Foundations of
Systems Biology

edited by Hiroaki Kitano

Foundations of Systems Biology

This page intentionally left blank

Foundations of Systems Biology

edited by
Hiroaki Kitano

The MIT Press
Cambridge, Massachusetts
London, England

© 2001 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Palatino by the author using the IATEX document preparation system.
Printed on recycled paper and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Foundations of systems biology

edited by Hiroaki Kitano. - 1st ed.
.cm.

Included bibliographical references (p.).
ISBN 0-262-11266-3 (hc.: alk. paper)
1. Biological systems-Research-Methodology
2. Biological systems-Research-Case studies.
I. Kitano, Hiroaki, 1961-

QHB313.F662002
573-dc21
2001042807

II

III

Contents

Contributors ix
Preface xiii

Systems Biology: Toward System-level
Understanding of Biological Systems 1
Hiroaki Kitano

ADVANCED MEASUREMENT SYSTEMS

Automatic Acquisition of Cell Lineage through

4D Microscopy and Analysis of Early C. elegans

Embryogenesis 39
Shuichi Onami, Shugo Hamahashi, Masao Nagasaki,

Satoru Miyano, and Hiroaki Kitano

REVERSE ENGINEERING AND DATA MINING FROM GENE
EXPRESSION DATA

The DBRF Method for Inferring a Gene Network

from Large-Scale Steady-State Gene Expression Data 59
Shuichi Onami, Koji M. Kyoda, Mineo Morohashi, and

Hiroaki Kitano

The Analysis of Cancer Associated Gene Expression
Matrices 77
Mattias Wahde and Zoltan Szallasi

Automated Reverse Engineering of Metabolic

Pathways from Observed Data by Means of Genetic
Programming 95
John R. Koza, William Mydlowec, Guido Lanza, Jessen

Yu, and Martin A. Keane

SOFTWARE FOR MODELING AND SIMULATION

vi

IV

10

11

12

13

14

The ERATO Systems Biology Workbench: An
Integrated Environment for Multiscale and

Multitheoretic Simulations in Systems Biology
Michael Hucka, Andrew Finney, Herbert Sauro,
Hamid Bolouri, John Doyle, and Hiroaki Kitano

Automatic Model Generation for Signal
Transduction with Applications to MAP-Kinase
Pathways

Bruce E. Shapiro, Andre Levchenko, and Eric
Mjolsness

Modeling Large Biological Systems From Functional
Genomic Data: Parameter Estimation
Pedro Mendes

CELLULAR SIMULATION

Towards a Virtual Biological Laboratory
Jorg Stelling, Andreas Kremling, Martin Ginkel, Katja
Bettenbrock and Ernst Dieter Gilles

Computational Cell Biology — The Stochastic
Approach
Thomas Simon Shimizu and Dennis Bray

Computer Simulation of the Cell: Human
Erythrocyte Model and its Application
Yoichi Nakayama and Masaru Tomita

SYSTEM-LEVEL ANALYSIS

Constructing Mathematical Models of Biological
Signal Transduction Pathways: An Analysis of
Robustness

Tau-Mu Yi

Combination of Biphasic Response Regulation

and Positive Feedback as a General Regulatory
Mechanism in Homeostasis and Signal Transduction
Andre Levchenko, Jehoshua Bruck, and Paul W.
Sternberg

Distinct Roles of Rho-kinase Pathway and Myosin
Light Chain Kinase Pathway in Phosphorylation of
Myosin Light Chain: Kinetic Simulation Study
Shinya Kuroda, Nicolas Schweighofer, Mutsuki
Amano, Kozo Kaibuchi, and Mitsuo Kawato

Contents

125

145

163

189

213

233

251

263

279

Index 295

vii Contents

This page intentionally left blank

Mutsuki Amano

Division of Signal Transduction,
Nara Institute of Science and
Technology.

Katja Bettenbrock
bettenbrock@mpi-magdeburg.mpg.de
Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Hamid Bolouri
hbolouri@caltech.edu
JST/ERATO Kitano Systems
Biology Project,

and

Control and Dynamical Systems,
California Institute of Technology,
and

Division of Biology,

California Institute of Technology,
and

Science and Technology Research
Centre,

University of Hertfordshire.

Dennis Bray
d.bray@zoo.cam.ac.uk
Department of Zoology,
University of Cambridge.

Jehoshua Bruck
bruck@paradise.caltech.edu
Division of Engineering and
Applied Science,

California Institute of Technology.

John Doyle
doyle@cds.caltech.edu

Kitano Systems Biology Project,
ERATO, JST,

Contributors

and
Control and Dynamical Systems,
California Institute of Technology.

Andrew Finney
afinney@cds.caltech.edu
JST/ERATO Kitano Systems
Biology Project,

and

Control and Dynamical Systems,
California Institute of Technology.

Ernst Dieter Gilles
gilles@mpi-magdeburg.mpg.de
Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Martin Ginkel
ginkel@mpi-magdeburg.mpg.de
Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Shugo Hamahashi

shugo@symbio. jst.go.jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

Department of Computer Science,
Keio University.

Michael Hucka
mhucka@cds.caltech.edu
JST/ERATO Kitano Systems
Biology Project,

and

Control and Dynamical Systems,

California Institute of Technology.

Kozo Kaibuchi

Division of Signal Transduction,
Nara Institute of Science and
Technology,

and

Department of Cell Pharmacology,
Nagoya University.

Mitsuo Kawato

Kawato Dynamic Brain Project,
ERATO, JST,

and

Human Information Processing
Research Laboratories,

ATR.

Martin A. Keane

makeane@ix.netcom.com
Econometric Inc.

Hiroaki Kitano
kitano@symbio.jst.go.jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

The Systems Biology Institute,
and

Control and Dynamical Systems,
California Institute of Technology,
and

Sony Computer Science
Laboratories, Inc.

John R. Koza
koza@stanford.edu
Biomedical Informatics,
Department of Medicine,
Department of Electrical
Engineering,

Stanford University.

Andreas Kremling
kre@mpi-magdeburg.mpg.de
Max-Planck-Institute for

Contributors

Dynamics of Complex Technical
Systems.

Shinya Kuroda
kuroda@fido.cpmc.columbia.edu
Kawato Dynamic Brain Project,
ERATO, JST,

and

Division of Signal Transduction,
Nara Institute of Science and
Technology,

Present address: Center for
Neurobiology and Behavior,
Columbia University.

Koji M. Kyoda

kyoda@symbio. jst.go.jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

Department of Fundamental
Science and Technology,

Keio University.

Guido Lanza
guido@pharmix.com
Genetic Programming Inc.

Andre Levchenko
andre@paradise.caltech.edu
Division of Engineering and
Applied Science,

California Institute of Technology.

Pedro Mendes

mendes@vt.edu

Virginia Bioinformatics Institute,
Virginia Polytechnic Institute and
State University.

Satoru Miyano
miyano@ims.u-tokyo.ac.jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

Human Genome Center, Institute
of Medical Science,

University of Tokyo.

Xi

Eric Mjolsness
mjolsness@jpl.nasa.gov

Jet Propulsion Laboratory,
California Institute of Technology,
and

Division of Biology,

California Institute of Technology,
and

Kitano Symbiotic Systems Project,
ERATO, JST.

Mineo Morohashi

moro@symbio. jst.go.jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

Department of Fundamental
Science and Technology,

Keio University.

William Mydlowec

myd@cs.stanford.edu
Genetic Programming Inc.

Masao Nagasaki
masao@ims.u-tokyo.ac. jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

Department of Information
Science,

Human Genome Center, Institute
of Medical Science,

University of Tokyo.

Yoichi Nakayama
ynakayam@sfc.keio.ac. jp

Institute for Advanced Biosciences,
Keio University.

Shuichi Onami

sonami@symbio. jst.go.jp

Kitano Symbiotic Systems Project,
ERATO, JST,

and

The Systems Biology Institute,
and

Contributors

Control and Dynamical Systems,
California Institute of Technology.

Herbert Sauro
hsauro@cds.caltech.edu
JST/ERATO Kitano Systems
Biology Project,

and

Control and Dynamical Systems,
California Institute of Technology.

Nicolas Schweighofer

Kawato Dynamic Brain Project,
ERATO, JST,

Present address: Learning Curve.

Bruce Shapiro
bshapiro@jpl.nasa.gov

Jet Propulsion Laboratory,
California Institute of Technology.

Thomas Simon Shimizu
tss26Qcam.ac.uk
Department of Zoology,
University of Cambridge.

Jorg Stelling
stelling@mpi-magdeburg.mpg.de
Max-Planck-Institute for
Dynamics of Complex Technical
Systems.

Paul W. Sternberg
pws@its.caltech.edu

Division of Biology and

Howard Hughes Medical Institute,
California Institute of Technology.

Zoltan Szallasi
zszallas@mxc.usuhs.mil
Department of Pharmacology,
Uniformed Services University of
the Health Sciences.

Masaru Tomita
mt@sfc.keio.ac. jp
Institute for Advanced Biosciences,

xii

Keio University.

Mattias Wahde
mwahde@me.chalmers.se
Division of Mechatronics,
Chalmers University of
Technology.

Tau-Mu Yi

tmy@caltech.edu

Kitano Symbiotic Systems Project,
ERATO, JST,

and

Division of Biology,

California Institute of Technology.

Jessen Yu
jyu@cs.stanford.edu
Genetic Programming Inc.

Contributors

Preface

Systems biology aims at understanding biological systems at system level.
It is a growing area in biology, due to progress in several fields. The most
critical factor has been rapid progress in molecular biology, furthered
by technologies for making comprehensive measurements on DNA se-
quence, gene expression profiles, protein-protein interactions, etc. With
the ever-increasing flow of biological data, serious attempts to under-
stand biological systems as systems are now almost feasible. Handling this
high-throughput experimental data places major demands on computer
science, including database processing, modeling, simulation, and anal-
ysis. Dramatic progress in semiconductor technologies has led to high-
performance computing facilities that can support system-level analysis.

This is not the first attempt at system-level analysis; there have been
several efforts in the past, the most notable of which is cybernetics, or bio-
logical cybernetics, proposed by Norbert Wiener more than 30 years ago.
With the limited understanding of biological processes at the molecular
level at that time, most of the work was on phenomenological analysis
of physiological processes. There have also been biochemical approaches,
such as metabolic control analysis, and although restricted to steady-state
flow, it has successfully been used to explore system-level properties of bi-
ological metabolism. Systems biology, just like all other emerging scientific
disciplines, is built on multiple efforts that share the vision. However, sys-
tems biology is distinct from past attempts because for the first time we are
able to understand biology at the system level based on molecular-level
understanding, and to create a consistent system of knowledge grounded
in the molecular level. In addition, it should be noted that systems biology
is intended to be biology for system-level studies, not physics, systems
science, or informatics, which try to apply certain dogmatic principles to
biology.

When the field has matured in the next few years, systems biology will
be characterized as a field of biology at the system level with extensive
use of cutting-edge technologies and highly automated high-throughput
precision measurement combined with sophisticated computational tools
and analysis. Systems biology clearly includes both experimental and
computational or analytical studies. However, systems biology is not a
mere combination of molecular biology and computing science to reverse

xiv

engineer gene networks. Of course, it is one of the topics included, but
system-level understanding requires more than understanding structures.
Understanding of (1) system structures, (2) dynamics, (3) control methods,
and (4) design methods are major four milestones of systems biology
research. One of the most important missions of this book, which I tried
hard in my chapter, is to define the scope and provide the vision and
perspectives of this new born field.

I am very pleased to see that interest is rapidly growing among both
experimental biologists and those who with computing and engineering
backgrounds are seriously interested in biological systems. Not many peo-
ple understood what I was trying to describe when I was using the term
“systems biology” a few years ago, because it was well before human
genome sequence to complete, high-throughput experiments were to be
considered as realistic option, and it was a new term nobody used before.
But, today more and more people are using the concept and the term. Of
course, it is the actual research that matters, but the term is also important
because it symbolically represents what we are trying to accomplish. To-
day, we find more and more researchers are getting involved, as well as
numbers of research groups and institutions are being formed focusing on
systems biology.

Fortunately, I managed to convince the Japanese government to sup-
port the initiation of a new international conference. The First Interna-
tional Conference on Systems Biology (ICSB2000) was held in Tokyo from
November 14-16, 2000, supported by the Japan Science and Technology
Corporation, an agency belonging to the Science and Technology Agency
of the Japanese government. It was the first international conference that
clearly focused on systems biology work. Since then, various international
and national conferences, symposiums, and seminars have started orga-
nize systems biology sessions. The second conference will be held at the
California Institute of Technology in 2001 with the support of Caltech. In
fact, Caltech is one of the first institutions that seriously explored systems
biology. I still remember the overwhelming reaction when I gave a talk
“Perspectives on Systems Biology” at Caltech in March 1998.

This book is the first book on systems biology, and consists of papers
representing work in the systems biology field. It is loosely based on pa-
pers that were presented at ICSB2000. Of course, many research studies
related to systems biology are already underway, and I must state that
this book is by no means an exhaustive collection of such works. Also,
the experimental aspects of systems biology are under-represented here,
because many of the projects aiming at next-generation experiments are
at their early stage and so are not ready for publication. Nevertheless, the
book covers the central themes of systems biology: comprehensive and
automated measurements, reverse engineering of gene and metabolic net-
works from experimental data, software issues, modeling and simulation,
and system-level analysis.

Preface

XV

Although it it based on a long history, systems biology is a field in
its infancy. This book serves two purposes: first, to inform interested
researchers on the current state of the research and challenges before us,
and second, to be an archival collection of papers to record the initial stage
of the research. It is likely, just as in any fast-growing research area, that
the technical contents of the book will quickly become obsolete. However,
it is often the case that the vision, concept, and philosophy are still valid
and add value. I hope the field will quickly grow and flourish beyond its
present boundaries, but that the vision outlined herein is enduring.

Finally, this book could not have been completed without the sup-
port of many people. Mineo Morohashi has done a beautiful job in sort-
ing out and formatting all papers, communicating with authors as well as
with The MIT Press, and many other tasks. While I was preoccupied with
establishing the new research institution, The Systems Biology Institute
(http://www.systems-biology.org/), he did most of the editorial assistant
work for me. Thank you, Mineo. Members of the systems biology group of
ERATO Kitano Symbiotic Systems Project have been a great help in solicit-
ing papers and, more important, in formulating the basic concepts and vi-
sion behind systems biology. John Doyle, Mel Simon, Hamid Bolouri, and
Mark Borisuk have been particularly cooperative and supportive. Mario
Tokoro and Toshi Doi provided me with a superb research environment at
Sony Computer Science Laboratories, Inc. Bob Prior at The MIT Press sup-
ported me in this project from the beginning; it was in the summer of 1997
at the International Joint Conference on Artificial Intelligence (IJCAI-97) in
Nagoya that Bob walked up to me with a printout of the web page from a
talk I had given on systems biology at the University of Cambridge, and
asked me to publish this book. I am deeply indebted to all of you.

Hiroaki Kitano

Senior Researcher, Sony Computer Science Laboratories, Inc.
Director, ERATO Kitano Symbiotic Systems Project, JST, and
Director, The Systems Biology Institute

Tokyo, Japan

Preface

This page intentionally left blank

Systems Biology: Toward System-level
Understanding of Biological Systems

Hiroaki Kitano

Systems biology is a new field in biology that aims at system-level un-
derstanding of biological systems. While molecular biology has led to re-
markable progress in our understanding of biological systems, the cur-
rent focus is mainly on identification of genes and functions of their prod-
ucts which are components of the system. The next major challenge is to
understand at the system level biological systems that are composed of
components revealed by molecular biology. This is not the first attempt at
system-level understanding, since it is a recurrent theme in the scientific
community. Nevertheless, it is the first time that we may be able to under-
stand biological systems grounded in the molecular level as a consistent
framework of knowledge. Now is a golden opportunity to uncover the es-
sential principles of biological systems and applications backed up by in-
depth understanding of system behaviors. In order to grasp this opportu-
nity, it is essential to establish methodologies and techniques to enable us
to understand biological systems in their entirety by investigating: (1) the
structure of the systems, such as genes, metabolism, and signal transduc-
tion networks and physical structures, (2) the dynamics of such systems,
(3) methods to control systems, and (4) methods to design and modify sys-
tems for desired properties. This chapter gives an overview of the field of
systems biology that will provide a system-level understanding of life.

INTRODUCTION

The ultimate goal of biology is to understand every detail and principle of
biological systems. Almost fifty years ago, Watson and Crick identified the
structure of DNA (Watson and Crick, 1953), thus revolutionizing the way
biology is pursued. The beauty of their work was that they grounded bio-
logical phenomena on a molecular basis. This made it possible to describe
every aspect of biology, such as heredity, development, disease, and evo-
lution, on a solid theoretical ground. Biology became part of a consistent
framework of knowledge based on fundamental laws of physics.

Since then, the field of molecular biology has emerged and enormous
progress has been made. Molecular biology enables us to understand bi-
ological systems as molecular machines. Today, we have in-depth un-

derstanding of elementary processes behind heredity, evolution, devel-
opment, and disease. Such mechanisms include replication, transcription,
translation, and so forth.

Large numbers of genes and the functions of their transcriptional
products have been identified, with the symbolic accomplishment of the
complete sequencing of DNA. DNA sequences have been fully identi-
fied for various organisms such as mycoplasma, Escherichia coli (E. coli),
Caenorhabditis elegans (C. elegans), Drosophila melanogaster, and Homo sapi-
ens. Methods to obtain extensive gene expression profiles are now avail-
able that provide comprehensive measurement at the mRNA level. Mea-
surement of protein level and their interactions is also making progress
(Ito et al., 2000; Schwikowski et al., 2000). In parallel with such efforts,
various methods have been invented to disrupt the transcription of genes,
such as loss-of-function knockout of specific genes and RNA interference
(RNAI) that is particularly effective for C. elegans and is now being applied
for other species.

There is no doubt that our understanding of the molecular-level mech-
anisms of biological systems will accelerate. Nevertheless, such knowl-
edge does not provide us with an understanding of biological systems as
systems. Genes and proteins are components of the system. While an un-
derstanding of what constitutes the system is necessary for understanding
the system, it is not sufficient.

Systems biology is a new field of biology that aims to develop a
system-level understanding of biological systems (Kitano, 2000). System-
level understanding requires a set of principles and methodologies that
links the behaviors of molecules to system characteristics and functions.
Ultimately, cells, organisms, and human beings will be described and
understood at the system level grounded on a consistent framework of
knowledge that is underpinned by the basic principles of physics.

It is not the first time that system-level understanding of biological
system has been pursued; it is a recurrent theme in the scientific commu-
nity. Norbert Wiener was one of the early proponents of system-level un-
derstanding that led to the birth of cybernetics, or biological cybernetics
(Wiener, 1948). Ludwig von Bertalanffy proposed general system theory
(von Bertalanffy, 1968) in 1968 in an attempt to establish a general theory
of the system, but the theory was too abstract to be well grounded. A pre-
cursor to such work can be found in the work of Cannon, who proposed
the concept of “homeostasis” (Cannon, 1933). With the limited availability
of knowledge from molecular biology, most such attempts have focused
on the description and analysis of biological systems at the physiologi-
cal level. The unique feature of systems biology that distinguishes it from
past attempts is that there are opportunities to ground system-level un-
derstanding directly on the molecular level such as genes and proteins,
whereas past attempts have not been able to sufficiently connect system-
level description to molecular-level knowledge. Thus, although it is not

Hiroaki Kitano

the first time that system-level understanding has been pursued, it is the
first time to have an opportunity to understand biological systems within
the consistent framework of knowledge built up from the molecular level
to the system level.

The scope of systems biology is potentially very broad and different
sets of techniques may be deployed for each research target. It requires
collective efforts from multiple research areas, such as molecular biol-
ogy, high-precision measurement, computer science, control theory, and
other scientific and engineering fields. Research needs to be carried out
in four key areas: (1) genomics and other molecular biology research, (2)
computational studies, such as simulation, bioinformatics, and software
tools, (3) analysis of dynamics of the system, and (4) technologies for high-
precision, comprehensive measurements.

This constitutes a major multi-disciplinary research effort that will
enable us to understand biological systems as systems. But what does
this mean? “System” is an abstract concept in itself. It is basically an
assembly of components in a particular formation, yet it is more than a
mere collection of components. To understand the system, it is essential
that it can be not only to describe in detail, but also it to comprehend what
happens when certain stimuli or disruptions occur. Ultimately, we should
be able to design the system to meet specific functional properties. It takes
more than a simple in-depth description; it requires more active synthesis
to ensure that we have fully understood it.

To be more specific, in order to understand biological systems as sys-
tems, we must accomplish the following.

System Structure Identification: First of all, the structures of the sys-
tem need to be identified, primarily such as regulatory relationships of
genes and interactions of proteins that provide signal transduction and
metabolism pathways, as well as the physical structures of organisms,
cells, organella, chromatin, and other components.

Both the topological relationship of the network of components as well
as parameters for each relation need to be identified. The use of high-
throughput DNA microarray, protein chips, RT-PCR, and other methods
to monitor biological processes in bulk is critical. Nevertheless, methods
to identify genes and metabolism networks from these data have yet to be
established.

Identification of gene regulatory networks' for multicellular organisms is
even more complex as it involves extensive cell-cell communication and
physical configuration in three-dimensional space. Structure identification
for multicellular organisms inevitably involves not only identifying the
structure of gene regulatory networks and metabolism networks, but also
understanding the physical structures of whole animals precisely at the

1 In this article, the term “gene regulatory networks” is used to represent networks of gene
regulations, metabolic pathways, and signal transduction cascades.

Systems Biology: Toward System-level Understanding of Biological Systems

cellular level. Obviously, new instrumentation systems need to be devel-
oped to collect necessary data.

System Behavior Analysis: Once a system structure is identified to a cer-
tain degree, its behavior needs to be understood. Various analysis meth-
ods can be used. For example, one may wish to know the sensitivity of
certain behaviors against external perturbations, and how quickly the sys-
tem returns to its normal state after the stimuli. Such an analysis not only
reveals system-level characteristics, but also provides important insights
for medical treatments by discovering cell response to certain chemicals
so that the effects can be maximized while lowering possible side effects.
System Control: In order to apply the insights obtained by system struc-
ture and behavior understanding, research into establishing a method to
control the state of biological systems is needed. How can we transform
cells that are malfunctioning into healthy cells? How can we control can-
cer cells to turn them into normal cells or cause apoptosis? Can we control
the differentiation status of a specific cell into a stem cell, and control it to
differentiate into the desired cell type? Technologies to accomplish such
control would enormously benefit human health.

System Design: Ultimately, we would like to establish technologies that
allow us to design biological systems with the aim of providing cures for
diseases. One futuristic example would be to actually design and grow
organs from the patient’s own tissue. Such an organ cloning technique
would be enormously useful for the treatment of diseases that require
organ transplants. There may be some engineering applications by using
biological materials for robotics or computation. By using materials that
have self-repair and self-sustaining capability, industrial systems will be
revolutionized.

This chapter discusses scientific and engineering issues to accomplish
in-depth understanding of the system.

MEASUREMENT TECHNOLOGIES AND EXPERIMENTAL METHODS
Toward Comprehensive Measurements

A comprehensive data set needs to be produced to grasp an entire picture
of the organism of interest. For example, the entire sequence has been de-
duced for yeast, and a microarray that can measure the expression level
of all known genes is readily available. In addition, extensive studies of
protein-protein interactions using the two-hybrid method are being car-
ried out (Ito et al., 2000; Schwikowski et al., 2000). Efforts to obtain high-
resolution spatiotemporal localization data for protein are underway.

C. elegans is an example of an intensively measured multi-cellular
organism. A complete cell lineage has already been identified (Sulston et
al., 1983; Sulston and Horvitz, 1977), the topology of the neural system

Hiroaki Kitano

has been fully described (White et al., 1986), the DNA sequence has been
fully identified (The C. elegans Sequencing Consortium, 1998), a project
for full description of gene expression patterns during development using
whole-mount in situ hybridization (Tabara et al., 1996) is underway, and
the construction of a systematic and exhaustive library of mutants has
begun. In addition, a series of new projects has started for measuring
neural activity in vivo, and for automatic construction of cell lineage in real
time using advanced image processing combined with special microscopy
(Yasuda et al., 1999; Onami et al., 2001a).

While yeast and C. elegans are examples of comprehensive and exhaus-
tive understanding of biological systems, similar efforts are now being
planned for a range of biological systems. Although these studies are cur-
rently limited to understanding the components of the system and their
local relationship with other components, the combination of such exhaus-
tive experimental work and computational and theoretical research would
provide a viable foundation for systems biology.

Measurement for Systems Biology

Although efforts to systematically obtain comprehensive and accurate
data sets are underway, systems biology is much more demanding for
experimental biologists than the current practice of biology. It requires a
comprehensive body of data and control of the quality of data produced
so that it can be used as a reference point of simulation, modeling, and
system identification. Eventually, many of the current experimental pro-
cedures must be automated to enable high-throughput experiments to be
carried out with precise control of quality. Needless to say, not all bio-
logical experiments will be carried out in such an automated fashion, for
important contributions will be made by small-scale experiments. Never-
theless, large-scale experiments will lay the foundation for system-level
understanding.

High-throughput, comprehensive, and accurate measurement is the
most essential part of biological science. While expectations are high for
a computational approach to overcome limitations in the traditional ap-
proach in biology, it will never generate serious results without experi-
mental data upon which computational studies can be grounded. For the
computational and systems approach to be successful, measurement has
to be (1) comprehensive, (2) quantitatively accurate, and (3) systematic.

While the requirement for quantitative accuracy is obvious, the other
two criteria need further clarification. Comprehensiveness can be further
classified into three types:

Factor comprehensiveness: Comprehensiveness in terms of target factors
that are being measured, such as numbers of genes and proteins. It is im-
portant that measurement is carried out intensively for the factors (genes

Systems Biology: Toward System-level Understanding of Biological Systems

and proteins) that are related to the central genes and proteins of interest.
Unless all genes and proteins are measured, how effectively measurement
covers the factors of interest is more important, rather than the sheer num-
ber of factors measured.

Time-series comprehensiveness: In modeling and analysis of a dynami-
cal system, it is important to capture its behavior with fine-grain time se-
ries. Traditional biological experiments tend to measure only the change
before and after a certain event. For computational analysis, data mea-
sured at a constant time interval are essential in addition to traditional
sampling points.

Item comprehensiveness: There are cases where several features, such as
transcription level, protein interaction, phosphorylation, localization, and
other features, have to be measured intensively for the specific target.

“Systematic” means that measurement is performed in such a way that
obtained data can be consistently integrated. The ideal systematic mea-
surement is simultaneous measurement of multiple features for a single
sample. It is not sufficient to develop a sophisticated model and perform
analysis using only the mRNA or protein level. Multiple data need to be
integrated. Then, each data point has to be obtained using samples that are
consistent across various measurements. If samples are prepared in sub-
stantially different ways, two data points cannot be integrated. Although
this requirement sounds obvious, very few data sets meet these criteria
today.

These criteria are elucidated in the scenario below with some examples
of requirements for experimental data.

For example, to infer genetic regulatory networks from an expression
profile, comprehensive measurement of the gene expression profile needs
to be carried out. Expression data in which only the wild-type is measured
is generally unusable for this purpose. The data should have a compre-
hensive set of deletion mutant and overexpression of each gene. Desirable
data sets knock out all genes that are measured in the microarray. If only
a limited number of genes can be knocked out due to cost and time con-
straints, it is critical that genes that are expected to be tightly coupled are
intensively knocked out rather than knocking out genes sparsely over the
whole possible regulatory network. This is due to computational char-
acteristics of the reverse engineering algorithm that constructs the gene
regulatory network from profile data. With such algorithms, sparse data
points leave almost unlimited ambiguities on possible network structures.
Even with the same number of data points, the algorithm produces much
more reliable network hypotheses if measured genes are closely related.
This is what is meant by factor comprehensiveness.

Time-series comprehensiveness is required for phenomena that are
time aligned. Time-series profile data need to be prepared with particu-
lar caution in terms of time synchronization of samples to be measured.

Hiroaki Kitano

It is often the case in traditional experiments that only two measurement
points are set: one before the event and one after the event. For example,
many studies in cellular aging research measured the expression level of
aging-related genes for young cells, aged cells, and immortalized cells,
without measuring changes of expression level on fine-grain time series.
In some cases, time-series changes of expression level can be important
information to create candidate hypotheses or eliminate possible mecha-
nisms. In addition to measurements before and after a biologically inter-
esting event, measurement should be carried at a constant time interval.
Expression profile data that has reliable sample time synchrony and con-
stant time interval is most useful to enable the computational algorithm
to reliably fit models and parameters to experimental data.

Additional information from protein-protein interactions, such as
from yeast two-hybrid experiments, is very useful to infer protein-level
interactions that fill the gap between regulation of genes. Both protein in-
teractions and expression profiles should be measured on samples that are
prepared identically. This systematic measurement requirement is rather
hard to meet currently, because not many research groups are proficient
in multiple measurement techniques.

