |Chin(D)]?

1-(1—
e (Coin(1), p) ~ \/% - |Chin DIV

Next we estimate the branching probability of gapped arrays Cyqp(1). Let m >
20 — 1 and n < [|Cyep(l)]|. Denote U = Xy 9144 ... Xppi42. In this case
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the ambiguity arises when the spectrum F, ;) contains both a V'Y; [-multiprobe
anda U XX ...XY; (2l — 1)-multiprobe (here, Y; # X,,+1). Assume that the

-1
probability of finding each multiprobe from Cj,,(l) at a given position of F is
ﬁ and ignore self-overlaps. Then the probability that the spectrum of F' does
not contain VY7 can be roughly estimated as (1 — %)"*l. The probability that
the spectrum of F' does not contain U X X ... X Y] can be roughly estimated as

—_———
-1

(1— %)"*(21*1)“. Therefore, the probability that the spectrum of F’' contains both
VYiandU XX ... XY is

%/_/

-1

1
4l

_ 1. n?
P (- (1 )

1-(1-

Similarly to (5.2), we derive the following:
P(Cyap(l),n) = P{VY; € F¢,, o) and UY; € S(Cyap(l), F)} ~

n? n o n 12n2

l1-(1—-—)P 3 - —=—
( 4!.41) 3 gt 4l |Cgap(l)|2

Similar arguments demonstrate that

1

nmax(calt(l)ap) ~ \/ﬁ ' |Calt(l)|\/§‘

5.12 Manufacture of DNA Arrays

DNA arrays can be manufactured with the use of V. LSIPS, very large scale im-
mobilized polymer synthesis (Fodor et al., 1991 [110], Fodor et al., 1993 [109]). In
VLSIPS, probes are grown one nucleotide at a time through a photolithographic
process consisting of a series of chemical steps. Every nucleotide carries a pho-
tolabile protection group protecting the probe from further growing. This group
can be removed by illuminating the probe with light. In each chemical step, a pre-
defined region of the array is illuminated, thus removing a photolabile protecting
group from that region and “activating” it for further nucleotide growth. The entire
array is then exposed to a particular nucleotide (which bears its own photolabile
protecting group), but reactions only occur in the activated region. Each time the
process is repeated, a new region is activated and a single nucleotide is appended
to each probe in that region. By appending nucleotides to the proper regions in the
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appropriate sequence, it is possible to grow a complete set of /-length probes in as
few as 4 -[ steps. The light-directed synthesis allows random access to all positions
of the array and can be used to make arrays with any probes at any site.

The proper regions are activated by illuminating the array through a series of
masks, like those in Figure 5.12. Black areas of a mask correspond to the region
of the array to be illuminated, and white areas correspond to the region to be shad-
owed. Unfortunately, because of diffraction, internal reflection, and scattering,
points that are close to the border between an illuminated region and a shadowed
region are often subject to unintended illumination. In such a region, it is uncertain
whether a nucleotide will be appended or not. This uncertainty gives rise to probes
with unknown sequences and unknown lengths, that may hybridize to a target DNA
strand, thus complicating interpretation of the experimental data. Methods are be-
ing sought to minimize the lengths of these borders so that the level of uncertainty
is reduced. Two-dimensional Gray codes, described below, are optimal VLSTPS
masks that minimize the overall border length of all masks.

Figure 5.12 presents two C'(3) arrays with different arrangements of 3-tuples
and masks for synthesizing the first nucleotide A (only probes with first nucleotide
A are shown). The border length of the mask at the bottom of Figure 5.12 is sig-
nificantly smaller than the border length of the mask at the top of Figure 5.12. We
are trying to arrange the probes on the array C(I) in such a way that the overall
border length of all 4 x [ masks is minimal. For two [-tuples x and y, let §(z, y) be
the number of positions in which x and y differ. Clearly, the overall border length
of all masks equals 2" §(z,y), where the sum is taken over all pairs of neigh-
boring probes on the array. This observation establishes the connection between
minimization of border length and Gray codes.

An [-bit Gray code is defined as a permutation of the binary numbers between
0 and 2! — 1 such that neighboring numbers have exactly one differing bit, as do the
first and last numbers. For example, the 4-bit binary reflected Gray code is shown
below:

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15

This Gray code can be generated recursively, starting with the 1-bit Gray code

Gy = {0,1},
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Masks for VLSIPS

AGA
AAA| AGC
ATG ATT
ATC|ACG AAT
AGT
ATA AAC] AAG
ACC AGG
ACT ACA

border length=58

AAA| AAT|AAG AAC

ATA|ATT ATG ATC

ACA|ACT [ACG ACC

AGAJAGT AGG ACC

border length=16

Figure 5.12: Two masks with different border lengths.

as follows. For an [-bit Gray code

Gr={91,92, - 9211, 92},
define an ([ + 1)-bit Gray code as follows:

G = {Ogla 092, -y go1 _1, 0991, 1g91, 1G9 _q, ..., 1g2, 191}-

The elements of GG} are simply copied with Os added to the front, then reversed with
1s added to the front. Clearly, all elements in ;4 are distinct, and consecutive
elements in G4 differ by exactly one bit.

We are interested in a two-dimensional Gray code composed of strings of
length [ over a four-letter alphabet. In other words, we would like to generate a
2/-by-2! matrix in which each of the 4' [-tuples is present at a position (i, 5), and
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each pair of adjacent [-tuples (horizontally or vertically) differs in exactly one posi-
tion. Such a Gray code can be generated from the one-digit two-dimensional Gray
code

Gi= AT
G C

as follows. For an [-digit two-dimensional Gray code

Gl: 91,1 91,21

92l71 92l72l

define the (I + 1)-digit two-dimensional Gray code as

Giri= Agip .. Agig Tgio ... Tgin
Agsy ... Aguy Tguo ... Tgo,
Gy oo Ggggr Cgygr ... Cgy
Ggry ... Goiy Caora ... Capy

In particular,

Go= AA AT TT TA
AG AC TC TG
GG GC CC CG
GA GT CT CA

The elements of G} are copied into the upper left quadrant of GG;y1, then re-
flected horizontally and vertically into the three adjacent quadrants. As, T's, C's,
and G's are placed in front of the elements in the upper left, upper right, lower right,
and lower left quadrant, respectively.

The construction above is one of many possible Gray codes. Two-dimensional
Gray codes can be generated from any pair of one-dimensional Gray codes G'; and
G2 by taking the two-dimensional product G(i,j) = G1(2) * G2(j), where * is a
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shuffle operation (an arbitrary fixed shuffling like that of two decks of cards). The
simplest shuffling is the concatenation of G'1(¢) and G2(j).

For uniform arrays, Gray-code masks have minimal overall border lengths
among all masks, and the ratio of the border length of the Gray-code mask to
the border length of the standard mask approaches % (Feldman and Pevzner,
1994 [99)).

5.13 Some Other Problems and Approaches

5.13.1 SBH with universal bases

Preparata et al., 1999 [280] pushed the idea of multiprobe arrays further and de-
scribed the arrays that achieve the information-theoretic lower bound for the num-
ber of probes required for unambiguous reconstruction of an arbitrary string of
length n. These arrays use universal bases such as inosine that stack correctly
without binding and play a role of “don’t care” symbols in the probes. The de-
sign of these arrays is similar to the design of gapped arrays with more elaborate
patterns of gaps. Another approach to pooling in SBH was proposed by Hubbell,
2000 [171].

5.13.2 Adaptive SBH

The idea of adaptive SBH can be explained with the following example. Imagine a
super-programmer who implements very complicated software to compute a super-
number. After the first run on SuperPC, he learns that a cycle in his program
presents a bottleneck, and it will take a hundred years before the super-number is
computed. The usual approach to overcome this problem in the software industry is
to analyze the time-consuming cycle, localize the bottleneck, and write new faster
software (or modify the old). However, if the super-programmer is expensive (he
is these days!), this may not be the best approach. A different approach would be
to analyze the time-consuming cycle and to build new hardware that executes the
bottleneck cycle so fast that we could compute the super-number with the existing
software. Of course, it makes sense only if the cost of building a new SuperPC is
lower than the cost of the super-programmer.

For adaptive SBH, a DNA array is the computer and DNA is the program.
We are not at liberty to change the program (DNA fragment), but we can build
new arrays after we learn about the bottlenecks in sequence reconstruction. Skiena
and Sundaram, 1995 [316] and Margaritas and Skiena, 1995 [232] studied error-
free adaptive SBH and came up with elegant theoretical bounds for the number of
rounds needed for sequence reconstruction. This idea was further developed by
Kruglyak, 1998 [210].
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5.13.3 SBH-style shotgun sequencing

Idury and Waterman, 1995 [175] suggested using the Eulerian path SBH approach
for sequence assembly in traditional DNA sequencing. The idea is simple and
elegant: treat every read of length n as n — [ + 1 [-tuples for sufficiently large /
(i.e., I = 30). Since most 30-tuples are unique in the human genome, this approach
leads to a very efficient sequencing algorithm in the case of error-free data. Idury
and Waterman, 1995 [175] also attempted to adapt this algorithm for the case of
sequencing errors.

5.13.4 Fidelity probes for DNA arrays

One current approach to quality control in DNA array manufacturing is to synthe-
size a small set of test probes that detect variation in the manufacturing process.
These fidelity probes consist of identical copies of the same probe, but they are
deliberately manufactured using different steps of the manufacturing process. A
known target is hybridized to these probes, and the hybridization results reflect the
quality of the manufacturing process. It is desirable not only to detect variations,
but also to analyze the variations that occur, indicating in what step manufacture
went wrong. Hubbell and Pevzner, 1999 [172] describe a combinatorial approach
that constructs a small set of fidelity probes that not only detect variations, but also
point out the erroneous manufacturing steps.



Chapter 6

Sequence Comparison

6.1 Introduction

Mutation in DNA is a natural evolutionary process: DNA replication errors cause
substitutions, insertions, and deletions of nucleotides, leading to “editing” of DNA
texts. Similarity between DNA sequences can be a clue to common evolutionary
origin (as with the similarity between globin genes in humans and chimpanzees)
or a clue to common function (as with the similarity between the v-sys oncogene
and the growth-stimulating hormone).

Establishing the link between cancer-causing genes and a gene involved in nor-
mal growth and development (Doolittle, 1983 [89], Waterfield, 1983 [353]) was
the first success story in sequence comparison. Oncogenes are genes in viruses
that cause a cancer-like transformation of infected cells. Oncogene v-sys in the
simian sarcoma virus causes uncontrolled cell growth and leads to cancer in mon-
keys. The seemingly unrelated growth factor PDGF is a protein that stimulates cell
growth. When these genes were compared, significant similarity was found. This
discovery confirmed a conjecture that cancer may be caused by a normal growth
gene being switched on at the wrong time.

Levenshtein, 1966 [219] introduced the notion of edit distance between strings
as the minimum number of edit operations needed to transform one string into an-
other, where the edit operations are insertion of a symbol, deletion of a symbol, and
substitution of a symbol for another one. Most DNA sequence comparison algo-
rithms still use this or a slightly different set of operations. Levenshtein introduced
a definition of edit distance but never described an algorithm for finding the edit dis-
tance between two strings. This algorithm has been discovered and re-discovered
many times in different applications ranging from speech processing (Vintsyuk,
1968 [347]) to molecular biology (Needleman and Wunsch, 1970 [251]). Although
the details of the algorithms are slightly different in different applications, they all
are variations of dynamic programming.

93
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Finding differences (edit distance) between sequences is often equivalent to
finding similarities between these sequences. For example, if edit operations are
limited to insertions and deletions (no substitutions), the edit distance problem is
equivalent to the Longest Common Subsequence (LCS) Problem. Mathematicians
became interested in the LCS Problem long before the dynamic programming al-
gorithm for sequence comparison was discovered. Studies of the symmetric group
revealed surprising connections between representation theory and the problem of
finding the LCS between two permutations. The first algorithm for this problem
was described by Robinson, 1938 [287]. Robinson’s work was forgotten until the
1960s, when Schensted, 1961 [306] and Knuth, 1970 [201] re-discovered the rela-
tionships between the LCS and Young tableaux.

Although most algorithmic aspects of sequence comparison are captured by the
LCS Problem, biologists prefer using alignments for DNA and protein sequence
comparison. The alignment of the strings V" and W is a two-row matrix such that
the first (second) row contains the characters of V' (W) in order, interspersed with
some spaces. The score of an alignment is defined as the sum of the scores of its
columns. The column score is often positive for coinciding letters and negative for
distinct letters.

In the early papers on sequence alignment, scientists attempted to find the sim-
ilarity between entire strings V' and W, i.e., global alignment. This is meaningful
for comparisons between members of the same protein family, such as globins,
that are very conserved and have almost the same length in organisms ranging
from fruit flies to humans. In many biological applications, the score of alignment
between substrings of V' and W may be larger than the score of alignment between
the entire strings. This problem is known as the local alignment problem. For
example, homeobox genes, which regulate embryonic development, are present in
a large variety of species. Although homeobox genes are very different in differ-
ent species, one region of them—called homeodomain—is highly conserved. The
question arises how to find this conserved area and ignore the areas that show very
little similarity. Smith and Waterman, 1981 [320] proposed a clever modification
of dynamic programming that solves the local alignment problem.

Back in 1983, it was surprising to find similarities between a cancer-causing
gene and a gene involved in normal growth and development. Today, it would be
even more surprising not to find any similarity between a newly sequenced gene
and the huge GenBank database. However, GenBank database search is not as
easy now as it was 20 years ago. When we are trying to find the closest match to
a gene of length 102 in a database of size 10° even quadratic dynamic program-
ming algorithms may be too slow. One approach is to use a fast parallel hardware
implementation of alignment algorithms; another one is to use fast heuristics that
usually work well but are not guaranteed to find the closest match.

Many heuristics for fast database search in molecular biology use the same fil-
tering idea. Filtering is based on the observation that a good alignment usually
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Computing similarity s(V,W)=4 Computing distance d(V,W)=5
V and W have a subsequence TCTA in common V can be transformed into W by deleting A,G,T and inserting G,A

Alignment:

Figure 6.1: Dynamic programming algorithm for computing longest common subsequence.

includes short identical or very similar fragments. Thus one can search for such
short substrings and use them as seeds for further analysis. The filtration idea
for fast sequence comparison goes back to the early 1970s, well before the pop-
ular FASTA and BLAST algorithms were invented. Knuth, 1973 [202] suggested
a method for pattern matching with one mismatch based on the observation that
strings differing by a single error must match exactly in either the first or the sec-
ond half. For example, approximate pattern matching of 9-tuples with one error
can be reduced to the exact pattern matching of 4-tuples with further extending
of the 4-tuple matches into 9-tuple approximate matches. This provides an op-
portunity for filtering out the positions that do not share common 4-tuples, a large
portion of all pairs of positions. The idea of filtration in computational molecular
biology was first described by Dumas and Ninio, 1982 [92], and then was taken
significantly further by Wilbur and Lipman, 1983 [368] and Lipman and Pearson,
1985 [225] in their FASTA algorithm. It was further developed in BLAST, now a
dominant database search tool in molecular biology (Altschul et al., 1990 [5]).
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6.2 Longest Common Subsequence Problem

Define a common subsequence of strings V = vy ... v, and W = wy ... w,, as a
sequences of indices
1< <...<u,<n

and a sequences of indices
1< <...<jpg<m

such that
Vi = Wy, for 1 Stﬁk

Let s(V, W) be the length (k) of a longest common subsequence (LCS) of V' and
W. Clearly, d(V,W) = n + m — 2s(V, W) is the minimum number of insertions
and deletions needed to transform V' into W. Figure 6.1 presents an LCS of length
4 for the strings V = ATCTGAT and W = TGCAT A and a shortest sequence
of 2 insertions and 3 deletions transforming V' into W'.

A simple dynamic programming algorithm to compute s(V, W) has been dis-
covered independently by many authors. Let s; ; be the length of LCS between
the i-prefix V; = vy...v; of V and the j-prefix W; = wy...w; of W. Let
si0 = so,j = 0foralll <z <nand1 < j < m. Then, s; ; can be computed by
the following recurrency:

Si—1,5
Si,j = max Si,j—l
si—15-1+ 1, ifv; = wj

The first (second) term corresponds to the case when v; (w;) is not present in the
LCS of V; and W}, and the third term corresponds to the case when both v; and w)
are present in the LCS of V; and W; (v; matches w;). The dynamic programming
table in Figure 6.1(left) presents the computation of the similarity score s(V, W)
between V and W, while the table in Figure 6.1(right) presents the computation of
edit distance between V and W. The edit distance d(V, W) is computed according
to the initial conditions d; o = 7, dp; = jforall1 <4 <nand1 < j < m and
the following recurrency:

dz;l,j +1
di,j = min di,j—l +1
dz',l,jfl if V; = ’LU]'
The length of an LCS between V and W can be read from the element (7, m,)

of the dynamic programming table. To construct an LCS, one has to keep the infor-
mation on which of the three quantities (s;_1 j, s; j—1, Or 5;_1 j—1+ 1) corresponds
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to the maximum in the recurrence for s; ; and backtrack through the dynamic pro-
gramming table. The following algorithm achieves this goal by introducing the
pointers <, 1, and '\, corresponding to the above three cases:

LCS (V,W)
fori < 1ton
8i70<—0
fori: < 1tom
80,i<—0
fori < 1ton
for j < 1tom
ifvi:wj
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6.3 Seguence Alignment

Let A be ak-letter alphabet and letV and W be two sequences ovetf. Let

A" = AU {-} be an extended alphabet, whéré denotesspace An alignment

of stringsV = vy,...v, andW = wq,...,w, isa2 x I matrix A (I > n,m),

such that the first (second) row df contains the characters &f (W) in order

interspersed withh — n (I — m) spaces (Figure 6.1(bottom)). We assume that no

column of the alignment matrix contains two spaces. The columns of the alignment

containing a space are calléadels and the columns containing a space in the

first (second) row are calleidsertions (deletion3. The columns containing the

same letter in both rows are callethtcheswhile the columns containing different

letters are callednismatchesThe score of a column containing symbelandy

from the extended alphabet is defined bfkat+ 1) x (k + 1) matrix defining the

similarity score9(z, y) for every pair of symbolsg andy from A’. The score of the

alignment is defined as the sum of the scores of its columns. The simplest matrix

d assumes premium¥z, z) = 1 for the matches and penalizes every mismatch

by §(z,y) = —p and every insertion or deletion Byz, —) = 6(—,z) = —0o. In

this case thecoreof the alignment is defined g% matches -u# mismatches —

o# indels. The Longest Common Subsequence Problem is the alignment problem

with the parameters = oo, o = 0. The common matrices for protein sequence

comparisonPoint Accepted Mutations (PAMNdBLOSUM reflect the frequency

with which amino acidr replaces amino acigl in evolutionary related sequences

(Dayhoff et al., 1978 [82], Altschul, 1991 [6], Henikoff and Henikoff, 1992 [158]).
The (global)sequence alignmeptoblem is to find the alignment of sequences

V and W of maximal score. The corresponding recurrency for the segyeof

optimal alignment betweeW, andW; is

si—1,j + 0(vi, —)
8ij = Max § S;j-1+ (5(—,’(1)]')
8i—1,j—1 + 0 (vi, wj)

Every alignment oft” and W corresponds to a path in theglit graphof se-
guences/ andW (Figure 6.2). Therefore, the sequence alignment problem cor-
responds to théongest path problenfrom the source to the sink in thdirected
acyclic graph

6.4 Local Sequence Alignment

Frequently, biologically significant similarities are present in certain parts of DNA
fragments and are not present in others. In this case biologists attempt to maximize
s(v;...vy,wj ... w;) where the maximum is taken over all substrings. . v;: of

1% andwj ce Wy of W.
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Figure 6.2: Edit graph. The weights of insertion and deletion edges-ase the weights of
mismatch edges arep, and the weights of match edges are 1.

The global alignment problem corresponds to finding the longest path between
vertices(0,0) and (n, m) in the edit graph, while the local alignment problem
corresponds to finding the longest path among paths between arbitrary vertices
(i,7) and(i’, 7') in the edit graph. A straightforward and inefficient approach to this
problem is to find the longest path between every pair of verticgs and(i’, 7).
Instead of finding the longest path from every verféy;j), the local alignment
problem can be reduced to finding the longest paths from the source by adding
edges of weight) from the source to every other vertex. These edges provide
a “free” jump from the source to any other vertgxj). A small difference in
the following recurrency reflects this transformation of the edit graph (Smith and
Waterman, 1981 [320]):

0

si—1,j +6(vi, —)
Sij—1 + 0(= w;)
8i—1,j—1 + 6(vi, wy)

S4,j = Mmax
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The largest value of; ; represents the score of the local alignment/ond W
(rather thars,, ,, for global alignment).

Optimal local alignment reports only the longest path in the edit graph. At
the same time several local alignments may have biological significance and the
methods are sought to find best non-overlapping local alignments (Waterman
and Eggert, 1987 [359], Huang et al., 1990 [168]). These methods are particularly
important for comparison of multi-domain proteins sharing similar blocks that are
shuffled in one protein as compared to another. In this case, a single local alignment
representing all significant similarities does not exist.

6.5 Alignment with Gap Penalties

Mutations are usually manifestations of errors in DNA replication. Nature frequent-
ly deletes or inserts entire substrings as a unit, as opposed to deleting or inserting
individual nucleotides. Agap in alignment is defined as a continuous sequence of
spaces in one of the rows. It is natural to assume that the score of a gap consisting
of z spaces is not just the sum of scores:@fidels, but rather a more general func-
tion. Foraffine gap penaltieghe score for a gap of lengthis —(p + ox), where

p > 0 is the penalty for the introduction of the gap afnd> 0 is the penalty for

each symbol in the gap. Affine gap penalties can be accommodated by introduc-
ing long vertical and horizontal edges in the edit graph (e.g., an edge(frginto
(i+x, j) oflength—(p+ox)) and further computing the longest path in this graph.
Since the number of edges in the edit graph for affine gap penalties increases, at
first glance it looks as though the running time for the alignment algorithm also
increases fronO(n?) to O(n?). However, the following three recurrences keep
the running time down:

| S0
$; ;= max{ %i-1j —7

si-1,5 — (p+0)
- s o
§; 5= max nimL
" { sij—1— (p+0)

8i-1,-1+ 0(vi, w;)
1

S4,j = Mmax 84
—

Si,j

The variable%i,j computes the score for alignment betwééand¥; ending with

a deletion (i.e., a gap i), while the variable?i,j computes the score for align-
ment ending with an insertion (i.e., a gapin. The first term in the recurrences for
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ﬁi,j and ?i,j corresponds to extending the gap, while the second term corresponds
to initiating the gap. Although affine gap penalties is the most commonly used
model today, some studies indicate that non-linear gap penalties may have some
advantages over the affine ones (Waterman, 1984 [356], Gonnet et al., 1992 [133]).
Efficient algorithms for alignment with non-linear gap penalties were proposed by
Miller and Myers, 1988 [236] and Galil and Giancarlo, 1989 [116].

6.6 Space-Efficient Sequence Alignment

In comparison of long DNA fragments, the limited resource in sequence alignment
is not time but space. Hirschberg, 1975 [163] proposeiiae-and-conqueap-
proach that performs alignment in linear space for the expense of just doubling the
computational time.

The time complexity of the dynamic programming algorithm for sequence
alignment is roughly the number of edges in the edit graph, @énm). The
space complexity is roughly the number of vertices in the edit graph(i(esn).
However, if we only want to compute the score of the alignment (rather than the
alignment itself), then the space can be reduced to just twice the number of ver-
tices in a single column of the edit graph, i@(n). This reduction comes from the
observation that the only values needed to compute the alignment scorgol-
umn ) are the alignment scores ;_; (columnyj — 1). Therefore, the alignment
scores in the columns befofe— 1 can be discarded while computing alignment
scores for columng, 5 + 1, . ... In contrast, computing the alignment (i.e., finding
the longest path in the edit graph) requires backtracking through the entire matrix
(si,;). Therefore, the entire backtracking matrix needs to be stored, thus leading to
the O(nm) space requirement.

The longest path in the edit graph connectsstaet vertex (0, 0) with the sink
vertex(n,m) and passes through an (unknowniddle vertexi, ) (assume for
simplicity thatm is even). Let’s try to find its middle vertex instead of trying to
find the entire longest path. This can be done in linear space by computing the
scoress, = (lengths of the longest paths frof, 0) to (4, %) for 0 < ¢ < n) and
the scores of the paths fro@, %) to (n,m). The latter scores can be computed
as the scores of the path;{g”e from (n,m) to (i, ) in the reverse edit graph

(i.e., the graph with the directions of all edges reversed). The \s@,uzdeJr 87 GmeT e
2
is the length of the longest path frof, 0) to (n,m) passing through the vertex
(4, ). Therefore,ma,xi(si% + s;."f%e’"se) computes the length of the longest path
and identifies a middle vertex.
Computing these values requires the time equal to the area of the left rectangle

(from column1 to %) plus the area of the right rectangle (from colurgn+ 1
to m) and the spacé&(n) (Figure 6.3). After the middle vertef, %) is found,
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the problem of finding the longest path frof, 0) to (n,m) can be partitioned

into two subproblems: finding the longest path frgi0) to the middle vertex

(4, %) and finding the longest path from the middle vertéx?) to (n,m). In-

stead of trying to find these paths, we first try to find the middle vertices in the
corresponding rectangles (Figure 6.3). This can be done in the time equal to the
area of these rectangles, which is two times smaller than the area of the original
rectangle. Computing in this way, we will find the middle vertices of all rectangles
intime area + “5* + “f% 4 ... < 2 x area and therefore compute the longest
path in timeO(nm) and spac®(n):

Path (source, sink)
if source andsink are in consecutive columns
output the longest path from teurce to thesink
else
middle + middle vertex betweegource andsink
Path (source, middle)
Path (middle, sink)

6.7 Young Tableaux

An increasing subsequenad a permutationmt = x5 ...z, IS a sequence of
indicesl <4y < ... <1, <nsuchthat;, < ;... < ;. Decreasing subse-
guences are defined similarly. Finding tbagest increasing subsequer(teS) is
equivalent to finding the LCS betweenand the identity permutatioi2...n. It
is well known that every permutation enelements has either an increasing or a
decreasing subsequence of length at Igast This result is closely related to the
non-dynamic programming approach to the LCS that is described below.

A partition of integern is a sequence of positive integets > Ao > ... > )
such thaty =) Ay = n. If A = (A X2...\) is a partition ofn, then we writeX -
n. SUPPOSe\ = (A1, Ag, ..., \) F n. Then theYoung diagramor shape), is an
array ofn cells intol left-justified rows with rowi containing); cells forl < <.
The leftmost diagram in Figure 6.4 presents the Young diagrarfifa@r 1, 1) F 8,
while the rightmost one presents the Young diagram(402,2,1) - 9. A Young
tableau(or simply tableauof shape)) is an array obtained by replacing the cells
of the Young diagranmh with the numberd, 2, ..., n bijectively (rightmost table
in Figure 6.4). A tableaw is standardif its rows and columns are increasing
sequences. Sagan, 1991 [292] is an excellent introduction to combinatorics of
Young tableaux, and our presentation follows this book.

A bitableauis a pair of standard Young tableaux with the same Young diagram
. The Robinson-Schensted-Knuth algorithm (RSK) describes an explicit bijection
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L inear-Space Sequence Alignment
0,0 m/2 m 0,0 m/2

middle

n
(n,m) (n,m)

3

0.0

iddle

middle

" om " (nm)
(0,0 m (0,0) m
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Figure 6.3:Space-efficient sequence alignment. The computational time (area of solid rectangles)
decreases by a factor of 2 at every iteration.

between bitableaux with cells and the symmetric groug, (all permutations of
ordern). It was first proposed (in rather fuzzy terms) by Robinson, 1938 [287]
in connection with representation theory. Schensted, 1961 [306] re-discovered and
clearly described this algorithm on a purely combinatorial basis. Later, Knuth,
1970 [201] generalized the algorithm for the case of the LCS.
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Figure 6.4:Row insertion of} into Young tableaux.
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A | 4] | 4] 46 2.6 26
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w

3]5]7] 4] 7]

1
RSK
4236517 —_— 2|6
4

‘O‘)l\)r—‘
(4]

Figure 6.5:RSK algorithm for permutationr = 4236517.

Let P be apartial tableay i.e., a Young diagram with distinct entries whose
rows and columns increase. For an arfaynd an element, defineR, as the
smallest element aoR greater thar: and R, as the largest element & smaller
thanz. Forx not in P, definerow insertionof x into P by the following algorithm:

R « the first row of P

While z is less than some element of rawv
ReplaceR, by z in R.
T Ry
R <+ next row down.

Placex at the end of rowR.

The result of row inserting: into P is denoted-,(P). Note that the insertion
rules ensure that,(P) still has increasing rows and columns (Figure 6.4).

The bijection between permutations and bitaubleaux is denoted gar
(P,Q) wherer € S, and P, are standard\-tableaux,\ - n. For a permu-
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tationm = x; ...z, we construct a sequence of tableaux

(POaQO) = ((Z)v@)v(Plan)a"'v(PnaQn) = (PaQ)

wherez, ...z, areinsertedinto the P’s and1, . .., n areplacedin the Q’s so that
shape ofP; coincides with the shape 6}; for all <.

Placement of an element in a tableau is even easier than insertion. Suppose
that @ is a partial tableau and thét, j) is an outer corner of). If k is greater
than every element af, thento placek in Q at cell (¢, j), merely set); ; = k
(Figure 6.5).

Finally we describe how to build the sequence of bitableabx @;) from
T = x1...T,. ASSuming thal P,_, Qr—_1) has already been constructed, define
Py =1y, (Pr—1) andQy, as the result of placement bfinto ;. at the cell(z, j)
where the insertion terminates (Figure 6.5). We ¢atheinsertiontableau and)
therecordingtableau.

Given the rightmost tableaR, (P) in Figure 6.4 and the position of the last
added element (7), can we reconstruct the leftmost talfemuFigure 6.4? Since
element 7 was bumped from the previous rowRy = 5 (see RSK algorithm),
we can reconstruct the second tableau in Figure 6.4. Since element 5 was bumped
from the first row by the elemet®;_ = 3, we can reconstruct the original tableau
P. This observation implies the RSK theorem:

Theorem 6.1 The mapr RSK (P, Q) is a bijection between elements ®f and

pairs of standard tableaux of the same shape n.

Proof Construct an inverse bijectiofP, Q) RSK o by reversing the RSK al-
gorithm step by step. We begin by definii@,, @,) = (P,Q). Assuming

that (P, Q) has been constructed, we will fing; (the k-th element ofr) and
(Py_1,Qk_1). Find the cell(, j) containingk in Q. Since this is the largest ele-
mentinQy, P; ; must have been the last element to be displaced in the construction
of P,. We can use the following proceduredeleter’; ; from P. For convenience,

we assume the existence of an empty zeroth row above the first rBy of

Setz < P; ; and erasé’; ;
R < the (i — 1)-st row of P
While R is not the zeroth row of,
ReplaceR, byzin R.
T+ R,_
R + next row up.
Tp < I.
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Itis easy to see thd®,_, is P, after the deletion process just described is com-
plete andQ;_1 is Q with the k removed. Continuing in this way, we eventually
recover all the elements afin reverse order. ]

Lemma6.1If 1 = z;...xz, andz;, entersP;_; in columnj, then the longest
increasing subsequenceoknding inx; has lengthy.

Proof We induct onk. The result is trivial fork = 1, so suppose it holds for all
values up tck — 1.

First, we need to show the existence of an increasing subsequence ofjength
ending inz. Lety be the element aP;_; in cell (1,5 — 1). Theny < =z, since
x;, enters in columry. Also, by induction, there is an increasing subsequence of
lengthj — 1 ending iny. Combining this subsequence with we get the desired
subsequence of lengjh

Now we prove that there cannot be a longer increasing subsequence ending in
x. If such a subsequence exists,debe its element preceding,. By induction,
whenz; is inserted it enters in some column (weakly) to the right of colymn
Thus the elemeny in cell (1, j) of P; satisfiesy < z; < zj. However, the entries
in a given position of a tableau never increase with subsequent insertions (see RSK
algorithm). Thus the elementin céll, j) of P, is smaller tharx;,, contradicting
the fact thatr;, displaces it. |

This lemma implies the following:

Theorem 6.2 The length of the longest increasing subsequence of permutation
is the length of the first row a@P(r).

6.8 Average Length of Longest Common Subsequences

Let V andW be two sets ofi-letter strings over the same alphabet. GivenV
and a probability measugeonV x W, we are interested in theeverage lengttof
LCS, which is
s) = > s(V,W) - p(V,W).
VEV,Wew

wheres(V, W) is the length of the LCS betwedn andW. Two examples of the
LCS average length problem are of particular interest.

Longest increasing subsequence in random permutatign(n). V' contains
only the string(1, ..., n), W contains all permutations of length andp(V, W) =
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. The problem of finding,, (n) was raised by Ulam, 1961 [341]. Hammersley,
1972 [150] proved that
. Sper(n) _
= e

wheres,,, is a constant. Even before the convergence had been proven, Baer and
Brock, 1968 [15] had conjectured thgt., = 2 on the basis of extensive computa-
tions. Hammersley, 1972 [150] proved tHat< s, < e. Later, Kingman, 1973
[198] improved the bounds t©.59 < ¢ < 2.49. Logan and Shepp, 1977 [227]
and Vershik and Kerov, 1977 [342] proved that, = 2 by conducting a techni-
cally challenging analysis of asymptotics of random Young tableaux and by using
theorems 6.1 and 6.2.

Longest common subsequengén) in a k-letter alphabet. Both Y and W
contain allk™ n-letter words in &-letter alphabet, ang(V, W) = Chvatal
and Sankoff, 1975 [70] noticed that

kg k”'

im ) _

n—o0o N

wheresy is a constant. They gave lower and upper bounds; fahat were later
improved by Deken, 1979, 1983 [83, 84] and Chvatal and Sankoff, 1983 [71].
In the 1980s, two conjectures abaytwere stated:

Sankoff-Mainville conjecture [305]: limy,_, o (sp - V&) = 2

. . L
Arratia-Steele conjecture [328]: s, = E
These conjectures can be formulated as statements about the length of the first row
of Young tableaux. Instead of finding the length of the first row, one may try to
find a limited shape of Young tableaux yielding simultaneously all characteristics
of the Young tableaux, in particular, the length of the first row. At first glance,
this problem looks more general and difficult than simply finding the length of the
first row. However, the proof,., = 2 revealed a paradoxical situation: it may be
easier to find a limited shape of the entire Young tableaux than to find the expected
length of a particular row usingd hoccombinatorial/probability arguments. In
particular, arad hoccombinatorial solution of the Ulam problem is still unknown.

Recently, there has been an avalanche of activity in studies of longest increas-
ing subsequences. Aldous and Diaconis, 1995 [2] used interacting particle repre-
sentation (modeled by the LIS in a sequence fdependent random real numbers
uniformly distributed in an interval) to give a different proof tagt, = 2. Baik et
al., 1999 [21] proved that,.(n) = 2y/n — un'/® 4 o(n'/) wherey = 1.711...

Let A,, be the set of all shapes withcells. Denote an insertion tableauk
corresponding to a permutatienas P(w) and consider the set of permutations
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' = {r : P(m) containsn in the first row}. For a given shapea with n cells,
letT’y = {= : P(m) containsn in the first row andP (=) has shape\ }. Given a
random permutatiorr € S,,, let p,, be the probability thal’(7) containsn in the
first row.

1
Lemma6.2 p, < NG

Proof If ) is a shape, we denote as the shape derived frorh by adding a new

cell to the end of the first row. Observe that the number of standard tableaux of
shapeu € A,, with n in the first row equals the number of standard tableaux of
shape\ € A,_; wherel, = p. Let f) be the number of Young tableaux of shape

A. According to the RSK theorem,

L= > ITul= > fhu

HEA, AEA,—1

wheref) is the number of Young tableaux of shajelt implies the following:

Oy hbe oy oD Dy Deh

n

L fa
Z —f—+p(>‘)
/\EAn—l " A

According to the RSK theoremp(\) = (Q_V}), is the probability that a random

permutationt € S, _; corresponds to a shape Denoting E(X) = p,, the

mean value of the random variable = %%t Applying the inequalityZ(X) <
E(X?), we derive

pié Z 1 ‘f/\+'f)\+ f/\'f/\!: Z %f/\+‘f/\+:

AEA, 1 nen fA ' fA (n o 1) AEA,—1 e

1 g - I 1 1 1
" Z TZE ZP(AHSEZP(M)SE
AEAL_1 ’ AEAL—1 HEA,
since A, ranges over alls € A, with the length of the first row larger than the
length of the second row. |

The following theorem was proven (and apparently never published) by Ver-
shik and Kerov in late 1970s. The first published proof appeared much later (Pilpel,
1990 [276]).
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Theorem 6.3 s, < 2.

Proof Givenr € S, letpi(n) be the probability that elemehtappears in the first
row of P(r). Notice thatpy(n) = pi (the elementg, ..., k of a random permuta-
tion in S,, are evenly distributed over all possible relative orderings). According to
lemma 6.2, the expected length of the first ron/fr) is

n n n 1
ri=) pe(n) =) pk <) —.

As ﬁ < 2(vk — Vk —1), we deriver; < 2y/n. Since the length of the first row
of P(m) equals the length of the longest increasing subsequencespf, < 2. m

6.9 Generalized Sequence Alignment and Duality

A partially ordered seis a pair(P, <) such thatP is a set and is atransitive

and irreflexive binary relatioron P, i.e.,p < gandqg < rimply p < r. A chain

p1 < p2... < peis asubset of” where any two elements are comparable, and an
antichainis a subset where no two elements are comparable. Partial cxdard

<* are calledconjugateif for any two distinctp,, p» € P the following condition
holds:

p1 andpy are<-comparable<= p; andp, are<*-incomparable

We are interested ifongest<-sequencesd.e., chains of maximal length ir
(generalized sequence alignmentet I = {1,2...,n} andJ = {1,2...,m}
and P C I x J. Our interest is in the comparison of the two sequerices
01y ... vy ANAW = wiwy ... wy, With P = {(4, ) : v; = w;}. Letp; = (i1, 1)
andps = (i2, j2) be two arbitrary elements ih x J. Denote

A(plapQ) = (A’L,AJ) = (22 - i17j2 _.71)

Consider a few examples of partial orders brx J (corresponding chains are
shown in Figure 6.6). Partial orders, and<4 as well as partial orders, and<;3
are conjugate.

e Common subsequences(CS):

pL<1p2e A1 >0,A7 >0

e Common forests(CF):

p1 <2 p2 & A1 >0,A7 >0
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Cs

Cls

Je [ J (]

J [ J [ J [
CIF

Je @

J [ J

Figure 6.6:Chains in partial orders CS, CF, CIS, and CIF.

e Common inverted subsequences(CIS):

p1 <3p2e A >0,A5 <0

e Common inverted forests(CIF):

p1 <ap2 e Ai>0,A5 <0

Let C be a family of subsets of a sét. C’' C C is called acoverof P if each
p € P is contained in at least one of the subséts C’. The number of elements
in C" is called thesize of the coverC’, and a cover of minimum size is called
a minimum covernf P by C. The following theorem was proved by Dilworth,
1950 [86].

Theorem 6.4 Let P be a partially ordered set. The size of the minimum cover of
P by chains is equal to the size of a maximal antichai®in

Lemma 6.3 Let < and <* be conjugate partial orders oR. Then the length of a
longest<-sequence i equals the size of a minimum coverfdby <*-sequences.
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Proof According to Dilworth’s theorem, the length of a longest antichairin
equals the size of a minimum coverBiby <*-chains. As< and<* are conjugate,
each antichain ink* is a chain in<, and each chain i is an antichain in<*.
Therefore, the length of a longestsequence i equals the size of a minimum
cover of P by <*-sequences. |

Since CS and CIF represent conjugate partial orders, lemma 6.3 implies the
following (Pevzner and Waterman, 1993 [273]):

Theorem 6.5 The length of the longest CS equals the size of a minimum cover by
CIF

Consider a binary relation oR defined by
p1 T p2 <= p1 < p2 Or p1 <" po.
Lemma 6.4 C is a linear order onP.

Proof We first prove thap; C ps andp, C p3 impliesp; = ps3. If p1 C pe and
p2 C ps3, then one of the following conditions holds:

() p1 < p2 andpy < ps,
(i) p1 < p2 andpy <* ps,
(iii) p1 <* p2 andps < p3,
(V) p1 <* p2 andpy <* ps.

In case (i),p1 < p2 andpy < p3 imply p1 < p3, and thereforg; C p3. In
case (ii),p; < p2 andpy <* p3 imply neitherps < p; nor ps <* p;. (In the
first caseps < p; andp; < p9 imply ps < po, contradictingps <* ps. In the
second caseps <* ps andps <* py imply po <* pp, contradictingp; < p2).
Thereforep; < p3 or p; <* p3, which impliesp; C ps. Notice that cases (iii) and
(iv) are symmetric to (i) and (i) respectively, so we have shown that relatias
transitive. The lemma follows from the observation that for eachypajs-, either

p1 T p20rps C p1. ]

6.10 Primal-Dual Approach to Sequence Comparison

Theorem 6.5 reveals a relation between the LCS and the minimum cover problem
and leads to the idea of using minimum covers to find LCS. Below we describe a
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non-dynamic programming algorithm for simultaneous solution of the generalized

alignment and minimum cover problems (Pevzner and Waterman, 1993 [273]).
LetP = pipo...p; be an arbitrary ordering of the elementsfandP; =

pip2...pi. LetC; = {C1,Cs,...,C;} be a cover ofP; by <*-sequences, and

let p1"*, p5'e®, ..., pj*** be the<*-maximum elements id'y, Cs, ..., Cj, corre-

spondingly. Letk be the minimum indexl( < k < j) fulfilling the following

condition:

max

P <" piy1, (6.1)

and if condition (6.1) fails for alk, setk = j + 1. For convenience, defing;
as an empty set. The COVER algorithm constructs a a@yvarfrom C; by adding
pir1 10 Cy. If k < j + 1, COVER enlargeg’y:

Cit1 = {C1,Cy, ..., Ch—t1, Ck | J{pit1}, Chrs - -, O
If K =j+ 1, COVER addgp;;1} as a new<*-sequence to the covéf,:

Civ1 ={C1,Co,...,C},Cjr1 = {piy1} }-

The algorithm also keepstacktrack

. ) pit, ifk>1
bpi1) = {(D, otherwise

Starting with an empty covefy, COVER constructs a covel of P after!
iterations, and the size of this cover depends on the orderiigy @he size of the
coverC; is an upper bound for the length of the longessequence. The following
theorem shows that P is the ordering ofP in , then COVER is a primal-dual
algorithm for simultaneous solutions of the longessequence problem and the
minimum cover by<*-sequences problem.

Theorem 6.6 If P = pips ... p; isthe ordering ofP in C, then COVER constructs
a minimum covetl; = {C4,Cy,...,C;} of P by <*-sequences. The backtrack
b(p) defines a longesk-sequence of lengthfor eachp € C;.

Proof We show that for each (1 < i < [), the coverC; = {C1,Cy,...,C}}
satisfies the condition

Vk > 1,Vp € Cy : b(p) <p. (6.2)

Trivially, this condition holds foC;. We suppose that it holds f& and prove
it for C;+;. Consider two cases:
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e Case 1.k < j+1 (condition (6.1)). In this casé(pZ;H) = p*’. Since
P is the [—orderln_g, Pty T Dit1s _and th_erefore e_nhgv’,;l“f < piy1 OF
Pl <* pit1. Sincek is the minimum index fulfillingp*** <* p;i1,
P’ < pit+1, and therefore condition (6.2) holds Gy, ;.

e Case 2k = j + 1. Inthis casé(p;+1) = pj**. SinceP is theC-ordering,
eitherp*** < p;1q or p*** <* p;11. Sincek = j + 1, condition (6.1) fails
for eachk < j. Thereforep]*** < p;1, and condition (6.2) holds fdf; ;.

Obviously each covet;, = {C1,Cs,...,C;} fulfilling condition (6.2) deter-
mines (through the backtrack)asequence of lengthfor eachp € C;. According
to lemma 6.3, each such sequence ig-bpngest sequence, aidid is a minimum
cover of P by <*-sequences. |

For the LCS between-letter sequences, the COVER algorithm can be imple-
mented inO(nL) time, whereL is the length of the longest common subsequence,
orin O((I +n)log n) time, wherd is the total number of matches between two se-
guences. Improvements to the classical dynamic programming algorithm for find-
ing LCS have been suggested by Hirschberg, 1977 [164] and Hunt and Szymanski,
1977 [174]. Infact, both the Hirschberg and the Hunt-Szymanski algorithms can be
viewed as implementations of the COVER algorithm with various data structures.
<*-chains in COVER correspond to tliecandidatesin Hirschberg’s algorithm.
Maximal elements oi*-chains in COVER correspond to tldeminant matches
in the Apostolico, 1986 [9] improvement of Hunt-Szymanski’'s algorithm.

6.11 Sequence Alignment and Integer Programming

Duality for the LCS is closely related to a ngwlyhedralapproach to sequence
comparison suggested by Reinert et al., 1997 [283]. They express the alignment
problem as an integer linear program and report that this approach to multiple
alignment can solve instances that are beyond present dynamic programming ap-
proaches. Below we describe the relationship between the LCS problem and inte-
ger programming.

Let P be a set with partial ordex, and let<* be a conjugate partial order.
Let z. be the weight associated withe P. In the case of the LCS of sequences
vy ...v, @ndwy,... wy, P is the set of pairs of positions = (7, j) such that
v; = w; andz, = 1ifand only if the positiong and; are matched in the LCS. The
LCS problem can be formulated as the following integer programming problem:

Y e.ca Ze < 1 for every (maximal) antichain: in P
Y ecp Te —+ Max
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Let y, be a variable associated with a maximal antichaim P. Thedual
program for the above problem is as follows:

>eca Yo > 1for everye € P
Yo Ya — min

Since antichains ik are chains in<*, the above program is thdinimum Path
Cover Problenin a directed acyclic graph representing the conjugate partial order
<*, which is known to have an integer solution (Cormen et al., 1989 [75]).

6.12 Approximate String Matching

Approximate string matching with mismatches involves a string . . . ¢,,, called
the text a shorter stringg; ... gp, called thequery, and integers; andm. The
qguery matching probleris to find allm-substrings of the query, . . . g;+m—1 and
the textt; ... ¢;1,—1 that match with at most mismatches. In the cage= m,
the query matchingproblem yields th@pproximate string matching problem with
k-mismatches

The approximate string matching problem withmismatches has been inten-
sively studied in computer science. Hoe 0, it reduces to classical string match-
ing, which is solvable irO(n) time (Knuth et al., 1977 [203], Boyer and Moore,
1977 [45]). Fork > 0, the naive brute-force algorithm for approximate string
matching runs inO(nm) time. Linear-time algorithms for approximate string
matching were devised by lvanov, 1984 [177] and Landau and Vishkin, 1985 [213].
For a fixed-size alphabet, the worst-case running time of these algoritlinisis.

Although these algorithms yield the best worst-case performance, they are far
from being the best in practice (Grossi and Luccio, 1989 [140]). Consequently,
several filtration-based approaches have emphasized the expected running time,
in contrast to the worst-case running time (Baeza-Yates and Gonnet, 1989 [16],
Grossi and Luccio, 1989 [140], Tarhio and Ukkonen, 1990 [334], Baeza-Yates and
Perleberg, 1992 [17], Wu and Manber, 1992 [371]).

Using filtration algorithms for approximate string matching involves a two-
stage process. The first stage preselects a set of positions in the text that are
tentially similar to the query. The second stage verifies each potential position,
rejecting potential matches with more thlamismatches. Denote agthe number
of potential matches found at the first stage of the algorithm. Preselection is usually
done inan + O(p) time, wherex is a small constant. If the number of potential
matches is small and potential match verification is not too slow, this method yields
a significant speed up.

The idea of filtration for the string matching problem first was described by
Karp and Rabin, 1987 [189] for the case= 0. Fork > 0, Owolabi and McGregor,
1988 [258] used the idea oéftuple filtration based on the simple observation that
if a query approximately matches a text, then they share at least-topde for
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sufficiently largel. All [-tuples shared by query and text can be easily found by
hashing. If the number of sharéduples is relatively small, they can be verified,
and allreal matches withk mismatches can be rapidly located.

[-tuple filtration is based on the following simple observation:

Lemma 6.5 If the stringse; . . . z,, andy; . .. y.,, Match with at most mismatches
then they share airtuple forl = [7], i.e., ... Zip—1 = yj.. .Y+ for
somel <i¢,7<m-—10+1.

This lemma motivates aftuple filtration algorithm for query matching witlk
mismatches:

FILTRATION Algorithm  Detection of alln-matches between a query and a text
with up tok mismatches.

e Potential match detectior-ind all matches of-tuples in both the query and
the text forl = [ 7).

e Potential match verificationVerify each potential match by extending it to
the left and to the right until either (i) the firét+ 1 mismatches are found
or (i) the beginning or end of the query or the text is found.

Lemma 6.5 guarantees that FILTRATION finak matches of lengthn with
k or fewer mismatches. Potential match detection in FILTRATION can be imple-
mented by hashing. The running time of FILTRATIONuig + O(pm), wherep is
the number of potential matches detected at the first stage of the algorithmn and
is a small constant. For a Bernoulli text withequiprobable letters, the expected
number of potential matches is roughy(p) = %, yielding a fast algorithm for
large A and!.

6.13 Comparing a Sequence Against a Database

A dot-matrix for sequence$” and W is simply a matrix with each entry either
0 or 1, where al at position(i, ) indicates that thé-tuples starting at thé-th
position of V' and thej-th position of W coincide. A popular protein database
search tool, FASTA (Lipman and Pearson, 1985 [225]), iidaple filtration with
a usual setup df= 2 (in amino acid alphabet). The positionsidfiples present in
both strings form an (implicit) dot-matrix representation of similarities between the
strings. FASTA further assembles ones on the same diagonals of this dot-matrix
and attempts to group close diagonals together.

Using shared-tuples for finding similarities has some disadvantages. BLAST
(Altschul et al., 1990 [5]), the dominant database search tool in molecular biology,
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uses substitution matrices to improve the construction of (implicit) dot-matrices
for further analysis of diagonals. Essentially, it attempts to improve the filtra-
tion efficiency of FASTA by introducing more stringent rules to locate fewer and
better potential matches. Another BLAST feature is the use of Altschul-Dembo-
Karlin statistics (Karlin and Altschul, 1990 [186], Dembo and Karlin, 1991 [85])
for estimates of statistical significance. For any #aaplesz; ... xz; andy; ...y,
BLAST defines thesegment scoraszéz1 d(zi, yi), whered(z,y) is the similar-

ity score between amino acidsandy. A maximal segment pa{MSP) is a pair

of [-tuples with the maximum score over all segment pairs in two sequences. A
molecular biologist may be interested in all conserved segments, not only in their
highest scoring pair. A segment pairlegally maximalif its score cannot be im-
proved either by extending or by shortening both segments.

BLAST attempts to find all locally maximal segment pairs in the query se-
guence and the database with scores above some set threshold. The choice of the
threshold is guided by Altschul-Dembo-Karlin statistics, which allows one to iden-
tify the lowest value of segment score that is unlikely to happen by chance. BLAST
reports sequences that either have a segment score above the threshold or that do
not have a segment score above a threshold but do have several segment pairs that
in combination are statistically significant.

BLAST abandons the idea éftuple filtration and uses a different strategy to
find potential matches. It finds dhltuples that have scores above a threshold with
somel-tuple in the query. This can be done either directly—by finding all ap-
proximate occurrences of substrings from the query in the database—or in a more
involved way. For example, if the threshold is high enough, then the set of such
strings is not too large, and the database can be searched for exact occurrences
of the strings from this set. This is a well-studied combinatorial pattern matching
problem, and the fast Aho and Corasick, 1975 [1] algorithm locates the occurrences
of all these strings in the database. After the potential matches are located, BLAST
attempts to extend them to see whether the resulting score is above the threshold.
Altschul et al., 1997 [7] further improved BLAST by allowing insertions and dele-
tions and combining matches on the same and close diagonals.

6.14 Multiple Filtration

For Bernoulli texts withA equiprobable letters, define tlidration efficiencyof
a filtration algorithm as the rati%% of the expected number of matches with

mismatched(r) to the expected number of potential matcia&g). For example,
for k = 1, the efficiency of thé-tuple filtration, ~ ;‘[f%ﬂ , decreases rapidly as
andA increase. This observation raises the question of devising a filtration method
with increased filtration efficiency. The larger the efficiency ratio, the shorter the

running time of the verification stage of filtration algorithm.
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Gapped 4-tuplewith gapsize 3 and size 10 starting at position 4

Figure 6.7:A gapped 4-tuple.

Pevzner and Waterman, 1995 [274] described an algorithm that allows the ex-
ponential reduction of the number of potential matches at the expense of a linear
increase in the filtration time. This significantly reduces the time of the verifica-
tion stage of the FILTRATION algorithm for the cost of linearly increased time at
the detection stage. Taking into account that verification is frequently more time-
consuming than detection, the technique provides a trade-off for an optimal choice
of filtration parameters.

A set of positiong, i +¢,i + 2t,...,i+ jt,...,i+ (I — 1)t is called agapped
[-tuple with gapsizet andsizel + (I — 1) (Figure 6.7). Continuou&tuples can
be viewed as gappedtuples with gapsizd and sizel. If an [-tuple shared by
a pattern and a text starts at positionf the pattern and positiop of the query,
we call (i, ) the coordinateof the/-tuple. Define thelistanced(v;,v2) between
[-tuples with coordinategi;, j1) and(iz, j2) as

i =i, i — o =1 — o
d(v1,02) = {007 otherwise.

Multiple filtration is based on the following observation:

Lemma 6.6 Let stringsz . .. z,,, andy; ...y, match with at most mismatches
and! = | ;%5 |. Then these strings share both a continuétsple and a gapped
[-tuple with gapsizé: + 1, with distanced between them satisfying the condition

—k<d<m-—I.

This lemma is the basis of @ouble-filtration algorithm for query matching
with £ mismatches:

DOUBLE-FILTRATION Algorithm  Detection of alkln-matches between a que-
ry and a text with up t& mismatches.

e Potential match detectionFind all continuoug-tuple matches between the
query and the text that are within the distanek < d < m — [ from a
gapped-tuple with gapsizé: + 1 match.
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O0O0O000g4gaggd

. - - . . - continuous 6-tuple
. . - - - . continuous 6-tuple

. - - - - . gapped 6-tuple

Figure 6.8: Every 9-match with one error contains either a continuous 6-match or a gapped 6-
match.

e Potential match verificationVerify each potential match by extending it to
the left and to the right until either (i) the firét+ 1 mismatches are found
or (ii) the beginning or end of the query or the text is found.

Lemma 6.6 guarantees that DOUBLE-FILTRATION finalé matches withk
. .. . . . . -6 .
mismatches. The efficiency of double filtration is approxmatgt(%_—%) times

greater than the efficiency étuple filtration for a wide range of parameters (here,
&= [g7 )

Approximate pattern matching &ktuples with one error can be reduced to
exact pattern matching ef-tuples. We call it a reduction from a (9,1) pattern
matching to a (4,0) pattern matching. Can we reduce a (9,1) pattern matching to
a (6,0) pattern matching, thus improving the efficiency of the filtration? The an-
swer is yes if we consider gapped 6-tuples as in Figure 6.8. Another question is
whether we can achieve a speedup through reduction frenk) pattern matching
to (m/, k') matching for0 < k' < k. Exploring this problem led to the devel-
opment of sublinear pattern matching algorithms (Chang and Lawler, 1994 [62],
Myers, 1994 [245]).

6.15 Some Other Problems and Approaches

6.15.1 Parametric sequence alignment

Sequence alignment is sensitive to the choice of insertion/deletion and substitution
penalties, and incorrect choice of these parameters may lead to biologically incor-
rect alignments. Understanding the influence of the parameters on the resulting
alignment and choosing appropriate alignments are very important for biological
applications. In the simplest model, when the alignment score is defingtl as
matches —-u# mismatches -s+# indels, different values ofu, o) correspond to
different optimal alignments. However, some regiongino)-space correspond
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to the same optimal alignment. In fa¢t, o)-space can be decomposed into con-
vex polygons such that any two points in the same polygon correspond to the same
optimal alignment (Fitch and Smith, 1983 [107]). Waterman et al., 1992 [360],
Gusfield et al., 1994 [146] and Zimmer and Lengauer, 1997 [379] described effi-
cient algorithms for computing a polygonal decomposition of the parameter space.

6.15.2 Alignment statistics and phase transition

Arratia and Waterman, 1989 [13] studied the statistical properties of the local align-
ment score of two random sequences. It turned out that the statistics of alignment
heavily depends on the choice of indel and mismatch penalties. The local align-
ment score grows first logarithmically and then linearly with the length of the se-
guences, depending on gap penalties. Those two regions of growth are referred to
as the “log region” and as “linear region,” and the curve between these regions is
called thephase transitiorcurve.
Letwv;...v, andwy ...w, be two random i.i.d. strings. L&, = S, (u,0)
andH,, = H,(u, §) be random variables corresponding to the scgren@atches —
u# mismatches s# indels) of the global and local alignments of these strings.
Arratia and Waterman, 1994 [14] showed that

exists in probability. Moreove{a = 0} = {(u,d) : a(p,d) = 0} is a contin-
uous phase transition curve separatifigro]? into two components{a < 0} =
{(u,6) : a(p,0) <0}t and{a > 0} = {(y,9) : a(u,d) > 0}.

For the case ofu,d) € {a > 0}, Arratia and Waterman, 1994 [14] showed,
thatlim,, . Zo(0) — a(u,d). For the case ofu, d) € {a < 0}, they introduced
a constanb = b(lu, d) such that

nlLIgoP{(l —e)b< %/&f) <(24+¢)b}=1.

The problem of computing(u, d) for (i, ) € {a > 0} is difficult. In par-
ticular, computingz(0, 0) would solve the Steele-Arratia conjecture. See Vingron
and Waterman, 1994 [346] and Bundschuh and Hwa, 1999 [52] for estimates of
alignment significance and parameter choice in both the “log region” and the “lin-
ear region”, and see Waterman and Vingron, 1994 [365] for a fast algorithm to
compute the probability that a local alignment score is the result of chance alone.

6.15.3 Suboptimal sequence alignment

The optimal alignment is sometimes not the biologically correct one, and * methods
are sought to generate a setAfsuboptimal alignments whose deviation from



120 CHAPTER 6. SEQUENCE COMPARISON

the optimal is at mosf\ (Waterman, 1983 [355]). The problem is equivalent to
finding suboptimal paths in the edit graph (Chao, 1994 [63], Naor and Brutlag,
1994 [250]).

6.15.4 Alignment with tandem duplications

Although most alignment algorithms consider only insertions, deletions, and sub-
stitutions, other mutational events occliandem duplicatiofis a mutational event

in which a stretch of DNA is duplicated to produce one or more new copies, each
copy following the preceding one in a contiguous fashion. This mutation is a rather
common one, making up an estimat&@, of the human genome. Tandem re-
peats have been implicated in a number of inherited human diseases, including
Huntington’s disease. Benson, 1997 [30] suggested an efficient algorithm for se-
guence alignment with tandem duplications. Algorithmsdetectingtandem re-
peats were proposed by Landau and Schmidt, 1993 [212], Milosavljevic and Jurka,
1993 [237], and Benson, 1998 [31].

6.15.5 Winnowing database search results

In database searches matches to biologically important regions are frequently ob-
scured by other matches. A large number of matches in one region of the se-
guence may hide lower-scoring but important matches occurring elsewhere. Since
database search programs often report a fixed number of top matches and truncate
the output, rules are needed to select a subset of the matches that reveal all impor-
tant results. The problem is modeled by a list of intervals (alignment regions) with
associated alignment scores. If interdak contained in intervall with a higher

score, therT is dominatedoy J. Thewinnowing problenis to identify and discard
intervals that are dominated by a fixed number of other intervals. Berman et al.,
1999 [34] implemented a version of BLAST that solves the winnowing problem in
O(nlogn) time, wheren is the number of intervals.

6.15.6 Statistical distance between texts

Let X be a set of strings—for example, the set of aliples (Blaisdell, 1988 [36])
or gapped-tuples (Mironov and Alexandrov, 1988 [239]) for a smallGiven a
stringz € X and a texT’, definez(T') as the number (or frequency) of occurrences
of z in T. Blaisdell, 1988 [36] and Mironov and Alexandrov, 1988 [239] defined
the statistical distancéetween text§” andW as

dV,W) = [ (x(V) - z(W))>?
TEX

well before Internet search engines started to use related measures to find similar
pages on the Web. The efficiency of statistical distance for finding similarities was
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studied by Pevzner, 1992 [266]. The advantage of the statistical distance method
over BLAST is the speed: statistical distance can be computed very fast with data-
base pre-processing. The disadvantage is that statistical distance can miss weak
similarities that do not preserve sharketliples. As a result, the major application

of such algorithms is in “database versus database” comparisons, such as EST clus-
tering. To achieve the very high speed required for large EST databases, the statis-
tical distance approach was recently implemented with suffix arrays (Burkhardt et
al., 1999 [55]).

6.15.7 RNA folding

RNAs adopt sophisticated 3-dimensional structures that are important for signal
recognition and gene regulation. Pairs of positions in RNA with complementary
Watson-Crick bases can form bonds. Boritlg) and (i’, j') are interleaving if

i <1’ < j < 4" and non-interleaving otherwise. In a very naive formulation of the
RNA folding problem, one tries to find a maximum set of non-interleaving bonds.
The problem can be solved by dynamic programming (Nussinov et al., 1978 [253],
Waterman, 1978 [354]). In a more adequate model, one attempts to find an RNA
fold with minimum energy (Zuker and Sankoff, 1984 [381], Waterman and Smith,
1986 [363], Zuker, 1989 [380]). However, these algorithms are not very reliable.
A more promising approach is to derive an RNA fold through multiple alignment
of related RNA molecules. Eddy and Durbin, 1994 [95] studied a problem of RNA
multiple alignment that takes fold information into account.






Chapter 7

Multiple Alignment

7.1 Introduction

The goal of protein sequence comparison is to discover “biological” (i.e., struc-
tural or functional) similarities among proteins. Biologically similar proteins may
not exhibit a strong sequence similarity, and one would like to recognize the struc-
tural/functional resemblance even when the sequences are very different. If se-
guence similarity is weak, pairwise alignment can fail to identify biologically re-
lated sequences because weak pairwise similarities may fail the statistical test for
significance. Simultaneous comparison of many sequences often allows one to find
similarities that are invisible in pairwise sequence comparison. To quote Hubbard
et al., 1996 [170] “pairwise alignment whispers... multiple alignment shouts out
loud.”

Straightforward dynamic programming solves the multiple alignment problem
for k sequences of length Since the running time of this approactd$(2n)*), a
number of different variations and some speedups of the basic algorithm have been
devised (Sankoff, 1975 [298], Sankoff, 1985 [299], Waterman et al., 1976 [364]).
However, the exact multiple alignment algorithms for lafgere not feasible
(Wang and Jiang, 1994 [351]), and many heuristics for suboptimal multiple align-
ment have been proposed.

A natural heuristic is to computég) optimal pairwise alignments of the
strings and combine them together in such a way that induced pairwise alignments
are close to the optimal ones. Unfortunately, it is not always possible to combine
pairwise alignments into multiple alignments, since some pairwise alignments may
be incompatible. As a result, many multiple alignment algorithms attempt to com-
bine some compatible subset of optimal pairwise alignments into a multiple align-
ment. This can be done for some small subsets ofgallpairwise alignments.

The problem is deciding which subset of pairwise alignments to choose for this
procedure.

123
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The simplest approach uses pairwise alignment to iteratively add one string
to a growing multiple alignment. Feng and Doolittle, 1987 [100] use the pair of
strings with greatest similarity and “merge” them together into a new string follow-
ing the principle “once a gap, always a gap.” As a result, the multiple alignment of
k sequences is reduced to the multiple alignmeiit-of sequences. Many other it-
erative multiple alignment algorithms use similar strategies (Barton and Sternberg,
1987 [27], Taylor, 1987 [336], Bains, 1986 [22], Higgins et al., 1996 [162]).

Although the Feng and Doolittle, 1987 [100] algorithm works well for close
sequences, there is no “performance guarantee” for this method. The first “perfor-
mance guarantee” approximation algorithm for multiple alignment, with approxi-
mation ratioQ—%, was proposed by Gusfield, 1993 [144]. The idea of the algorithm
is based on the notion of compatible alignments and uses the principle “once a gap,
always a gap.”

Feng and Doolittle, 1987 [100] and Gusfield, 1993 [144] use optimal pairwise
(2-way) alignments as building blocks for multipleway alignments. A natu-
ral extension of this approach is to use optirBiakay (or [-way) alignments as
building blocks fork-way alignments. However, this approach faces some combi-
natorial problems since it is not clear how to define compafilay alignments
and how to combine them. Bafna et al., 1997 [18] devised an algorithm for this
problem with approximation ratip — %

Biologists frequently depict similarities between two sequences in the form
of dot-matrices A dot-matrix is simply a matrix with each entry eitheror 1,
where al at position(z, j) indicates some similarity between th¢h position of
the first sequence and thieth position of the second one. The similarity criteria
vary from being purely combinatorial (e.g., a match of lengthwith at mostk
mismatches starting at positiorof the first sequence andof the second one) to
using correlation coefficients between physical parameters of amino acids. How-
ever, no criterion is perfect in its ability to distinguish “real” (biologically relevant)
similarities from chance similarities (noise). In biological applications, noise dis-
guises the real similarities, and the problem is determining how to filter noise from
dot-matrices.

The availability of several sequences sharing biologically relevant similarities
helps in filtering noise from dot-matrices. Whérsequences are given, one can
calculate(’g) pairwise dot-matrices. If alt sequences share a region of similarity,
then this region should be visible in alf) dot-matrices. At the same time, noise
is unlikely to occur consistently among all the dot-matrices. The practical problem
is to reverse this observation: given t({?) dot-matrices, find similarities shared
by all or almost all of thé: sequences and filter out the noise. Vingron and Argos,
1991 [344] devised an algorithm for assembling-dimensional dot-matrix from
2-dimensional dot-matrices.
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7.2 Scoring a Multiple Alignment

Let A be a finitealphabetand letaq, . .., a; bek sequences (strings) ovel. For
convenience, we assume that each of these strings comtaiharacters. Le#’
denoteA | J{—}, where’—' denotes space. Aalignmentof stringsaz, ..., aj IS
specified by & x m matrix A, wherem > n. Each element of the matrix is a
member ofA’, and each row contains the characters of in order, interspersed

with m — n spaces. We also assume that every column of the multiple alignment
matrix contains at least one symbol frath The score of multiple alignment is
defined as the sum of scores of the columns and the optimal alignment is defined
as the alignment that minimizes the score.

The score of a column can be defined in many different ways. The intuitive
way is to assign higher scores to the columns with large variability of letters. For
example, in themultiple shortest common supersequepogblem, the score of a
column is defined as the number of different characters fibin this column.

In the multiple longest common subsequenpeblem, the score of a column is
defined as-1 if all the characters in the column are the same, @otherwise. In
the more biologically adequatainimum entropyapproach, the score of multiple
alignment is defined as the sum of entropies of the columns. The entropy of a
column is defined as

- Z Pz logpa

zeAl

wherep, is the frequency of letter € A’ in a columni. The more variable the
column, the higher the entropy. A completely conserved column (as in the multiple
LCS problem) would have minimum entropy O.

The minimal entropy score captures the biological notion of good alignment,
but it is hard to efficiently analyze in practice. Below we descillitance from
ConsensuandSum-of-Pairs (SP3cores, which are easier to analyze.

e Distance from Consensu3he consensus of an alignment is a string of the
most common characters in each column of the multiple alignment. The
Distance from Consensissore is defined as the total number of characters
in the alignment that differ from the consensus character of their columns.

e Sum-of-Pairs (SP-score}or a multiple alignmenti = (a;,), the induced
score of pairwise alignment;; for sequences; anda; is

m

s(Aij) = D d(ain, ajn),

h=1

whered specifies thalistancebetween elements oft’. The Sum-of-Pairs
score(SP-score) for alignmemt is given by3~; ; s(A;;). In this definition,
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the score of alignmerA is the sum of the scores pfojectionsof A onto all
pairs of sequences; anda;. We assume the metric properties for distance
d, so thatd(z,z) = 0 andd(z, z) < d(z,y) + d(y, z) for all z,y, andz in

A

7.3 Assembling Pairwise Alignments

Feng and Doolittle, 1987 [100] use the pair of strings with greatest similarity and
“merge” them together into a new string following the principle “once a gap, al-
ways a gap.” As a result, the multiple alignmentto$equences is reduced to the
multiple alignment ofk — 1 sequences (one of them corresponds to the merged
strings). The motivation for the choice of the closest strings at the early steps
of the algorithm is that close strings provide the most reliable information about
alignment.

Given an alignmen#4 of sequences, ..., a; and an alignmenfd’ of some
subset of the sequences, we say thas compatiblewith A’ if A aligns the char-
acters of the sequences aligned Afyin the same way that’ aligns them. Feng
and Doolittle, 1987 [100] observed that given any tree in which each vertex is la-
beled with a distinct sequeneg, and given pairwise alignments specified for each
tree edge, there exists a multiple alignment of kh@equences that is compatible
with each of the pairwise alignments. In particular, this result holds for a star on
vertices, i.e., a tree witbentervertex andk — 1 leaves.

Lemma 7.1 For any star and any specified pairwise alignmeAts..., A;_; on
its edges, there is an alignmentfor the & sequences that is compatible with each
of the alignmentsdy, ..., A, 1.

Given a staiGG, define astar-alignmentAs as an alignment compatible with
optimal pairwise alignments on the edges of this star. The alignrgrmptimizes
k—1 among(’g) pairwise alignments in SP-score. The question of how good the
star alignment is remained open until Gusfield, 1993 [144] proved that if the star
Gis chosZen properly, the star alignment approximates the optimal alignment with
ratio2 — =.

Let Gk(V, E) be an (undirected) graph, and fteti, j) be a (fixed) shortest
path between vertices # ;5 € V of lengthd(i,j). For an edge € E, de-
fine the communication coste) as the number of shortest pathg, j) in G that
use edge:. For example, the communication cost of every edge in a star with
k vertices isk — 1. Define the communication cost of the graghasc(G) =
Yeercle) = Xizievd(i,j). Thecomplete grapton k verticesHy has a mini-

mum communication cost @f(G) = @ among allk-vertex graphs. We call

b(G) = % = 2% thenormalized communication cost G. For a star with
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k vertices,b(G) = 2 — % Feng and Doolittle, 1987 [100] use a tree to combine
pairwise alignments into a multiple alignment, and it turns out that the normalized
communication cost of this tree is related to the approximation ratio of the resulting
heuristic algorithm.

DefineC(G) = (c;;) as ak x k matrix with ¢;; = c(e) if (4, j) is an edge in
G andc;; = 0 otherwise. Thaveighted sum-of-pairs scofer alignmentA is

> cij - s(Aij)
i

For notational convenience, we use thatrix dot producto denote scores of
alignments. Thus, letting(A4) = (s(A;;)) be the matrix of scores of pairs of
sequences, the weighted sum-of-pairs scor€(i§) ® S(A). Letting E be the
unit matrix consisting of all 1s except the main diagonal consisting of all 0s, the
(unweighted) sum-of-pairs score of alignmehts £ © S(A).

The pairwise scores of an alignment inherit the triangle inequality property
from the distance matrix. That is, for any alignmehts(A4;;) < s(A;) + s(Ax; ),
for all 4, j, andk. This observation implies the following:

Lemma 7.2 For any alignmentA of & sequences and a st&, E © S(A) <
C(G) ® S(A).

7.4 Approximation Algorithm for Multiple Alignments

Let G be a collection of stars in B-vertex graph. We say that the collectignis
balancedf )" ,.; C(G) = pE for some scalap > 1. For example, a collection of
k stars withk different center vertices is a balanced collection with 2(k — 1).
SinceC(G) is non-zero only at the edges of the starand since star alignment
Ag induces optimal alignments on edgedhf

C(G)® S(Ag) <C(G)® S(A)
for any alignmentA.

Lemma 7.3 If G is a balanced set of stars, then

min C(G) © S(Ag) < % min £ © S(4)
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Proof We use an averaging argument.
mingeg C(G) ® S(Ag) < g7 Laeg C(G) © S(Aq)
< 1" Laeg C(G)© S(A) = 5 - E© S(4)

Here the inequality holds for an arbitrary alignmehtand in particular, it holds
for an optimal alignment. ]

Lemmas 7.2 and 7.3 motivate tAdign algorithm:

1. Construct a balanced set of stdfs,
2. For each stafy in G, assemble a star alignmeAt;.

3. Choose a stat such thatC'(G) ® S(A¢) is the minimum over all stars in
g.

4. ReturnAg.

Theorem 7.1 (Gusfield, 1993 [144]) Given a balanced collection of st@ra\lign

returns an alignment with a performance guarante@ of 2/k in O(k - n? - |G|)

time.

Proof Note that; = CACE — 92 Align returns the alignment; that is op-
timal for a starG € G, and for which the smallest scomaingcg C(G) ® S(Ag),

is achieved. Lemmas 7.2 and 7.3 imply that> S(Aqg) < C(G) ® S(Ag) <

(2—%)-minAE®S(A). ]

7.5 Assembling-way Alignments

An |-star G = (V, E) onk vertices is defined by = % cliques of sizd whose
vertex sets intersect in only orentervertex (Figure 7.1). For a 3-star with=
2t + 1 vertices,c(G) = (2t — 1)2t + t andb(G) = 2 — 2. For anl-star with

k= (I—1)t+1verticesc(G) = (I — 1)t +1— 1+ 1) (1 — 1)t + (L7 —141)
andb(G) =2 — % The communication cost of an edgé anl-starG with center
cis

ole) = k—1+1, if eisincident toc
1, otherwise.
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Note that for the communication cost matrix of astarG,

C(G)@E:(k—l+1)-(k—1)+%(l;1>:(S).(g_é>

Figure 7.1:5-star with four cliques.

Let A, ..., A, be alignments for the cliques in thd-star, with eactd; align-
ing [ sequences. A construction similar to Feng and Doolittle, 1987 [100] implies
an analog of lemma 7.1:

Lemma 7.4 For anyl(-star and any specified alignmems, ..., A,. for its cliques,
there is an alignmentd for the & sequences that is compatible with each of the
alignmentsA,, ..., A,.

One can generalize tidign algorithm fori-stars and prove analogs of lemmas 7.2
and 7.3. As a result, theorem 7.1 can be generalizedstars, thus leading to an
algorithm with the performance guarantee equal to the normalized communication
cost ofl-stars, which i€ — % The running time of this algorithm ©(k(2n)!(G|).
Therefore, the problem is finding a small balanced sétsbérsg.

We have reduced the multiple alignment problem to that of finding an optimal
alignment for each clique in eadhstar in a balanced s¢. How hard is it to
find a balanced se&}? A trivial candidate is simply the set of dHstars, which is
clearly balanced by symmetry. Fbe= 2, Gusfield, 1993 [144] exploited the fact
that there are only 2-stars to construct a multiple alignment algorithm with an
approximation ratio o — 2. This is really a special case, as fas 2, the number
of [-stars grows exponentially witth making the algorithm based on generation of
all [-stars computationally infeasible. Constructingraall balanced set df-stars
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is not trivial. Pevzner, 1992 [265] solved the casé sf 3 by mapping the problem
to maximum matching in graphs. Bafna et al., 1997 [18] further desigreed %
approximation algorithm for arbitrary

7.6 Dot-Matrices and Image Reconstruction

Given k sequences, it is easy to gener(age pairwise dot-matrices. It is much
harder to assemble these pairwise dot-matrices intedamensional dot-matrix
and to find regions of similarity shared by all or almostkadlequences. To address
this problem, Vihinen, 1988 [343] and Roytberg, 1992 [290] proposed “superim-
posing” pairwise dot-matrices by choosing one reference sequence and relating all
others to it. Below we describe the Vingron and Argos, 1991 [344] algorithm for
assembling &-dimensional dot-matrix from 2-dimensional dot-matrices.

We represent the problem of assembling pairwise similarities in a simple geo-
metric framework. Conside¥! integer points irk-dimensional space,

(2%772116)77(2{\4772116‘4)7
for which we do not know the coordinates. Suppose we observe the projections of
these points onto each pair of dimensigrendt, 1 < s <t < k:

(igsit)s- -5 (@101

as well as some other pointsaisg. Suppose also that we cannot distinguish points
representingeal projections from ones representing noise. TFhdimensional
image reconstructiorproblem is to reconstruc¥ k-dimensional points give(*(;)
projections (with noise) onto coordinatesinds for 1 < s <t < k.

In this construction, each similarity (consensus element) sharédbigiogi-
cal sequences corresponds to an integer gejnt. . i) in k-dimensional space,
wherei, is the coordinate of the consensus in thth sequencel < s < k. In
practice, it is hard to find the integer poirts, . .. ,x) corresponding to consen-
suses. On the other hand, it is easy to find (though with considerable noise) the
projections(is, i;) of all consensuse§, .. .i;) onto every pair of coordinates
andt. This observation establishes the link between the multiple alignment prob-
lem and thek-dimensional image reconstruction problem.

From the given dots in the side-planes, we propose to keep only those that
fulfill the following criterion of consistency: the poirit, j) in projections, ¢ is
called consistentif for every other dimension: there exists an integer. such
that (7, m) belongs to the projection, v and(j, m) belongs to the projectioty
(Gotoh, 1990 [135]). Obviously each “real” point, i.e., each one that was generated
as a projection of &-dimensional point, is consistent. In contrast, random points
representing noise are expected to be inconsistent. This observation allows one to
filter out most (though possibly not all) of the noise and leads to the Vingron and
Argos, 1991 [344] algorithm that multiplies and compares dot-matrices.
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7.7 Multiple Alignment via Dot-Matrix Multiplication

We model the collection 0(1"2“) dot-matrices as A-partite graphG (V, U Vo U

Vi, E), whereV; is the set of positions in theth sequence. We join the vertex
i € Vi with j € V; by an (undirected) edgeif there exists a dot at positiofi, j)

of the dot-matrix comparing sequenceandt¢. An edgee € E will be written as

e = (s,it, j) to indicate that it joins verticese V; and;j € V;. We denote &rian-
gle formed by three edges, ilt, j), (¢, j|u,m), and(s, i|u, m) as(s,i|t, j|u, m).
We now define an edge, i|t, j) to beconsistenif for everyu # s,t, 1 <u <k
there exists a trianglés, i|t, j|u, m) for somem. A subsett’ C E is calledcon-
sistentif for all edges(s, i|t, j) € E' there exist trianglegs, i|t, j|u, m), Yu # s,t,

1 < u < k, with all edges of these triangles k. Thek-partite graph= is defined
asconsistentf its edge-set is consistent. Clearly,Gf (V, E’) andG"(V, E") are
consistent graphs, then theinionG(V, E’' U E") is consistent. Therefore, we can
associate with ang-partite graph a unique maximal consistent subgraph. Our in-
terest is in the following:

Graph Consistency Problem Find the maximal consistent subgraph of an
partite graph.

The dot-matrix for sequencesandt is defined asdjacencymatrix A;:

, if (s,i|t,j) € E
(Ast)ij = {0 otherwise

Each such matrix corresponds to a subsel'pnd we will apply the operations
U, N, andC to the matricesi;. We reformulate the above definition of consistency
in terms of boolean multiplication (denoted by'y of the adjacency matrices (Vin-
gron and Argos, 1991 [344]). A-partite graph is consistent if and only if

Ag CAguo Ay Vs,t,u:l<s,t,u<k,s#t#u. (7.2)

Characterization (7.1) suggests the following simple procedure to solve the
consistency problem: keep only those 1s in the adjacency matrix that are present
both in the matrix itself and in all productd,, o A,;. Doing this once for all
adjacency matrices will also change the matrices used for the products. This leads
to the iterative matrix multiplication algorithm (superscripts distinguish different

iterations) that starts with the adjacency matriﬂé% := A, of the givenk-partite
graph and defines:

ALY = AD (N Al o AY)
UFES,t
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Once this is done for all indices and ¢, the process is repeated until at some
iterationm AL = A forall 1 < s,t < k.

The dot-matrix multiplication algorithm (Vingron and Argos, 1991 [344]) con-
verges to the maximal consistent subgraph and reqaitésk?) time per iteration
(L is the length of the sequences). Since the number of iterations may be very large,
Vingron and Pevzner, 1995 [345] devised an algorithm running in trg3%3)
overall, which is equivalent to the run-time of only one iteration of the matrix-
multiplication algorithm. In practical applications the input data for the algorithm
are sparse matrices, which makes the algorithm even faster. Expressed in the over-

all numberM of dots in all(g) dot-matrices, the running time {3(kLM).

7.8 Some Other Problems and Approaches

7.8.1 Multiple alignment via evolutionary trees

It often happens that in addition to sequenaes . ., ax, biologists know (or as-

sume that they know) the evolutionary history (represented leyalutionary treg

of these sequences. In this casg,. .., a; are assigned to the leaves of the tree,
and the problem is to reconstruct the ancestral sequences (corresponding to internal
vertices of the tree) that minimize the overall number of mutations on the edges of
the tree. The score of an edge in the tree is the edit distance between sequences
assigned to its endpoints, and the score of the evolutionary tree is the sum of edge
scores over all edges of the tree. The optimal multiple alignment for a given evo-
lutionary tree is the assignment of sequences to internal vertices of the tree that
produces the minimum score (Sankoff, 1975 [298]). Wang et al., 1996 [352] and
Wang and Gusfield, 1996 [350] developed performance guarantee approximation
algorithms for evolutionary tree alignment.

7.8.2 Cutting corners in edit graphs

Carrillo and Lipman, 1988 [58] and Lipman et al., 1989 [224] suggested a branch-
and-bound technique for multiple alignment. The idea of this approach is based on
the observation that if one of the pairwise alignments imposed by a multiple align-
ment is bad, then the overall multiple alignment won’t have a good score. This ob-
servation implies that “good” multiple alignment imposes “good” pairwise align-
ments, thus limiting a search to the vicinity of a main diagonal indimensional
alignment matrix.



Chapter 8

Finding Signals in DNA

8.1 Introduction

Perhaps the first signal in DNA was found in 1970 by Hamilton Smith after the
discovery of the Hind Il restriction enzyme. The palindromic site of the restriction
enzyme is a signal that initiates DNA cutting. Finding the sequence of this site was
not a simple problem in 1970; in fact, Hamilton Smith published two consecutive
papers on Hind Il, one on enzyme purification and the other one on finding the
enzyme’s recognition signal (Kelly and Smith, 1970 [196]).

Looking back to the early 1970s, we realize that Hamilton Smith was lucky:
restriction sites are the simplest signals in DNA. Thirty years later, they remain
perhaps the only signals that we can reliably find in DNA. Most other signals (pro-
moters, splicing sites, etc.) are so complicated that we don't yet have good models
or reliable algorithms for their recognition.

Understanding gene regulation is a major challenge in computational biology.
For example, regulation of gene expression may involve a protein binding to a
region of DNA to affect transcription of an adjacent gene. Since protein-DNA
binding mechanisms are still insufficiently understood to alilowsilico prediction
of binding sites, the common experimental approach is to locate the approximate
position of the binding site. These experiments usually lead to identification of a
DNA fragment of lengthm that contains a binding site (an unknowragic word
of length! < n. Of course, one such experiment is insufficient for finding the
binding site, but a sample of experimentally found DNA fragments gives one hope
of recovering the magic word.

In its simplest form, the signal finding problem (and the restriction enzyme site
problem in particular) can be formulated in the following way. Suppose we are
given a sample o sequences, and suppose there is an (unknown) magic word
that appears at different (unknown) positions in those sequences. Can we find the
magic word?

133
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A common-sense approach to the magic word problem is to test all words of
length and to find those that appear in all (or almost all) sequences from the
sample (Staden, 1989 [326], Wolfertstetter et al., 1996 [370], Tompa, 1999 [338]).
If the magic word is the only word that appears that frequently in the sample, then
the problem is (probably) solved. Otherwise we should incréasel repeat the
procedure.

The described approach usually works fine for short continuous words such as
GAATTC,the restriction site of ECORI. However, if the length of sequences in the
sample neard®, random words may start competing with the magic word, since
some of them may appear in many sequences simply by chance. The situation
becomes even more difficult if the nucleotide frequencies in the sample have a
skewed distribution.

The problem gets even more complicated when the magic word has gaps, as
in CCANyTGG@, the site of the Xcm | restriction enzymé@/(stands for any nuc-
leotide, andNy indicates a gap of length 9 in the site). Of course, we can try to
enumerate all patterns with gaps, but the computational complexity of the problem
grows very rapidly, particularly if we allow for patterns with many gaps. Even
finding the relatively simple “letter-gap-letter-gap-letter” magic word is not that
simple anymore; at least it warranted another pattern-finding paper by Hamilton
Smith and colleagues 20 years after the discovery of the first restriction site pattern
(Smith et al., 1990 [318]). Another daunting recognition task is to find signals like
Pu™C Nyg_2000Pu™C, the recognition site of McrBC Endonucleadey( stands
for A or G).

While the above problems are not simple, the real biological problems in signal
finding are much more complicated. The difficulty is that biological signals may
be long, gapped, and fuzzy. For example, the magic wordtfooli promoters is
TTGACAN;TATAAT. Enumeration and check of all patterns of this type is
hardly possibly due to computational complexity. However, even if we enumerated
all patterns of this type, it would be of little help since the pattern above represents
anideal promoter but never occurs in known promoter sequences. Rather, it is a
consensus of all known promoters: neither consensus bases nor spacing between
the two parts of the signal are conserved. In other words, the description of the
magic word in this case is something like “12 non-degenerate positions with one
gap and a maximum of 4 mismatches.” There is no reliable algorithm to find this
type of signal yet. The shortcoming of the existing algorithms is that, for subtle
signals, they often converge to local minima that represent random patterns rather
than a signal.

8.2 Edgar Allan Poe and DNA Linguistics

When William Legrand from Edgar Allan Poe’s novel “The Gold-Bug” found a
parchment written by the pirate Captain Kidd:
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5311t305))6*:4826)4.)41):806*;48t8460))8
5;1%(;:1*8183(88)5*;46(88%*96*?7;8)*(;485
);5%12:*4(;4956*%2(5*--4)898*:4069285);)6(8
)411;1(19;48081:8:81;48185;4)485{528806
*81(19;48;(88;4(1?34;48)4;,161;:188;?;

his friend told him, “Were all the jewels of Golconda awaiting me upon my so-
lution of this enigma, | am quite sure that | should be unable to earn them.” Mr.
Legrand responded, “It may well be doubted whether human ingenuity can con-
struct an enigma of the kind which human ingenuity may not, by proper applica-
tion, resolve.” He noticed that a combination of three symbols—; 4 8—appeared
very frequently in the text. He also knew that Captain Kidd’s pirates spoke English
and that the most frequent English word is “the.” Assuming that ; 4 8 coded for
“the,” Mr. Legrand deciphered the parchment note and found the pirate treasure
(and a few skeletons as well). After this insight, Mr. Legrand had a slightly easier
text to decipher:

5311t305))6*THE26)H}.)H}):E06*THE{E(60))E
5T1H(T:*E{E3(EE)5*T46(EE*96*? TE)*}(THES5
)T5*+2:*1(TH956*2(5*--H)EqE*THO692E5)T)6(E
JHHT1(}9THEOELTE:Ef1THE{ES5TH)HES{52EE06
*E1({9THET(EETH@G?3HTHE)HIT161T:1EETI?T

You may try to figure out what codes for “(” and complete the deciphering.

DNA texts are not easy to decipher, and there is little doubt that Nature can
construct an enigma of the kind which human ingenuity may not resolve. How-
ever, DNA linguistics borrowed Mr. Legrand’s scientific method, and a popular
approach in DNA linguistics is based on the assumption that frequent or rare words
may correspond to signals in DNA. If a word occurs considerably more (or less)
frequently than expected, then it becomes a potential “signal,” and the question
arises as to the “biological” meaning of this word (Brendel et al., 1986 [47], Burge
et al., 1992 [53]). For example, Gelfand and Koonin, 1997 [124] showed that the
most avoided 6-palindrome in the archaddiannaschiiis likely to be the recog-
nition site of a restriction-modification system.

DNA linguistics is at the heart of thpattern-drivenapproach to signal find-
ing, which is based on enumerating all possible patterns and choosing the most
frequent or the fittest (Brazma et al., 1998 [46]) among them. The fithess mea-
sures vary from estimates of the statistical significance of discovered signals to the
information content of the fragments that approximately match the signal. The
pattern-driven approach includes the following steps:

e Define the fitness measure (e.qg., frequency).
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e Calculate the fitness of each word with respect to a sample of DNA frag-
ments.

e Report the fittest words as potential signals.

A problem with the pattern-driven approach is efficiency, since the search space
for patterns of lengthis |.A|', whereA is the alphabet. To prune the search, one can
use the idea behind the Karp-Miller-Rosenberg algorithm (Karp et al., 1972 [188]),
which is based on the observation that if a string appeakssequences, then all
of its substrings appear in at ledssequences. Therefore, every frequent string
can be assembled from frequent substrings. For example, a simple way to do this
is to create a list of all frequer-tuples from the list of all frequenttuples by
concatenating every pair of frequehtuples and subsequently checking the fre-
guency of these concatenates. Another approach to this problem is tuffige
trees(Gusfield, 1997 [145]).

To find frequent and rare words in a text, one has to compute the expected
value E(W) and the variance?(W) for the number of occurrences (frequency) of
every wordW . Afterwards, the frequent and rare words are identified as the words
with significant deviations from expected frequencies. In many DNA linguistics
papers, the varianag? (W) of the number of occurrences of a word in a text was
erroneously assumed to B ).

Finding the probability oft occurrences of a word in a text involves an
apparatus of generating functions and complex analysis (Guibas and Odlyzko,
1981 [141]). The difficulty is that the probability of a word’s occurrence in a
text depends not only on the length of the word, but also on the structure of the
word overlaps defined by thautocorrelation polynomia{Guibas and Odlyzko,
1981 [141]). For example, the distribution of the number of occurrences of AAA
(autocorrelation polynomial + = + z2) differs significantly from the distribution
of the number of occurrences of of ATA (autocorrelation polynorhial z?) even
in a random Bernoulli text with equiprobable letteos€rlapping words paradgx
Below we discuss the best bet for simpletons explaining the overlapping words
paradox.

8.3 The Best Bet for Simpletons

The overlapping words paradox is the basishaf best bet for simpletonstudied

by John Conway. The best bet for simpletons starts out with two players who
select words of lengthin a 0-1 alphabet. Player | selects a sequetad [ heads

or tails, and Player Il, knowing what is, selects another sequenBeof lengthi.

The players then flip a coin until either or B appears as a block étonsecutive
outcomes. The game will terminate with probability 1.
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“Funny you don’'t gamble none, ain't it in your blood?”, Shorty said to Smoke
(in Jack London’s “Smoke Bellew”) one night in Elkhorn. Smoke answered, “It is.
But the statistics are in my head. | like an even break for my money.”

At first glance it looks as thougHd and B have an even break for their money.
Even if somebody realizes that some words are stronger than others in this game, it
looks as thoug should win after choosing the “strongest” word. The intriguing
feature of the game is the fact that it 3, then no matter what is, Player Il can
choose a word3 that beatsd. One more surprise is that the best bet for simpletons
is a non-transitive gameA beatsB and B beatsC' does not implyA beatsC
(remember rock, paper, and scissors?).

Supposed chooses 00 an® chooses 10. After two tosses eithémwins (00),
or B wins (10), or the game will continue (01 or 11). However, it makes little sense
for A to continue the game sind@ will win anyway! Therefore, the odds aB
over A in this game are 3:1.

The analysis of the best bet for simpletons is based on the notiorcaire:
lation polynomial(Guibas and Odlyzko, 1981 [141]). Given tixbetter wordsA
and B, the correlation of A and B, to be denoted bydB = (cy,...,¢—1), IS an
[-letter boolean word (Figure 8.1). Theh bit of AB is defined to be 1 if the
(n —1)-prefix (the firsth — i letters) of B coincides with thén — i)-suffix (the last
n —1 letters) of A. Otherwise, thé-th bit of AB is defined to be 0. Theorrelation
polynomialof A andB is defined as{ 45 (t) = co +c1 -t +... 4 ¢_1 -t~ We
also denotek 45 = Kap(3).

John Conway suggested the following elegant formula to compute the odds that
B will win over A:

Kaa— Kap
Kpp — Kpa

Conway’s proof of this formula was never published. Martin Gardner, 1974 [118]
wrote about this formula:

I have no idea why it works. It just cranks out the answer as if by magic, like so many of Conway’s
other algorithms.

The proofs of this formula were given independently by Li, 1980 [222] us-
ing martingales and by Guibas and Odlyzko, 1981 [141] using generating func-
tions. In the next section we give a short proof of the Conway equation (Pevzner,
1993 [268]).

8.4 The Conway Equation

Let AB = (co,...,c;—1) be a correlation ot andB, and letc,,,, . .., ¢y, be the
bits of AB equal to 1. Denote aH 45 the set ofk prefixes ofA = aq ...a; Of
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A= XYYXYY AB
B= YYXYYX shifi=0 0
YYXYYX shifi=1 1
YYXYYX shift=2 0
YYXYYX shifi=3 0
YYXYYX shifi=4 1
YYXYYX  shifi=5 1

1 4 5
KAB_t+t+t

H =X, XYYX, XYYXY]}

K AB (1/2)=1/2+1/16+1/32=P( HAB)

Figure 8.1:Correlation polynomial of wordgl andB (AB = (010011)) and the set{ 5.

lengthmyq, ..., my (Figure 8.1):

(@1...amy), (@1 Qmy e my)y ey (@1 ey Oy e e e am,, )-

Given two wordsX andY, we denote as{ * Y the concatenatiorof X and
Y. Given two sets of word®’ = {X} and) = {Y'}, we denote at’ « ) the set
of words{ X Y} containing all concatenations of words frothand words from
Y. The setX x ) containg|X| - || words (perhaps with repeats).

We denote af?(X) = % the probability of a boolearletter word X to
represent the result éhead-or-tail trials. For a set of words = { X'}, denote

P(X) =) P(X)

XeX



8.4. THE CONWAY EQUATION 139

We will use the following simple observation:
Lemma 8.1 Kap(3) = P(Hag).

A word W is anA-victoryif it contains A in the end and does not contaih A
word W is anA-previctoryif W x A is an A-victory. We defineS 4 to be the set of
all A-previctories.B-victories, B-previctorigsand the sefp of all B-previctories
are defined similarly.

The idea of the proof is to consider alb-victorywords:

T = {T : T is neitherA-victory nor B-victory}.

Every wordT x A for T'eT corresponds to either atrvictory or aB-victory. If T'x
A corresponds to an-victory, thenT can be represented in the foutaprevictory
* Haa, Where H aeH a4 (Figure 8.2a). IfT x A corresponds to d&-victory,
thenT can be represented in the forBrprevictory * Hg4, where HgacHpa
(Figure 8.2b). This implies the following representation of no-victories.
Lemma82 7T =T, = (Sp*Hpa) U(Sa x Han).

Similarly, every wordI" « B for TeT corresponds to either afi-victory or a
B-victory. If T x B corresponds to ad-victory, thenT' can be represented in the
form A-previctory * H og, whereH ygeH 4 g (Figure 8.2c). IfT" + B corresponds
to a B-victory, thenT' can be represented in the forBprevictory * Hp, where
HppeHpp (Figure 8.2d). This implies another representation of no-victories:

Lemma8.3 7T = 7-2 = (SA * HAB) U(SB * HBB)-

Theorem 8.1 The odds thaB3 wins overA is £aa—fas
BB BA

Proof Lemmas 8.1 and 8.3 imply that the overall probability of words in the set
T is
P('TQ) = P(SA * HAB) + P(SB * HBB) =
P(S4)-P(Hap)+ P(Sg) - P(Hpp) =
P(SA) . KAB + P(SB) . KBB-
Similarly, lemmas 8.1 and 8.2 imply
P(T1) = P(Sp) - Kpa + P(S4) - Kaa.
According to lemmas 8.2 and 8.3; and7; represent the same Sgt therefore,
P(T1) = P(T3) and
P(Sa) - Kap + P(Sg) - Kpp = P(Sp) - Kpa + P(Sa) - Kaa.
This implies
P(Sp) _ Kaa—Kap
P(S4) Kpp—Kpa’
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a T A
A
| |
A-previctory Han
b T A
B
| T
| |
B-previctory Hga
¢ T B
A
| |
A-previctory HAB
d T B
B
| T
| |
B-previctory HBB

Figure 8.2:Different representations of words from the sgts {A} and7 * { B}.

8.5 Frequent Words in DNA

Formulas for the varianc® ar (W) of the number of occurrences of a woid
in a Bernoulli text were given by Gentleman and Mullin, 1989 [126] and Pevzner
et al., 1989 [269]. For a Bernoulli text of lengthin an (-letter alphabet with
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equiprobable letters,

n 1 2k —1
Var(W) = 7 - 2+ Kww(7) = 1 = =)

wherek is the length of word¥ and Ky w (t) is the correlation polynomial of
wordsW andW (autocorrelation polynomial of Y

To derive this formula, consider (for the sake of simplicity) a circular text of
lengthn in anl-letter alphabet with the probability of every letter at every position
equal to%. For a fixedk-letter wordW, define a random variable; as 1 if W
starts at the-th position of the text and &% otherwise. Denote the mean of
asp = . The number of occurrences Bf in the text is given by the random

l
n
X = le
=1

variable
with mean

and variance

Var(X) = E(X?) - B(X)*= Y E(w;) — E(zi)E(z;).
{1<i,j<n}

Let d(i, ) be the (shortest) distance between positibasd j in a circular text.
Then

Var(X) = Z E(ziz;) — E(z;)E(zj)+
{(8.9): d(i,5)>k}

> E(zizj) — E(z;) E(7;)+
{(%.5): d(i,5)=0}

Z E(:El(IIJ) —E((IIZ)E(:E])
{(4,5): 0<d(i,j)<k}

Since random variables andz; are independent fai(s, j) > k, the first term

in the above formula i, the second term is simply(p — p?), and the last term
can be rewritten as follows:

> EBlwiz) - B(wi)E(z)) =
{(,5): 0<d(i,j)<k}
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k

>3 Y E(wwzy) — E(zi)E(xy)

i=1t=1 {j: d(i,j)=t}
For a fixedt, E(z;x;1¢) equaISpllt if the ¢-th coefficient of the correlatio’ W

equals 1, and otherwise. We can then writB(z;z;4:) = ctpllt, and since for
everyi there are exactly two positiogswith d(z, j) = t,

k—1
Y. Y Bluw) =
t=1 {j: d(i,j)=t}

k—1 1 1
2 g = 2p(KWW(7) —1).
t=1

1

Therefore,
- 1
Z E($z$])_E(IL‘Z)E($]) = Z(Qp(wa(j)—l)—Q(k—l)pz) =
{(@,5): 0<d(i,5) <k} i=1
1
np(2Kww(7) =2 = 2(k — 1)p)
and

Var(X) = np(2Kww (7) 1 (2 — 1p).

This result demonstrates that the variance of the frequency of occurrences
varies significantly between words even for Bernoulli texts. In particular, for a
4-letter alphabet with equal probabilities of lettetsT’, G, andC,

Var(AA) 21 dVar(AAA) 99

— =T and—— = .
Var(AT) 13 Var(ATG) 59

Therefore, ignoring the overlapping words paradox leads to iyt mistakes
in estimations of statistical significance while analyzing frequent words. For 2-

letter alphabets Pur/Pyr or S/W, ignoring the overlapping words paradox leads to

500%(!) mistakes in estimations of statistical significan%vea‘%% =9,

The above formulas allow one to compute the variance for Bernoulli texts.
Fousler and Karlin, 1987 [112], Stuckle et al., 1990 [330], and Kleffe and
Borodovsky, 1992 [199] presented approximation formulas allowing one to cal-
culate the variance for texts generated by Markov chains. Prum et al., 1995 [281]
obtained the normal limiting distribution for the number of word occurrences in
the Markovian Model. Finally, Regnier and Szpankowski, 1998 [282] studied ap-
proximate word occurrences and derived the exact and asymptotic formulas for the
mean, variance, and probability of approximate occurrences.
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8.6 Consensus Word Analysis

For a wordW and a samples, denote ad¥V (S) the number of sequences from
S that containWv. If a magic word appears in the sample exactly, then a simple
count of W (S) for everyl-letter wordW would detect the magic word as the most
frequent one. The problem gets more complicated when épetwors (i.e., mis-
matches) in the magic word are allowed. For this case Waterman et al., 1984 [358]
and Galas et al., 1985 [115] suggestahsensus wordnalysis, which is essen-
tially an approximate word count. For every wdid they defined a neighborhood
consisting of all words within distandefrom W and counted occurrences of words
from the neighborhood in the sample. They also introduced the idesighted
occurrencesnd assigned higher weight to neighbors with fewer errors. Using con-
sensus word analysis, Galas et al., 1985 [115] were able to deteETiGedC A
andT AT AAT consensus sequences in Bhecoli promoter signal.

Let Dy (s, t) be the Hamming distance between two stringsid¢ of the same
length. Mirkin and Roberts, 1993 [238] showed that approximate word count is, in
some sense, equivalent to the following:

Consensus String ProblemGiven a sampl&s = {sy,..., s, } of sequences and
an integerl, find amedianstring s of length/ and a substring; of length/ from
eachs;, minimizing i, du (s, t;).

Lietal., 1999 [221] showed that the Consensus String Problem is NP-hard and
gave a polynomial time approximation scheme (PTAS) for this problem. The algo-
rithm is based on the notion ofraajority string. Given a collection, ..., ¢, of n
strings of length, the majority string fotty, . . ., t,, is the strings whosei-th letter
is the most frequent letter amomngi-th letters intq, ..., ¢,. Lietal., 1999 [221]
devised a PTAS for the Consensus String Problem that is based on choosing the
majority string for every length{ substringg;, ,. .., ¢;, of {si,...,sp}.

It is often convenient to concatenate multiple sequences from a s&hiptie a
single composite sequence, converting the problem of finding the consensus string
into the problem of finding the most frequent string in the text. A naive approach
to this problem is to find the number of occurrend€$T") of everyl-letter string
W intextT. Apostolico and Preparata, 1996 [10] devised an efficient algorithm for

String Statistics Problem Given a textI’ and an integet, find W (T') for each
[-letter stringWV.

The String Statistics Problem gets difficult if we consider approximate string
occurrences. Lel,(T') be the number of approximate occurrencediofin T
with up to £ mismatches. We are unaware of an efficient algorithm to solve the
following:
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Frequent String Problem Given textT" and integers andk, find ani-letter string
W maximizingWy (T') among alli-letter words.

Consensus word analysis is an example séquence-driveapproach to sig-
nal finding. A sequence-driven approach does not enumerate all the patterns, but
instead considers only the patterns that are present in the sample. Given a collec-
tion of frequent word3V; in a sampleS; and a collection of frequent word¥, in
a sampleS,, one can intersedty; andW, to obtain a collection of frequent words
in S1 U S,. Given a sample of sequences, one can view it as a set gamples
and start combining sets of frequent words until all the sequences are combined.
Particular sequence-driven approaches differ in the way the sets to be combined
are chosen and in the way the sets are combined.

8.7 (Cd-islands and the “Fair Bet Casino”

The most infrequent dinucleotide in many genome€'és. The reason is that’

within CG is typically methylated, and the resulting metllylhas a tendency to
mutate intol’. However, the methylation is suppressed around genes in the areas
calledCG-islandswhereC'G appears relatively frequently. The question arises of
how to define and find’G-islands in a genome.

Finding C'G-islands is not very different from the following “gambling” prob-
lem (Durbin et al., 1998 [93]). A dealer in a “Fair Bet Casino” may use either a
fair coin or a biased coin that has a probability;iorﬁf a head. For security reasons,
the dealer does not tend to change coins—it happens relatively rarely, with a prob-
ability of 0.1. Given a sequence of coin tosses, find out when the dealer used the
biased coin and when he used a fair coin.

First, let’s solve the problem under the assumption that the dealer never changed
the coin. The question is what coin, fair((0) = p™ (1) = 1) or biased §~(0) =
1.p7(1) = 2), he used. If the resulting sequence of tosses is zi ...z,
then the probability that it was generated with a fair coirPig|fair coin) =

Popt(x) = 2% The probability thatz was generated with a biased coin is

P(z|biased coin) = [[;—1 p~ (z;) = ﬁj—’,ﬁ = i’—i wherek is the number of 1s
in z. As a result, whek < @ the dealer most likely used a fair coin, and when
k> @, he most likely used a biased coin. We can define the log-odds ratio as

follows:

()

p (i)

3

(x| fair com)) _ Z log, — 1~ klog,3
=1

1
082 P(z|biased coin
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A naive approach to finding’G-islands is to calculate log-odds ratios for each
sliding window of a fixed length. The windows that receive positive scores are
potentialC'G-islands. The disadvantage of such an approach is that we don’t know
the length ofC'G-islands in advance. Hidden Markov Models represent a different
probabilistic approach to this problem (Churchill, 1989 [69]).

8.8 Hidden Markov Models

A Hidden Markov Mode{fHMM) M is defined by an alphab®&t, a set of (hidden)
states(), a matrix of state transition probabilitied, and a matrix of emission
probabilitiesE, where

e > is an alphabet of symbols.

e () is a set of states that emit symbols from the alphabet

e A= (ap)isal@| x |Q| matrix of state transition probabilities.

e £ = (er(b)isalQ| x| > | matrix of emission probabilities.

Tossing the coin in the “Fair Bet Casino” corresponds to the following HMM:
e > ={0,1}, corresponding to tail (0) or head (1).

e () = {F, B}, corresponding to a fair or biased coin.

e arr = app =0.9,arp = apr =0.1

o ep(0) = 5,ep(l) = 5,ep(0) = },ep(l) = §

A pathm = 7; ..., inthe HMM M is a sequence of states. For example, if
a dealer used the fair coin for the first three and the last three tosses and the biased
coin for five tosses in between, the corresponding path is FFFBBBBBFFF. The
probability that a sequeneewas generated by the path(given the modelM) is

n n

P((I;|7T) = H P(xi|7ri)P(7ri|7ri+1) = Omo,my H €r; (wl) " Omymig
i=1 i=1

where for convenience we introdueg andw,, ;1 as the fictitious initial and termi-
nal stated$egin andend.

This model defines the probabilify(z|7) for a given sequence and a given
pathz. However, only the dealer knows the real sequence of statieat emitted
z. We therefore say that the pathofs hidden and face the following
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Decoding Problem Find an optimal pathr* = arg max, P(z|r) for z, such that
P(z|m) is maximized.

The solution of the decoding problem is provided by the Viterbi, 1967 [348]
algorithm, which is a variation of the Bellman, 1957 [29] dynamic programming
approach. The idea is that the optimal path for the- 1)-prefix ;... z;; of
z uses a path for ainprefix of z that is optimal among the paths ending in an
(unknown) stater; = k € Q).

Defines (i) as the probability of the most probable path for the prefix. . z;
that ends with statke (k € Q and1 <i <n). Then

si(i +1) = ey(wit1) - fgleag{sk(i) “ QgL

We initialize speqin (0) = 1 andsy (0) = 0 for k& # begin. The value ofP(z|7*) is

P *) = ma; .
($|7T ) II?EC%{ Sk(n)ak,end

The Viterbi algorithm runs iD(n|Q|) time. The computations in the Viterbi algo-
rithm are usually done in logarithmic scor8gi) = log s;(¢) to avoid overflow:

Sii +1) = logey(wiy1) + max{Sy(i) + log(ap)}

Given a sequence of tosses what is the probability that the dealer had a
biased coin at momen? A simple variation of the Viterbi algorithm allows one to
compute the probability’(m; = k|x). Let fx (i) be the probability of emitting the
prefix ... z; and reaching the statg = k. Then

Fu(@) = erlzi) - D fili — 1) - ag.
leQ

The only difference between thfsrward algorithmand the Viterbi algorithm is
that “max” sign in the Viterbi algorithm changes into the sign in the forward
algorithm. Backward probabilityy (i) is defined as the probability of being at state
m; = k and emitting the suffix;; ... x,. Thebackward algorithrmuses a similar
recurrency:

bk(z) = Z el(xH_l) . bl(i + 1) 7y

leQ

Finally, the probability that the dealer had a biased coin at motnisrgiven by

Plz,mi = k) _ fr(@) - be(i)
P(x) P(x)

whereP(z,m; = k) is the probability ofr under the assumption that was pro-
duced in staté andP(z) = >, P(z|n).

P(Wi = /ﬂ|(II) =
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8.9 The Elkhorn Casino and HMM Parameter Estimation

The preceding analysis assumed that we knew the state transition and emission
probabilities of the HMM. The most difficult problem in applications of HMMs
is that these parameters are unknown and need to be estimated. It is easy for an
intelligent gambler to figure out that the dealer in the “Fair Bet Casino” is using
a biased coin. One way to find this out is to notice that 0 and 1 have different
expected frequencie% @nd% correspondingly) and the ratio of Os to 1s in a day-
long sequence of tosses is suspiciously low. However, it is much more difficult
to estimate the transition and emission probabilities of the corresponding HMM.
Smoke, in Jack London’s “Smoke Bellew,” made one of the first attempts to figure
out the transition probabilities of a roulette wheel in the Elkhorn casino. After long
hours and days spent watching the roulette wheel the night came when Smoke
proclaimed that he was ready to beat the system. Don't try to do it again in Las
Vegas; the gambling technology has changed.

Let © be a vector combining the unknown transition and emission probabilities
of the HMM M. Given a stringe, defineP(z|©) as the probability of given the
assignment of paramete®& Our goal is to find®* such that

O = arg max P(z|0©).

Usually, instead of a single string a collection oftraining sequences’, ..., z™
is given and the goal is to maximize

* i
© argmgng(w |©).

This is an optimization of a continuous function in multidimensional parameter
spaced. The commonly used algorithms for parameter optimization are heuristics
that use a local improvement strategy in the parameter space. If thepathr,
corresponding to the observed statgs. . z,, is known, then we can scan the se-
guences and compute the empirical estimates for transition and emission probabil-
ities. If Ay, is the number of transitions from stateo [ and Ey(b) is the number

of timesb is emitted from staté then, the maximum likelihood estimators are

Apl
quQ Akq

Ey, (D)

O = S s Eio)

agl =

Usually, the state sequenge. .. m, is unknown, and in this case, an iterative
local improvement strategy called ttBaum-Welchalgorithm is commonly used
(Baldi and Brunak, 1997 [24]).
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Begin My [=mmm-" S IUN M End

Figure 8.3:Profile HMM.

8.10 Profile HMM Alignment

Given a family of functionally related biological sequences, one can search for
new members of the family using pairwise alignments between family members
and sequences from a database. However, this approach may fail to find distantly
related sequences. An alternative approach is to use the whole set of functionally
related sequences for the search.

A Profile is the simplest representation of a family of related proteins that is
given by multiple alignment. Given amcolumn multiple alignment of strings in
alphabetA, a profileP is an|.A| x n matrix that specifies the frequeney(a) of
each characte from the alphabetd in columni (Gribskov et al., 1987 [139]).
Profiles can be compared and aligned against each other since the dynamic pro-
gramming algorithm for aligning two sequences works if both of the input se-
guences are multiple alignments (Waterman and Perlwitz, 1984 [362]).