After obtaining gene regulatory networks, one needs to find out spe-
cific parameters used in the network. To understand dynamics, it is essen-
tial that each parameter regarding the network is obtained, so that various
numerical simulations and analyses can be performed. Such parameters
are binding constant, transcription rate, translation rate, chemical reaction
rate, degradation rate, diffusion rate, speed of active transport, etc. Except
for special cases, such as red blood cells, these constants are not readily
available. Measurement using extracts provides certain information, but
often these rate constants vary drastically in vivo. Ideally, comprehensive
measurement of major parameters would be performed in vivo, but any
measurement that gives reasonable estimates would be of great help. In
addition to parameter measurement, it is critically important to measure
the phosphorylation state at high resolution.

While accuracy is important, the level of accuracy required may vary
depending on which part of the system is to be measured. In some parts of
the network, the system behavior is sensitive to specific parameter values,
and thus has to be measured with high accuracy. In other parts of the
system, the system may be robust against fluctuations of large magnitude.
In such a case, it may often suffice to confirm that the parameter values fall
within the range of stability, instead of obtaining highly accurate figures.
The point is that not all parts of the system need to be tuned with the
same precision. For example, components for jet engines may have to
be produced with high precision, but seat belts do not have to achieve
the same precision as jet engine components. In future, the type and
accuracy requirements for experiments may be determined by theoretical
requirements.

Systems Biology: Toward System-level Understanding of Biological Systems

The examples given so far have focused on the process of identification
of network structure and parameters that enable simulation and analysis
of biochemical networks under the simplified assumption that all materi-
als are distributed homogeneously in the environment. Unfortunately, this
is not the case in biological systems. There are subcellular structures and
localization of transcription products that cause major diversion from a
naive model. Multi-cellular systems require measurement of cell-cell con-
tact, diffusion, cell lineage, gene expression during development, etc. For
accurate simulation and analysis, these features have to be measured in
a comprehensive, accurate, and systematic manner. We have not devel-
oped devices to obtain high-throughput measurements for any of these
features. This is a serious issue that has to be addressed.

Next-generation Experimental Systems

To cope with increasing demands for comprehensive and accurate mea-
surement, a set of new technologies and instruments needs to be devel-
oped that offers a higher level of automation and high-precision measure-
ment.

First, dramatic progress in the level of automation of experimen-
tal procedures for routine experiments is required in order to keep up
with increasing demands for modeling and system-level analysis. High-
throughput experiments may turn into a labor-intensive nightmare un-
less the level of automation is drastically improved. Further automation
of experimental procedures would greatly benefit the reliability of experi-
ments, throughput, and total cost of the whole operation in the long run.

Second, cutting-edge technologies such as micro-fluid systems, nano-
technology and femto-chemistry may need to be introduced to design and
build next-generation experimental devices. The use of such technologies
will enable us to measure and observe the activities of genes and proteins
in a way that is not possible today. It may also drastically improve the
speed and accuracy of measurement for existing devices.

In those fields where there are obvious needs, such as sequencing
and proteomics, the above goals are already pursued. Beyond the devel-
opment of high-throughput sequencers using high-density capillary ar-
ray electrophoresis, efforts are being made to develop integrated micro-
fabricated devices that enable PCR and capillary electrophoresis in a sin-
gle micro device (Lagally et al., 1999; Simpson et al., 1998). Such devices
not only enable miniaturization and precision measurements, but will also
significantly increase the level of automation.

In the developmental biology of C. elegans, identification of cell lin-
eage is one of the major issues that needs to be accomplished to assist
analysis of the gene regulatory network for differentiation. The first at-
tempt to identify cell lineage was carried out entirely manually (Sulston
et al., 1983; Sulston and Horvitz, 1977), and it took several years to iden-

Hiroaki Kitano

tify the lineage of the wild type. Four-dimensional microscopy allowed
us to collect multi-layer confocal images at a constant time interval, but
lineage identification is not automatic. With the availability of exhaus-
tive RNAi knockout for C. elegans, high-throughput cell lineage identifi-
cation is essential to explore the utility of the exhaustive RNAI. Efforts are
underway to fully automate cell lineage identification, as well as three-
dimensional nuclei position data acquisition (Onami et al., 2001a), fully
utilizing advanced image processing algorithms and massively parallel
supercomputers. Such devices meet some of the criteria presented ear-
lier, and provide comprehensive measurement of cell positions with high
accuracy. With automation, high-throughput data acquisition can be ex-
pected. If the project succeeds, it can be used to automatically identify the
cell lineage of all RNAi knockout for early embryogenesis. The technology
may be augmented, but with major efforts, to automatically detect cell-cell
contact, protein localization, etc.

Combined with whole mount in situ hybridization and possible future
single-cell expression profiling, complete identification of the gene regu-
latory network for C. elegans may be possible in the near future.

SYSTEM STRUCTURE IDENTIFICATION

There are various system structures that need to be identified, such as
the structural relationship among cells in the developmental process, de-
tailed cell-cell contact configuration, membrane, intra-cellular structures,
and gene regulatory networks. While each of these has significance in cor-
responding research in systems biology, this section focuses on how the
structure of gene regulatory networks can be identified, primarily because
it is a subject of growing interest due to the rapid uncovering of genomic
information, and it is the control center of various cellular phenomena.

In order to understand a biological system, we must first identify
the structure of the system. For example, to identify a gene regulatory
network, one must identify all components of the network, the function of
each component, interactions, and all associated parameters. All possible
experimental data must be used to accomplish this non-trivial task. At
the same time, inference results from existing experiments should enable
the prediction of unknown genes and interactions, which can then be
experimentally verified.

The difficulty is that such a network cannot be automatically inferred
from experimental data based on some principles or universal rules, be-
cause biological systems evolve through stochastic processes and are not
necessarily optimal. Also, there are multiple networks and parameter val-
ues that behave quite similar to the target network. One must identify the
true network out of multiple candidates.

This process can be divided into two major tasks: (1) network structure
identification, and (2) parameter identification.

Systems Biology: Toward System-level Understanding of Biological Systems

10

Network Structure Identification

Several attempts have already been made to identify gene regulatory
networks from experimental data. They can be classified into two ap-
proaches.

BOTTOM-UP APPROACH

The bottom-up approach tries to construct a gene regulatory network
based on the compilation of independent experimental data, mostly
through literature searches and some specific experiments to obtain data
of very specific aspects of the network of interest. Some of the early at-
tempts of this approach are seen in the lambda phage decision circuit
(McAdams and Shapiro, 1995), early embryogenesis of Drosophila (Reinitz
etal., 1995; Hamahashi and Kitano, 1998; Kitano et al., 1997), leg formation
(Kyoda and Kitano, 1999a), wing formation (Kyoda and Kitano, 1999b),
eye formation on ommatidia clusters and R-cell differentiation (Moro-
hashi and Kitano, 1998), and a reaction-diffusion based eye formation
model (Ueda and Kitano, 1998). This approach is suitable when most of
the genes and their regulatory relationship are relatively well understood.
This approach is particularly suitable for the end-game scenario where
most of the pieces are known and one is trying to find the last few pieces.
In some cases, biochemical constants can be measured so that very precise
simulation can be performed. When most parameters are available, the
main purpose of the research is to build a precise simulation model which
can be used to analyze the dynamic properties of the system by changing
the parameters that cannot be done in the actual system, and to confirm
that available knowledge generates simulation results that are consistent
with available experimental data.

There are efforts to create databases that describe gene and metabolic
pathways from the literature. KEGG (Kanehisa and Goto, 2000) and Eco-
Cyc (Karp et al., 1999) are typical examples. Such databases are enor-
mously useful for modeling and simulation, but they must be accurate
and represented in such a way that simulation and analysis can be done
smoothly.

There have been some preliminary attempts to predict unknown genes
and their interactions (Morohashi and Kitano, 1998; Kyoda and Kitano,
1999a,b). These attempts manually searched possible unknown interac-
tions to obtain simulation results consistent with experimental data, and
did not perform exhaustive searches of all possible spaces of network
structures.

ToP-DOWN APPROACH

The top-down approach tries to make use of high-throughput data us-
ing DNA microarray and other new measurement technologies. Already,

Hiroaki Kitano

11

there have been some attempts to infer groups of genes that have a tight
relationship based on DNA microarray data using clustering techniques
for the yeast cell cycle (Brown and Botstein, 1999; DeRisi et al., 1997;
Spellman et al., 1998) and development of mouse central neural systems
(D’'haeseleer et al., 1999). Clustering methods are suitable for handling
large-scale profile data, but do not directly deduce the network structures.
Such methods only provide clusters of genes that are co-expressed in sim-
ilar temporal patterns. Often, easy-to-understand visualization is required
(Michaels et al., 1998).

Some heuristics must be imposed if we are to infer networks from such
methods. Alternative methods are now being developed to directly infer
network structures from expression profiles (Morohashi and Kitano, 1999;
Liang et al., 1999) and extensive gene disruption data (Akutsu et al., 1999;
Ideker et al., 2000). Most of the methods developed in the past translate
expression data into binary values, so that the computing cost can be
reduced. However, such methods seriously suffer from information loss
in the binary translation process, and cannot obtain the accurate network
structure. A method that can directly handle continuous-value expression
data was proposed (Kyoda et al., 2000b; Onami et al., 2001b) and reported
accurate performance without a serious increase in computational costs.
An extension of this method seems to be very promising for any serious
research on inference of gene regulatory networks.

Genetic programming has been applied to automatically reconstruct
pathways and parameters that fit experimental data (Koza et al., 2001).
The approach requires extensive computing power, and an example of
such is the 1,000 CPU cluster Beowulf-class supercomputer, but the ap-
proach has the potential to be practical given the expected speed up of
processor chips.

Such extensions include the development of a hybrid method that
combines the bottom-up and the top-down approach. It is unlikely that
no knowledge is available before applying any inference methods; in
practical cases, it can be assumed that various genes and their interactions
are partially understood, and that it is necessary to identify the rest of the
network. By using knowledge that is sufficiently accurate, the possible
space of network structures is significantly reduced.

One major problem is that such methods cannot directly infer possible
modifications and translational control. Future research needs to address
integration of the data of the expression profile, protein-protein interac-
tions, and other experimental data.

Parameter Identification
It is important to identify only the structure of the network, but a set of

parameters, because all computational results have to be matched and
tested against actual experimental results. In addition, the identified net-

Systems Biology: Toward System-level Understanding of Biological Systems

12

work will be used for simulating a quantitative analysis of the system’s
response and behavioral profile.

In most cases, the parameter set has to be estimated based on exper-
imental data. Various parameter optimization methods, such as genetic
algorithms and simulated annealing, are used to find a set of parame-
ters that can generate simulation results consistent with experimental data
(Hamahashi and Kitano, 1999). In finding a parameter set, it must be noted
that there may be multiple parameter sets which generate simulation re-
sults equally fitted to experimental data. An important feature of parame-
ter optimization algorithms used for this purpose is the capability to find
as many local minima (including a global minima) as possible, rather than
finding single global minima. This needs to be combined with a method
to indicate specific experiments to identify which one of such parameter
sets is the correct parameter set.

There are several methods to find optimal parameter sets such as
brute force exhaustive search, genetic algorithms, simulated annealing,
etc. Most of them are computationally expensive, and have not been con-
sidered viable options in the past. But the situation has changed, and it
will change in future, too.

Although it is important to accurately measure and estimate the gen-
uine parameter values, in some cases parameters are not that critical. For
example, it was shown through an extensive simulation that the segment
polarity network in Drosophila exhibits a high level of robustness against
parameter change (von Dassow et al., 2000). For certain networks that are
essential for survival the networks need to be built robust against vari-
ous changes in parameters to cope with genetic variations and external
disturbances. For this kind of network, the essence is embedded into the
structure of the network, rather than specific parameters of the network.
This is particularly the case when feedback control is used to obtain ro-
bustness of the circuits, as seen in bacterial chemotaxis (Yi et al., 2000).

Thus, parameter estimation and measurement may need to be com-
bined with theoretical analysis on sensitivity of certain parameters to
maintain functionalities of the circuit.

SYSTEM BEHAVIOR ANALYSIS

Once we understand the structures of the system, research will focus on
dynamic behaviors of the system. How does it adapt to changes in the
environment, such as nutrition, and various stimuli? How does it main-
tain robustness against various potential damage to the system, such as
DNA damage and mutation? How do specific circuits exhibit functions
observed? To attain system-level understanding, it is essential to under-
stand the mechanisms behind (1) the robustness and stability of the sys-
tem, and (2) functionalities of the circuits.

It is not a trivial task to understand the behaviors of complex biolog-

Hiroaki Kitano

13

ical networks. Computer simulation and a set of theoretical analyses are
essential to provide in-depth understanding on the mechanisms behind
the circuits.

Simulation

Simulation of the behavior of gene and metabolism networks plays an im-
portant role in systems biology research, and there are several ongoing
efforts on simulator development (Mendes and Kell, 1998; Tomita et al.,
1999; Kyoda et al., 2000a; Nagasaki et al., 1999). Due to the complexity of
the network behavior and large number of components involved, it is al-
most impossible to intuitively understand the behaviors of such networks.
In addition, accurate simulation models are prerequisite for analyzing the
dynamics of the system by changing the parameters and structure of the
gene and metabolism networks. Although such analysis is necessary for
understanding the dynamics, these operations are not possible with actual
biological systems. Simulation is an essential tool not only for understand-
ing the behavior, but also for the design process. In the design of complex
engineering systems, various forms of simulation are used. It is unthink-
able today that any serious engineering systems could be designed and
built without simulation. VLSI design requires major design simulation,
thus creating one of the major markets for supercomputers. Commercial
aviation is another example. The Boeing 777 was designed based almost
entirely on simulation and digital prefabrication. Once we enter that stage
of designing and actively controlling biological systems, simulation will
be the core of the design process.

For simulation to be a viable methodology for the study of biological
systems, highly functional, accurate, and user-friendly simulator systems
need to be developed. Simulators and associated software systems often
require extensive computing power such that the system must run on
highly parallel cluster machines, such as the Beowulf PC cluster (Okuno
et al., 1999). Although there are some simulators, there is no system that
sufficiently covers the needs of a broad range of biology research. Such
simulators must be able to simulate gene expression, metabolism, and
signal transduction for a single and multiple cells. It must be able to
simulate both high concentration of proteins that can be described by
differential equations, and low concentration of proteins that need to be
handled by stochastic process simulation. Some efforts on simulating a
stochastic process (McAdams and Arkin, 1998) and integrating it with
high concentration level simulation are underway.

In some cases, the model requires not only gene regulatory networks
and metabolic networks, but also high-level structures of chromosomes,
such as heterochromatin structures. In the model of aging, some attempts
are being made to model heterochromatin dynamics (Kitano and Imai,
1998; Imai and Kitano, 1998). Nevertheless, how to model such dynamics

Systems Biology: Toward System-level Understanding of Biological Systems

14

and how to estimate the structure from sparse data and the current level
of understanding are major challenges.

The simulator needs to be coupled with parameter optimization tools,
a hypothesis generator, and a group of analysis tools. Nevertheless, algo-
rithms behind these software systems need to be designed precisely for
biological research. One example that has already been mentioned is that
the parameter optimizer needs to find as many local minima (including
global minima) as possible, because there are multiple possible solutions
of which only one is actually used. The assumption that the most opti-
mal solution is used in an actual system does not hold true in biological
systems. Most parameter optimization methods are designed to find the
global optima for engineering design and problem solving. While existing
algorithms provide a solid starting point, they must be modified to suit
biological research. Similar arguments apply to other software tools, too.

A set of software systems needs to be developed and integrated to
assist systems biology research. Such software includes:

e a database for storing experimental data,
e a cell and tissue simulator,

parameter optimization software,

bifurcation and systems analysis software,

hypotheses generator and experiment planning advisor software, and
e data visualization software.

How these modules are related and used in an actual work flow is
illustrated in Figure 1.1. While many independent efforts are being made
on some of this software, so far only limited efforts have been made to
create a common platform that integrates these modules. Recently, a group
of researchers initiated a study to define a software platform for systems
biology. Although various issues need to be addressed for such a software
platform, the rest of this section describes some illustrative issues.

Efforts are being made to provide a common and versatile software
platform for systems biology research. The Systems Biology Workbench
project aims to provide a common middleware so that plug-in modules
can be added to form a uniform software environment.

Beside the software module itself, the exchange of data and the inter-
face between software modules is a critical issue in data-driven research
tools. Systems Biology Mark-up Language (SBML) is a versatile and com-
mon open standard that enables the exchange of data and modeling in-
formation among a wide variety of software systems (Hucka et al., 2000,
2001). It is an extension of XML, and is expected to become the industrial
and academic standard of the data and model exchange format.

Ultimately, a group of software tools needs to be used for disease mod-
eling and simulation of organ growth and control; this requires a compre-
hensive and highly integrated simulation and analysis environment.

Hiroaki Kitano

15

Database

[Genome/Proteome

System Structure
Database

Experimental Data
Database

Simulator

Parameter Optimization
Module

!

!

Experimental Data
Interface

(Bifurcation analysis,
Flux Balance Analysis, etc.)

System Analysis Module

Visualization Module

!

Measurement System Profile
Systems Database

Hypotheses Generation
Experiment Planning

Module

(A) Relationship among Software Tools

Expression profile data |
i Two-hybrid data,

Parameter
optimizer

1 RT-PCR data, etc.

|

Simulator

I

+ Gene regulation network
1 Metabolic cascade network 7 >

Hypotheses
generator

Signal transduction network L,

A set of plaus

Dynamic systems analysis
—> Robustness, stability,
bifurcation, etc

——— Design pattern analysis
Design pattern extraction

ible hypotheses
Predictions of genes and interactions

Experiment design
assistance system

Biological

experiments «———— Experiment plans

(B) Workflow and software tools

Figure 1.1 Software tools for systems biology and their workflow

Analysis Methods

There have been several attempts to understand the dynamic properties
of systems using bifurcation analysis, metabolic control analysis, and sen-
sitivity analysis. For example, bifurcation analysis has been used to un-
derstand the Xenopus cell cycle (Borisuk and Tyson, 1998). The analysis
creates a phase portrait based on a set of equations describing the essen-
tial process of the Xenopus cell cycle. A phase portrait illustrates in which
operation point the system is acting, and how it changes behavior if some
of the system parameters are varied. By looking at the landscape of the

Systems Biology: Toward System-level Understanding of Biological Systems

16

phase portrait, a crude analysis of the robustness of the system can be
made.

A group of analysis methods such as flux balance analysis (FBA)
(Varma and Palsson, 1994; Edward and Palsson, 1999) and metabolic con-
trol analysis (MCA) (Kacser and Burns, 1973; Heinrich and Rapoport,
1974; Fell, 1996) provides a useful method to understand system-level be-
haviors of metabolic circuits under various environments and internal dis-
ruptions. It has been demonstrated that such an analysis method can pro-
vide knowledge on the capabilities of metabolic pathways that are consis-
tent with experimental data (Edward et al., 2001). While such methods are
currently aiming at analysis of the steady-state behaviors with linear ap-
proximation, extention to dynamic and nonlinear analysis would certainly
provide a powerful tool for system-level analysis of metabolic circuits.

Several other analysis methods have already been developed for com-
plex engineering systems, particularly in the area of control dynamic sys-
tems. One of the major challenges is to describe biological systems in the
language of control theory, so that we can abstract essential parts of the
system within the common language of biology and engineering.

ROBUSTNESS OF BIOLOGICAL SYSTEMS

Robustness is one of the essential features of biological systems. Under-
standing the mechanism behind robustness is particularly important be-
cause it provides in-depth understanding on how the system maintains its
functional properties against various disturbances. Specifically, we should
be able to understand how organisms respond to (1) changes in environ-
ment (deprived nutrition level, chemical attractant, exposure to various
chemical agents that bind to receptors, temperature) and (2) internal fail-
ures (DNA damage, genetic malfunctions in metabolic pathways). Obvi-
ously, it is critically important to understand the intrinsic functions of the
system, if we are eventually to find cures for diseases.

Lessons from Complex Engineering Systems

There are interesting analogies between biological systems and engineer-
ing systems. Both systems are designed incrementally through some sort
of evolutionary processes, and are generally suboptimal for the given task.
They also exhibit increased complexity to attain a higher level of robust-
ness and stability.

Consider an airplane as an example. If the atmospheric air flow is
stable and the airplane does not need to change course, altitude, or weight
balance, and does not need to take off and land, the airplane can be built
using only a handful of components. The first airplane built by the Wright
brothers consisted of only a hundred or so components. The modern jet,
such as the Boeing 747, consists of millions of components. One of the

Hiroaki Kitano

17

major reasons for the increased complexity is to improve stability and
robustness. Is this also the case in biological systems?

Mycoplasma is the smallest self-sustaining organism and has only
about 400 genes. It can only live under specific conditions, and is very
vulnerable to environmental fluctuations. E. coli, on the other hand, has
over 4,000 genes and can live under varying environments. As E. coli
evolved it acquired genetic and biochemical circuits for various stress
responses and basic behavioral strategies such as chemotaxis (Alon et
al., 1999; Barkai and Leibler, 1997). These response circuits form a class
of negative feedback loop. Similar mechanisms exist even in eukaryotic
cells?.

A crude speculation is that further increases in complexity in multicel-
lular systems toward homo sapiens may add functionalities that can cope
with various situations in their respective ecological niche.

In engineering systems, robustness and stability are achieved by the
use of (1) system control, (2) redundancy, (3) modular design, and (4)
structural stability. The hypothesis is that the use of such an approach
is an intrinsic feature of complex systems, be they artificial or natural.

System Control: Various control schemes used in complex engineering
systems are also found in various aspects of biological systems. Feedfor-
ward control and feedback control are two major control schemes, both
of which are found almost ubiquitously in biological systems. Feedfor-
ward control is an open-loop control in which a set of predefined reaction
sequences is triggered by a certain stimulus. Feedback is a sophisticated
control system that closes the loop of the signal circuits to attain the de-
sired control of the system. A negative feedback system detects the differ-
ence between desired output and actual output and compensates for such
difference by modulating the input. While there are feedforward control
methods, feedback control is more sophisticated and ensures proper con-
trol of the system and it can be used with feedforward control. It is one
of the most widely used methods in engineering systems to increase the
stability and robustness of the system.

Redundancy: Redundancy is a widely used method to improve the sys-
tem’s robustness against damage to its components by using multiple
pathways to accomplish the function. Duplicated genes and genes with
similar functions are basic examples of redundancy. There is also circuit-
level redundancy, such as multiple pathways of signal transduction and
metabolic circuits that can be functionally complementary under different
conditions.

Modular Design: Modular design prevents damage from spreading lim-
itlessly, and also improves ease of evolutionary upgrading of some of the

2 Discussion of similarity between complexity of engineering and biological systems as
described in this section was first made, as far as the author is aware, by John Doyle at
Caltech.

Systems Biology: Toward System-level Understanding of Biological Systems

18

Feedforward control

A

input —* Controller Effector > output

Feedback control

input Y Controller > Effector output

Figure 1.2 Feedforward control and feedback control

components. At the same time, a multi-functional module can help over-
come system failure in a critical part by using modules in other less critical
parts. Cellular systems are typical examples of modular systems.
Structural Stability: Some gene regulatory circuits are built to be stable
for a broad range of parameter variations and genetic polymorphisms.
Such circuits often incorporate multiple attractors, each of which corre-
sponds to functional state of the circuit; thus its functions are maintained
against change in parameters and genetic polymorphisms.

It is not clear whether such engineering wisdom is also the case in bi-
ological systems. However, the hypothesis is that such features are some-
what universal in all complex systems. It is conceivable that there are cer-
tain differences due to the nature of the system it is built upon, as well as
the difference between engineering systems that are designed to exhibit
certain functions and natural systems that have reproduction as a single
goal where all functions are only evaluated in an integrated effect. Never-
theless, it is worth investigating the univerality of principles. And, if there
are differences, what are they?

The rest of the section focuses on how three principles of robustness
exist also in biological systems. Of course, not all biological systems are
robust, and it is important to know which parts of the systems are not
robust and why. However, for this particular chapter, we will focus on
robustness of biological systems, because it is one of the most interesting
issues that we wish to understand.

Control

The use of explicit control scheme is an effective approach to improv-
ing robustness. Feedforward control and feedback control are two major
methods of system control (Figure 1.2).

Feedforward control is an open-loop control in which a sequence of
predefined actions is triggered by a certain stimulus. This control method

Hiroaki Kitano

19

is the simplest method that works when possible situations and counter-
measures are highly predictable.

Feedback control, such as negative feedback, is a sophisticated control
method widely used in engineering. It feeds back the sign-inverted error
between the desired value and the actual value to the input, then the input
signal is modulated proportional to the amount of error. In its basic form,
it acts to minimize the output error value.

Feedback plays a major role in various aspects of biological processes,
such as E. coli chemotaxis and heat shock response, circadian rhythms, cell
cycle, and various aspects of development.

The most typical example is the integral feedback circuits involved in
bacterial chemotaxis. Bacteria demonstrates robust adaptation to a broad
range of chemical attractant concentrations, and so can always sense
changes in chemical concentration to determine its behavior. This is ac-
complished by a circuit that involves a closed-loop feedback circuit (Alon
etal., 1999; Barkai and Leibler, 1997). As shown in Figure 1.3, ligands that
are involved in chemotaxis bind to a specific receptor MCP that forms a
stable complex with CheA and CheW. CheA phosphorylates CheB and
CheY. Phosphorylated CheB demethylates the MCP complex, and phos-
phorylated CheY triggers tumbling behavior. It was shown through ex-
periments and simulation studies that this forms a feedback circuit which
enables adaptation to changes in ligand concentration. Specifically, for
any sudden change in the ligand concentration, the average activity level
that is characterized by the tumbling frequency quickly converges to the
steady-state value. This means that the system only detects acute changes
of the ligand concentration that can be exploited to determine tumbling
frequency, but is insensitive to the absolute value of ligand concentration.
Therefore, the system can detect and control its behavior to move to a
high attractant concentration area in the field regardless of the absolute
concentration level without saturating its sensory system. Detailed anal-
ysis revealed that this circuit functions as an integral feedback (Yi et al.,
2000) — the most typical automatic control strategy.

In bacteria, there are many examples of sophisticated control embed-
ded in the system. The circuit that copes with heat shock, for example, is
a beautiful example of the combined use of feedforward control and feed-
back control (Figure 1.4). Upon heat shock, proteins in E. coli can no longer
maintain their normal folding structures. The goal of the control system is
to repair misfolding proteins by activating a heat shock protein (hsp), or
to dissociate misfolding proteins by protease. As soon as heat shock is im-
posed, a quick translational modulation facilitates the production of o3
factor by affecting the three-dimensional structure of rpoH mRNA that
encodes o32. This leads to the formation of o3>-RNAP holo-enzyme that
activates hsp that repair misfolded proteins. This process is feedforward
control that pre-encodes the relationship between heat shock and proper
course of reactions. In this process, there is no detection of misfolded pro-

Systems Biology: Toward System-level Understanding of Biological Systems

20

@— CheY_ ____J|CheY

Figure 1.3 Bacterial chemotaxis related feedback loop

teins to adjust the translational activity of 032, Independently, DnaK and
Dna] detect misfolded proteins and release 032 factor, that has been bound
with DnaK and Dna]. Free o3 activates transcription of hsp, so that mis-
folded proteins are repaired. This process is negative feedback control,
because the level of misfolded proteins is monitored and it controls the
activity of o3? factor.

Another example demonstrating the critical role of the feedback sys-
tem is seen in growth control of human cells. Growth control is one of the
most critical parts of cellular functions. The feedback circuit involved in
P53 presents a clear example of how feedback is used (Figure 1.5). When
DNA is damaged, DNA-dependent kinase DNA-PK is activated. Also,
ATM is phosphorylated, which makes ATM itself in an active state and
promotes phosphorylation of the specific locus of the p53 protein. When
this locus is phosphorylated, p53 no longer forms a complex with MDM2,
and escapes from dissociation. The phosphorylation locus depends on
what kind of stress is imposed on DNA. Under a certain stress, phospho-
rylation takes place at the Ser15 site of p53, and promotes transcription of
p21 that eventually causes G1 arrest. In other cases, it promotes activation
of apoptosis inducing genes, such as pig-3, and results in apoptosis. For
those cells that entered G1 arrest, DNA-PK and ATM activity are lost as
soon as DNA is repaired. The loss of DNA-PK and ATM activity decreases
phosphorylation of p53, so p53 will bind with MDM2 and dissolve.

Without phosphorylation, the p53 protein promotes mdm-2 transcrip-
tion. It is interesting to know that mdm-2 protein forms a complex to deac-

Hiroaki Kitano

21

Heat

/ Shock \
GE

Normal ______ % | Misfolded

Prot <~ Prot rpoH ol
rotein rotein
dnakK T~

dnalJ
grpE
GroES
GroEL

32

dnaK
dnal 32

hsp orpE \
dnakK y

dnaJ 2
grpE E o3
GroES

GroEL

Figure 1.4 Heat shock response with feedforward and feedback control

tivate the p53 protein. This is another negative feedback loop embedded
in this system.