HMMs can also be used for sequence comparison (Krogh et al., 1994 [208],
Sonnhammer et al., 1997 [324]), in particular for aligning a sequence against a
profile. The simplest HMM for a profilé containsn sequentially linkednatch
statesM;, ..., M, with emission probabilities;(a) taken from the profileP
(Fig 8.3). The probability of a string; . .. z,, given the profileP is [T, e;(x;).

To model insertions and deletions we addertionstatesly, ..., I,, anddeletion
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statesD., ..., D, to the HMM and assume that
er;(a) = p(a)

wherep(a) is the frequency of the occurrence of the symbai all the sequences.

The transition probabilities between matching and insertion states can be defined

in the affine gap penalty model by assigning, a;as, anda;; in such a way that

log(ansr) + log(aras) equals the gap creation penalty dng(a;r) equals the gap

extension penalty. The (silent) deletion states do not emit any symbols.
DefinevJM(z') as the logarithmic likelihood score of the best path for matching

z1 ...z; to profile HMM P ending withz; emitted by the stat@/;. Definev;’(z‘)

andv]D(z‘) similarly. The resulting dynamic programming recurrency is, of course,
very similar to the standard alignment recurrency:

Q)j]\{l(’i — 1) + IOg(an_l,Mj)
+ max Q)JI-D_I(Z' —-1)+ IOg(a’Ij—lan)
Vi

j l(i - 1) + log(a’Dj—l,Mj)

en; (@)

p(zi)

v]M(z) = log

The values)/ (i) andv? (i) are defined similarly.

8.11 Gibbs Sampling

Lawrence et al., 1993 [217] suggested usifpbs samplingo find patterns in
sequences. Given a set of sequences. ., z™ in an alphabetd and an integer
w, the problem is to find a substring of lengthin eachz® in such a way that the
similarity betweenn substrings is maximized.

Leta',...,a™ be the starting indices of the chosen substringslin. ., z™,
respectively. Denote ag; the frequency with which the symbéloccurs at the
j-th position of the substrings.

Gibbs sampling is an iterative procedure that at each iteration discards one
sequence from the alignment and replaces it with a new one. Gibbs sampling starts
with randomly choosing substrings of lengthin each ofm sequences!, ..., z™
and proceeds as follows.

e At the beginning of every iteration, a substring of lengthn each ofm
sequences’',. .., z™ is chosen.

e Randomly choose one of the sequenegsiniformly at random.

o Create a frequency matr{y;;) from the remainingn — 1 substrings.
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e For each positioriin z", calculate the probability; = [];_, Ga7, g that the

substring starting at this position is generated by prdfijg) (« +; denotes
a symbol at position + j of sequence:”).

e Choose the starting positionof the new substring in” randomly, with
probability proportional tg;.

Although Gibbs sampling is known to work in specific cases, it may, similarly to
the Baum-Welch algorithm, converge to a local maximum. Since the described pro-
cedure (Lawrence et al., [217]) does not allow for insertions and deletions, Rocke
and Tompa, 1998 [288] generalized this method for handling gaps in a pattern.

8.12 Some Other Problems and Approaches

8.12.1 Finding gapped signals

Rigoutsos and Floratos, 1998 [285] addressed the problem of finding gapped sig-
nals in a text. A gapped string is defined as a string consisting of an arbitrary
combination of symbols from the alphabet and “don’t care” symbols. A gapped
string P is called an< I,w >-string if every substring oP of length!/ contains

at leastw symbols from the alphabet. The TERESIAS algorithm (Rigoutsos and
Floratos, 1998 [285]) finds athaximal< [,w >-patterns that appear in at least

K sequences in the sample in a two-stage approach. At thedamhingstage, it

finds all short strings of lengthwith at leastw symbols from the alphabet that ap-
pear at leasK times in the sample. At the secondnvolutionstage, it assembles
these short strings into maximg@l! w)-strings.

8.12.2 Finding signals in samples with biased frequencies

The magic word problem becomes difficult if the signal is contained in only a frac-
tion of all sequences and if the background nucleotide distribution in the sample
is skewed. In this case, searching for a signal with the maximum number of oc-
currences may lead to the patterns composed from the most frequent nucleotides.
These patterns may not be biologically significant. For example, if A has a of fre-
guency70% and T, G, and C have frequencies1of%, then poly(A) may be the
most frequent word, thus disguising the real magic word.

To find magic words in biased samples, many algorithmsrelsg¢ive entropy
to highlight the magic word among the words composed from frequent nucleotides.
Given a magic word of length, the relative entropy is defined as

k
Dy

Z Drj lOgZ #
=1r=AT,G,C r

J
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wherep, ; is the frequency of nucleotidein position; among magic word occur-
rences and, is the background frequency of

Relative entropy is a good measure for comparing two magic words that have
the same number of occurrences in the sample, but not a good measure if the words
appear in vastly different numbers of sequences. Hertz and Stormo, 1999 [159] and
Tompa, 1999 [338] addressed this problem by designing criteria that account for
both number of occurrences and background distribution.

8.12.3 Choice of alphabet in signal finding

Karlin and Ghandour, 1985 [187] observed that there is no way to know beforehand
which choice of alphabet is good for revealing signals in DNA or proteins. For
example, WSW S ... WSW S may be a very strong signal, that is hard to find

in the standard A, T, G, C alphabet. This problem was addressed by Sagot et al.,
1997 [293].






Chapter 9

Gene Prediction

9.1 Introduction

In the 1960s, Charles Yanofsky, Sydney Brenner, and their collaborators showed
that a gene and its protein product are colinear structures with direct correlation be-
tween triplets of nucleotides in the gene and amino acids in the protein. However,
the concept of the gene as a synthetic string of nucleotides did not live long. Over-
lapping genes and genes-within-genes were discovered in the late 1960s. These
studies demonstrated that the computational problem of gene prediction is far from
simple. Finally, the discovery of split human genes in 1977 created a computational
gene prediction puzzle.

Eukaryotic genomes are larger and more complex than prokaryotic genomes.
This does not come as a surprise since one would expect to find more genes in
humans than in bacteria. However, the genome size of many eukaryotes does not
appear to be related to genetic complexity; for example, the salamander genome
is 10 times larger than the human genome. This paradox was resolved by the
discovery that eukaryotes contain not only genes but also large amounts of DNA
that do not code for any proteins (“junk” DNA). Moreover, most human genes are
interrupted by junk DNA and are broken into pieces called exons. The difference
in the sizes of the salamander and human genomes thus reflects larger amounts of
junk DNA and repeats in the genome of salamander.

Split genes were first discovered in 1977 independently by the laboratories of
Phillip Sharp and Richard Roberts during studies of the adenovirus (Berget et al.,
1977 [32], Chow et al., 1977 [67]). The discovery was such a surprise that the
paper by Richard Roberts’ group had an unusually catchy title for the academic
Cell magazine: “An amazing sequence arrangement at the 5’ end of adenovirus 2
messenger RNA.” Berget et al., 1977 [32] focused their experiments on an mRNA
that encodes a viral protein known as the hexon. To map the hexon mRNA on viral
genome, mMRNA was hybridized to adenovirus DNA and the hybrid molecules were

153
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analyzed by electron microscopy. Strikingly, the mRNA-DNA hybrids formed in
this experiment displayed three loop structures, rather than the continuous duplex
segment suggested by the classical “continuous gene” model. Further hybridization
experiments revealed that the hexon mRNA is built from four separate fragments of
the adenovirus genome. These four exons in the adenovirus genome are separated
by three “junk” fragments callethtrons The discovery of split geneslicing

in the adenovirus was quickly followed by evidence that mammalian genes also
have split structures (Tilghman et al., 1978 [337]). These experimental studies
raised a computational gene prediction problem that is still unsolved: human genes
comprise only3% of the human genome, and no existingsilico gene recognition
algorithm provides reliable gene recognition.

After a new DNA fragment is sequenced, biologists try to find genes in this
fragment. The traditional statistical way to attack this problem has been to look
for features that appear frequently in genes and infrequently elsewhere. Many
researchers have used a more biologically oriented approach and attempted to rec-
ognize the locations of splicing signals at exon-intron junctions. The goal of such
an approach is characterization of sites on RNA where proteins and ribonucleopro-
teins involved in splicing apparatus bind/interact. For example, the dinucleotides
AG andGT on the left and right sides of exons are highly conserved. The sim-
plest way to represent a signal is to give a consensus pattern consisting of the most
frequent nucleotide at each position of an alignment of specific signals. Although
catalogs of splice sites were compiled in the early 1980s, the consensus patterns are
not very reliable for discriminating true sites from pseudosites since they contain
no information about nucleotide frequencies at different positions. Ed Trifonov
invented an example showing another potential pitfall of consensus:

MELON
MANGO
HONEY
SWEET
COOKY

MONEY

The frequency information is captured byofiles (or Position Weight Matricés
that assign frequency-based scores to each possible nucleotide at each position of
the signal. Unfortunately, using profiles for splice site prediction has had limited
success, probably due to cooperation between multiple binding molecules. At-
tempts to improve the accuracy of gene prediction led to applications of neural
networks and Hidden Markov Models for gene finding.

Large-scale sequencing projects have motivated the need for a new generation
of algorithms for gene recognition. The similarity-based approach to gene predic-
tion is based on the observation that a newly sequenced gene has a good chance
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of having an already known relative in the database (Bork and Gibson, 1996 [41]).
The flood of new sequencing data will soon make this chance even greater. As a
result, the trend in gene prediction in the late 1990s shifted from statistics-based
approaches to similarity-based and EST-based algorithms. In particular, Gelfand
et al., 1996 [125] proposed a combinatorial approach to gene prediction, that uses
related proteins to derive the exon-intron structure. Instead of employing statistical
properties of exons, this method attempts to solve a combinatorial puzzle: to find a
set of substrings in a genomic sequence whose concatenation (splicing) fits one of
the known proteins.

After predictions are made, biologists attempt to experimentally verify them.
This verification usually amounts to full-length mRNA sequencing. Since this pro-
cess is rather time-consuminiy, silico predictions find their way into databases
and frequently lead to annotation errors. We can only guess the amount of incor-
rectly annotated sequences in GenBank, but it is clear that the number of genes that
have been annotated without full-length mRNA data (and therefore are potentially
erroneous) may be large. The problems of developing an “annotation-ready” gene
prediction algorithm and correcting these errors remain open.

9.2 Statistical Approach to Gene Prediction

The simplest way to detect potential coding regions is to loo®@¢n Reading
Frames (ORFs)An ORF is a sequence of codons in DNA that starts with a Start
codon, ends with a Stop codon, and has no other Stop codons inside. One expects
to find frequent Stop codons in non-coding DNA simply because 3 of 64 possible
codons are translation terminators. The average distance between Stop codons in
“random” DNA is 6—; ~ 21, much smaller than the number of codons in an average
protein (roughly 300). Therefore, long ORFs point out potential genes (Fickett,
1996 [105]), although they fail to detect short genes or genes with short exons.
Many gene prediction algorithms rely on recognizing the diffuse regularities in
protein coding regions, such as biacodon usageCodon usage is a 64-mer vec-
tor giving the frequencies of each of 64 possibbelons(triples of nucleotides) in
a window. Codon usage vectors differ between coding and non-coding windows,
thus enabling one to use this measure for gene prediction (Fickett, 1982 [104],
Staden and McLachlan, 1982 [327]). Gribskov et al., 1984 [138] use a likelihood
ratio approach to compute the conditional probabilities of the DNA sequence in
a window under a coding and under a non-coding random sequence hypothesis.
When the window slides along DNA, genes are often revealed as peaks of the like-
lihood ratio plots. A better coding sensor is itheframe hexamer countvhich is
similar to three fifth-order Markov models (Borodovsky and Mclninch, 1993 [42]).
Fickett and Tung, 1992 [106] evaluated many such coding measures and came
to the conclusion that they give a rather low-resolution picture of coding-region
boundaries, with many false positive and false negative assignments. Moreover,
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application of these technigues to eukaryotes is complicated by the exon-intron
structure. The average length of exons in vertebrates is 130 bp, and thus exons are
often too short to produce peaks in the sliding window plot.

Codon usage, amino acid usage, periodicities in coding regions and other sta-
tistical parameters (see Gelfand, 1995 [123] for a review) probably have nothing in
common with the way the splicing machinery recognizes exons. Many researchers
have used a more biologically oriented approach and attempted to recognize the
locations of splicing signals at exon-intron junctions (Brunak et al., 1991 [50]).
There exists a (weakly) conserved sequence of eight nucleotides at the boundary
of an exon and an intron (5’ @onorsplice site) and a sequence of four nucleotides
at the boundary of intron and exon (3’ acceptorsplice site). Unfortunately, pro-
files for splice site prediction have had limited success, probably due to cooperation
between multiple binding molecules. Profiles are equivalent to a simple type of
neural network called perceptron. More complicated neural networks (Uberbacher
and Mural, 1991 [339]) and Hidden Markov Models (Krogh et al., 1994 [209],
Burge and Karlin, 1997 [54]) capture the statistical dependencies between sites
and improve the quality of predictions.

Many researchers have attempted to combine coding region and splicing sig-
nal predictions into a signal framework. For example, a splice site prediction is
more believable if signs of a coding region appear on one side of the site but not
the other. Because of the limitations of individual statistics, several groups have
developed gene prediction algorithms that combine multiple pieces of evidence
into a single framework (Nakata et al., 1985 [249], Gelfand, 1990 [121], Guigo
et al., 1992 [142], Snyder and Stormo, 1993 [321]). Practically all of the existing
statistics are used in the Hidden Markov Model framework of GENSCAN (Burge
and Karlin, 1997 [54]). This algorithm not only merges splicing site, promoter,
polyadenylation site, and coding region statistics, but also takes into account their
non-homogeneity. This has allowed the authors to exceed the milest&&,of
accuracy for statistical gene predictions. However, the accuracy decreases signifi-
cantly for genes with many short exons or with unusual codon usage.

9.3 Similarity-Based Approach to Gene Prediction

The idea of a similarity-based approach to gene detection was first stated in Gish
and States, 1993 [129]. Although similarity search was in use for detextion

(i.e., answering the question of whether a gene is present in a given DNA frag-
ment) for a long time, the potential of similarity search for genediction (i.e.,

not only for detection but for detailed prediction of the exon-intron structure as
well) remained largely unexplored until the mid-1990s. Snyder and Stormo, 1995
[322] and Searls and Murphy, 1995 [313] made the first attempts to incorporate
similarity analysis into gene prediction algorithms. However, the computational
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complexity of exploring all exon assemblies on top of sequence alignment algo-
rithms is rather high.

Gelfand et al., 1996 [125] proposed a spliced alignment approach to the exon
assembly problem, that uses related proteins to derive the exon-intron structure.
Figure 9.1a illustrates the spliced alignment problem for the “genomic” sequence

It was brilliant thrilling morning and the slimy hellish lithe doves

gyrated and gambled nimbly in the waves

whose different blocks make up the famous Lewis Carroll line:

"t was brillig, and the slithy toves did gyre and gimble in the wabe

The Gelfand et al., 1996 [125] approach is based on the following idea (illus-
trated by Oksana Khleborodova). Given a genomic sequence (Figure 9.2), they first
find a set ofcandidate blockghat contains altrue exons (Figure 9.3). This can
be done by selecting all blocks between poterdiadeptorand donor sites (i.e.,
between AG and GT dinucleotides) with furthétering of this set (in a way that
does not lose the actual exons). The resulting set of blocks can contain many false
exons, of course, and currently it is impossible to distinguish all actual exons from
this set by a statistical procedure. Instead of trying to find the actual exons, Gelfand
et al., 1996 [125] select a relatearget protein in GenBank (Figure 9.4) and ex-
plore all possible block assemblies with the goal of finding an assembly with the
highest similarity score to the target protein (Figure 9.5). The number of different
block assemblies is huge (Figures 9.6, 9.7, and 9.8), bugpheed alignmenal-
gorithm, which is the key ingredient of the method, scans all of them in polynomial
time (Figure 9.9).

9.4 Spliced Alignment

LetG = g;...9, be astring, and leB = g;...g; andB’' = gy ... g, be sub-
strings ofG. We write B < B'if j < ¢/, i.e., if B ends before3’ starts. A sequence
I'=(By,...,B),) of substrings of7 is achainif B; < By < --- < B),. We de-
note theconcatenatiorof strings from the chai® asI'™ = By * By * ... x B),.
Given two stringsG andT', s(G,T) denotes the score of traptimal alignment
between andT'.

Let G = ¢1...g, be a string calledyenomic sequencd’ = t;...t, be
a string calledtarget sequenceandB = {By,... By} be a set of substrings of
G calledblocks GivenG, T, and B, the spliced alignment probleris to find a
chainT" of strings fromB5 such that the scorg(I'*, T") of the alignment between
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Figure 9.1:Spliced alignment problem: a) block assemblies with the best fit to Lewis Carroll's
line, b) corresponding alignment network, and c) equivalent transformation of the alignment net-
work.

the concatenation of these strings and the target sequence is maximum among all
chains of blocks frons.

A naive approach to the spliced alignment problem is to detect all relatively
high similarities between each block and the target sequence and to assemble these
similarities into an optimal subset of compatible similar fragments. The shortcom-
ing of this approach is that the number of blocks is typically very large and the
endpoints of the similarity domains are not well defined.

Gelfand et al., 1996 [125] reduced the exon assembly problem to the search
of a path in a directed graph (Figure 9.1b). Vertices in this graph correspond to
the blocks, edges correspond to potential transitions between blocks, and the path
weight is defined as the weight of the optimal alignment between the concatenated
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Figure 9.2:Studying genomic sequence.

blocks of this path and the target sequence. Note that the exon assembly problem
is different from the standard minimum path problem (the weights of vertices and
edges in the graph are not even defined).

LetBy = gm - .- gi--.g; be asubstring off containing a position. Define the
i-prefixof By asBg (i) = g, . .. gi- ForablockBy = g, . .. g;, let first(k) = m,
last(k) =1, andsize(k) =1 —m+ 1. LetB(i) = {k : last(k) < i} be the set
of blocks ending (strictly) before positionin G. LetT" = (By,...,Bg,...,By)
be a chain such that some blogl contains position. DefineI™*(i) as a string
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Figure 9.3:Filtering candidate exons.

['*(i) = By * By % ... % By(i). Let

S(i,j,k) = s(I'"(2), T(4))-

i max_ X
all chainsr containing blocks,,

The following recurrence computégs, j, k) for1 <i <n,1 < j < m, and
1 <k < b. For the sake of simplicity we consider sequence alignment limiar
gap penalties and defidéz, y) as a similarity score for every pair of amino acids
2 andy andd;,q; as a penalty for insertion or deletion of amino acids.
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Figure 9.4:Finding a target protein.

S(i— 1,5 —1,k) + 6(gs, t), if i # first(k)
S(l - 17j7 k) + 5indel: if 4 7é fert(k)
S(i,j, k) = max § maxjep(rirse(k)) S(last(l),j —1,1) +6(gi, t;), if i = first(k)
maxiep(rirst(k)) O (last(l), j, 1) + Sindet, if i = first(k)

5(7’7] - ]-7 k) + 6indel
9.1)
After computing the 3-dimensional tabki, 7, k), the score of the optimal
spliced alignment is
max S(last(k),m, k).
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Figure 9.5:Using the target protein as a template for exon assembly.

The spliced alignment problem also can be formulatedresaorkalignment
problem (Kruskal and Sankoff, 1983 [211]). In this formulation, each blBgk
corresponds to a path of lengtixe(k) between verticegirst(k) andlast(k), and
paths corresponding to blocks, and B, are joined by an edg@ast(k), first(t))
if B, < By (Figure 9.1b). The network alignment problem is to find a path in the
network with the best alignment to the target sequence.

Gelfand et al., 1996 [125] reduced the number of edges in the spliced alignment
graph by making equivalent transformations of the described network, leading to a
reduction in time and space. Define

P(i,j) = lrenl?()z() S(last(l), j,1).
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Figure 9.6:Assembling.

Then (9.1) can be rewritten as

S(i—1,5 — 1,k) +d(gi,tj), ifi# first(k)

( 1 .77 ) + 6indel> if 4 7é fZTSt(k)
S(i,j, k) = max < P(first(k),j — 1)+ 0(gi,t;), if i = first(k) (9.2)

P(fZTSt(k)a]) + 6mdel> if 7 = fiTSt(k)

S( la ) + 6zndel
where
CoN P(i—1,7)

P(i,j) = max { maxy; jqst(k)—i—1 9 — 1,7, k) (®:3)
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_ﬁf. ; o@# N LL—\\E‘;’;
Figure 9.7:And assembling...

The network corresponding to (9.2) and (9.3) has a significantly smaller num-
ber of edges (Figure 9.1c), thus leading to a practical implementation of the spliced
alignment algorithm.

The simplest approach to the construction of bloBkis to generate all frag-
ments between potential splicing sites represented @y(acceptor site) and'T
(donor site), with the exception of blocks with stop codons in all three frames.
However, this approach creates a problem since it generates many short blocks.
Experiments with the spliced alignment algorithm have revealed that incorrect pre-
dictions for distant targets are frequently associated withrtbsaic effectaused
by very short potential exons. The problem is that these short exons can be easily
combined together to fit any target protein. It is easier to “make up” a given sen-
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tence from a thousand random short strings than from the same number of longer
strings. For example, with high probability, the phrase “filtration of candidate ex-
ons” can be made up from a sample of a thousand random two-letter strings (“fi,”
“It,” “ra,” etc. are likely to be present in this sample). The probability that the
same phrase can be made up from a sample of the same number of random five-
letter strings is close to zero (even finding a string “filtr” in this sample is unlikely).
This observation explains the mosaic effect: if the number of short blocks is high,
chains of these blocks can replace actual exons in spliced alignments, thus leading
to predictions with an unusually large number of short exons. To avoid the mosaic
effect, the candidate exons are subjected to some (weak) filtering procedure; for
example, only exons with high coding potential may be retained.
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Figure 9.9:Selecting the best exon assembly.

After the optimal block assembly is found, the hope is that it represents the cor-
rect exon-intron structure. This is almost guaranteed if a protein sufficiently similar
to the one encoded in the analyzed fragment is available: 99% correlation with the
actual genes can be obtained from targets with distances of up to 100 PAM (40%
similarity). The spliced alignment algorithm provides very accurate predictions if
even a distantly related protein is available: predictions at 160 PAM (25% simi-
larity) are still reliable (95% correlation). If a related mammalian protein for an
analyzed human gene is known, the accuracy of gene predictions in this fragment
is as high a97% —99%, and it is95%, 93%, and91% for related plant, fungal, and
prokaryotic proteins, respectively (Mironov et al., 1998 [242]). Further progress
in gene prediction has been achieved by using EST data for similarity-based gene
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Figure 9.10:Positional cloning and ExonPCR.

prediction. In particular, using EST assemblies, Mironov et al., 1999 [240] found
a large number of alternatively spliced genes.

9.5 Reverse Gene Finding and Locating Exons in cDNA
Gene finding often follows thpositional cloningparadigm:
genomic DNA sequencing> exon structure-> mRNA — protein

In positional cloning projects, genomic sequences are the primary sources of in-
formation for gene prediction, mutation detection, and further search for disease-
causing genes. The shift from positional cloning to damdidate gene library
paradigm is reversing the traditional gene-finding pathway into the following:

protein/fmRNA— exon structure- limited genomic DNA sequencing

Consequently, modern gene discovery efforts are shifting from single-gene po-
sitional cloning to analysis of polygenic diseases with candidate gene libraries of
hundred(s) of genes. The genes forming a candidate gene library may come from
different sources, e.g., expression analysis, antibody screening, proteomics, etc. Of
course, hundred(s) of positional cloning efforts are too costly to be practical.

A positional cloning approach to finding a gene responsible for a disease starts
with genetic mapping and proceeds to the detection of disease-related mutations.
A multitude of steps are required that include genomic cloning of large DNA frag-
ments, screening cDNA libraries, cDNA isolation, subcloning of the large genomic
clones for sequencing, etc. (Figure 9.10). In many gene-hunting efforts, the ma-
jor motivation for the genomic subcloning and sequencing steps is to determine
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the gene’s exon-intron boundaries. This step is often critical to searches for mu-
tations (or polymorphisms) associated with a disease gene. It requires the design
of intronic PCR primers flanking each exon. Traditionally, the exon boundaries
are obtained by comparing the cDNA and genomic sequences. The whole process
can be time-consuming and may involve multiple subcloning steps and extensive
sequencing.

ExonPCR (Xu et al., 1998 [372]) is an alternative experimental protocol that
explores the “reverse” gene-finding pathway and provides a fast transition from
finding cDNA to mutation detection (Figure 9.10). ExonPCR finds the “hidden”
exon boundaries in cDNA (rather than in genomic DNA) and does not require se-
guencing of genomic clones. In the first step, ExXonPCR locates the approximate
positions of exon boundaries in cDNA by PCR on genomic DNA using primers de-
signed from the cDNA sequence. The second step is to carry out ligation-mediated
PCR to find the flanking intronic regions. As a consequence, the DNA sequencing
effort can be vastly reduced.

The computational approaches to finding exon boundaries in cDNA (Gelfand,
1992 [122], Solovyev et al., 1994 [323]) explorsdlicing shadowsi.e., parts of
the splicing signals present in exons). However, since the splicing shadow signals
are very weak, the corresponding predictions are unreliable. ExonPCR is an ex-
perimental approach to finding exon boundaries in cDNA that uses PCR primers
in a series of adaptive rounds. Primers are designed from the cDNA sequence and
used to amplify genomic DNA. Each pair of primers serves as a query asking the
guestion whether, in the genomic DNA, there exists an intron or introns between
the primer sequences. The answer to this query is provided by comparison of the
length of PCR products in the cDNA and genomic DNA. If these lengths coincide,
the primers belong to the same exon; otherwise, there exists an exon boundary
between the corresponding primers. Each pair of primers gives a yes/no answer
without revealing the exact positions of exon boundaries. The goal is to find the
positions of exon boundaries and to minimize both the number of primers and the
number of rounds. Different types of strategies may be used, and the problem is
similar to the “Twenty Questions” game with genes. The difference with a par-
lor game is that genes have a “no answer” option and sometimes may give a false
answer and restrict the types of possible queries. This is similar to the “Twenty
Questions Game with a Liar” (Lawler and Sarkissian, 1995 [216]) but involves
many additional constraints including lower and upper bounds on the length of
gueries (distance between PCR primers).

ExonPCR attempts to devise a strategy that minimizes the total number of PCR
primers (to reduce cost) and at the same time minimizes the number of required
rounds of PCR experiments (to reduce time). However, these goals conflict with
each other. A minimum number of primer pairs is achieved in a sequential “di-
chotomy” protocol where only one primer pair is designed in every round based
on the results of earlier rounds of experiments. This strategy is unrealistic since
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it leads to an excessive number of rounds. An alternative, “single-round” protocol
designs all possible primer pairs in a single round, thus leading to an excessively
large number of primers. Since these criteria are conflicting, ExonPCR searches
for a trade-off between the dichotomy strategy and the single-round strategy.

9.6 The Twenty Questions Game with Genes

In its simplest form, the problem can be formulated as follows: given an (unknown)
set! of integers in the intervdll, n], reconstruct the sdtby asking the minimum
number of queries of the form “does a given interval contain an integer ffm

In this formulation, intervall,n] corresponds to cDNAJ corresponds to exon
boundaries in cDNA, and the queries correspond to PCR reactions defined by a pair
of primers. A non-adaptive (and trivial) approach to this problem is to generate
n single-position queries: does an interyali] contain an integer froni? In

an adaptive approach, queries are generated in rounds based on results from all
previous queries (only one query is generated in every round).

For the sake of simplicity, consider the case when the number of exon bound-
ariesk is known. Fork = 1, the optimal algorithm for this problem requires at
leastlg n queries and is similar to Binary Search (Cormen et al., 1989 [75]). For
k > 1, itis easy to derive the lower bound on the number of queries used by any
algorithm for this problem, which utilizes the decision tree model. The decision
tree model assumes sequential computations using one query at a time. Assume
that every vertex in the decision tree is associated with-plbint sets k-sets) that
are consistent with all the queries on the path to this vertex. Since every leaf in the
decision tree contains only orteset, the number of leaves (). Since every tree

of heighth has at mose” leaves, the lower bound on the height of the (binary)
decision tree i > Ig (}). In the biologically relevant cade << n, the minimum
number of queries is approximatelylgn — k Ig k. If a biologist tolerates an error

A in the positions of exon boundaries, the lower bound on the number of queries
is approximatelyk lg x — klg k. The computational and experimental tests of Ex-
onPCR have demonstrated that it comes close to the theoretical lower bound and
that about 30 primers and 3 rounds are required for finding exon boundaries in a
typical cDNA sequence.

9.7 Alternative Splicing and Cancer

Recent studies provide evidence that oncogenic potential in human cancer may be
modulated by alternative splicing. For example, the progression of prostate cancer
from an androgen-sensitive to an androgen-insensitive tumor is accompanied by a
change in the alternative splicing of fibroblast growth factor receptor 2 (Carstens
etal., 1997 [59]). In another study, Heuze et al., 1999 [160] characterized a promi-
nent alternatively spliced variant for Prostate Specific Antigene, the most important
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marker available today for diagnosing and monitoring patients with prostate cancer.

The questions of what other important alternatively spliced variants of these and

other genes are implicated in cancer remains open. Moreover, the known alterna-
tive variants of genes implicated in cancer were found by chance in a case-by-case
fashion.

Given a gene, how can someone fadtalternatively spliced variants of this
gene? The problem is far from simple since alternative splicing is very frequent in
human genes (Mironov et al., 1999 [240]), and computational methods for alterna-
tive splicing prediction are not very reliable.

The first systematic attempt to elucidate the splicing variants of genes impli-
cated in (ovarian) cancer was undertaken by Hu et al., 1998 [167]. They proposed
long RT-PCR to amplify full-length mRNA and found a new splicing variant for the
human multidrug resistance gene MDR1 and the major vault protein (MVP). This
method is well suited to detecting a few prominent variants using fixed primers
but will have difficulty detecting rare variants (since prominent variants are not
suppressed). It also may fail to identify prominent splicing variants that do not
amplify with the selected primer pair.

The computational challenges of finding all alternatively spliced variats (
Alternative Splicing Encyclopediar ASH can be explained with the following
example. If a gene with three exons has an alternative variant that misses an in-
termediate exon, then some PCR products in the cDNA library will differ by the
length of this intermediate exon. For example, a pair of primers, one from the mid-
dle of the first exon and another from the middle of the last exon, will give two
PCR products that differ by the length of the intermediate exon. This will lead to
detection of both alternatively spliced variants.

Of course, this is a simplified and naive description that is used for illustration
purposes only. The complexity of the problem can be understood if one considers
a gene with 10 exons with one alternative sliding splicing site per exon. In this
case, the number of potential splicing variants is at 1@&&t and it is not clear
how to find the variants that are present in the cell. The real problem is even more
complicated, since some of these splicing variants may be rare and hard to detect
by PCR amplification.

Figure 9.11 illustrates the problem of building an ASE for the “genomic” se-
quence

"twas brilliant thrilling morning and the slimy hellish lithe doves

gyrated and gambled nimbly in the waves

whose alternatively spliced variants “make up” different mRNAs that are similar
to the Lewis Carroll’s famous “mRNA”:

"t was brillig, and the slithy toves did gyre and gimble in the wabe
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The “exon assembly” graph (Figure 9.11) has an exponential number of paths,
each path representing a potential splicing variant. The problem is to figure out
which paths correspond to real splicing variants. For example, one can check
whether there exists a splicing variant that combines the potential exons X and

Y represented byI' WAS BRILLI|and G, AND THE SL|with aspan-

ning primerXY that spans both X and Y (for examplBRILLIG, AND T). In
practice, an XY-primer is constructed by concatenation of the last 10 nucleotides
of exon X with first 10 nucleotides of exon Y. Pairing XY with another primer
(e.g., one taken from the end of exon Y) will confirm or reject the hypothesis about
the existence of a splicing variant that combines exons X and Y. Spanning primers
allow one to trim the edges in the exon assembly graph that are not supported by
experimental evidence. Even after some edges of the graph are trimmed, this ap-
proach faces the difficult problem of deciding which triples, quadruples, etc. of
exons may appear among alternatively spliced genes. Figure 9.11 presents a rel-
atively simple example of an already trimmed exon assembly graph with just five
potential exons and five possible paths: ABCDE, ACDE, ABDE, ABCE, and ACE.
The only spanning primers for the variant ACE are AC and CE. However, these
spanning primers (in pairs with some other primers) do not allow one to confirm
or rule out the existence of the ACE splicing variant. The reason is that the pres-
ence of a PCR product amplified by a primer pair involving, let's say, AC, does not
guarantee the presence of the ACE variant, since this product may come from the
ACBD alternative variant. Similarly, the CE primer may amplify an ABCE splicing
variant. If we are lucky, we can observe a relatively short ACE PCR product, but
this won't happen if ACE is a relatively rare variant. The solution would be given
by forming a pair of spanning primers involvirngth AC and CE. This primer pair
amplifies ACE but does not amplify any other splicing variants in Figure 9.11.

The pairs of primers that amplify variant X but do not amplify variant Y are
called X+Y- pairs. One can use X+Y- pairs to detect some rare splicing variant
X in the background of a prominent splicing variant Y. However, the problem of
designing a reliable experimental and computational protocol for finding all alter-
native variants remains unsolved.

9.8 Some Other Problems and Approaches

9.8.1 Hidden Markov Models for gene prediction

The process of breaking down a DNA sequence into genes can be compared to the
process of parsing a sentence into grammatical parts. This naive parsing metaphor
was pushed deeper by Searls and Dong, 1993 [312], who advocated a linguistic ap-
proach to gene finding. This concept was further developed in the Hidden Markov
Models approach for gene prediction (Krogh et al., 1994 [209]) and culminated in
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"TWASBRILLIG, AND THE SLITHY TOVESDID GYRE  AND GIMBLE IN THE WABE
[TwassriILLc, AND THE sL|[THE DOVEs GYRATED AND GAMBLED|| N THE WAVE]
[TwasBriILLc, AND THE sL|[THE DoOVEs GYRATED| NIMBLY IN THE WAVE|
[ HR I LLI NG| [aND] [HEL LisH| [Doves GYRATED AND GAMBLED|| N THE WAVE]
[ HR I LLI NG| [anND] [HEL LisH| [Doves GYRATED| [ NIMBLY IN THE WAVE

e —
|} WASFMLL\ l«NT |THR\LLH\IG| MORNIN | G, [ANDTHE | S U1 MY [HELLISH
L

LI|THE fOVES GYRATED | AND GAMBLED ”\HMBLY IN THE WAVES
§

Figure 9.11:Constructing an Alternative Splicing Encyclopedia (ASE) from potential exons. Four
different splicing variants (above) correspond to four paths (shown by bold edges) in the exon as-
sembly graph. The overall number of paths in this graph is large, and the problem is how to identify
paths that correspond to real splicing variants. The graph at the bottom represents the trimmed exon
assembly graph with just five potential splicing variants (paths).

the program GENSCAN (Burge and Karlin, 1997 [54]). HMMs for gene finding
consist of many blocks, with each block recognizing a certain statistical feature.
For example, profile HMMs can be used to model acceptor and donor sites. Codon
statistics can be captured by a different HMM that uses Start codoitgasstate,
codons as intermediate states, and Stop coden@state. These HMMs can be
combined together as in the Burge and Karlin, 1997 [54] GENSCAN algorithm.
In a related approach, Iseli et al., 1999 [176] developed the ESTScan algorithm for
gene prediction in ESTs.
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9.8.2 Bacterial gene prediction

Borodovsky et al., 1986 [43] were the first to apply Markov chains for bacterial
gene prediction. Multiple bacterial sequencing projects created the new compu-
tational challenge oin silico gene prediction in the absence of any experimen-
tal analysis. The problem is that in the absence of experimentally verified genes,
there are no positive or negative test samples from which to learn the statistical
parameters for coding and non-coding regions. Frishman et al., 1998 [113] pro-
posed the “similarity-first” approach, which first finds fragments in bacterial DNA
that are closely related to fragments from a database and uses them as the initial
training set for the algorithm. After the statistical parameters for genes that have
related sequences are found, they are used for prediction of other genes in an iter-
ative fashion. Currently, GenMark (Hayes and Borodovsky, 1998 [157]), Glimmer
(Salzberg et al., 1998 [295]), and Orpheus (Frishman et al., 1998 [113]) combine
the similarity-based and statistics-based approaches.






Chapter 10

Genome Rearrangements

10.1 Introduction

Genome Comparison versus Gene Comparisdn the late 1980s, Jeffrey Palmer

and his colleagues discovered a remarkable and novel pattern of evolutionary
change in plant organelles. They compared the mitochondrial genorBeassica
oleracea(cabbage) an@rassica campestrifturnip), which are very closely re-
lated (many genes are 99% identical). To their surprise, these molecules, which are
almost identical in gensequencediffer dramatically in generder (Figure 10.1).

This discovery and many other studies in the last decade convincingly proved that
genome rearrangements represent a common mode of molecular evolution.

Every study of genome rearrangements involves solving a combinatorial “puz-
zle” to find a series ofearrangementghat transform one genome into another.
Three such rearrangements “transforming” cabbage into turnip are shown in Fig-
ure 10.1. Figure 1.5 presents a more complicaagrangement scenarim which
mouse X chromosome is transformed into human X chromosome. Extreme conser-
vation of genes on X chromosomes across mammalian species (Ohno, 1967 [255])
provides an opportunity to study the evolutionary history of X chromosome inde-
pendently of the rest of the genomes. According to Ohno’s law, the gene content
of X chromosomes has barely changed throughout mammalian development in the
last 125 million years. However, the order of genes on X chromosomes has been
disrupted several times.

Itis not so easy to verify that the six evolutionary events in Figure 1.5 represent
a shortestseries ofreversalstransforming the mouse gene order into the human
gene order on the X chromosome. Finding a shortest series of reversals between
the gene order of the mitochondrial DNAs of worscaris suumand humans
presents an even more difficult computational challenge (Figure 10.2).

In cases of genomes consisting of a small humber of “conserved blocks,”
Palmer and his co-workers were able to find the most parsimonious rearrangement

175
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B. oleracea 1 5 ' 4 3 0 2
(cabbage) —_
1 5 ' 2 3 2
1 5 -4 -3 -2
B. campestris ————
(turnip) 1 > 3 4 5

Figure 10.1:Transformation” of cabbage into turnip.

scenarios. However, for genomes consisting of more than 10 blocks, exhaustive
search over all potential solutions is far beyond the capabilities of “pen-and-pencil”
methods. As a result, Palmer and Herbon, 1988 [259] and Makaroff and Palmer,
1988 [229] overlooked the most parsimonious rearrangement scenarios in more
complicated cases such as turnip versus black mustard or turnip versus radish.

The traditional molecular evolutionary technigue isgyane comparison, in
which phylogenetic trees are being reconstructed based on point mutations of a
single gene (or a small number of genes). In the “cabbage and turnip” case, the
gene comparison approach is hardly suitable, since the rate of point mutations in
cabbage and turnip mitochondrial genes is so low that their genes are almost identi-
cal. Genome comparisofi.e., comparison of gene orders) is the method of choice
in the case of very slowly evolving genomes. Another example of an evolutionary
problem for which genome comparison may be more conclusive than gene com-
parison is the evolution of rapidly evolving viruses.

Studies of the molecular evolution of herpes viruses have raised many more
guestions than they’'ve answered. Genomes of herpes viruses evolve so rapidly that
the extremes of present-day phenotypes may appear quite unrelated; the similarity
between many genes in herpes viruses is so low that it is frequently indistinguish-
able from background noise. Therefore, classical methods of sequence comparison
are not very useful for such highly diverged genomes; ventures into the quagmire
of the molecular phylogeny of herpes viruses may lead to contradictions, since dif-
ferent genes give rise to different evolutionary trees. Herpes viruses have from 70
to about 200 genes; they all share seven conserved blocks that are rearranged in
the genomes of different herpes viruses. Figure 10.3 presents different arrange-
ments of these blocks in Cytomegalovirus (CMV) and Epstein-Barr virus (EBV)
and a shortest series of reversals transforming CMV gene order into EBV gene
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Figure 10.2: A most parsimonious rearrangement scenario for transformation of Weuaris
Suummitochondrial DNA into human mitochondrial DNA (26 reversals).

order (Hannenhalli et al., 1995 [152]). The number of such large-scale rearrange-
ments (five reversals) is much smaller than the number of point mutations between
CMV and EBV (hundred(s) of thousands). Therefore, the analysis of such rear-
rangements at thgenomelevel may complement the analysis at thenelevel
traditionally used in molecular evolution. Genome comparison has certain mer-
its and demerits as compared to classical gene comparison: genome comparison
ignores actual DNA sequences of genes, while gene comparison ignores gene or-
der. The ultimate goal would be to combine the merits of both genome and gene
comparison in a single algorithm.
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Cytomegalovirus (CMV) Epstein-Barr Virus (EBV)
(U-DNA glycosylase) UL114 BKRF3(U-DNA glycosylase)
1 1
(terminase) UL89_2 BDRF1(terminase)
(capsid protein) UL86 BDLF1(glycoprotein)
; : 1 2 3 7 4 5 6
P2 zZ
(glycoprotein) UL85 BeLFi(capsid protein) ><
1 2 3 7 4 5 6
(capsid protein) UL80 BXRF1(?) ><
i 3 3 i 1 2 3 7 4 5 6
2)UL76 BVRF2(capsid protein) ><
@)un 1 2 3 6 5 4 7
7 5 BALF5(DNA polymerass) ><
1 2 3 6 4 5 7
(primase) UL70 ><
(major DBP) ULS? ‘EALFA(g\ycoprman) 1 2 3 5 4 6 7
: 4 4 :
(glycoprotein) UL55 BALF2(major DBP) (b)
BFLF1(envelope glycoprotein)
(DNA polymerase) UL54 5 6 ;
BORFI(RDPR1)
(envelope glycoprotein) UL52 BLLFY(?)
i 6 7
(RDPR1) UL45 BSLF1(primase)
@

Figure 10.3:Comparative genome organization (a) and the shortest series of rearrangements trans-
forming CMV gene order into EBV gene order (b).

The analysis of genome rearrangements in molecular biology was pioneered in
the late 1930s by Dobzhansky and Sturtevant, who published a milestone paper pre-
senting a rearrangement scenario with 17 inversions for the spedi@esdphila
fruit fly (Dobzhansky and Sturtevant, 1938 [87]). With the advent of large-scale
mapping and sequencing, the numbegehome comparisoproblems is rapidly
growing in different areas, including viral, bacterial, yeast, plant, and animal evo-
lution.

Sorting by Reversals A computational approach based on comparison of gene

orders was pioneered by David Sankoff (Sankoff et al., 1990, 1992 [302, 304] and
Sankoff, 1992 [300]). Genome rearrangements can be modeled by a combinatorial
problem of sorting by reversals, as described below. The order of genes in two
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organisms is represented by permutatieansm 7y ... 7, ando = o109...0,. A
reversalp(i, j) of an intervalfi, 5] is the permutation

12...i—1ii+1...j—1jj+1...n
12...i—1jj—1...i+1ij+1...n

Clearlyp(7, j) has the effect of reversing the ordermfr;,; ... r; and transform-
iNQTy ... M 1T .. TjTjp1 ... Ty iMMOTp(4,5) = 71 ... T 1T ... TTj4p1 ... Tp.

Given permutationg ando, thereversal distance probleiis to find a series of
reversal, ps, .. ., p¢ such thatr-py - ps - - - pr = o andt is minimal. We call: the
reversal distanceéetweenr ando. Sortingn by reversalss the problem of finding
the reversal distanag() betweenr and the identity permutatiofi2...n).

Computer scientists have studied a relateding by prefix reversalproblem
(also known as the@ancake flipping problejn given an arbitrary permutation,
find dp,.. s (), which is the minimum number of reversals of the fgsfi, ¢) sorting
m. The pancake flipping problem was inspired by the following “real-life” situation
described by Harry Dweigter:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different
sizes. Therefore, when | deliver them to a customer, on the way to a table | rearrange them (so that
the smallest winds up on top, and so on, down to the largest at the bottom) by grabbing several from
the top and flipping them over, repeating this (varying the number I flip) as many times as necessatry.
If there aren pancakes, what is the maximum number of flips that | will ever have to use to rearrange
them?

Bill Gates (an undergraduate student at Harvard in late 1970s, now at Mi-
crosoft) and Cristos Papadimitriou made the first attempt to solve this problem
(Gates and Papadimitriou, 1979 [120]). They proved thaptkéx reversal diam-
eterof the symmetric groupdy,r(n) = maxycs, dpref(), is less than or equal
to 2n + 3, and that for infinitely many., d,.;(n) > 1gn. The pancake flipping
problem still remains unsolved.

The Breakpoint Graph What makes it hard to sort a permutation? In the very first
computational studies of genome rearrangements, Watterson et al., 1982 [366] and
Nadeau and Taylor, 1984 [248] introduced the notion bfesakpointand noticed
some correlations between the reversal distance and the number of breakpoints. (In
fact, Sturtevant and Dobzhansky, 1936 [331] implicitly discussed these correlations
60 years ago!) Below we define the notion of a breakpoint.

Leti ~ jif |¢ — j| = 1. Extend a permutatiom = w72 ..., by adding
m = 0 andm,+1 = n + 1. We call a pair of elementsrf, m;11), 0 < i < n,
of = anadjacencyif m; ~ m; 1, and abreakpointif 7; £ m; 41 (Figure 10.4). As
the identity permutation has no breakpoints, sorting by reversals corresponds to
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eliminating breakpoints. An observation that every reversal can elimaiatest
2 breakpoints immediately implies thétr) > L;) whereb(r) is the number of
breakpoints inr. Based on the notion of a breakpoint, Kececioglu and Sankoff,
1995 [194] found an approximation algorithm for sorting by reversals with per-
formance guarante2. They also devised efficient bounds, solving the reversal
distance problem almost optimally farranging from30 to 50. This range covers

the biologically important case of animal mitochondrial genomes.

However, the estimate of reversal distance in terms of breakpoints is very in-
accurate. Bafna and Pevzner, 1996 [19] showed that another parameter (size of a
maximum cycle decomposition of the breakpoint graph) estimates reversal distance
with much greater accuracy.

Thebreakpoint graphof a permutationr is an edge-colored graph(m) with
n + 2 vertices{mo, m1,..., 7T, T+1} = {0,1,...,n,n + 1}. We join verticesr;
and; 1 by ablackedge for0 < i < n. We join verticesr; andr; by agray
edge ifr; ~ 7;. Figure 10.4 demonstrates that a breakpoint graph is obtained by a
superposition of a black path traversing the vertigels ... ,n,n + 1 in the order
given by permutationr and a gray path traversing the vertices in the order given
by the identity permutation.

A cyclein an edge-colored grapH is calledalternatingif the colors of every
two consecutive edges of this cycle are distinct. In the following, by cycles we
mean alternating cycles. A vertexn a graphG is calledbalancedf the number of
black edges incident toequals the number of gray edges incident.té balanced
graphis a graph in which every vertex is balanced. Cle&lir) is a balanced
graph: therefore, it contains an alternating Eulerian cycle. Therefore, there exists
acycle decompositionf G(7) into edge-disjoint alternating cycles (every edge in
the graph belongs to exactly one cycle in the decomposition). Cycles in an edge
decomposition may be self-intersecting. The breakpoint graph in Figure 10.4 can
be decomposed into four cycles, one of which is self-intersecting. We are interested
in the decomposition of the breakpoint graph intoaximurmrmumbere() of edge-
disjoint alternating cycles. For the permutation in Figure 16(#) = 4.

Cycle decompositions play an important role in estimating reversal distance.
When we apply a reversal to a permutation, the number of cycles in a maxi-
mum decomposition can change by at most one (while the number of breakpoints
can change by two). Bafna and Pevzner, 1996 [19] proved the bégnd >
n + 1 — ¢(n), which is much tighter than the bound in terms of breakpoints
d(m) > b(m)/2. For most biological exampleg(n) = n 4+ 1 — ¢(x), thus re-
ducing the reversal distance problem to the maximal cycle decomposition problem.

Duality Theorem for Signed Permutations Finding a maximal cycle decompo-
sition is a difficult problem. Fortunately, in the more biologically relevant case of
signed permutationshis problem is trivial. Genes adbrectedfragments of DNA,
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Figure 10.4:Breakpoints, breakpoint graph, and maximum cycle decomposition.
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and a sequence of genes in a genome is represented lpjgaedpermutation on
{1,...n} with a + or — sign associated with every elementmf For example,

the gene order foB. oleraceapresented in Figure 10.1 is modeled by the signed
permutation(+1 — 5 + 4 — 3 4+ 2). In the signed case, every reversal of fragment
[i, 7] changes both the order and the signs of the elements within that fragment
(Figure 10.1). We are interested in the minimum number of rever&aly re-
quired to transform a signed permutatieninto the identity signed permutation
(+142...+n).

Bafna and Pevzner, 1996 [19] noted that the concept of a breakpoint graph
extends naturally to signed permutations by mimicking every directed elerbgnt
two undirected elements andi;,, which substitute for the tail and the head of the
directed element (Figure 10.5).

For signed permutations, the boudtlr) > n + 1 — ¢(m) approximates the
reversal distance extremely well for both simulated and biological data. This in-
triguing performance raises the question of whether the bad@ngd> n+1—¢()
overlooks another parameter (in addition to the size of a maximum cycle decompo-
sition) that would allow closing the gap betweér) andn+1—c(7). Hannenhalli
and Pevzner, 1995 [154] revealed another “hidden” parameter (humberdiés
in ) making it harder to sort a signed permutation and showed that

n+1—c(r)+h(r) <d(r) <n+2—c(r)+ h(r) (10.1)

whereh () is the number of hurdles im. They also proved the duality theorem for
signed permutations and developed a polynomial algorithm for compdting

Unsigned Permutations and Comparative Physical Mapping Since sorting
(unsigned) permutations by reversals is NP-hard (Caprara, 1997 [57]), many re-
searchers have tried to devise a practical approximation algorithm for sorting (un-
signed permutations) by reversals.

A blockof 7 is an intervalr; . .. w; containing no breakpoints, i.€ay, 7441)
is an adjacency fab < i < k < j < n+ 1. Define astrip of = as a maximal block,
i.e., a blockr; ... m; such tha(m;_y, m;) and(n;, 7;11) are breakpoints. A strip of
one element is called singleton a strip of two elements is calledZastrip, and a
strip with more than two elements is calletbag strip. It turns out that singletons
cause a major challenge in sorting unsigned permutations by reversals.

A reversalp(i,j) cutsa stripmy ... m if eitherk < ¢ < lork < j < I
A reversal cutting a strip separates elements that are consecutive in the identity
permutation. Therefore, it is natural to expect that for every permutatithere
exists an (optimal) sorting af by reversals that does not cut strips. This, how-
ever, is false. Permutatidd#12 requires three reversals if we do not cut strips, and
yet it can be sorted with two3412 — 1432 — 1234. Kececioglu and Sankoff,
1993 [192] conjectured that every permutation has an optimal sorting by rever-
sals that does not cut long strips and does not increase the number of breakpoints.
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Breakpoint graph of signed permutations
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Figure 10.5:Modeling a signed permutation by an unsigned permutation.

Since the identity permutation has no breakpoints, sorting by reversals corresponds
to eliminating breakpoints. From this perspective, it is natural to expect that for ev-
ery permutation there exists an optimal sorting by reversals that never increases
the number of breakpoints. Hannenhalli and Pevzner, 1996 [155] proved both the
“reversals do not cut long strips” and the “reversals do not increase the number of
breakpoints” conjectures by using the duality theorem for signed permutations.

Biologists derive gene orders either by sequencing entire genomes or by us-
ing comparative physical mapping. Sequencing provides information about the
directions of genes and allows one to represent a genome by a signed permutation.
However, sequencing of entire genomes is still expensive, and most currently avail-
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Compar ative physical maps of cabbage and turnip

1. -5 4 -3 2
B. oleracea ——d——F-d——F-—d——F-—d———4—4+—F—d——F—d——F——
(cabbage)
B. Camp_eStris ——d——F-—d——F—-d——F-—d—4—-4+———F—d——F—d——F——
(turnip)

17 2 -3 4 5
Figure 10.6:Comparative physical map of cabbage and turnip (unsigned permutation) and corre-
sponding signed permutation.

able experimental data on gene orders are based on comparative physical maps.
Physical maps usually do not provide information about the directions of genes,
and therefore lead to representation of a genome asnaignedpermutations.
Biologists try to derive a signed permutation from this representation by assign-
ing a positive (negative) sign to increasing (decreasing) strips (&igure 10.6).

The “reversals do not cut long strips” property provides a theoretical substantiation
for such a procedure in the case of long strips. At the same time, for 2-strips this
procedure might fail to find an optimal rearrangement scenario. Hannenhalli and
Pevzner, 1996 [155] pointed to a biological example for which this procedure fails
and described an algorithm fixing this problem.

Permutations without singletons are callgdgleton-freepermutations. The
difficulty in analyzing such permutations is posed by an alternatiee;ut or not
to cut” 2-strips. A characterization of a set of 2-strijpg cut” (Hannenhalli and
Pevzner, 1996 [155]) leads to a polynomial algorithm for sorting singleton-free
permutations and to a polynomial algorithm for sorting permutations with a small
number of singletons. The algorithm can be applied to analyze rearrangement
scenarios derived from comparative physical maps.

Low-resolution physical maps usually contain many singletons and, as a result,
rearrangement scenarios for such maps are hard to analyze. The Hannenhalli and
Pevzner, 1996 [155] algorithm runs in polynomial time if the number of single-
tons isO(logn). This suggests thad(log n) singletons is the desired trade-off of
resolution for comparative physical mapping in molecular evolution studies. If the
number of singletons is large, a biologist might choose additional experiments (
i.e., sequencing of some areas) to resolve the ambiguities in gene directions.



10.1. INTRODUCTION 185

n r
+1+2+3+4 -3-2-1+4 -3-2-1+4 -3-2-1+4+5+6+7+11
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Figure 10.7:Evolution of genomdI into genome.

Rearrangements of Multichromosomal GenomesWhen the Brothers Grimm
described a transformation of a man into a mouse in the fairy tale “Puss in Boots,”
they could hardly have anticipated that two centuries later humans and mice would
be the most genetically studied mammals. Man-mouse comparative physical map-
ping started 20 years ago, and currently a few thousand pairs of homologous genes
are mapped in these species. As a result, biologists have found that the related
genes in man and mouse are not chaotically distributed over the genomes, but form
“conserved blocks” instead. Current comparative mapping data indicate that both
human and mouse genomes are comprised of approximately 150 blocks which are
“shuffled” in humans as compared to mice (Copeland et al., 1993 [74]). For exam-
ple, the chromosome 7 in the human can be viewed as a mosaic of different genes
from chromosomes 2, 5, 6, 11, 12, and 13 in the mouse (Fig 1.4). Shuffling of
blocks happens quite rarely (roughly once in a million years), thus giving biolo-
gists hope of reconstructing a rearrangement scenario of human-mouse evolution.
In their pioneering paper, Nadeau and Taylor, 1984 [248] estimated that surpris-
ingly few genomic rearrangementsr’g + 39) have happened since the divergence
of human and mouse 80 million years ago.

In the model we consider, every gene is represented by an integer sijose
(“+" or “=") reflects the direction of the gene. Achromosomés defined as ae-
guenceof genes, while enomds defined as aetof chromosomes. Given two
genomedI andI’, we are interested in a most parsimonious scenar@&volution
of ITinto T, i.e., the shortest sequence of rearrangement events (defined below) re-
quired to transforniI into I". In the following we assume that andT" contain the
same set of genes. Figure 10.7 illustrates four rearrangement events transforming
one genome into another.