Redundancy

Redundancy also plays an important role in attaining robustness of the
system, and is critical for coping with accidental damage to components of
the system. For example, the four independent hydraulic control systems
in a Boeing 747 render the systems functionally normally even if one or
two of them are damaged. In aircraft, control systems and engines are
designed to have a high level of redundancy. In a cellular system, signal
transduction and cell cycle are equivalent to control systems and engines.

A typical signal transduction pathway is the MAP kinase cascade.
The MAP kinase cascade involves extensive cross talk among collateral
pathways. Even if one of these pathways is disabled due to mutation or
other causes, the function of the MAP kinase pathway can be maintained
because other pathways still transduce the signal (Figure 1.6).

Cell cycle is the essential process of cellular activity. For example, in
the yeast cell cycle, the Cln and Clb families play a dominant role in the
progress of the cell cycle. They bind with Cdc28 kinase to form Cdk com-
plex. Cln is redundant because knock-out of up to two of three Cln (Cln1,
CIn2, CIn3) does not affect the cell cycle; all three CIn have to be knocked
out to stop the cell cycle. Six Clb have very similar features, and may have
originated in gene duplication. No single loss-of-function mutant of any
of the six Clb affects growth of the yeast cell. The double mutants of CLB1

Systems Biology: Toward System-level Understanding of Biological Systems

22

mdm2

7} beeene pig-3, _-- i
@ ete. » Apoptosis

e @ p21 | ==> Gl arrest

DNA repair
during G1 arrest

DNA damage

Figure 1.5 p53 related feedback loop

and CLB2, as well as CLB2 and CLB3s are lethal, but other double mutant
combinations do not affect phenotype. It is reasonable that the basic mech-
anism of the cell cycle has evolved to be redundant, thus robust against
various perturbations.

Redundancy can be exploited to cope with uncertainty involved in
stochastic processes. McAdams and Arkin argued that duplication of
genes and the existence of homologous genes improve reliability so that
transcription of genes can be carried out even when only a small number
of transcription factors are available (McAdams and Arkin, 1999). The use
of a positive feedback loop to autoregulate a gene to maintain its own ex-
pression level is an effective means of ensuring the trigger is not lost in the
noise.

Although its functional implication has not been sufficiently investi-
gated, an analysis of MAP kinase cascade revealed that it utilizes non-
linear properties intrinsic in each step of the cascade and positive feedback
to constitute a stable all-or-none switch (Ferrell and Machleder, 1998).

In the broader sense, the existence of metabolic pathways that can al-
ternatively function to sustain cellular growth with changing environment
can be viewed as redundancy. Bacteria is known to switch metabolic path-
ways if deprived of one type of nutrition, and to use other types of nu-
trition that are available. Theoretical analysis combined with experimen-
tal data indicate that different pathways are used to attain essentially the

Hiroaki Kitano

23

|

| Raf, Mos | |MEKK1, MLK3 | | ASK1, TAK1 |

| MEK1,2/MKK1,2| | SEK1,2/MKK4,7| | MKK3,6 |
l 1 l
| MAPK/ERK | | SAPK/INK | | p38 |

=] o] D

Transcription

Figure 1.6 Redundancy in MAP kinase cascade

same objective function (Edward et al., 2001).

Once we understand the stability and robustness of the system, we
should be able to understand how to control and transform cells. We will
then be ready to address such questions as how to transform cells that are
malfunctioning into normal cells, how to predict disease risk, and how to
preemptively treat potential diseases.

Modular Design

Modular design is a critical aspect of the robustness: it ensures that dam-
age in one part of the system does not spread to the entire system. It may
also ensure efficient reconfiguration throughout the evolutionary process
to acquire new features.

The cellular structure of the multicellular organism is a clear example.
It physically partitions the structure so that the entire system does not
collapse due to local damage.

Gene regulatory circuits are considered to entail a certain level of mod-
ularity. Even if part of the circuit is disrupted due to mutation or injection
of chemicals, it does not necessary affect other parts of the circuit. For ex-
ample, mutation in p53 may destroy the cell cycle check point system that
leads to cancer. However, it does not destroy metabolic pathways, so the
cells continue to proliferate. How and why such modularity is maintained
is not well understood at present.

Modularity reflects hierarchical organization of the system that can be
viewed as follows:

Component: An elementary unit of the system. In electronics, transistors,
capacitors, and resistors are components. In biological systems, genes and
proteins, which are transcriptional products, are components.

Device: A minimum unit of the functional assembly. NAND gates and

Systems Biology: Toward System-level Understanding of Biological Systems

24

flip-flops are examples of devices®. Transcription complexes and replica-
tion complexes are examples of devices. Some signal transduction circuits
may be considered as devices.

Module: A large cluster of devices. CPU, memory, and amplifiers are
modules. In biological systems, organella and gene regulatory circuits for
the cell cycle are examples of modules.

System: A top-level assembly of modules. Depending on the viewpoint,
a cell or entire animal can be considered as a system.

In engineering wisdom, each low-level module should be sufficiently
self-contained and encapsulated so that changes in higher-level structure
do not affect internal dynamics of the lower-level module. Whether is this
also the case for biological systems and how it can be accomplished are of
major interest from a system perspective.

Structural Stability

Some circuits may, after various disturbances to the state of the system,
resume as one of multiple attractors (points or periodic). Often, feedback
loops play a major role in making this possible. However, feedback does
not explicitly control the state of the circuit in tracking or adapting to
stimuli. Rather, dynamics of the circuit exhibit certain functions that are
used in the larger sub-systems.

The most well understood example is seen in one of the simplest
organisms, lambda phage (McAdams and Shapiro, 1995). Lambda phage
exploits the feedback mechanism to stabilize the committed state and
to enable switching of its pathways. When lambda phage infects E. coli,
it chooses one of two pathways: lysogeny and lysis. While a stochastic
process is involved in the early stage of commitment, two positive and
negative feedback loops involving CI and Cro play a critical role in stable
maintenance of the committed decision. In this case, whether to maintain
feedback or not is determined by the amount of activator binding to the
Og region, and the activator itself cuts off feedback if the amount exceeds
a certain level. This is an interesting molecular switch that is not found
elsewhere. Overall, the concentration mechanism of Cro is maintained
at a certain level using positive feedback and negative feedback. It was
reported that the fundamental properties of the lambda phage switch
circuit are not affected even if the sequence of O binding sites is altered
(Little et al., 1999). This indicates that properties of the lambda phage
decision circuit are intrinsic to the multiple feedback circuit, not specific
parametric features of the elements, such as binding sites.

Relative independence from specific parameters is an important fea-

3 In electronics, “device” means transistors and other materials mentioned in “compo-
nents.” NAND gates and flip-flops are recognized as minimum units of the circuit.

Hiroaki Kitano

25

ture of a robust system. Recent computational studies report that circuits
that are robust against a broad range of parameter variations are found
in Xenopus cell cycle (Morohashi et al., unpublished) and body segment
formation (von Dassow et al., 2000). Using the simulation of parasegment
formation of Drosophila, it was found that some parameters in the circuit
accountable for pattern formation are tolerant to major parameter varia-
tions. This strongly suggests that the structure of the circuit that is dom-
inantly responsible for pattern formation rather than specific parameter
values (von Dassow et al., 2000).

Such circuit features of structural stability also play important roles
in development. A recent review article (Freeman, 2000) elucidates some
interesting cases of feedback circuits that play a dominant role in the de-
velopment process. Such cases include temporal arrangement of signal-
ing in the JAK/STAT signaling pathway, pattern formation in Drosophila
involving Ubx and Dpp, maintenance of patterns of expression for sonic
hedgehog (Shh) that forms ZPA and Fgf, forming AER in limb develop-
ment, etc. In these examples, structure of circuits play the dominant role
rather than specific set of parameters.

THE SYSTEOME PROJECT

In order to promote scientific research of systems biology, it is critically
important to create a comprehensive data resource that describes sys-
tems’ features, as does the human genome project. This is an enormous
challenge, and it requires significant efforts far beyond the capability of
any single research group. Therefore, the author proposes “The Systeome
Project” as a grand challenge in the area of systems biology.

Systeome is an assembly of system profiles for all genetic variations
and environmental stimuli responses. A system profile comprises a set of
information on the properties of the system that includes the structure of
the system and its behaviors, analysis results such as phase portfolio, and
bifurcation diagrams. The structure of the system includes the structure
of gene and metabolic networks and its associated constants, physical
structures and their properties.

Systeome is different from a simple cascade map, because it assumes
active and dynamic simulations and profiling of various system statuses,
not a static entity. The author suggests that the project be established
for comprehensive efforts for profiling the Systeome of human, mouse,
Drosophila, C. elegans, and yeast.

The goal of the Human Systeome Project is defined as “To complete
a detailed and comprehensive simulation model of the human cell at
an estimated error margin of 20 percent by the year 2020, and to finish
identifying the system profile for all genetic variations, drug responses,
and environmental stimuli by the year 2030.”

Undoubtedly, this is an ambitious project, and requires several mile-

Systems Biology: Toward System-level Understanding of Biological Systems

26

Dynamics Information Basic Model Information System Dynamics Information

High resolution C Basic Structure) System Dynamics Analysis
Imaging (bifurcation, phase portfolio, etc.

- - Gene Network Model
Expression profile Metabolic Pathway Model - -
Protein interactions, etc. Signal Transduction Model Mutation Analysis

C Parameters) C Drug Sensitivity Analysis)

Components Information

Individual Genetic Variations

Proteome Individual Sequence Variation -

- [(SNPS, etc)) a } (Individual Systeome)

w Individual Heterochromatin
Variations

Figure 1.7 Genome, Proteome, and Systeome

stones and pilot projects leading to the final goal. Initial pilot projects can
using yeast and C. elegans be set with a time frame of five or seven years
after full-scale budget approval. The Human Systeome Project shall be
commenced concurrently with such pilot projects.

The impact of this project will be far-reaching. It will be a standard
asset for biological research as well as providing fundamental diagnostics
and prediction for a wide range of medical practices.

The Systeome Project is expected to contribute to system-level under-
standing of life by providing exhaustive knowledge of system structures,
dynamics, and their sensitivities against genetic variations and environ-
mental stimuli. By using the system profile, it is expected that more pre-
cise medical diagnosis and treatment can be accomplished due to quan-
titative understanding of the metabolic state of the system. For example,
a list of all possible feedback loops and their sensitivities, gain, and time
delay should be obtained, to be used for drug design and clinical appli-
cations. The behaviors of feedback systems are often counterintuitive and
often eliminate or compensate the effects of external stimuli. Understand-
ing of complex circuit dynamics such as these will contribute to accurate
prediction of the effects of medical treatments.

The Systeome Project should maintain close links with genome and
Proteome data, particularly with various individual genetic variations,
including single nucleotide polymorphisms (SNPs). SNPs are a typical
example of an attempt to understand the relationship between genetic
variations and clinical observations.

It is inevitable that in some cases the effects of SNPs are masked by a
mechanism that compensates such variations. In this case, corresponding
SNPs do not seem to affect the behavior of the cell. However, if such a
compensation mechanism is disrupted by SNPs in a locus that constitutes

Hiroaki Kitano

27

the compensation mechanism, the effects of SNPs will show up directly
in the cell’s behavior. In such a case, it will be observed that for certain
groups of cells, SNPs affect phenotype, but for other groups SNPs do not
seem to affect phenotype.

While SNPs provide certain information on individual variations at
the genetic level, they do not provide the quantitative status of mRNA
and proteins. Many biological phenomena have a certain quantitative
sensitivity. The cell cycle, for example, is expected to take place when
cyclin synthesis and degradation rate are within a certain range. SNPs and
other existing genetic analysis cannot provide insights into quantitative
aspects of such phenomena.

Scientifically, a detailed understanding of circuits and their dynamics
will contribute to a deeper understanding of the biological systems, as
already discussed elsewhere.

Identification of metabolic and signal transduction circuits in various
model systems provides an interesting opportunity to compare evolution-
ary conserved genetic information not only at the gene level, but also at
the circuit level.

Evolutionary conserved circuits will be an important concept that may
be widely used in the study of gene and metabolic network behaviors.
Several circuits that may be found in yeast and C. elegans may be used
also in mouse and human, similar to the idea of homologue genes.

Some of the feedback circuits, for example, may be so essential that
they have been conserved through the course of evolution. At the same
time, a certain circuit may be duplicated and a revised version is used for
other parts of the system. As the Systeome Project progresses in various
model systems, such comparative studies and homology searches at the
circuit level will become possible.

Many scientific opportunities will open up once the Systeome Project
has commenced and its data is made available for scientific research.

The Systeome Project will be a major commitment. However, it is in-
dispensable for promoting systems biology as quickly as possible and for
contributing to a better understanding of living systems and for medical
practice. The Systeome Project involves the major engineering project of
developing the measurement and software platform. The best way to pro-
ceed with this project is to initiate it as an international joint project on a
scale comparable to the human genome project.

IMPACTS OF SYSTEMS BIOLOGY

Combined with the Systeome Project and other efforts in medical appli-
cation of genomics, systems biology may have major impacts on medical
research and practice. In-depth knowledge of the dynamical state of cells
and development of high-performance measurement systems will drasti-
cally change medical practice.

Systems Biology: Toward System-level Understanding of Biological Systems

28

First, the fast and precise measurement of an individual systeome will
enable us to make precise assessment and simulation of disease risk, as
well as detailed planning of countermeasures. Establishment of “preemp-
tive molecular medicine” is one of the major applications of systems bi-
ology research. This means that patient models, or disease models, can
be grounded on the cellular model, instead of being an empirical phe-
nomenological model.

Second, drug design and treatment procedure may change to reflect
the precise system dynamics of each patient. Rather than rely on a single
drug, there many be increasing use of system drugs, a group of drugs that
cooperatively act to control the metabolic state of malfunctioning cells.
The point of such a treatment is to minimize side-effects, while maintain-
ing maximum efficacy in disease treatment. By specifically identifying a
series of effector points of chemical agents, we may be able to control cell
status much more effectively than current medical practice.

Third, system-level understanding, especially simulation, control, and
design capability, may lead to a totally new method of organ cloning. Just
like engineers perform digital pre-assembly, we may be able to digitally
pregrow organs for transplant. There will be a special incubation system
that can monitor and control a growing organ inside the incubator. Cur-
rently, regenerative medicine is now being practiced, but it is limited to
re-generation of relatively simple tissue systems such as skin. For growing
more complex organs such as the heart and kidney, sophisticated growth
monitoring and control are required. This is “closed-loop manufacturing,”
where the growth process is monitored and data is fed back to control the
biochemical status of the incubation system to guide the organ growth to
the desired shape.

There will be many more medical applications. The Systeome Project
is perhaps the best way to accelerate progress in the technology of system-
level biology.

CONCLUSION

Systems biology is a new and emerging field in biology that aims at
system-level understanding of biological systems. System-level under-
standing requires a range of new analysis techniques, measurement tech-
nologies, experimental methods, software tools, and new concepts for
looking at biological systems. The work has just begun and there is a long
way to go before we arrive at a deep understanding of biological systems.
Nevertheless, the author believes that systems biology will be the domi-
nant paradigm in biology, and many medical applications as well as sci-
entific discoveries are expected.

Hiroaki Kitano

29

ACKNOWLEDGEMENTS

The author would like to thank members of the Kitano Symbiotic Systems
Project (Shuichi Onami, Shugo Hamahashi, Koji Kyoda, Mineo Moro-
hashi, John Doyle, Mel Simon, Hamid Bolouri, Tau-Mu Yi, Mark Borisuk,
Michael Hucka, Andrew Finny, Herbert Sauro, Yoshi Kubota) for fruitful
discussions that helped me to form the idea in this chapter. In particular,
John and Mel have always been strong supporters of systems biology and
sources of inspiration. Shin-ichirou Imai has always been a great collabo-
rator, and it was he who guided me to the area of biology, while I was still
absorbed in computer science and robotics. Mario Tokoro and Toshi Doi
allowed me to work on biology despite its tenuous link with the ongoing
business of Sony.

Systems Biology: Toward System-level Understanding of Biological Systems

This page intentionally left blank

References

Akutsu, T., Miyano, S., and Kuhara, S. (1999). Identification of genetic
networks from a small number of gene expression patterns under the

Boolean network model. Proc. Pacific Symposium on Biocomputing '99
pp-17-28.

Alon, U., Surette, M.G., Barkai, N., and Leibler, S. (1999). Robustness in
bacterial chemotaxis. Nature 397:168-171.

Barkai, N. and Leibler, S. (1997). Robustness in simple biochemical net-
works. Nature 387:913-917.

Borisuk, M. and Tyson, J. (1998). Bifurcation analysis of a model of mitotic
control in frog eggs. Journal of Theoretical Biology 195:69-85.

Brown, P.O. and Botstein, D. (1999). Exploring the new world of the
genome with DNA microarrays. Nature Genetics 21:33-37.

Cannon, W.B., (1933). The wisdom of the body, Norton, New York.

The C. elegans Sequencing Consortium. (1998). Genome sequence of
the nematode C. elegans: A platform for investigating biology. Science
282:2012-2018.

DeRisi, J.L., Lyer, V.R., and Brown, P.O. (1997). Exploring the metabolic
and genetic control of gene expression on a genomic scale. Science
278:680-686.

D’haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, R. (1999). Linear mod-
eling of mRNA expression levels during CNS development and injury.
Proc. Pacific Symposium on Biocomputing '99 pp.41-52.

Edward, J.S. and Palsson, B.O. (1999). Systems properties of the
Haemophilus influenzae Rd metabolic genotype. Journal of Biological
Chemistry 274:17410-17416.

Edward,].S., Ibarra, R., and Palsson, B.O. (2001). In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental
data. Nature Biotechnology 19(2):125-130.

32

Fell, D.A. (1996). Understanding the control of metabolism, Portland Press,
London.

Ferrell, J. and Machleder, E. (1998). The biochemical basis of an all-or-none
cell fate switch in Xenopus ooctytes. Science 280:895-898.

Freeman, M. (2000). Feedback control in intercellular signalling in devel-
opment. Nature 408:313-319.

Hamahashi, S. and Kitano, H. (1998). Simulation of fly embryogenesis.
Proc. the 6th International Conference on Artificial Life pp.151-160.

Hamahashi, S. and Kitano, H. (1999). Parameter optimization in hierarchi-
cal structure. Proc. the 5th European Conference on Artificial Life pp.467—
471.

Heinrich, R. and Rapoport, T.A. (1974). A linear steady-state treatment of
enzymatic chains. Eur. |. Biochem. 42:89-95.

Hucka, M., Sauro, H., Finney, A., and Bolouri, H. (2000). An XML-based
model description language for systems biology simulations. Working
Draft, ERATO Kitano Project - CALTECH Group.

Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle,]., and Kitano, H.
(2001). The ERATO Systems Biology Workbench: An integrated envi-
ronment for multiscale and multitheoretic simulations in systems biol-
ogy. Foundations of Systems Biology, The MIT Press, Cambridge.

Ideker, T., Thorsson, V., and Karp, R. (2000). Discovery of regulatory inter-
actions through perturbation: inference and experimental design. Proc.
Pacific Symposium on Biocomputing 2000 pp.302-313.

Imai, S. and Kitano, H. (1998). Heterochromatin island and their dynamic
reorganization: A hypothesis for three distinctive features of cellular
aging. Experimental Gerontology 33(6):555-570.

Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Ya-
mamoto, K., Kuhara, S., and Sakaki, Y. (2000). Toward a protein-protein
interaction map of the budding yeast: A comprehensive system to ex-
amine two-hybrid interactions in all possible combinations between the
yeast proteins. Proc. Natl. Acad. Sci. USA 97(3):1143-1147.

Kacser, H. and Burns, J. A. (1973). The control of flux. Symp. Soc. Exp. Biol.
27:65-104.

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of gene and
genomes. Nucleic Acids Res. 28:29-34.

Karp, P, Paley, M., Pellegrini-Toole, A., Krummenacker, M. (1999). Eco-
Cyc: Electronic encycropedia of E. coli genes and metabolism. Nucleic
Acids Res. 27(1):55.

References

33

Kitano, H. (2000). Perspectives on systems biology. New Generation Com-
puting 18(3):199-216.

Kitano, H. and Imai, S. (1998). The two-process model of cellular aging.
Experimental Gerontology 33(5):393—419.

Kitano, H., Hamahashi, S., Takao, K., and Imai, S. (1997). Virtual biology
laboratory: A new approach of computational biology. Proc. the 4th
European Conference on Artificial Life pp.274-283.

Kitano, H., Hamahashi, S., and Luke, S. (1998). The Perfect C. elegans
Project: An initial report. Artificial Life 4:141-156.

Kondo, S. and Asai, R. (1995). A reaction-diffusion wave on the skin of the
marine angelfish Pomacanthus. Nature 376:765-768.

Koza, J., Mydlowec, W., Lanza, G., Yu,]J., and Keane, A. (2001). Auto-
mated reverse engineering of metabolic pathways from observed data
by means of genetic programming. Foundations of Systems Biology, The
MIT Press, Cambridge.

Kyoda, K. and Kitano, H. (1999). Simulation of genetic interaction for
Drosophila leg formation. Proc. Pacific Symposium on Biocomputing 99
pp.77-89.

Kyoda, K. and Kitano, H. (1999). A model of axis determination for the
Drosophila wing disc. Proc. the 5th European Conference on Artificial Life
pp.472-476.

Kyoda, K., Muraki, M., and Kitano, H. (2000). Construction of a gen-
eralized simulator for multi-cellular organisms and its application to
SMAD signal transduction. Proc. Pacific Symposium on Biocomputing 2000
pp-314-325.

Kyoda, K., Morohashi, M., Onami, S. and Kitano, H. (2000). A gene net-
work inference method from continuous-value gene expression data of
wild-type and mutants. Genome Informatics 11:196-204.

Lagally, E.T., Medintz, I., and Mathies, R.A. (2001). Single-molecule DNA
amplication and analysis in an integrated microfluidic device. Anal.
Chem. 73:565-570.

Liang, S., Fuhrman, S., and Somogyi, R. (1999). REVEAL, a general reverse
engineering algorithm for inference of genetic network architectures.
Proc. Pacific Symposium on Biocomputing "99 pp.18-29.

Little,].W., Shepley, D.P,, and Wert, D.W. (1999). Robustness of a gene
regulatory circuit. EMBO . 18(15):4299-4307.

References

34

McAdams, H.H. and Arkin, A. (1999). It’s a noisy business! Genetic regu-
lation at the nanomolar scale. Trends in Genetics 15(2):65-69.

McAdams, H.H. and Arkin, A. (1998). Simulation of prokaryotic genetic
circuits. Annu. Rev. Biophys. Biomol. Struct. 27:199-224.

McAdams, H. and Shapiro, L. (1995). Circuit Simulation of genetic net-
works. Science 269:650-656.

Mendes, P. and Kell, D.B. (1998). Non-linear optimization of biochemical
pathways: Applications to metabolic engineering and parameter esti-
mation. Bioinformatics 14(10):869-883.

Michaels, G.S., Carr, D.B., Askenazi, M., Fuhrman, S., Wen, X., and Somo-
gyi, R. (1998). Cluster analysis and data visualization of large-scale gene
expression data. Proc. Pacific Symposium on Biocomputing’98 pp.42-53.

Morohashi, M. and Kitano, H. (1998). A method for reconstructing genetic
regulatory network for Drosophila eye formation. Proc. the 6th Interna-
tional Conference on Artificial Life pp.72-80.

Morohashi, M. and Kitano, H. (1999). Identifying gene regulatory net-
works from time series expression data by in silico sampling and screen-
ing. Proc. the 5th European Conference on Artificial Life pp.477-486.

Morohashi, M., Winn, A.E., Borisuk, M.T., Bolouri, H., Doyle, J., and Ki-
tano, H. Robustness as a measure of plausibility in models of biochem-
ical networks. Unpublished.

Nagasaki, M., Onami, S., Miyano, S., and Kitano, H. (1999). Bio-Calculus:
Its concept and molecular interaction. Genome Informatics 10:133-143.

Okuno, G.H., Kyoda, K., Morohashi, M., and Kitano, H. (1999). An initial
assessment of ERATO-1 Beowulf-class cluster. Proc. International Work-
shop on Parallel and Distributed Computing for Symbolic and Irreqular Ap-
plications.

Onami, S., Hamahashi, S., Nagasaki, M., Miyano, S., and Kitano, H. (2001).
Automatic acquisition of cell lineage through 4D microscopy and analy-
sis of early C. elegans embryogenesis. Foundations of Systems Biology, The
MIT Press, Cambridge.

Onamij, S., Kyoda, K.M., Morohashi, M., and Kitano, H. (2001). The DBRF
method for inferring a gene network from large-scale steady-state gene
expression data mutants. Foundations of Systems Biology, The MIT Press,
Cambridge.

Reinitz,]., Mjolsness, E., and Sharp, D.H. (1995). Model for cooperative
control of positional information in Drosophila by bicoid and maternal
hunchback. J. Exp. Zoo. 271:47-56.

References

35

Savageau, M.A., Voit, E.O., and Irvine, D.H. (1987). Biochemical systems
theory and metabolic control theory: 1. Fundamental similarities and
differences. Mathematical Biosciences 86:127-145.

Simpson, P., Roach, D., Woolley, A., Thorson, T., Johnston, R., Sensabaugh,
G., and Mathies, G. (1998). High-throughput genetic analysis using
microfabricated 96-sample capillary array electrophoresis microplates.
Proc. Natl. Acad. Sci. USA 95:2256-2261.

Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of protein-
protein interactions in yeast. Nature Biotech. 18:1257-1261.

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen,
M., Brown, PO., Botstein, D., and Futcher, B. (1998). Comprehensive
identification of cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Molecular Biol. Cell. 9:3273-3297.

Sulston, J.E. and Horvitz, H.R. (1997). Post-embryonic cell lineage of the
nematode Caenorhabditis elegans. Dev. Biol. 56:110-156.

Sulston, J.E., Schierenberg, E., White,].G., and Thomson, J.N. (1983). The
embryonic cell lineage of the nematode Caenohabditis elegans. Dev. Biol.
100:64-119.

Tabara, H., Motohashi, T., and Kohara, Y. (1996). A multi-well version of
in situ hybridization on whole mount embryos of Caenorhabditis elegans.
Nucleic Acids Research 24:2119-2124.

Tomita, M., Shimizu, K., Matsuzaki, Y., Miyoshi, F, Saito, K., Tanida, S.,
Yugi, K., Venter, C., and Hutchison, C. (1999). E-Cell: Software environ-
ment for whole cell simulation. Bioinformatics 15(1):72-84.

Ueda, H. and Kitano, H. (1998). A generalized reaction-diffusion simulator
for pattern formation in biological systems. Proc. the 6th International
Conference on Artificial Life pp.462-466.

Varma, A. and Palsson, B.O. (1994). Metabolic flux balancing: Basic con-
cepts, scientific and practical use. Bio/Technology 12:994-998.

von Bertalanffy, L. (1968). General System Theory, Braziler, New York.

von Dassow, G., Meir, E., Munro, E.M., and Odell, G. (2000). The segment
polarity network is a robust developmental module. Nature 406:188—
192.

Watson, J. D. and Crick, EH. (1953). Molecular structure of nucleic acids:
A structure for deoxyribose Nucleic Acid. Nature 171:737-738.

White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The
structure of the nervous system of the nematode Caenorhabditis elegans.
Phil. Trans. R. Soc. 314:1-340.

References

36

Wiener, N., (1948). Cybernetics or Control and Communication in the Animal
and the Machine, The MIT Press, Cambridge.

Yasuda, T., Bannai, H., Onami, S., Miyano, S., and Kitano, H. (1999). To-
wards automatic construction of cell-lineage of C. elegans from Nor-
marski DIC microscope images. Genome Informatics 10:144-154.

Yi, T.-M., Huang, Y., Simon, M., and Doyle, J. (2000). Robust perfect adap-
tation in bacterial chemotaxis through integral feedback control. Proc.
Natl. Acad. Sci. USA 97(9):4649-4653.

References

Part 1

Advanced Measurement Systems

This page intentionally left blank

Automatic Acquisition of Cell Lineage
through 4D Microscopy and Analysis of
Early C. elegans Embryogenesis

Shuichi Onami, Shugo Hamahashi, Masao
Nagasaki, Satoru Miyano, and Hiroaki Kitano

Cell lineage analysis is an important technique for studying the develop-
ment of multicellular organisms. We have developed a system that au-
tomatically acquires cell lineages of C. elegans from the 1-cell stage up to
approximately the 30-cell stage. The system utilizes a set of 4D Nomarski
DIC microscope images of C. elegans embryo consisting of more than 50
focal plane images at each minute for about 2 hours. The system detects
the region of cell nucleus in each of the images, and makes 3D nucleus
regions, each of which is a complete set of nucleus regions that represent
the same nucleus at the same time point. Each pair of 3D nucleus regions
is then connected, if they represent the same nucleus and their time points
are consecutive, and the cell lineage is created based on these connections.
The resulting cell lineage consists of the three-dimensional positions of nu-
clei at each time point and their lineage. Encouraged by the performance
of our system, we have started systematic cell lineage analysis of C. ele-
gans, which will produce a large amount of quantitative data essential for
system-level understanding of C. elegans embryogenesis.