LetIl = {n(1),...,n(N)} be a genome consisting &f chromosomes and
let 7(é) = (n(i)1...7(i)n;), n; being the number of genes in tiih chromo-
some. Every chromosome can be viewed either from “left to right” (i.e., as
m = (m ...m,)) or from “right to left” (i.e., as—n = (—m, ... — m1)), leading
to two equivalent representations of the same chromosome (i.airdationsof
chromosomes are irrelevant). The four most common elementary rearrangement
events in multichromosomal genomes agersals translocations fusions and
fissions defined below.
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Letm = 7y ...m, be achromosome ard< i < j < n. A reversalp(r,i,j)
on a chromosome rearranges the gengsider = my ... m_ 1T ... TjTj41... T,
and transformsr into oy ... ;1 — ;... — W1 ... T L€t =m0 .. 7, @nd
o = o01...0, be two chromosomes and < s < n+1,1 < j < m+ 1.

A translocationp(w, 0,4, j) exchanges gendgetweerchromosomes ando and
transforms them into chromosomes...m;_i0;...0, andoy ...0j_1m;... T,
with (i —1) +(m—j+1)and(j — 1) + (n —i+ 1) genes respectively. We denote
asII - p the genome obtained frofi as a result of a rearrangement (reversal or
translocationp. Given genomesl andl’, thegenomic sorting problers to find a
series of reversals and translocatigns. . . , p; such thafl - p; - -- p, = T andt is
minimal. We callt the genomic distancbetweerll andI’. TheGenomic distance
problemis the problem of finding the genomic distant@l, I') betweenI andI".

A translocationp(m, o,n + 1,1) concatenates the chromosomeando, re-
sulting in a chromosome; ... m,0; ...0,, and anemptychromosome). This
special translocation, leading to a reduction in the number of (non-empty) chromo-
somes, is known in molecular biology agusion The translocation(r, 0,4, 1)
for 1 < i < n “breaks” a chromosome into two chromosomeér; ... m;—1) and
(m; ... my). This translocation, leading to an increase in the number of (non-empty)
chromosomes, is known asfigsion Fusions and fissions are rather common in
mammalian evolution; for example, the major difference in the overall genome
organization of humans and chimpanzees is the fusion of two chimpanzee chromo-
somes into one human chromosome.

Kececioglu and Ravi, 1995 [191] made the first attempt to analyze rearrange-
ments of multichromosomal genomes. Their approximation algorithm addresses
the case in which both genomes contain the same number of chromosomes. This is
a serious limitation, since different organisms (in particular humans and mice) have
different numbers of chromosomes. From this perspective, every realistic model
of genome rearrangements should include fusions and fissions. It turns out that fu-
sions and fissions present a major difficulty in analyzing genome rearrangements.
Hannenhalli and Pevzner, 1995 [153] proved the duality theorem for multichromo-
somal genomes, which computes genomic distance in terms of seven parameters
reflecting different combinatorial properties of sets of strings. Based on this result
they found a polynomial algorithm for this problem.

The idea of the analysis is to concatenafechromosomes ofl andT" into
permutationgr and~y, respectively, and to mimic genomic sortingléfinto I" by
sorting  into «y by reversals. The difficulty with this approach is that there exist
N2V different concatenates faf andI’, and only some of them, callezptimal
concatenatesmimic anoptimal sorting ofII into I'. Hannenhalli and Pevzner,
1995 [153] introduced techniques callfigping andcappingof chromosomes that
allow one to find an optimal concatenate.

Of course, gene orders for just two genomes are hardly sufficient to delineate
a correct rearrangement scenario. Comparative gene mapping has made possible
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the generation of comparative maps for many mammalian species (O’Brien and
Graves, 1991 [254]). However, the resolution of these maps is significantly lower
than the resolution of the human-mouse map. Since comparative physical mapping
is rather laborious, one can hardly expect that the tremendous effort involved in
obtaining the human-mouse map will be repeated for other mammalian genomes.
However, an experimental technique calldtfomosome paintingllows one to
derive gene order without actually building an accurate “gene-based” map. In the
past, the applications of chromosome painting were limited to primates (Jauch et
al., 1992 [178]); attempts to extend this approach to other mammals were not suc-
cessful because of the DNA sequence diversity between distantly related species.
Later, Scherthan et al., 1994 [307] developed an improved version of chromosome
painting, called&zOO-FISH that is capable of detecting homologous chromosome
fragments in distant mammalian species. Using ZOO-FISH, Rettenberger et al.,
1995 [284] quickly completed the human-pig chromosome painting project and
identified 47 conserved blocks common to human and pig. The success of the
human-pig chromosome painting project indicates that gene orders of many mam-
malian species can be generated with ZOO-FISH inexpensively, thus providing an
invaluable new source of data to attack the 100-year-old problem of mammalian
evolution.

10.2 The Breakpoint Graph

Cycle decomposition is a rather exotic notion that at first glance has little in
common with genome rearrangements. However, the observation that a reversal
changes the number of cycles in a maximum decomposition by at most one allows
us to bound the reversal distance in terms of maximum cycle decomposition.

Theorem 10.1 For every permutation and reversap, c(mp) — ¢(m) < 1.

Proof An arbitrary reversap(i, j) involves four vertices of the grapi(=) and
leads to replacing two black edgésF' L = {(m;—1,7;), (7, 7j11)} by the black
edgesADD = {('/Ti—h 7Tj), (7TZ', 7Tj_|_1)}.

If these two black edges iAD D belong to the same cycle in a maximum cycle
decomposition o7 (7p), then a deletion of that cycle yields a cycle decomposition
of G(w) with at leaste(wp) — 1 cycles. Thereforeg(w) > ¢(mwp) — 1.

On the other hand, if the black edgesAD D belong to different cycleg’,
andCs in a maximum cycle decomposition 6f(7p), then deleting”; U C5 gives
a set of edge-disjoint cycles of sizérp) — 2 in the graphG(wp) \ (C1 U Cy).
Clearly, the set of edge®”; U C, U DEL) \ ADD forms a balanced graph and
must contain at least one cycle. Combining this cycle with the previously obtained
c(mp) — 2 cycles, we obtain a cycle decomposition®@fr) = (G(wp) \ (C1 U
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C2)) U (CLUC,UDEL\ ADD) into at least:(mp) — 1 cycles. ]

Theorem 10.1, together with the observation #{at = n + 1 for the identity
permutation, immediately impliesi(7) > ¢(1) — ¢(w) =n+ 1 — ¢(n):

Theorem 10.2 For every permutationr, d(7) > n+ 1 — ¢(n).

10.3 *“Hard-to-Sort” Permutations

Defined(n) = max,cg, d(m) to be thereversal diameteof the symmetric group
of ordern. Gollan conjectured that(n) = n — 1 and that only one permutatiop,
and its inverse permutatiop, ! requiren — 1 reversals to be sorted. Ti@ollan
permutation, in one-line notation, is defined as follows:

) 3,1,5,2,7,4,...,n—=3,n—5n—1,n—4,nn—2), neven
™ =N3,1,5,2,7,4,...,n—6,n—2,n —5,n,n — 3,n— 1), nodd

Bafna and Pevzner, 1996 [19] proved Gollan’s conjecture by showingthgt =
2 and applying theorem 10.2. Further, they demonstrated that the reversal distance
between two random permutations is very close to the reversal diameter of the sym-
metric group, thereby indicating that reversal distance provides a good separation
between related and non-related sequences in molecular evolution studies.

We show that the breakpoint gragh(-y,,) has at most two disjoint alternating
cycles. The subgraph @¥(v,) formed by vertice§4,5,...,n — 5,n — 4} has
a regular structure (Figure 10.8). Direct the black edges of an arbitrary cycle in
this subgraph from the bottom to the top and all gray edges from the top to the
bottom. Note that in this orientation all edges are directed efther  or |, and
therefore walking along the edges of this cycle slowly but surely leads to the left.
How would we return to the initial vertex? we can do so only after reaching one of
the “irregular” vertices (1 and 3), which serve as “turning points.” The following
lemma justifies this heuristic argument.

Lemma 10.1 Every alternating cycle itz (y, ) contains the vertex or 3.

Proof Let s be the minimal odd vertex of an alternating cydlein G(+,). Con-
sider the sequencg j, k of consecutive vertices iX, where (i, j) is black and
(7,k) is gray. Ifi > 5,thenj =i —3o0orj=i—5andk =j+1lork=j5—1
(Figure 10.8), implying that is odd andk < i, a contradiction. Ifi = 5, then
j = 2 andk is eitherl or 3, a contradiction. Thereforé,s eitherl or 3. ]

Theorem 10.3 (Gollan conjecture) For every, d(v,) = d(vy,!) =n — 1.
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Figure 10.8:G(y12) andG(13).

Proof Forn < 2, the claim is trivial. Fom > 2, partition the vertex set af (vy,,)
intoV; = {0,1, 3} andV,.. From lemma 10.1 and the fact that there is no cycle con-
tained inV;, we see that every alternating cycle must contain at least two edges from
the cut(V;, V;.). As the cut(V}, V;.) consists of four edgeg1, 2), (1,5), (3,2), and
(3,4)), the maximum number of edge-disjoint alternating cycles in a cycle decom-
position of G () is at most} = 2.

From theorem 10.24(~y,) > n + 1 — ¢(y,) > n — 1. On the other hand,
d(vn) < n — 1, since there exists a simple algorithm sorting evemglement per-
mutation inn — 1 steps. Finally note that(y, ') = d(v,). [

Bafna and Pevzner, 1996 [19] also proved thaand~,, ! are the only permu-
tations inS,, with a reversal distance of — 1.

Theorem 10.4 (strong Gollan conjecture) For evemy, v, and~, ' are the only
permutations that require — 1 reversals to be sorted.

10.4 Expected Reversal Distance

For any permutatiomr € S,,, consider a set of cycles that form a maximum de-
composition and partition them by size. Legtr) denote the number of alternating
cycles of length in a maximum decomposition, that do not include either veitex
orn + 1. Letd < 2 be the number of alternating cycles in a maximum decompo-
sition that include either vertegxor n + 1. Then,

2(n+1)

e(m) = Z ci(m) + 0. (10.2)

1=2

Fork < 2(n+1), letus consider cycles in the decomposition whose size is at least
k. The number of such cyclesdér) — Ef:‘; c¢i(m) — 9. Now, the breakpoint graph
of = has exactly2(n + 1) edges. From this and the fact that the cycles are edge

disjoint, we have
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k—1
VE<2(n+1), c(r)—>) ci(n)—0< % (Q(n +1)— Z ici(ﬁ)> (10.3)
' i=2
and

k—1
VE<2(n+1), cn)< % (2(n +1)+ > (k- i)ci(w)> +4.  (10.4)
=2

Theorem 10.2, inequality (10.4), aac 2 imply that for allk < 2(n+ 1), we can
boundd(r) as

k—1
d(m) > (1 — %) (n+1)— % (Z(k — i)ci(w)> -2 (10.5)

1=2

k—1
> <1 _ %) (n+1) - ( ci(7r)> p (10.6)

=2

Consider a permutatiom chosen uniformly at random. Denote the expected num-
ber of cycles of lengthin a maximum cycle decomposition 6f(r) by E(c; (7)) =

% > oxes, ci(m). If we can bound?(c;()), we can use (10.6) above to get a lower
bound on the expected reversal distance. Lemma 10.2 provides such a bound,
which is, somewhat surprisingly, independent:ofNote that there is a slight am-
biguity in the definition ofE(c¢;(7)), which depends on the choice of a maximum
cycle decomposition for eaeh € S,,. This does not affect lemma 10.2, however,
which holds for an arbitrary cycle decomposition.

Lemma 10.2 E(c¢;(m)) < 27

Proof A cycle of lengthi = 2¢ containst black edges (unordered pairs of vertices)
of the form

{((I;f‘,axl)a ($Il,$2), (xévxii)a R (x;—laxt)}y with Zj ~ fI;;

Consider the setq, 29, ...,z First, we claim that in every maximum cycle de-
compositionz, z9, . . . , 24 are all distinct. To see this, consider the cage= z;,

for somel < k <1 < t. Then,(z}, z41), (Thiqs Tht2)s -, (T)g 20 = Tp)
form an alternating cycle, which can be detached to give a larger decomposition.

We have(n"f’t)! ways of selecting the ordered set,, x», ..., z;. Once this is

fixed we have a choice of at most two elements for each o&}hgiving a bound
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of 2t _ on the number of cycles of leng#. Note however that we count each

(n—t)!

(2t)-cycle 2t times, therefore a tighter bound for the number of cycles of leagth
e 2t !
is 5 eIk

Choose an arbitrary2t)-cycle. The number of permutations in which this
cycle can occur is no more than the number of ways of permuting the remaining
n — 2t elements plus thepairs that form the cycle. Additionally, each pair can be
flipped to give a different order, which gives at m@4tn — )! permutations. Lep
be the probability that an arbitraf2t)-cycle is present in a random permutation.

Thenp < w and

2 2t
Bla(m) =EBlea(m) < 3 p<o =
{all (2t)—cycles

Cycles of length 2 correspond to adjacencies in permutatidrhere are a total
of 2n ordered adjacencies. Any such pair occurs in exdetly 1)! permutations,
so the probability that it occurs in a random permutatio%.isir hus, the expected
number of adjacencies % and E(c2) = 2. Note that the expected number of
breakpoints in a random permutatioris- 1.

We use lemma 10.2 ant(cy) = 2 to get a bound on the expected reversal
diameter:

Theorem 10.5 (Bafna and Pevzner, 1996 [19P(d(x)) > (1 4—5) n.

" logn

Proof From inequality (10.6), for alk < 2(n + 1),

k—1 k-1
E(d(r)) > (1 — %) (n+1)=>_ BE(c;)—2 > (1 — %) (n+1)=> 2"/i—4 >
i=2 1=4

(1-2) (n+1) - bt oi+ 2t 2!
d—4>n-2—(1-2)-2k+1+8>

Chooseék = log 12 Then2* < % and

>n2<1— 4'5>n for n > 216,
logn

Bd(m) > (1 _

n
log logn
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Lemma 10.2 and inequality (10.5) fér= 10 imply that E(d(r)) > (1 — 45 )n

logn

for19<n<216.For1§n§19,(1 4-5)n<1. -

~ logn

10.5 Signed Permutations

Let 7 be asignedpermutation of 1, ...,n}, i.e., a permutation with & or — sign
associated with each element. Define a transformation from a signed permutation
7 of ordern to an (unsigned) permutationof {1,...,2n} as follows. To model

the signs of elements ifi, replace the positive elementsr by 2z — 1,2z and

the negative elementsz by 2x,22 — 1 (Figure 10.9¢c). We call the unsigned
permutationz the imageof the signed permutatiofi. In the breakpoint graph
G(n), element2z — 1 and2x are joined by both black and gray edges foK

z < n. Each such pair of a black and a gray edge defines a cycle of length 2 in
the breakpoint graph. Clearly, there exists a maximal cycle decomposit@(vof
containing all these: cycles of length 2. Define the breakpoint gra@lir) of a
signed permutatiof¥ as the breakpoint graphi(r) with these2n edges excluded.
Observe that irG(7) every vertex has degree(Figure 10.9c), and therefore the
breakpoint graph of a sighed permutation is a collection of disjoint cycles. Denote
the number of such cycles agr). We observe that the identity signed permutation
of ordern maps to the identity (unsigned) permutation of or2ler and the effect

of a reversal o can be mimicked by a reversal anthus implyingd(7) > d(r).

In the following, by a sorting of the image = m 75 ... 79, Of a signed per-
mutation7, we mean a sorting of by reversalg(2: + 1, 2j) that “cut” only after
even positions ofr (betweenmy,_; andmy, for 1 < k < n). The effect of a
reversalp(2: + 1,27) onw can be mimicked by a reversali + 1,7) on 7, thus
implying thatd(7) = d(x) if cuts betweenry;_; andmy; are forbidden. In the
following, all unsigned permutations we consider are images of some signed per-
mutations. For convenience we extend the term “signed permutation” to unsigned
permutationsr = (w7, .. . ma,) Such thatry;; andmry; are consecutive numbers
for 1 <i < n. Areversalp(i, j) onr islegalif i is odd and; is even. Notice that
any reversal on a signed permutation corresponds to a legal reversal on its image,
and vice versa. In the following, by reversals we mean legal reversals.

Given an arbitrary reversal, denoteAc = Ac(m,p) = c(mp) — ¢(m) (in-
crease in the size of the cycle decomposition). Theorem 10.1 implies that for every
permutationm and reversap, Ac = Ac(m,p) < 1. We call a reversaproper if
Ac=1.

If we were able to find a proper reversal for every permutation, then we would
optimally sort a permutation in n + 1 — ¢(w) steps. However, for a permutation
m = +3+ 2+ 1 there is no proper reversal, and therefore, it cannot be sorted in
1 — ¢(m) = 2 steps (optimal sorting of this permutation is shown in Figure 10.10).
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This indicates that besides the number of cycles there exists another “obstacle” to
sorting by reversals. The permutatian= +3 + 2 + 1 contains ahurdle that
presents such a “hidden” obstacle to sorting by reversal. The notion of a hurdle
will be defined in the next section.

We say that a reversai(i, j) actson black edgegm;_1,m;) and (7, mj41)
in G(m). p(i,7) is areversal (acting) on a cycl€ of G(x) if the black edges
(mi—1,m;) and (mj,7;11) belong toC. A gray edgey is orientedif a reversal
acting on two black edges incident gois proper andunorientedotherwise. For
example, gray edgds, 9) and(22, 23) in Fig 10.9c are oriented, while gray edges
(4,5) and(18,19) are unoriented.

Lemma 10.3 Let (m;, 7;) be a gray edge incident to black edges;, ;) and
(mj,m). Then(n;, m;) is oriented if and only it — &k = j — 1.

A cycle in G(x) is orientedif it has an oriented gray edge and unoriented
otherwise. Cycles’ and F' in Figure 10.9c are oriented, while cycles B, D,
and E are unoriented. Clearly, there is no proper reversal acting on an unoriented
cycle.

10.6 Interleaving Graphs and Hurdles

Gray edgeg;, ;) and(ny, m;) in G(7) areinterleaving,if the intervals[s, j] and
[k, t] overlap but neither of them contains the other. For example, €dgésand
(18,19) in Figure 10.9c are interleaving, while edges5) and (22, 23), as well
as(4,5) and(16,17), are non-interleaving. Cycles; andC, areinterleavingif
there exist interleaving gray edges< C; andg, € Cs.

Let C; be the set of cycles in the breakpoint graph of a permutatioDefine
aninterleavinggraphH,(C.,Z,) of = with the edge set

Zr = {(C1,Cy) : CyandC, are interleaving cycles it#(m)}.

Figure 10.9d shows an interleaving grafih consisting of three connected com-
ponents. The vertex set & is partitioned intoorientedandunorientedvertices
(cycles inC;). A connected component di is oriented if it has at least one
oriented vertex andinorientedotherwise. For a connected componéntdefine
leftmost and rightmost positions 6f as

Upmin = min 4 and U, = max .
i eCceu mar T eCeu

For example, the componeditcontaining cycle3, C, andD in Figure 10.9¢c has
leftmost vertexre = 6 and rightmost vertex ;s = 17; therefore [Upin, Unaz] =
2,13].
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€Y
[3 4 5 6 7 8 9 2 1 10 1
[ 9 8 7 6 5 4 3 2 1 10 1
1 2 3 4 5 6 7 8 9 10 1

__ black edge
..... gray edge

1 12

(C)‘—'.—OHHHO—.D—.‘—..—.HHH
o 5 6 1 9 15 1 12 1 7 8 14 138 17 18 3 4 1 2 19 20 2 2 23

+3 -5 +8 -6 +4 -7 +9 +2 +1 +10

G‘\@/@ non-oriented cycle

O oriented cycle

Figure 10.9:(a) Optimal sorting of a permutatiqi3 586 4 79 2 1 10 11) by five reversals and (b)
breakpoint graph of this permutation; (c) Transformation of a signed permutation into an unsigned
permutationr and the breakpoint graghi(); (d) Interleaving grapti~ with two oriented and one
unoriented component.

Figure 10.10:0ptimal sorting of permutation = +3 + 2 + 1 involves a non-proper reversal.
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0 9 10 13 14 11 12 15 16 1 2 5 6 3 4 7 8 17
+5 +7 +6 +8 +1 +3 +2 +4

U

0 3 4 7 8 5 6 9 0 183 14 1 12 15 16 1 2 17
2 +4 +3 +5 +7 +6 +8 +1

Figure 10.111a) Unoriented componertf separate&” andU” by virtue of the edgg0, 1); (b)
HurdleU does not separaté’ andU" .

We say that a componeft separatecomponentd/’, U” in = if there exists a
gray edngi,ﬂ'j) in U such that[U{nzn7 U{nax] - [27]]1 bUt[ 7,717,2'71,7 Ugun] ¢ [27.7]

For example, the componedtin Figure 10.11a separates the componéftand
U”.

Let < be a partial order on a sét. An elementz € P is called aminimal
element in< if there is no elemeny € P with y < z. An elementz € P is the
greatestin < if y < x for everyy € P.

Consider the set of unoriented componditsin H,., and define theontain-
mentpartial order on this set, i.el] < W if [Unin, Unaz] C [Wmnin, Winaz| fOr
U,W € U,. A hurdleis defined as an unoriented component that is either a min-
imal hurdle or the greatest hurdle, wherenmimal hurdleU € U/, is a minimal
element in< and thegreatest hurdlesatisfies the following two conditions: () is
the greatest element i and(ii) U does not separate any two hurdles. Let) be
the overall number of hurdles imr. Permutationr in Figure 10.9¢c has one unori-
ented component arfd7) = 1. Permutationr in Figure 10.11b has two minimal
and one greatest hurdlg(fr) = 3). Permutationr in Figure 10.11a has two mini-
mal and no greatest hurdlg(fr) = 2), since the greatest unoriented comporiént
in Figure 10.11a separaté& andU".

The following theorem further improves the bound for sorting signed permuta-
tions by reversals:

Theorem 10.6 For arbitrary (signed) permutation, d(7) > n+1—c¢(n) +h(x).
Proof Given an arbitrary reversal, denoteAh = Ah(w,p) = h(wp) — h(n).

Clearly, every reversal acts on black edges of at most two hurdles, and therefore
p may “destroy” at most two minimal hurdles. Note thap iflestroys two minimal
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hurdles inl4,, thenp cannot destroy the greatest hurdleldp (see condition (ii)
in the definition of the greatest hurdle). Therefdte > —2 for every reversab. m

Theorem 10.1 implies thahe € {—1,0,1}. If Ac = 1, thenp acts on an
oriented cycle and hence does not affect any hurdles ifhereforeAh = 0 and
A(c—h) = Ac—Ah = 1. If Ac =0, thenp acts on a cycle and therefore affects
at most one hurdle (see condition (ii) in the definition of the greatest hurdle). This
implies Ah > —1 andA(c — h) < 1. If Ac = —1, thenA(c — h) < 1, since
Ah > —2 for every reversap.

Therefore, for an arbitrary reversal A(c — h) < 1. This, together with the
observation that(:) = n + 1 andh(:) = 0 for the identity permutatiom, implies
d(m) > (c(¢) = h(r)) — (e(w) = h(w)) =n+1 — ¢(n) + h(m). ]

Hannenhalli and Pevzner, 1995 [154] proved that the lower baelfnd >
n+ 1 —¢(r) + h(r) is very tight. As a first step toward the upper boutfd) <
n+1—c(m)+h(m)+1, we developed a technique calleguivalent transformations
of permutations.

10.7 Equivalent Transformations of Permutations

The complicated interleaving structure of long cycles in breakpoint graphs poses
serious difficulties for analyzing sorting by reversals. To get around this prob-
lem we introduce equivalent transformations of permutations, based on the follow-
ing idea. If a permutationr = 7(0) has a long cycle, transform it into a new
permutationr (1) by “breaking” this long cycle into two smaller cycles. Con-
tinue with 7(1) in the same manner and form a sequence of permutatioas
7(0),7(1),..., (k) = o, ending with asimple(i.e., having no long cycles) per-
mutation. This section demonstrates that these transformations can be arranged in
such a way that every sorting ef mimics a sorting ofr with the same number
of reversals. The following sections show how to optimally sort simple permuta-
tions. Optimal sorting of theimplepermutations mimics optimal sorting of the
arbitrary permutationr, leading to a polynomial algorithm for sorting by reversals.
Letb = (v, wp) be a black edge angl = (wy,v,) be a gray edge belong-
ing to acycleC = ..., vy, wy,...,wq,vg,... N the breakpoint grapli’(7) of a
permutationr. A (g, b)-split of G () is a new grapt(r) obtained fromG (r) by

e removing edgeg andb,
e adding two new vertices andw,
e adding two new black edgés;, v) and(w, wy),

e adding two new gray edgés,, w) and(v, v).
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o e b g g @RI g oo, e e
Wg wy vy vg Wg wy w v vy Vg

Figure 10.12Example of g, b)-split.

Figure 10.12 shows &y, b)-split transforming a cycl€’ in G() into cyclesCy

andC, in G(x). If G(r) is a breakpoint graph of a signed permutatignthen
every (g, b)-split of G(w) corresponds to the breakpoint graph of a siggeder-
alized permutationit such thatG(r) = G(#). Below we define generalized per-
mutations and describe tipaddingprocedure to find a generalized permutation
corresponding to &, b)-split of G.

A generalized permutation = mym, ... m, iS a permutation of arbitrary dis-
tinct reals (instead of permutations afitegers{1,2,...,n}). In this section, by
permutations we mean generalized permutations, ariddnyity generalized per-
mutationwe mean a generalized permutation= w7, ... m, with m; < w44
for1 <4 < n— 1. Extend a permutatiom = mmy...7w, by addingr, =
minj<j<, 7; — 1 andm, {1 = max;<;<p m; + 1. Elementsr; andr;, of 7 are
consecutivef there is no element; such thatr; < m < m, forl <[ < n.
Elementsr; and; 1 of  areadjacentfor 0 < ¢ < n. Thebreakpoint graphof
a (generalized) permutation = m 7 ..., IS defined as the graph on vertices
{mo, m1,..., ™, Tn+1} With black edges between adjacent elements that are not
consecutive and gray edges between consecutive elements that are not adjacent.
Obviously the definition of the breakpoint graph for generalized permutations is
consistent with the notion of the breakpoint graph described earlier.

Letb = (741, m;) be a black edge angl= (7, 7;,) be a gray edge belonging
toacycleC = ..., w1, 7, ..., T}, T, ... in the breakpoint graptr (). Define
A =m, —m;and letv = m; + £ andw = 1, — 2. A (g,b)-padding of
7w = (mm ... T,) IS a permutation on + 2 elements obtained from by inserting
v andw after thei-th element ofr (0 < i < n):

T =TTy ... TOWTi4] ... Ty

Note thatv andw are both consecutive and adjacentiinthus implying that if
w is (the image of) a signed permutation , thers also (the image of) a signed
permutation. The following lemma establishes the correspondence betyégn
paddings andg, b)-splits. '

Lemma 10.4 G(r) = G(%).

Of course, dg, b)-padding of a permutation = (mim2 ... m,) on{1,2,...,n} can be mod-
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If ¢ andb are non-incident edges ofeng cycleC in G(r), then the(g, b)-padding
breaksC into two smallercycles inG (7). Therefore paddings may be used to
transform an arbitrary permutation into a simple permutation. Note that the
number of elements it isnn = n + 1 ande(7) = ¢(w) + 1. Below we prove

that for every permutation with a long cycle, there exists a padding on non-incident
edges of this cycle such that7) = h(), thus indicating that padding provides

a way to eliminate long cycles in a permutation without changing the parameter
n+ 1 — ¢(m) + h(w). First we need a series of technical lemmas.

Lemma 10.5 Let a(g, b)-padding on a cycl€’ in G(n) delete the gray edggand
add two new gray edgeg andg-. If g is oriented, then eitheg; or g- is oriented
in G(7). If C'is unoriented, then botly and g, are unoriented irG (7).

Lemma 10.6 Let a(g, b)-padding break a cycl€’ in G(x) into cyclesC; and Cs
in G(7). ThenC is oriented if and only if eithe€; or C; is oriented.

Proof Note that a(g, b)-padding preserves the orientation of gray edges (ift)
that are “inherited” fromG (7) (lemma 10.3). IfC is oriented, then it has an ori-
ented gray edge. If this edge is different frgmthen it remains oriented in a
(g, b)-padding ofr, and therefore a cycle’f or C5) containing this edge is ori-
ented. Ifg = (wy,v,) is the only oriented gray edge ifi, then(g, b)-padding
adds two new gray edgeéuf,, w) and (v, v,)) to G(7), one of which is oriented
(lemma 10.5). Therefore a cycl€{ or C5) containing this edge is oriented.

If C is an unoriented cycle, then all edges@@f and Cs “inherited” from C
remain unoriented. Lemma 10.5 implies that new edgeg, () and(v,v,)) in
C; and(,, are also unoriented. [

The following lemma shows that paddings preserve the interleaving of gray edges.

Lemma 10.7 Let ¢’ and ¢" be two gray edges @ (x) different fromg. Theng’
and¢” are interleaving inx if and only if g’ and ¢" are interleaving in a(g, b)-
padding ofr.

This lemma immediately implies

Lemma 10.8 Let a(g, b)-padding break a cycl€’ in G(x) into cyclesC; and C,
in G(7). Then every cycl® interleaving withC' in G () interleaves with either
Cy or Cy in G(7).

eled as a permutatioh = (7172 . . . T VWRi+1...7n) ON{L,2,...,n+2} wherev = 7; +1,w =
m + 1, and#; = m; + 2 if m; > min{n;, 7} and#; = m; otherwise. Generalized permutations
were introduced to make the following “mimicking” procedure more intuitive.
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Proof Letd € D andc € C be interleaving gray edges @(~). If ¢ is different
from g, then lemma 10.7 implies thdtandc are interleaving irG(#), and there-
fore D interleaves with eithe€; or Cs. If ¢ = g, then it is easy to see that one
of the new gray edges ii(7) interleaves withl, and thereforeD interleaves with
eitherCy or Cs in G(7). [

Lemma 10.9 For every gray edge there exists a gray edgginterleaving withg
inG(m) .

Lemma 10.10 LetC be a cycle inG(r) andg ¢ C be a gray edge it (7). Then
g interleaves with an even number of gray edge€'in

A (g,b)-padding¢ transformingr into 7 (i.e., @ = = - ¢) is safeif it acts on
non-incident edges of a long cycle ahfir) = h(7). Clearly, every safe padding
breaks a long cycle into two smaller cycles.

Theorem 10.7 If C'is along cycle inG(7), then there exists a safe, b)-padding
acting onC.

Proof If C has a pair of interleaving gray edges g € C, then removing these
edges transformé€’ into two paths. Sincé€' is a long cycle, at least one of these
paths contains a gray edge Pick a black edgé from another path and consider
the (g, b)-padding transformingr into 7 (clearly g andb are non-incident edges).
This (g, b)-padding breakg” into cyclesCy, andCs in G(7), with g; andgs be-
longing to different cycle€’; andC,. By lemma 10.7g; andg, are interleaving,
thus implying thatC; andC, are interleaving. Also, thigg, b)-padding does not
“break” the components in H, containing the cycle’ since by lemma 10.8,
all cycles fromK belong to the component df;: containingCy; and C>. More-
over, according to lemma 10.6, the orientation of this componeif irand H;

is the same. Therefore the chogenb)-padding preserves the set of hurdles, and
h(m) = h(7).

If all gray edges ofC are mutually non-interleaving, thefi is an unoriented
cycle. Lemmas 10.9 and 10.10 imply that there exists a gray edge’’ inter-
leaving with at least two gray edges, go € C. Removingg; andgs transforms
C'into two paths, and sinc€ is a long cycle, at least one of these paths contains a
gray edgg. Pick a black edgé from another path and consider the b)-padding
of 7. This padding break€’ into cyclesC; andC; in G(7), with g; andg, be-
longing to different cycle€’; andC,. By lemma 10.7, botle’; andC,, interleave
with C" in #. Therefore, thigg, b)-padding does not break the componénin
H, containingC andC’. Moreover, according to lemma 10.6, bath andC- are
unoriented, thus implying that the orientation of this componeriijnand H; is
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the same. Therefore, the chosgnb)-padding preserves the set of hurdles, and
hence () = h(7). ]

A permutations is equivalentto a permutatiorns (r ~ o) if there exists
a series of permutations = = (0), 7 (1),...,n(k) = o such thatr(i + 1) =
m(i) - ¢(1) for a safe(g, b)-paddinge(i) acting onm; (0 < i < k —1).

Theorem 10.8 For every permutation there exists an equivalent simple permuta-
tion.

Proof Define thecomplexityof a permutationr asy" .. (I(C) — 2), whereC; is

the set of cycles it (7) andi(C) is the length of a cycl€’. The complexity of a
simple permutation is 0. Note that every padding on non-incident edges of a long
cycleC breaksC into cyclesC; andCs with [(C) = [(Cy) +1(Cs) — 1. Therefore

((C) = 2) = (UC1) =2) + (U(C2) = 2) + L,

implying that a padding on non-incident edges of a cycle reduces the complexity
of permutations. This observation and theorem 10.7 imply that every permutation
with long cycles can be transformed into a permutation without long cycles by a
series of paddings preserviagr) — ¢(r) + h(w). ]

Let = be a(g,b)-padding ofr, and letp be a reversal acting on two black
edges ofr. Thenp can be mimicked om by ignoring the padded elements. We
need a generalization of this observation. A sequence of generalized permutations
m = 7(0),7(1),...,7(k) = o is called ageneralized sortingf = if o is the
identity (generalized) permutation amd: + 1) is obtained fromr (i) either by a
reversal or by a padding. Note that reversals and paddings in a generalized sorting
of T may interleave.

Lemma 10.11 Every generalized sorting afmimics a (genuine) sorting afwith
the same number of reversals.

Proof Ignore padded elements. ]

In the following, we show how to find a generalized sorting of a permutation
7 by a series of paddings and reversals containifig reversals. Lemma 10.11
implies that this generalized sorting@imimics an optimal (genuine) sorting of

10.8 Searching for Safe Reversals

Recall that for an arbitrary reversad,(c — h) < 1 (see the proof of theorem 10.6).
A reversalp is safeif A(c—h) = 1. The first reversal in Figure 10.10 is not proper
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but it is safe (sincé\c = 0 andAh = —1). Figure 10.14 presents examples of safe
(Ac = 1,Ah = 0) and unsafedc = 1, Ah = 1) reversals. In the following, we
prove the existence of a safe reversal acting on a cycle in an oriented component
by analyzing actions of reversals on simple permutations. In this section, by cycles
we mearshortcycles and by permutations we mean simple permutations.

Denote the set of all cycles interleaving with a cy€len G(x) asV (C) (i.e.,
V(C) is the set of vertices adjacent €@in H,). Define the sets of edges in the
subgraph ofZ: induced byl (C)

E(C) ={(C1,Cs) : C1,Cy € V(C) and(C interleaves withCsy in 7}
and its complement
E(C) = {(C1,Cy) : C1,Cy € V(C) andC; does not interleave with's in 7}.

A reversalp acting on an oriented (short) cyale “destroys”C (i.e., removes
the edges o€ from G (7)) and transforms every other cycle@ () into a corre-
sponding cycle on the same verticegdirp). As a resultp transforms the inter-
leaving graph(Cr,Z,) of 7 into the interleaving graphi,(C: \ C, Zx,) of mp.
This transformation results in complementing the subgraph inducéd(b}), as
described by the following lemma (Figure 10.13). We deflgte= Z,,. \ {(C, D) :
D eV(C)}.

Lemma 10.12 Letp be a reversal acting on an oriented (short) cy€le Then

e I., = (Z: \ E(C)) U E(C), i.e., p removes edge&(C) and adds edges
E(C) to transformH, into H,, and

e p changes the orientation of a cycle € C, if and only if D € V(C).

Lemma 10.12 immediately implies the following:

Lemma 10.13 Let p be a reversal acting on a cyclg, and letA, and B be non-
adjacent vertices in,,. Then(A, B) is an edge inH if and only if A, B €
V(C).

Let K be an oriented component &f;, and letR(K) be a set of reversals
acting on oriented cycles frolf. Assume that a reversale R(K) “breaks” K
into a number of connected componehts(p), K2(p), . . . in Hr, and that the first
m of these components are unoriented.mf> 0, thenp may be unsafe, since
some of the component&; (p), ..., K, (p) may form new hurdles inrp, thus
increasingh(mp) as compared té(7) (Figure 10.14). In the following, we show
that there is flexibility in choosing a reversal from the B4tK'), allowing one to
substitute a safe reversalfor an unsafe reversal
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breakpoint
graph

interleaving
graph

B D B D

Figure 10.13:Reversal on a cycl€’ complements the edges between the neighbois ahd
changes the orientation of each cycle neighbothim the interleaving graph.

safe reversal +4 45 1 3 2
_ = Ll O
unsafe reversa 443 4l 42 45

creates an unoriented component (hurdle)

Figure 10.14Examples of safe and unsafe reversals.

Lemma 10.14 Letp ando be reversals acting on two interleaving oriented cycles
C and (', respectively, irG(w). If C' belongs to an unoriented componéii(p)
in Hy,, then

e every two vertices outside, (p) that are adjacent i, are also adjacent
in H,,, and

e the orientation of vertices outsidk; (p) does not change i#, as com-
pared toH .

Proof Let D andE be two vertices outsid&’ (p) connected by an edge iy,
If one of these vertices, sdy, does not belong t&"(C) in H,, then lemma 10.13
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implies (i) (C’, D) is not an edge i# . and (ii) (D, E) is an edge i ;. Therefore,
by lemma 10.12, reversal preserves the edge), E) in H,,. If both vertices
D and E belong toV (C), then lemma 10.12 implies th&D, F) is not an edge
in H,. Since vertexC’ and verticesD, E are in different components df,,
lemma 10.13 implies thatC’, D) and (C’, E) are edges irf,. Therefore, by
lemma 10.12,(D, E) is an edge inH,,. In both casesg preserves the edge
(D, E) in H;, and the first part of the lemma holds.

Lemma 10.13 implies that for every vertéxoutsideK; (p), D € V(C) if and
only if D € V(C"). This observation and lemma 10.12 imply that the orientation
of vertices outsides; (p) does not change i, as compared té/,. |

Lemma 10.15 Every unoriented component in the interleaving graph (of a simple
permutation) contains at least two vertices.

Proof By lemma 10.9, every gray edge @(w) has an interleaving gray edge.
Therefore every unoriented (short) cycleGiin) has an interleaving cycle. m

Theorem 10.9 For every oriented compone#t in H, there exists a (safe) rever-
sal p € R(K) such that all component&’; (p), K2(p), ... are oriented inHr,.

Proof Assume that a reversale R(K) “breaks” K into a number of connected
componentds; (p), K2(p), ... in Hr, and that the firstn of these components are
unoriented. Denote the overall number of vertices in these unoriented components
asindex(p) = Y iy |Ki(p)|, where|K;(p)| is the number of vertices i&;(p).

Let p be a reversal such that

index(p) = UemRi(r}() indez(o).

This reversal acts on a cycté and breaksK into a number of components. If all
these components are oriented (i;edex(p) = 0) the theorem holds. Otherwise,
index(p) > 0, and letK,(p),..., K (p) (m > 1) be unoriented components in
Hy,. Below we find another reversal € R(K) with index(o) < index(p), a
contradiction.

Let V1 be the set of vertices of the componéfit(p) in H,. Note thatK (p)
contains at least one vertex from(C'), and consider the (non-empty) Sét =
V1NV (C) of vertices from componerit; (p) adjacent ta” in H,. SinceK (p) is
an unoriented component itp, all cycles fromV are oriented inr and all cycles
from V4 \ V are unoriented im (lemma 10.12). Le€”’ be an (oriented) cycle i,
and leto be the reversal acting @i in G(7). Lemma 10.14 implies that far> 2,
all edges of the compone#;(p) in H,, are preserved il .., and the orientation
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of vertices inK;(p) does not change ifl, as compared tdé{,,. Therefore, all
unoriented components,,,+1(p), Kpy12(p), - . . of mp “survive” in 7o, and

index(o) < indezx(p).

Below we prove that there exists a reversadcting on a cycle fronV such that
index(o) < index(p), a contradiction.

If V1 # V(C), then there exists an edge between an (oriented) ¢ycle V
and an (unoriented) cycle” € Vi \ V in G(w). Lemma 10.12 implies that a
reversalo acting onC’ in 7 orients the cycleC” in G(w). This observation and
lemma 10.14 imply that reducesndez (o) by at least 1 as compareditedex(p),

a contradiction.

If Vi = V(C) (all cycles ofK; interleave withC'), then there exist at least two
vertices inV (C) (lemma 10.15). Moreover, there exist (oriented) cydésC” e
V1 such tha{C’, C") are not interleaving i (otherwise, lemma 10.12 would im-
ply that K (p) has no edges, a contradiction to the connectivit§ofp)). Define
o as areversal acting aff’. Lemma 10.12 implies that preserves the orientation
of C", thus reducingndez (o) by at least 1 as compared#edez(p), a contradic-
tion.

The above discussion implies that there exists a reversal R(K) such
that indexz(p) = 0, i.e., p does not create new unoriented components. Then
Ac(m, p) = 1 andAh(m, p) = 0, implying thatp is safe. ]

10.9 Clearing the Hurdles

If = has an oriented component, then theorem 10.9 implies that there exists a safe
reversal inw. In this section we search for a safe reversal in the absence of any
oriented component. Let be a partial order on a sét. We say that: is covered

by y in P if x < y and there is no element € P for whichz < z < y.

The cover graph(2 of < is an (undirected) graph with vertex sBtand edge set
{(z,y) : z,y € P andz is covered byy}.

Let, be the set of unoriented componentddp, and let{U,,in, Upmqz] be the
interval between the leftmost and rightmost positions in an unoriented component
U € Uy. Definel i, = mingey, Upmin @aNAU 10 = maxyey, Umag, and let
[U min, Umaz) be the interval between the leftmost and rightmost positions among
all the unoriented components of LetU be an értificial) component associated
with the intervallU in, Umaz)-

Defineld,; as the set ofi| + 1 elements consisting di/,| elements{U :

U € U,} combined with an additional elemebit Let <=~ be thecontainment

partial order on/,. defined by the ruld/ < W if and only if [Upin, Unaz] C
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[(Wnin, Winaz] for U, W € U If there exists thgreatesunoriented componeit

in (i.e., [Unin, Unaz) = [Umin, Umaz]), W€ assume that there exist two elements
(“real” component/ and “artificial” component/) corresponding to the greatest
interval and thall <, U. LetQ, be thetreerepresenting the cover graph of the
partial order<, onl/, (Figure 10.15a). Every vertex in,. exceptU is associated
with an unoriented componentdy.. In the case in which has the greatest hurdle,
we assume that the le&f is associated with this greatest hurdle (i.e., in this case
there aréwo verticescorresponding to the greatest hurdle, IEafnd its neighbor,
the greatest hurdlE € U;). Every leaf inQ2; corresponding to a minimal element
in < is a hurdle. IfU is a leaf in{), it is not necessarily a hurdle (for example,
U is a leaf in2, but is not a hurdle for the permutatianshown in Figure 10.11a).
Therefore, the number of leaves(). coincides with the number of hurdlég)

except whert

¢ there exists only one unoriented component ifin this case?,. consists of
two copies of this component and has two leaves, whiite) = 1), or

e there exists the greatest elementfnthat is not a hurdle; i.e., this element
separates other hurdles (in this case, the number of leaves équals 1).

Every hurdle can be transformed into an oriented component by a reversal on
an arbitrary cycle in this hurdle (Figure 10.10). Such an operation “cuts off’ a leaf
in the cover graph, as described in the following lemma.

Lemma 10.16 (Hurdle cutting) Every reversal on a cycle in a hurdlgl cuts off
the leafK from the cover graph of, i.e.,Q,, = Q. \ K.

Proof If p acts on an unoriented cycle of a componé&hin =, then K remains
“unbroken” inmp. Also, lemma 10.9 implies that every reversal on an (unoriented)
cycle of an (unoriented) componeht orients at least one cycle ii. Therefore,
p transformsK into an oriented component itp and deletes the ledf from the
cover graph. ]

Reversals cutting hurdles are not always safe. A hufdlec U, protects
a non-hurdleU € U, if deleting K from U, transformsU from a non-hurdle
into a hurdle (i.e.UU is a hurdle in{; \ K). A hurdle inr is asuperhurdleif it
protects a non-hurdl& € U/, and asimple hurdleotherwise. Component&f, N,
andU in Figure 10.15a are simple hurdles, while compongns a superhurdle
(deleting L transforms non-hurdld( into a hurdle). In Figure 10.16a all three
hurdles are superhurdles, while in Figure 10.16b there are two superhurdles and

iAlthough the addition of an “artificial” componeiif might look a bit strange and unnecessary,
we will find below that such an addition greatly facilitates the analysis of technical details.
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u “artificial® greatest element

"real" greatest element

@

0 45464344 1 27 8 13141112 9 1015 165 6 3 4 17 18 23 2429302728 25 26 31 32 37 38 35 36 33 34 39 40 21 2219 20 41 42 47

e merging hurdles L and M

u “artificial” greatest element

"real" greatest element

(b)

0 45464344 1 27 8 13 141112 9 10 32 31 26 25 2827 30 29 242318 17 4 3 6 516 15 37 38 35 36 33 34 39 40 21 2219 20 41 42 47

Figure 10.15: (a) A cover graphf), of a permutationr with “real” unoriented components
K,L,M,N, P,andU and an “artificial” componerl; (b) A reversap merging hurdled. and)M in

« transforms unoriented componeritsK, P, and M into an oriented component that “disappears”
from Q,. This reversal transforms unoriented cyd|8g, 33, 36, 37, 32) and(10, 11, 14,15, 10) in

w into an oriented cyclél5, 14,11, 10, 32, 33, 36, 37, 15) in 7p. LCA(L, M) = LCA(L, M) =
UandPATH(A,F) = {L,K,U, P, M}.

one simple hurdle (note that the cover graphs in Figure 10.16a and Figure 10.16b
are the same!). The following lemma immediately follows from the definition of a
simple hurdle.

Lemma 10.17 A reversal acting on a cycle of a simple hurdle is safe.
Proof Lemma 10.16 implies that for every revergadcting on a cycle of a simple

hurdle,b(m) = b(mp), c(w) = c(np), andh(mwp) = h(w) — 1, implying thatp is
safe. n

Unfortunately, a reversal acting on a cycle of a superhurdle is unsafe, since it
transforms a non-hurdle into a hurdle, implyiddc — h) = 0. Below we define a
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new operation (hurdles merging) allowing one to search for safe reversals even in
the absence of simple hurdles.

If L andM are two hurdles inr, definePATH(L, M) as the set of (unori-
ented) components on the (unique) path from leab leaf M in the cover graph
Q. If both L and M areminimalelements in<,

define LCA(L, M) as an (unoriented) component that is thast common
ancestorof L and M, and defineLC A(L, M) as theleast common ancestaf
L and M which does not separaté and M. If L corresponds to thgreatest
hurdleU, there are two element$ andU in U, corresponding to the same (great-
est) intervallUnin, Unmaz] = [Umin, Umaz]- In this case, defindCA(L, M) =
LCA(L,M) =U. LetG(V,E) be agraphw € V .andWW C V. A contraction of
W intow in G is defined as a new graph with vertex et (W \ w) and edge set
{(p(z),p(y)) : (z,y) € E}, wherep(v) = wif v € W, andp(v) = v otherwise.
Note that ifw € W, then a contraction reduces the number of vertice§ iny
|W| — 1, while if w ¢ W, the number of vertices is reduced By |.

Let L andM be two hurdles inr, and let2,; be the cover graph of. We define
Q. (L, M) as the graph obtained frofty. by the contraction oPAT H (L, M) into
LCA(L, M) (loops in the graplf2, (L, M) are ignored). Note that when

LCA(L,M) = LCA(L, M),

Q(L, M) corresponds to deleting the elementsfAT H (L, M) \ LCA(L, M)
from the partial orde ., while when

LCA(L,M) # LCA(L, M),
Q.(L, M) corresponds to deleting the entire AT H (L, M) from <.

Lemma 10.18 (Hurdles merging) Letr be a permutation with cover grapf,
and letp be a reversal acting on black edges of (different) hurdleand M in
m. Thenp acts on(), as the contraction oPAT H (L, M) into LCA(L, M), i.e.,
Qrp = Qe (L, M).

Proof The reversap acts on black edges of the cycl€s € L andCy € M in
G(n) and transformg’; andC, into an oriented cycl€' in G(wp) (Figure 10.15).
It is easy to verify that every cycle interleaving withy or Cs in G(7) interleaves
with C'in G(mp). This implies thap transforms hurdled, and M in = into parts
of an oriented component irp, and, thereford, and M “disappear” from2,,.
Moreover, every (unoriented) component fratel T H (L, M) \ LCA(L, M)
has at least one cycle interleaving within G(mp). This implies that every such
component int becomes a part of an oriented componenirin and therefore
“disappears” fromS2,,. Every component frond/, \ PATH (L, M) remains
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unoriented inTp. ComponentLC'A(L, M) remains unoriented if and only if
LCA(L,M) = LCA(L, M). Every component that is covered by a vertex from
PATH (L, M) in <. will be covered byLC'A(L, M) in <. ]

We writeU < W for hurdlesU andW if the rightmost position ot/ is smaller
than the rightmost position ¥, i.e., Upae < Wiae. Order the hurdles of in
increasing order of their rightmost positions

Ul)<...<U(l)=L<...<Um)=M < ... <U(h(n))
and define the sets of hurdles
BETWEEN (L, M) ={U(i): | <i<m}

and
OUTSIDE(L,M)={U(i): i € [l,m]}.

Lemma 10.19 Denotep be a reversal merging hurdldsand M in «. If both sets
of hurdlesBETW EEN (L, M) andOUTSIDE(L, M) are non-empty, thepis
safe.

Proof U' € BETWEEN(L,M)andU" € OUTSIDE(L,M). Lemma 10.18
implies that the reversal deletes the hurdles and M from €2,. There is also
a danger thap may add a new hurdl& in wp by transformingK from a non-
hurdle in7 into a hurdle inmp. If this is the caseK does not separaté and M
in 7 (otherwise, by lemma 10.18 would be deleted fromrp). Without loss of
generality, we assume that< U’ < M.

If K is aminimalhurdle inmp, then eithel. <, K or M <, K (otherwiseK
would be a hurdle inr). SinceK does not separate andM in 7, L <, K and
M <, K. SinceU’ is sandwiched betweehandM, U’ <, K. Thus,U' <., K,
a contradiction to the minimality oK in 7p.

If K is the greatesthurdle inmp, then eitherL, M 4, K or LLM <, K
(if it were the case thal. 4, K and M <, K, according to lemma 10.18¢
would be deleted fromrp). If L, M A, K,thenL < U’ <, K < M, i.e,K is
sandwiched betweeh and M. ThereforeU” lies outsideK in 7 andU" £, K,
a contradiction. IfL, M <, K then, sinceK is a non-hurdle inr, K separates
L, M from another hurdléV. ThereforeK separate$/’ from N. Since bothV
andU’ “survive” in p, K separatesV andU’ in mp, a contradiction.

Therefore p deletes hurdled, and M from 2, and does not add a new hurdle
in 7p, thus implying thatAh = —2. Sinceb(wp) = b(w) andc(mp) = ¢(m) — 1,
A(b — ¢+ h) = —1 and the reversal is safe. ]
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Lemma 10.20 If h(w) > 3, then there exists a safe reversal merging two hurdles
in .

Proof Orderh () hurdles ofr in increasing order of their rightmost positions and

let L and M be the first and1 + @)—th hurdles in this order. Sinde(w) > 3,
both setsBETW EEN (L, M) andOUTSIDE(L, M) are non-empty, and by
lemma 10.19, the reversalmergingL andM is safe. ]

Lemma 10.21 If h(w) = 2, then there exists a safe reversal merging two hurdles
in . If h(m) = 1, then there exists a safe reversal cutting the only hurdte. in

Proof If h(r) = 2, then{, either is a path graph or contains the greatest compo-
nent separating two hurdles in In both cases, merging the hurdlesrins a safe
reversal (lemma 10.18). K(w) = 1, then lemma 10.16 provides a safe reversal
cutting the only hurdle irr. |

The previous lemmas show that hurdles merging provides a way to find safe re-
versals even in the absence of simple hurdles. On a negative note, hurdles merging
does not provide a way to transform a superhurdle into a simple hurdle.

Lemma 10.22 Letp be a reversal int merging two hurdled, and M. Then every
superhurdle inr (different fromL and M) remains a superhurdle inp.

Proof Let U be a superhurdle in (different from L and M) protecting a non-
hurdleU’. Clearly, if U’ is a minimal hurdle irfi4; \ U, thenU remains a super-
hurdle inmp. If U’ is the greatest hurdle X, \ U, thenU’ does not separate
any hurdles irdf; \ U. ThereforeU' does not belong t&’ AT H(L, M) and hence
“survives” in mp (lemma 10.18). This implies thdf’ remains protected b¥ in
p. ]

10.10 Duality Theorem for Reversal Distance

Lemmas 10.20 and 10.21 imply that unléss is a homeomorph of tha-star (a

graph with three edges incident on the same vertex), there exists a safe reversal
in 7. On the other hand, if at least one hurdleriris simple, then lemma 10.17
implies that there exists a safe reversaikrinTherefore, the only case in which a
safe reversal might not exist is whé);. is a homeomorph of the 3-star with three
superhurdles, called&fortress(Figure 10.16b).

Lemma 10.23If p is a reversal destroying a 3-fortress (i.e., mp is not a 3-
fortress) therp is unsafe.
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“artificial” greatest element

cl

superhurdle

@

superhurdle superhurdle

"artificial" greatest element

simple hurdle

(b)

superhurdle superhurdle

Figure 10.16:The permutation in (a) is a 3-fortress, while the permutation in (b), with the same
cover graph, is not a fortress (hurdleis not a superhurdle).

Proof Every reversal on a permutationcan reduce:(w) by at most 2 and the
only operation that can reduce the number of hurdles by 2 is merging of hurdles.
On the other hand, lemma 10.18 implies that merging of hurdles in a 3-fortress can
reduceh () by at most 1. Thereforedh > —1. Note that for every reversal that
does not act on edges of tsamecycle, Ac = —1, and therefore, every reversal
that does not act on edges of the same cycle in a 3-fortress is unsafe.

If p acts on a cycle in an unoriented component of a 3-fortress, then it does not
reduce the number of hurdles. Sinte = 0 for a reversal on an unoriented cycle,
p is unsafe.

If p acts on a cycle in an oriented component of a 3-fortress, then it does not
destroy any unoriented componentsriand does not reduce the number of hurdles.
If p increases the number of hurdles, th&h > 1 andAc < 1 imply thatp is
unsafe. If the number of hurdles iy remains the same, then every superhurdle in
w remains a superhurdle itp, thus implying thatrp is a 3-fortress, a contradiction.
[ ]
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Lemma 10.24 If 7 is a 3-fortress, thed(n) = n + 1 — ¢(xw) + h(n) + 1.

Proof Lemma 10.23 implies that every sorting of 3-fortress contains at least one
unsafe reversal. Therefor) > b(w) — ¢(w) + h(m) + 1.

If = has oriented cycles, all oriented components oan be destroyed by safe
paddings (theorem 10.7) and safe reversals in oriented components (theorem 10.9)
without affecting unoriented components.

If = is a 3-fortress without oriented cycles, then an (unsafe) revemsarging
arbitrary hurdles inr leads to a permutatiomp with two hurdles (lemma 10.18).
Once again, oriented cycles appearingrmafter such merging can be destroyed
by safe paddings and safe reversals in oriented components (theorems 10.7 and
10.9), leading to a permutation with h(c) = 2. Theorems 10.7 and 10.9 and
lemma 10.21 imply that can be sorted by safe paddings and safe reversals.
Hence, there exists a generalized sortingraduch that all paddings and all re-
versals but one in this sorting are safe. Therefore, this generalized sorting contains
n+1—c(m)+h(mw)+1reversals. Lemma 10.11 implies that the generalized sorting
of 7 mimics an optimal (genuine) sorting efby d(7) = n+ 1 —¢(xw) + h(w) + 1
reversals. ]

In the following, we try to avoid creating 3-fortresses in the course of sorting
by reversals. If we are successful in this task, the permutatioan be sorted in
n + 1 — ¢(w) + h(r) reversals. Otherwise, we show how to serin n + 1 —
¢(m) + h(m) + 1 reversals and prove that such permutations cannot be sorted with
a smaller number of reversals. A permutatiors called afortressif it has an odd
number of hurdles and all of these hurdles are superhurdles.