INTRODUCTION

In the last few decades, biology has been mainly focusing on identifying
components that make up the living system. Today, as a result of success
in molecular biology and genomics, thousands of genes have been identi-
fied, so the focus of biology is now moving toward the next step, under-
standing how those components work as a whole system. The ultimate
goal of this step is the computer simulation of life, that is, reconstruction
of living systems on the computer. However, it is still difficult to perform
reliable computer simulation even of a single cell.

The first reason for this difficulty is the lack of biological knowledge.
Based on the genomic sequence, the number of human genes was pre-
dicted as approximately 26,000 (Venter et al., 2001), and about 4300 genes
were predicted even for Eschericia coli, a single-cellular prokaryote (Barrick

40

et al., 1994). However, with some exceptions, information on the functions
of those genes is quite limited. In order to determine those functions effi-
ciently, automation of biological experiments is necessary. Such automa-
tion, following on from the automatic DNA sequencer, the DNA microar-
ray system, etc., will greatly increase the quality of computer simulation.

The second reason is the lack of quantitative information. Historically,
biology has been mainly accumulating qualitative information, such as
“the expression of gene increases” and “the nucleus moves to the ante-
rior.” However, for computer simulation, quantitative information is nec-
essary, such as “the expression of gene increases at v ng/s,” and “the po-
sition of the nucleus is (X, y, z).” To obtain such quantitative information,
precisely controlled analytical instruments need to be developed.

The third reason is the immaturity of modeling technology and sim-
ulation technology. Several software packages have been developed for
biological computer simulation (Mendes, 1993; Morton-Firth and Bray,
1998; Tomita et al., 1999; Shaff and Loew, 1999; Kyoda et al., 2000). These
efforts have greatly improved modeling and simulation technology for
simple biological processes, such as reactions among free molecules, and
so the accuracy and reliability of computer simulation have been greatly
increased for single-cellular organisms and individual cells. However, al-
most no technology has been developed for more complicated biological
processes, such as sub-cellular localization of molecules and organelles,
cell division, and three-dimensional positioning of cells. These technolo-
gies are essential for reliable simulation of multicellular organisms.

This chapter reviews our automatic cell lineage acquisition system,
which is one of our approaches we have developed for computer simu-
lation of C. elegans. The system automates biological experiments and pro-
duces quantitative data. The end of this chapter briefly reviews our other
approaches, which are improving modeling and simulation technology,
and then briefly overviews our approaches as a whole.

THE NEMATODE, C. ELEGANS

There are good introductions to C. elegans in other literatures (Wood et
al., 1988; Riddle et al., 1997), so a detailed introduction of this organism is
omitted. Briefly, C. elegans is the simplest multicellular organism that has
been most extensively analyzed in molecular and developmental biology.
This organism is also the first multicellular organism whose genome se-
quence has been completely identified (The C. elegans Sequencing Con-
sortium, 1998), and is leading the other multicellular experimental organ-
isms in post genome sequencing analysis, such as functional genomics
and proteomics. Thus, C. elegans is expected to be the first multicellular
organism whose life is fully reconstructed on the computer.

Shuichi Onami, et al.

41

&b W
(&7 N

Figure 2.1 Cell lineage. When the fertilized egg undergoes a series of cell
divisions shown on the left, the cell lineage is described as shown on the right. In
the cell lineage, the vertical axis represents the time and the horizontal axis
represents the direction of division (left-right and anterior-posterior).

| e o
'"I.-'Ilrll?_ll::,.“'.u \?_‘1_ LA Y S
AR WAL AR IR

ML J]ED%

i

T
o

Figure 2.2 The complete cell lineage of C. elegans (Sulston et al., 1983).

CELL LINEAGE AND ITS APPLICATION

Generally, a multicellular organism is a mass of cells that are generated
from a single cell - i.e. the fertilized egg — through successive cell divi-
sions. Each cell division is a process whereby a single mother cell pro-
duces a pair of daughter cells. Cell lineage is a tree-like description of such
mother-daughter relationships starting from the fertilized egg (in a wide
sense, starting from a specific cell) (Moody, 1999) (Figure 2.1). It usually
includes information on the timing and the direction of each cell division.
The complete cell lineage — from the fertilized egg to the adult — has been
identified for several simple multicellular organisms, such as C. elegans
(Sulston et al., 1983) and Halocynthia roretzi (Nishida, 1987)(Figure 2.2).
The most typical application of cell lineage is gene function analysis

Automatic Acquisition of Cell Lineage

42

wild type mutant

Figure 2.3 Comparison of cell lineage between wild type and mutant animals.
When the wild type and the mutant cell lineages are described as in this figure,
the mutated gene plays some roles in the differentiation of the two daughter cells
produced at the first cell division

by comparing cell lineages among wild type and mutant animals (Fig-
ure 2.3). Through such analysis, many gene functions have been uncov-
ered. So, cell lineage analysis is an important technique for studying the
development of multicellular organisms, as well as in situ hybridization,
immunohistochemistry, and GFP-fusion gene expression.

HISTORY OF CELL LINEAGE ANALYSIS PROCEDURE

This section reviews the history of the cell lineage analysis procedure,
focusing on the procedure for C. elegans. But with some difference in the
dates, the history is almost the same in other animals.

The entire cell lineage of C. elegans was reported by Sulston et al. in
1983 (Sulston et al., 1983). In this work, they used a rather primitive pro-
cedure whereby they directly observed the animal through a Nomarski
DIC microscope and sketched it. A Nomarski DIC microscope visualizes
subtle differences of thickness and refraction index in the light path, and
has an advantage that the intra-cellular structure of living transparent cells
can be studied without staining (Spector et al., 1998). Through this micro-
scope, moving the focal plane up and down, Sulston et al. observed and
sketched a 14-hour process of C. elegans embryogenesis, from fertilization
to hatching (Figure 2.4), which must have been quite laborious.

The four-dimensional microscope imaging system (4D microscope),
developed by Hird et al. in 1993, greatly reduced the laboriousness of
cell lineage analysis (Hird and White, 1993). By controlling the focusing
device and the camera, the system automatically captures microscope
images of different focal planes, and repeats the process with a given
interval. This system obtains a set of microscope images that contain the
3D structure information of an embryo at different time points starting

Shuichi Onami, et al.

43

Figure 2.4 Nomarski DIC microscope images of different focal planes.
Nomarski DIC microscope images of a 2-cell stage embryo are shown. Moving
the focal plane up and down, the 3D structure of the embryo can be recognized.

from fertilization (Figure 2.5). Then, those images are closely analyzed to
derive the cell lineage. A GUI supporting tool, developed by Schnabel
et al. in 1997, further reduced the laboriousness of cell lineage analysis
(Schnabel et al., 1997).

As is reviewed above, cell lineage analysis has become much easier
than that in Sulston’s era, but it is still quite laborious. The number of
mutants whose cell lineage is identified, is quite small compared with the
number of mutants whose responsible gene is identified and sequenced.

AUTOMATIC CELL LINEAGE ACQUISITION

We are developing a system that automatically acquires cell lineages of
C. elegans (Yasuda et al., 1999). The latest version of our system has the
ability to acquire the cell lineage from the 1-cell stage up to approximately
the 30-cell stage (Hamahashi et al., unpublished). This section reviews the
process of our system.

The system utilizes a set of 4D Nomarski DIC microscope images to
extract the cell lineage (Figure 2.5). The 4D microscope system is able
to capture more than 50 images per minute, changing the focal plane
position by 0.5 um for each image. With this system, a set of multi-focal
plane images of a C. elegans embryo is captured every minute for about

Automatic Acquisition of Cell Lineage

44

Focal plane

Figure 2.5 4D microscope images.

original filtered binarized

Figure 2.6 Example of an nucleus detection filter.

2 hours. Since the height of the embryo is about 25 um, each multi-focal
plane image includes all 3D structure information of the embryo at the
corresponding time point.

The system then processes each of the images captured in the previ-
ous step, and detects the regions of cell nucleus in the image (Figure 2.6).
In the Nomarski microscope image, the region of cytoplasm looks bumpy
as a result of the existing organelles, such as lysosome and mitochondria.
On the other hand, the nucleus region, without those organelles, looks
smooth. We found that several basic image-processing filters (i.e. Kirsch’s
edge detection filter (Kirsch, 1971), entropy filter (Jahne et al., 1999), etc.)
efficiently detect those nucleus regions (Yasuda et al., 1999; Hamahashi et

Shuichi Onami, et al.

45

Figure 2.7 Detected nucleus regions. Each of the detected nucleus regions is
enclosed by a white line.

al., unpublished). Several new filters applicable to this nucleus detection
were also developed (Yasuda et al., 1999; Hamahashi et al., unpublished).
By appropriately combining those filters, we established an excellent nu-
cleus detection algorithm (Hamahashi et al., unpublished). With this algo-
rithm, non-error nucleus detection is carried out from the 1-cell stage to
about the 30-cell stage (Figure 2.7).

In wild type embryo, the diameter of a nucleus is about 7 um at the 2-
cell stage and 4.5 um at the 20-cell stage, whereas our system captures mi-
croscope images every 0.5 um of focal plane position. Therefore, at every
time point, a nucleus is detected on several different focal planes. In the
next step, the system makes 3D nucleus regions, each of which is a com-
plete set of nucleus regions that represent the same nucleus at the same
time point. Then, the system connects each pair of 3D nucleus regions,
if they represent the same nucleus and their time points are consecutive.
In the previous two steps, a pair of nucleus regions is recognized as rep-
resenting the same nucleus, when one nucleus region overlaps the other
either on the same focal plane at the next time point or on the next focal
plane at the same time point. As the result, the lineage of 3D nucleus re-
gions is recognized through out the entire period of the 4D microscope
images.

Finally, the cell lineage is created based on the above 3D nucleus region
lineage. The system calculates the centroid position of each 3D nucleus
region, and outputs those centroid positions and their lineage (Figure 2.8).

This section briefly reviews the process of our cell lineage detection
system. The current system utilizes our Beowulf PC cluster (Okuno et
al., 2000), made up of 32 PCs, to execute all the above processes except
4D microscope image recording, and within 9 hours, can deduce the cell
lineage up to the 30- to 40-cell stage after setting the 4D microscope images

Automatic Acquisition of Cell Lineage

46

tras=010-043-0005 (29,020 30,053, 21§
trus-010-043-0005 -1 & > &y

Figure 2.8 Text data for C. elegans cell lineage.

(Hamahashi et al., unpublished). We also developed a software package
that three-dimensionally visualizes the resulting lineage data (Hamahashi
et al., unpublished), which may help three-dimensional understanding of
nucleus movement and division (Figure 2.9). Moreover, with this package,
lineages of two different individuals — e.g., wild type and mutant — can be
visualized on the same screen.

ADVANTAGES OF AUTOMATIC CELL LINEAGE ACQUISITION SYSTEM

As noted in the previous section, we have successfully developed a high-
performance automatic cell lineage acquisition system. The advantages of
this system are outlined below.

The most significant advantage of this system is automation, as can
easily be imagined from the contribution of the automatic DNA sequencer
to biology. The required human effort for our system is almost the same
as that of the DNA sequencer. The processing time of 9 hours is almost
the same as that of the sequencer in its early days. With this system, large
scale and systematic cell lineage analysis is made possible.

The second advantage is quantitative data production. The three-
dimensional nucleus position at each time point which the system outputs
is quantitative data, which is essenaital for simulation studies, especially
when simulation models are developed and simulation results are ana-
lyzed. Our system can be applied to many individual animals, wild types
and mutants, and the resulting data will greatly improve the accuracy of
computer simulation.

The third advantage is the reproducibility of the results. When cell lin-

Shuichi Onami, et al.

47

Figure 2.9 Three-dimensional view of a C. elegans cell lineage. The centroid
positions of 3D nucleus regions are traced from 1-cell to 19-cell stage. The white
circles represent the centroid positions at the viewing time point. On this viewer,
it is possible to freely change the viewing time point forward and backward, and
also rotate the viewing point three-dimensionally.

eages are manually analyzed, the resulting cell lineage is unreproducible.
For example, the definitions of nucleus position and cell division time may
vary depending on who made the analysis and, even if the same people
made it, when it was done. In our system, such definitions are exactly the
same through all individual measurements and the results are completely
reproducible. The results are thus suitable for statistical analysis, such as
calculating the mean, variance, standard error, etc.

Fourthly, the system is applicable to other organisms. The basis of
the system is an image-processing algorithm for Nomarski microscope
images. Thus, in principle, the system is applicable to all transparent cells
and embryos. Future application to other organisms, such as Halocynthia
roretzi, mouse, is promising.

Finally, the system offers complementarity of cell lineage data. As a
result of success in molecular biology and genomics, a variety of large-
scale analyses are currently undertaken, such as DNA mircoarray, protein
chip, and systematic in situ hybridization. However, combinations of those
analyses are not so fruitful since they all measure the same object — gene
expression level. Cell lineage data is quite complementary to gene expres-
sion data, therefore, the combination of our cell lineage analysis with gene
expression analyses will provide useful information for biology.

Automatic Acquisition of Cell Lineage

48

Genome sequence EST data

Mutant bank ~ Genome wide RNAI1
knockout

ugs

Cell lineage

age

Gene nelwork inference Compuler simulation
Figure 2.10 Systematic cell lineage analysis of C. elegans.

FUTURE DEVELOPMENT OF THE CELL LINEAGE ACQUISITION
SYSTEM

As described in this chapter, the current version of our system extracts a
C. elegans cell lineage of up to the 30-cell stage in 9 hours.

The biggest challenge in the future system development is, of course,
to extend the applicable embryonic period, up to the 100-cell stage, 200-
cell stage, and beyond. The current limit of the applicable period is im-
posed by the performances of the 4D microscope system, such as the speed
of the z-axis driving motor and the image-capturing period of the CCD
camera. The performance of these devices is rapidly being improved, so
such device-dependent limit will likely be overcome in the near future.
The limit of the current algorithm may be around the 60-cell stage. For
the later stages, an improved algorithm will be required. Nucleus detec-
tion is quite difficult even for humans after the 100-cell stage, so for later
stages, GFP-labeling of nucleus or other nucleus labeling techniques may
be necessary.

Shortening the processing time is another important challenge, but the
solution seems relatively easy. Dramatic improvement of CPU speed will
greatly shorten the processing time of our system.

SYSTEMATIC CELL LINEAGE ANALYSIS

Encouraged by the performance of the current cell lineage acquisition sys-
tem, we have started systematic cell lineage analysis of C. elegans embryo
(Figure 2.10).

As the first step, we are currently accumulating many wild type cell
lineages in order to establish the standard wild type cell lineage, which
describes the mean value of nucleus position at each time point together
with some statistical data, such as the variance, error distribution, etc. As
well as wild type animals, we are also analyzing cell lineages for many

Shuichi Onami, et al.

49

mutants that are already known to play important roles in early embryo-
genesis. By analyzing the results, we will confirm and also improve the
current understanding of early embryogenesis.

In C. elegans, there is a quite well organized mutant-stocking system
(Caenorhabditis Genetic Center). In addition, several whole genome
knock-outing projects are being undertaken either by efficient mutagen-
esis (Gengyo-Ando and Mitani, 2000) or RNA: (Fraser et al., 2000), tak-
ing advantage of the complete genome sequence data (The C. elegans Se-
quencing Consortium, 1998). We are planning to start a systematic cell
lineage analysis for those knock-out animals in future. The resulting data,
together with the systematic gene expression data (Tabara et al., 1996), will
provide useful information for the complete understanding of C. elegans.

COMPUTER SIMULATION OF C. ELEGANS

Our cell lineage system can produce a large amount of quantitative data,
which is useful for computer simulation. To achieve computer simulation
of C. elegans embryogenesis, the authors are also running several other
closely related projects, as outlined below.

The quality of computer simulation is largely dependent on the simu-
lation model, thus the model construction is an important process in sim-
ulation studies. To help this process, we are developing gene regulatory
network inference methods. An efficient method has been developed for
large-scale gene expression data, such as DNA microarray data (Kyoda
et al., 2000). Currently, we are developing a sophisticated gene network
modeling scheme based on this method, and are also trying to develop a
gene network inference method that utilizes the cell lineage information.

For improving the technology of biological computer simulation, we
are developing a model description language for biological computer sim-
ulation (Nagasaki et al., 1999), named bio-calculus. The language will be
able to describe a variety of biological processes observed in multicellular
organisms, such as sub-cellular positioning of molecules and organelles,
cell division, and three-dimensional positioning of cells. We are also de-
veloping several software packages so that a variety of biological mod-
els described using the language can be executed (Nagasaki et al., 1999).
Currently, a very early period of C. elegans embryo is being modeled and
simulated (Nagasaki et al., unpublished) in order to improve the appli-
cability of the language and its software packages (Figure 2.11, 2.12). In
future, utilizing our cell lineage information, we will gradually refine our
C. elegans model and extend the target period, to improve the modeling
and simulation technology further.

1 http://biosci.umn.edu/CGC/CGChomepage.htm

Automatic Acquisition of Cell Lineage

50

Figure 2.11 Pronucleus movement of C. elegans embryo. a)—c) Nomarski DIC
microscope images of very early C. elegans embryo just after fertilization. The
anterior is left. The oocyte pronucleus (left) and the sperm pronucleus (right)
move toward each other and finally meet in the posterior hemisphere. The
movement of the sperm pronucleus mainly depends on microtubules (MTs) (Hird
and White, 1993). d)—f) Confocal microscope images of C. elegans embryo stained
with MT specific antibody. MTs are growing from the centrosomes on the sperm
pronucleus.

CONCLUSION

This chapter reviewed our automatic cell lineage acquisition system. The
system will produce a large amount of quantitative data, which is valu-
able for computer simulation, though the data are still insufficient for the
complete C. elegans simulation. We must therefore keep developing new
experimental technologies. It is hoped that all our approaches will func-
tionally work together to enable us to achive the ultimate goal — the com-
puter simulation of life.

ACKNOWLEDGEMENT

The authors thank Nick Rhind for his cell lineage drawing.

Shuichi Onami, et al.

51

Figure 2.12 Computer simulation of MT dependent sperm pronucleus
movement in C. elegans embryo. The small circle represents the sperm pronucleus
and the white lines growing from the sperm pronucleus represents MTs growing
from the centrosomes on the pronucleus.

Automatic Acquisition of Cell Lineage

52

This page intentionally left blank

Shuichi Onami, et al.

References

Barrick, D., Villanueba, K., Childs, J., Kalil, R., Schneider, T.D., Lawrence,
C.E., Gold, L., and Stormo, G.D. (1994). Quantitative analysis of ribo-
some binding sites in E. coli. Nucleic Acids Res. 22:1287-1295.

The C. elegans Sequencing Consortium. (1998). Genome sequence of
the nematode C. elegans. a platform for investigating biology. Science
282:2012-2018.

Fraser, A., Kamath, R.S., Zipperlen, P.,, Martinez-Campos, M., Sohrmann,
M., and Ahringer, J. (2000). Functional genomic analysis of C. elegans
chromosome I by systematic RNA interference. Nature 408:325-330.

Gengyo-Ando, K. and Mitani, S. (2000). Characterization of mutations
induced by ethyl methanesulfonate, uv, and trymethylpsoralen in the
nematode Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 269:64—69.

Hamahashi, S., Onami, S., and Kitano, H. Unpublished.

Hird, S. and White,].G. (1993). Cortical and cytoplasmic flow polarity in
early embryonic cells of Caenorhabditis elegans. J. Cell Biol. 121:1343-1355.

Jahne, B., Haussecker, H., and Geissler, P. editors. (1999). Handbook of
computer vision and applications. Academic Press.

Kirsch, R. (1971). Computer determination of the constituent structure of
biological images. Comput. Biomed. Res. 4:315-328.

Kyoda, K.M., Morohashi, M., Onami, S., and Kitano, H. (2000). A gene
network inference method from continuous-value gene expression data
of wild-type and mutants. Genome Informatics, 11:196-204.

Kyoda, K.M., Muraki, M., and Kitano, H. (2000). Construction of a gen-
eralized simulator for multi-cellular organisms and its application to
smad signal transduction. Proc. Pacific Symposium on Biocomputing 2000
pp.317-328.

Mendes, P. (1993). Gepasi: A software package for modelling the dynam-
ics, steady states and control of biochemical and other systems. Comput.
Applc. Biosci. 9:563-571.

54

Moody, S.A., editor. (1999). Cell lineage and fate determination. Academic
Press.

Morton-Firth, C.J., and Bray, D. (1998). Predicting temporal fluctuations in
an intracellular signalling pathway. J. Theor. Biol. 192:117-128.

Nagasaki, M., Miyano, S., Onami, S., and Kitano, H. Unpublished.

Nagasaki, M., Onami, S., Miyano, S., and Kitano, H. (1999). Bio-calculus:
Its concept and molecular interaction. Genome Informatics 10:133-143.

Nishida, H. (1987). Cell lineage analysis in ascidian embryos by intracel-
lular injection of a tracer enzyme. III. up to the tissue restricted stage.
Dev. Biol. 121:526-541.

Okuno, H.G., Kyoda, K.M., Morohashi, M., and Kitano, H. (2000). Ini-
tial assessment of ERATO-1 beowulf-class cluster. Proc. Parallel and dis-
tributed computing for symbolic and irreqular applications pp.372-383.

Riddle, D.L., Blumenthal, T., Meyer, B.]., and Priess,].R., editors. (1997). C.
elegans 1I. Cold Spring Harbor Laboratory Press.

Schaff, J. and Loew, L.M. (1999). The virtual cell. Proc. Pacific Symposium on
Biocomputing "99 pp.228-239.

Schnabel, R., Hutter, H., Moerman, D., and Schnabel, H. (1997). Assessing
normal embryogenesis in Caenorhabditis elegans using 4D microscope:
variability of development and regional specification. Dev. Biol. 184:234—
265.

Spector, D.L., Goldman, R.D., and Leinwand, L.A. editors. (1988). Cells - A
Laboratory Manual. Cold Spring Harbor Laboratory Press.

Sulston, J.E., Shierenberg, E., White,].G., and Thomson, J.N. (1983). The
embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.
100:64-119.

Tabara, H., Motohashi, T., and Kohara, Y. (1996). A multi-well version of
in situ hybridization on whole mount embryos of Caenorhabditis elegans.
Nucleic Acids Res. 24:2119-2124.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y.,
Miyoshi, E, Saito, E, Tanita, S., Yugi, K., Vender, J.C., and Hutchi-
son, C.A. (1999). E-cell: software environment for whole-cell simulation.
Bioinformatics 15:72-84.

Venter, J.C., et al. (2001). The sequence of the human genome. Science
291:1304-1351.

Wood, W.B. and the Community of C. elegans Researchers, editors. (1988).
The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory.

References

55

Yasuda, T., Bannai, H., Onami, S., Miyano, S., and Kitano, H. (1999). To-
wards automatic construction of cell lineage of C. elegans from No-
marski DIC microscope images. Genome Informatics 10:144-154.

References

This page intentionally left blank

Part I1

Reverse Engineering and Data Mining from Gene Expression Data

This page intentionally left blank

The DBRF Method for Inferring a Gene
Network from Large-Scale Steady-State
Gene Expression Data

Shuichi Onami, Koji M. Kyoda, Mineo Morohashi,
and Hiroaki Kitano

Complete genome sequence has enabled whole-genome expression profil-
ing and genome deletion projects, which are generating large-scale gene
expression profiles corresponding to hundreds of deletion mutants. To ob-
tain valuable information from those profiles is an important challenge
in current biology. This chapter reviews the Difference-Based Regulation
Finding (DBRF) method, which infers the underlying gene network from
those profiles. The method 1) infers direct and indirect gene regulations by
interpreting the difference of gene expression level between wild-type and
mutant, and 2) eliminates the indirect regulations. One of the major char-
acteristics of the method is its applicability to continuous-value expression
data, whereas the other existing method can only deal with binary data.
The performance of the method was evaluated using artificial gene net-
works by varying the network size, indegree of each gene, and the data
characteristics (continuous-value or binary). The results showed that the
method is superior to the other methods. The chapter also reviews the ap-
plicability of the DBRF method to real gene expression data. The method
was applied to a set of yeast DNA microarray data which consisted of
gene expression levels of 249 genes in each of single gene deletion mu-
tants for the 249 genes. In total, 628 gene regulatory relationships were
inferred, where the accuracy of the method was confirmed in MAP kinase
cascade. The DBRF method will be a powerful tool for genome-wide gene
network analysis.

INTRODUCTION

Recent progress in the field of molecular biology enables us to obtain
huge amounts of data. The rapidly increasing amount of known sequence
data, or massive gene expression data, requires computational effort to
extract information from them. So far, much attention has been focused on
developing various advanced computational tools, such as for homology
search, protein classification, gene clustering, and so forth.

60

Several significant studies have attempted to establish a method to in-
fer a gene regulatory network from large-scale gene expression data. The
gene expression data are primarily obtained as either 1) time series, or
2) steady-state data. For analyzing the time series, networks are inferred
by employing various techniques (e.g., information theory (Liang et al.,
1998), genetic algorithms (Morohashi and Kitano, 1999), or simulated an-
nealing (Mjolsness et al., 1999)). One of the shortcomings of the time series
approach is that it requires experimental data that are taken at very short
intervals and are almost free from experimental noise. These requirements
are almost impossible to meet with current techniques.

On the other hand, some methods have already been proposed for in-
ferring regulatory relationships using steady-state gene expression data.
The steady-state data can be obtained by altering specific gene activities,
such as knock-outing or overexpressing genes. Gene knock-outing is cur-
rently being developed on a large scale for a variety of experimental an-
imals, such as S. cerevisiae (Winzeler et al., 1999; Hughes et al., 2000), C.
elegans (Gengyo-Ando and Mitano, 2000), and Drosophila (Spradling et al.,
1999), by which various gene expression profiles will be produced in a
unified manner. Moreover, the discovery of RNA interference enables us
to create gene knockout animals easily and is applicable to C. elegans and
Drosophila (Sharp, 1999). Akutsu et al. (1998) calculated upper and lower
bounds on the number of experiments that would be required if the net-
work were Boolean. More recently, Ideker et al. (2000) proposed an in-
ference method called predictor. The predictor method provides candidate
networks represented by a Boolean network that are consistent with ex-
pression data by employing combinatorial optimization techniques.

A drawback of these methods is that they assume a gene network as
a Boolean network where the expression levels are represented as binary
values. In general, experimental data have continuous values, and thus
the data should be translated into binary data in order to apply the meth-
ods. Such translation may cause the data to lack the information needed
to infer regulatory relationships. If binary data are used, even 3-state (e.g.,
wild-type, deletion, and overexpression) levels may be impossible to be
represented, in which case the underlying inherent regulatory relation-
ships cannot be accurately represented.

In this chapter, we review the Difference-Based Regulation Finding
(DBRF) method which is a gene network inference method using steady-
state gene expression data (Kyoda et al., 2000). The DBRF method is
applicable to expression data represented as not only binary values, but
also continuous values. The chapter is organized as follows: in the next
section, we review the algorithm of the DBRF method. In the third section,
the performance of the DBRF method is reviewed. The performance was
studied using artificial gene regulatory networks. In the fourth section,
we review our application of this method to yeast DNA microarray data.
In the fifth section, we discuss the advantages and characteristics of this

Shuichi Onami, et al.

61

method.
THE DIFFERENCE-BASED REGULATION FINDING METHOD

We describe the DBRF method for inferring a gene regulatory net-
work from the steady-state gene expression data of wild-type and dele-
tion/overexpression mutants (Kyoda et al., 2000). An example of interac-
tion matrix 7 is shown in Figure 3.1(a), which represents gene interactions.
Rows of I represent the genes that regulate the genes in columns (e.g., ag
activates both a; and a3, and a; represses a3). We assume that the data
are given by an expression matrix E, a set of observed steady-state gene
expression levels for all genes over all mutation experiments. An exam-
ple of E is shown in Figure 3.1(b). Rows of E represent the deleted genes
while columns represent the steady-state expression levels in each gene.
We apply the method to the expression matrix E in order to derive the
interaction matrix /.

The basic procedure of the DBRF method involves two steps: 1) infer
direct and indirect regulations among the genes from expression data, and
2) eliminate the indirect regulations from the above regulations to infer a
parsimonious network.

a0 a @ as X0 X1 X2 X3
wi | 3750 3.750 8939 0.078
0 i T 4| - 3750 8769 0011
o B a;” | 3750 — 8769 0.086
2 a” | 3750 3750 — 5476
a3 a3~ | 3750 3750 8939 —
(a) The interaction matrix 7 (b) The expression matrix E

Figure 3.1 An example of the matrices which show the regulations and
steady-state data of a network. (a) An interaction matrix /. (b) An expression
matrix E. The values in the matrix are calculated by model equations shown in
Figure 3.3(b).

Inference of a Redundant Gene Regulatory Network

A simple way to determine the regulatory relationships between genes
is to see the difference of expression level ! between wild-type (wt) and
mutant data. In the first step, the DBRF method derives the relationships
between genes as such. The gene regulatory relationship is inferred ac-
cording to the rule shown in Table 3.1. It is clear that gene a activates
(represses) the expression of gene b if the expression level of gene b goes

1 ‘expression level’ is represented as absolute or relative quantities of mRNA or proteins.

The DBRF Method for Inferring a Gene Network from Gene Expression Data

62

down (up) when gene a is deleted. The computational cost of this com-
parison process is O (n?).

This process can infer not only direct gene regulations but also indi-
rect ones. For example, the process infers a gene interaction from gene a;
to gene a3, since the expression level x3 is different between wt and a,°
(Figure 3.1(b)). However, this interaction is an indirect gene interaction
through gene a, (Figure 3.3(a)). In the subsequent process, these indirect
gene regulations are eliminated, and a parsimonious gene regulatory net-
work is inferred.

Table 3.1 Inference rule of genetic interaction between gene a and gene b from
steady-state gene expression data of wild-type, single deletion and
overexpression mutant.

Expression level of gene b
up down
G deletion a-b a—b
ene a .
overexpression a—b a—b

Inference of a Parsimonious Gene Regulatory Network

This step infers a parsimonious gene regulatory network from the re-
dundant gene regulatory network inferred above by eliminating indi-
rect edges (gene regulations). In order to eliminate those indirect edges,
for each pair of genes, we 1) find out whether there are more than one
route between those genes, 2) check whether regulatory effects (activa-
tion/inactivation) of those routes are the same, and 3) eliminate redun-
dant routes if the effects are the same.

Figure 3.2 shows the algorithm for inferring a parsimonious gene
regulatory network. In order to develop 1) and 2), we modified Warshall’s
algorithm (Gross and Yellen, 1999). Warshall’s algorithm is based on the
transitive rule that there is an edge from a; to ay if edges from a; to a;, and
from a; to ay exist. For example, if there are edges from a; to ay, from a;
to aj, and from a; to ai, the algorithm finds out that there are two routes
from a; to a;. Even if a route consists of more than three genes, 1) can
be done using this algorithm. 2) is implemented by adding a function
counting the number of negative regulations in each route to Warshall’s
algorithm. The regulatory effect only depends on the parity of the number
of negative regulations involved in the route (Thieffry and Thomas, 1998).
For example, given two routes connecting the same pair of genes, the
regulatory effects of those two routes are the same if the parities of that
number are the same. The number of negative regulations is counted in
each route found in 1), and groups of routes whose regulatory effects are
the same, are detected in the algorithm. For 3), we define that if there

Shuichi Onami, et al.

63

procedure
var input: an n-node gene regulatory network G
with node ay, ap, ..., an.
output: the transitive closure of gene regulatory network G.
tn: total number of negative regulations.
begin

initialize gene regulatory network G to be network G.
fori =1tondo
for j =1tondo
if (a;, a;) is an edge in network G;_1
fork=1tondo
if (a;, ay) is an edge in network G;_
tn=(aj, ai)negativenum. + (di, A negative num.
if (@}, ar)negative num. is even, and tn is even.
eliminate edge (a;, a;) to G;_1.
(aj. ap)negative_num. = 0.
if (a;, ap)negativenum. is 0dd, and tn is odd.
eliminate edge (a;, a;) to G;_1.

(ajﬁ ak)negative_num. =tin.
return gene regulatory network G,

end

Figure 3.2 An algorithm for inferring a parsimonious gene regulatory network.
Here let G be an n-node digraph with nodes a1, a3,...,a,. This algorithm
constructs a sequence of digraphs, Go, G1,...,G, such that Gy = G, G; is a
subgraph of G;_y,i = 1,...,n because of eliminating redundant edges
subsequently. (ap, aq4) is the p-¢q element of the interaction matrix /. Each element
of the interaction matrix / has the storage for total negative regulation number
between gene p and gene ¢.

is more than one possible route between a given pair of genes and their
regulatory effects are the same, the route consisting of the largest number
of genes is the parsimonious route and the others are redundant. Thus, for
each pair of genes, the number of genes in each route of the same effect
is counted, and all but the one consisting of the largest number of genes
are eliminated in the algorithm. The computational cost of this algorithm
is 0 (n?).

COMPUTATIONAL EXPERIMENTS

Since the experimental data of deletion mutants are being produced by
several yeast genome deletion projects (Winzeler et al., 1999; Hughes et
al., 2000), it is reasonable to examine the performance of the DBRF method
using expression data of all single gene deletions. To this end, a series of
gene networks and all single gene deletion mutants for each network are
simulated to generate sets of target artificial steady-state gene expression
data. After generating the data sets, we apply the DBRF method to these
data, and infer a gene regulatory network (Kyoda et al., 2000).

The DBRF Method for Inferring a Gene Network from Gene Expression Data

64

—>
@ @ dv0/dr = 1.5g(0) — 0.20°
/\ dvl/dr = 1.5g(0) — 0.20!
dv?/dr = 1.8g(0.8v0 4 0.8v1) — 0.202

@ 0o @ dvd/de = 1.1g(2.00° — 1.3v2) — 0.203

(a) A network with weight values (b) The model equations of the network

Figure 3.3 Example of a gene regulatory network model

Network Model

Here, we present the network model used for generating the artificial
gene expression data. A gene regulatory network is described as a graph
structure consisting of nodes a, (n = 0,1,---, N), directed edges be-
tween nodes with weights, and a function g, for each node. A node repre-
sents a gene, and a directed edge represents a gene regulation. The weight
of a directed edge takes a positive/negative value representing activa-
tion/repression effect on the target gene. The expression level of a gene
a, is determined by g,, which is a nonlinear sigmoidal function reported
to describe a gene expression (Mjolsness et al., 1999; Kosman et al., 1998).
Thus, the expression level of gene a is described by the following equa-
tion:

a
d;t = Rag(; webyb 4 h“)—kav“ (3.1

where v? represents the expression level of gene a, R, is the maximum
rate of synthesis from gene «, and g(u) is a sigmoidal function given by
gu) = A/D)[w/Vu2+1)+1]. W isa connection-weight matrix element
which describes gene regulatory coefficients. ", W’ can be replaced by
[T, We”, allowing the equation to describe cooperative activation and
repression (Mannervik et al., 1999). 1* summarizes the effect of general
transcription factors on gene @, and 1, is a degradation (proteolysis) rate of
the product of gene a. We assume that this level always takes a continuous
value.

Figure 3.3 shows an example of a small network with four genes. In
Figure 3.3(a), each gene q, is represented by a circle with gene number n.
Each directed edge has an effective weight for the target gene. The model
equations for each gene are shown in Figure 3.3(b).

The target artificial networks were generated over a range of gene
number N and maximum indegree k. For constructing a target network T
with N genes and maximum indegree &, the edges were chosen randomly

Shuichi Onami, et al.

65

so that the indegree of each gene would be distributed between 1 and &.
Besides, each network was generated containing cyclic-regulations, but
without containing self-regulations. The parameters in the model equa-
tions and regulation type (whether each gene is regulated by gene(s) in-
dependently or cooperatively) were randomly determined. For each net-
work, we simulated all single deletion mutants. For each of network sizes
N and k&, we simulated 100 target networks.

Performance of the DBRF Method

We analyzed the above artificial data with the DBRF method, and com-
pared the inferred networks with the original target networks. The sim-
ilarity between each inferred network and its target network was evalu-
ated by two criteria, sensitivity and specificity. Sensitivity is defined as the
percentage of edges in the target network that are also present in the in-
ferred network, and specificity is defined as the percentage of edges in the
inferred network that are also present in the target network. The results
from the experiments over a range of N and k are shown in Table 3.2. As
can be seen in Table 3.2, the average of specificity is always higher than
that of sensitivity, and sensitivity increases in proportion to the network
size N. The average of specificity is about 90% for the indegree k = 2,
independent of N. The averages of sensitivity and specificity decrease in
proportion to the increase of k.

Comparison between Continuous-value Data and Binary Data

One of the major characteristics of the DBRF method is its applicability
to continuous-value expression data. To confirm the superiority of us-
ing continuous-value expression data, we applied the DBRF method to
continuous-value data and binary data, and compared the results. The
continuous-value expression data were translated into binary data accord-
ing to a threshold; the threshold is determined as the middle value be-

Table 3.2 The results from the experiments over a range of N and k. Each
measurement is an average over 100 simulated target networks, with standard
error given in parentheses.

Total sim. Total inferred Num. shared

N Sensitivity Specificity

b edges edges edges
10 2 15.2(1.6) 8.9(3.0) 8.1(2.9) 53.1% 90.4%
20 2 30.5(0.6) 20.6(4.9) 18.6(47) 61.1% 90.6%
50 2 75.5(0.7) 60.7(8.7) 54.4(7.9) 72.1% 89.8%
100 2 150.4(0.6) 133.9(10.4) 119.2(9.5) 79.2% 89.1%
20 4 80.0(0.0) 20.3(3.9) 177.0(74) 21.3% 84.1%
20 8 117.1(11.8) 15.1(8.6) 9.6(6.1) 8.1% 61.3%

The DBRF Method for Inferring a Gene Network from Gene Expression Data

66

tween the minimum expression level x,,;, (which is zero, because all ex-
pression data over single deletion mutant are given) and the maximum
expression level x,,4.. The results from the experiments over a range of N
and k are shown in Table 3.3. Both sensitivity and specificity, in the case of
the continuous-value data, were much higher than those in the case of the
binary data.

Table 3.3 The results from continuous-value and binary expression data over a
range of N and k. Each measurement is an average over 100 simulated target
networks.

Nk Continuous-value raw data Binary translated data
sensitivity specificity sensitivity specificity
10 2 53.1% 90.4% 20.3% 58.6%
20 2 61.1% 90.6% 20.9% 61.7%
50 2 72.1% 89.8% 22.2% 63.1%
100 2 79.2% 89.1% 22.9% 65.3%
20 4 21.3% 84.1% 9.7% 60.1%
20 8 8.1% 61.3% 6.4% 47.3%

Comparison with the Predictor Method

The predictor method is the most recently reported gene network infer-
ence method for steady-state data (Ideker et al., 2000), and thus is consid-
ered to be the most powerful method. Therefore, we compared the per-
formance between the DBRF method and the predictor method. The pre-
dictor method is designed to analyze binary data, and is not applicable
to continuous-value data. Thus, the predictor method was applied to bi-
nary data translated from the original continuous-value data as described
above, whereas the DBRF method was applied to the original data.

The results show that the performance of the DBRF method is superior
to that of the predictor method (Table 3.4). In the case of N = 20, k = 8,
although the sensitivity of the predictor method is slightly higher than
that of the DBRF method, the difference is not significant (P <0.5). In Table
3.4, the symbol ‘*” means that the predictor method is not applicable
because of NP-complete (Ideker et al., 2000). On the other hand, since
the cost of the DBRF method is about O (rn?), the DBRF method can infer
gene regulatory networks even in the case of N = 100, k = 2. We also
found that the performance of the predictor method is lower than that of
the DBRF method even when both methods were applied to the binary
translated data (compare Table 3.3, binary translated data and Table 3.4,
the predictor method). The performance of the predictor method here was
much lower than the previously published results (Ideker et al., 2000).
In our experiment, continuous-value gene expression data was generated
and then binarized to apply the predictor method, whereas in the previous

Shuichi Onami, et al.

67

work, the applied data was directly generated from a Boolean network
model (see discussion).

Table 3.4 The results using the DBRF method and the predictor method over a
range of N and k. Each measurement is an average over 100 simulated target
networks. The symbol ‘+” means computationally infeasible.

Nk DBRF method Predictor method
sensitivity specificity sensitivity specificity

10 2 53.1% 90.4% 7.1% 12.5%
20 2 61.1% 90.6% 7.9% 8.4%
50 2 72.1% 89.8% 3.3% 7.7%
100 2 79.2% 89.1% * *

20 4 21.3% 84.1% 9.2% 23.4%
20 8 8.1% 61.3% 8.2% 34.8%

APPLICATION TO YEAST GENE EXPRESSION DATA

We applied the DBRF method to a set of yeast gene expression data ob-
tained by DNA microarray (Kyoda et al., unpublished). The gene expres-
sion data consisted of gene expression levels of 249 genes in each of single
gene deletion mutants for the 249 genes (Hughes et al., 2000). For each
gene, expression levels in wild-type and mutants were statistically ana-
lyzed, and the significance of difference in gene expression level between
wild-type and mutants was evaluated with the p-value (Hughes et al,,
2000). In the following experiment, the DBRF method detected the gene
expression difference with a p-value of less than 0.01.

Figure 3.4 shows the inferred gene network for the 249 genes. In total,
628 gene regulatory relationships were inferred. It took about 5 seconds to
infer this gene regulatory network, suggesting that the DBRF method has
scalability for gene network size. The DBRF method will be able to infer
a gene regulatory network from a complete set of gene expression data
obtained from yeast for all 6,000 single gene deletions, or other higher
organisms with a large number of genes.

In the above result, for example, 13 gene regulatory relationships were
inferred in MAP kinase signal transduction cascade (Figure 3.5). In these
13 relationships, all 5 regulations from stel2, the only transcription factor
in this cascade, were consistent with the known transcriptional regula-
tions (Roberts et al., 2000; Oehlen et al., 1996; Dietzel and Kurjan, 1987;
Errede and Ammerer, 1989; Oehlen and Cross, 1998). All 5 regulations to
stel2 were coming from genes whose active forms indirectly up-regulate
the transcription of stel2, and thus consistent with the known gene regu-
latory relationships (Roberts et al., 2000; Ren et al., 2000). The remaining
3 relationships were newly discovered in this study. The results suggest

The DBRF Method for Inferring a Gene Network from Gene Expression Data

68

Figure 3.4 The inferred gene network from yeast 249 gene expression data with
the DBRF method. Each box represents gene, and each edge represents gene
regulatory relationship.

that the DBRF method infers a gene regulatory network quite effectively.
DISCUSSION

In the above sections, we reviewed the algorithm of the DBRF method.
The performance of the method and its application to real experimental

data were also reviewed. In this section, we discuss several characteristics
of this method.

Shuichi Onami, et al.

69

- [ee] [siere]
ste11
ste5 steb
[st7]
fus3 [sst2] [tect] [far1] S [sst2] [tect] [fart |
Y
etz
(a) known gene network (b) inferred gene network

Figure 3.5 MAP kinase signal transduction cascade. (a) Known gene network
from recent publications and database. (b) Inferred gene network. Solid-lined
arrows mean consistent gene regulations with known gene network, and
dashed-lined arrows mean new gene regulations.

Algorithm

The DBRF method infers a gene regulatory network with high specificity
but sensitivity is much lower than specificity when the method is ap-
plied to a set of single deletion mutant expression data. One reason for
the lower sensitivity is that the DBRF method cannot detect the differ-
ence between gene expression of wild-type and deletion mutant if a gene
is not expressed under the wild-type condition. If we also have the data
of overexpression mutants, the sensitivity will increase, because the dif-
ference can be detected between wild-type and overexpression mutants.
Furthermore, if this happens, the specificity will also increase. The number
of inferred direct edges increases with the addition of overexpression data,
and those edges prevent several indirect edges from being inferred as di-
rect edges. The expression data monitored over multiple gene mutations
can be used for the DBRF method, which will reveal the network struc-
ture more accurately. Although the algorithm finds out “indirect” edges
and eliminates them, some indirect edges may play a redundant role in
the actual network. The DBRF method can distinguish those differences if
sufficient experimental data are available.

We found that when using the data of a network which contains cyclic-
regulations, a unique network may not necessarily be inferred. We allow
gene regulatory networks containing cyclic-regulations in the computa-
tional experiments. When such a cyclic network is treated by the DBRF
method, the inferred network differs depending on the order of the genes

The DBRF Method for Inferring a Gene Network from Gene Expression Data

70

in the interaction matrix /. Several direct edges are eliminated ahead if the
eliminating process in Figure 3.2 algorithm starts from an indirect edge.
The DBRF method infers several different networks when we change the
order of the genes in the interaction matrix / for a given cyclic network.
However, all the inferred networks are consistent with the original expres-
sion data. It is possible to extend the DBRF method to output all possible
candidates of the gene network instead of providing one candidate, but
we do not know which is useful for users. This is an open problem when
considering cyclic networks.

Advantage of Using Continuous-value Data

Using the continuous-value data was clearly superior to using the binary
data. One of the main reasons is that binary data lacks much of the infor-
mation present in the original data. Binary data cannot reflect the states of
even three levels (e.g., increased, non-changed, and decreased level). As-
suming three expression levels with intermediate level as wild-type, we
can detect the difference of both increased and decreased levels. On the
other hand, if we assume two binary levels, the wild-type level should be
grouped into either higher or lower level, hence only either level can be
detected (e.g., if wild-type level is 1, only lower level can be detected). We
think this is a critical disadvantage of applying a Boolean network model,
using binary data, to a gene regulatory network.

The DBRF Method versus the Predictor Method

The performance of the DBRF method is much better than that of the pre-
dictor method. In our experiment, the sensitivity and the specificity of the
predictor method were much lower than the previously published results
(Ideker et al., 2000). In our experiment, continuous-value gene expression
data were generated, and then the data were binarized before applying the
predictor method, whereas in the previous work, the applied data was di-
rectly generated from a Boolean network model. We believe that our result
is more realistic since real experimental data have continuous values. Un-
expectedly, the performance of the DBRF method, even when using binary
data, was significantly superior to that of the predictor method. Since the
predictor method compares not only between wild-type and mutant but
also between different mutants, we expected that the predictor method
would be able to infer more candidates of gene regulations than the DBRF
method when both methods were applied to the same binary translated
data. The DBRF method only compares between wild-type and mutant.
We found that the algorithm of minimum set finding, which plays a key
role in comparison between different mutants in the predictor method, did
not function as intended in this experiment. Data binarization eliminates
many relationships between genes, and it naturally reduces the number of

Shuichi Onami, et al.

71

truly inferred edges. With those reduced number of true edges, the mini-
mum set finding tends to create many mistakes, thus lowering the sensi-
tivity and the specificity. One of the typical mistakes is to infer edges in
the opposite direction.

Since the computational cost of the DBRF method is 0 (n®), we can
compute large-scale steady-state expression data. On the other hand, the
predictor method is computationally infeasible to analyze a large-scale ex-
pression data, because the minimum set covering task is NP-complete.
Ideker et al. suggested that they could solve this problem by setting the
maximum number of indegrees k (Ideker et al., 2000). However, this solu-
tion is not suitable for real gene regulatory networks. No one knows the
maximum number of indegrees, such as the maximum number of tran-
scriptional factors binding to the cis-regulatory region. In the course of
examining the predictor method, we also found several cases where the
maximum number of indegrees in the network inferred became larger
than that in the original target network. This indicates that it is very dif-
ficult to set the maximum number of indegrees for the predictor method
even if we know this number for real networks.

Application to Yeast Gene Expression Data

Since yeast gene expression data contain noise coming from the experi-
mental procedure, we need to allow slight fluctuation of gene expression
to avoid inferring wrong gene regulations. The range of noise for each
gene should be determined by statistical analysis of a series of the gene
expression data with negative control experiments. The significance of the
difference between two data is represented by the p-value calculated with
an error model such as the gene-specific error model (Hughes et al., 2000).
In the above yeast expression analysis, the DBRF method was allowed to
detect only the gene expression difference with significance at P<0.01 in
the gene-specific error model.

Compared with the known gene network, the DBRF method inferred
many indirect gene regulations in MAP kinase cascade. As mentioned
above, the DBRF method tends to infer indirect regulations when single
gene deletion data are applied. However, in this case, the number of indi-
rect regulations does not decrease even if overexpression data or double
mutant data are applied. We found that the indirect gene regulations arise
from gene regulations through protein phosphorylation. To infer those
post-transcriptional regulations systematically, a large scale protein ex-
pression or modification analysis such as protein chip analysis (Zhu et
al., 2000) is required. If we obtain protein phosphorylation data, the DBRF
method may infer more direct regulations and fewer indirect regulations.

A post-transcriptional regulation cascade regulates the stel2 activity.
The DBRF method inferred 5 gene regulations to stel2 coming from genes
in this cascade, because the activated stel2 up-regulates its transcription

The DBRF Method for Inferring a Gene Network from Gene Expression Data

72

(Ren et al., 2000). In the following, we consider the case when the DBRF
method is applied to DNA microarray data on a set of single deletion
mutants. When the activity of a transcription factor is regulated by post-
transcriptional regulation cascade, the DBRF method infers gene regula-
tions to the transcription factor coming from genes in this cascade if the
transcription factor self-regulates its transcription. Alternatively, gene reg-
ulations from those genes to the direct targets of the transcription factor
are inferred if the self-regulation does not exist. Hence, althouogh the
DBRF method basically infers transcriptional regulation between genes,
it also provides valuable information on post-transcriptional regulations.

CONCLUSION

In this chapter, we reviewed the DBRF method, a method for inferring
a gene regulatory network from steady-state gene expression data. The
DBRF method is applicable to continuous values of expression data,
whereas the other methods that also use steady-state data can only deal
with binary data. The performance of the DBRF method was evaluated by
varying the network size, indegree of each gene, and the data character-
istics (continuous-value or binary). The DBRF method was shown to be
superior to the other existing methods. We also reviewed the applicability
of the DBRF method to real gene expression data. The method was shown
to have scalability for large-scale gene expression data. The accuracy of
the method was shown in MAP kinase cascade, where several consistent
and new relationships were inferred. Overall, the DBRF method will be a
powerful tool for genome-wide gene network analysis.

Shuichi Onami, et al.

References

Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (1998). Identifica-
tion of gene regulatory networks by strategic gene disruptions and gene
overexpressions. Proc. 9th ACM-SIAM Symp. Discrete Algorithms pp.695—
702.

Dietzel, C. and Kurjan, J. (1987). Pheromonal regulation and sequence of
the Saccharomyces cerevisiae SST2 gene: a model for desensitization to
pheromone. Mol. Cell. Biol. 7(12):4169-4177.

Errede, B., and Ammerer, G. (1989). STE12, a protein involved in cell-
type-specific transcription and signal transduction in yeast, is a part of
protein-DNA complexes. Genes and Dev. 3(9):1349-1361.

Gengyo-Ando, K., and Mitani, S. (2000). Characterization of mutations in-
duced by ethyl methanesulfonate, UV, and trimethylpsoralen in the ne-
matode Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 269(1):64—
69.

Gross, ., and Yellen, J. (1999). Graph theory and its applications. CRC Press.

Hughes, T.R., Marton, M.]., Jones, A.R., Roberts, C.J., Stoughton, R., Ar-
mour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.]., King,
AM., Meyer, M.R,, Slade, D., Lum, PY., Stepaniants, S.B., Shoemaker,
D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., and Friend,
S.H. (2000). Functional discovery via a compendium of expression pro-
files. Cell, 102:109-126.

Ideker, T.E., Thorsson, V., and Karp, R.M. (2000). Discovery of regulatory
interactions through perturbation: inference and experimental design.
Proc. Pacific Symp. Biocomputing 2000 pp.305-316.

Kosman, D., Reinitz, J., Sharp, D.H. (1998). Automated assay of gene
expression at cellular resolution. Proc. Pacific Symp. Biocomputing '98
pp.6-17.

Kyoda, K.-M., Morohashi, M., Onami, S., and Kitano, H. (2000). A gene
network inference method from continuous-value gene expression data
of wild-type and mutants. Genome Informatics 11:196-204.

74

Kyoda, K., Morohashi, M., Onami, S., and Kitano, H. (2001). Unpublished
data.

Liang, S., Fuhrman, S., and Somogyi, R. (1998). REVEAL: a general reverse
engineering algorithm for inference of genetic network. Proc. Pacific
Symp. Biocomputing 98 pp.18-29.

Mannervik, M., Nibu, Y., Zhang, H., and Levine, M. (1999). Transcriptional
coregulators in development. Science 284(5414):606—609.

Mjolsness, E., and Mann, T., Castafio, R., and Wold, B. (1999). From coex-
pression to coregulation: an approach to inferring transcriptional regu-
lation among gene classes from large-scale expression data. Tech. Rept.
JPL-ICTR-99-4, Jet Propulsion Lab. NASA.

Morohashi, M. and Kitano, H., (1999). Identifying gene regulatory net-
works from time series expression data by in silico sampling and screen-
ing. Proc. 5th Euro. Conf. Artificial Life pp.477-486.

Oehlen, LJ., McKinney,].D., and Cross, ER. (1996). Stel2 and Mcml
regulate cell cycle-dependent transcription of FARI. Mol. Cell. Biol.
16(6):2830-2837.

Oehlen, L., and Cross, ER. (1998). The mating factor response pathway
regulates transcription of TEC1, a gene involved in pseudohyphal dif-
ferentiation of Saccharomyces cerevisiae. FEBS Lett. 429(1):83-88.

Ren, B., Robert, F, Wyrick,].J., Aparicio, O., Jennings, E.G., Simon, I.,
Zeitlinger,]., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson,
C.J., Bell, S.P, and Young, R.A. (2000). Genome-wide location and func-
tion of DNA binding proteins. Science 290(5500):2306-2309.

Roberts, C.J., Nelson, B., Marton, M.]., Stoughton, R., Meyer, M.R., Bennet,
H.A., He, Y.D., Dai, H., Walker, W.L., Hughes, T.R., Tyers, M., Boone, C.,
and Friend, S.H. (2000). Signaling and circuitry of multiple MAPK path-
ways revealed by a matrix of global gene expression profiles. Science
287(5454):873-880.

Sharp, P.A. (1999). RNAi and double-strand RNA, Genes Dev. 13(2):139-
141.

Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N.,
Misra, S., and Rubin, G.M. (1999). The Berkeley Drosophila Genome
Project gene disruption project: single P-element insertions mutating
25% of vital Drosophila genes, Genetics 153(1):135-177.

Thieffry, D., and Thomas, R. (1998). Qualitative analysis of gene networks.
Proc. Pacific Symp. Biocomputing 98 pp.77-88.

References

75

Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H, Andeson, K,
Andre, B., Bangham, R., Benito, R., Boeke,].D., Bussey, H., Chu, AM.,,
Connelly, C., Davis, K., Dietrich, F.,, Dow, S.W., Bakkoury, M.E., Foury,
F, Friend, S.H., Gentalen, E., Giaever, G., Hegemann, J.H., Jones, T,
Laub, M., Liao, H., Liebundguth, N., Lockhart, D.J., Lucau-Danila, A.,
Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung,
C., Revuelta, J.L., Riles, L., Roberts, C.J., Ross-MacDonald, P., Scherens,
B., Snyder, M., Sookhai-Mahadeo, S., Storms, R.K., Véronneau, S., Voet,
M., Vockaert, G., Ward, T.R., Wysocki, R., Yen, G.S., Yu, K., Zimmer-
mann, K., Philippsen, P, Johnston, M., and Davis, RW. (1999). Func-
tional characterization of the S. cerevisize genome by gene deletion and
parallel analysis. Science 285(5429):901-906.

Zhu, H., Klemic, J.E, Chang, S., Bertone, P, Casamayor, A., Klemic, K.G.,
Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. (2000). Analysis of
yeast protein kinases using protein chips Nature Genetics 26(3):283-289.

References

This page intentionally left blank

The Analysis of Cancer Associated Gene
Expression Matrices

Mattias Wahde and Zoltan Szallasi

An important part of the analysis of cancer associated gene expression ma-
trices is the identification of a subset of genes displaying consistent mis—
regulation in a given type of tumor samples. Such a subset of genes forms,
together with an appropriate function, a separator that can distinguish
between normal and tumor samples. The identification of separators is a
difficult problem, due to the very large sizes of the search spaces involved.
In this paper, we introduce and discuss briefly a method for identification
of separators using genetic algorithms.

Due to the high level of gene expression diversity detected in cancer,
separators can appear by chance. In order to find the true separators, it is
important to weed out such chance separators. There are several statisti-
cal methods for estimating whether the appearance of a given separator
is due to chance. The accuracy of such tests will, however, depend on the
null hypothesis provided by the data structure. In this paper we intro-
duce and describe generative models that simulate random, discrete gene
expression matrices which retain the key features of massively parallel
measurements in cancer. These include the number of changeable genes
and the level of gene co-regulation as reflected in their pair-wise mu-
tual information content. By analyzing several cancer-related data sets,
we demonstrate that the probability of the chance appearance of separa-
tors can be underestimated by many orders of magnitude if random and
independent selection of mis-regulated genes is assumed, instead of using
more advanced generative models as outlined in this paper.

INTRODUCTION

The recent publication of several cancer associated large-scale gene ex-
pression matrices has clearly indicated that tumor biology has entered
a new phase of analytical approaches. These matrices contain quantita-
tive information about a large number of directly measured parameters,
usually gene expression levels, that are typically listed as the rows of the
matrix. The columns in these experiments correspond to different pheno-
types such as different types of tumors or different treatments of either
normal or neoplastic cells.