Lemma 10.25If p is a reversal destroying a fortress with A(7w) superhurdles
(i.e.,mp is not a fortress witth () superhurdles), then eitheris unsafe orrp is a
fortress withh(7) — 2 superhurdles.

Proof Every reversal acting on a permutation can reduce the number of hurdles by
at most two, and thenly operation that can reduce the number of hurdles by two is
a merging of hurdles. Arguments similar to the proof of lemma 10.23 demonstrate
that if p does not merge hurdles, thers unsafe. If a safe reversaldoes merge
(supenhurdled. and M in 7, then lemma 10.18 implies that this reversal reduces
the number of hurdles by two, and, ifw) > 3, does not create new hurdles.
Also, lemma 10.22 implies that every superhurdler iexceptL andM remains a
superhurdle inrp, thus implying thatrp is a fortress witth (7) —2 superhurdlesm

Lemma 10.26 If 7 is a fortress, them(r) > n + 1 — ¢(7w) + h(w) + 1.
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Proof Lemma 10.25 implies that every sorting ofeither contains an unsafe re-
versal or gradually decreases the number of superhurdiesintransforming a
fortress withh (super)hurdles into a fortress with— 2 (super)hurdles. Therefore,

if a sorting ofr uses only safe reversals, then it will eventually lead to a 3-fortress.
Therefore, by lemma 10.23, every sorting of a fortress contains at least one unsafe
reversal, and hencé(n) > n + 1 —¢(m) + h(m) + 1. ]

Finally, we formulate the duality theorem for sorting signed permutations by
reversals:

Theorem 10.10 (Hannenhalli and Pevzner, 1995 [154]) For every permutation

d(r) = n+1—c(r) + h(r) + 1, if wis afortress
LA I c(m) + h(w), otherwise.

Proof If = has an even number of hurdles, then safe paddings (theorem 10.7),
safe reversals in oriented components (theorem 10.9), and safe hurdles merging
(lemmas 10.20 and 10.21) lead to a generalized sortindogfr. + 1 —¢(m) + h(m)
reversals.

If = has an odd number of hurdles, at least one of which is simple, then there
exists a safe reversal cutting this simple hurdle (lemma 10.17). This safe reversal
leads to a permutation with an even number of hurdles. Therefore, similar to the
previous case, there exists a generalized sortinguding only safe paddings and
n+ 1 — ¢(m) + h(w) safe reversals.

Therefore, ifr is not a fortress, there exists a generalized sortinglofrn+1—
¢(m) + h(m) reversals. Lemma 10.11 implies that this generalized sorting mimics
optimal (genuine) sorting af.

If = is a fortress there exists a sequence of safe paddings (theorem 10.7),
safe reversals in oriented components (theorem 10.9), and safe hurdle mergings
(lemma 10.20) leading to a 3-fortress that can be sorted by a series of reversals
having at most one unsafe reversal. Therefore, there exists a generalized sorting of
musingn+1—c(m)+h(m)+1 reversals. Lemma 10.26 implies that this generalized
sorting mimics optimal (genuine) sorting ofwith d(7) = n+1—c(m)+h(m)+1
reversals. ]

This theorem explains the mystery of the astonishing performance of approxi-
mation algorithms for sorting signed permutations by reversals. A simple explana-
tion for this performance is that the boud@r) > n + 1 — ¢(x) is extremely tight,
sinceh(r) is small for “random” permutations.
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10.11 Algorithm for Sorting by Reversals

Lemmas 10.11, 10.20, 10.17, and 10.21 and theorems 10.7, 10.9, and 10.10 moti-
vate the algorithmReversal_Sort, which optimally sorts signed permutations.

ReversalSort(x)

1. whiler is not sorted

2 if = has a long cycle

3 select a saf€g, b)-paddingp of = (theorem 10.7)

4. else ifr has an oriented component

5. select a safe reversain this component (theorem 10.9)

6 else ifr has an even number of hurdles

7 select a safe reversaimerging two hurdles imr (lemmas 10.20 and 10.21)
8 else ifr has at least one simple hurdle

9 select a safe reversalcutting this hurdle inr (lemmas 10.17 and 10.21)

10. else ifr is a fortress with more than three superhurdles

11. select a safe reversalmerging two (super)hurdles in (lemma 10.20)
12. else /x misa 3-fortress:/

13. select an (un)safe revergaimerging two arbitrary (super)hurdlesin
14. T4 T-p

15. endwhile

16. mimic (genuine) sorting of by the computed generalized sortingrof
(lemma 10.11)

Theorem 10.11 Reversal _Sort(m) optimally sorts a permutation of ordern in
O(n) time.

Proof Theorem 10.10 implies thaeversal_Sort provides a generalized sorting
of by a series of reversals and paddings contaidifng reversals. Lemma 10.11
implies that this generalized sorting mimics an optimal (genuine) sortirg tayf
d() reversals.

Note that every iteration of th&hile loop in Reversal_Sort reduces the quan-
tity complezity(m) 4+ 3d(m) by at least 1, thus implying that the number of iter-
ations of Reversal_Sort is bounded byin. The most “expensive” iteration is a
search for a safe reversal in an oriented component. Since for simple permutations
it can be implemented it (n?) time, the overall running time aReversal_Sort
is O(n?). ]

Below we describe a simpler version &feversal_Sort that does not use
paddings and runs i@ (n”) time. Define

F(r) = 1, if wis afortress
= 0, otherwise.
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A reversalp is valid if A(c —h — f) = 1. The proofs of theorem 10.6 and
lemma 10.26 imply thaf\ (¢ — h — f) > —1. This observation and theorem 10.10
imply the following:

Theorem 10.12 For every permutatiomr, there exists a valid reversal in. Every
sequence of valid reversals sortings optimal.

Theorem 10.12 motivates the simple versiorRebersal_Sort, which is very
fast in practice:

Reversal Sort_Simple(r)

1. while 7 is not sorted

2. select a valid reversalin = (theorem 10.12)
3. T4 T-p

4 endwhile

10.12 Transforming Men into Mice

Analysis of rearrangements in multichromosomal genomes makes use of the dual-
ity theorem for unichromosomal genomes (Hannenhalli and Pevzner, 1995 [154])
and two additional ideas called chromosofifipping and capping In studies
of genome rearrangements in multichromosomal genomekrcenosomes de-
fined as asequenceof genes, while egenomeis defined as aet of chromo-
somes. Lefl = {n(1),...,n(NN)} be a genome consisting &f chromosomes,
and letr(i) = w(é);...7(i)n;, n; be the number of genes in thigh chromo-
some. Every chromosome can be viewed either from “left to right” (i.e., as
T = ... ,) or from “right to left” (i.e., as—n = —mx,, ... — my), leading to two
equivalent representations of the same chromosome. From this perspective, a 3-
chromosomal genomer (1), 7(2), 7(3)} is equivalent to{x (1), —n(2), w(3)} or
{=n(1),7(2),—=n(3)}, i.e., thedirectionsof chromosomes are irrelevant. The four
most common elementary rearrangement events in multichromosomal genomes are
reversals translocationsfusions andfissions

We distinguish betweemmternal reversals, which do not involve the ends of
the chromosomes (i.e., the reversalg, i, j) of ann-gene chromosome with
1 < i < j < n), andprefix reversals, involving ends of the chromosomes (i.e.,
eitheri = 1 or j = n). A translocation ignternal if it is neither a fusion nor a
fission.

For a chromosomeé = ;... m,, the numbers+m; and—m,, are calledtails
of . Note that changing the direction of a chromosome does not change the set of
its tails. Tails in anV-chromosomal genonié comprise the sef (II) of 2NV tails.
In this section we considero-tailed genomedI andT" with 7(IT) = 7(T"). For
co-tailed genomes, internal reversals and translocations are sufficient for genomic
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sorting— i.e., prefix reversals, fusions, and fissions can be ignored (the validity of
this assumption will become clear later). For chromosomes; ... m, ando =

o1 ...0m, denote the fusion; ... 7,01 ... oy, @asT+o and the fusiorfr ... m, —

Om ... —01) asw — o. Given an ordering of chromosomes(1),...,n(N)) ina
genomell and aflip vectors = (s(1),...,s(N)) with s(i) € {—1,+1}, one can
form aconcatenateof II as a permutatiol(s) = s(1)7(1) + ... + s(N)7(N)

on >V n; elements. Depending on the choice of a flip vector, there eXist
concatenates dil for each ofN! orderings of chromosomes Inh. If the order of
chromosomes in a genonbkis fixed we callll anorderedgenome.

In this section we assume without loss of generality, that (vq,...,vn)
is an (ordered) genome and that= v, + ... + «yu is the identity permutation.
We denotel(II) = d(I1,T") and call the problem of a genomic sortingldfinto I’
simply asorting of a genomél.

We use the following idea to analyze co-tailed genomes. Given a concatenate
of a genomdl, one can optimally sort by reversals. Every reversal in this sorting
corresponds to a reversal or a translocation in a (not necessarily optimal) sorting of
the genomdl. For example, a translocatign(r, 0,1, j) acting on chromosomes
™ =m...m, aNdo = o1 ... 0y, (Figurel0.17 can be alternatively viewed as a
reversalp(r — o,i,n + (m — j + 1)) acting onm — o (and vice versa). Define
anoptimal concatenatef II as a concatenate with minimum reversal distance
d(m) among all concatenates of. Below we prove that sorting of an optimal
concatenate dfi mimics an optimal sorting of a genorie This approach reduces
the problem of sortindI to the problem of finding an optimal concatenatdlof

In the following, by the number of cycles, we mean the number of cycles of
length greater than 2, i.ex(w)—a(), wherea() is the number of adjacencies (ev-
ery adjacency is a cycle of length 2). Singe’) = n + 1 — a(7), the Hannenhalli-
Pevzner theorem can be reformulated@s) = b(w) —c(7) + h(xw) + f (), where
f(m) = 1if 7is afortress ang () = 0 otherwise.

Let 7 be a concatenate @f = (n(1),...,n(N)). Every tail of n(i) corre-
sponds to two vertices of the breakpoint graghr), exactly one of which is a
boundary (either leftmost or rightmost) vertex among the vertices of the chromo-
somer(7) in the concatenate. We extend the terrtail to denote such vertices in
G(m). An edge in a breakpoint gragh() of a concatenate is interchromosomal
if it connects vertices in different chromosomesIafandintrachromosomabth-
erwise. A component af is interchromosomaif it contains an interchromosomal
edge, andntrachromosomabtherwise.

Every interchromosomal black edge @(7) connects two tails. Léf,;; (I1)
(notice thatb,,; (II) = N — 1) be the number of interchromosomal black edges
in G(m). Note that for co-tailed genomes, tails@{(II) are adjacent only to tails,
and hence a cycle containing a tail contains only tails.d.gt(IT) be the number
of cycles of G(w) containing tails. Definé(II) = b(w) — by () (notice that



216 CHAPTER 10. GENOME REARRANGEMENTS
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Figure 10.17 Translocations can be mimicked by reversals in a concatenated genome.

b(IT) = n — N andb(m) =n — 1) andc(Il) = ¢(m) — cyqi ().

Consider the set of intrachromosomal unoriented compor&iisin . Hur-
dles, superhurdles, and fortresses for theZggt are calledknots superknotsand
fortresses-of-knotsespectively. Lek:(IT) be the number of knots in a concatenate
w of II. Define f(IT) = 1 if = is a fortress-of-knots, andl(IT) = 0 otherwise.
Clearly,b(II), ¢(IT), k£(II), and f (IT) do not depend on the choice of a concatenate
.

Lemma 10.27 For co-tailed genomesl and T, d(IT) > b(II) — ¢(IT) + k(II) +
f(T).

Proof A more involved version of the proof of lemma 10.26. |

Concatenate$l(s) andII(s’) of an (ordered) genomH arei-twins if the di-
rections of all chromosomes except thth one inIl(s) andII(s’) coincide, i.e.,
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s(i) = —s'(i) ands(j) = s'(j) for j # i. A chromosomer(3) is properly flipped

in II(s) if all interchromosomal edges originating in this chromosome belong to
oriented components if(s). A concatenater is properly flippedif every chro-
mosome inr is properly flipped. The following lemma proves the existence of a
properly flipped concatenate.

Lemma 10.28 If a chromosomer (7) is not properly flipped inr = II(s), then itis
properly flipped in thé-twin 7’ of . Moreover, every properly flipped chromosome
in = remains properly flipped in’.

Proof Letg be an interchromosomal gray edgerinriginating in the chromosome
7(¢) and belonging to an unoriented componentrirNote that the orientation of
any interchromosomal gray edge originatingrét) is different inm as compared
to ' (i.e., a non-oriented edge inbecomes oriented in’, and vice versa). Since
all edges interleaving witly in = are unoriented, every interchromosomal edge
originating atr (i) and interleaving witty in 7 is oriented inx'.

All interchromosomal edges originatingrii) that are not interleaving with
in 7 interleave withg in 7’. Sinceg is oriented int’, all such edges belong to an
oriented component containiggin . Thereforer(:) is properly flipped int'.

Letn(j) be a properly flipped chromosomesinIf 7 (j) is not properly flipped
in 7/, then there exists an interchromosomal unoriented compahbating an in-
terchromosomal gray edge originatingzdtj) in «'. If U does not have an edge
originating atr (i) in 7', thenU is an unoriented component i implying that
m(7) was not properly flipped im, a contradiction. U has an (unoriented) gray
edgeh originating atr (i), then clearly, this edge does not interleave wyitim 7.
Therefore,h interleaves withy in = andh is oriented inz, thus implying thaty
belonged to an oriented componentrina contradiction. ]

Lemma 10.28 implies the existence of a properly flipped concatenat@l(s)
with h(m) = k(II) and f(7) = f(1I). Below we show that there exists a sorting of
7 by b(m) — ¢(m) + h(m) + f(m) reversals that mimics a sorting of by b(II) —
c(IT) + k(IT) + f(II) internal reversals and translocations.

Theorem 10.13 (Hannenhalli and Pevzner, 1995 [153]) For co-tailed genorfles
andT, d(II,T") = d(I1) = b(IT) — ¢(IT) 4 K(IT) + f(I1).

Proof Assume the contrary, and I&f be a genome with a minimum value of
b(IT) — ¢(II) + A(II) + f(II) among the genomes for which the theorem fails. Let
7 be a properly flipped concatenatelbfvith a minimal value ob,;; (1) — cyqi ()
among all properly flipped concatenated bf

If byair () = crair () (i-€., €very interchromosomal black edge is involved in a
cycle of length 2), then there exists an optimal sorting by b(7) —c(7) + k(7)) +
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f(m) reversals that act on intrachromosomal black edges (Hannenhalli and Pevzner,
1995 [154]). Every such reversalcan be mimicked as an internal reversal or an
internal translocation ofl, thus leading to a sorting &f by b(7) — ¢(7) + k(w) +

f(m) internal reversals/translocations. Sincés a properly flipped concatenate,
b(m) = b(II) + brait (), c(m) = c(II) + ctqur (), h(m) = k(II), andf () = f(II).
Therefore, optimal sorting af mimics an optimal sorting dfl by b(IT) — ¢(IT) +

E(IT) + f(II) internal reversals/translocations.

If byair(m) > crair(m), then there exists an interchromosomal black edge in-
volved in a cycle of length greater than 2, and this edge belongs to an oriented com-
ponent inr (since every interchromosomal black edge belongs to an oriented com-
ponent in a properly flipped concatenate). Hannenhalli and Pevzner, 1995 [154]
proved that if there exists an oriented component ithen there exists a rever-
sal p in 7 acting on the black edges of an oriented cycle in this component such
that c(mp) = c¢(m) + 1. Moreover, this reversal does not create new unoriented
components inrp, andh(wp) = h(w) and f(wp) = f(x). Note that every cy-
cle containing tails of chromosomes belongs to an oriented componenaivd
consists entirely of edges between tails. Therefpracts either on two intrachro-
mosomal black edges or on two interchromosomal black edges belonging to some
oriented cycle of this component.

A reversalp acting on two interchromosomal black edges can be viewed as a
transformation of a concatenateof

II=(m(1),...,7(i = 1),7(),...,7(4),7(j + 1),...,7(IV))
into a concatenatep’ = IT'(s'), wherell’ is a new ordering

(r(1),...,7(@ —1),7(4),...,m(i),m(j +1),...,7(N))
of the chromosomes and

s'=(s(1),...,8(i —1),—s(5),...,—s(),s(j +1),...,s(N)).

Therefore byaii(mp) — ctait(mp) = biait(m) — (caut(m) + 1) andmp is a properly
flipped concatenate di, a contradiction to the minimality df;;(7) — cyqii ().

If reversalp acts on two intrachromosomal black edges, thens a properly
flipped concatenate aip, implying that

b(IT) —c(I) + k(1) + f (I) = (b(m) —bequr (7)) — (c(7) —crqar (7)) + h(m) + f () =
(b(7p) — brait(p)) — (c(mp) — 1 — crair(mp)) + h(mp) + f(mp) =
b(Ilp) — c(Ilp) + h(Ilp) + f(Ilp) + 1.
Sinceb(II) — ¢(I1) + k(1) + f (II) > b(I1p) —c(Ilp)+h(Ilp)+ f (IIp), the theorem
holds for the genomBp. Therefored(IT) < d(I1p) + 1 = b(II) — ¢(II) + k(IT) +
f(II). ]
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Translocations and fusions/fissions
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Figure 10.18Fusions/fissions can be mimicked by translocations by introducing empty chromo-

somes.

10.13 Capping Chromosomes

We now turn to the general case in which genofiesndI” might have different
sets of tails and different number of chromosomes. Below we describe an algorithm
for computingd (11, I") that is polynomial in the number of genes but exponential in
the number of chromosomes. This algorithm leads to the (truly) polynomial-time
algorithm that is described in the following sections.

LetIT andT" be two genomes witld/ and N chromosomes. Without loss of
generality, assume thd? < N and extendI by N — M empty chromosomes
(Figure 10.18). As aresultl = {n(1),...,7(N)} andl’ = {v(1),...,v(N)}
contain the same number of chromosomes. {lcepy, . .., capan_1} be a set of
2N distinct positive integers (callechp9 that are different from the genes Of
(or equivalentlyl). LetII = {7(1),...,7(N)} be a genome obtained frobh by
adding caps to the ends of each chromosome, i.e.,

(i) = capz(,»_l),w(z')l, e 77T(i)niacap2(i—1)+1-
Note that every reversal/translocatiorlircorresponds to ainternal reversal/trans-

location inII. If this translocation is a fission, we assume that there are enough
empty chromosomes il (the validity of this assumption will become clear later).

Every sorting ofiI into I" induces a sorting dfl into a genome

= {4(1),...,7(\)}
(called acappingof I'), where

A(i) = ((_l)jcapjvf?(i)la cee aﬁ’(i)miv (_1)k+lca’pk)
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for 0 < j,k < 2N — 1. GenomedlI andI" are co-tailed, sincg (II) = 7(I') =
U5t (—1)’cap;. There exis{2N)! different cappings oF, each capping defined

by the distribution of2V caps ofII in I". Denote the set of2V)! cappings of

I’ asT. The following lemma leads to an algorithm for computing genomic dis-
tance that is polynomial in the number of genes but exponential in the number of
chromosomesy.

Lemma 10.29 d(IT,T") = min;._p. b(IL, T') — ¢(TL, T') + k(I T) + f(I1,T).

Proof Follows from theorem 10.13 and the observation that every sortitibjiofo

a genomd’ € T by internal reversals/translocations induces a sortirig ifto I".
[ ]

Let # and4 be arbitrary concatenates of (ordered) cappifigand . Let
G(I1,T) be a graph obtained frofi(, 4) by deleting all tails (vertices af (7, ¥))
of genomdI (or equivalentlyl") from G(#, 4). Different cappingd’ correspond to
different graphgG (11, T"). GraphG(II,T') has2N vertices corresponding to caps;
gray edges incident on these vertices completely define the cappifigerefore,
deleting thes@N gray edges transforms(I1,T) into a graphG(II,T) that does
not depend on cappirig (Figure 10.19a, b, ¢, and d).

GraphG(II,T") contains2N vertices of degree 1 corresponding2®’ caps
of IT (calledTI-capg and2N vertices of degree 1 corresponding2y tails of T"
(calledT'-tails). Therefore,G(II,T') is a collection of cycles an@N paths, each
path starting and ending with a black edge. A path I$I&path (I'T'-path) if it
starts and ends withl-caps ['-tails), and alII'-pathif it starts with all-cap and
ends with d'-tail. A vertexinG(IL,T") is alll'-vertexif it is a II-cap in alIl'-path,
and allll-vertexif it is a II-cap in allll-path. I'TI- andT'T-vertices are defined
similarly (see Figure 10.19d).

Every capping.’ corresponds to addirgyV gray edges to the grapH(II, T"),
each edge joining &l-cap with al'-tail. These edges transfor6i(I1, I") into the
graphG (11, T") corresponding to a cappirg(Figure 10.19e).

Defineb(I1,T") as the number of black edges@(I1,T"), and definec(II, T")
as the overall number of cycles and paths&II,I"). The parameteb(II,I") =
b(I1,T') does not depend on cappifig Clearly,c(I1, I") < ¢(IL, T'), with ¢(II,T") =
¢(II,T) if every path inG(II,T) is “closed” by a gray edge i¥(II,T"). The ob-
servation that every cycle i6f(II,I") containing allll-path contains at least one
more path leads to the inequalityil, I') < ¢(IL,T') — p(IL, "), wherep(IL, ') is
the number ofIII-paths (or equivalenthy'T'-paths) inG(I1, T").

We define the notions of interleaving cycles/paths, oriented and unoriented
components, etc. in the gragi(I1,T") in the usual way by making no distinction
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between cycles and paths (11, I'). We say that a vertex; is insidea compo-
nentU of w if § € [Umin, Umaz]. An intrachromosomal component for genomes
IT andT is called areal component if it has neitherlda-cap nor a -tail inside.

For genomesI andI’, defineRY/(I1,T") as the set of real components and de-
fineZU(I1,T") as the set of intrachromosomal components (as defined by the graph
G(I1,T)). ClearlyRU(IT,T') C ZU(TT,T'). Hurdles, superhurdles, and fortresses
for the setRU/ (11, T") are calledeal-knots super-real-knotsandfortresses-of-real-
knots Let RK be the set of real-knots (i.e., hurdles for theReét(I1,T")), and let
K be the set of knots (i.e., hurdles for the &1(II,I")). A knot from the set
K \ RK is asemi-knoff it does not contain aIII- or ['T-vertex inside. Clearly,
every semi-knot contains aI"-path (otherwise, it would be a real-knot). Denote
the number of real-knots and semi-knots for genoifieandI" as r(II,I") and

s(I1,T), respectively. Clearly:(IT,T') > r(IL, "), implying that
b(IL, 1) — ¢(IT, 1) + k(I1,T') < b(IL, T) — ¢(IL, T) + p(IL, T) 4 (I, T).

However, this bound is not tight, since it assumes that there exists a cdpfiay
simultaneously maximizes(IT,I") and minimizesk(II,T"). Taking s(II,T') into
account leads to a better bound for genomic distance that is at most 1 rearrangement
apart from the genomic distance.

10.14 Caps and Tails

GenomedI andI' are correlatedif all the real-knots inG(II,I") are located on

the same chromosome andn-correlatedotherwise. In this section we restrict

our analysis to non-correlated genomes (it turns out that the analysis of correlated
genomes involves some additional technical difficulties) and prove a tight bound
for d(I1, I") (this bound leads to a rather complicated potential function used in the
proof of the duality theorem):

s(IL,T)

b(IL,T) — ¢(IL,T) + p(IL,T') + r(IL,T) + [ 1 <d(IL,T) <

s(IL,T)

b(IL,T) — ¢(IL, T') + p(IL,I") + r(IL,T) + [ 1+1

The following lemmas suggest a way to connect some patfiglih I') by oriented
edges.

Lemma 10.30 For everylIII-path andl'T-path inG(IL, "), there exists either an
interchromosomal or an oriented gray edge that joins these paths inibB-path.
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Lemma 10.31 For every two unorientedII'-paths located on the same chromo-
some, there exists an oriented gray edge that joins these paths ifiio-@ath.

In a search for an optimal capping, we first ignore the tﬁ(ﬂﬁ, f) inlemma 10.29
and find a capping whose genomic distar¢H, I') is within 1 from the optimal.
The following theorem suggests a way to find such an “almost optimal” cafping

Theorem 10.14 min;._ b(IL ) — ¢(II,T) + k(IL,T) = b(II,T) — ¢(ILT) +
p(IL,T) + r(IL,T) + [0,

Proof Every capping’ defines a transformation 6#(IL, T') into G(II, ") by con-
secutively addin@ N gray edges ta&(IL,T): G(IL,T) = Gy & G, B ... %
Gon = G(ILI). For a graphG;, the parameters; = b(G;), ¢; = ¢(Gy), pi =
p(G;), r; = r(G;), ands; = s(G;) are defined in the same way as for the graph
Gy = G(IL,T). Fora parameteﬁ defineA¢; asg; — p;_1,1.e.,A¢; = ¢; —¢;_1,

etc. Denote); = (¢; —p; —ri — [$1) — (i1 —pi—1 —Ti—1 — [Z5+]). Below we
prove thatA; < 0 for 1<4 g 2N, i.e., adding a gray edge does not increase the
parameter(IL, ') — p(II,T") — r(IL,T") — [‘“'(H—Z’F)l. For a fixedi, we ignore index

1, 1.e., denoteh = A;, etc.

Depending on the edgg, the following cases are possible (the analysis below
assumes thdl andI" are non-correlated):

Case 1: edgegy; “closes” a IIT'-path (i.e., g; connects dIl'-vertex with a
['TI-vertex within the sam@Il'-path). If this vertex is the onlyIl'-vertex in a
semi-knot, themAe¢ = 0,Ap = 0, Ar = 1, andAs = —1 (note that this might
not be true for correlated genomes). Otherwdse = 0, Ap = 0, Ar = 0, and
As = 0. In both casesA < 0.

Case 2. edge; connects dlI'-vertex with al'II-vertex in a differenil’-path.
This edge “destroys” at most two semi-knots, ahd = —1,Ap = 0, Ar = 0,
andAs > —2. ThereforeA < 0.

Case 3: edgey; connects dIl'-vertex with al'T'-vertex (or al'TI-vertex with
a ITIT-vertex). This edge “destroys” at most one semi-knot, axd= —1, Ap =
0, Ar =0, andAs > —2. This impliesA < 0.

Case 4. edgey; connects dlll-vertex with al'I'-vertex. This edge cannot
destroy any semi-knots, amlc = —1,Ap = —1,Ar = 0, andAs > 0. This
impliesA < 0.

Note thatboy = b(IL,T') = b(IL,I') = by, can = c(11,
andryy = k(II,T). Thereforep(II, I") — ¢(I1, f) E(I1,T
roN + 5] > bg—co+po+ro+ 5] = b(ILT) —c(I, T
UL

p2n =0, 898y =0,

),
) = ban —can +pan +
)+ p(IL,T)4+r(I1,T) +
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We now prove that there exists a cappinguch that

by constructing a sequence ¥V gray edgeg;, - .., gony connectingll-caps with

[-tails inG(IL, T") such thatA; = 0 forall 1 <7 < 2N.

Assume that the firgst — 1 such edges are already found, anddgt be the
result of adding thesé — 1 edges toG(II,T"). If G;_; has allll-path, then it
has al'T'-path as well, and by lemma 10.30, there exists an interchromosomal or
oriented gray edge joining these paths into an oriehtBepath. ClearlyAc = —1,
Ap = —1, Ar =0, andAs = 0 for this edge, implyingA = 0.

If G;_1 has at least two semi-knots (i.e;,; > 1), letv; andwvy be alll'-
and al'II-vertex in different semi-knots. if; andv, are in different chromosomes
of II, then the gray edge; = (v1,v2) “destroys” both semi-knots. Therefore
Ac = —1,Ap = 0,Ar = 0,As = —2, andA = 0. If v; andwvy belong to the
same chromosome, then by lemma 10.31 there exists an oriented gray edge joining
these paths into an orientddl’-path. This gray edge destroys two semi-knots.
Therefore,A = 0 in this case also.

If G;_1 has the only semi-knot, leP; be alll'-path in this semi-knot. If
it is the only III"-path in the semi-knot, then for an edgg“closing” this path,
Ac = 0,Ap = 0,Ar = 1, andAs = —1, implying thatA = 0. Otherwise,
Ac =0,Ap = 0,Ar =0, andAs = 0, implying thatA = 0.

If G;_1 has neither alIlI-path nor a semi-knot, then lgf be an edge closing
an arbitraryIIl"-path inG; ;. Sinceg; does not belong to a semi-kna\c =
0,Ap = 0,Ar = 0,As = 0, andA = 0. Therefore, the constructed sequence of

edgesy, . .., gon transformsG/(I1,T) into G(II,T) such thab(II,T') — ¢(IL,T') +
k(I 1) = b(ILT) — (I, T) + p(IL,T) + r(IL,T) + [2150)7, .

Since0 < f(II,T") < 1, lemma 10.29 and theorem 10.14 imply théf, I') —

¢(IL,T) + p(IL,T) + r(II,T) + (@1 is within one rearrangement from the
genomic distance/(I1, ") for non-correlated genomes. In the following section
we close the gap betweeé(Il, ") — ¢(I1,T) + p(II,T') + »(II,T) + (@1 and
d(I1,T') for arbitrary genomes.

10.15 Duality Theorem for Genomic Distance

The major difficulty in closing the gap betweé(ll,T") — ¢(IL,T") + p(IL,T) +
r(ILT) + (@1 andd(I1,T") is “uncovering” remaining “obstacles” in the du-
ality theorem. It turns out that the duality theorem involves seven (!) parameters,
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making it very hard to explain an intuition behind it. Theorem 10.14 provides such
an intuition for the first five parameters. Two more parameters are defined below.
A component inG (11, T') containing d1T'-path issimpleif it is not a semi-knot.

Lemma 10.32 There exists an optimal cappiigthat closes allIl-paths in sim-
ple components.

Let G be a graph obtained fro&(TI,T') by closing allTIl'-paths in simple
components. Without confusion we can use the tegakknots, super-real-knats
andfortress-of-real-knots inG and definer(IL, ') as the number of real-knots in
G. Note thatrr(I1, ') does not necessarily coincide withil, T").

Correlated genomds andI” form aweak-fortress-of-real-knoi$ (i) they have
an odd number of real-knots @, (ii) one of the real-knots is the greatest real-knot
in G, (iii) every real-knot but the greatest one is a super-real-knat,iand (iv)
s(II,I') > 0. Notice that a weak-fortress-of-real-knots can be transformed into a
fortress-of-real-knots by closingI'-paths contained in one of the semi-knots.
Define two more parameters as follows:

if IT andT" form a fortress-of-
fr(II,T) = 1, real-knots or a weak-fortress-of-

real-knots inG/
0, otherwise

1 if there exists the greatest real-
gr(II,T') = { " knotinG ands(II,T) > 0
0, otherwise

The following theorem proves th&tenomic_Sort (Figure 10.20) solves the
genomic sorting problem. The running time@énomic_Sort (dominated by the
running time of sorting signed permutations by reversal§)(is*), wheren is the
overall number of genes.

Theorem 10.15 (Hannenhalli and Pevzner, 1995[153])
d(II,T) =

s(I,T) — gr(I,T) + fr(I1,T)
2

b(IL,T') — ¢(IL,T) + p(IL,T) + rr(IL,T) + | IE
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Genomes Cappings Concatenates
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+10+9+11+12
+10+9+11+8 +10+9+11+12 +10+9+11+12
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+5+6+7+8 < | +5+6+7+48 - +5+6+7+8 < | +5+6+7+8
+9+10+11+12 +9-10+11+12 -9-10+11+12 +10+9+11+12

®

Figure 10.19:(a) GenomesdI andT", cappingsil andI’, and concatenate®s and4. (b) Graph
G(#,%). Tails are shown as white boxes. (c) Gr@(ﬁ, f) is obtained fronG (7, 4) by deleting the
tails. Caps are shown as white circles. (d) Gréf{ii, I') with four cycles and six pathg(II,I") =
10). II-caps are shown as boxes, whiletails are shown by diamonds. For genomésandT,
b(II,T") = 15, r(I,T') = 0, p(IL,T") = 1, s(IL,T") = 1, andgr(II,T") = fr(IL,I') = 0. Therefore,
d(IL,T) = 15—10+1+0+ [ =327 = 7. (e) GraphG(I1, I") corresponding to an optimal capping
of D= (+134+1+2+3+4—15)(—144+5+6+7+8+18)(+17+ 9+ 10+ 11 4+ 12 4 16).
Added gray edges are shown by thick dashed lines. (f) Optimal sortidg iofo I" with seven
rearrangements.
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Genomic.Sort (II, ')

1.  Construct the grapty = G(IL, I

2. Close alllIT-paths in simple components 6fIL, I") (lemma 10.32)

3. Close all but on@IT'-path in components having more than @bE-path inside them

4. while G contains a path

5. if there exists &III-path inG

6. find an interchromosomal or an oriented edgeining thisIIII-path with al'T*-path
(lemma 10.30)

7. elseifG has more than 2 semi-knots

8. find an interchromosomal or an oriented edgeining III"-paths
in any two semi-knots (lemma 10.31)

9. elseifG has 2 semi-knots

10. if G has the greatest real-knot

11. find an edggj closing thelll-path in one of these semi-knots

12. else

13. find an interchromosomal or an oriented eggeining IIT"-paths
in these semi-knots (lemma 10.31)

14. elseifG has 1 semi-knot

15. find edgeg closing thelll-path in this semi-knot

16. else

17. find edgeg closing arbitrarfIT'-path

18. add edgg to the graptG, i.e.,G « G + {g}

19. finda capplng“ defined by the graptiy = G(1L,I")
20. sort genomd‘[ into I" (theorem 10.14)
21. sorting ofII into ' mimics sorting ofill into T

Figure 10.20Algorithm Genomic_Sort.

10.16 Genome Duplications

Doubling of the entire genome is a common and lethal accident of reproduction.
However, if this doubling can be resolved in the organism and fixed as a normal
state in a population, it represents the duplication ofahtire genome. Such an
event may even lead to evolutionary advantages, since a double genome has two
copies of each gene that can evolve independently. Since genes may develop novel
functions, genome duplication may lead to rapid evolutionary progress. There is
evidence that the vertebrate genome underwent duplications two hundred million
years ago (Ohno et al., 1968 [256]), with more recent duplications in some verte-
brate lines (Postlethwait, 1998 [278]). Comparative genetic maps of plant genomes
also reveal multiple duplications (Paterson et al., 1996 [260]).

Yeast sequencing revealed evidence for an ancient doubling of the yeast genome
a hundred million years ago (Wolfe and Shields, 1997 [369]). Originally, the du-
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plicated genome contained two identical copies of each chromosome, but through
inversions, translocations, fusions and fissions these two copies got disrupted. The
solution to the problem of reconstructing of the gene order in the ancient yeast

genome prior to doubling was proposed by El-Mabrouk et al., 1999 [96].

A rearranged duplicated genome contains two copies of each gene. The
genome duplicatiorproblem is to calculate the minimum number of transloca-
tions required to transform a rearranged duplicated genome into gerfext du-
plicated genomavith an even number of chromosomes that contains two identi-
cal copies of each chromosome. For example, a rearranged duplicated genome
{abc,def,aef,dbc} consisting of four chromosomes can be transformed into a
perfect duplicated genomiaibe, def, abc,def} by a single translocation of chro-
mosomesief anddbc. El-Mabrouk et al., 1999 [96] proposed a polynomial al-
gorithm for thegenome duplicatioproblem in the case when the rearrangement
operations are translocations only. The algorithm uses the Hannenhalli, 1995 [151]
duality theorem regarding the translocation distance between multichromosomal
genomes. The problem of devising a more adequate genome duplication analysis
with both translocations and reversals remains unsolved.

10.17 Some Other Problems and Approaches

10.17.1 Genome rearrangements and phylogenetic studies

Sankoff et al., 1992 [304] pioneered the use of rearrangement distance for molec-
ular evolution studies. A generalization of the genomic distance problem for mul-
tiple genomes corresponds to the following:

Multiple Genomic Distance Problem Given a set of permutations!, . . . ",
find a permutatiory such thaty”, , , d(r*, o) is minimal ( is the distance be-

tween genomes' ando).

In the case in whick(r, o) is a reversal distance betweemndo, the Multiple
Genomic Distance Problem has been shown to be NP-hard (Caprara, 1999 [56]).
Similarly to evolutionary tree multiple alignment, there exists a generalization of
the Multiple Genomic Distance Problem for the case when a phylogenetic tree is
not known in advance (Figure 10.21). Since Multiple Genomic Distance is diffi-
cult in the case of reversal distance, most genomic molecular evolution studies are
based orbreakpoint distanceThe breakpoint distana&(r, o) between permuta-
tionsw ando is defined as the number of breakpointsrin!. Although Multiple
Genomic Distance in this formulation is also NP-hard, Sankoff and Blanchette,
1998 [301] suggested practical heuristics for this problem.
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Evolution of HerpesViruses

HSV (Herpes Simplex Virus)
EHV(Equi ne Herp%Vi rus) +A-BHCHDAE-F-GHH-1+1K-L-M+N+O+P-Q-R-S+T-U+VAWHX+Y
HA-BHCHDAE-F-GHH-1+FK-L-M+N+O+P-Q-R-S+T-U+V+W+X+Y

+A-BACHDHEF-GHH-1+3K-L-MAN+OHP-QR-SHT-UHV+WHXHY

VZV (VaricellaZoster Virus)

+A-BHCHD+E-F-GHH-+IK-L-M+N+O+P-Q-R-SHT-U+V+W+X+Y

+A-BACHDHE-F-GHH-I+FK-L-M#N+O+P-QR-SHT-UVAWX Y
reversal(-Q-R-S)
+A-BHCHDHE-F-GHH-+3K-L-M+N+O+P+SHRIQ+ T-U+VAWAX+Y

reversa (+S+R+Q+T)
reversal (+X+Y)

deletion/divergence (WX, MN, K, I)
reversal(-L)

reversal (+O+P)
transposition (Y)

transposition(-U+V+W-Y-X) ? circular genome

CMV (Human CytomegaloVirus)
+A-BHCHDAE-F-GHH+IL-P-O+Y +S+R+Q+T-U+V
~U+VHW-Y -X+A-B+C+D+E-F-G+H-1+J-K-L-M+N+O+P-T-Q-R-S

EBV (Epstein Barr Virus)

“UHVAW-Y X +A-BHCHDAEF-GHH-I+3K-L-M+N+O+P-T-QR-S

HV S(HerpesVirus Saimiri)

UHVAW-Y-X+A-BHCHDHE-F-GHH-I+3K-L-M+N+O+P-T-QR-S

Figure 10.21Putative scenario of herpes virus evolution.

10.17.2 Fast algorithm for sorting by reversals

Berman and Hannenhalli, 1996 [33] and Kaplan et al., 1997 [185] devised fast
algorithms for sorting signed permutations by reversals. The Kaplan et al.,
1997 [185] quadratic algorithm bypasses the equivalent transformations step of
the Hannenhalli-Pevzner algorithm and explores the properties of the interleaving
graph ofgray edgegrather than the interleaving graph of cycles). This leads to a
more elegant, simple proof of theorem 10.10.



Chapter 11

Computational Proteomics

11.1 Introduction

In a few seconds, a mass-spectrometer is capable of breaking a peptide into frag-
ments and measuring their masses (the spectrum of the peptide). The peptide se-
guencing problem is to derive the sequence of a peptide given its spectrum. For an
ideal fragmentation process (each peptide is cleaved between every two consecu-
tive amino acids) and an ideal mass-spectrometer, the peptide sequencing problem
is simple. In practice, the fragmentation processes are far from ideal, thus making
de novopeptide sequencing difficult.

Database search is an alternatived® novopeptide sequencing, and mass-
spectrometry is very successful in identification of proteins already present in
genome databases (Patterson and Aebersold, 1995 [261]). Database search in
mass-spectrometry (Mann and Wilm, 1994 [230], Eng et al., 1994 [97], Taylor
and Johnson, 1997 [335], Fenyo et al., 1998 [101]) relies on the ability to “look
the answer up in the back of the book” when studying genomes of extensively se-
guenced organisms. An experimental spectrum can be compared with theoretical
spectra for each peptide in a database, and the peptide from the database with the
best fit usually provides the sequence of the experimental peptide. In particular,
Eng et al., 1994 [97] identified proteins from the class Il MHC complex, while
Clauser et al., 1999 [72] identified proteins related to the effects of preeclampsia.
However, in light of the dynamic nature of samples introduced to a mass spectrom-
eter and potential multiple mutations and modifications, the reliability of database
search methods that rely on precise or almost precise matches may be called into
guestion.De novoalgorithms that attempt to interpret tandem mass spectra in the
absence of a database are invaluable for identification of unknown proteins, but
they are most useful when working with high-quality spectra.

Since proteins are parts of complex systems of cellular signalling and metabolic
regulation, they are subject to an almost uncountable number of biological modi-

229
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fications (such as phosphorylation and glycosylation) and genetic variations (Goo-
ley and Packer, 1997 [134], Krishna and Wold, 1998 [207]). For example, at least
1,000 kinases exist in the human genome, indicating that phosphorylation is a com-
mon mechanism for signal transmission and enzyme activation. Almost all protein
sequences are post-translationally modified, and as many as 200 types of modifica-
tions of amino acid residues are known. Since currently post-translational modifi-
cations cannot be inferred from DNA sequences, finding them will remain an open
problem even after the human genome is completed. This also raises a challenging
computational problem for the post-genomic era: given a very large collection of
spectra representing the human proteome, find out which of 200 types of modifi-
cations are present in each human gene.

Starting from the classical Biemann and Scoble, 1987 [35] paper, there have
been a few success stories in identifying modified proteins by mass-spectrometry.
The computational analysis of modified peptides was pioneered by Mann and
Wilm, 1994 [230] and Yates et al., 1995 [374], [373]. The problem is particu-
larly important since mass-spectrometry techniques sometimes introduce chemical
modifications to native peptides and make these peptides “invisible” to database
search programs. Mann and Wilm, 1994[230] used a combination of a pdetial
novo algorithm and database search in tHe@ptide Sequence Tagpproach. A
Peptide Sequence Tag is a short, clearly identifiable substring of a peptide that
is used to reduce the search to the peptides containing this tag. Yates et al.,
1995 [374] suggested an exhaustive search approach that (implicitly) generates
a virtual database of all modified peptides for a small set of modifications and
matches the spectrum against this virtual database. It leads to a large combina-
torial problem, even for a small set of modification types. Another limitation is
that extremely bulky modifications such as glycosylation disrupt the fragmentation
pattern and would not be amenable to analysis by this method.

Mutation-tolerant database search in mass-spectrometry can be formulated as
follows: given an experimental spectrum, find the peptide that best matches the
spectrum among the peptides that are at mkastutations apart from a database
peptide. This problem is far from simple since very similar peptides may have very
different spectra. Pevzner et al., 2000 [270] introduced a notion of spectral similar-
ity that led to an algorithm that identifies related spectra even if the corresponding
peptides have multiple modifications or mutations. The algorithm reveals potential
peptide modifications without an exhaustive search and therefore does not require
generating a virtual database of modified peptides.

Although database search is very useful, a biologist who attempts to clone a
new gene based on mass spectrometry data ndedsovorather than database
matching algorithms. However, until recently, sequencing by mass-spectrometry
was not widely practiced and had a limited impact on the discovery of new pro-
teins. There are precious few examples of cloning of a gene on the basis of mass-
spectrometry-derived sequence information alone (Lingner et al., 1997 [223]).
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The recent progress e novopeptide sequencing, combined with automated
mass spectrometry data acquisition, may open a door to “proteome sequencing.”
Long stretches of protein sequences could be assembled following the generation
and sequencing of overlapping sets of peptides from treatment of protein mixtures
with proteolytic enzymes of differing specificity. Complete protein sequence de-
termination has already been demonstrated with such a strategy on a single protein
(Hopper et al., 1989 [166]).

11.2 The Peptide Sequencing Problem

Let A be the set of amino acids with molecular massds), a € A. A peptide
P = p,...,p, is a sequence of amino acids, and the (parent) mass of pdptide
is m(P) = Y m(p;). A partial peptideP’ is a substring; . ..p; of P of mass

Zigtgj m(py)-
Peptide fragmentation intandem mass-spectrometan be characterized by
a set of numbers\ = {d1,...,d;} representingon-types A J-ion of a partial

peptide P’ C P is a modification ofP’ that has mass:(P') — 0. For tandem
mass-spectrometry, thibeoretical spectrum of peptidé”® can be calculated by
subtracting all possible ion-typés, . . . , §; from the masses of all partial peptides

of P (every partial peptide generatésmasses in the theoretical spectrum). An
(experimental) spectrurf = {sy,..., s} is a set of masses of (fragment) ions.
Thematchbetween spectrurfi and peptide” is the number of masses that the ex-
perimental and theoretical spectra have in common (shared peaks count). Dancik
et al., 1999 [79] addressed the following

Peptide Sequencing ProblemGiven spectrun®, the set of ion-typed\, and the
massm, find a peptide of mass with the maximal match to spectrus

Denote partiaN-terminalpeptidep+, ..., p; asP; and partialC-terminal pep-
tidep;y1,...,pn aSP; ,i=1,...,n. In practice, a spectrum obtained by tandem
mass-spectrometry (MS/MS) consists mainly of some ofdti@ns of partial N-
terminal and C-terminal peptides. To reflect this, a theoretical MS/MS spectrum
consists only of ions of N-terminal and C-terminal peptides (Figure 11.1). For
example, the most frequent N-terminal ions are usuailyns (¢; corresponds to
P; with 6 = —1) and the most frequent C-terminal ions are usugHipns (y;
corresponds td’~ with 6 = 19). Other frequent N-terminal ions for an ion-trap
mass-spectrometer (a, b2®l, and b—NH) are shown in Figure 11.2. Also, instead
of the shared peaks count, the existing database searaearavoalgorithms use
more sophisticated objective functions (such as the weighted shared peaks count).
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Theoretical spectrum

N-terminal peptide ladder C-terminal peptide ladder
A-TL G-57
p.g7 F-147 N-114 N-114 F-147 p-o7
G-57 — A-T1 .
57 154 301 415 48 71 185 332 429 486
Spectrum with N-terminal ions Spectrum with C-terminal ions
< b-H ion yion _o
—ai — y2HPOI
<~ aNH g ion ‘ ‘ y-anpon ‘
57 154 301 415 486 71 185 332 429 486
super position

Theoretical spectrum of peptide GPFNA

M

57 71 154 185 301 332 415 429 486

Figure 11.1:Theoretical MS/MS spectrum of peptide GPFNA with parent n3ass 97 + 147 +
114 + 71 = 486.

11.3 Spectrum Graphs

The development of peptide sequencing algorithms have followed either exhaus-
tive search or spectrum graph paradigms. The former approach (Sakurai et al.,
1984 [294]) involves the generation of all amino acid sequences and correspond-
ing theoretical spectra. The goal is to find a sequence with the best match be-
tween the experimental and theoretical spectra. Since the number of sequences
grows exponentially with the length of the peptide, different pruning techniques
have been designed to limit the combinatorial explosion in global methods. Prefix
pruning (Hamm et al., 1986 [149], Johnson and Biemann, 1989 [182], Zidarov et
al., 1990 [378], Yates et al., 1991 [375]) restricts the computational space to se-
guences whose prefixes match the experimental spectrum well. The difficulty with
the prefix approach is that pruning frequently discards the correct sequence if its
prefixes are poorly represented in the spectrum. Another problem is that the spec-
trum information is used onlgfter the potential peptide sequences are generated.
Spectrum graph approaches tend to be more efficient because they use spec-
tral informationbeforeany candidate sequence is evaluated. In this approach, the
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bz'Hzo bs' NH3
a1 b1 a2 b2 a3 b3
HO NHz*
I |
R, / O R, © Ry, O R,
| 1l |, 1l | |l I
H-N--C-—-C-~-N-C--C--N--C-—--C--N--C--COOH
| | | I
H H H H H H H
_V3 .V2 y‘l
y3 -H20 y2 - NH3

Figure 11.2:Typical fragmentation patterns in tandem mass-spectrometry.

peaks in a spectrum are transformed intspactrum graphBartels, 1990 [26],
Ferrdndez-de-Coss et al., 1995 [103], Taylor and Johnson, 1997 [335], Dancik

et al., 1999 [79]). The peaks in the spectrum serve as vertices in the spectrum
graph, while the edges of the graph correspond to linking vertices differing by the
mass of an amino acid. Each peak in an experimental spectrum is transformed into
several vertices in a spectrum graph; each vertex represents a possible fragment
ion-type assignment for the peak. The Peptide Sequencing Problem is thus cast
as finding the longest path in the resulting directed acyclic graph. Since efficient
algorithms for finding the longest paths in directed acyclic graphs are known (Cor-
men et al., 1989 [75]), such approaches have the potential to efficiently prune the
set of all peptides to the set of high-scoring paths in the spectrum graph.

The spectrum graph approach is illustrated in Figure 11.3. Since “meaningful”
peaks in the spectrum are generated from a peptide ladder (masses of partial pep-
tides) byJ-shifts, one might think that reverseshifts will reconstruct the ideal
spectrum, thus leading to peptide sequencing. Figure 11.3 illustrates that this is not
true and that a more careful analysis (based on the notion of a spectrum graph) of
reversey-shifts is required.

Assume, for the sake of simplicity, that an MS/MS spect®ima {s1,...,sn}
consists mainly ofV-terminal ions, and transform it into a spectrum grapk(S)
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Peptide ladder

3types of fragment ions correspond to shifts{0, 1, 3}
-—1

3

Spectrum after shifts

Rever se shifts {0, -1, -3}

i1 —

33—

[ [ [
= = =

Rever se shifts do not reconstruct the peptide ladder
but create aladder of peaksinstead

Thisladder correspondsto vertices of the spectrum graph

Analysisof strong peaksin the spectrum graph
leads to reconstruction of the peptide ladder

Figure 11.3:Reverse shifts create a set of vertices in the spectrum graph. “Strong peaks” (shown
by solid bars) correspond to peaks that are obtained by multiple reverse shifts.

(Bartels, 1990 [26]). Vertices of the graph are integgrsd; representing potential
masses of partial peptides. Every peak of spectsum S generates: vertices
V(s) = {s+ d1,...,5 + d}. The set of vertices of a spectrum graph, then, is
{Smitm[} U V(Sl) J---u V(Sm) U {Sfmal}, Whel’esimtm[ =0 andemal = m(P)
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Figure 11.4:Multiple paths in a spectrum graph.

Two verticesu andv are connected by a directed edge frarto v if v — u is the

mass of some amino acid and the edgklzeledby this amino acid. If we look
at vertices as potentidV-terminal peptides, the edge fromto v implies that the
sequence at may be obtained by extending the sequence lag one amino acid
(Figures 11.4 and 11.5).

A spectrum§ of a peptideP is calledcompletef S contains at least one ion-
type corresponding t@; for every1l < i < n. The use of a spectrum graph is
based on the observation that for a complete spectrum there exists a path of length
n from s;pisiar 10 Spinar IN GA(S) that is labeled byP. This observation casts
the tandem mass-spectrometry Peptide Sequencing Problem as one of finding the
correct path in the set of all paths.

Unfortunately, experimental spectra are frequently incomplete. Another prob-
lem is that MS/MS experiments performed with the same peptide but a different
type of mass-spectrometers will produce significantly different spectra. Differ-
ent ionization methods have a dramatic impact on the propensities for producing
particular fragment ion-types. Therefore, every algorithm for peptide sequenc-
ing should be adjusted for a particular type of mass-spectrometer. To address this
problem, Dancik et al., 1999 [79] described an algorithm foaatomaticlearn-
ing of ion-types from a sample of experimental spectra of known sequences. They
introduced theoffset frequency functigrwhich evaluates the ion-type tendencies
for particular mass-spectrometers and leads to an instrument-independent peptide
sequencing algorithm.
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Sequence (==

o

Figure 11.5: Noise in a spectrum generates many “false” edges and vertices in the spectrum
graph and disguises edges corresponding to the real peptide sequence. Sequence reconstruction
corresponds to finding an optimal path in the spectrum graph.

11.4 Learning lon-Types

If the ion-typesA = {4;,...,d;} produced by a given mass-spectrometer are not
known, the spectrum cannot be interpreted. Below we show how to learn the set
A and ion propensities from a sample of experimental spectra of known sequences
withoutany prior knowledge of the fragmentation patterns.

LetS = {s1,...,smn} be aspectrum corresponding to the pepfitiéA partial
peptide; and a pealks; have an offset;; = m(F;) — s;; we can treatr;; as a
random variable. Since the probability of offsets corresponding to “real” fragment
ions is much greater than the probability of random offsets, the peaks in the em-
pirical distribution of the offsets reveal fragment ions. The statistics of offsets over
all ions and all partial peptides provides a reliable learning algorithm for ion-types
(Dancik et al., 1999 [79]).

Given spectrun®, offsetz, and precision, let H(z, S) be the number of pairs
(P, s5),i=1,...,n—1,5 = 1,...,m that have offsein(P;) — s; within dis-
tancee from z. Theoffset frequency functiois defined add (z) = )¢ H(z, S),
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Figure 11.6:0ffset frequency function for N-terminal (left) and C-terminal (right) peptides. Hor-
izontal axes represent offsets between peaks in spectra and masses of partial peptide molecules.
Vertical axes represent normalized offset counts, with 1 being the average count.

where the sum is taken over all spectra from the learning sample (Figurell.6).
To learn about C-terminal ions, we do the same for p@its, s;). OffsetsA =
{61,...,0x} corresponding to peaks &f (z) represent the ion-types produced by

a given mass-spectrometer.

Peaks in a spectrum differ intensity and one has to set a threshold for distin-
guishing the signal from noise in a spectrum prior to transforming it into a spectrum
graph. Low thresholds lead to excessive growth of the spectrum graph, while high
thresholds lead to fragmentation of the spectrum graph. The offset frequency func-
tion allows one to set up the intensity thresholds in a rigorous way (Dancik et al.,
1999 [79]).

11.5 Scoring Paths in Spectrum Graphs

The goal of scoring is to quantify how well a candidate peptide “explains” a spec-
trum and to choose the peptide that explains the spectrum the bedP, §) is the
probability that a peptidé> produces spectruifi, then the goal is to find a peptide

P maximizingp(P, S) for a given spectrun$. Below we describe a probabilistic
model, evaluatey(P, S), and derive a scoring schema for paths in the spectrum
graph. The longest path in the weighted spectrum graph corresponds to the peptide
P that “explains” spectruns' the best.

In a probabilistic approach, tandem mass-spectrometry is characterized by a set
of ion-typesA = {41, ..., dx} and their probabilitiegp(d1), . .., p(dx)} such that
d;-ions of a partial peptide are produced independently with probabijiti&s. A
mass-spectrometer also produces a “random” (chemical or electronic) noise that
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in any position may generate a peak with probabilify Therefore, a peak at a

position corresponding to@-ion is generated with probability; = p(d;) + (1 —

p(0;))qr, Which can be estimated from the observed empirical distributions. A

partial peptide may theoretically have upitcorresponding peaks in the spectrum.

It has allk peaks with probability[T¥_, ¢;, and it has no peaks with probability

Hle (1—g¢;). The probabilistic model defines the probabijity, S) that a peptide

P produces a spectru$i. Below we describe how to compuéP, S) and derive

scoring that leads to finding a peptide maximizjr(@, S) for a given spectrun®.
Suppose that a candidate partial peptitd@produces iong, ..., § (“present”

ions) and does not produce i0§S 1, .. ., d; (“missing” ions) in the spectruny.

The [ “present” ions will result in a vertex in the spectrum graph corresponding

to P;. How should we score this vertex? A naive approach would be to use a

“premium for explained ions” approach, suggesting that the score for this vertex

should be proportional tg, - - - ¢; or maybe;’—}l2 e ;—}; to normalize the probabilities

against the noise. However, such an approach has a serious deficiency, and signif-

icant improvement results from a different, “premium for present ions, penalty for

missing ions” approach. The (probability) score of the vertex is then given by

a g (—gy)  (1—gk)

ar  ar (1—qg) (1—qr)

We explain the role of this principle for the resolution of a simple alternative
between dipeptide GG and amino acid N of the same mass. In the absence of a
penalty for missing ions, GG is selected over N in the preseneappeak sup-
porting the position of the first G (even a very weak one corresponding to random
noise). Such a rule leads to many wrong GG-abundant interpretations and indicates
that a better rule is to vote for GG if it is supported by major ion-types with suf-
ficient intensities, which is automatically enforced by “premium for present ions,
penalty for missing ions” scoring.

For the sake of simplicity, we assume that all partial peptides are equally likely
and ignore the intensities of peaks. We discretize the space of all masses in the
interval from O to the parent mass(P) = M, denoteT’ = {0,...,M}, and
represent the spectrum as &hmer vectorS = {si,..., sy} such thats; is the
indicator of the presence or absence of peaks at posifign= 1 if there is a peak
at positiont ands; = 0 otherwise). For a given peptide and positiont, s, is a
0-1 random variable with probability distributigi{ P, s;).

LetT; = {ti1,...,t;x} be the set of positions that represénions of a partial
peptideP; whereA = {4,...,0;}. Let R =T\ |, T; be the set of positions that
are not associated with any partial peptides. The probability distribgiiéts,)
depends on whethere T; ort € R. For a positiort = ¢;; € Tj, the probability
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p(P, s¢) is given by

_ J gy, if s, =1 (a peak at position)
(Pys1) = { 1 — ¢;, otherwise. (11.1)

Similarly, fort € R, the probabilityp(P, s;) is given by
) gqr, if s; =1 (random noise at positiot)
(Pysi) = { 1 — ¢, otherwise. (11.2)

The overall probability of “noisy” peaks in the spectrun sz pr(P, s¢).

Letp(P;, S) = [lier, p(P, s¢) be the probability that a peptide; produces a
given spectrum at positions from the ggt(all other positions are ignored). For
the sake of simplicity, assume that each peak of the spectrum belongs only to one
setT; and that all positions are independent. Then

Hp P, s) (Hp P27S> 1 pr(P, s0).

=1 teR

For a given spectruny, the value[],.r pr(P, s;) does not depend oR, and
the maximization op(P, S) is the same as the maximization of

k
sps)  ALILP(P ) T pn(Ps)

_ €R B ﬁ ﬁ (P, se;)
Pr(S) I1 pR(P, st) i1 jo1 Pr(P, st)
teT

wherepg(S) = HPR(P 5¢).

In Iogarlthmlc scale the above formula implies the additive “premium for pres-
ent ions, penalty for missing ions” scoring of vertices in the spectrum graph (Dan-
cik etal., 1999 [79]).

11.6 Peptide Sequencing and Anti-Symmetric Paths

After the weighted spectrum graph is constructed, we cast the Peptide Sequencing
Problem as théongest path problem in a directed acyclic grapthmich is solved

by a fast linear time algorithm. Unfortunately, this simple algorithm does not quite
work in practice. The problem is that every peak in the spectrum may be interpreted
as either an N-terminal ion or a C-terminal ion. Therefore, every “real” vertex
(corresponding to a mass) has a “fake”twin vertex (corresponding to a mass
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m(P) —m). Moreover, if the real vertex has a high score, then its fake twin also
has a high score. The longest path in the spectrum graph then tends to imaibde

the real vertex and its fake twin since they both have high scores. Such paths do not
correspond to feasible protein reconstructions and should be avoided. However, the
known longest path algorithms do not allow us to avoid such paths.

Therefore, the reduction of the Peptide Sequencing Problem to the longest path
problem described earlier is inadequate. Below we formulateatiiesymmetric
longest pattproblem, which adequately models the peptide sequence reconstruc-
tion.

Let G be a graph and léf be a set oforbidden pairsof vertices ofG (twins).

A path in G is called anti-symmetric if it contains at most one vertex from ev-
ery forbidden pair. Thanti-symmetric longest path probleimito find a longest
anti-symmetric path if7 with a set of forbidden pairg. Unfortunately, the anti-
symmetric longest path problem is NP-hard (Garey and Johnson, 1979 [119]), in-
dicating that efficient algorithms for solving this problem are unlikely. However,
this negative result does not imply that there is no hope of finding an efficient al-
gorithm for tandem mass-spectrometry peptide sequencing, since this problem has
aspecial structureof forbidden pairs.

Vertices in a spectrum graph are modeled by numbers that correspond to masses
of potential partial peptides. Two forbidden pairs of verti¢es, y1) and (z2, y2)
arenon-interleavingf the intervals(z, y1) and(x2, y2) do notinterleave. A graph
G with a set of forbidden pairs is callgaoperif every two forbidden pairs of ver-
tices are non-interleaving.

The tandem mass-spectrometry Peptide Sequencing Problem corresponds to
the anti-symmetric longest path problem in a proper graph. Dancik et al., 1999 [79]
proved that there exists an efficient algorithm for anti-symmetric longest path prob-
lem in a proper graph.

11.7 The Peptide Identification Problem
Pevzner et al., 2000 [270] studied the following

Peptide Identification Problem Given a database of peptides, spectrbinset of
ion-typesA, and parametet, find a peptide with the maximal match to spectrum
S that is at moskt mutations or modifications apart from a database entry.

The major difficulty in the Peptide Identification Problem comes from the fact
that very similar peptide$ and P, may have very different specti® and Ss.
Our goal is to define a notion of spectral similarity that correlates well with se-
guence similarity. In other words, i, and P, are a few substitutions, insertions,
deletions, or modifications apart, the spectral similarity betwseand S, should
be high. The shared peaks count is, of course, an intuitive measure of spectral
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similarity. However, this measure diminishes very quickly as the number of mu-
tations increases, thus leading to limitations in detecting similarities in an MS/MS
database search. Moreover, there are many correlations between spectra of related
peptides and only a small portion of them is captured by the “shared peaks” count.
The PEDANTA algorithm (Pevzner et al., 2000 [270]) captuakborrelations be-
tween related spectra for akyand handles the cases in which mutations in the pep-
tide significantly change the fragmentation pattern. For example, replacing amino
acids like H, K, R, and P may dramatically alter the fragmentation. Even in an
extreme case—as when a single mutation changes the fragmentation pattern from
“only b-ions” to “only y-ions"—PEDANTA still reveals the similarity between the
corresponding spectra.

11.8 Spectral Convolution

Let S; andS; be two spectra. Defingpectral convolutiorS, © S1 = {s2 — s1 :
s1 € S1,s2 € S} and let(S; © S1)(z) be the multiplicity of element: in this
set. In other words(S; © S1)(x) is the number of pairs; € Si,sy € Sz such
thatsy — s; = z. If M(P) is the parent mass of peptide with the spectrum
S, then S® = M(P) — S is the reversed spectrurof S (every b-ion (y-ion)
in S corresponds to a y-ion (b-ion) i§%). The reversed spectral convolution
(S2© ST)(x) is the number of pairs; € Sy, sy € Sy such thaks +s; — M (P) =
xX.

To illustrate the idea of this approach, consider two coptesind P, of the
same peptide. The number of peaks in common betvfgeand S (shared peaks
count) is the value of, © S; atz = 0. Many MS/MS database search algorithms
implicitly attempt to find a peptidé” in the database that maximizés © S; at
2 = 0, whereS, is an experimental spectrum afg is a theoretical spectrum of
peptideP. However, if we start introducing mutations inP, as compared t@ ,
the value ofS; & S atz = 0 quickly diminishes. As a result, the discriminating
power of the shared peaks count falls significantly at 1 and almost disappears
atk > 1.

The peaks in spectral convolution allow one to detect mutations and modifica-
tions without an exhaustive search. Utdiffer from P, by only mutation £ = 1)
with amino acid differencé = M (P,) — M (P;). In this caseS> © S; is expected
to have two approximately equal peakszat= 0 andz = §. If the mutation
ocurrs at positiort in the peptide, then the peakat= 0 corresponds t®;-ions
fori < t andy;-ions fori > t. The peak at = ¢ corresponds té;-ions for; > ¢
andy;-ions fori < ¢. A mutation inP, that change$/(P;) by § also “mutates”
the spectrumSy by shifting some peaks by. As a result, the number of shared
peaks betwees; and “mutated”S, may increase as compared to the number of
shared peaks betweehh andS,. This increase is bounded g, © S1)(6), and
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(S2 ©51)(0) + (S2 © S1)(0) is an upper bound on the number of shared peaks
betweenS; and “mutated”s,.

The other set of correlations between spectra of mutated peptides is captured
by the reverse spectral convolutidh © S¥, reflecting the pairings of N-terminal
and C-terminal ionsS, © ST is expected to have two peaks at #zmepositions
0 andé.

Now assume thaP, and P; are two substitutions apart, one with mass differ-
enced; and another with mass differenée— §,. These mutations generate two
new peaks in the spectral convolutionzat= 6; and atx = § — é;. For uniform
distribution of mutations in a random peptide, the ratio of the expected heights of
the peaks a, §, 1,0 — 61 is2:2:1: 1.

To increase the signal-to-noise ratio, we combine the peaks in spectral and
reverse spectral convolution:

S=565 + SQ@S{Q

Furthermore, we combine the peaksdaand § (as well as av; andé — 1) by
introducing theshift function

Fz) = %(S(x) + 80— x).

Note that F'(x) is symmetric around the axis = % with F(0) =
F(61) = F(§ — 61). We are interested in the peaksiofz) for z > g

Definex; = 6 = M(P,) — M(P,) andy; = F(6) = F(0). Lety, =
F(z2),ys = F(z3),...,yr = F(zr) be thek — 1 largest peaks of’(x) for
x > 6/2 andz # 6. Define

F(0) and

SIM(S1,S2) = Zyz

as an estimate of the similarity between spe&taand S, under the assumption
that the corresponding peptides &reutations apartST My is usually the overall
height of & highest peaks of the shift function. For exam@#é M, (S1, S2) = 11
is an upper bound for the number of shared peaks bet&eand “mutated”Ss if
k = 1 mutation inP; is allowed.

Although spectral convolution helps to identify mutated peptides, it has a seri-
ous limitation which is described below.

Let

S = {10, 20,30, 40, 50, 60, 70, 80, 90, 100}
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be a spectrum of peptide, and assume for simplicity th&t produces only b-ions.
Let
S' = {10, 20, 30,40, 50, 55, 65, 75, 85,95}

and
S" = {10, 15,30, 35,50, 55, 70, 75,90, 95}

be two theoretical spectra corresponding to peptidleand P” from the database.
Which peptide P’ or P") fits spectrumS the best? The shared peaks count does
not allow one to answer this question, since bsthand S” have five peaks in
common withS. Moreover, the spectral convolution also does not answer this
question, since both © S" andS © S” (and corresponding shift functions) reveal
strong peaks of the same height0adnd 5. This suggests that botR’ and P”

can be obtained fron® by a single mutation with mass difference 5. However,
a more careful analysis shows that although this mutation can be realizéd for
by introducing a shift 5 after mass 50, it cannot be realizedFAr The major
difference betweeis’ and S” is that the matching positions i come in clumps
while the matching positions ifi"” don’t. Below we describe the spectral alignment
approach, which addresses this problem.

11.9 Spectral Alignment

Let A = {ay,...,a,} be an ordered set of natural numbeks< ay ... < ay.

A shift A; transformsA into {a1,...aj—1,a; + A, ..., a, + A;}. We consider
only the shifts that do not change the order of elements, i.e., the shifts\with
a;—1 — a;. Given set!A = {ay,...,a,} andB = {by,..., b, }, we want to find a
series ofk shifts of A that makeA and B as similar as possible. Thesimilarity
D(k) between setst and B is defined as the maximum number of elements in
common between these sets afteshifts. For example, a shift54 transforms

S = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
into

S’ = {10, 20, 30, 40, 50, 55, 65, 75, 85, 95},
and thereforeD (1) = 10 for these sets. The set

S" = {10, 15,30, 35, 50, 55, 70, 75, 90, 95}

has five elements in common with (the same a$’) but there is no shift trans-
forming S into S”, andD(1) = 6. Below we describe a dynamic programming
algorithm for computingD (k).

Define aspectral product4d ® B as ana,, x b,, two-dimensional matrix with
nm 1s corresponding to all pairs of indicés;, b;) and remaining elements being
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Figure 11.7:SpectrumS can be transformed int§’ by a single mutation and(1) = 10 (left
matrix). SpectrumS cannot be transformed int§” by a single mutation and(1) = 6 (right
matrix).

zeroes. The number of 1s at the main diagonal of this matrix describes the shared
peaks count between spectaand B, or in other words(-similarity between4
andB. Figure 11.7 shows the spectral produgt® S’ andS ® S” for the example
from the previous section. In both cases the number of 1s on the main diagonal
is the same, and(0) = 5. Thed-shifted peaks count is the number of 1s on the
diagonal(z, 7+ ¢). The limitation of the shift function is that it considers diagonals
separately without combining them into feasible mutation scenatiesmilarity
between spectra is defined as the maximum number of 1s on a path through the
spectral matrix that uses at madst+ 1 diagonals, and:-optimal spectral align-
mentis defined as a path using thgse- 1 diagonals. For examplé;similarity is
defined by the maximum number of 1s on a path through this matrix that uses at
most two diagonals. Figure 11.7 reveals that the notion of 1-similarity allows one
to find out thatS is closer toS’ than toS”, since in the first case the 2-diagonal
path covers 10 ones (left matrix), versus 6 in the second case (right matrix). Fig-
ure 11.8 illustrates that the spectral alignment allows one to detect more and more
subtle similarities between spectra by increagingelow we describe a dynamic
programming algorithm for spectral alignment.

Let A; and B; be thei-prefix of A andj-prefix of B, correspondingly. Define
D;;(k) as thek-similarity betweenA; and B; such that the last elements 4
and B; are matched. In other word#);;(k) is the maximum number of 1s on a
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path to(a;, b;) that uses at most + 1 diagonals. We say tha#’, ;') and (i, 5)

are co-diagonalif a; — ay = b; — by and that(i',j') < (4,7) if 7/ < ¢ and

4" < j. To take care of the initial conditions, we introduce a fictitious element
(0,0) with Dy o(k) = 0 and assume th&o, 0) is co-diagonal with any oth€g, j).

The dynamic programming recurrency % (k) is

Dij (k) = max

Dy (k) + 1, if (i/,4") and(4, ) are co-diagonal
(#,3")<(i.9)

Dy jy(k —1) + 1, otherwise.

Thek-similarity betweend and B is given byD (k) = max;; D;;(k).

The described dynamic programming algorithm for spectral alignment is rather
slow (running timeO(n*k) for n-element spectra), and below we describe an
O(n?k) algorithm for solving this problem. Defingéag(i, j) as the maximal co-
diagonal pair of(s, j) such thatdiag(i,j) < (i,7). In other wordsdiag(i,7) is
the position of the previous 1 on the same diagondleas;) or (0,0) if such a
position does not exist. Define

Mi (k) = ma(L‘(i/’j/)S(i’j)Di/f(k).
Then the recurrency fab;; (k) can be re-written as

. _ Ddiag(i,j)(k) +1,
Dij (k) = max { M1 j1(k—1) + L.

The recurrency foi;;(k) is given by

D;;(k)
Mw(k) = Imax Mz’—l,j(k)
M; j—1(k)

The described transformation of the dynamic programming graph is achieved by
introducing horizontal and vertical edges that provide switching between diago-
nals (Figure 11.9). The score of a path is the number of 1s on this path, Avhile
corresponds to the number of switches (number of used diagonals minus 1).

11.10 Aligning Peptides Against Spectra

The simple description above hides many details that make the spectral align-
ment problem difficult. A spectrum is usually a combination of an increasing (N-
terminal ions) and a decreasing (C-terminal ions) number series. These series form
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Figure 11.8:Aligning spectra. The shared peaks count reveals @(9) = 3 matching peaks
on the main diagonal, while spectral alignment reveals more hidden similarities between spectra

(D(1) = 5 andD(2) = 8) and detects the corresponding mutations.

two diagonals in the spectral produe S, the main diagonal and the perpendicu-
lar diagonal, which corresponds to pairings of N-terminal and C-terminal ions. The
described algorithm does not capture this detail and deals with the main diagonal

only.
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Figure 11.9:Modification of a dynamic programming graph leads to a fast spectral alignment
algorithm.

To combine N-terminal and C-terminal series together, we work $SthU
SF) ® (S2 U 8L, whereS*t is the reversed spectrum of peptifte This transfor-
mation creates a “b-version” for every y-ion and a “y-version” for every b-ion, thus
increasing noise (since every noisy peak is propagated twice). Another and even
more serious difficulty is that every 1 in the spectral product will have a reversed
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twin, and only one of these twins should be counted in the feasible spectral align-
ment. Ignoring this problem may lead to infeasible solutions that are sorted out in
the anti-symmetric path approach (Dancik et al., 1999 [79]).

The described algorithm also does not capture all the relevant details in the case
of the “sequence against the spectrum” comparison. In this case the horizontal and
vertical arcs in the dynamic programming graph (Figure 11.9) are limited by the
possible shifts reflecting mass differences between amino acids participating in
the mutation. LetP = p; ...p, be a peptide that we compare with the spectrum
S ={s1,...,sm}. Thed-prefix of spectrun® contains all peaks o with s; < d.

We introduce a new variabl; 4(k) that describes the “best” transformation of the
i-prefix of peptideP into thed-prefix of spectrumS with at mostk substitutions

in P;. More preciselyH; (k) describes the number of 1s on the optimal path with
k shifts between diagonals froff}, 0) to the position(z, d) of the properly defined
“peptide versus spectrumP ® S matrix. For the sake of simplicity, assume that
the theoretical spectrum &t contains only b-ions.

Let H; 4(k) be the “best” transformation aP; into Sy with & substitutions
(i.e., a transformation that uses the maximum number of 1s on a path with at most
k shifts between diagonals). However, in this case, the jumps between diagonals
are not arbitrary but are restricted by mass differences of mutated amino acids (or
mass differences corresponding to chemical modifications). Below we describe the
dynamic programming algorithm for the case of substitutions (deletions, insertions,
and modifications lead to similar recurrencies). Defitd) = 1if d € S and
z(d) = 0 otherwise. Theri; 4(k) is described by the following recurrency.(a)
is the mass of amino acig):

H;i 1 g—m(p;) (k) + z(d)
Hi k) = ) pi
alk) = max { maxo=1,20 Hi,4—(m(a)-m(p))(k — 1)

11.11 Some Other Problems and Approaches

11.11.1 From proteomics to genomics

Mass-spectrometry is very successful for the identification of proteins whose genes
are contained in sequence databases. Howdeenovointerpretation of tandem
mass-spectra remained a complex and time-consuming problem and, as a result,
mass-spectrometry has not yet had a significant impact for discovesnafenes.

As recently as in 1995, Mann and Wilm (Mann and Wilm, 1995 [231]) remarked
that they cannot find an example in the literature of a gene that was cloned on the
basis of MS/MS-derived sequence informat@ione This situation changed in

the last 5 years, in particular, the reverse genetics studies of the catalytic subunit of
telomerase (Lingner et al., 1997 [223]) required de novo sequencing of 14 peptides
with further design of PCR primers for gene amplification.
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11.11.2 Large-scale protein analysis

Complex protein mixtures can be separated by highly-resolving two-dimensional
gel-electrophoresis. After separation, the identity of each “spot” (peptide) in 2-

D gel is unknown and has to be identified by mass-spectrometry. This approach
requires efficient methods for extracting resulting peptides from the gel and trans-
ferring them into mass-spectrometer.






Chapter 12

Problems

12.1 Introduction

Molecular biology has motivated many interesting combinatorial problems. A few
years ago Pevzner and Waterman, 1995 [275] compiled a collection of 57 open
problems in computational molecular biology. Just five years later a quarter of
them have been solved. For this reason | don't explicitly say which of the problems
below are open: they may be solved by the time you read this sentence.

12.2 Restriction Mapping

Suppose a DNA molecule is digested twice, by two restriction enzymes. The in-
terval graph of resulting fragments isbgpartite interval graph(Waterman and
Griggs, 1986 [361]).

Problem 12.1 Design an efficient algorithm to recognize a bipartite interval
graph.

Problem 12.2 Letv be a vertex of even degree in a balanced colored graph. Prove
that d(v) edges incident te can be partitioned intal(v)/2 pairs such that edges
in the same pair have different colors.

LetP = z; ...z, be a path in a-colored balanced grapH(V, E). A color
cis critical for P if (i) it is different from the color of the last edger,,,—1, ) IN
P and (ii) it is the most frequent color among the edge&'df E P incident tozy,
(EP denotes the edge set of pdth. The edges of the sét \ EP incident toz,,
and having a critical color are called thatical edges. A path is called critical if
it is obtained by choosing a critical edge at every step.

Problem 12.3 Show how to use critical paths for constructing alternating Eule-
rian cycles.

251
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The following problem asks for an analog of the BEST theorem for bicolored
graphs.

Problem 12.4 Find the number of alternating Eulerian cycles in a bicolored Eu-
lerian graph.

DIAGRAMSAND PHYSICAL MAPS

8 20 24 5

8 15 3 18 6 5
24 19 12

Diagram D

Map M
8 19 23 5
8 16 3 17 6 5
24 20 11

Diagram D(M)

Figure 12.1:Diagrams and physical maps.

Most algorithms for the Double Digest Problem are based on generation and
analysis of hypotheses about the order of restriction fragments in a physical map.
Each such hypothesis corresponds toapping diagramD showing the order of
sites and fragment lengths (Figure 12.1). Note that the coordinates of the sites
are not shown in the mapping diagram. A physical mddpprovides informa-
tion about both the order and the coordinates of the sites. Every physical map
corresponds to a diagram (M) (Figure 12.1) with the lengths of the fragments
corresponding to the distances between sites. The opposite is not true; not every
diagram corresponds to a physical map. The question then arises of how to con-
struct a physical map that best approximates the diagramDLet (d1,...,d,)
andM = (mq,...,m,) be the lengths of all the fragments in diagramsand



12.2. RESTRICTION MAPPING 253
D(M) given in the same order. The distance between diadpaand mapV/ is

d(D, M) = max |d; — m,]|.

i=1,n
For example, in Figure 12.1) = (8,20,24,5,24,19,12,8,15,3,18,6,5), M =

(8,19,23,5,24,20,11,8,16,3,17,6,5), andd(D, M) = 1. Thediagram adjust-
ment problemis to find a map within a shortest distance from a diagram:

Problem 12.5 Given a diagramD, find a mapM minimizingd(D, M).

Problem 12.6 Given two maps from the same equivalence class, find a shortest
series of cassette transformations to transform one map into another.

A generalization of the Double Digest Problem is to have three enzyinés
and C and to get experimental data about the lengths of the fragmesiagte
digestionsA, B, andC, doubledigestionsAB, BC, andC' A, andtriple digestion
ABC'. Such an experiment leads to thiltiple Digest Problem

Problem 12.7 Find a physical map of three enzymés B, and C' given provided
six sets of experimental data (digestiofisB, C', AB, BC,CA, andABC).

Problem 12.8 Characterize cassette transformations of multiple maps (three or
more enzymes).

The Rosenblatt and Seymour, 1982 [289] PDP algorithm is pseudo-polynomial.
Problem 12.9 Does a polynomial algorithm exist for PDP?

Skiena et al., 1990 [314] proved that the maximum numiéén) of strongly
homometric sets on elements is bounded byn’% < H(n) < in?5. The
upper bound seems to be rather pessimistic.

Problem 12.10 Derive tighter bounds foH (n).
Problem 12.11 Prove that every 5-point set is reconstructible.

Problem 12.12 Design an efficient algorithm for the Probed Partial Digest Prob-
lem.

Problem 12.13 Derive upper and lower bounds for the maximum number of solu-
tions for ann-site Probed Partial Digest Problem.
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The input to the optical mapping problem is a @:1x m matrix S = (s;5)
where each row corresponds to a DNA molecule (straight or reversed), each column
corresponds to a position in that molecule, agjd= 1 if there is a cut in position
of moleculei. The goal is to reverse the orientation of a subset of molecules (subset
of rows in S) and to declare a subset of theolumns “real cut sites” so that the
number of ones in cut site columns is maximized (Karp and Shamir, 1998 [190]).
A naive approach to this problem is to fihdolumns with a large proportion of
ones and declare them potential cut sites. However, in this approach every real site
will have a reversed twin. Leb (7, j) be the number of molecules with both cut
sitesi and; present (in either direct or reverse orientation). In a different approach,
a graph on vertice§l, ..., m} is constructed and two vertices are connected by an
edge(s, j) of weightw(i, j).

Problem 12.14 Establish a connection between optical mapping and the anti-sym-
metric longest path problem.

12.3 Map Assembly

Problem 12.15 Find the number of different interleavings ofclones.

An interleaving ofn clones can be specified by a sequence of integers. a,,,
whereq; is the number of clones that end before the closiarts. For example, the
interleaving of nine clones in Figure 3.2 corresponds to the sequ#ndé2267.
Not every sequence of integers. . . a,, specifies a valid interleaving. Moreover,
if a probe specifies a rum, j] of clones, this run implies the inequalities < i —1
(clones;j andi overlap) andzj,; > i — 1 (clonesi — 1 andj + 1 do not overlap).

Problem 12.16 Formulate the Shortest Covering String Problem with a given or-
der of clones as a linear integer program, and solve it.

Problem 12.17 Let & be the maximal number of pairwise disjoint intervals in a
collection of intervalsZ on a line. Prove that there exigtpoints on the line such
that each interval ir contains at least one of these points.

The intersection graphs corresponding to collections of arcs on a circle are
calledcircular-arc graphs If a collection of arcs on a circle does not cover some
point z on the circle, then theircular-arc graph of this collection is an interval
graph (cut the circle at and straighten it out).

Problem 12.18 Design an efficient algorithm to recognize circular-arc graphs.
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Problem 12.19 If N random clones of lengti, are chosen from a genome of
length G, the expected fraction of the genome represented in these clones is ap-
proximatelyl — e¢, wherec = % is the coverage.

In cosmid contig mappin@Zhang et al., 1994 [376]), clone overlap information
is generated from hybridization data. A set of clones is placed on a filter for colony
hybridization, and the filter is probed with a clone that has been radioactively la-
beled. This process produces overlap information as to which probes overlap with
other clones. If only a subset of clones are used as probes, overlap information
is not available between clones that are not probes. A graptpiske interval
graphif its vertex set can be partitioned into subsBtéclones used as probes) and
N (clones not used as probes), with an interval assigned to each vertex, such that
two vertices are adjacent if and only if ‘their corresponding intervals overlap and
at least one of the vertices is id (McMorris et al., 1998 [235]).

Problem 12.20 Devise an algorithm to recognize probe interval graphs.

Inner Product MappingPerlin and Chakravarti, 1993 [263]) is a clone map-
ping approach that probes a set of radiation hybrid clones twice, once with BACs
and once with STSs, to obtain a map of BACs relative to STSs. Inner Product Map-
ping requires two sets of data: a hybrid screening matrix with STSs and a hybrid
screening matrix with BACs.

Problem 12.21 Given hybrid screening matrices with STSs and BACs, construct a
map of BACs relative to STSs.

Elementsm;m;m, for 1 < i < j < k < n form anordered triplein a per-
mutationw = 7, ... m,. Let ®(x) be a collection of all’;) ordered triples forr.
Radiation hybrid mapping motivates the following problem:

Problem 12.22 Given an arbitrary sefl’ of ordered triples of am-element set,
find a permutationr such thatl’ C ®(r).

Elementsr;m;m;, form anunordered tripleif either1 < i < j < k < nor
1<k <j<i<n.LetO(n) be acollection of all unordered triples for

Problem 12.23 Given an arbitrary sefl” of unordered triples of am-element set,
find a permutationr such thatl’ C ©(¢).
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12.4 Sequencing

The simplest heuristic for the Shortest Superstring Problem is the GREEDY al-
gorithm: repeatedly merge a pair of strings with maximum overlap until only one
string remains. Tarhio and Ukkonen, 1988 [333] defineactimapressiomf an SSP
algorithm as the number of symbols saved by this algorithm compared to plainly
concatenating all the strings.

Problem 12.24 Prove that the GREEDY algorithm achieves at leaghe com-

; ; ; i GREEDY compression 1
pression of an optlmal superstring, I""dptimal compression > 5

A performance guarantee with respect to compression does not imply a perfor-
mance guarantee with respect to length. Since an example for which the approxi-
mation ratio of GREEDY is worse than 2 is unknown, Blum et al., 1994 [37] raised
the following conjecture:

Problem 12.25 Prove that GREEDY achieves a performance guarantee of 2.

LetS = {s1,...,s,} be a collection of linear strings al= {c,...,cn}
be a collection of circular strings. We say tlgais acirculation of S if every s; is
contained in one of the circular stringsfor 1 < 5 < m. The length of circulation
IC| = 3>=7%, |¢;| is the overall length of the strings froth

Problem 12.26 Find the shortest circulation for a collection of linear strings.

Let P = {s1,...,sn} be a set opositivestrings andV = {¢;,...,t;} be a
set ofnegativestrings. We assume that no negative strpg a substring of any
positive strings;. A consistent superstrintpr (P, NV) is a strings such that each
s; IS a substring of and not; is a substring o (Jiang and Li, 1994 [180]).

Problem 12.27 Design an approximation algorithm for the shortest consistent su-
perstring problem.

Short fragments read by sequencing contain errors that lead to complications in
fragment assembly. Introducing errors leadstortesti-approximate superstring
problem(Jiang and Li, 1996 [181]):

Problem 12.28 Given a setS of strings, find a shortest string such that each
string z in .S matches some substringwfwith at mostk errors.

Suppose we are given a s&tof n randomstrings of a fixed sizé in an A-
letter alphabet. If, is large (of the order oft!), the length of the shortest common
superstringt(S) for the setS is of the ordem. If n is small, E(S) is of the order
n-l.
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Problem 12.29 EstimateE(S) as a function of, n, and A.

Given stringss andt, overlap(s, t) is the length of a maximal prefix ofthat
matches a suffix of.

Problem 12.30 Given a collection of i.i.d. stringgss,...,s,} of fixed length,
find the distribution ofnax{overlap(s;,s;j) : 1 <i # j < n}.

Given a collection of readS = {s, ..., s,} from a DNA sequencing project
and an integet, the spectrum of is a setS; of all [-tuples from strings, ..., s,.
Let A be an upper bound on the number of errors in each DNA read. One approach
to the fragment assembly problem is to first correct the errors in each read and then
assemble the correct reads into contigs. This motivates the following problem:

Problem 12.31 GivenS, A, and!, introduce up tQA corrections in each string in
S in such a way thats;| is minimized.

12.5 DNA Arrays

Problem 12.32 Prove that the information-theoretic lower bound for the number
of probes needed to unambiguously reconstruct an arbitrary string of lemgsh

Problem 12.33 Devise an algorithm for SBH sequence reconstruction by data
with errors (false positive and false negative).

Given two strings with the samktuple composition, thelistancebetween
them is the length of thehortestseries of transpositions transforming one into the
other.

Problem 12.34 Devise an algorithm for computing or approximating the distance
between two strings with the sarfiple composition.

Problem 12.35 What is the largest distance between metter strings with the
same-tuple composition?

Continuous stacking hybridizatioassumes an additional hybridization of short
probes that continuously extends duplexes formed by the target DNA fragment and
the probes from the sequencing array. In this approach, additional hybridization
with a shortm-tuple on the array’ (k) provides information about sonté + m)-
tuples contained in the sequence.
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Problem 12.36 Given a spectrunt that does not provide an unambiguous SBH
reconstruction, determine a minimum number of continuous stacking hybridization
experiments needed to unambiguously reconstruct the target fragment.

Problem 12.37 Reconstruct the sequence of a DNA fragment given a spedrum
and the results of additional continuous stacking hybridizations.

A reduced binary arrayf order! is an array with memorg - 2 composed of
all multiprobes of two kinds

{W,5},{W,S},... {W,S}, and {R,Y} {R,Y},... {R,Y}.
i 1

For example, fof = 2, the reduced binary array consists of 8 multiprobésiy’,
WS, SW, SS,RR, RY,YR, andYY. Each multiprobe is a pool of four dinu-
cleotides.

Problem 12.38 Compute the branching probability of reduced binary arrays and
compare it with the branching probability of uniform arrays.

We call an arrayk-boundedf all probes in the array have a length of at most
k.

Problem 12.39 Givenm andk, find ak-bounded array withn (multi)probes max-
imizing the resolving power.

An easier version of the previous problem is the following:

Problem 12.40 Do binary arraysCy,;,, (k — 1) provide asymptotically the best re-
solving power among ak-bounded arrays?

Although binary arrays provide better resolving power than uniform arrays, an
efficient algorithm for reconstruction of a DNA fragment from its spectrum over a
binary array is still unknown.

Problem 12.41 Does there exist a polynomial algorithm for SBH sequence recon-
struction by binary arrays?

The proof of theorem 5.6 considers the switgh, atx,y and the switchs; at
z,u. The proof implicitly assumes that the sets of verti€esy} and{z, u} do not
overlap.

Problem 12.42 Adjust the proof for the case in which these sets do overlap.
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Let £ be a set of strings. Consider a get(strings precedence dgtaf all
ordered pairs of different-tuples such that they occur in some string frahin
the given order but at arbitrary distances. Chetverin and Kramer, 1993 [66] sug-
gested thenested strand hybridizatioapproach to DNA arrays, which results in
the following problem (Rubinov and Gelfand, 1995 [291]):

Problem 12.43 ReconstructC given strings precedence data.

Two-dimensional Gray codes are optimal for minimizing the border length of
uniform DNA arrays. However, for aarbitrary array, the problem of minimizing
the overall border lengths of photolithographic masks remains unsolved.

Problem 12.44 Find an arrangement of probes in an (arbitrary) array minimizing
the overall border lengths of masks for photolithographic array design.

12.6 Sequence Comparison

Fitting a sequenc&” into a sequenc@ is a problem of finding a substring’’ of
W that maximizes the score of alignmextl/, W') among all substrings d¥'.

Problem 12.45 Devise an efficient algorithm for the fitting problem.

Problem 12.46 Estimate the number of different alignments betweenrivietter
sequences.

Problem 12.47 Devise an algorithm to compute the number of distinct optimal
alignments between a pair of strings.

Problem 12.48 For a pair of stringsv; ...v, andw; ...w,, show how to com-
pute, for each(s, j), the value of the best alignment that aligns the charaeter
with characterw;.

Problem 12.49 For a parameterk, compute the global alignment between two
strings, subject to the constraint that the alignment contains at ingaps (blocks
of consecutive indels).

The k-difference alignmenproblem is to find the best global alignment of
stringsV andW containing at most mismatches, insertions, or deletions.

Problem 12.50 Devise ar0(kn) k-difference global alignment algorithm for com-
paring twon-letter strings.

Chao et al., 1992 [64] described an algorithm for aligning two sequences within
a diagonal band that requires oiiinw) computation time an@(n) space, where
n is the length of the sequences ands the width of the band.
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Problem 12.51 Can an alignment within a diagonal band be implemented with
O(w) space?

Myers and Miller, 1988 [246] studied the following:

Problem 12.52 Develop a linear-space version of global sequence alignment with
affine gap penalties.

Huang and Miller, 1991 [169] studied the following:
Problem 12.53 Develop a linear-space version of the local alignment algorithm.

In the space-efficient approach to sequence alignment, the original problem of
sizen x m is reduced to two subproblems of sizes % and(n —i) x . In a fast
parallel implementation of sequence alignment, it is desirable to haataaced
partitioning that breaks the original problem into sub-problems of equal sizes.

Problem 12.54 Design a space-efficient alignment algorithm with balanced par-
titioning.

The score of a local alignment is not normalized over the length of the match-
ing region. As a result, a local alignment with score 100 and length 100 will be
chosen over a local alignment with score 99 and length 10, although the latter one
is probably more important biologically. To reflect the length of the local align-
ment in scoring, the scorg1, J) of local alignment involving substringé and
J may be adjusted by dividing(Z, J) by the total length of the aligned regions:

%. Thenormalized local alignmentroblem is to find substringé and.J that

maximize% among all substring$ and.J with |I| + |J| > k, wherek is a
threshold for the minimal overall length éfand.J.

Problem 12.55 Devise an algorithm for solving the normalized local alignment
problem.

A string X is called asupersequencef a stringV if V' is a subsequence o&f.

Problem 12.56 Given stringsV” and W, devise an algorithm to find the shortest
supersequence for both and V.

Let P be a pattern of length, and letT" be a text of lengthn. Thetandem re-
peatproblem is to find an interval ift’ that has the best global alignment with some
tandem repeat oP. Let P™ be the concatenation @ with itself m times. The
tandem repeat problem is equivalent to computing the local alignment befiféen
andT’, and the standard local alignment algorithm solves this probledinn?)
time.
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Problem 12.57 Find an approach that solves the tandem repeat proble@(imm )
time.

An alignment of circular strings is defined as an alignment of linear strings
formed by cutting (linearizing) these circular strings at arbitrary positions.

Problem 12.58 Find an optimal alignment (local and global) of circular strings.

A local alignment between two different stringsand B finds a pair of sub-
strings, one inA and the other inB, with maximum similarity. Suppose that we
want to find a pair of (non-overlapping) substringghin string A with maximum
similarity (optimal inexact repeat problem Computing the local alignment be-
tweenA and itself does not solve the problem, since the resulting alignment may
correspond to overlapping substrings. This problem was studied by Miller (un-
published manuscript) and later by Kannan and Myers, 1996 [184] and Schmidt,
1998 [308].

Problem 12.59 Devise an algorithm for the optimal inexact repeat problem.

Schoniger and Waterman, 1992 [310] extended the range of edit operations in
sequence alignment to includen-overlappingeversals in addition to insertions,
deletions, and substitutions.

Problem 12.60 Devise an efficient algorithm for sequence alignment with non-
overlapping reversals.

In thechimeric alignmenproblem (Komatsoulis and Waterman, 1997 [205]), a
stringV and a database of stringy® = {W,,... Wy} are given, and the problem
is to findmax; <; < n s(V, W; @ W;) whereW; @ W is the concatenation o¥/;
andW;. -

Problem 12.61 Devise an efficient algorithm for the chimeric alignment problem.
Problem 12.62 Show that in any permutation efdistinct integers, there is either
an increasing subsequence of length at leggt or a decreasing subsequence of
length at least,/n.

A Catalansequence is a permutatian ... zs, of n ones and: zeros such
that for any prefixz; ... z;, the number of ones is at least as great as the number
of zeros. Then-th CatalannumberC,, is the number of such sequences.

Problem 12.63 Prove the following:
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e (), is the number of standard Young tableaux with two rows of length

e (), is the number of permutations € S,, with a longest decreasing subse-
guence of length at most 2.

e (), is the number of sequences of positive intedetSa; < as < ... <a,
such thata; < ¢ for all 3.

Problem 12.64 Prove the recurrenc€’, ., = C,,C, + C,, 1C1 + ...+ C,C,,.

Problem 12.65 Prove that the length of the longest decreasing subsequence of
permutationr is the length of the first column of the Young tabléyu).

A subsequence of permutationr is k-increasingif, as a set, it can be written
as
oc=01Uo2U...Uog

where any givem; is an increasing subsequencerof
Problem 12.66 Devise an algorithm to find longestincreasing subsequences.

Chang and Lampe [61] suggested an analog of the Sankoff-Mainville conjec-
ture for the case of the edit distanée/, W) betweemn-letter i.i.d. stringsi/and
w:

Problem 12.67 For random i.i.d.n-letter strings in ak-letter alphabet,

Expectation(d(V,W)) 1 1
=1—-—+o0
Gusfield et al., 1994 [146] proved that the number of convex polygons in the pa-
rameter space decomposition fyilobal alignment is bounded b@(n2/3), where
n is the length of the sequences. Fernandez-Baca et al., 1999 [102] studied the
following:

).

Problem 12.68 Generate a pair of sequences of lengththat have an order of
Q(n?/3) regions in the decomposition of the parameter space.

For a fixed-length alphabet, no examples of sequences(¥ith/?) regions in
the parameter space decomposition are known.

Problem 12.69 Improve the bound?(n2/3) on the number of regions in space
decomposition for global alignment in the case of a bounded alphabet.
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Problem 12.70 Derive bounds for the expected number of regions in space de-
composition for global alignment of two random sequences of lemgth

Problem 12.71 Generalize bounds for the number of regions in space decomposi-
tion for the case of multiple alignment.

Parameter space decomposition for local alignment usually contains more re-
gions than parameter space decomposition for global alignment. Vingron and Wa-
terman, 1994 [346] studied the links between the parametric sequence alignment
and the phase transition. In this connection, it is interesting to study the parameter
decomposition of logarithmic area.

Problem 12.72 Derive bounds for the expected number of regions in space de-
composition of logarithmic area for local alignment of two random sequences of
lengthn.

The Gusfield et al., 1994 [146] algorithm for parametric sequence alignment
of two sequences runs (R + E) time per region, wherd is the number of
regions in the parametric decomposition afids the time needed to perform a
single alignment. In the case of unweighted scoring scheies,O(FE), so the
cost per region i$)(FE). When one uses a weight matrix, little is known ab&ut
Gusfield formulated the following:

Problem 12.73 Estimate the number of regions in a convex decomposition in the
case of weight matrices.

Problem 12.74 Devise a fast algorithm for space decomposition in the case of
weight matrices.

Sinceenergyparameters for RNA folding are estimated with errors, it would be
useful to study parametric RNA folding. For example, comparison of regions cor-
responding to cloverleafs for tRNA parameter space decomposition would provide
an estimate of the accuracy of currently used RNA energy parameters.

Problem 12.75 Develop an algorithm for parametric RNA folding.

Let S, (i, d) be arandom variable corresponding to the scgren@tches +#
mismatches s# indels) of the global alignment between two random i.i.d. strings
of lengthn. Arratia and Waterman, 1994 [14] definetk, ) = lim,,_, w
and demonstrated thét = 0} = {(u,9) : a(p, ) = 0} is a continuous phase
transition curve.

Problem 12.76 Characterize the curve(u,d) = 0.
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12.7 Multiple Alignment

Problem 12.77 Devise a space-efficient algorithm for multiple alignment.

Problem 12.78 Devise an algorithm that assembles multiple alignments from 3-
way alignments.

Problem 12.79 Construct an example for which the Vingron-Argos matrix multi-
plication algorithm requires2(L) iterations, where. is the length of sequences.

Jiang and Li, 1994 [180] formulated the following:

Problem 12.80 Can shortest common supersequences (SCSs) and longest com-
mon supersequences (LCSs) on binary alphabets be approximated with a ratio bet-
ter than2?

One could argue that the notion of NP-completeness is somewhat misleading
for some computational biology problems, because it is insensitive to the limited
parameter ranges that are often important in practice. For example, in many appli-
cations, we would be happy with efficient algorithms for multiple alignment with
kE < 10. What we currently have is th@((2n)*) dynamic programming algo-
rithm. The NP-completeness of the multiple alignment problem tells us almost
nothing about what to expect if we fix our attention on the rangé ef 10. It
could even be the case that there is a linear-time algorithm for every fixed value
of k! For example, it would be entirely consistent with NP-completeness if the
problem could be solved in tim@(2¥n).

The last decade has seen the development of algorithms that are particularly
applicable to problems such as multiple alignment for fixed parameter ranges. We
presently do not know whether the complexity obtained by dynamic programming
is the “last word” on the complexity of the multiple alignment problem (Bodlaender
et al., 1995 [38]). Mike Fellows formulated the following conjecture:

Problem 12.81 The longest common subsequence problenk feequences in a
fixed-size alphabet can be solved in tifi{é&)n® wherex is independent of.

12.8 Finding Signals in DNA

Problem 12.82 Describe a winning strategy faB in the best bet for simpletons.

Problem 12.83 Describe the best strategy farin the best bet for simpletons (i.e.,
the strategy that minimizes losses).
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If a coin in the best bet for simpletons is biased (epg0) > p(1)), it makes
sense ford to choose a word such 8s. . 0 to improve the odds.

Problem 12.84 Study the best bet for simpletons with a biased coin. O¢esll
have an advantage ovet in this case?

Problem 12.85 Derive the variance of the number of occurrences of a given word
in the case of linear strings.

Problem 12.86 Devise an approximation algorithm for the consensus word prob-
lem.

The Decoding Problem can be formulated as a longest path problem in a di-
rected acyclic graph. This motivates a question about a space-efficient version of
the Viterbi algorithm.

Problem 12.87 Does there exist a linear-space algorithm for the decoding prob-
lem?

12.9 Gene Prediction

The spliced alignment algorithm finds exons in genomic DNA by using a related
protein as a template. What if a template is not a protein but other (uninterpreted)
genomic DNA? In particular, can we use (unannotated) mouse genomic DNA to
predict human genes?

Problem 12.88 Generalize the spliced alignment algorithm for alignment of one
genomic sequence against another.

Problem 12.89 Generalize the similarity-based approach to gene prediction for
the case in which multiple similar proteins are available.

Sze and Pevzner, 1997 [332] formulated the following:

Problem 12.90 Modify the spliced alignment algorithm for finding suboptimal
spliced alignments.

The “Twenty Questions Game with a Liar” assumes that every answer in the
game is false with probability. Obviously, ifp = % the game is lost since the liar
does not communicate any information to us.

Problem 12.91 Design an efficient strategy for the “Twenty Questions Game with
a Liar” that finds £ unknown integers from the intervgl, n] if the probability of a
false answer ip # 1.
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Problem 12.92 Estimate the expected number of questions in the “Twenty Ques-
tions Game with a Liar” if the probability of a false answerpis# %

Problem 12.93 Design experimental and computational protocols to find all al-
ternatively spliced variants for a given genomic sequence.

The observation that PCR-based queries can be used to test a potentially ex-
ponential number of hypotheses about splicing variants leads to a reformulation of
the above problem.

Problem 12.94 Given a graphG(V, E) with a collectionC of (unknown) paths,
reconstructC by asking the minimum number of queries of the form: “Does a
collectionC contain a path passing through verticesindw from G?”

Let S be a fixed set of probes, and IEtbe a DNA sequence. A fingerprint
of C is a subset of probes frorfi that hybridize withC'. Let G be a genomic
sequence containing a gene represented by a cDNA ¢lohironov and Pevzner,
1999 [241] studied the following fingerprint-based gene recognition problem:

Problem 12.95 Given a genomic sequendg and the fingerprint of the corre-
sponding cDNA cloné€’, predict a gene irG (i.e., predict all exons 7).

12.10 Genome Rearrangements

Sorting by reversals corresponds to eliminating breakpoints. However, for some
permutations (such as 563412), no reversal reduces the number of breakpoints. All
three strips (maximal intervals without breakpoints) in 563412 are increasing.

Problem 12.96 Prove that if an unsigned permutation has a decreasing strip, then
there is a reversal that reduces the number of breakpoints by at least one.

A 2-greedy algorithm for sorting by reversals chooses reversalando such
that the number of breakpoints in- p - ¢ is minimal among all pairs of reversals.

Problem 12.97 Prove that 2-greedy is a performance guarantee algorithm for
sorting by reversals.

In the case in which the sequence of genes contains duplications, suoeting
mutationsby reversals is transformed into sortimgrdsby reversals. For example,
the shortest sequence of reversals to transform the word 43132143 into the word
42341314 involves two inversiond3132143 — 42313143 — 42341314.
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Problem 12.98 Devise a performance guarantee algorithm for sorting words by
reversals.

Kececioglu and Sankoff, 1994 [193] studied the bounds for the dianittey
in the case of signed permutations and provedithatl < D(n) < n. They also
conjectured the following:

Problem 12.99 For signed circular permutationd)(n) = n for sufficiently large
.

Problem 12.100 Characterize the set of “hard-to-sort” signed permutationsron
elements such thad(w) = D(n).

Problem 12.101 Improve the lower bound and derive an upper bound for the ex-
pected reversal distance.

Problem 12.102 Estimate the variance of reversal distance.

Gates and Papadimitriou, 1979 [120] conjectured that a particular permutation
onn elements requires at Ie%tn reversals to be sorted. Heydari and Sudborough,
1997 [161] disproved their conjecture by describ%%gl + 2 reversals sorting the
Gates-Papadimitriou permutation.

Problem 12.103 Find the prefix reversal diameter of the symmetric group.

Genomes evolve not only by inversions but tignspositionsas well. For a
permutationr, atranspositionp(z, j, k) (defined for alll <i < j <n+ 1 and all
1 < k < n+ 1suchthat ¢ [i,j]) “inserts” an intervali, ; — 1] of = between
m—1 andm. Thusp(i, j, k) corresponds to the permutation

1...i—1‘ii+1 ......... j-2j-1Hj...k-1‘k...n

Given permutationsr and o, the transposition distancés the length of the
shortest series of transpositions po, . . . , p; transformingr iNto - py-po - - - py =
o. Sortingn by transpositionss the problem of finding the transposition distance
d(m) betweenr and the identity permutation Bafna and Pevzner, 1998 [20]
devised al.5 performance guarantee algorithm for sorting by transpositions and
demonstrated that the transposition diamdig(n) of the symmetric group is
bounded by2 < D;(n) < 2.

Problem 12.104 Find the transposition diameter of the symmetric group.
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The well-known variant of sorting by transpositions is sorting by transpositions
p(i,i + 1,7 + 2) where the operation is an exchange of adjacent elements. A
simple bubble-sort algorithm solves this problem for linear permutations. Solving
the problem for circular permutations is more difficult.

Problem 12.105 Design an algorithm for sorting circular permutations by ex-
changes of adjacent elements.

Problem 12.106 Every circular permutation can be sorted 2257|251 | ex-
changes of adjacent elements.

We represent a circular permutation as elements . 7, equally spaced on a
circle. Figure 12.2 presents circular permutatiens m; ... m, ando = oy ...0y,
positioned on two concentric circles an@édges; . . . e, such that; joins element
7 in 7 with element in o. We call such a representationmofindec anembedding
and we are interested in embeddings minimizing the nurébef crossingedges.
Edges in an embedding can be directed either clockwise or counterclockwise; no-
tice that the overall number of crossing edges depends on the choice of directions.
For example, the embedding in Figure 12.2a corresponds te 2, while the
embedding in Figure 12.2b corresponds(to= 3. An n-mer direction vector
v = uy,...v, With v; € {+1,—1} defines an embedding by directing an edge
clockwise ifv; = +1 and counterclockwise otherwise.

For convenience we choose the “twelve o’clock” vertex on a circle to represent
a “starting” point of a circular permutation. Choosing an elemeas a starting
point of = defines arotation of r. For the sake of simplicity, we assume that
o = 1...nis the identity permutation and that the starting point-a$ 1.

Figure 12.2:Crossing edges in embeddings.

Every rotation ofr with » as a starting point and every vecterdefine an
embedding with a number afrossingedgesC/(r,v). Sankoff and Goldstein,
1989 [303] studied the followingptimal embeddingroblem:
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Problem 12.107 Find

min C(r,v).

Letd;;() be the distance from elemeitb elemeny in permutationr counted
clockwise. Thdengthof a clockwise edge; is defined as = (dy;(o) — dyi(n))
mod(:), while the length of a counterclockwise edge is definetl-as: — i. For a
rotationr, define acanonicaldirection vectow(r) = (vy(r) ... v,(r)) according
to the rule that;(r) = +1 if clockwise edgee; is shorter than counterclockwise
edgeg; (i.e., if7 < i) and—1 otherwise.

Problem 12.108 Prove

n—1, n—1
2 1 2

mrin C(r,v(r)) <]

|.

Problem 12.109 Prove that for every) < r < n — 1, circular permutationr can
be sorted in at mosf'(r, v(r)) exchanges of adjacent elements.

An A-permutation om elements is a permutation ¢f, 2, ..., n} interspersed
with letters from an alphabed. For example, 3aalbaa4a52b is4upermutation
of 31452 with. A = {a,b}. A reversal of and-permutation is valid if its start-
ing and ending elements coincide. An identdypermutation is a permutation in
which {1,2,...,n} appear in order (with arbitrary assignment of elements from
A).

Problem 12.110 Design a test deciding whether adrpermutation can be sorted
by valid reversals.

Problem 12.111 Design an algorithm for sortingd-permutations by valid rever-
sals.

12.11 Computational Proteomics

Mass-spectrometry has become a source of new protein sequences, some of them
previously unknown at the DNA level. This raises the problem of bridging gap
between proteomics and genomics, i.e., problem of sequencing DNA based on
information derived from large-scale MS/MS peptide sequencing. This problem

is complicated since peptides sequenced by mass-spectrometry may come in short
pieces with potential ambiguities (such as transposition of adjacent amino acids
and wild cards).



270 CHAPTER 12. PROBLEMS

Problem 12.112 Given a set of peptides (with ambiguities) from a given protein,
design experimental and computational protocols to find the genomic sequence
corresponding to this protein.

Problem 12.113 Design an algorithm for searching peptides with ambiguities in
protein databases.

Consider a mixture of (unknown) proteins subject to complete digestion by a
protease (e.g., trypsin). This results in a collection of peptides ranging in length
from 10 to 20 amino acids, and the problem is to decide which peptides belong to
the same proteins and to reconstruct the order of peptides in each of the proteins.
The mass-spectrometer is capable of (partial) sequencing of all peptides in the
mixture, but it is typically unknown which peptides come from the same protein
and what the order is of peptides in the proteins. Protein sequencing of protein
mixtures is a problem of assembling peptides into individual proteins.

Problem 12.114 Devise experimental and computational protocols for sequencing
protein mixtures by mass-spectrometry.

The spectrum graph approachde novopeptide sequencing does not take into
account internal ions and multiple-charged ions.

Problem 12.115 Devise a peptide sequencing algorithm taking into account inter-
nal and multiple-charged ions.

Let M (P) be the set of masses of all partial peptides of pepidelsing diges-
tion of P by different non-specific proteases, one can obtain a set of experimentally
measured masses of partial peptidés_ M (P).

Problem 12.116 Given a set of masséd C M (P), reconstructP.

Accurate determination of the peptide parent mass is extremely import@at in
novopeptide sequencing. An error in parent mass leads to systematic errors in the
masses of vertices for C-terminal ions, thus making peptide reconstruction difficult.
In practice, the offsets between the real peptide masses (given by the sum of amino
acids of a peptide) and experimentally observed parent masses are frequently so
large that errors in peptide reconstruction become almost unavoidable.

Problem 12.117 Given an MS/MS spectra (without parent mass), devise an algo-
rithm that estimates the parent mass.



Chapter 13

All You Need to Know about Molecular Biology

Well, not really, of course, see Lewin, 1999 [220] for an introduction.

DNA s a string in the four-letter alphabet piicleotidesA, T, G, and C. The
entire DNA of a living organism is called itgenome Living organisms (such as
humans) have trillions of cells, and each cell contains the same genome. DNA
varies in length from a few million letters (bacteria) to a few billion letters (mam-
mals). DNA forms a helix, but that is not really important for this book. What is
more important is that DNA is usually double-stranded, with one strand being the
Watson-Crick complemeiiT pairs with A and C pairs with G) of the other, like
this:

ATGCTCAGG

EEEREENEE
TACGAGTCC

DNA makes the workhorses of the cell callpdteins Proteins are short
strings in theamino acid20-letter alphabet. The human genome makes roughly
100,000 proteins, with each protein a few hundred amino acids long. Bacteria
make 500—1500 proteins, this is close to the lower bound for a living organism
to survive. Proteins are made by fragments of DNA catledesthat are roughly
three times longer than the corresponding proteins. Why three? Because every
three nucleotides in the DNA alphabet code one letter in the protein alphabet of
amino acids. There ar¢® = 64 triplets codon$, and the question arises why
nature needs so many combinations to code 20 amino acids. Well, genetic code
(Figure 13.1) is redundant, not to mention that there e&tsppcodons signaling
the end of protein.