78

There are two obvious ways of exploiting cancer associated gene ex-
pression matrices. Identification of separators or gene expression func-
tions (Szallasi, 1998) determines a subset of genes the status of which,
when coupled by an appropriate rule, will define the phenotypic state of
cells. The classification of phenotypic samples on the other hand is sup-
posed to identify subsets of samples with above average molecular simi-
larity. These subsets can be later used to search for common genetic mark-
ers. This procedure, which was recently termed as tumor class discovery
in cancer research (Golub et al., 1999), is supposed to yield a group of tu-
mor samples sharing a common set of genetic markers. In principle, these
two types of analysis are overlapping since a new tumor subclass is sup-
posed to be determined by a subset of genes that obviously form a sep-
arator differentiating the new phenotype from the rest of the samples. In
practice, however, the two methods show a clear distinction regarding the
possible number of genes involved. Identification of separators searches
for the fewest possible genes that will distinguish between phenotypes,
whereas classification or cluster analysis may be based on a much larger
subset, hundreds or even thousands of genes.

Initial efforts in the field have met with limited success, which could be
the result of at least three possible causes: (a) working with incomplete or
inaccurate data sets (i.e. some of the relevant genes were not measured),
(b) working with analytical tools of inadequate power, and (c) ignoring
the special characteristics of massively parallel gene expression matrices.
When identifying separators the last two of the possible difficulties mani-
fest themselves in the following way: we need to be able to extract correct
separators within a reasonably short period of time and then show that
these separators did not emerge by accident in the gene expression ma-
trix.

Here we will address both difficulties: first we show that the power
of identifying separators could be significantly improved by genetic algo-
rithms and then demonstrate the importance of internal data structure in
statistically validating separators that were extracted from cancer associ-
ated gene expression matrices. The successful identification of separators
or tumor subclasses will depend on several factors including (1) the num-
ber of genes involved; (2) the complexity of the rule between these genes;
(3) the available number and diversity of gene expression samples for a
given phenotype; (4) the overall diversity of gene expression patterns be-
tween normal and tumor samples; and (5) the overall noise level of gene
expression measurements.

A rather unfavorable, but not that unlikely scenario holds that the
number of sufficiently diverse gene expression patterns will be too lim-
ited relative to the order (number of genes involved) and complexity of
separators involved in cancer. In this case our analytical efforts will prob-
ably fail unless we understand the overall mechanism of how gene ex-
pression patterns are generated in cancer. For example, it is obvious that

Mattias Wahde and Zoltan Szallasi

79

not all gene expression patterns are compatible with life. This may allow
excluding significant portions of the gene expression space from further
consideration, which would significantly improve our analytical chances.

Statistical analysis of cancer associated gene expression matrices also
emphasizes the importance of understanding internal data structure. Can-
cer associated gene expression patterns show a high level of diversity. The
average number of mis-regulated genes is on the order of 10% of all genes
expressed in the given cell type (Perou et al., 1999) which inevitably leads
to the accidental appearance of separators and clusters in these data sets.
However, the highly diverse differential gene expression patterns in can-
cer are the result of transitions of a self-consistent genetic network con-
tained within the cell (Klus et al., 2001). This involves the co-regulation of
genes that is reflected by the internal data structure of cancer associated
gene expression matrices. Ignoring the co-regulation of genes may lead to
a significant misestimate of statistical significance. We will overcome this
problem by introducing generative models in order to estimate the proba-
bility of accidental features of cancer associated gene expression data sets.

SEPARATORS

The purpose of separators is to identify patterns of gene expression indica-
tive of neoplasticity. Thus, a separator S = S(g1, 82, ..., gk) is a discrete
function of several inputs which takes the value 1 if the corresponding
sample is in a neoplastic state and 0 otherwise. In this paper, we will fo-
cus on the problem of identifying separators in discretized gene expres-
sion data. Continuous cDNA microarray measurements can be converted
into ternary data as described by (Chen et al., 1997). Their algorithm first
calibrates the data internally to each microarray and statistically deter-
mines whether the data justifies the conclusion that a given gene is up- or
down-regulated at a certain confidence level. Accordingly, in these data
sets, the expression level of each gene can take one of three values, namely
-1 (down-regulated), 0 (unchanged), or 1 (up-regulated).

Cancer associated gene expression measurements have provided two
main types of data sets so far. In the first case, all samples are in the
neoplastic state (i.e. § = 1), and the down- or up-regulation is measured
relative to an appropriate normal control. In the second case, the data set
consists of both neoplastic (S = 1) and normal tissue samples (S = 0).
In such cases the up- or down-regulation of a gene can, for instance, be
defined relative to the average expression level of that gene throughout
the normal samples.

Let us here consider the case in which all samples are in the neoplastic
state S = 1, and let N denote the number of genes in each sample, M_
and M the number of down- and up-regulated genes, respectively, and
M their sum, i.e. M = M_ + M. The number of samples is denoted E.
The easiest case is a one—-gene separator (K = 1) when all tumor samples

The Analysis of Cancer Associated Gene Expression Matrices

80

carry at least one consistent gene mis-regulation. We provided a detailed
statistical analysis of single gene separators elsewhere (Wahde et al., 2001).
Clearly, any set of genes (g1, ..., gk) for which there exists at least one
sample such that g1 = go = ... = gk = 0 cannot describe a separator, since
some change in the expression levels is needed to arrive at the neoplastic
state. Thus, in this case, the first step in identifying a separator of K inputs,
is to find all combinations of K genes such that, in each sample, at least
one of the K genes is down- or up-regulated. Any such combination of
genes defines a separator.

IDENTIFICATION OF SEPARATORS IN NOISY DATA

The discussion above concerning separators is somewhat simplistic in that
it assumes data to be more or less noise—free, so that a simple determinis-
tic Boolean function of a few genes can separate tumors from normal sam-
ples. Given the high noise levels in gene expression data, and the great
diversity of gene expression in cancer samples, a more realistic approach
would instead make the assumption that genes related to cancer are often,
but not always, mis-regulated, so that a given degree of mis-regulation of
a weighted average of a few such genes could be used as an indicator of a
tumor. Several such indicators could then be combined using e.g. Boolean
functions, much in the same way as the expression levels of single genes
were combined in the method described above.

The problem, of course, is to identify the relevant genes. As an exam-
ple, consider a case where a weighted average of the expression level of
four genes is to be used as an indicator. A typical sample includes mea-
surements of thousands of genes. With 10> measured genes, an exhaus-
tive search would require checking of order 10! different combinations.

Clearly, exhaustive searches are not optimal in these cases. A good al-
ternative is provided by genetic algorithms, which we will now introduce.

Genetic algorithms

Genetic algorithms (GAs) are based on the principles of Darwinian evolu-
tion, involving gradual hereditary change of candidate solutions.

When a GA is applied to a problem, a population (i.e. a set) of can-
didate solutions is maintained. The candidate solutions themselves are
called individuals. The information needed to form the individuals is en-
coded in strings of digits known as chromosomes, where, in keeping with
the biological terminology, the individuals digits are referred to as genes.

A GA is initialized by assigning random values to the genes in the
chromosomes. The next step is to decode the chromosomes of each in-
dividual, and to perform the evaluation. Both the decoding process and
the evaluation procedure are, of course, problem dependent. As a spe-
cific example, we may consider a case in which the chromosomes encode

Mattias Wahde and Zoltan Szallasi

81

the identities of N genes that are to be used for distinguishing tumors
from normal samples, by forming an average over the expression levels
of the N genes, and comparing it to a threshold which is also encoded in
the chromosome. In such a case, the decoding procedure simply identifies
the genes whose expression levels are to be averaged. Then, the average
of those genes are formed, for each sample, and the result is compared
with the threshold obtained from the chromosome. If the average exceeds
the threshold, the sample is placed in the tumor category, otherwise it is
placed in the normal category. When all samples have been evaluated,
a performance measure (the fitness) is assigned to the individual. In the
classification task, the fitness can, for instance, be defined as the fraction
of samples that are correctly classified.

When all the individuals of the first generation have been evaluated,
the second generation is formed by selecting individuals in a fitness-
proportionate way, i.e. such that individuals with high fitness have a
larger probability of being selected than individuals with low fitness.
When two individuals have been selected, their offspring is formed
through crossover (with a certain probability, usually taken to be close
to 1) and mutation. In crossover, the chromosomes of the two individu-
als are cut at a randomly chosen point (the crossover point), and the first
part of the first chromosome is combined with the second part of the sec-
ond chromosome, and vice versa to form two new chromosomes. Each of
the two new chromosomes is then subjected to mutation, during which a
random number is drawn for each gene. If the random number is smaller
than a pre-specified mutation probability, then the gene is assigned a new,
random value. If not, the gene is left unchanged.

The procedures of selection, crossover, and mutation is repeated until
there are as many new chromosomes as in the first generation. Then, the
old chromosomes are replaced by the new ones, and all the individuals of
the new generation are evaluated. The third generation is formed by se-
lecting individuals from the second generation, and performing crossover
and mutation on their chromosomes. The whole procedure is repeated for
a large number of generations, until a satisfactory solution to the problem
has been achieved.

There exists many different versions of genetic algorithms that use
different ways of selecting individuals for reproduction, different ways of
assigning fitness values, as well as different methods of maintaining the
population. Furthermore, in practical applications of GAs, the procedure
often becomes more complex than in the simple case introduced above.
For example, it is not uncommon that chromosomes of varying length
need to be used, which makes the crossover procedure more complicated.
For a more comprehensive introduction to GAs, which also discusses
some of the more advanced issues, see e.g. (Mitchell, 1995).

The Analysis of Cancer Associated Gene Expression Matrices

82

M|ID, | ID, | - IDy| T

Figure 4.1 A simple chromosome for gene identification.

A method for automatic identification of genes

We will now briefly discuss the issue of identification of cancer relevant
genes using GAs, and suggest a specific method for this problem.

The first step in the application of a GA is to select an encoding scheme
for the chromosomes. Clearly, it is not difficult to devise chromosomes
that encode very complex classifiers. However, a good classifier should
preferably be as simple as possible, especially in cases where the num-
ber of available samples is strongly limited. A classifier which uses, say,
three parameters and which can classify perfectly a set of 50 samples is
obviously more likely to be reliable than a classifier that uses, say, 25 pa-
rameters. On the other hand, it is difficult to know beforehand what the
appropriate number of parameters is, and so one should preferably allow
it to be determined by the GA.

For simplicity, let us consider a specific method in which a simple
average (i.e. with equal weights for all genes) is used, and where there is
only one condition. In this case, all that needs to be encoded are the genes
from which the average should be formed, and the value of the threshold
which determines the category into which an evaluated sample will fall.
Note that, in order not to confuse the genes of the expression matrix with
the genes of the chromosomes used by the GA, we will in this section refer
to the latter as “entries” rather than genes.

Here, an encoding scheme of the kind shown in Figure 4.1 can be
used. The first entry of the chromosome encodes the number (M) of genes
for which the average should be formed, and the following M entries
determine the identity of those genes. The final entry of the chromosome
set is the value of the threshold. The entries take value between 0 and
1, and are then rescaled to form numbers between 1 and N, (for the
entries identifying genes) and between —1 and 1 for the final entry of the
chromosome.

Normally, the chromosomes of the first generation are generated ran-
domly. However, when there is biological information present, it should
of course be used. An inspection of a gene expression matrix indicates
that some genes are less likely to be of importance than others. For in-
stance, some genes never change (in any sample), whereas others change
in a more or less random way:.

Thus, a sensible approach is to first rank the genes in descending
order of importance, placing at the top those genes that show a large and

Mattias Wahde and Zoltan Szallasi

83

consistent difference between the tumor samples and the normal samples.
The measure of such a difference can be selected in various ways: mutual
information is one possibility (Butte and Kohane, 2000). An alternative
relevance measure can be defined as

1 ()] (1 (2 (1)
e = 2 P T T (0@, D)), @)
nw " nw o N nw o N

where superscript 1 denotes the normal samples and superscript 2 the
tumors, and where n_, ng, and ny denote the number samples in which
the gene in question is down-regulated, unchanged, and up-regulated, re-
spectively. This measure assigns high relevance values to genes that show
a large difference in the expression patterns between normal samples and
tumors, and for which the mis-regulation of the tumor samples is consis-
tent, i.e. either down-regulation or up-regulation.

Now, in order to begin the search starting from the simplest possible
classifiers, the chromosomes of the initial population should all have M =
1 (corresponding to a simple K = 1 separator as defined in the beginning
of this chapter) and the decoding scheme identifying the genes should be
based on the relevance ranking described above. Thus, the entry defining
the single gene should be initialized to a low value. As an example, if it
were to be set exactly to 0, the corresponding gene would be the one with
the highest score in the relevance ranking.

A useful fitness measure in this case would be

f =max(p—1, pq(M_l)), (4.2)

where p denotes the number of correctly classified samples, ¢ is a number
slightly smaller than 1, and M, as usual, denotes the number of entries
identifying genes in the chromosome of the classifier. Thus, an optimal
classifier would be one that could correctly classify all samples using the
measurement of only one gene. The max function is needed in order to
prevent that a classifier with a lower value of p receives a higher fitness
value than one with a higher value of p. Thus, a limit on the punishment
for overly complicated classifiers is introduced.

This concludes our brief description of a possible GA-based method
for the identification of interesting genes in neoplastic samples. Needless
to say, the procedure could be improved in various ways, for instance by
allowing Boolean combinations of several conditions. Such improvements
will not be discussed here, however.

Furthermore, not all samples should be used in the determination
of the classifier: some should be retained for validation purposes. If the
number of samples is small, a procedure can be implemented in which a
random set of samples is used by the GA, and the rest are used for the
validation. Several runs can be carried out, with different validation sets.
Those genes that appear in many or all of the classifiers obtained by the

The Analysis of Cancer Associated Gene Expression Matrices

84

GA are them likely to be interesting candidates for further study.

Statistical validation of separators extracted from gene expression
matrices

In the previous section we have presented search strategies for separators
in gene expression matrices. The high level of gene expression diversity in
cancer samples, however, makes it probable that separators can occur by
chance. In order to identify the true separators in a data set, such chance
separators must first be identified and removed. In order to do so, one
needs some way of estimating the probability that any given separator
is due to chance. This probability can be readily estimated by analytical
means only in the case of low order separators (preferably K = 1) and
special gene expression matrices, when mis-regulated genes are randomly
and independently selected (Wahde et al., 2001). In more realistic data
sets analytical calculations become intractable and one needs to rely on
computer simulations. In other words, one needs a generative model which
can generate artificial data sets, the analysis of which can provide estimate
of the probability of the chance appearance of a separator.

Generative models

The aim of a generative model is to produce an artificial and random data
matrix which shares the essential characteristics of the original data ma-
trix. The artificial data obtained by means of the generative model can
then be used to form null hypotheses for the estimation of the probabil-
ity of separators discovered in the real data set, thus making it possible to
distinguish chance separators from actual separators. Generative models
can be derived from either theoretical considerations or empirical observa-
tions. In cancer research, theory—based generative models can use either
genetic network modeling or aneuploidy driven gene mis-regulation as
their starting point.

Malignant transformation can be considered as an attractor transition
of a self-organizing gene network (Kauffman, 1993; Szallasi and Liang,
1998) providing numerical estimates about the overall quantitative fea-
tures of attractor transition like the expected number of up— or down-
regulated (with a common term, mis-regulated) genes. There is an in-
creasing evidence of the ploidy regulation of gene expression levels as
well (Galitski et al., 1999). We have provided initial indications that the
aneuploidic distribution of chromosomes may also be used to model the
expected gene expression patterns in cancer (Klus et al., 2001). At the cur-
rent stage of theory and available data sets, however, we can best rely on
generative models based on empirical observations. This approach starts
with extracting overall quantitative features of cancer associated gene ex-
pression matrices. These include the number of genes that can be mis—

Mattias Wahde and Zoltan Szallasi

85

regulated, the ratio of up- versus down-regulated genes and the level of
co-regulation of mis-regulated gene groups. We will now discuss two
very different approaches to generative models which will shed some
light on the importance of a careful selection of such models.

The first method simply forms a randomized gene expression matrix
while preserving certain overall features of the real data matrix, such as
the number of mis-regulated genes in each sample. Mutual information
based generative models, which is the second method introduced here,
preserve additional features of the real data, namely the co-regulation of
genes.

Randomization based generative models

The simplest method of generating artificial data consists simply of in-
serting, for each sample, M4 1’s and M_ -1's randomly in a null N x E
matrix. In general, the values of M_ and M, will of course vary from sam-
ple to sample, so either an average value or the actual values of M’ and
M jr (i =1,...,E) from the real data can be used. It turns out that the for-
mula for the expected number of separators is very sensitive to the values
of M" and M, and therefore the use of average values is not to be rec-
ommended. The randomization method that uses the actual values of M’
and M!,, will be referred to as simple randomization. As a simple example,
consider the case of a K = 2 gene separator. Assume that two genes, de-
noted g; and g», are being studied. In a given sample i, the approximate
probability pi(2) of at least one of these two genes being changed (up- or
down-regulated) is

Pi@) =1—-(p))?, (4.3)

where p = (N — M")/N denotes the probability of a given gene being
unchanged (M' = M + M', where M! and M!' denote, as before, the
number of up— and down-regulated genes in sample i, respectively). Note
that the approximation is valid as long as | << M’ << N. In a typical
neoplastic sample it is safe to make this assumption, since ~10% of the
genes are changed (i.e. M’ ~ 0.1N). The probability of at least one of the
genes being changed in each of the E samples equals

E E
P =[]ri@=]]0 - wp>. (4.4)
i=1 i=1
Thus, the expected number of such separators is
N
Ns(2) = <2>Ps(2)- (4.5)

The Analysis of Cancer Associated Gene Expression Matrices

86

Table 4.1 A K = 2 separator. The final column shows the value of the function S
(the separator) for the given input configuration.

81 & | S
-1 1)1
-1 010
-1 110

0 -1]1

0 010

0 110

1 -1]0

1 00

1 1)1

Generalizing these formulae, it is easy to see that the expected number of
separators of K inputs is

E
N N :
Ny(K) = <K>PS(K) = (K)]] PHK) (4.6)
where
piK) = 1—(pp¥. (4.7)

This analysis gives an estimate of the tofal number of separators of K
inputs expected in a randomized artificial data set. Using similar meth-
ods, the approximate probability of discovering any specific separator in
artificial data can also be obtained. In the case of K inputs, the total num-
ber of combinations of the input variables equals 3X. The estimate of the
probability of a specific separator begins by the computation of the prob-
ability, for one sample i, of obtaining one of those combinations for which
S = 1. This probability is denoted p',. The expected number of separators
in the data set is then given by

E
Ng = (Z)PRE (Z)]‘[p;. (4.8)
i=1

As an example, consider a separator defined by the entries of Table 4.1. In
any given sample 7, the probability of having § = 1 equals

Ph=r1 1+ 0+ Pl =P+ phpt + plpl. (4.9)

where p) = (N — M" — M')/N, p' = M' /N, and p', = M! /N. The
approximate number of expected separators of this type is then

E
Ni = (IZ)PR - (;V) I1 7% (4.10)
i=1

Armed with the tools presented above, we can proceed to analyze sets of
cancer—related gene expression data. As an example, we have analyzed

Mattias Wahde and Zoltan Szallasi

87

the colon cancer data published by Alon et al. (1999). These data consist of
DNA-oligomer chip based gene expression measurements on 2,000 genes
in 22 patient matched neoplastic and normal samples.

According to Eq. 4.6, increasing the sample number (in this case to
22) decreases the expected number of separators appearing by chance.
Indeed, applying this equation, the expected number of separators with
K = 2, assuming random and independent selection is found to be 2.3 x
10712 <<< 1. On the other hand, the actual number of separators with
K = 2 was equal to 1 for this data set, strongly suggesting that this
separator might play a role in colon cancer.

Analysis of other cancer-related data sets yield essentially identical
result: the number of separators found in the real data set always exceeds
by far the number of separators expected on the base of random and
independent selection.

The assertion that these results are significant hinges on one impor-
tant assumption, namely that random and independent selection forms
a reasonable null hypothesis for cancer-related data. Alas, this is not the
case: the data structure of cancer-related gene expression is in fact very
far from that obtained using random and independent selection. This is
readily noticed when the distribution of pair-wise correlation of gene ex-
pression changes is examined. For discretized data mutual information is
an appropriate measure, which is high (close to its maximum, 1) if the
mis-regulation of a given gene is highly indicative of the mis-regulation
of another gene. (For details see e.g. (Klus et al., 2001; Butte and Kohane,
2000)) In cancer associated gene expression matrices the distribution of
pairwise mutual information indicates a far from independent selection of
mis-regulated genes.

In order to illustrate this we have performed an analysis on the breast
cancer associated gene expression matrix published by Perou et al. (1999).
This publicly available data set contains cDNA microarray based relative
expression levels of about 5,600 genes for a number of both normal and
neoplastic breast epithelial samples. For our analysis we have used only
gene expression measurements derived from either breast cancer cell lines
or primary breast tumors, 16 samples altogether. We have retained only
those genes in our analysis that showed an at least 3.5-fold up- or down-
regulation in at least two samples.

Using these threshold values we have transformed the original data
set into a 1082x16 ternary data matrix. The upper panel of Figure 4.2
shows a histogram of the pairwise mutual information distribution ob-
tained from the real data, whereas the middle panel shows the mutual
information distribution obtained from a data set using simple random-
ization of the data matrix. Clearly, the two distributions are very different,
which indicates that the assumption of random and independent selection
does not form a reliable null hypothesis for cancer-related gene expression
data.

The Analysis of Cancer Associated Gene Expression Matrices

88

Mutual-information based generative models

As a first step towards the identification of a better null hypothesis, one
should take into account two restrictions present in biological systems.
First, not every gene can be mis-regulated. The number of changeable
genes can be calculated as described elsewhere (Wahde et al., 2001) by con-
ditional probabilities. Second, mis-regulated genes are not independently
selected. Gene expression levels in cancer are determined by several fac-
tors, such as the regulatory input of other genes and the actual DNA-copy
number of the given gene present in a cell (Galitski et al., 1999). This will
obviously lead to a high level of interdependence between gene expres-
sion levels which is readily quantified by mutual information content.

The aim of mutual information based generative models is to produce
random gene expression matrices while retaining the overall level and
distribution of co-regulation of mis-regulated genes. There are several
possible algorithms to achieve this. Here we present a strategy that starts
with a random rearrangement of a real data matrix and then a simple
form of evolutionary algorithm keeps rearranging this randomized matrix
until the new mutual information distribution will closely approximate
the distribution detected in the real data.

Generative algorithm

The generative algorithm begins by generating a random data matrix R,
by rearranging the matrix elements of the real data set D. A simple al-
gorithm for arriving at a data set of this type is defined as follows: Loop
through all genes. For each gene, loop through each sample, select ran-
domly another sample, and swap the corresponding matrix elements.
Note that, with this procedure, the values of M_ and M will change, since
they are measured column-wise. However, since the computation of mu-
tual information is based on comparison of genes (rows in the expression
matrix), rather than samples (columns) this is the correct way to random-
ize the matrix in this case. This randomization method will be referred
to as permutative randomization. Once the permutative randomization
has been performed a histogram of pairwise mutual information values is
generated. A similar histogram is also generated for the real data set, and
the distance between the two histograms is computed as

N | He (m) — Hp(m)]

A(Hg,HD)szZI TR (4.11)

where Hg is the histogram for the generated data set, Hp is the histogram
for the real data set, and Nyips is the number of bins in the histograms,
for which the bin width thus equals 1/Npins. The algorithm then proceeds
as follows: A gene j is selected at random among the N genes, and

Mattias Wahde and Zoltan Szallasi

89

its contribution to the histogram is computed by checking the pairwise
mutual information between gene j and all other genes. The contribution
of gene j to the histogram is subtracted, and the matrix elements in the
corresponding row of the data matrix are rearranged, with probability
Pswap by the same swapping procedure as was used in the permutative
randomization algorithm. Then, the new contribution of gene j to the
histogram is computed and the histogram thus obtained is compared with
the histogram present before the rearrangement of gene ;.

If the distance is smaller than before the rearrangement, the new his-
togram (and, of course, the corresponding matrix) is kept. If not, the old
matrix, and the old histogram, are retained and thus only improvements
are kept. This procedure — selection of a random gene, subtraction from the
histogram, partial rearrangement, and formation of the new histogram,
and finally selection of either the old or the new configuration —is repeated
many times, until the distance between the histogram for the artificial data
and that of the actual data is smaller than user—defined critical value A..
Usually, A was taken to be of order 10% of the initial distance between D
and R.

This algorithm, which is relatively easy to implement, will restore the
original distribution of gene co-regulation in a random fashion as demon-
strated in the lower panel of Figure 4.2. In addition to the breast cancer
data set introduced above we have examined the effect of mutual infor-
mation based generative models on two other gene expression matrices
derived from various cancer types. This analysis has yielded some in-
sightful results. We were focusing on the chance appearance of K = 2
separators. Applying Eq. (4.6) we found for the breast cancer data set,
that the expected number of separators assuming random and indepen-
dent selection is 8.6. This was also confirmed by our simple randomiza-
tion generative model, yielding an estimate of 8.5 & 7.7 separators. How-
ever, the actual number of potential separators, obtained from the real data
set, equals 16,997. Clearly, a comparison with the randomized data matrix
would indicate that this is a very significant number indeed. Comparing,
however, with the results obtained using the generative algorithm, the re-
sult is very different. In this case, the average number of expected sep-
arators equals 25, 481 & 897. We have also analyzed the gene expression
data published by Khan et al. (1998). This data set consisted of 13 sam-
ples altogether, seven of them alveolar rhabdomyosarcoma samples and
the rest commonly used human cancer cell lines. The data matrix con-
tained ternary expression information about 1248 genes. The actual num-
ber of separators for this data set was 16,124. Using Eq. (4.6), an estimate
of 0.017 << 1 separators was obtained, again much lower than the actual
value. Using instead the generative algorithm, an average of 17,252+133
separators were obtained. Finally, we have analyzed a colon cancer asso-
ciated gene expression matrix published by Alon et al. (1999).

DNA-oligomer chip based gene expression measurements were pub-

The Analysis of Cancer Associated Gene Expression Matrices

90

lished on 2000 genes in twenty two patient matched neoplastic and nor-
mal colon samples by Alon et al. (1999). According to Eq. (4.6), increasing
the sample number (in this case to 22) decreases the expected number of
separators appearing by chance. Indeed, applying this equation, the ex-
pected number of separators assuming random and independent selection
is found to be 2.3 x 10712 <<< 1. On the other hand, the actual number
of potential separators with K = 2 was equal to 1 for this data set, sug-
gesting that this separator might play a role in colon cancer. This assump-
tion, however, must be reevaluated after applying the mutual information
based generative models. If the essential structure of the colon cancer as-
sociated gene expression matrix is retained then the expected number of
separators is increased by twelve orders of magnitude to 3.7 £ 1.4. This re-
sult has questioned the significance of the potential separator found in the
data. This doubt was reinforced by the fact that neither gene involved in
the separator has any documented involvement with any forms of human
cancer. These initial results indicated, that the chance of random appear-
ance of separators is severely underestimated by ignoring the high level
of co-regulation of mis-regulated genes.

Nevertheless, it was also clear that for more accurate estimates our al-
gorithm needs further refinement. The distribution presented in the lower
panel of Figure 4.2 showed signs of over-fitting by accurately reproducing
the original distribution instead of approximating a theoretical curve de-
scribing the mutual information distribution of cancer associated gene ex-
pression matrices. This over-fitting also manifested itself in our numerical
results. For each of the three data sets the number of expected separators
provided by the generative algorithm was 1.07 to 3.7-fold higher than the
number of separators present in the actual data sets. On average, however,
these gene expression matrices should contain at least as many separators
as expected by chance. This over-fitting can probably be avoided by fitting
a theoretical curve on the mutual information distribution and then the al-
gorithm described above would approach this curve instead of the actual
distribution of a given data set. Current efforts are underway to generate
this theoretical distribution.

Mattias Wahde and Zoltan Szallasi

A. Actual data

0.1 0.2 0.3 0.4 0.5 0.6
B Randomized data

Figure 4.2 Upper panel: mutual information distribution from the Perou data
set. Middle panel: the mutual information distribution obtained after simple
randomization. Lower panel: the mutual information distribution obtained using
a generative model.

The Analysis of Cancer Associated Gene Expression Matrices

This page intentionally left blank

References

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D.,
and Levine, A.J. (1999). Broad patterns of gene expression revealed
by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12):6745-50.

Butte, A.]. and Kohane, 1.S. (2000). Mutual Information Relevance Net-
works: Functional Genomic Clustering Using Pairwise Entropy Mea-
surements. Pac. Symp. Biocomp. 2000 5:415-426.

Chen, Y., Dougherty, E.R., and Bittner, M.L. (1997). Ratio-based decisions
and the quantitative analysis of cDNA microarray images. . Biomed.
Optics 2:364-374.

Galitski, T., Saldanha, A.]., Styles, C.A., Lander, E.S., and Fink, G.R. (1999).
Ploidy regulation of gene expression. Science 285:251-254.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov
J.P, Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield
C.D., and Lander E.S. (1999). Molecular classification of cancer: class

discovery and class prediction by gene expression monitoring. Science
286(5439):531-537.

Kauffman, S. (1993). The origins of order. Oxford University Press.

Klus, G., Song, A., Schick, A., Wahde, M., and Szallasi, Z. (2001). Mutual
information analysis as a tool to assess the role of aneuploidy in the
generation of cancer-associated differential gene expression patterns.
Pac. Symp. Biocomp. 2000 6:42-51.

KhanJ., Simon R., Bittner M., Chen Y., Leighton SB., Pohida T., Smith P.D.,
Jiang Y., Gooden G.C., Trent].M., and Meltzer P. (1998). Gene expres-
sion profiling of alveolar rhabdomyosarcoma with cDNA microarrays.
Cancer Res. 58(22):5009-5013.

Mitchell, M. (1995). An introduction to genetic algorithms. MIT Press.

Perou C.M.,, Jeffrey S.S., van de Rijn M., Rees C.A., Eisen M.B., Ross D.T,,
Pergamenschikov A., Williams C.F, Zhu S.X., Lee]J.C., Lashkari D.,

94

Shalon D., Brown P.O., and Botstein D. (1999). Distinctive gene expres-
sion patterns in human mammary epithelial cells and breast cancers.
Proc. Natl. Acad. Sci. USA 96(16):9212-7.

Szallasi, Z. (1998). Gene expression patterns and cancer. Nature Biotech
16:1292-1293.

Szallasi, Z., and Liang, S. (1998). Modeling the normal and neoplastic cell
cycle with “realistic Boolean genetic networks”: Their application for
understanding carcinogenesis and assessing therapeutic strategies. Pac.
Symp. Biocomp. 98 3:66-76.

Wahde, M., Klus, G.T., Bittner, M.L., Chen Y., and Szallasi, Z. (2001). As-
sessing the significance of consistently mis—regulated genes in cancer
associated gene expression matrices. (manuscript in preparation)

References

Automated Reverse Engineering of
Metabolic Pathways from Observed Data by
Means of Genetic Programming

John R. Koza, William Mydlowec, Guido Lanza,
Jessen Yu, and Martin A. Keane

Recent work has demonstrated that genetic programming is capable of au-
tomatically creating complex networks (e.g., analog electrical circuits, con-
trollers) whose behavior is modeled by linear and non-linear continuous-
time differential equations and whose behavior matches prespecified out-
put values. The concentrations of substances participating in networks
of chemical reactions are modeled by non-linear continuous-time differ-
ential equations. This chapter demonstrates that it is possible to auto-
matically create (reverse engineer) a network of chemical reactions from
observed time-domain data. Genetic programming starts with observed
time-domain concentrations of substances and automatically creates both
the topology of the network of chemical reactions and the rates of each
reaction of a network such that the behavior of the automatically cre-
ated network matches the observed time-domain data. Specifically, ge-
netic programming automatically created a metabolic pathway involving
four chemical reactions that consume glycerol and fatty acid as input, use
ATP as a cofactor, and produce diacyl-glycerol as the final product. The
metabolic pathway was created from 270 data points. The automatically
created metabolic pathway contains three key topological features, includ-
ing an internal feedback loop, a bifurcation point where one substance is
distributed to two different reactions, and an accumulation point where
one substance is accumulated from two sources. The topology and sizing
of the entire metabolic pathway was automatically created using only the
time-domain concentration values of diacyl-glycerol (the final product).

INTRODUCTION

A living cell can be viewed as a dynamical system in which a large num-
ber of different substances react continuously and non-linearly with one
another. In order to understand the behavior of a continuous non-linear
dynamical system with numerous interacting parts, it is usually insuf-
ficient to study behavior of each part in isolation. Instead, the behavior

96

must usually be analyzed as a whole (Tomita et al., 1999).

Considerable amounts of time-domain data are now becoming avail-
able concerning the concentration of biologically important chemicals in
living organisms. Such data include both gene expression data (obtained
from microarrays) and data on the concentration of substances participat-
ing in metabolic pathways (Ptashne, 1992; McAdams and Shapiro, 1995;
Loomis and Sternberg, 1995; Arkin et al., 1997; Yuh et al., 1998; Liang et
al., 1998; Mendes and Kell, 1998; D’haeseleer et al., 1999).

The concentrations of substrates, products, and catalysts (e.g., en-
zymes) participating in chemical reactions are modeled by non-linear
continuous-time differential equations, such as the Michaelis-Menten
equations (Voit, 2000).

The question arises as to whether it is possible to start with observed
time-domain concentrations of substances and automatically create both
the topology of the network of chemical reactions and the rates of each re-
action that produced the observed data — that is, to automatically reverse
engineer the network from the data.

Genetic programming (Koza et al., 1999a) is a method for automati-
cally creating a computer program whose behavior satisfies certain high-
level requirements. Recent work has demonstrated that genetic program-
ming can automatically create complex networks that exhibit prespecified
behavior in areas where the network’s behavior is governed by differential
equations (both linear and non-linear).

For example, genetic programming is capable of automatically creat-
ing both the topology and sizing (component values) for analog electri-
cal circuits (e.g., filters, amplifiers, computational circuits) composed of
transistors, capacitors, resistors, and other components merely by speci-
fying the circuit’s output — that is, the output data values that would be
observed if one already had the circuit. This reverse engineering of cir-
cuits from data is performed by genetic programming even though there
is no general mathematical method for creating the topology and sizing of
analog electrical circuits from the circuit’s desired (or observed) behavior
(Koza et al., 1999b). Seven of the automatically created circuits infringe on
previously issued patents. Others duplicate the functionality of previously
patented inventions in a novel way.

As another example, genetic programming is capable of automati-
cally creating both the topology and sizing (tuning) for controllers com-
posed of time-domain blocks such as integrators, differentiators, multipli-
ers, adders, delays, leads, and lags merely by specifying the controller’s
effect on the to-be-controlled plant (Koza et al., 1999¢, 2000a). This reverse
engineering of controllers from data is performed by genetic program-
ming even though there is no general mathematical method for creat-
ing the topology and sizing for controllers from the controller’s behavior.
Two of the automatically created controllers infringe on previously issued
patents.

John R. Koza, et al.

97

As yet another example, it is possible to automatically create antennas
composed of a network of wires merely by specifying the antenna’s high-
level specifications (Comisky, Yu, and Koza 2000).

Our approach to the problem of automatically creating both the topol-
ogy and sizing of a network of chemical reactions involves

(1) establishing a representation involving program trees (composed of
functions and terminals) for chemical networks,

(2) converting each individual program tree in the population into an
electrical circuit representing a network of chemical reactions,

(3) obtaining the behavior of the network of chemical reactions by simu-
lating the electrical circuit,

(4) defining a fitness measure that measures how well the behavior of an
individual network in the population matches the observed data, and

(5) applying genetic programming to breed a population of improving
program trees using the fitness measure.

The implementation of our approach entails working with five differ-
ent representations for a network of chemical reactions, namely

Reaction Network: Biochemists often use this representation (shown in
Figure 5.1) to represent a network of chemical reactions. In this represen-
tation, the blocks represent chemical reactions and the directed lines rep-
resent flows of substances between reactions.

Program Tree: A network of chemical reactions can also be represented
as a program tree whose internal points are functions and external points
are terminals. This representation enables genetic programming to breed
a population of programs in a search for a network of chemical reactions
whose time-domain behavior concerning concentrations of final product
substance(s) closely matches observed data.

Symbolic Expression: A network of chemical reactions can also be rep-
resented as a symbolic expression (S-expression) in the style of the LISP
programming language. This representation is used internally by the run
of genetic programming.

System of Non-Linear Differential Equations: A network of chemical
reactions can also be represented as a system of non-linear differential
equations.

Analog Electrical Circuit: A network of chemical reactions can also be
represented as an analog electrical circuit (as shown in Figure 5.3). Rep-
resentation of a network of chemical reactions as a circuit facilitates simu-
lation of the network’s time-domain behavior.

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

98

STATEMENT OF THE ILLUSTRATIVE PROBLEM

The goal is to automatically create (reverse engineer) both the topology
and sizing of a network of chemical reactions.

The topology of a network of chemical reactions comprises (1) the num-
ber of substrates consumed by each reaction, (2) the number of products
produced by each reaction, (3) the pathways supplying the substrates (ei-
ther from external sources or other reactions) to the reactions, and (4) the
pathways dispersing the reaction’s products (either to other reactions or
external outputs). The sizing of a network of chemical reactions consists of
the numerical values representing the rates of each reaction.

We chose, as an illustrative problem, a network that incorporates three
key topological features. These features include an internal feedback loop,
a bifurcation point (where one substance is distributed to two different re-
actions), and an accumulation point (where one substance is accumulated
from two sources). The particular chosen network is part of a phospho-
lipid cycle, as presented in the E-CELL cell simulation model (Tomita et
al., 1999). The network’s external inputs are glycerol and fatty acid. The
network’s final product is diacyl-glycerol. The network’s four reactions
are catalyzed by Glycerol kinase (EC2.7.1.30), Glycerol-1-phosphatase
(EC3.1.3.21), Acylglycerol lipase (EC3.1.1.23), and Triacylglycerol lipase
(EC3.1.1.3). Figure ?? shows this network of chemical reactions with the
correct rates of each reaction in parenthesis. The rates that are outside the
parenthesis are the rates of the best individual from generation 225 of the
run of genetic programming.

C00116 | Glycerol

Glycerol ATP N

C00162 | Fatty Acid

EC3.1.1.23
K =1.95(1.95) |Acylglycerol

lipase

ik el
K=1.17(1.19) |phosphatase | K= 1.69 (1.69) kinase
Fatty
Acid

EC3.1.1.3
K =1.45 (1.45)

C00165 | Diacyl-glycerol

Triacylglycerol
lipase

OUTPUT
(MEASURED)
Cell Membrane

Figure 5.1 Network of chemical reactions involved in the phospholipid cycle

John R. Koza, et al.

99

BACKGROUND ON GENETIC PROGRAMMING

Genetic programming (Koza, 1992, 1994a,b; Koza et al., 1999a,b; Koza and
Rice, 1992) is a method for automatically creating a computer program
whose behavior satisfies user-specified high-level requirements. Genetic
programming is an extension of the genetic algorithm (Holland, 1992) in
which the population being bred consists of computer programs. Genetic
programming starts with a primordial ooze of thousands of randomly cre-
ated computer programs (program trees) and uses the Darwinian princi-
ple of natural selection, crossover (sexual recombination), mutation, gene
duplication, gene deletion, and certain mechanisms of developmental bi-
ology to breed a population of programs over a series of generations. Al-
though there are many mathematical algorithms that solve problems by
producing a set of numerical values, a run of genetic programming can
create both a graphical structure and a set of numerical values. That is, ge-
netic programming will produce not just numerical values, but the struc-
ture in which those numerical values reside.

Genetic programming breeds computer programs to solve problems
by executing the following three steps:

(1) Generate an initial population of compositions (typically random) of
the functions and terminals of the problem.

(2) Iteratively perform the following substeps (referred to herein as a
generation) on the population of programs until the termination criterion
has been satisfied:

(A)Execute each program in the population and assign it a fitness
value using the fitness measure.

(B)Create a new population of programs by applying the following
operations. The operations are applied to program(s) selected from
the population with a probability based on fitness (with reselection
allowed).
(i) Reproduction: Copy the selected program to the new popula-
tion.
(if) Crossover: Create a new offspring program for the new pop-
ulation by recombining randomly chosen parts of two selected
programs.
(iif) Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part of the
selected program.
(iv) Architecture-altering operations: Select an architecture-altering
operation from the available repertoire of such operations and
create one new offspring program for the new population by ap-
plying the selected architecture-altering operation to the selected
program.

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

100

(3) Designate the individual program that is identified by result desig-
nation (e.g., the best-so-far individual) as the result of the run of genetic
programming. This result may be a solution (or an approximate solution)
to the problem.

The individual programs that are evolved by genetic programming
are typically multi-branch programs consisting of one or more result-
producing branches and zero, one, or more automatically defined func-
tions (subroutines).

The architecture of such a multi-branch program involves

(1) the total number of automatically defined functions,

(2) the number of arguments (if any) possessed by each automatically
defined function, and

(3) if there is more than one automatically defined function in a program,
the nature of the hierarchical references (including recursive references),
if any, allowed among the automatically defined functions.

Architecture-altering operations enable genetic programming to auto-
matically determine the number of automatically defined functions, the
number of arguments that each possesses, and the nature of the hierarchi-
cal references, if any, among such automatically defined functions.

Additional information on genetic programming can be found in
books such as (Banzhaf et al., 1998); books in the series on genetic pro-
gramming from Kluwer Academic Publishers such as (Langdon, 1998); in
edited collections of papers such as the Advances in Genetic Programming
series of books from the MIT Press (Spector et al., 1999); in the proceedings
of the Genetic Programming Conference (Koza et al., 1998); in the proceed-
ings of the annual Genetic and Evolutionary Computation Conference
(combining the annual Genetic Programming Conference and the Inter-
national Conference on Genetic Algorithms) held starting in 1999 (Whit-
ley et al., 2000); in the proceedings of the annual Euro-GP conferences
held starting in 1998 (Poli et al., 2000); at web sites such as www.genetic-
programming.org; and in the Genetic Programming and Evolvable Ma-
chines journal (from Kluwer Academic Publishers).

REPRESENTATION OF CHEMICAL REACTION NETWORKS

This section describes a method for representing a network of chemical re-
actions as a program tree suitable for use in a run of genetic programming.
Each program tree represents an interconnected network of chemical re-
actions involving various substances. A chemical reaction may consume
one or two substances and produce one or two substances. The consumed
substances may be external input substances or intermediate substances
produced by reactions. The chemical reactions, enzymes, and substances
of a network may be represented by a program tree that contains

John R. Koza, et al.

101

e internal nodes representing chemical reaction functions,

e internal nodes representing selector functions that select the reaction’s
first versus the reaction’s second (if any) product,

e external points (leaves) representing substances that are consumed and
produced by a reaction,

e external points representing enzymes that catalyze a reaction, and

e external points representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from
the problem’s function set and terminals from the problem’s terminal set.

Repertoire of Functions

There are four chemical reaction functions and two selector functions.

The first argument of each chemical reaction (CR) function identifies
the enzyme that catalyzes the reaction. The second argument specifies
the reaction’s rate. In addition, there are two, three, or four arguments
specifying the substrate(s) and product(s) of the reaction. Table 5.1 shows
the number of substrate(s) and product(s) and overall arity for each of the
four chemical reaction functions. The runs in this chapter use a first-order
and second-order rate law.

Table 5.1 Four chemical reaction functions

Function | Substrates | Products | Arity
CR.11 1 1 4
CR_12 1 2 5
CR2.1 2 1 5
CR22 2 2 6

Each function returns a list composed of the reaction’s one or two
products. The one-argument FIRST function returns the first of the one or
two products produced by the function designated by its argument. The
one-argument SECOND function returns the second of the two products
(or, the first product, if the reaction produces only one product).

Repertoire of Terminals
Some terminals represent substances (input substances, intermediate sub-
stances created by reactions, or output substances). Other terminals repre-

sent the enzymes that catalyze the chemical reactions. Still other terminals
represent numerical constants for the rate of the reactions.

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

102

Constrained Syntactic Structure

The trees are constructed in accordance with a constrained syntactic struc-
ture. The root of every result-producing branch must be a chemical reac-
tion function. The enzyme that catalyzes a reaction always appears as the
first argument of its chemical reaction function. A numerical value rep-
resenting a reaction’s rate always appears as the second argument of its
chemical reaction function. The one or two input arguments to a chemical
reaction function can be either a substance terminal or selector function
(FIRST or SECOND). The result of having a selector function as an input
argument is to create a cascade of reactions. The one or two output argu-
ments to a chemical reaction function must be substance terminals. The
argument to a one-argument selector function (FIRST or SECOND) is al-
ways a chemical reaction function.

Example

The chemical reactions, enzymes, and substances of a network of chemical
reactions may be completely represented by a program tree that contains

e internal nodes representing chemical reaction functions,

e internal nodes representing selector functions that select the reaction’s
first versus the reaction’s second (if any) product,

e external points (leaves) representing substances that are consumed and
produced by a reaction,

e external points representing enzymes that catalyze a reaction, and

e external points representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from
the following function set and terminals from the following terminal set.

Figure 5.2 shows a program tree that corresponds to the metabolic
pathway of Figure 5.1. The program tree is presented in the style of
the LISP programming language. The program tree (Figure 5.2) has two
result-producing branches, RPBO and RPB1. These two branches are con-
nected by means of a connective PROGN function.

As can be seen, there are four chemical reaction functions in Figure
5.2. The first argument of each chemical reaction function is constrained
to be an enzyme and the second argument is constrained to be a numerical
rate. The remaining arguments are substances, such as externally supplied
input substances, intermediate substances produced by reactions within
the network, and the final output substance produced by the network.
The remaining arguments of each chemical reaction function are marked,
purely as a visual aid to the reader, by an arrow. An upward arrow
indicates that the substance at the tail of the arrow points to a substrate
of the reaction. An downward arrow indicates that the head of the arrow

John R. Koza, et al.

103

points to a product of the reaction.

There is a two-substrate, one-product chemical reaction function
CR2.1 in the lower left part of Figure 5.2. For this reaction, the enzyme
is Acylglycerol lipase (EC3.1.1.23) (the first argument of this chemical re-
action function); its rate is 1.95 (the second argument); its two substrates
are fatty acid (C00162) (the third argument) and Glycerol (C00116) (the
fourth argument); and its product is Monoacyl-glycerol (C01885) (the fifth
argument).

There is a FIRST-PRODUCT function between the two chemical reac-
tion functions in the left half of Figure 5.2. The FIRST-PRODUCT func-
tion selects the first of the two products of the lower CR2_1 function.
The line in the program tree from the lower chemical reaction function to
the FIRST-PRODUCT function and the line between the FIRST-PRODUCT
function and the higher CR_2_1 reaction means that when this tree is con-
verted into a network of chemical reactions, the first (and, in this case,
only) substance produced by the lower CR_2_1 reaction is a substrate to
the higher reaction. In particular, the product of the lower reaction func-
tion (i.e., an intermediate substance called Monoacyl-glycerol) is the sec-
ond of the two substrates to the higher chemical reaction function (i.e.,
the fourth argument of the higher function). Thus, although there is no
return value for any branch or for the program tree as a whole, the re-
turn value(s) of all but the top chemical reaction function of a particular
branch (as well the return values of a FIRST-PRODUCT function and a
SECOND-PRODUCT function) define the flow of substances in the net-
work of chemical reactions represented by the program tree.

Notice that the fatty acid (C00162) substance terminal appears as a
substrate argument to both of these chemical reaction functions (in the
left half of Figure 5.2 and also in the left half of Figure 5.1). The repetition
of a substance terminal as a substrate argument in a program tree means
that when the tree is converted into a network of chemical reactions, the
available concentration of this particular substrate is distributed to two
reactions in the network. That is, the repetition of a substance terminal as
a substrate argument in a program tree corresponds to a bifurcation point
where one substance is distributed to two different reactions in the net-
work of chemical reactions represented by the program tree. There is an-
other bifurcation point in this network of chemical reactions where Glyc-
erol (C00116) appears as a substrate argument to both the two-substrate,
one-product chemical reaction function CR2_1 (in the lower left of Fig-
ure 5.2 and in the upper left part of Figure 5.1) and the two-substrate,
two-product chemical reaction function CR_2_2 (in the upper right part of
Figure 5.2 and in the upper right part of Figure 5.1).

Glycerol (C00116) has two sources in this network of chemical reac-
tions. First, it is externally supplied (shown at the top right of Figure 5.1).
Second, this substance is the product of the one-substrate, two-product
chemical reaction function CR_12 (in the middle of Figure 5.1 and in the

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

lower right of Figure 5.2). When a substance in a network has two or more
sources (by virtue either of being externally supplied, by virtue of being a
product of a reaction of a network, or any combination thereof), the sub-
stance is accumulated. When the program tree is converted into a network,
all the sources of this substance are pooled. That is, there is an accumula-
tion point for the substance.

Also, Glycerol (C00116) appears as part of an internal feedback loop
consisting of two reactions, namely

e the one-substrate, two-product chemical reaction function CR_1.2 cat-
alyzed by EC3.1.3.21 (in the middle of Figure 5.1 and in the lower right of
Figure 5.2) and

o the two-substrate, two-product chemical reaction function CR_2 2 cat-
alyzed by EC2.7.1.30 (in the upper right part of Figure 5.2 and in the right
part of Figure 5.1).

The presence of an internal feedback loop is established in this net-
work because of the following two features of this program tree:

e There exists a substance, namely sn-Glycerol-3-Phosphate (C00093)
such that this substance

—is a product (sixth argument) that is produced by the two-substrate,
two-product chemical reaction function CR_2_2 (catalyzed by EC2.7.1.30)
in the upper right part of Figure 5.2, and

—is also a substrate that is consumed by the one-substrate, two-
product chemical reaction function CR_1_2 (catalyzed by EC3.1.3.21)
in the lower right part of Figure 5.2 that lies beneath the CR_2_2 func-
tion.

e There exists a second substance, namely glycerol (C00116), that

—is a product that is produced by the chemical reaction function
CR_1.2 (catalyzed by EC3.1.3.21) and

—is a substrate that is consumed by the chemical reaction function
CR.2_2 (catalyzed by EC2.7.1.30).

In summary, the network of Figure 5.2 contains the following three
noteworthy topological features:

e an internal feedback loop in which Glycerol (C00116) is both consumed
and produced in the loop,
e two bifurcation points (one where Glycerol is distributed to two differ-
ent reactions and one where and fatty acid is distributed to two different
reactions), and
e an accumulation point where one substance, namely Glycerol, is accu-
mulated from two sources.

A Stanford University technical report provides additional details and
explanatory figures (Koza, Mydlowec, Lanza, Yu, and Keane 2000).

104 John R. Koza, et al.

105

CR_2_1

.

Triacylglycerol Fatty Diacyl-glycerol Glycerol
Lipase Acid Kinease

ADP sn-glycerol-3-
phosphate

FIRST-PRODUCT

Co1885 0 00093 00009

Acylglycerol Fatty Glycerol Monoacyl- Glycerol-1- sn-glycerol-3- Gycerol Orthophosphate
Lipase Acid glycerol phosphatase phosphate

Figure 5.2 Program tree corresponding to metabolic pathway of Figure 5.1.

Figure 5.3 shows the electrical circuit corresponding to the network of
Figure 5.1. The triangles in the figure represent integrators.

PREPARATORY STEPS

Six major preparatory steps are required before applying genetic program-
ming: (1) determine the architecture of the program trees, (2) identify the
functions, (3) identify the terminals, (4) define the fitness measure, (5)
choose control parameters for the run, and (6) choose the termination cri-
terion and method of result designation. For additional details, see (Koza
et al., 2000b).

Program Architecture

Each program tree in the initial random population (generation 0) has
one result-producing branch. In subsequent generations, the architecture-
altering operations (patterned after gene duplication and gene deletion
in nature) may insert and delete result-producing branches to particular
individual program trees in the population. Each program tree may have
four result-producing branches.

Function Set

The function set, F, consists of six functions.
F={CR1.1,CR12,CR2.1, CR2_2, FIRST, SECOND}.

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

106

1 Aaddeer 1 .%9\!‘
-4
T T L s "
0.5v + Pae,

Adder e

Glycerol Kinase
147V

E—

o 3
[D—_f i)
Intermediate 1 Glyceral-1-phosphatase

1.85V
| Acklor _[..@—I g
Sy
T 3
— P b A
Fatty Acid

12y] e s
Acylglycerol lipase

[D—. 1.45V
Intermediate 2 -®+ i
0

= Enmme
Sutrawate A

J__ . Diacyl glycerol Triacylglycerol lipase

Figure 5.3 Electrical circuit corresponding to the chemical reaction network of
Figure 5.1.

Terminal Set

The terminal set, T, is

T = {N,C00116, C00162, C00002, CO0165, INT_1,INT 2,INT 3,
EC2.7.130, EC3.1321, EC3_1_.1.23, EC3_1_1_3}.

N denotes a perturbable numerical value. In the initial random generation
(generation 0) of a run, each perturbable numerical value is set, individu-
ally and separately, to a random value in a chosen range (from 0.0 and 2.0
here).

In the illustrative problem herein, C00116 is the concentration of glyc-
erol. C00162 is the concentration of fatty acid. These two substances are
inputs to the illustrative overall network of interest herein. C00002 is the
concentration of the cofactor ATP. C00165 is the concentration of diacyl-
glycerol. This substance is the final product of the illustrative network
herein. INT_1, INT_2, and INT_3 are the concentrations of intermediate
substances 1, 2, and 3 (respectively).

INT_1, INT_2, and INT_3 are the concentrations of intermediate sub-
stances 1, 2, and 3 (respectively).

EC2.7_.1.30, EC3.1_.321, EC3_1_1.23, and EC3_1_1_3 are enzymes.

John R. Koza, et al.

107

Fitness Measure

Genetic programming is a probabilistic algorithm that searches the space
of compositions of the available functions and terminals under the guid-
ance of a fitness measure. In order to evaluate the fitness of an individual
program tree in the population, the program tree is converted into a di-
rected graph representing the network. The result-producing branches are
executed from left to right. The functions in a particular result-producing
branch are executed in a depth-first manner. One reactor (representing the
concentration of the substances participating in the reaction) is inserted
into the network for each chemical reaction function that is encountered
in a branch. The reactor is labeled with the reaction’s enzyme and rate. A
directed line entering the reactor is added for each of the reaction’s one or
two substrate(s). A directed line leaving the reactor is added for each of
the reaction’s one or two product(s). The first product of a reaction is se-
lected whenever a FIRST function is encountered in a branch. The second
product of a reaction is selected whenever a SECOND function is encoun-
tered in a branch.

After the network is constructed, the pathway is converted into an
electrical circuit. A SPICE netlist is then constructed to represent the elec-
trical circuit. We provide SPICE with subcircuit definitions to implement
all the chemical reaction equations. This SPICE netlist is wrapped inside
an appropriate set of SPICE commands to carry out analysis in the time
domain (described below). The electrical circuit is then simulated using
our modified version of the original 217,000-line SPICE3 simulator (Quar-
les et al., 1994). We have embedded our modified version of SPICE as a
submodule within our genetic programming system.

Each individual chemical reaction network is exposed to nine time-
domain signals (table 2) representing the time-varying concentrations of
four enzymes (EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3) over 30
half-second time steps. None of these time series patterns are extreme.
Each has been structured so as to vary the concentrations between 0 and
2.0 in a pattern to which a living cell might conceivably be exposed.

There are a total of 270 data points. The data was obtained from the
E-CELL cell simulation model (Tomita et al., 1999; Voit, 2000).

The concentrations of all intermediate substances and the network’s
final product are 0 at time step 0.

For the runs in this paper, Glycerol (C00116), Fatty acid (C00162), and
ATP (C00002) are externally supplied at a constant rate (table 3). That is,
these values are not subject to evolutionary change during the run.

Fitness is the sum, over the 270 fitness cases, of the absolute value
of the difference between the concentration of the end product of the
individual reaction network and the observed concentration of diacyl-
glycerol (C00165). The smaller the fitness, the better. An individual that
cannot be simulated by SPICE is assigned a high penalty value of fitness

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

108

Table 5.2 Variations in the levels of the four enzymes

Signal | EC2.7.1.30 EC3.1.3.21 EC.1.1.23 EC3.1.1.3

1 Slope-Up Sawtooth Step-Down | Step-Up

2 Slope-Down | Step-Up Sawtooth Step-Down
3 Step-Down | Slope-Up Slope-Down | Step-Up

4 Step-Up Slope-Down | Step-Up Step-Down
5 Sawtooth Step-Down | Slope-Up Step-Up

6 Sawtooth Step-Down | Knock-Out | Step-Up

7 Sawtooth Knock-Out | Slope-Up Step-Down
8 Knock-Out | Step-Down | Slope-Up Sawtooth

9 Step-Down | Slope-Up Sawtooth Knock-Out

Table 5.3 Rates for three externally supplied substances

Substance Rate
Glycerol (C00116) 0.5
Fatty acid (C00162) | 1.2
ATP (C00002) 1.5

(10%). The number of hits is defined as the number of fitness cases (0 to
270) for which the concentration of the measured substances is within 5%
of the observed data value.

See (Koza et al., 2000b) for additional details.

Control Parameters for the Run

The population size, M, is 100,000. A generous maximum size of 500
points (for functions and terminals) was established for each result-
producing branch. The percentages of the genetic operations for each
generation is 58.5% one-offspring crossover on internal points of the pro-
gram tree other than perturbable numerical values, 6.5% one-offspring
crossover on points of the program tree other than perturbable numerical
values, 1% mutation on points of the program tree other than perturbable
numerical values, 20% mutation on perturbable numerical values, 10%
reproduction, 3% branch creation, and 2% subroutine deletion. The other
parameters are the default values that we apply to a broad range of prob-
lems (Koza et al., 1999a).