Biologists divide the world of organisms ineukaryotegwhose DNA is en-
closed into a nucleus) amtokaryotes A eukaryotic genome is usually not a single
string (as in prokaryotes), but rather a set of strings cajl@dmosomesFor our
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purposes, the major difference to remember between prokaryotes and eukaryotes is
that in prokaryotes genes are continuous strings, while they are broken into pieces
(called exon3 in eukaryotes. Human genes may be broken into as many as 50
exons, separated by seemingly meaningless pieces aaiteds

A gene broken into many pieces still has to produce the corresponding protein.
To accomplish this, cells have to cut off the introns and concatenate all the exons
together. This is done ImMRNA an intermediary molecule similar to short, single-
stranded DNA, in a process callednscription There are signals in DNA to start
transcription that are callepromoters The protein-synthesizing machinery then
translatescodons in mMRNA into a string of amino acids (protein). In the laboratory,
MRNA can also be used as a template to make a complementary copyofaéd
that is identical to the original gene with cut-out introns.

Second position
T C A G
TTT TCT TAT TGT
PHE TYR CYSs
TTC TCC TAC TGC
T SER
TTA TCA TAA TGA Stop
LEU Stop
TG TCG TAG TGG TRP
c CTT CcCT CAT CGT
o] HIS
= CTC ccce CAC CGC
g |C LEU PRO ARG
g CTA CCA CAA CGA
W GLN
-L‘f CTG CCG CAG CGG
ATT ACT AAT AGT
ASN SER
ATC ILE ACC AAC AGC
A THR
ATA ACA AAA AGA
LYS ARG
ATG MET ACG AAG AGG
GTT GCT GAT GGT
ASP
GTC GCC GAC GGC
G VAL ALA GLY
GTA GCA GAA GGA
GLU
GTG GCG GAG GGG

Figure 13.1:Genetic code.

Over the years biologists have learned how to make many things with DNA.
They have also learned how to copy DNA in large quantities for further study.
One way to do thisPCR (polymerase chain reaction), is the Gutenberg printing
press of DNA. PCR amplifies a short (100 to 500-nucleotide) DNA fragment and
produces a large number of identical strings. To use PCR, one has to know a
pair of short (20 to 30-letter) strings flanking the area of interest and design two



PevznerBm.gxd 6/14/2000 12:28 PM Page 273 $

ALL YOU NEED TO KNOW ABOUT MOLECULAR BIOLOGY 273

PCR primers, synthetic DNA fragments identical to these strings. Why do we need
a large number of short identical DNA fragments? From a computer science per-
spective, having the same string in 10'® copies does not mean much; it does not
increase the amount of information. It means a lot to biologists however, since
most biological experiments require using a lot of strings. For example, PCR can
be used to detect the existence of a certain DNA fragment in a DNA sample.

Another way to copy DNA is to clone it. In contrast to PCR, cloning does not
require any prior information about flanking primers. However, in cloning, biolo-
gists do not have control over what fragment of DNA they amplify. The process
usually starts with breaking DNA into small pieces. To study an individual piece,
biologists obtain many identical copies of each piece by cloning the pieces.
Cloning incorporates a fragment of DNA into a cloning vector. A cloning vector is
a DNA molecule (usually originated from a virus or DNA of a higher organism)
into which another DNA fragment can be inserted. In this operation, the cloning
vector producing an does not lose its ability for self-replication. Vectors introduce
foreign DNA into host cells (such as bacteria) where they can be reproduced in
large quantities. The self-replication process creates a large number of copies of
the fragment, thus enabling its structure to be investigated. A fragment reproduced
in this way is called a clone. Biologists can make clone libraries consisting of
thousands of clones (each representing a short, randomly chosen DNA fragment)
from the same DNA molecule.

Restriction enzymes are molecular scissors that cut DNA at every occurrence
of certain words. For example, the BamHI restriction enzyme cuts DNA into
restriction fragments at every occurrence of GGATCC. Proteins also can be cut
into short fragments (called peptides) by another type of scissors, called proteases.

The process of joining two complementary DNA strands into a double-stranded
molecule is called hybridization. Hybridization of a short probe complementary to
a known DNA fragment can be used to detect the presence of this DNA fragment.
A probe is a short, single-stranded, fluorescently labeled DNA fragment that is
used to detect whether a complementary sequence is present in a DNA sample.
Why do we need to fluorescently label the probe? If a probe hybridizes to a DNA
fragment, then we can detect this using a spectroscopic detector.

Gel-electrophoresis is a technique that allows biologists to measure the size of
DNA fragments without sequencing them. DNA is a negatively charged molecule
that migrates toward a positive pole in the electric field. The speed of migration is
a function of fragment size, and therefore, measurement of the migration distances
allows biologists to estimate the sizes of DNA fragments.

o






PevznerBm.gxd 6/14/2000 12:28 PM Page 275 $

Bibliography

[2]

[3]

[4]

[5]

[6]

A.V. Aho and M.J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communication of ACM, 18:333-340, 1975.

D.J. Aldous and P. Diaconis. Hammersley’s interacting particle process and
longest increasing subsequences. Probability Theory and Related Fields,
103:199-213, 1995.

F. Alizadeh, R.M. Karp, L.A. Newberg, and D.K. Weisser. Physical map-
ping of chromosomes: A combinatorial problem in molecular biology.
Algorithmica, 13:52-76, 1995.

F. Alizadeh, R.M. Karp, D.K. Weisser, and G. Zweig. Physical mapping of
chromosomes using unique probes. Journal of Computational Biology,
2:159-184, 1995.

S. Altschul, W. Gish, W. Miller, E. Myers, and J. Lipman. Basic local align-
ment search tool. Journal of Molecular Biology, 215:403-410, 1990.

S.F. Altschul. Amino acid substitution matrices from an information theo-
retic perspective. Journal of Molecular Biology, 219:555-565, 1991.

S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D.J. Lipman. Gapped Blast and Psi-Blast: a new generation of protein
database search programs. Nucleic Acids Research, 25:3389-3402, 1997.

T.S. Anantharaman, B. Mishra, and D.C. Schwartz. Genomics via optical
mapping. II: Ordered restriction maps. Journal of Computational Biology,
4:91-118, 1997.

A. Apostolico. Improving the worst-case performance of the Hunt-
Szymanski strategy for the longest common subsequence of two strings.
Information Processing Letters, 23:63—69, 1986.

275

o



276

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

A. Apostolico and F. Preparata. Data structures and algorithms for the string
statistics problemAlgorithmicg 15:481-494, 1996.

R. Arratia, E.S. Lander, S. Tavare, and M.S. Waterman. Genomic mapping
by anchoring random clones: a mathematical analyGesnomics11:806—
827, 1991.

R. Arratia, D. Martin, G. Reinert, and M.S. Waterman. Poisson process ap-
proximation for sequence repeats, and sequencing by hybridizatamal
of Computational Biology3:425-464, 1996.

R. Arratia and M.S. Waterman. The ExstRényi strong law for pattern
matching with a given proportion of mismatche#nnals of Probability
17:1152-1169, 1989.

R. Arratia and M.S. Waterman. A phase transition for the score in match-
ing random sequences allowing deletiondnnals of Applied Probability
4:200-225, 1994.

R. Baer and P. Brock. Natural sorting over permutation spaddsith.
Comp, 22:385-410, 1968.

R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching. In
Proceedings of the Twelfth Annual International ACM SIGIR Conference on
Research and Development in Information Retriepalges 168-175, Cam-
bridge, Massachussets, 1989.

R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximate string
matching. InThird Annual Symposium on Combinatorial Pattern Matching
volume 644 of_ecture Notes in Computer Scienpages 185-192, Tucson,
Arizona, April/May 1992. Springer-Verlag.

V. Bafna, E.L. Lawler, and P.A. Pevzner. Approximation algorithms for
multiple sequence alignmentheoretical Computer Sciencg82:233-244,
1997.

V. Bafnaand P.A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing5:272-289, 1996.

V. Bafna and P.A. Pevzner. Sorting by transpositior®AM Journal on
Discrete Mathematigsl1:224—-240, 1998.

J. Baik, P.A. Deift, and K. Johansson. On the distribution of the length of
the longest subsequence of random permutatidoarnal of the American
Mathematical Society12:1119-1178, 1999.



BIBLIOGRAPHY 277

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

W. Bains. Multan: a program to align multiple DNA sequencésucleic
Acids Researchl4:159-177, 1986.

W. Bains and G. Smith. A novel method for nucleic acid sequence determi-
nation. Journal of Theoretical Biologyl35:303-307, 1988.

P. Baldi and S. BrunakBioinformatics: The Machine Learning Approach
The MIT Press, 1997.

E. Barillot, B. Lacroix, and D. Cohen. Theoretical analysis of library
screening using an N-dimensional pooling stratégiycleic Acids Research
19:6241-6247, 1991.

C. Bartels. Fast algorithm for peptide sequencing by mass spectroscopy.
Biomedical and Environmental Mass Spectromet§:363—-368, 1990.

G.J. Barton and M.J.E. Sternberg. A strategy for the rapid multiple align-
ment of protein sequenceslournal of Molecular Biology 198:327-337,
1987.

A. Baxevanis and B.F. Ouellett@ioinformatics: A Practical Guide to the
Analysis of Genes and Proteing/iley-Interscience, 1998.

R. Bellman.Dynamic ProgrammingPrinceton University Press, 1957.

G. Benson. Sequence alignment with tandem duplication. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editd®syceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB-
97), pages 27-36, Santa Fe, New Mexico, January 1997. ACM Press.

G. Benson. An algorithm for finding tandem repeats of unspecified pattern
size. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editorsceedings of

the Second Annual International Conference on Computational Molecular
Biology (RECOMB-98)pages 20-29, New York, New York, March 1998.
ACM Press.

S.M. Berget, C. Moore, and P.A. Sharp. Spliced segments at the 5’ termi-
nus of adenovirus 2 late mMRNARProceedings of the National Academy of
Sciences USA'4:3171-3175, 1977.

P. Berman and S. Hannenhalli. Fast sorting by reversabeiventh Annual
Symposium on Combinatorial Pattern Matchingplume 1075 ofLecture
Notes in Computer Sciengeages 168-185, Laguna Beach, California, June
1996. Springer-Verlag.



278

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

P. Berman, Z. Zhang, Y.Il. Wolf, E.V. Koonin, and W. Miller. Winnowing
sequences from a database search. In S. Istrail, P.A. Pevzner, and M.S. Wa-
terman, editorsProceedings of the Third Annual International Conference

on Computational Molecular Biology (RECOMB-99ages 50-58, New
York, New York, March 1999. ACM Press.

K. Biemann and H.A. Scoble. Characterization of tandem mass spectrome-
try of structural modifications in protein&cience237:992-998, 1987.

B.E. Blaisdell. A measure of the similarity of sets of sequences not requiring
sequence alignmerRroceedings of the National Academy of Sciences,USA
16:5169-5174, 1988.

A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approxima-
tion of shortest superstringgournal of the ACM41:630-647, 1994.

H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The pa-
rameterized complexity of sequence alignment and consefi$weoretical
Computer Scien¢d47:31-54, 1995.

M. Boehnke, K. Lange, and D.R. Cox. Statistical methods for multipoint
radiation hybrid mappingAmerican Journal of Human Genetje#:1174—
1188, 1991.

K.S. Booth and G.S. Leuker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithdoairnal of
Computer and System Scienc&3:335-379, 1976.

P. Bork and T.J. Gibson. Applying motif and profile searchigethods in
Enzymology266:162—-184, 1996.

M. Borodovsky and J. Mclninch. Recognition of genes in DNA sequences
with ambiguities.BioSystems30:161-171, 1993.

M. Yu. Borodovsky, Yu.A. Sprizhitsky, E.l. Golovanov, and A.A. Alexan-
drov. Statistical features in tHe. coli genome functional domains primary
structure Ill. Computer recognition of protein coding regioridolecular
Biology, 20:1144-1150, 1986.

D. Botstein, R.L. White, M. Skolnick, and R.W. Davis. Construction of a ge-
netic linkage map in man using restriction fragment length polymorphisms.
American Journal of Human Genetjc32:314-331, 1980.

R.S. Boyer and J.S. Moore. A fast string searching algorit@mmmunica-
tion of ACM 20:762—772, 1977.



BIBLIOGRAPHY 279

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Brazma, |. Jonassen, |. Eidhammer, and D. Gilbert. Approaches to the
automatic discovery of patterns in biosequencksirnal of Computational
Biology, 5:279-305, 1998.

V. Brendel, J.S. Beckman, and E.N. Trifonov. Linguistics of nucleo-
tide sequences: morphology and comparison of vocabuladesrnal of
Biomolecular Structure and Dynamic$:11-21, 1986.

D. Breslauer, T. Jiang, and Z. Jiang. Rotations of periodic strings and short
superstringsJournal of Algorithms24:340-353, 1997.

N. Broude, T. Sano, C. Smith, and C. Cantor. Enhanced DNA sequencing
by hybridization. Proceedings of the National Academy of Sciences,USA
91:3072-3076, 1994.

S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA
donor and acceptor sites from the DNA sequendeurnal of Molecular
Biology, 220:49-65, 1991.

W.J. Bruno, E. Knill, D.J. Balding, D.C. Bruce, N.A. Doggett, W.W.
Sawhill, R.L. Stallings, C.C. Whittaker, and D.C. Torney. Efficient pool-
ing designs for library screeningsenomics26:21-30, 1995.

R. Bundschuh and T. Hwa. An analytic study of the phase transition line in
local sequence alignment with gaps. In S. Istrail, P.A. Pevzner, and M.S. Wa-
terman, editorsProceedings of the Third Annual International Conference
on Computational Molecular Biology (RECOMB-9%®rages 70-76, Lyon,
France, April 1999. ACM Press.

C. Burge, A.M. Campbell, and S. Karlin. Over- and under-representation
of short oligonucleotides in DNA sequenceBroceedings of the National
Academy of Sciences US29:1358-1362, 1992.

C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic DNA.Journal of Molecular Biology268:78-94, 1997.

[55] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vin-

gron. g-gram based database searching using a suffix array. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editdtsyceedings of the Third Annual
International Conference on Computational Molecular Biology (RECOMB-
99), pages 77-83, Lyon, France, April 1999. ACM Press.

[56] A. Caprara. Formulations and complexity of multiple sorting by reversals.

In S. Istrail, P.A. Pevzner, and M.S. Waterman, edit®r®ceedings of the



280

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

BIBLIOGRAPHY

Third Annual International Conference on Computational Molecular Biol-
ogy (RECOMB-99)pages 84-93, Lyon, France, April 1999. ACM Press.

A. Caprara. Sorting by reversals is difficult. In S. Istrail, P.A. Pevzner, and
M.S. Waterman, editor&roceedings of the First Annual International Con-
ference on Computational Molecular Biology (RECOMB;®8ges 75-83,
Santa Fe, New Mexico, January 1997. ACM Press.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in
biology. SIAM Journal on Applied Mathematic48:1073-1082, 1988.

R.P. Carstens, J.V. Eaton, H.R. Krigman, P.J. Walther, and M.A. Garcia
Blanco. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2)
in human prostate canceénncogeng15:3059-3065, 1997.

W.K. Cavenee, M.F. Hansen, M. Nordenskjold, E. Kock, I. Maumenee, J.A.
Squire, R.A. Phillips, and B.L. Gallie. Genetic origin of mutations predis-
posing to retinoblastomescience228:501-503, 1985.

W.I. Chang and J. Lampe. Theoretical and empirical comparisons of approx-
imate string matching algorithms. Trhird Annual Symposium on Combina-
torial Pattern Matching volume 644 ol_ecture Notes in Computer Science
pages 175-184, Tucson, Arizona, April/May 1992. Springer-Verlag.

W.I. Chang and E.L. Lawler. Sublinear approximate string matching and
biological applicationsAlgorithmicg 12:327-344, 1994.

K.M. Chao. Computing all suboptimal alignments in linear spacerifth
Annual Symposium on Combinatorial Pattern Matchvgume 807 ot.ec-
ture Notes in Computer Sciengaages 31-42, Asilomar, California, 1994.
Springer-Verlag.

K.M. Chao, W.R. Pearson, and W. Miller. Aligning two sequences within a
specified diagonal ban€omputer Applications in Bioscien¢eés481-487,
1992.

M. Chee, R. Yang, E. Hubbel, A. Berno, X.C. Huang, D. Stern, J. Winkler,
D.J. Lockhart, M.S. Morris, and S.P.A. Fodor. Accessing genetic informa-
tion with high density DNA arraysScience274:610-614, 1996.

A. Chetverin and F. Kramer. Sequencing of pools of nucleic acids on
oligonucleotide arraysBioSystems30:215-232, 1993.

L.T. Chow, R.E. Gelinas, T.R. Broker, and R.J. Roberts. An amazing se-
guence arrangement at the 5’ ends of adenovirus 2 messenger G&A.
12:1-8, 1977.



BIBLIOGRAPHY 281

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

I. Chumakov, P. Rigault, S. Guillou, P. Ougen A. Billaut, G. Guasconi,
P. Gervy, I. LeGall, P. Soularue, and L. Grinas et al. Continuum of overlap-
ping clones spanning the entire human chromosome Rature 359:380—
387, 1992.

G. Churchill. Stochastic models for heterogeneous DNA sequeBc#igtin
of Mathematical Biology51:79-94, 1989.

V. Chvatal and D. Sankoff. Longest common subsequences of two random
sequenceslournal of Applied Probability12:306—-315, 1975.

V. Chvatal and D. Sankoff. An upper-bound techniques for lengths of com-
mon subsequences. In D. Sankoff and J.B. Kruskal, edifonse Warps,
String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparisonpages 353-357. Addison-Wesley, 1983.

K.R. Clauser, P.R. Baker, and A.L. Burlingame. The role of accurate mass
measurement ( +/— 10ppm) in protein identification strategies employing MS
or MS/MS and database searchingnalytical Chemistry 71:2871-2882,
1999.

F.S. Collins, M.L. Drumm, J.L. Cole, W.K. Lockwood, G.F. Vande Woude,
and M.C. lannuzzi. Construction of a general human chromosome jumping
library, with application to cystic fibrosisScience235:1046-1049, 1987.

N.G. Copeland, N.A. Jenkins, D.J. Gilbert, J.T. Eppig, L.J. Maltals, J.C.
Miller, W.F. Dietrich, A. Weaver, S.E. Lincoln, R.G. Steen, L.D. Steen, J.H.
Nadeau, and E.S. Lander. A genetic linkage map of the mouse: Current
applications and future prospec8cience262:57-65, 1993.

T.H. Cormen, C.E. Leiserson, and R.L. Rivebttroduction to Algorithms
The MIT Press, 1989.

A. Coulson, J. Sulston, S. Brenner, and J. Karn. Toward a physical map of
the genome of the nematod€aenorhabditis elegansProceedings of the
National Academy of Sciences USR:7821-7825, 1986.

D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Myers. Radia-
tion hybrid mapping: a somatic cell genetic method for constructing high-
resolution maps of mammalian chromosontesience250:245-250, 1990.

E. Czabarka, G. Konjevod, M. Marathe, A. Percus, and D.C. Torney. Al-
gorithms for optimizing production DNA sequencing. Rmoceedings of

the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2000) pages 399408, San Francisco, California, 2000. SIAM Press.



282

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

BIBLIOGRAPHY

V. Dancik, T. Addona, K. Clauser, J. Vath, and P.A. Pevzner. De novo pep-
tide sequencing via tandem mass spectromeiournal of Computational
Biology, 6:327-342, 1999.

K.J. Danna, G.H. Sack, and D. Nathans. Studies of simian virus 40 DNA.
VII. a cleavage map of the SV40 genoméournal of Molecular Biology
78:263-276, 1973.

K.E. Davies, P.L. Pearson, P.S. Harper, J.M. Murray, T. O'Brien, M. Sar-
farazi, and R. Williamson. Linkage analysis of two cloned DNA sequences
flanking the Duchenne muscular dystrophy locus on the short arm of the
human X chromosomé\ucleic Acids Researcii1:2303-2312, 1983.

M.A. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary
change in proteins. IAtlas of Protein Sequence and Structuchapter 5,
pages 345-352. 1978.

J. Deken. Some limit results for longest common subsequerisrete
Mathematics26:17-31, 1979.

J. Deken. Probabilistic behavior of longest common subsequence length. In
D. Sankoff and J.B. Kruskal, editor§ime Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Companzges 359—
362. Addison-Wesley, 1983.

A. Dembo and S. Karlin. Strong limit theorem of empirical functions for
large exceedances of partial sums of i.i.d. variabkesnals of Probability
19:1737-1755, 1991.

R.P. Dilworth. A decomposition theorem for partially ordered sétsnals
of Mathematics51:161-165, 1950.

T. Dobzhansky and A.H. Sturtevant. Inversions in the chromosomes of
Drosophila pseudoobscur&enetics 23:28—64, 1938.

H. Donis-Keller, P. Green, C. Helms, S. Cartinhour, B. Weiffenbach,
K. Stephens, T.P. Keith, D.W. Bowden, D.R. Smith, and E.S. Lander. A
genetic linkage map of the human genorgell, 51:319-337, 1987.

R.F. Doolittle, M.W. Hunkapiller, L.E. Hood, S.G. Devare, K.C. Robbins,
S.A. Aaronson, and H.N. Antoniades. Simian sarcoma virus onc gene, v-
sis, is derived from the gene (or genes) encoding a platelet-derived growth
factor. Science221:275-277, 1983.



BIBLIOGRAPHY 283

[90] R. Drmanac, S. Drmanac, Z. Strezoska, T. Paunesku, I. Labat, M. Zeremski,
J. Snoddy, W.K. Funkhouser, B. Koop, and L. Hood. DNA sequence de-
termination by hybridization: a strategy for efficient large-scale sequencing.
Science260:1649-1652, 1993.

[91] R. Drmanac, |. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of
megabase plus DNA by hybridization: theory of the methdsenomics
4:114-128, 1989.

[92] J. Dumas and J. Ninio. Efficient algorithms for folding and comparing nu-
cleic acid sequencedlucleic Acids Resear¢hi0:197-206, 1982.

[93] R. Durbin, S. Eddy, A. Krogh, and G. MitchinsonBiological Sequence
Analysis Cambridge University Press, 1998.

[94] M. Dyer, A. Frieze, and S. Suen. The probability of unique solutions of
sequencing by hybridization.Journal of Computational Biologyl:105—
110, 1994.

[95] S.R. Eddy and R. Durbin. RNA sequence analysis using covariance models.
Nucleic Acids Researcl22:2079-2088, 1994.

[96] N. El-Mabrouk, D. Bryant, and D. Sankoff. Reconstructing the pre-doubling
genome. In S. Istrail, P.A. Pevzner, and M.S. Waterman, ediRis;eed-
ings of the Third Annual International Conference on Computational Molec-
ular Biology (RECOMB-99)pages 154-163, Lyon, France, April 1999.
ACM Press.

[97] J. Eng, A. McCormack, and J. Yates. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database.
Journal of American Society for Mass Spectomeir976—989, 1994.

[98] G.A. Evans and K.A. Lewis. Physical mapping of complex genomes by cos-
mid multiplex analysis.Proceedings of the National Academy of Sciences
USA 86:5030-5034, 1989.

[99] W. Feldman and P.A. Pevzner. Gray code masks for sequencing by hy-
bridization. Genomics23:233-235, 1994.

[100] D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite
to correct phylogenetic treedournal of Molecular Evolution25:351-360,
1987.

[101] D. Fenyo, J. Qin, and B.T. Chait. Protein identification using mass spectro-
metric information.Electrophoresis19:998-1005, 1998.



284 BIBLIOGRAPHY

[102] D. Fernandez-Baca, T. Seppalainen, and G. Slutzki. Bounds for parametric
sequence comparison. 8ixth International Symposium on String Process-
ing and Information Retrievalpages 55-62, Cancun, Mexico, September
1999. IEEE Computer Society.

[103] J. Fermnhdez-de Coss, J. Gonzales, and V. Besada. A computer program to
aid the sequencing of peptides in collision-activated decomposition experi-
ments.Computer Applications in Biosciencekl:427—-434, 1995.

[104] J.W. Fickett. Recognition of protein coding regions in DNA sequences.
Nucleic Acids Researchi0:5303-5318, 1982.

[105] J.W. Fickett. Finding genes by computer: the state of the Bmrnds in
Genetics12:316-320, 1996.

[106] J.W. Fickettand C.S. Tung. Assessment of protein coding measurekeic
Acids Research20:6441-6450, 1992.

[107] W.M. Fitch and T.F. Smith. Optimal sequence alignmesceedings of
the National Academy of Sciences 86:1382—-1386, 1983.

[108] H. FleischnerEulerian Graphs and Related TopicElsevier Science Pub-
lishers, 1990.

[109] S.P.A. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, and C.L.
Adams. Multiplex biochemical assays with biological chipNature
364:555-556, 1993.

[110] S.P.A. Fodor, J.L. Read, M.S. Pirrung, L. Stryer, A.T. Lu, and D. Solas.
Light-directed spatially addressable parallel chemical syntheSigience
251:767-773, 1991.

[111] S. Foote, D. Vollrath, A. Hilton, and D.C. Page. The human Y chromosome:
overlapping DNA clones spanning the euchromatic regimence258:60—
66, 1992.

[112] D. Fousler and S. Karlin. Maximum success duration for a semi-markov
process.Stochastic Processes and their Applicatiop4:203-210, 1987.

[113] D. Frishman, A. Mironov, H.W. Mewes, and M.S. Gelfand. Combining
diverse evidence for gene recognition in completely sequenced bacterial
genomesNucleic Acids Researcl26:2941-2947, 1998.

[114] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematic45:835-856, 1965.



BIBLIOGRAPHY 285

[115] D.J. Galas, M. Eggert, and M.S. Waterman. Rigorous pattern-recognition
methods for DNA sequences. Analysis of promoter sequences from Es-
cherichia coli.Journal of Molecular Biology186:117-128, 1985.

[116] Z. Galil and R. Giancarlo. Speeding up dynamic programming with appli-
cations to molecular biologyTheoretical Computer Scienc64:107-118,
1989.

[117] J. Gallant, D. Maier, and J. Storer. On finding minimal length superstrings.
Journal of Computer and System Scier@@50-58, 1980.

[118] M. Gardner. On the paradoxial situations that arise from nontransitive rela-
tionships. Scientific Americanpages 120-125, October 1974.

[119] M.R. Garey and D.S. Johnsoi€omputers and Intractability: A Guide to
the Theory of NP-Completenedd/.H. Freeman and Co., 1979.

[120] W.H. Gates and C.H. Papadimitriou. Bounds for sorting by prefix reversals.
Discrete Mathematic27:47-57, 1979.

[121] M.S. Gelfand. Computer prediction of exon-intron structure of mammalian
pre-mRNAs.Nucleic Acids Researcli8:5865-5869, 1990.

[122] M.S. Gelfand. Statistical analysis and prediction of the exonic structure of
human geneslournal of Molecular Evolution35:239-252, 1992.

[123] M.S. Gelfand. Prediction of function in DNA sequence analydmsirnal of
Computational Biology2:87-115, 1995.

[124] M.S. Gelfand and E.V. Koonin. Avoidance of palindromic words in bacterial
and archaeal genomes: a close connection with restriction enzjsuekeic
Acids Researc?5:2430-2439, 1997.

[125] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene recognition via spliced
sequence alignmen®roceedings of the National Academy of Sciences,USA
93:9061-9066, 1996.

[126] J.F. Gentleman and R.C. Mullin. The distribution of the frequency of oc-
currence of nucleotide subsequences, based on their overlap cap&8adity.
metrics 45:35-52, 1989.

[127] W. Gillett, J. Daues, L. Hanks, and R. Capra. Fragment collapsing and split-
ting while assembling high-resolution restriction mageurnal of Compu-
tational Biology 2:185-205, 1995.



286 BIBLIOGRAPHY

[128] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs
and of interval graphs.Canadian Journal of Mathematic46:539-548,
1964.

[129] W. Gish and D.J. States. Identification of protein coding regions by database
similarity searchNature Genetics3:266—-272, 1993.

[130] L. Goldstein and M.S. Waterman. Mapping DNA by stochastic relaxation.
Advances in Applied Mathematj¢194—-207, 1987.

[131] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P.
Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloom-
field, and E.S. Lander. Molecular classification of cancer: class discovery
and class prediction by gene expression monitorBgence286:531-537,
1999.

[132] M. Golumbic. Algorithmic Graph Theory and Perfect Graphscademic
Press, 1980.

[133] G.H. Gonnet, M.A. Cohen, and S.A. Benner. Exhaustive matching of the
entire protein sequence databaSeience256:1443-1445, 1992.

[134] A. Gooley and N. Packer. The importance of co- and post-translational mod-
ifications in proteome projects. In W. Wilkins, K. Williams, R. Appel, and
D. Hochstrasser, editor®roteome Research: New Frontiers in Functional
Genomicspages 65-91. Springer-Verlag, 1997.

[135] O. Gotoh. Consistency of optimal sequence alignmeBisietin of Mathe-
matical Biology 52:509-525, 1990.

[136] P.Green Documentation for phrap. http://bozeman.mbt.washington.edu/
phrap.docd/phrap.html.

[137] D.S. Greenberg and S. Istrail. Physical mapping by STS hybridization: al-
gorithmic strategies and the challenge of software evaluatitournal of
Computational Biology2:219-273, 1995.

[138] M. Gribskov, J. Devereux, and R.R. Burgess. The codon preference plot:
graphic analysis of protein coding sequences and prediction of gene expres-
sion. Nucleic Acids Researci2:539-549, 1984,

[139] M. Gribskov, M. McLachlan, and D. Eisenberg. Profile analysis: detec-
tion of distantly related proteinsProceedings of the National Academy of
Sciences US/84:4355-4358, 1987.



BIBLIOGRAPHY 287

[140] R. Grossi and F. Luccio. Simple and efficient string matching Withis-
matcheslnformation Processing Letter83:113-120, 1989.

[141] L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching and non-
transitive gamesJournal of Combinatorial Theory, Series 30:183-208,
1981.

[142] R. Guigo, S. Knudsen, N. Drake, and T.F. Smith. Prediction of gene struc-
ture. Journal of Molecular Biology226:141-157, 1992.

[143] J.F. Gusella, N.S. Wexler, P.M. Conneally, S.L. Naylor, M.A. Anderson,
R.E. Tanzi, P.C. Watkins, K. Ottina, M.R. Wallace, A.Y. Sakaguchi, A.B.
Young, I. Shoulson, E. Bonilla, and J.B. Martin. A polymorphic DNA
marker genetically linked to Huntington’s diseasiature 306:234-238,
1983.

[144] D. Gusfield. Efficient methods for multiple sequence alignment with guar-
anteed error bound®ulletin of Mathematical Biology55:141-154, 1993.

[145] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Sci-
ence and Computational BiologZambridge University Press, 1997.

[146] D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of
sequence alignmenglgorithmica 12:312-326, 1994.

[147] D. Gusfield, R. Karp, L. Wang, and P. Stelling. Graph traversals, genes and
matroids: An efficient case of the travelling salesman probldbiscrete
Applied Mathematics88:167-180, 1998.

[148] J.G. Hacia, J.B. Fan, O. Ryder, L. Jin, K. Edgemon, G. Ghandour, R.A.
Mayer, B. Sun, L. Hsie, C.M. Robbins, L.C. Brody, D. Wang, E.S. Lander,
R. Lipshutz, S.P. Fodor, and F.S. Collins. Determination of ancestral alle-
les for human single-nucleotide polymorphisms using high-density oligonu-
cleotide arraysNature Genetics22:164-167, 1999.

[149] C.W. Hamm, W.E. Wilson, and D.J. Harvan. Peptide sequencing program.
Computer Applications in Biosciences115-118, 1986.

[150] J.M. Hammersley. A few seedlings of researchPinceedings of the Sixth
Berkeley Symposium on Mathematical Statististics and Probabilp&ges
345-394, Berkeley, California, 1972.

[151] S. Hannenhalli. Polynomial algorithm for computing translocation distance
between genomes. [8ixth Annual Symposium on Combinatorial Pattern
Matching volume 937 ofLecture Notes in Computer Sciengmages 162—
176, Helsinki, Finland, June 1995. Springer-Verlag.



288 BIBLIOGRAPHY

[152] S.Hannenhalli, C. Chappey, E. Koonin, and P.A. Pevzner. Genome sequence
comparison and scenarios for gene rearrangements: A test@asemics
30:299-311, 1995.

[153] S. Hannenhalli and P.A. Pevzner. Transforming men into mice (polyno-
mial algorithm for genomic distance problem). Proceedings of the 36th
Annual IEEE Symposium on Foundations of Computer Scjgrages 581—
592, Milwaukee, Wisconsin, 1995.

[154] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (poly-
nomial algorithm for sorting signed permutations by reversalsproteed-
ings of the 27th Annual ACM Symposium on the Theory of Compptiges
178-189, 1995 (full version appeared in Journal of ACM, 46: 1-27, 1999).

[155] S. Hannenhalli and P.A. Pevzner. To cut ... or not to cut (applications of
comparative physical maps in molecular evolution). Saventh Anuual
ACM-SIAM Symposium on Discrete Algorithnmmges 304-313, Atlanta,
Georgia, 1996.

[156] S. Hannenhalli, P.A. Pevzner, H. Lewis, S. Skeina, and W. Feldman. Posi-
tional sequencing by hybridizatiolComputer Applications in Bioscienges
12:19-24, 1996.

[157] W.S. Hayes and M. Borodovsky. How to interpret an anonymous bacte-
rial genome: machine learning approach to gene identificatiGenome
Research8:1154-1171, 1998.

[158] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Sciences,USA
89:10915-10919, 1992.

[159] G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with
statistically significant alignments of multiple sequenc&ioinformatics
15:563-577, 1999.

[160] N. Heuze, S. Olayat, N. Gutman, M.L. Zani, and Y. Courty. Molecular
cloning and expression of an alternative hKLK3 transcript coding for a vari-
ant protein of prostate-specific antige@ancer Researghb9:2820-2824,
1999.

[161] M. H. Heydari and I. H. Sudborough. On the diameter of the pancake net-
work. Journal of Algorithms25:67-94, 1997.

[162] D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for mul-
tiple sequence alignmentdethods in Enzymology66:383—-402, 1996.



BIBLIOGRAPHY 289

[163] D.S. Hirschberg. A linear space algorithm for computing maximal common
subsequence€£ommunication of ACML8:341-343, 1975.

[164] D.S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of ACM 24:664—-675, 1977.

[165] J.D. Hoheisel, E. Maier, R. Mott, L. McCarthy, A.V. Grigoriev, L.C. Schalk-
wyk, D. Nizetic, F. Francis, and H. Lehrach. High resolution cosmid and P1
maps spanning the 14 Mb genome of the fission yeS8stpombe Cell,
73:109-120, 1993.

[166] S. Hopper, R.S. Johnson, J.E. Vath, and K. Biemann. Glutaredoxin from
rabbit bone marrow.Journal of Biological Chemistry264:20438-20447,
1989.

[167] Y. Hu, L.R. Tanzer, J. Cao, C.D. Geringer, and R.E. Moore. Use of long
RT-PCR to characterize splice variant mRNA&sotechniques25:224—-229,
1998.

[168] X. Huang, R.C. Hardison, and W. Miller. A space-efficient algorithm for
local similarities. Computer Applications in Bioscience&373-381, 1990.

[169] X.Huang and W. Miller. A time-efficient, linear-space local similarity algo-
rithm. Advances in Applied Mathematjck2:337-357, 1991.

[170] T.J. Hubbard, A.M. Lesk, and A. Tramontano. Gathering them into the fold.
Nature Structural Biology4:313, 1996.

[171] E. Hubbell. Multiplex sequencing by hybridizatiodournal of Computa-
tional Biology, 8, 2000.

[172] E. Hubbell and P.A. Pevzner. Fidelity probes for DNA arrays. Pho-
ceedings of the Seventh International Conference on Intelligent Systems for
Molecular Biology pages 113-117, Heidelberg, Germany, August 1999.
AAAI Press.

[173] T.J. Hudson, L.D. Stein, S.S. Gerety, J. Ma, A.B. Castle, J. Silva, D.K.
Slonim, R. Baptista, L. Kruglyak, S.H. Xu, X. Hu, A.M.E. Colbert,
C. Rosenberg, M.P. Reeve-Daly, S. Rozen, L. Hui, X. Wu, C. Vestergaard,
K.M. Wilson, and J.S. Bae et al. An STS-based map of the human genome.
Science270:1945-1954, 1995.

[174] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest
common subsequenceSommunication of ACM20:350-353, 1977.



290 BIBLIOGRAPHY

[175] R.M. Idury and M.S. Waterman. A new algorithm for DNA sequence as-
sembly. Journal of Computational Biology2:291-306, 1995.

[176] C. Iseli, C.V. Jongeneel, and P. Bucher. ESTScan: a program for detecting,
evaluating and reconstructing potential coding regions in EST sequences. In
Proceedings of the Seventh International Conference on Intelligent Systems
for Molecular Biology pages 138-148, Heidelberg, Germany, August 6-10
1999. AAAI Press.

[177] A.G. Ivanov. Distinguishing an approximate word’s inclusion on Turing
machine in real timelzvestiia Academii Nauk SSSR, Series Ma&8:520—
568, 1984.

[178] A. Jauch, J. Wienberg, R. Stanyon, N. Arnold, S. Tofanelli, T. Ishida, and
T. Cremer. Reconstruction of genomic rearrangements in great apes gibbons
by chromosome paintind?roceedings of the National Academy of Sciences
USA 89:8611-8615, 1992.

[179] T.Jiang and R.M. Karp. Mapping clones with a given ordering or interleav-
ing. Algorithmica 21:262—-284, 1998.

[180] T. Jiang and M. Li. Approximating shortest superstrings with constraints.
Theoretical Computer Scienc&34:473—-491, 1994.

[181] T. Jiang and M. Li. DNA sequencing and string learninglathematical
Systems Theorg9:387-405, 1996.

[182] R.J. Johnson and K. Biemann. Computer program (SEQPEP) to aid in
the interpretation of high-energy collision tandem mass spectra of peptides.
Biomedical and Environmental Mass Spectromet8:945-957, 1989.

[183] Y.W. Kan and A.M. Dozy. Polymorphism of DNA sequence adjacent to
human beta-globin structural gene: relationship to sickle mutati®ro-
ceedings of the National Academy of Sciences,US%5631-5635, 1978.

[184] S.K.Kannan and E.W. Myers. An algorithm for locating nonoverlapping re-
gions of maximum alignment scor&IAM Journal on Computin@®5:648—
662, 1996.

[185] H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and simpler algorithm for
sorting signed permutations by reversals.Phaceedings of the Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithipages 344-351, New
Orleans, Louisiana, January 1997.



BIBLIOGRAPHY 291

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

S. Karlin and S.F. Altschul. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schémeged-
ings of the National Academy of Sciences U$A2264-2268, 1990.

S. Karlin and G. Ghandour. Multiple-alphabet amino acid sequence com-
parisons of the immunoglobulin kappa-chain constant donfinceedings
of the National Academy of Sciences J82A8597-8601, 1985.

R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of re-
peated patterns in strings, trees and arraysPriceedings of the Fourth
Annual ACM Symposium on Theory of Computjpages 125-136, Denver,
Colorado, May 1972.

R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Developmge3it:249—-260, 1987.

R.M. Karp and R. Shamir. Algorithms for optical mapping. In S. Istrail, P.A.
Pevzner, and M.S. Waterman, editoBypoceedings of the Second Annual
International Conference on Computational Molecular Biology (RECOMB-
98), pages 117-124, New York, New York, March 1998. ACM Press.

J. Kececioglu and R. Ravi. Of mice and men: Evolutionary distances be-
tween genomes under translocationPhoceedings of the 6th Annual ACM-
SIAM Symposium on Discrete Algorithnpages 604—613, New York, New
York, 1995.

J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the
reversal distance between two permutationsFdarth Annual Symposium
on Combinatorial Pattern Matchingszolume 684 of_ecture Notes in Com-
puter Sciencgpages 87-105, Padova, Italy, 1993. Springer-Verlag.

J. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome
inversion distance. Ifrifth Annual Symposium on Combinatorial Pattern
Matching volume 807 ofLecture Notes in Computer Sciengages 307—
325, Asilomar, California, 1994. Springer-Verlag.

J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the
inversion distance between two permutatiomslgorithmica 13:180-210,
1995.

J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA se-
guence assemblylgorithmica 13:7-51, 1995.



292 BIBLIOGRAPHY

[196] T.J. Kelly and H.O. Smith. A restriction enzyme frohbfemophilus influen-
zae ll. Base sequence of the recognition siteurnal of Molecular Biology
51:393-409, 1970.

[197] K. Khrapko, Y. Lysov, A. Khorlin, V. Shik, V. Florent'ev, and A. Mirz-
abekov. An oligonucleotide hybridization approach to DNA sequencing.
FEBS Letters256:118-122, 1989.

[198] J.F.C. Kingman. Subadditive ergodic theoAnnals of Probability 6:883—
909, 1973.

[199] J. Kleffe and M. Borodovsky. First and second moment of counts of words
in random texts generated by Markov chain€omputer Applications in
Biosciences8:433-441, 1992.

[200] M. Knill, W.J. Bruno, and D.C. Torney. Non-adaptive group testing in the
presence of errordiscrete Applied Mathematic88:261-290, 1998.

[201] D.E. Knuth. Permutations, matrices and generalized Young tabl@acKic
Journal of Mathematics34:709-727, 1970.

[202] D.E. Knuth. The Art of Computer Programminghapter 2. Addison-
Wesley, second edition, 1973.

[203] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing:323-350, 1977.

[204] Y. Kohara, K. Akiyama, and K. Isono. The physical map of the whole E. coli
chromosome: application of a new strategy for rapid analysis and sorting of
a large genomic libraryCell, 50:495-508, 1987.

[205] G.A. Komatsoulis and M.S. Waterman. Chimeric alignment by dynamic
programming: Algorithm and biological uses. roceedings of the
First Annual International Conference on Computational Molecular Biol-
ogy (RECOMB-97)pages 174-180, Santa Fe, New Mexico, January 1997.
ACM Press.

[206] A. Kotzig. Moves without forbidden transitions in a grapkatematicky
Casopis 18:76-80, 1968.

[207] R.G. Krishna and F. Wold. Posttranslational modifications. In R.H. An-
geletti, editor,Proteins - Analysis and Desigmpages 121-206. Academic
Press, 1998.



BIBLIOGRAPHY 293

[208] A. Krogh, M. Brown, I.S. Mian, K. S)lander, and D. Haussler. Hidden
Markov models in computational biology: Applications to protein model-
ing. Journal of Molecular Biology235:1501-1531, 1994.

[209] A. Krogh, I.S. Mian, and D. Haussler. A Hidden Markov Model that finds
genes in E. coli DNANucleic Acids Researcl22:4768—-4778, 1994.

[210] S. Kruglyak. Multistage sequencing by hybridizatiddournal of Computa-
tional Biology, 5:165-171, 1998.

[211] J.B. Kruskal and D. Sankoff. An anthology of algorithms and concepts for
sequence comparison. In D. Sankoff and J.B. Kruskal, edifanse Warps,
String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparisonpages 265-310. Addison-Wesley, 1983.

[212] G.M. Landau and J.P. Schmidt. An algorithm for approximate tandem re-
peats. InFourth Annual Symposium on Combinatorial Pattern Matching
volume 684 ofLecture Notes in Computer Sciengages 120-133, Padova,
Italy, 2-4 June 1993. Springer-Verlag.

[213] G.M. Landau and U. Vishkin. Efficient string matching in the presence of
errors. In26th Annual Symposium on Foundations of Computer Science
pages 126-136, Los Angeles, California, October 1985.

[214] E.S. Lander and M.S. Waterman. Genomic mapping by fingerprinting ran-
dom clones: a mathematical analysi&enomics2:231-239, 1988.

[215] K. Lange, M. Boehnke, D.R. Cox, and K.L. Lunetta. Statistical methods for
polyploid radiation hybrid mappingsenome Research:136—-150, 1995.

[216] E.Lawler and S. Sarkissian. Adaptive error correcting codes based on coop-
erative play of the game of “Twenty Questions Game with a Liar"Pta-
ceedings of Data Compression Conference DCC [2fge 464, Los Alami-
tos, California, 1995. IEEE Computer Society Press.

[217] C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and
J.C. Wootton. Detecting subtle sequence signals: a Gibbs sampling strategy
for multiple alignment.Science262:208—-214, October 1993.

[218] J.K. Lee, V. Dancik, and M.S. Waterman. Estimation for restriction sites
observed by optical mapping using reversible-jump Markov chain Monte
Carlo. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editersceedings
of the Second Annual International Conference on Computational Molecu-
lar Biology (RECOMB-98)pages 147-152, New York, New York, March
1998. ACM Press.



294 BIBLIOGRAPHY

[219] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversalsSoviet Physics Doklagy:707—-710, 1966.

[220] B. Lewin. Genes VIl Oxford University Press, 1999.

[221] M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. In
Proceedings of the 31st ACM Annual Symposium on Theory of Computing
pages 473-482, Atlanta, Georgia, May 1999.

[222] S.Y.R. Li. A martingale approach to the study of ocurrence of sequence
patterns in repeated experimemsnals of Probability8:1171-1176, 1980.

[223] J. Lingner, T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and T.R.
Cech. Reverse transcriptase motifs in the catalytic subunit of telomerase.
Science276:561-567, 1997.

[224] D.J. Lipman, S. F Altschul, and J.D. Kececioglu. A tool for multiple se-
guence alignmentProceedings of the National Academy of Sciences,USA
86:4412-4415, 1989.

[225] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity
searchesScience227:1435-1441, 1985.

[226] R.J. Lipshutz, D. Morris, M. Chee, E. Hubbell, M.J. Kozal, N. Shah,
N. Shen, R. Yang, and S.P.A. Fodor. Using oligonucleotide probe arrays
to access genetic diversitRiotechniquesl19:442-447, 1995.

[227] B.F. Logan and L.A. Shepp. A variational problem for random Young
tableaux.Advances in Mathematic26:206—-222, 1977.

[228] Y. Lysov, V. Florent'ev, A. Khorlin, K. Khrapko, V. Shik, and A. Mirz-
abekov. DNA sequencing by hybridization with oligonucleotidBsklady
Academy Nauk USSR03:1508-1511, 1988.

[229] C.A. Makaroff and J.D. Palmer. Mitochondrial DNA rearrangements and
transcriptional alterations in the male sterile cytoplasm of Ogura radish.
Molecular Cellular Biology 8:1474-1480, 1988.

[230] M. Mann and M. Wilm. Error-tolerant identification of peptides in sequence
databases by peptide sequence taysalytical Chemistry 66:4390-4399,
1994.

[231] M. Mann and M. Wilm. Electrospray mass-spectrometry for protein charac-
terization. Trends in Biochemical Science0:219-224, 1995.



BIBLIOGRAPHY 295

[232] D. Margaritis and S.S. Skiena. Reconstructing strings from substrings in
rounds. InProceedings of the 36th Annual Symposium on Foundations of
Computer Scienc@ages 613—620, Los Alamitos, California, October 1995.

[233] A.M. Maxam and W. Gilbert. A new method for sequencing DNRro-
ceedings of the National Academy of Sciences,U8%60-564, 1977.

[234] G. Mayraz and R. Shamir. Construction of physical maps from oligonu-
cleotide fingerprints dataJournal of Computational Biology6:237—-252,
1999.

[235] F.R. McMorris, C. Wang, and P. Zhang. On probe interval graplscrete
Applied Mathematics38:315-324, 1998.

[236] W. Miller and E.W. Myers. Sequence comparison with concave weighting
functions. Bulletin of Mathematical Biology50:97—-120, 1988.

[237] A. Milosavljevic and J. Jurka. Discovering simple DNA sequences by the
algorithmic significance methodComputer Applications in Bioscienges
9:407-411, 1993.

[238] B. Mirkin and F.S. Roberts. Consensus functions and patterns in molecular
sequencesBulletin of Mathematical Biology55:695—-713, 1993.

[239] A.A. Mironov and N.N. Alexandrov. Statistical method for rapid homology
search.Nucleic Acids Researcii6:5169-5174, 1988.

[240] A.A. Mironov, J.W. Fickett, and M.S. Gelfand. Frequent alternative splicing
of human genesGenome Research:1288-1293, 1999.

[241] A.A. Mironov and P.A. Pevzner. SST versus EST in gene recognifitin.
crobial and Comparative Genomic4$.167-172, 1999.

[242] A.A. Mironov, M.A. Roytberg, P.A. Pevzner, and M.S. Gelfand. Per-
formance guarantee gene predictions via spliced alignméa&nomics
51:332—-339, 1998.

[243] S. Muthukrishnan and L. Parida. Towards constructing physical maps by
optical mapping: An effective, simple, combinatorial approach. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editd®spceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB-
97), pages 209-219, Santa Fe, New Mexico, January 1997. ACM Press.



296 BIBLIOGRAPHY

[244] M. Muzio, A.M. Chinnaiyan, F.C. Kischkel, K. O’Rourke, A. Shevchenko,
J. Ni, C. Scaffidi, J.D. Bretz, M. Zhang, R. Gentz, M. Mann, P.H. Krammer,
M.E. Peter, and V.M. Dixit. FLICE, a novel FADD-homologous ICE/CED-
3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing sig-
naling complex.Cell, 85:817-827, 1996.

[245] E.W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica 12:345-374, 1994.

[246] E.W. Myers and W. Miller. Optimal alignments in linear spa€omputer
Applications in Bioscienceg:11-17, 1988.

[247] G. Myers. Whole genome shotgun sequenclidE Computing in Science
and Engineering1:33—-43, 1999.

[248] J.H. Nadeau and B.A. Taylor. Lengths of chromosomal segments conserved
since divergence of man and moustroceedings of the National Academy
of Sciences US/81:814-818, 1984.

[249] K. Nakata, M. Kanehisa, and C. DeLisi. Prediction of splice junctions in
MRNA sequenceaNucleic Acids Researchi3:5327-5340, 1985.

[250] D. Naor and D. Brutlag. On near-optimal alignments of biological se-
guencesJournal of Computational Biologyl:349-366, 1994.

[251] S.B. Needleman and C.D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteloarnal
of Molecular Biology 48:443-453, 1970.

[252] L. Newberg and D. Naor. A lower bound on the number of solutions to the
probed partial digest problenAdvances in Applied Mathematjck4:172—
183, 1993.

[253] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for
loop matchingsSIAM Journal on Applied Mathematic35:68-82, 1978.

[254] S. O'Brien and J. Graves. Report of the committee on comparative gene
mapping in mammals. Cytogenetics and Cell Genetjc58:1124-1151,
1991.

[255] S. Ohno.Sex chromosomes and sex-linked gesgsinger-Verlag, 1967.

[256] S. Ohno, U. Wolf, and N.B. Atkin. Evolution from fish to mammals by gene
duplication. Hereditas 59:708-713, 1968.



BIBLIOGRAPHY 297

[257] M.V. Olson, J.E. Dutchik, M.Y. Graham, G.M. Brodeur, C. Helms,
M. Frank, M. MacCollin, R. Scheinman, and T. Frank. Random-clone strat-
egy for genomic restriction mapping in yeagtroceedings of the National
Academy of Sciences US38:7826—-7830, 1986.

[258] O. Owolabi and D.R. McGregor. Fast approximate string matchBoft-
ware Practice and Experienc&8:387—393, 1988.

[259] J.D. Palmer and L.A. Herbon. Plant mitochondrial DNA evolves rapidly in
structure, but slowly in sequencdournal of Molecular Evolution27:87—
97, 1988.

[260] A.H. Paterson, T.H. Lan, K.P. Reischmann, C. Chang, Y.R. Lin, S.C.
Liu, M.D. Burow, S.P. Kowalski, C.S. Katsar, T.A. DelMonte, K.A. Feld-
mann, K.F. Schertz, and J.F. Wendel. Toward a unified genetic map of
higher plants, transcending the monocot-dicot divergerdature Genet-
ics, 15:380-382, 1996.

[261] S.D. Patterson and R. Aebersold. Mass spectrometric approaches for the
identification of gel-separated proteinsElectrophoresis 16:1791-1814,
1995.

[262] H. Peltola, H. Soderlund, and E. Ukkonen. SEQAID: a DNA sequence as-
sembling program based on a mathematical mddetleic Acids Research
12:307-321, 1984.

[263] M. Perlin and A. Chakravarti. Efficient construction of high-resolution phys-
ical maps from yeast artificial chromosomes using radiation hybrids: inner
product mappingGenomics18:283-289, 1993.

[264] P.A. Pevzner. [-tuple DNA sequencing: computer analysisiournal of
Biomolecular Structure and Dynami|c&63—73, 1989.

[265] P.A.Pevzner. Multiple alignment, communication cost, and graph matching.
SIAM Journal on Applied Mathematics2:1763—-1779, 1992.

[266] P.A. Pevzner. Statistical distance between texts and filtration methods in
rapid similarity search algorithmComputer Applications in Bioscienges
8:121-27, 1992.

[267] P.A. Pevzner. DNA physical mapping and alternating Eulerian cycles in
colored graphsAlgorithmicg 13:77-105, 1995.



298 BIBLIOGRAPHY

[268] P.A. Pevzner. DNA statistics, overlapping word paradox and Conway equa-
tion. In H.A. Lim, J.W. Fickett, C.R. Cantor, and R.J. Robbins, editors,
Proceedings of the Second International Conference on Bioinformatics, Su-
percomputing, and Complex Genome Analysiges 6168, St. Petersburg
Beach, Florida, June 1993. World Scientific.

[269] P.A. Pevzner, M.Y. Borodovsky, and A.A. Mironov. Linguistics of nucleo-
tide sequences. I: The significance of deviations from mean statistical char-
acteristics and prediction of the frequencies of occurrence of waadsnal
of Biomolecular Structure and Dynamj&1013-1026, 1989.

[270] P.A. Pevzner, V. Dancik, and C.L. Tang. Mutation-tolerant protein iden-
tification by mass-spectrometry. In R. Shamir, S. Miyano, S. Istrail, P.A.
Pevzner, and M.S. Waterman, edito”Rroceedings of the Fourth Annual
International Conference on Computational Molecular Biology (RECOMB-
00), pages 231-236, Tokyo, Japan, April 2000. ACM Press.

[271] P.A.Pevzner and R. Lipshutz. Towards DNA sequencing chipBrdoeed-
ings of the 19th International Conference on Mathematical Foundations of
Computer Scien¢geolume 841 of_ecture Notes in Computer Scienpages
143-158, Kosice, Slovakia, 1994.

[272] P.A. Pevzner, Y. Lysov, K. Khrapko, A. Belyavski, V. Florentiev, and
A. Mirzabekov. Improved chips for sequencing by hybridizatidournal
of Biomolecular Structure and Dynamj&399-410, 1991.

[273] P.A. Pevzner and M.S. Waterman. Generalized sequence alignment and du-
ality. Advances in Applied Mathematjcs4(2):139-171, 1993.

[274] P.A. Pevzner and M.S. Waterman. Multiple filtration and approximate pat-
tern matching Algorithmica 13:135-154, 1995.

[275] P.A. Pevzner and M.S. Waterman. Open combinatorial problems in com-
putational molecular biology. Ihird Israeli Symposium on the Theory of
Computing and Systemibel-Aviv, Israel, January 1995.

[276] S. Pilpel. Descending subsequences of random permutatiimsnal of
Combinatorial Theory, Series, A3:96-116, 1990.

[277] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and
identification of permutation graphsCanadian Journal of Mathematics
23:160-175, 1971.



BIBLIOGRAPHY 299

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

J.H. Postlethwait, Y.L. Yan, M.A. Gates, S. Horne, A. Amores, A. Brownlie,
A. Donovan, E.S. Egan, A. Force, Z. Gong, C. Goutel, A. Fritz, R. Kelsh,
E. Knapik, E. Liao, B. Paw, D. Ransom, A. Singer, M. Thomson, T.S. Ab-
duljabbar, P. Yelick, D. Beier, J.S. Joly, D. Larhammar, and F. Rosa et al.
Vertebrate genome evolution and the zebrafish gene Mafure Genetics
345-349:18, 1998.

A. Poustka, T. Pohl, D.P. Barlow, G. Zehetner, A. Craig, F. Michiels,
E. Ehrich, A.M. Frischauf, and H. Lehrach. Molecular approaches to mam-
malian geneticsCold Spring Harbor Symposium on Quantitative Biolpgy
51:131-139, 1986.

F.P. Preparata, A.M. Frieze, and E. Upfal. On the power of universal bases
in sequencing by hybridization. In S. Istrail, P.A. Pevzner, and M.S. Water-
man, editorsProceedings of the Third Annual International Conference on
Computational Molecular Biology (RECOMB-99)ages 295-301, Lyon,
France, April 1999. ACM Press.

B. Prum, F. Rudolphe, and E. De Turckheim. Finding words with unex-
pected frequences in DNA sequencdsurnal of Royal Statistical Society,
Series B57:205-220, 1995.

M. Regnier and W. Szpankowski. On the approximate pattern occurrences in
a text. InCompression and Complexity of Sequences 198Jes 253264,
1998.

K. Reinert, H.-P. Lenhof, P. Mutzel, K. Mehlhorn, and J.D. Kececioglu.
A branch-and-cut algorithm for multiple sequence alignment. In S. Istrail,
P.A. Pevzner, and M.S. Waterman, editd®spceedings of the First Annual
International Conference on Computational Molecular Biology (RECOMB-
97), pages 241-250, Santa Fe, New Mexico, January 1997. ACM Press.

G. Rettenberger, C. Klett, U. Zechner, J. Kunz, W. Vogel, and H. Hameister.
Visualization of the conservation of synteny between humans and pigs by
hetereologous chromosomal paintir@enomics26:372—-378, 1995.

I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological
sequencesBioinformatics 14:55-67, 1998.

J.C. Roach, C. Boysen, K. Wang, and L. Hood. Pairwise end sequencing: a
unified approach to genomic mapping and sequenddgnomics26:345—
353, 1995.

G.de E. Robinson. On representations of the symmetric gréuperican
Journal of Mathematic60:745-760, 1938.



300 BIBLIOGRAPHY

[288] E. Rocke and M. Tompa. An algorithm for finding novel gapped motifs in
DNA sequences. In S. Istrail, P.A. Pevzner, and M.S. Waterman, editors,
Proceedings of the Second Annual International Conference on Computa-
tional Molecular Biology (RECOMB-98pages 228-233, New York, New
York, March 1998. ACM Press.

[289] J. Rosenblatt and P.D. Seymour. The structure of homometric Seid/
Journal on Alg. Discrete Method8:343-350, 1982.

[290] M.A. Roytberg. A search for common pattern in many sequerCesputer
Applications in Bioscience8:57—64, 1992.

[291] A.R. Rubinov and M.S. Gelfand. Reconstruction of a string from substring
precedence datdournal of Computational Biology:371-382, 1995.

[292] B.E. Sagan.The Symmetric Group: Representations, Combinatorial Algo-
rithms, and Symmetric FunctionsWadsworth Brooks Cole Mathematics
Series, 1991.

[293] M.F. Sagot, A. Viari, and H. Soldano. Multiple sequence comparison—a
peptide matching approachiheoretical Computer Scienc#80:115-137,
1997.

[294] T. Sakurai, T. Matsuo, H. Matsuda, and I. Katakuse. PAAS 3: A computer
program to determine probable sequence of peptides from mass spectromet-
ric data.Biomedical Mass Spectrometry/1:396—399, 1984.

[295] S.L.Salzberg, A.L. Delcher, S. Kasif, and O. White. Microbial gene identifi-
cation using interpolated Markov modeNucleic Acids Researc26:544—
548, 1998.

[296] S.L. Salzberg, D.B. Searls, and S. Kasibmputational Methods in Molec-
ular Biology. Elsevier, 1998.

[297] F. Sanger, S. Nilken, and A.R. Coulson. DNA sequencing with chain termi-
nating inhibitors. Proceedings of the National Academy of Sciences,USA
74:5463-5468, 1977.

[298] D. Sankoff. Minimum mutation tree of sequenc&$AM Journal on Applied
Mathematics28:35-42, 1975.

[299] D. Sankoff. Simultaneous solution of the RNA folding, alignment and pro-
tosequence problem&IAM Journal on Applied Mathematic$5:810-825,
1985.



BIBLIOGRAPHY 301

[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

D. Sankoff. Edit distance for genome comparison based on non-local op-
erations. InThird Annual Symposium on Combinatorial Pattern Matching
volume 644 ofLecture Notes in Computer Sciengages 121-135, Tucson,
Arizona, 1992. Springer-Verlag.

D. Sankoff and M. Blanchette. Multiple genome rearrangements. In S. Is-
trail, P.A. Pevzner, and M.S. Waterman, editoPspceedings of the Sec-
ond Annual International Conference on Computational Molecular Biology
(RECOMB-98) pages 243-247, New York, New York, March 1998. ACM
Press.

D. Sankoff, R. Cedergren, and Y. Abel. Genomic divergence through gene
rearrangement. IMolecular Evolution: Computer Analysis of Protein and
Nucleic Acid Sequenceshapter 26, pages 428-438. Academic Press, 1990.

D. Sankoff and M. Goldstein. Probabilistic models of genome shuffling.
Bulletin of Mathematical Biology51:117-124, 1989.

D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. Lang, and R. Cedergren.
Gene order comparisons for phylogenetic inference: Evolution of the mito-
chondrial genomeProceedings of the National Academy of Sciences,USA
89:6575-6579, 1992.

D. Sankoff and S. Mainville. Common subsequences and monotone subse-
guences. In D. Sankoff and J.B. Kruskal, editdrsne Warps, String Edits,

and Macromolecules: The Theory and Practice of Sequence Comparison
pages 363-365. Addison-Wesley, 1983.

C. Schensted. Longest increasing and decreasing subsequ&aresiian
Journal of Mathematicsl3:179-191, 1961.

H. Scherthan, T. Cremer, U. Arnason, H. Weier, A. Lima de Faria, and
L. Fronicke. Comparative chromosomal painting discloses homologous seg-
ments in distantly related mammalNature Genetics6:342—-347, 1994.

J.P. Schmidt. All highest scoring paths in weighted grid graphs and their
application to finding all approximate repeats in strin@8AM Journal on
Computing 27:972-992, 1998.

W. Schmitt and M.S. Waterman. Multiple solutions of DNA restriction map-
ping problem.Advances in Applid Mathematic$2:412—-427, 1991.

M. Schoniger and M.S. Waterman. A local algorithm for DNA sequence
alignment with inversionsBulletin of Mathematical Biology54:521-536,
1992.



302 BIBLIOGRAPHY

[311] D.C. Schwartz, X. Li, L.I. Hernandez, S.P. Ramnarain, E.J. Huff, and Y.K.
Wang. Ordered restriction maps of Saccharomyces cerevisiae chromosomes
constructed by optical mappingcience262:110-114, 1993.

[312] D. Searls and S. Dong. A syntactic pattern recognition system for DNA se-
guences. In H.A. Lim, J.W. Fickett, C.R. Cantor, and R.J. Robbins, editors,
Proceedings of the Second International Conference on Bioinformatics, Su-
percomputing, and Complex Genome Analységes 89-102, St. Petersburg
Beach, Florida, June 1993. World Scientific.

[313] D. Searls and K. Murphy. Automata-theoretic models of mutation and align-
ment. InProceedings of the Third International Conference on Intelligent
Systems for Molecular Biologpages 341-349, Cambridge, England, 1995.

[314] S.S. Skiena, W.D. Smith, and P. Lemke. Reconstructing sets from interpoint
distances. IrProceedings of Sixth Annual Symposium on Computational
Geometrypages 332-339, Berkeley, California, June, 1990.

[315] S.S. Skiena and G. Sundaram. A partial digest approach to restriction site
mapping.Bulletin of Mathematical Biology56:275-294, 1994.

[316] S.S. Skiena and G. Sundram. Reconstructing strings from substimgs.
nal of Computational Biology2:333—354, 1995.

[317] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome
maps with radiation hybrids. In S. Istrail, P.A. Pevzner, and M.S. Water-
man, editorsProceedings of the First Annual International Conference on
Computational Molecular Biology (RECOMB-9Hages 277-286, Santa
Fe, New Mexico, January 1997. ACM Press.

[318] H.O. Smith, T.M. Annau, and S. Chandrasegaran. Finding sequence mo-
tifs in groups of functionally related protein®roceedings of the National
Academy of Sciences US3v:826-830, 1990.

[319] H.O. Smith and K.W. Wilcox. A restriction enzyme from Hemophilus in-
fluenzae. I. Purification and general properti@surnal of Molecular Biol-
ogy, 51:379-391, 1970.

[320] T.F. Smith and M.S. Waterman. Identification of common molecular subse-
guencesJournal of Molecular Biology147:195-197, 1981.

[321] E.E. Snyder and G.D. Stormo. Identification of coding regions in genomic
DNA sequences: an application of dynamic programming and neural net-
works. Nucleic Acids Resear¢21:607-613, 1993.



BIBLIOGRAPHY 303

[322] E.E. Snyder and G.D. Stormo. Identification of protein coding regions in
genomic DNA.Journal of Molecular Biology248:1-18, 1995.

[323] V.V. Solovyev, A.A. Salamov, and C.B. Lawrence. Predicting internal exons
by oligonucleotide composition and discriminant analysis of spliceable open
reading framesNucleic Acids Researc22:5156-63, 1994.

[324] E.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: a comprehensive
database of protein domain families based on seed alignméhtgeins
28:405-420, 1997.

[325] E. Southern. United Kingdom patent application GB8810400. 1988.

[326] R. Staden. Methods for discovering novel motifs in nucleic acid segences.
Computer Applications in Bioscienges293—-298, 1989.

[327] R. Staden and A.D. McLachlan. Codon preference and its use in identifying
protein coding regions in long DNA sequencellucleic Acids Research
10:141-156, 1982.

[328] J.M. Steele. An Efron-Stein inequality for nonsymmetric statistissnals
of Statistics 14:753—758, 1986.

[329] M. Stefik. Inferring DNA structure from segmentation dafatificial Intel-
ligence 11:85-144, 1978.

[330] E.E. Stuckle, C. Emmrich, U. Grob, and P.J. Nielsen. Statistical analysis of
nucleotide sequenceblucleic Acids Researchi8:6641-6647, 1990.

[331] A.H. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of
wild races of Drosophila pseudoobscurand their use in the study of the
history of the species.Proceedings of the National Academy of Sciences
USA 22:448-450, 1936.

[332] S.H. Sze and P.A. Pevzner. Las Vegas algorithms for gene recognition: sub-
otimal and error tolerant spliced alignmedburnal of Computational Biol-
ogy, 4:297-310, 1997.

[333] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for construct-
ing shortest common superstringbheoretical Computer Sciencg7:131—
145, 1988.

[334] J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string
matching. In J.R. Gilbert and R. Karlsson, editoPrpceedings of the



304 BIBLIOGRAPHY

Second Scandinavian Workshop on Algorithm Theoaynber 447 in Lec-
ture Notes in Computer Science, pages 348-359, Bergen, Norway, 1990.
Springer-Verlag.

[335] J.A. Taylor and R.S. Johnson. Sequence database searclkiesnaaopep-
tide sequencing by tandem mass spectrome®gpid Communications in
Mass Spectrometry11:1067-1075, 1997.

[336] W.R. Taylor. Multiple sequence alignment by a pairwise algoriti@®om-
puter Applications in Bioscience8:81-87, 1987.

[337] S.M. Tilghman, D.C. Tiemeier, J.G. Seidman, B.M. Peterlin, M. Sullivan,
J.V. Maizel, and P. Leder. Intervening sequence of DNA identified in the
structural portion of a mouse beta-globin geReoceedings of the National
Academy of Sciences USF:725-729, 1978.

[338] M. Tompa. An exact method for finding short motifs in sequences with
application to the Ribosome Binding Site problem. Aroceedings of the
Seventh International Conference on Intelligent Systems for Molecular Bi-
ology, pages 262-271, Heidelberg, Germany, August 1999. AAAI Press.

[339] E. Uberbacher and R. Mural. Locating protein coding regions in human
DNA sequences by a multiple sensor - neural network approBotceed-
ings of the National Academy of Sciences US311261-11265, 1991.

[340] E. Ukkonen. Approximate string matching withgrams and maximal
matches.Theoretical Computer Scienc@2:191-211, 1992.

[341] S. Ulam. Monte-Carlo calculations in problems of mathematical physics. In
Modern mathematics for the enginepages 261-281. McGraw-Hill, 1961.

[342] A.M. Vershik and S.V. Kerov. Asymptotics of the Plancherel measure of the
symmetric group and the limiting form of Young tableauRoviet Mathe-
matical Doklady 18:527-531, 1977.

[343] M. Vihinen. An algorithm for simultaneous comparison of several se-
guencesComputer Applications in Biosciences89-92, 1988.

[344] M. Vingron and P. Argos. Motif recognition and alignment for many se-
guences by comparison of dot-matricesournal of Molecular Biology
218:33-43, 1991.

[345] M. Vingron and P.A. Pevzner. Multiple sequence comparison and consis-
tency on multipartite graphsAdvances in Applied Mathematjc$6:1-22,
1995.



BIBLIOGRAPHY 305

[346] M. Vingron and M.S. Waterman. Sequence alignment and penalty choice.
Review of concepts, studies and implicatiodsurnal of Molecular Biology
235:1-12, 1994.

[347] T.K. Vintsyuk. Speech discrimination by dynamic programmi@gmput,
4:52-57, 1968.

[348] A. Viterbi. Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm.IEEE Transactions on Information Thegry
13:260-269, 1967.

[349] D.G. Wang, J.B. Fan, C.J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghan-
dour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie,
T. Topaloglou, E. Hubbell, E. Robinson, M. Mittmann, M.S. Morris,
N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T.J. Hudson,
and E.S. Lander et al. Large-scale identification, mapping, and genotyp-
ing of single-nucleotide polymorphisms in the human genonseience
280:1074-1082, 1998.

[350] L.Wang and D. Gusfield. Improved approximation algorithms for tree align-
ment. InSeventh Annual Symposium on Combinatorial Pattern Matching
volume 1075 of_ecture Notes in Computer Scienpages 220-233, Laguna
Beach, California, 10-12 June 1996. Springer-Verlag.

[351] L. Wang and T. Jiang. On the complexity of multiple sequence alignment.
Journal of Computational Biologyl:337-348, 1994.

[352] L. Wang, T. Jiang, and E.L. Lawler. Approximation algorithms for tree
alignment with a given phylogenylgorithmica 16:302—-315, 1996.

[353] M.D. Waterfield, G.T. Scrace, N. Whittle, P. Stroobant, A. Johnsson,
A. Wasteson, B. Westermark, C.H. Heldin, J.S. Huang, and T.F. Deuel.
Platelet-derived growth factor is structurally related to the putative trans-
forming protein p28sis of simian sarcoma vird$ature 304:35-39, 1983.

[354] M.S. Waterman. Secondary structure of single-stranded nucleic &tiats-
ies in Foundations and Combinatorics, Advances in Mathematics Supple-
mentary Studiesl:167-212, 1978.

[355] M.S. Waterman. Sequence alignments in the neighborhood of the optimum
with general application to dynamic programmirigroceedings of the Na-
tional Academy of Sciences US#0:3123-3124, 1983.

[356] M.S. Waterman. Efficient sequence alignment algorithdasirnal of Theo-
retical Biology, 108:333-337, 1984.



306 BIBLIOGRAPHY

[357] M.S. Waterman.Introduction to Computational BiologyChapman Hall,
1995.

[358] M.S. Waterman, R. Arratia, and D.J. Galas. Pattern recognition in several
sequences: consensus and alignmdatilletin of Mathematical Biology
46:515-527, 1984.

[359] M.S. Waterman and M. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA-rRNA comparison¥ournal of Molecular
Biology, 197:723-728, 1987.

[360] M.S. Waterman, M. Eggert, and E. Lander. Parametric sequence compar-
isons. Proceedings of the National Academy of Sciences,88/6090—
6093, 1992.

[361] M.S. Waterman and J.R. Griggs. Interval graphs and maps of Euhetin
of Mathematical Biology48:189-195, 1986.

[362] M.S. Waterman and M.D. Perlwitz. Line geometries for sequence compar-
isons.Bulletin of Mathematical Biology46:567-577, 1984.

[363] M.S. Waterman and T.F. Smith. Rapid dynamic programming algorithms
for RNA secondary structureAdvances in Applied Mathematjcg:455—
464, 1986.

[364] M.S. Waterman, T.F. Smith, and W.A. Beyer. Some biological sequence
metrics. Advances in Mathematic20:367-387, 1976.

[365] M.S. Waterman and M. Vingron. Rapid and accurate estimates of statistical
significance for sequence data base searcResceedings of the National
Academy of Sciences USH.:4625-4628, 1994.

[366] G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome
inversion problemJournal of Theoretical Biology99:1-7, 1982.

[367] J. Weber and G. Myers. Whole genome shotgun sequen@rgome Re-
search 7:401-409, 1997.

[368] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid
protein data banksProceedings of the National Academy of Sciences,USA
80:726—730, 1983.

[369] K.H.Wolfe and D.C. Shields. Molecular evidence for an ancient duplication
of the entire yeast genom#lature 387:708-713, 1997.



PevznerBm.gxd 6/14/2000 12:29 PM Page 307 $

BIBLIOGRAPHY 307

[370] F. Wolfertstetter, K. Frech, G. Herrmann, and T. Werner. Identification of

[371]

[372]

[373]

[374]

[375]

[376]

[377]

[378]

[379]

[380]
[381]

functional elements in unaligned nucleic acid sequences. Computer Appli-
cations in Biosciences, 12:71-80, 1996.

S. Wu and U. Manber. Fast text searching allowing errors. Communication
of ACM, 35:83-91, 1992.

G. Xu, S.H. Sze, C.P. Liu, P.A. Pevzner, and N. Arnheim. Gene hunting
without sequencing genomic clones: finding exon boundaries in cDNAs.
Genomics, 47:171-179, 1998.

J. Yates, J. Eng, and A. McCormack. Mining genomes: Correlating tandem
mass-spectra of modified and unmodified peptides to sequences in nucleo-
tide databases. Analytical Chemistry, 67:3202-3210, 1995.

J. Yates, J. Eng, A. McCormack, and D. Schieltz. Method to correlate tan-
dem mass spectra of modified peptides to amino acid sequences in the pro-
tein database. Analytical Chemistry, 67:1426—1436, 1995.

J. Yates, P. Griffin, L. Hood, and J. Zhou. Computer aided interpretation of
low energy MS/MS mass spectra of peptides. In J.J. Villafranca, editor,
Techniques in Protein Chemistry II, pages 477-485. Academic Press, 1991.

P. Zhang, E.A. Schon, S.G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and P.E.
Bourne. An algorithm based on graph theory for the assembly of contigs in
physical mapping. Computer Applications in Biosciences, 10:309-317, 1994.

Z. Zhang. An exponential example for a partial digest mapping algorithm.
Journal of Computational Biology, 1:235-239, 1994.

D. Zidarov, P. Thibault, M.J. Evans, and M.J. Bertrand. Determination of the
primary structure of peptides using fast atom bombardment mass spectrom-
etry. Biomedical and Environmental Mass Spectrometry, 19:13—-16, 1990.

R. Zimmer and T. Lengauer. Fast and numerically stable parametric align-
ment of biosequences. In S. Istrail, P.A. Pevzner, and M.S. Waterman, edi-
tors, Proceedings of the First Annual International Conference on Compu-
tational Molecular Biology (RECOMB-97), pages 344-353, Santa Fe, New
Mexico, January 1997. ACM Press.

M. Zuker. RNA folding. Methods in Enzymology, 180:262—-288, 1989.

M. Zuker and D. Sankoff. RNA secondary structures and their prediction.
Bulletin of Mathematical Biology, 46:591-621, 1984,

o






PevznerBm.gxd 6/14/2000 12:29 PM Page 309 $

Index
2-in-2-out graph, 80 Baum-Welch algorithm, 147
2-optimal Eulerian cycle, 78 best bet for simpletons, 136
2-path, 78 BEST theorem, 72

binary array, 83
acceptor site, 156 Binary Flip-Cut Problem, 38
adaptive SBH, 91 bipartite interval graph, 251
adjacency, 179 bitableau, 102
affine gap penalties, 100 BLAST, 115
Aho-Corasick algorithm, 116 BLOSUM matrix, 98
alignment, 94, 98 border length of mask, 88
alignment score, 94, 98 bounded array, 258
alternating array, 84 branching probability, 85
alternating cycle, 26, 180 breakpoint, 179
alternative splicing, 169 breakpoint graph, 179
Alu repeat, 61
amino acid, 271 candidate gene library, 167
anti-symmetric path, 240 capping of chromosomes, 186
antichain, 109 cassette exchange, 23
approximate string matching, 114 cassette reflection, 23
Arratia-Steele conjecture, 107 cassette transformations, 21
atomic interval, 46 Catalan number, 75, 261
autocorrelation polynomial, 136 Catalan sequence, 261

cDNA, 272
backtracking, 97 CG-island, 144
backtracking algorithm for PDP, 20 chain, 109
backward algorithm, 146 chimeric alignment problem, 261
Bacterial Artificial Chromosome, 44 chimeric clone, 44
balanced collection of stars, 127 chromosome, 185, 271
balanced graph, 27, 180 chromosome painting, 187
balanced partitioning, 260 chromosome walking, 5
balanced vertex, 27, 70 circular-arc graph, 254

309



PevznerBm.gxd 6/14/2000 12:29 PM Page 310 $

310 INDEX

clique, 51 deletion, 98

clone abnormalities, 43 diagram adjustment, 253

clone library, 5 Dilworth theorem, 110

cloning, 5, 273 Distance from Consensus, 125

cloning vector, 41, 273 divide-and-conquer, 101

co-tailed genomes, 214 DNA, 271

codon, 271 DNA array, 9, 65

codon usage, 155 DNA read, 61

common forests, 109 donor site, 156

common inverted forests, 110 dot-matrix, 124

common inverted subsequences, 110 Double Digest Problem, 20

communication cost, 126 double filtration, 117

comparability graph, 50 double-barreled sequencing, 62

comparative genetic map, 15 double-stranded DNA, 271

compatible alignments, 126 duality, 113

complete graph, 51 dynamic programming, 96

conflict-free interval set, 46

conjugate partial orders, 109 edit distance, 11, 93

consecutive ones property, 43 edit graph, 98

consensus (in fragment assembly), 61 embedding, 268

Consensus String Problem, 143 emission probability, 145

consensus word analysis, 143 equivalent transformations, 196

consistent edge, 131 eukaryotes, 271

consistent graph, 131 Euler set of 2-paths, 78

consistent set of intervals, 46 Euler switch, 78

contig, 62 Eulerian cycle, 26, 70

continuous stacking hybridization, 75 Eulerian graph, 70

correlation polynomial, 137 exon, 12, 153, 272

cosmid, 44 ExonPCR, 168

cosmid contig mapping, 255 extendable sequence, 85

cover, 110

cover graph, 204 FASTA, 115

coverage, 54 fidelity probes, 92

critical path, 251 filtering in database search, 94

crossing edges in embedding, 268 filtration efficiency, 116

cycle decomposition, 180 filtration in string matching, 114

cystic fibrosis, 1 filtration of candidate exons, 165
fingerprint of clone, 42

DDP, 20 finishing phase of sequencing, 63

decision tree, 169 fission, 185

Decoding Problem, 146, 265 fitting alignment, 259

decreasing subsequence, 102 flip vector, 215
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flipping of chromosomes, 186 Hidden Markov Model, 145

fork, 32 hidden state, 145

fork graph, 32 HMM, 145

fortress, 209°INDEX 311 homometric sets, 20, 35

fortress-of-knots, 216 Human Genome Project, 60

forward algorithm, 146 hurdle, 182, 193, 195

fragment assembly problem, 61 hybrid screening matrix, 56

Frequent String Problem, 144 hybridization, 67, 273

fusion, 185 hybridization fingerprint, 6

gap, 100 image reconstruction, 130

gap penalty, 100 increasing subsequence, 102

gapped [-tuple, 117 indel, 98

gapped array, 83 inexact repeat problem, 261

gapped signals, 150 Inner Product Mapping, 255

gel-electrophoresis, 273 insertion, 98

gene, 271 interchromosomal edge, 215

generalized permutation, 197 interleaving, 45

generalized sequence alignment, 109 interleaving cycles, 193

generating function, 36 interleaving edges, 193

genetic code, 271 interleaving graph, 193

genetic mapping, 2 internal reversal, 214

genetic markers, 3 internal translocation, 214

GenMark, 173 interval graph, 43

genome, 271 intrachromosomal edge, 215

genome comparison, 176 intron, 154, 272

genome duplication, 226 ion-type, 231

genome rearrangement, 15, 175

genomic distance, 186 junk DNA, 153

genomic sorting, 215

GENSCAN, 172 k-similarity, 243

Gibbs sampling, 149 knot, 216

global alignment, 94 I-star, 128

Gollan permutation, 188 I-tuple composition, 66

Graph Consistency Problem, 131 I-tuple filtration, 115

Gray code, 88 Lander-Waterman statistics, 54

Group Testing Problem, 55 layout of DNA fragments, 61
light-directed array synthesis, 88

Hamiltonian cycle, 69 LINE repeat, 62

Hamiltonian path, 66 local alignment, 94, 99

Hamming Distance TSP, 44 Longest Common Subsequence, 11,

hexamer count, 155 94
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Longest Increasing Subsequence, 102
longest path problem, 98, 233

magic word problem, 134

mapping with non-unique probes, 42

mapping with unique probes, 42

mask for array synthesis, 88

mass-spectrometry, 18

match, 98

mates, 62

matrix dot product, 127

maximal segment pair, 116

memory of DNA array, 83

minimal entropy score, 125

minimum cover, 110

mismatch, 98

mosaic effect, 164

mRNA, 272

MS/MS, 231

multifork, 32

Multiple Digest Problem, 253

Multiple Genomic Distance Problem,
227

multiprobe, 82

multiprobe array, 85

nested strand hybridization, 259
network alignment, 162
normalized local alignment, 260
nucleotide, 271

offset frequency function, 236
Open Reading Frame (ORF), 155
optical mapping, 38, 254

optimal concatenate, 215

order reflection, 28

order exchange, 28

oriented component, 193

oriented cycle (breakpoint graph), 193

oriented edge (breakpoint graph), 193
overlapping words paradox, 136
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padding, 197

PAM matrix, 98

pancake flipping problem, 179
parameter estimation for HMM, 147
parametric alignment, 118, 262
Partial Digest Problem, 8

partial peptide, 18

partial tableau, 104

partially ordered set, 109

partition of integer, 102

path cover, 53

path in HMM, 145

pattern-driven approach, 135

PCR, 272

PCR primer, 273

PDP, 312

peptide, 273

Peptide Identification Problem, 240
Peptide Sequence Tag, 230

Peptide Sequencing Problem, 18, 231
phase transition curve, 119, 263
phenotype, 2

physical map, 5

placement, 45

polyhedral approach, 113

pooling, 55

positional cloning, 167

Positional Eulerian Path Problem, 82
positional SBH, 81
post-translational modifications, 230
PQ-tree, 43

prefix reversal diameter, 179
probe, 4, 273

probe interval graph, 255

Probed Partial Digest Mapping, 38
profile, 148

profile HMM alignment, 148
prokaryotes, 271

promoter, 272

proper graph, 240

proper reversal, 192

protease, 273
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protein, 271

protein sequencing, 18, 59
PSBH, 81

purine, 83

pyrimidines, 83

query matching problem, 114

Radiation Hybrid Mapping, 55

re-sequencing, 66

rearrangement scenario, 175

recombination, 2

reconstructible set, 37

reduced binary array, 258

repeat (in DNA), 61

resolving power of DNA array, 82

restriction enzyme, 4, 273

restriction fragment length polymorph-
ism, 4

restriction fragments, 273

restriction map, 6

restriction site, 4

reversal, 15, 175

reversal diameter, 188

reversal distance, 16, 179

reversed spectrum, 241

RFLP, 4

RNA folding, 121, 263

rotation of string, 77

row insertion, 104

RSK algorithm, 102

safe reversal, 200
Sankoff-Mainville conjecture, 107
SBH, 9, 65

score of multiple alignment, 125
semi-balanced graph, 71
semi-knot, 224

Sequence Tag Site, 42
sequence-driven approach, 144
Sequencing by Hybridization, 9, 65
shape (of Young tableau), 102
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shared peaks count, 231

shortest common supersequence, 125

Shortest Covering String Problem, 6,
43

Shortest Superstring Problem, 8§, 68

signed permutations, 180

similarity score, 96

simple permutation, 196

Single Complete Digest (SCD), 53

singleton, 182

singleton-free permutation, 184

sorting by prefix reversals, 179

sorting by reversals, 178

sorting by transpositions, 267

sorting words by reversals, 266

SP-score, 125

spanning primer, 171

spectral alignment, 243

spectral convolution, 241

spectral product, 243

spectrum (mass-spectrometry), 18

spectrum graph, 232

spectrum of DNA fragment, 68

spectrum of peptide, 229

spliced alignment, 13, 157

splicing, 154

splicing shadow, 168

standard Young tableau, 102

star-alignment, 126

Start codon, 155

state transition probability, 145

statistical distance, 120

Stop codon, 155, 271

String Statistics Problem, 143

strings precedence data, 259

strip in permutation, 182

strongly homometric sets, 20

STS, 42

STS map, 63

suboptimal sequence alignment, 119

Sum-of-Pairs score, 125

superhurdle, 205
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superknot, 216
supersequence, 260
symmetric polynomial, 37
symmetric set, 37

tails of chromosome, 214
tandem duplication, 120
tandem repeat problem, 260
theoretical spectrum, 231
tiling array, 66

transcription, 272

transitive orientation, 50
translation, 272
translocation, 185
transposition distance, 267
transposition of string, 77
Traveling Salesman Problem, 44, 68
triangulated graph, 50

TSP, 68

Twenty Questions Game, 168

uniform array, 82
universal bases, 91
unoriented component, 193
unoriented edge, 193

valid reversal, 214
Viterbi algorithm, 146
VLSIPS, 87

Watson-Crick complement, 67, 271
winnowing problem, 120

YAC, 4 4
Young diagram, 102
Young tableau, 102



	preface.pdf
	pÃà†i¬Ð5·˘6ıêZ®ýrF�}@‰P
	/vÑ�²˛<b˘áÔžÑ	ïÏ+Bò�þ¶
ƒÒ¹øþª�`ł�˙|¼ÉOJu|
	ÿ[qShT��
	pú�ı{îÐGp�¢½
	pﬂœ—˛ÍD4�Ÿµ¯	¯
	pÅ�H¿�A(Ô»
	Ðz65ì$Û^Łß

	/wîðò×¨ÚiÌÓı:â`?¾ 8öh0d8Ç¦x>Œ³ÂÏ¾§HıbÕ-Z¬eﬂﬂÐúu÷"zpŁ™˝3ªÑlﬁÒOVó}Œfà–�<ÙÚâ9ÏÆù"�]włÿs)�¶˙ﬁﬁôe¢»Ùª¢û��ﬁHÖ}°`P�þŠ!â0ykÓmdŽb©³

	chap1.pdf
	cÅË^>cC�æÖç”?f 
	/þ"–T’”<=
E}Ä¡
å9hõ�s�Cé�–î’�92"!á‚a=
	ÇŁÔ'�Ü’ªÈ˙lÍ��
	¢8&0ÏÇ#−'`•S
	¼7º	å‘@æÈ#íø��
	¸˚…˜˙�Ã˙¡�
	þ¼¼�•8�łG/�JÏÐ
	p��ÔˇıÂââKÁ�
	p¼ë·Ò‹Áòãô�VáÀ2�
	p¢š
¬�°°Êä�^
	Œqwxâè{Úłù£¾¬
	’20K~�¬�ã—X
	pagƒå±
q&ÛÃ�q
	µ=ž¢º˘łî[‚¦˚K6ﬁï˚
	pÏ^?S>ê‚�ùp
	�˚�ûíF;w3�œb 
	‚í*s‘)�Á�ì�œ•
	p¦�5RwC‡\
	paÚp:¸R�Ì˜;

	†bÖXM�ª˜È&�aAÅÑV$.Â˘¬ê´WGéýöFýøé˝éà(¸—'rêÇ�i˛.3ûÅS®:2ST7_�iDt¾−�táÄ( œÁj"oÏÁ¤gÁZ“Ð¶.…¥þÐ6©p
�|íü¾ﬂôc)L¸Zê€‚+

	chap2.pdf
	ŸÍF%œ˛kb¬H»áMÌÅx@
	Ò�ÉT¦%k(Głð?àùæž*ÒÊ	‹aÒ>�I¨`s©oŠ«ÏBâ;?´úµ+~ˆz
	ŠÒ„`Å7jæ®í˚%�†
	pagè�t�»
	ß¥É?ÏÁb�3z ¬¶v-ÿ
	pa§ƒ÷E˚Î&9;h
	ë±„š!�wô<Öà�øô
	¼�¯�cJj�©Ù
	®u£‹+Ùmé¢‰Â¹>a
	pa��åÃ˚Oë˜Ì˜
	£�“v.œ/è��
�×
	‚Ôµ6I¶ÐŸ©ZÈáâúÐ×�
	„‹¥�^Æ±�uÍÜšÏ|€g 
	¢�–M�™¤¶áÉÒD]ê�
	õ—â�Ûáƒ�[¼$ðŒ¿-úR%L
	„�¤r]ÎRþþÖ�¥w‚·
	p�YÁı»žã÷’�^‹ÏtŁR
	pageÕ›/�ÓÚE
	pag…˚Œàï+ðX•¸
	pû�åaGo%Í¶K
	ÀŁ"cÂjÏ¥=‹ï�ˇ|R
	pa¼⁄U�±Ïﬁ6X�š
	pa½öï=ü�&�^w–D²

	™¨¤Û©?¬ﬂÌò·)�„¿ÅNåiOÚ3xzR˝wÎšk%/@�c»A�>ïÀ+ž’ÄŽyŽ3Ä4Åýi
�6·	ËÐ�óÖt'lµB7…qMÓ<üˆöïï�¥„ �Ø{]£§®6aÞw¸íÍ?øOß¶�¥©ÉgŒZc3¾h˝ü�ó

	chap3.pdf
	Łnjä©|ó3®<¡ßžû¡á#˚W
	/v«dÚg»ï3�fæìJ¹5Å$¤⁄ˆH2±í“²]?!ˆ|ÿ�˛žñ¾�1e
	�„®�ÔÓÔ=‡vüôæaŸ¢
	p×�U×8¾Å…�
	û\9Ì\WÎ�ü}
	ÏBÞ�Zp”y˙ï
	pòµ.-Y‘í��
	p”g�z¥^	�

	pØÀ¬œ|ò�ˆ£Û5‘�
	ò�!ã9QÚKÖ›
	§Èéà'�ÌÙ;Ó�ïò�³¿Ð
	−þ¢ﬂf%ös�‚~Nùüia{
	ø�âúw�Gugﬁ‘Lu-�
	Îl`�è€–f	ﬂZ−™ô*
	pag§O.èê�ÎÒ
	ÊT(Lø¡zDKÝ0ï`
	–E›L?�<ò7—ô
	¥-«ÁsÎû�`’Ðå�ž�ÑÉ
	©ÄLÎ‡¾5�À�KØO“B⁄.

	/w÷˜Ã7�¯Í%�(ú?ŒÃà÷–ÃÂÂ˜EgµÛZß“ï�„î�ðÇÙÝjDË5¯ÀŠu×�§±Tu˚µ)—˚‰
ØºQ"˘ÜÂÎuFLO-œxÞl�M†Š†Û‹�ú€QW?jD"Å¥“í±[Š€›H‚ƒŽˆ¸˘˚¹B¤‰omèÉ(“øw‚¶

	chap4.pdf
	−Œ�b¦�LÂQ.+%�Û1WÍ
	Š|P©™‹ÏíôÑŒØâ•#ˆYð5f©�¿Ò¸8?Ù:Í®ïõ‘˛ìkòÄ�õûá'$\'ôA
	pý5Ç<4üŠ��
	éžZ„"¤(°ÅÂ§^c®
	ºÇ(˜´f'XÌÀÍÞ
	Ô‡áûjSHn˜®>ÁXó
	paž€ùg(e8ŁŽ8

	ÏØ.ù¬ûI9t��ıU-/šÀÖí¼pØ ¤ÀÈé†sØ�ÐÀìà"�øÖ×KˇrH¥žðûŠÞał`àb�ýôˆiÞ^¬âÎHì^J”’ …1¶<óºü�%#¸\ÜŽKÜ;h²Æu®F2¿Ë�Nfï
>–\aõ•ÛãÆîiƒ~Ý¦[—�ûöãª"q 

	chap5.pdf
	c€\•ıNàÿþLr+˝¶¬”+(Åa´
	¿š=ú‡Àq‡òV�—Oy#œÔ@ßLè^⁄aDà“dãß)]·�ðÄbd¹�—¿¢á0
	page¯“?Ô�Ô
	page 3
	pÞł�ë”�B>t�öæÕ
	ŁôîTx	�¬z�
±
	™(¾‹üƒéÿÑ�Doù‰oÿ
	‘⁄Rm´Šb`Ã5Á˝U�
	ﬁµ��‘⁄�d…°Íßfm
	pa€{N˙gâ
	p�¥jﬂøL‘W…‹E‹³ð
	�Æ-¿á„Ë©lZÅHR2×Ã¨Ø	
	±Çñš.•à·8½xÂY�ŁÿQ`‘
	Þ:„]ÐÔo�ÜtÉ^7Ü�
	paýù™È"� e˙p²“T
	ü7²jªÔÚJÊqþdÎê5‘Š
	pa¿í0�1å,À⁄
	ŽıèQ�Úvš�R:9]óÇ
	píj€ñ�kY2©xHr
	Î�W¼“Cê−Ö¸µ�€ªG
	Þ~0ÌJ½�¨°‘3Zù
	ùø_Œ‚w=·¡˙56%Ø˘
	Öî~IÓÍ�ˆŒg
UÌ�⁄
	pŁ÷-¿ô!MvËIìD�ò
	paû¯}›m‰q^äép
	pÙ¼¡2ìÞr‚Ü��$��XI
	à®�⁄†��yłÝÞ±÷‡{
	½ŸÎ�ä1Œ3X�''eÝ�Åþ
	pageﬁt1†�

	žRsÊ”™úY�?Ÿ˛€_�J�‰
Ù
SÚÏ ¸�Ž�µ®Ønhçÿ½³�=þ]Õº=˜š;iœ�CßK{�™��¹ÒŒ²î�æ!ªLfÇ¢¬Æò6O×éCð�¾ôájÔx�]1Í¸|�’/2˙±5Žs¨»�)L-ﬂÐH

	chap6.pdf
	±r&Ñh/¦¬FT9¼Bv
gæ
	‰8–�ÛôhÔ±\è�ZŸ¾‹ÒûöO¹\±í¤äe¶ÈÑ¦9ÌB˜Sˇ©œ3!R�8y5¥˛–
	ý?›gôNˇöQ�¿×
	“?.p.‡Ë*xv
	p·Æß�;˘ã‡Łj

	paã\-[�9
	páx6˜•ä;•°
	£�m‡TM�öÏd
	pÓWXﬂ-e©mk
	îfHŸÄ"<.�lÚº
	p¥œh��ł�Ÿ
£�ì
	çC„/‰f†Îàz�f…R8
	pagÐ)Z€ê‰nõ
	Ä!ÇÉ›�az�³VS˚rY
	p§2ˇš¤+aqtV�¦
	pa›ß´™�|�ŁtG`Üp
	€ł]Ü§˝ù‚íM�¸�g3¥×
	p¸WÒ�7˙1w»�
	ªó=X1þ@e�©ªöÁ
	ö�'euÍÓYÍ�yäW
	pŁœ¢�QÜ�Ç�âFﬁçš
	pagì�5–ùøoø
	pag¹MôKKŠ‘<
	î�/8}"¯y�RG
	Ê�ª−£‡hˆ“Ł°ŁÆÔaàž
	p¨�£Ô'¢Ôg�æ•Û&u
	p“ÏÃxzıs~$ÜeÃjë
	paŁq[9{¾C
	pag⁄Ê�¿š�−ð€·
	·&-Ò'Ê0Y�z¸º¿
	êî¯"(Ì„‘µz¼ƒð.éÏÉ

	/we„Þè‡+�ýÜgŽöúÈùÇ#‰™Q⁄®Úãa3ó¥œsu �>�º©ŠMs7ÇßÓ€*ufD�ˇ?“]��−ÿÔSY\ŁUHŠÊª}†MY‘³.äÆµWuÐ…Ñe^Ûß�6ﬂ�ãùqjÖŁN³
[ÙÜæÜžXz�ãG|ü
J‘

	chap7.pdf
	€Ôé+�<�¨g¾«�ín~Ë\
	/vaÄc'uÈ:
ˆ��$lGœ0�íE…¼a�c_øã
	©�…Œ5“ùÿ�ÓjÖÔ¢
	pagÅ@ª»�€h
	page‡ìC8�°
	Àı|Ÿ�óÏÇ?SfãØ€
	¼łjÑ_)â<_�-î
	pÿ�ðnÓÈ�¤ÀmY
	Ð^•˝ïZÞ-ã%9&
	pþWa`ø,5B¯
	page¨k��}

	/we�pIÁ
^�’R¾º�Öl�(Uﬁi=Tm„]|¥’8_Á“ ½¦×”§−4ÆªwlÚâA-ŁŠuPå!á€eõ�:4î^Y^E�3n[fcCþÌ(Ê�¹£Ò·Gü�›¢°²¡eœ‹zM“-B−ył#£Xø†�äj3Ï1

	chap8.pdf
	ch³›Ø®�‘5/ð‡ÈUŁ;ðH	2Ø
	©‡ÜÒ½Þ	¤?+¶c6Í¥¦17þﬁ>È��h¿ŸQDë)'ˇ%h¥’G§’�íú¥1%}
	¼õ\�VNﬂhÅ7
	·1šñI—Î£ñ�ùIú+
	page Î˛r
	på�
ã¯À−$ılJ
	‰UÞã9;Ñl¸Vc’
	pa¨ÄU5¹¨�¡
	ûÐËÆæV}¯>ö�WB]¹1
	ÐÑ(·ø:ÙP±PÏœv1
	p”~ˆ4²jﬂÓ¦o
	Á´ŸÿzJ£æ�&!ŠOˇ/_›
	pagıÛpÛúò_Ó�t
	Ùß��¤†�ÏÒ¨¾ôOÛnAÉ
	�fÒ�˝Y˙4V´Ê
	ÃV+•��Ï�'¬*8—
	pagüëá:ì&ÂÃ�ł
	pa��Û’�˜¯Në%�
	¿÷x,˜M2“ý™�
	paÁ,ü¥*dDtË-A
	pæ�ºªúÿ¼öÇKﬂ˜Ì¾÷1

	³Ê–−hªO�óKóqÍÈºâž•‰Ë�µ�ŠËßÞ´™>÷�—!‰�õ³¨d:Ì^x57�¢þå6‚‰—/NÆ^´ﬁ6)4Ö'#™ãâ�"W�Bó
…KZÕﬂn79fL’9-Àh÷q�ﬂü¾* ÿßGzóH†ÂD¤œŒÆ”š�KuëIQ„	ò™ƒwôøT°

	chap9.pdf
	c¶ !°Çµ`Ž=‚5•W,'(~Ø
	��Âı©Uˆ‰¿°¼½y×ä�8‰½gÙ�éL]−f‚Tł‘ºm…`°Q‚@‚˛ûr¿—ı¡PC
	pÿÄýł+¢éÈÄñ#=¢
	‘ÕÎ¼Šjû©−JDk��c˛
	paë¦ï´µJc–DÖÛ{
	pageÔˇ]ø
	p“~�ƒ�Ì?×Kí�‡�
	p…�´�6Krô»
	page â_î
	áðØc�0žN]˝¹Â
	ŽêøÔ�7æ˙ﬁ
M�#C}Ýí
	pageÊ¨iH9−1
	pa¦ﬁ�¤Ýì³R�#ùÖ�
	page ⁄b�x
	öL|±›gä“m”·��Od
	Ö�ÅVàÁ((dióW�gÈ
	p«Gº¬˛'†ô9§:?
	pageÝÊ�.Gﬂn
	paÇÉë�ëm‚ËÇ£�—ü
	pÁ˙Æ‘
�–»È−ü|
	pÐ6·�³}*·�ì,H
	°ÑZF`ð@õ}1µvl
	pageý¬˝DcÇr

	/ŁŠC�\—Z˙n™„Ï¦‰ÌeÖ‚��Nq�ý�ƒçÆ1ÉÈ]�¥Æ�!…^@VæW�‡Ã?»���I�−Ã�ÒOô¹õ⁄§„A¯é'D€i]�B®©<ò�ﬁ®ô™`[„�÷fc%8?•¸“‚Fé�ØÙ�h^‘sŸì�˜ëýÍµ

	chap10.pdf
	chaØBpÕ¹§łúÿ(ýz®i×uy
	úëäı\ããüA:»”÷øUàùú|(ÁÕ‡úÛ�«_·,�€g?�°�ss“Är
i�™ˇ�,®º
	pÎ¶<¡
�¼µƒF£
	êün�0©vS0œ¦¼
	pa‘{
�×\
	p³-˙m
�ô
	—x¯Ołµ�›®ÝEyI~
	põÝ©Œ}@I˘wneøÉ
	pÖ®Ðëg�öÌ��ﬂŸí
	pøíg„då
7	¶t
	pag†Ł-~ÊŽ�®
	p‰˝ã‹˙àë{]¡+Â�G
	pô*aEé/5³—°
	pÃüäÜÕØ�AelîòN›�´€ß
	æÝˆS	ÃëE¥~æKˆnµ
	pÜŁ~�•�ˆ¹À¥÷C
	pa‰U�è�Ärd™
	page Í¤@Oâè
	º²Í§tÁßwrt� 7!ê�É³±
	Í�aÓ	bÊP>©˝�Æ
	pÓ−�!wâˆr!RxŽjL
	Ã%Rd¡¥t*‹Ü�Ül
	pîð�˙]”;hä”P=
	pageÃ¶²a}�u†!
	¥è>Æ2ð�ZV«aüıê�
	pÙ%Ü&—œUı4½Ó�,«
	÷60¸W¶jýÕ[Žÿþ
	page„êõžƒÞÐ„G
	ú(wúW˛ˆ®��Ð
	�Ek§C<rìÊ…'
	p‰`gI$BžÕ
	³Pé¥�È»fbU−ºH�‘–F
	§ł4Rÿ�Ä4ıÛ�ÎÞﬂ±
	pag©ù
0¾)è…
	¡ÿÌyD ¾£I]A�¡³î
	äg=y#Ëj�Ò�¤
	p¡%qÈŽúÛ5ie+X-Õ
	Œ£»àÀœ'¼8=A¿(°Š:R„V
	pª›v¶g.CcükÖ«
	pı	��3§š<À]
	ïâã�˜�?*è§;%*
	úšÄU�Ö›Ré–}Pñ_†ðÞ
	ÿ‘*õ@¨2;JÿM2łÂ˝
	paÄ˙(7>��
	·Íƒw'Ÿ}/©&�1?¼ﬁ
	ŸßÍ�Šy”¹³/\}º‰‚ŠÓ
	p”{Æ®šêÎ%|[˛Šá…8õ
	page—3uJê
	paõÝµ‚Łt{Rš,s�>€ò
	¨1¿Ó$³lèä�GV+mæ
	paﬁO¤`�!©˙ö
	pagÍønﬁ8¶¬u”k
	÷˜±9Ÿ/¥ËzŒPVâ³¿
	º&û`á‘.{¦:ÓÒ{Ú²
	Þx$!eoÆ–K„K

	Èłe$�EÑ÷�ıüç
ÞŠš‘ﬁ+Úq��)8çŠˇÇQ‚›ÖÊn‡×y�5sWâ¥¸ñÅ⁄y»®º‚Głf<�vh›è†HmØ˚Âé‡oí�Ð’ÃD‹°Ó«ýQ-ˇ*�×h¾ü˚÷‹áih'.à“ß�]łÓ⁄Z·x˚ÿ}¯œ4¢¨%oÍžÃùxÞ

	chap11.pdf
	chap11.p°�yÉ
	/var¥	oÃ�;ˆŁÆA
ª†
ﬁ��]8\|¡®¬�&i	q�¥
	®mKô#ƒÂí‰!c¡
	Èá�ç]×vb5vEeÁq
	¶(\ ì‘�Ò?HS¨
	³´¹‰0õ„DC−ÂeÞ}�Í
	p×š�MN+tûG
	ÅùŒÀ—÷O°‰ÉÀOg
Ê6k'
	žä,P$l.‹�m
	page äÙ3
	paËT¶WÄGOÛKBÓ
	‹¥�úé�™ﬁC¦ôô.ŽÜÒü
	í=Ø.@ORÝiØ˝
	paÚ´×M¤Û™iŸT�<F
	Í
¾Ý‹ﬂ=˚v°½¨©«Â6]
	paï</å^Úå�,
	Øë+ÇÝmE“rëûÿ���
	paæJ;Ì�¸ILŸ
	ú�<d©
��[¯fâÏ
	paÖ—M6A��å�
	pŠNè3CŁ*QL®ÀQ
	põ�²‚ËÅŽ>¼ł|ß�šd¿
	‡©´\FŒc/�6�P�½¥

	ªÑ„Ó¦—�·8í«å=��¯p¸W�fðC?Ñ’�Ðˆ³\Ú2�ùR�ÓH\Ý#±sÛŁ˛ñ�è¢¿NŒèT’<´−Ñ~.�Þ˝�šTÉ›øÃËÀ����7ïq›mKôLŒ)ıÍê;îpufA÷rg——ØAX>�«Í�L»}X�Oæk†

	chap12.pdf
	cha»Š©nô‚|Œæý°þñ}p¸P
	ÿà@³z!
6.łR,»˚lP%q¦sf�]XVŸÚ�ôˆÍ#n
	´…Gn™
r2¾ßø"
	ù�{éàßJ”Lï˛»*Ç
	úÃ(ýD¯¼/îï¤Jå<
	pagŁ�¡ÚÂ*~
	p™w¦¾T¤{qb3=
	‚;¤Lµ˜Ï˜D�E“
	çNE�o¡;˜9o
	pag¿
kÖ 
	«äÛk$íÒøbz−©¢ÍÊ8�
	§�kbÊÚ�îFu��%
	łçûÄj°Æﬁ<�Aá¹ÓµÁÚUÁ
	ÿ|¯*�6ñxËÿ�÷h
	±}žDbi�„łnw
	paÅ¨–•Ûm=�ËñÊJÆ�+
	p§¡p?1�Ïæ¿Â
	³Ö»�#ï0Âû®¡€Ó¯Ê
	Ô¶)†Þ;‘•�ôô�á−AÜŸ
	pag€ˇŠ"ËŸ†L
	ÒŸ<î�Ãpãù,˜|£�×

	œÚ.pá¹−ZbÉŒ¸¾ˆ	mß°tÏ=©Ž¼�šŸñ•Vg„�g|¯/Q.Ò¦�6JsG� 'ð¦ƒÐ´ Re;ŒÙÄÈmâb�łš(ÕÛdÛ ‘ñ@·ˇ¦"Ýè‰�UÁ#èæ·�ı'Ùiõ‡žÏŽçW]TÒ
"3„áîF6�ö

	chap13.pdf
	Ç‰>ìûl�»œ±SÒ−�rNï‹€ºCHtÃ
	/ýÖˇaC�Lł3ÜA¥¨ïšü£öOî÷G.ý�‡¤…´�>3U–FZà”	ﬂ3†²	
	pa¸Ë�ìÕà"ðeK
	pag×8æ¯O‰°
	pagÎ>ãrçê»

	/¢˚Ws’´$N�XÇ��õÄÿbÀ�§àgíìy�‰ž¤e
�XóÏÖý„B¥NŸı<Z/d?9xõv⁄ªy5ØƒWñÇ‡ZìƒèˆWI-ª]?‹ó{›Æ[ê×™I;2=−˘ûƒÀfäŁœ.3ˇnO�—˘�	üY�ﬂ�y

	bibliography.pdf
	è
uÚüp�ü#â¾e�Ù'/Cg��BÕ´Þ•$Õ�8�j˙
	/Âò¢!Y¸mÜâ˛ÞöŠ{ﬂóú
¨t¾PœVññA
+T�%tœ>�fkEó`á˚|−(
	ızéÁü��ãæ¡ˆ|¿Z
	pŠS¸Ú�(bé2Tí
	pßê+ì¥Ù�zvðÉíÎ
	Æ��ÚEpG¿Õn
	Ö´øÎ[Y �©S•�žL
	page¶Ł¯2ÜU
	íïŽˇ⁄*â4²!îñH®
	pa¥UÂ‹þ&h,ü�
	pË˙ë”ÑÑÿ^qwÐÖ-fÔî
	pašõ˚û<f²�il’
	×z@ú4�)Ý�÷y
	¸�Ùr¸ö˝ˆªN�˙bÔ¡›˙
	pù˘ÿ'ò€á1H−ŽO‹N
	páˇÆuz�0�wô
	ª�;�”˙Œ«(…œ'Ë
	püõº
€`pg°ÀôO¿{
	ƒÿhJÕkmZ¦�õ³Ì
	paŒ?
±scqﬁ}
	¦/�wv⁄¿â{¿˙–ï
	p�¸-�Húz1Q:�†
	pÿLCÕSâˇ¬Ù-� 
	øloErb”.Łá´
	‚$�i½�ž�¸L�…

 
	î6Z-E
˝rD
	©å»�¾�ÉV…ý�Ÿ|-˘¿þ
	pÞ˜ç–‰Åo§ƒ„dýàE@8
	Çƒ{�+*ﬂ¿1ÒßŽ¿
	page¦=Š�TqZ
	pa�,Î"~ÝÕ_3
	page‹0&0K
	¾|Ðµ¸Ó�*\ƒŠE=�›�ž
	äJ°#Þ“Pà÷�=Õæ‚"
	pÜ€•
�i_ÃÃìt¸

	þuõŒ�Ì8ü�¶f¾0G�*Zýòw†çbj6”úÌÁ]�'(‘œNßºè;ZLˇñ5©�{x±–NÙÑ �cÊH°D�òJ½ü;–ê¨â”ÒµÇ±Vï¤Týž×h§«¬önëe�Rr.ÃX�'ó˘p�”!{®®Ž©å(

	index.pdf
	ÓåM`Hê{B¹äÜT¼ä¦dS
	ÝÈ7R’/e²’Ë@§¬®Uïﬁ1�(˝d¶VOÛÓŒéç—l˙+Û'^5AÂsÃ*
	pêº�ˇ�vªþç
	p×HÊÊ~5ŒDÂ÷Z
	p÷êíû»ð�‚x²ÞÂzR�
	paîîìG~#ŽVıÛ
	pa‡“˜Cô×^�

	Ê§Gõµ’ZA³˜�ðåZÏ;@Nì�²ð§•ÿèÞßV~ó±Ï¤Hã�Îx³tÙï«s/*›��>��]7…Ý¸˜né”D˜oÜVìŸÆ»—¢yñEfb^Ês˚,BƒüŽù4.Ê±�À=ýr7�šQ��ãô
ú
èK¾[ô�kCVLÔ«�ôf 