Termination
The run was manually monitored and manually terminated when the fit-

ness of many successive best-of-generation individuals appeared to have
reached a plateau.

John R. Koza, et al.

109

Implementation on Parallel Computing System

We used a home-built Beowulf-style (Sterling et al., 1999; Koza et al,,
1999a) parallel cluster computer system consisting of 1,000 350 MHz Pen-
tium II processors (each accompanied by 64 megabytes of RAM). The sys-
tem has a 350 MHz Pentium II computer as host. The processing nodes are
connected with a 100 megabit-per-second Ethernet. The processing nodes
and the host use the Linux operating system. The distributed genetic al-
gorithm with unsynchronized generations and semi-isolated subpopula-
tions was used with a subpopulation size of Q = 500 at each of D = 1,000
demes. As each processor (asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation are dispatched to each of
the four toroidally adjacent processors. The 1,000 processors are hierarchi-
cally organized. There are 5 x 5 = 25 high-level groups (each containing 40
processors). If the adjacent node belongs to a different group, the migra-
tion rate is 2% and emigrants are selected based on fitness. If the adjacent
node belongs to the same group, emigrants are selected randomly and the
migration rate is 5% (10% if the adjacent node is in the same physical box).

RESULTS

The population for the initial random generation (generation 0) of a run
of genetic programming is created at random. The fitness of the best
individual (Figure 5.4) from generation 0 is 86.4. This individual scores
126 hits (out of 270). Substance C00162 (fatty acid) is used as an input
substance to this metabolic pathway; however, glycerol (C00116) and ATP
(C00002) are not. Two of the four available reactions (EC 3.1.1.23 and
EC 3.1.1.3) are used. However; a third reaction (EC 3.1.3.21) consumes a
non-existent intermediate substance (INT_2) and the fourth reaction (EC
2.7.1.30) is not used at all. This metabolic pathway contains one important
topological feature, namely the bifurcation of C00162 to two different
reactions. However, this metabolic pathway does not contain any of the
other important topological features of the correct metabolic pathway.

In generation 10, the fitness of the best individual (Figure 5.5) is 64.0.
This individual scores 151 hits. This metabolic pathway is superior to the
best individual of generation 0 in that it uses both C00162 (fatty acid) and
glycerol (C00116) as external inputs. However, this metabolic pathway
does not use ATP (C00002). This metabolic pathway is also defective in
that it contains only two of the four reactions.

In generation 25, the fitness of the best individual (figure 5.6) is 14.3.
This individual scores 224 hits. This metabolic pathway contains all four
of the available reactions. This metabolic pathway is more complex than
previous best-of-generation individuals in that it contains two topologi-
cal features not previously seen. First, this metabolic pathway contains an
internal feedback loop in which one substance (glycerol C00116) is con-

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

110

co0162

Fatty Acid

Fatty Acid

Glycerol-1-
Phosphatase

]

]

]

]

]

]

i

EC3.1.1.23 | Acylglycerol 1

K =0.69 (1.95) lipase]

]

]

]

]

]

]

]

]

Cell Membrane :

EC3.1.1.3 | Triacylglycerol *
K=1.80(1.45) lipase

\
OUTPUT | C00165 | Diacyl-glycerol
(MEASURED)

Figure 5.4 Best of generation 0

sumed by one reaction (catalyzed by enzyme EC 2.7.1.30), produced by
another reaction (catalyzed by enzyme EC 3.1.3.21), and then supplied as
a substrate to the first reaction. Second, this metabolic pathway contains
a place where there is an addition of quantities of one substance. Specifi-
cally, glycerol (C00116) comes from the reaction catalyzed by enzyme EC
3.1.3.21 and is also externally supplied. This metabolic pathway also con-
tains two substances (C00116 and C00162) where a substance is bifurcated
to two different reactions.

d[AT P]
dt

In generation 120, the fitness of the best individual (Figure 5.7) is 2.33.
The cofactor ATP (C00002) appears as an input to this metabolic pathway.
This pathway has the same topology as the correct network. However,
the numerical values (sizing) are not yet correct and this individual scores
only 255 hits.

The best-of-run individual (Figure 5.1) appears in generation 225. Its
fitness is almost zero (0.054). This individual scores 270 hits (out of 270).
In addition to having the same topology as the correct metabolic pathway,
the rate constants of three of the four reactions match the correct rates (to
three significant digits) while the fourth rate differs by only about 2% from
the correct rate (i.e., the rate of EC 3.1.3.21 is 1.17 compared with 1.19 for
the correct network).

In the best-of-run network from generation 225, the rate of production

= 1.5 —-1.69[C00116][C00002][EC?2.7.1.30] (5.1)

John R. Koza, et al.

11

Fatty Acid Giycerol

coo162 coo116

Fatty Acid Glycerol

Acylglycerol
lipase

EC3.1.1.23
K=1.12(1.95)

Cell Membrane

EC3.1.1.3
K = 1.33 (1.45)

Triacylglycerol
lipase

A

OUTPUT C00165 | Diacyl-glycerol

(MEASURED)

Figure 5.5 Best of generation 10

of the network’s final product, diacyl-glycerol (C00165), is given by

d[C00165]
dt

Note that genetic programming has correctly determined that the re-
action that produces the network’s final product diacyl-glycerol (C00165)
has two substrates and one product; it has correctly identified enzyme
EC3.1.1.3 as the catalyst for this final reaction; it has correctly determined
the rate of this final reaction as 1.45; and it has correctly identified the
externally supplied substance, fatty acid (C00162), as one of the two sub-
strates for this final reaction. None of this information was supplied a pri-
ori to genetic programming.

Of course, genetic programming has no way of knowing that bio-
chemists call the intermediate substance (INT_2) by the name Monoacyl-
glycerol (C01885) (as indicated in Figure 5.1). It has, however, correctly
determined that an intermediate substance is needed as one of the two
substrates of the network’s final reaction and that this intermediate sub-
stance should, in turn, be produced by a particular other reaction (de-
scribed next).

In the best-of-run network from generation 225, the rate of production
and consumption of the intermediate substance INT_2 is given by

= 1.45[CO0162][INT>][EC3.1.1.3] (5.2)

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

112

C00162 | Fatty Acid

C00116 | Glycerol

OUTPUT

(MEASURED)| %0765

Diacyl-glycerol
Cell Membrane

.. N
N
EC3.1.1.23 Glycerol AN
K=1.58 (1.95) |Acylglycerol]
lipase :
]
EC3.1.3.21 | Glycerol-1- | EC2.7.1.30 | Glycerol
K =1.61(1.19) |phosphatase | K=1.07(1.69) kinase |
Fatty '
]
Acid 1
]
EC3.1.1.3 |, !
Triacylglycerol
K =1.45 (1.45) l{pga;'e H
]
]
]
]
]
]
!

Figure 5.6 Best of generation 25

C00116 | Glycerol

C00162 | Fatty Acid

Glycerol

EC3.1.1.23 .
K=1.73(1.95) | Acylglycerol
lipase C00002
EC3.1.3.21 Glycerol-1 - EC2.7.1.30 Glycerol
K =1.34(1.19) |phosphatase | K= 1.46 (1.69) kinase
Fatty
Acid

EC3.1.1.3
K =1.36 (1.45)

Triacylglycerol
lipase

A

OUTPUT C00165 | Diacyl-glycerol

(MEASURED)

Cell Membrane

Figure 5.7 Best of generation 120

———— = 1.95[C00162][CO00116][EC3.1.1.23]

d[INT>]
dt

—1.45[CO0162][INT,][EC3.1.1.3] (5.3)

Again, genetic programming has correctly determined that the reac-
tion that produces the intermediate substance (INT_2) has two substrates
and one product; it has correctly identified enzyme EC3.1.1.23 as the cat-
alyst for this reaction; it has correctly determined the rate of this reaction
as 1.95; it has correctly identified two externally supplied substances, fatty
acid (C00162) and glycerol (C00116), as the two substrates for this reaction.

In the best-of-run network from generation 225, the rate of production

John R. Koza, et al.

113

and consumption of the intermediate substance INT_1 in the internal
feedback loop is given by

d[INT
dUNT:] T U 1 69[C00116][C000021[EC2.7.1.30] - 117U NTyLEC3.1.3.21]
(5.4)

Note that the numerical rate constant of 1.17 in the above equation is
slightly different from the correct rate (as shown in Figure 5.1).

Here again, genetic programming has correctly determined that the
reaction that produces the intermediate substance (INT_1) has two sub-
strates and one product; it has correctly identified enzyme EC2.7.1.30 as
the catalyst for this reaction; it has almost correctly determined the rate of
this reaction to be 1.17 (whereas the correct rate is 1.19, as shown in Figure
5.1); it has correctly identified two externally supplied substances, glyc-
erol (C00116) and the cofactor ATP (C00002), as the two substrates for this
reaction.

Genetic programming has no way of knowing that biochemists call
the intermediate substance (INT_1) by the name sn-Glycerol-3-Phosphate
(C00093) (as indicated in Figure 5.1). Genetic programming has, how-
ever, correctly determined that an intermediate substance is needed as
the single substrate of the reaction catalyzed by Glycerol-1-phosphatase
(EC3.1.3.21) and that this intermediate substance should, in turn, be pro-
duced by the reaction catalyzed by Glycerol kinase (EC2.7.1.30).

In the best-of-run network from generation 225, the rate of supply and
consumption of ATP (C00002) is

d[AT P]
dt

The rate of supply and consumption of fatty acid (C00162) in the best-
of-run network is

= 1.5 —-1.69[C00116][C00002][EC?2.7.1.30] (5.5)

d[C00162]

T = 1.2 -1.95[C00162][C00116][EC3.1.1.23]

—1.45[CO0162][INT>][EC3.1.1.3] (5.6)
The rate of supply, consumption, and production of glycerol (C00116)

in the best-of-run network is

d[C00116]

R =054+ 1.17[INT\][EC3.1.3.21]

—1.69[C00116][C 00002][EC2.7.1.30]
—1.95[C00162][C00116][EC3.1.1.23] (5.7)

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

114

Again, note that the numerical rate constant of 1.17 in the above equa-
tion is slightly different from the correct rate (as shown in Figure 5.1).

Notice the internal feedback loop in which C00116 is both consumed
and produced.

In summary, driven only by the time-domain concentration values of
the final product C00165 (diacyl-glycerol), genetic programming created
both the topology and sizing for an entire metabolic pathway whose time-
domain behavior closely matches that of the naturally occurring pathway,
including
o the total number of reactions in the network,

e the number of substrate(s) consumed by each reaction,

e the number of product(s) produced by each reaction,

e an indication of which enzyme (if any) acts as a catalyst for each reac-
tion,

o the pathways supplying the substrate(s) (either from external sources
or other reactions in the network) to each reaction,

o the pathways dispersing each reaction’s product(s) (either to other re-
actions or external outputs),

e the number of intermediate substances in the network,
e emergent topological features such as

—internal feedback loops,

-bifurcation points,

—accumulation points, and
e numerical rates (sizing) for all reactions.

Genetic programming did this using only the 270 time-domain con-
centration values of the final product C00165 (diacyl-glycerol).
For additional details, see (Koza et al., 2000b).

John R. Koza, et al.

115

CONCLUSION

Genetic programming automatically created a metabolic pathway involv-
ing four chemical reactions that took in glycerol and fatty acid as input,
used ATP as a cofactor, and produced diacyl-glycerol as its final prod-
uct. The metabolic pathway was created from 270 data points. The auto-
matically created metabolic pathway contains three key topological fea-
tures, including an internal feedback loop, a bifurcation point where one
substance is distributed to two different reactions, and an accumulation
point where one substance is accumulated from two sources. This exam-
ple demonstrates the principle that it is possible to reverse engineer a
metabolic pathway using only observed data for the concentration values
of the pathway’s final product.

FUTURE WORK

Numerous directions for future work are suggested by the work described
herein.

Improved Program Tree Representation

Although the representation used herein yielded the desired results, the
authors believe that alternative representations for the program tree (i.e.,
the function set, terminal set, and constrained syntactic structure) would
significantly improve efficiency of the search. The authors are currently
contemplating a developmental approach.

Minimum Amount of Data Needed

The work in this chapter has not addressed the important question of the
minimal number of data points necessary to automatically create a correct
metabolic pathway or the question whether the requisite amount of data
is available in practical situations.

Opportunities to Use Knowledge

There are numerous opportunities to incorporate and exploit preexisting
knowledge about chemistry and biology in the application of the methods
described in this chapter.

The chemical reactions functions used in this chapter (i.e., CR_1.1,
CR12, CR2.1, CR2.2) are intentionally open-ended in the sense that
they permit great flexibility and variety in the networks that can be cre-
ated by the evolutionary process. However, there is a price, in terms of
efficiency of the run, that is paid for this flexibility and generality. Alter-
native chemical reaction functions that advantageously incorporate pre-

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

116

existing knowledge might be defined and included in the function set.

For example, a particular substrate, a particular product, or both might
be made part of the definition of a new chemical reaction function. For ex-
ample, a variant of the CR_2_2 chemical reaction function might be defined
in which ATP is hard-wired as one of the substrates and ADP is hard-
wired as one of products. This new chemical reaction function would have
only one free substrate argument and one free product argument. This
new chemical reaction function might be included in the function set in
addition to (and conceivably in lieu of) the more general and open-ended
CR_2_2 chemical reaction function. This new chemical reaction function
would exploit the well-known fact that there are a number of biologically
important and biologically common reactions that employ ATP as one of
its two substrates and produce ADP as one of its products.

Similarly, a particular enzyme might be made part of the definition of a
new chemical reaction function. That is, a chemical reaction function with
k substrates and j products might be defined in which a particular enzyme
is hard-wired. This new chemical reaction function would not possess an
argument for specifying the enzyme. This new chemical reaction function
would exploit knowledge of the arity of reactions catalyzed by a particular
enzyme.

Also, a known rate might be made part of the definition of a new
chemical reaction function. This approach might be particularly useful in
combination with other alternatives mentioned above.

Designing Alternative Metabolisms

Mittenthal et al. (1998) have presented a method for generating alterna-
tive biochemical pathways. They illustrated their method by generating
diverse alternatives to the non-oxidative stage of the pentose phosphate
pathway. They observed that the naturally occurring pathway is espe-
cially favorable in several respects to the alternatives that they generated.
Specifically, the naturally occurring pathway has a comparatively small
number of steps, does not use any reducing or oxidizing compounds, re-
quires only one ATP in one direction of flux, and does not depend on
recurrent inputs.

Mendes and Kell (1998) have also suggested that novel metabolic
pathways might be artificially constructed.

It would appear that genetic programming could also be used to gen-
erate diverse alternatives to naturally occurring pathways. Conceivably,
realizable alternative metabolisms might emerge from such evolutionary
runs.

In one approach, the fitness measure in a run of genetic programming
might be oriented toward duplicating the final output(s) of the naturally
occurring pathway (as was done in this chapter). However, instead of
harvesting only the individual from the population with the very best

John R. Koza, et al.

117

value of fitness, individuals that achieve a slightly poorer value of fitness
could be examined to see if they simultaneously possess other desirable
characteristics.

In a second approach, the fitness measure in a run of genetic program-
ming might be specifically oriented to factors such as the pathway’s effi-
ciency or use or non-use of certain specified reactants or enzymes.

In a third approach, the fitness measure in a run of genetic program-
ming might be specifically oriented toward achieving novelty. Genetic
programming has previously been used as an invention machine by em-
ploying a two-part fitness measure that incorporates both the degree to
which an individual in the population satisfies the certain performance
requirements and the degree to which the individual does not possess the
key characteristics of previously known solutions (Koza et al., 1999a,c).

ACKNOWLEDGEMENTS

Douglas B. Kell of the University of Wales made helpful comments on a
draft of this material.

Automated Reverse Engineering of Metabolic Pathways by Genetic Programming

This page intentionally left blank

References

Arkin, A., Peidong, S., and Ross, J. (1997). A test case of correlation
metric construction of a reaction pathway from measurements. Science
277:1275-1279.

Banzhaf, W., Nordin, P.,, Keller, R.E., and Francone, FD. (1998). Genetic
Programming — An Introduction. San Francisco, CA: Morgan Kaufmann
and Heidelberg: dpunkt.

Comisky, W., and Yu, J., and Koza, J. (2000). Automatic synthesis of a wire
antenna using genetic programming. Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, Las Vegas, Nevada.

D’haeseleer, P., Wen, X., Fuhrman, S., and Somogyi, R. (1999). Linear mod-
eling of mRNA expression levels during CNS development and injury.
Proc. Paficic Symposium on Biocomputing’99 pp.41-52.

Holland, J.H. (1992) Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial Intel-
ligence. Ann Arbor, MI: University of Michigan Press 1975. Second edi-
tion. Cambridge, MA: The MIT Press 1992.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

Koza, J.R. (1994a). Genetic Programming 1I: Automatic Discovery of Reusable
Programs. MIT Press.

Koza, J.R. (1994b). Genetic Programming 11 Videotape: The Next Generation.
MIT Press.

Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B.,
Garzon, M.H., Goldberg, D.E., Iba, H., and Riolo, R. (editors). (1998).
Genetic Programming 1998: Proceedings of the Third Annual Conference. San
Francisco, CA: Morgan Kaufmann.

Koza, J.R., Bennett III, EH, Andre, D, and Keane, M.A. (1999a). Genetic
Programming 11I: Darwinian Invention and Problem Solving. San Francisco,
CA: Morgan Kaufmann.

120

Koza, J.R., Bennett III, EH, Andre, D., Keane, M.A., and Brave, S. (1999b).
Genetic Programming III Videotape: Human-Competitive Machine Intelli-
gence. San Francisco, CA: Morgan Kaufmann.

Koza, J.R., Keane, M.A,, Yu, J., Bennett IlI, EH., Mydlowec, W., and Stiffel-
man, O. (1999¢). Automatic synthesis of both the topology and parame-
ters for a robust controller for a non-minimal phase plant and a three-lag
plant by means of genetic programming. Proceedings of 1999 IEEE Con-
ference on Decision and Control pp.5292-5300.

Koza,].R., Keane, M.A,, Yu, J., Bennett I1I, EH., and Mydlowec, W. (2000a).
Automatic creation of human-competitive programs and controllers by
means of genetic programming. Genetic Programming and Evolvable Ma-
chines 1:121-164.

Koza, J.R., Mydlowec, W,, Lanza, G., Yu, J., and Keane, M.A. (2000b).
Reverse Engineering and Automatic Synthesis of Metabolic Pathways from
Observed Data Using Genetic Programming. Stanford Medical Informatics
Technical Report SMI-2000-0851.

Koza, J.R. and Rice, J.P. (1992). Genetic Programming: The Movie. Cam-
bridge, MA: MIT Press.

Liang, S., Fuhrman, S., and Somogyi, R. (1998). REVEAL: A general re-
verse engineering algorithm for inference of genetic network architec-
ture. Proc. Pacific Symposium on Biocomputing 98 pp.18-29.

Langdon, W.B. (1998). Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Amsterdam:
Kluwer.

Loomis, W.E. and Sternberg, PW. (1995). Genetic networks. Science 269:649.

McAdams, H.H. and Shapiro, L. (1995). Circuit simulation of genetic net-
works. Science 269:650-656.

Mendes, P. and Kell, D.B. (1998). Non-linear optimization of biochemical
pathways: Applications to metabolic engineering and parameter esti-
mation. Bioinformatics 14(10):869-883.

Mittenthal, J.E., Ao, Y., Bertrand C., and Scheeline, A. (1998). Designing
metabolism: Alternative connectivities for the pentose phosphate path-
way. Bulletin of Mathematical Biology 60:815-856.

Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P, and Fogarty,
T.C. (2000). Genetic Programming: European Conference, EuroGP 2000, Ed-
inburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes in Com-
puter Science. Volume 1802. Berlin, Germany: Springer-Verlag.

References

121

Ptashne, M. (1992). A Genetic Switch: Phage A and Higher Organisms. Second
Edition. Cambridge, MA: Cell Press and Blackwell Scientific Publica-
tions.

Quarles, T., Newton, A.R., Pederson, D.O., and Sangiovanni-Vincentelli,
A. (1994). SPICE 3 Version 3F5 User’s Manual. Department of Electrical
Engineering and Computer Science, University of California. Berkeley,
CA.

Spector, Lee, Langdon, William B., O’Reilly, Una-May, and Angeline, Peter
(editors). (1999). Advances in Genetic Programming 3. Cambridge, MA:
The MIT Press.

Sterling, T.L., Salmon, J., and Becker, D.J., and Savarese, D.F. (1999). How to
Build a Beowulf: A Guide to Implementation and Application of PC Clusters.
Cambridge, MA: MIT Press.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y.,
Miyoshi, E, Saito, K., Tanida, S., Yugi, K., Venter, J.C., Hutchison, C.A.
(1999). E-CELL: Software environment for whole cell simulation. Bioin-
formatics 15(1):72-84.

Voit, E.O. (2000). Computational Analysis of Biochemical Systems. Cambridge:
Cambridge University Press.

Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, 1., and Beyer,
H.-G. (editors). (2000). GECCO-2000: Proceedings of the Genetic and Evolu-
tionary Computation Conference, July 10 - 12, 2000, Las Vegas, Nevada. San
Francisco: Morgan Kaufmann Publishers.

Yuh, C.-H., Bolouri, H.,, and Davidson, E.H. (1998). Genomic cis-
regulatory logic: Experimental and computational analysis of a sea
urchin gene. Science 279:1896-1902.

References

This page intentionally left blank

Part II1

Software for Modeling and Simulation

This page intentionally left blank

The ERATO Systems Biology Workbench:

An Integrated Environment for Multiscale

and Multitheoretic Simulations in Systems
Biology

Michael Hucka, Andrew Finney, Herbert Sauro,
Hamid Bolouri, John Doyle, and Hiroaki Kitano

Over the years, a variety of biochemical network modeling packages have
been developed and used by researchers in biology. No single package
currently answers all the needs of the biology community; nor is one likely
to do so in the near future, because the range of tools needed is vast and
new techniques are emerging too rapidly. It seems unavoidable that, for
the foreseeable future, systems biology researchers are likely to continue
using multiple packages to carry out their work.

In this chapter, we describe the ERATO Systems Biology Workbench
(SBW) and the Systems Biology Markup Language (SBML), two related ef-
forts directed at the problems of software package interoperability. The
goal of the SBW project is to create an integrated, easy-to-use software
environment that enables sharing of models and resources between simu-
lation and analysis tools for systems biology. SBW uses a modular, plug-in
architecture that permits easy introduction of new components. SBML is
a proposed standard XML-based language for representing models com-
municated between software packages; it is used as the format of models
communicated between components in SBW.

INTRODUCTION

The goal of the ERATO Systems Biology Workbench (SBW) project is to create
an integrated, easy-to-use software environment that enables sharing of
models and resources between simulation and analysis tools for systems
biology. Our initial focus is on achieving interoperability between seven
leading simulations tools: BioSpice (Arkin, 2001), DBSolve (Goryanin, 2001;
Goryanin et al., 1999), E-Cell (Tomita et al., 1999, 2001), Gepasi (Mendes,
1997, 2001), Jarnac (Sauro, 1991; Sauro and Fell, 2000), StochSim (Bray et
al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al., 2000,
2001). Our long-term goal is to develop a flexible and adaptable environ-

126

ment that provides (1) the ability to interact seamlessly with a variety of
software tools that implement different approaches to modeling, param-
eter analysis, and other related tasks, and (2) the ability to interact with
biologically-oriented databases containing data, models and other rele-
vant information.

In the sections that follow, we describe the Systems Biology Work-
bench project, including our motivations and approach, and we summa-
rize our current design for the Workbench software environment. We also
discuss the Systems Biology Markup Language (SBML), a model description
language that serves as the common substrate for communications be-
tween components in the Workbench. We close by summarizing the cur-
rent status of the project and our future plans.

Motivations for the Project

The staggering volume of data now emerging from molecular biotechnol-
ogy leave little doubt that extensive computer-based modeling, simula-
tion and analysis will be critical to understanding and interpreting the
data (e.g., Abbott, 1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik,
2000). This has lead to an explosion in the development of computer tools
by research groups across the world. Example application areas include
the following:

e Filtering and preparing data (e.g., gene expression micro- and macro-
array image processing and clustering/outlier identification), as well as
performing regression and pattern-extraction;

e Database support, including remote database access and local data stor-
age and management (e.g., techniques for combining gene expression data
with analysis of gene regulatory motifs);

e Model definition using graphical model capture and/or mathematical
description languages, as well as model preprocessing and translation
(e.g., capturing and describing the three-dimensional structure of sub-
cellular structures, and their change over time);

e Model computation and analysis, including parameter optimization,
bifurcation/sensitivity analysis, diffusion/transport/buffering in com-
plex 3-D structures, mixed stochastic-deterministic systems, differential-
algebraic systems, qualitative-qualitative inference, and so on; and

e Data visualization, with support for examining multidimensional data,
large data sets, and interactive steering of ongoing simulations.

This explosive rate of progress in tool development is exciting, but the
rapid growth of the field has been accompanied by problems and pressing
needs. One problem is that simulation models and results often cannot be
compared, shared or re-used directly because the tools developed by dif-
ferent groups often are not compatible with each other. As the field of sys-

Michael Hucka, et al.

127

tems biology matures, researchers increasingly need to communicate their
results as computational models rather than box-and-arrow diagrams. But
they also need to reuse each other’s published and curated models as li-
brary elements in order to succeed with large-scale efforts (e.g., the Al-
liance for Cellular Signaling, Gilman, 2000; Smaglik, 2000). These needs
require that models implemented in one software package be portable to
other software packages, to maximize public understanding and to allow
building up libraries of curated computational models.

A second problem is that software developers often end up duplicat-
ing each other’s efforts when implementing different packages. The rea-
son is that individual software tools typically are designed initially to ad-
dress a specific set of issues, reflecting the expertise and preferences of the
originating group. As a result, most packages have niche strengths which
are different from, but complementary to, the strengths of other packages.
But because the packages are separate systems, developers end up having
to re-invent and implement much general functionality needed by every
simulation/analysis tool. The result is duplication of effort in developing
software infrastructure.

No single package currently answers all the needs of the emerging
systems biology community, despite an emphasis by many developers to
make their software tools omnipotent. Nor is such a scenario likely: the
range of tools needed is vast, and new techniques requiring new tools
are emerging far more rapidly than the rate at which any single package
may be developed. For the foreseeable future, then, systems biology re-
searchers are likely to continue using multiple packages to carry out their
work. The best we can do is to develop ways to ease sharing and commu-
nication between such packages now and in the future.

These considerations lead us to believe that there is an increasingly
urgent need to develop common standards and mechanisms for sharing
resources within the field of systems biology. We hope to answer this need
through the ERATO Systems Biology Workbench project.

THE SYSTEMS BIOLOGY MARKUP LANGUAGE

The current inability to exchange models between simulation/analysis
tools has its roots in the lack of a common format for describing models.
We sought to address this problem from the very beginning of the project
by developing an open, extensible, model representation language.

The Systems Biology Workbench project was conceived at an ERATO-
sponsored workshop held at the California Institute of Technology, USA,
in December, 1999. The first meeting of all the collaborators at The First
Workshop on Software Platforms for Molecular Biology was held at the same
location in April, 2000. The participants collectively decided to begin by
developing a common, XML-based (Bosak and Bray, 1999), declarative
language for representing models. A draft version of this Systems Biology

The ERATO Systems Biology Workbench

128

Markup Language (SBML) was developed by the Caltech ERATO team
and delivered to all collaborators in August, 2000. This draft version un-
derwent extensive discussion over mailing lists and then again during The
Second Workshop on Software Platforms for Molecular Biology held in Tokyo,
Japan, November 2000. A revised version of SBML was issued by the Cal-
tech ERATO team in December, 2000, and after further discussions over
mailing lists and in meetings, a final version of the base-level definition of
SBML was released publicly in March, 2001 (Hucka et al., 2001).

The Form of the Language

SBML Level 1 is the result of merging modeling-language features from
the seven tools mentioned in the introduction (BioSpice, DBSolve, E-Cell,
Gepasi, Jarnac, StochSim, and Virtual Cell). This base level definition of
the language supports non-spatial biochemical models and the kinds of
operations that are possible in these analysis/simulation tools. A num-
ber of potentially desirable features were intentionally omitted from the
base language definition. Subsequent releases of SBML (termed levels) will
add additional structures and facilities currently missing from Level 1.
By freezing sets of features in SBML definitions at incremental levels,
we hope to provide the community with stable standards to which soft-
ware authors can design to, while at the same time allowing the simula-
tion community to gain experience with the language definitions before
introducing new elements. At the time of this writing, we are actively
developing SBML Level 2, which is likely to include the ability to repre-
sent submodels, arrays and array connectivity, database references, three-
dimensional geometry definition, and other features.

Shown at right is an example of a simple, hypothetical
biochemical network that can be represented in SBML. Xo kiXo S
Broken down into its constituents, this model contains a
number of components: reactant species, product species, 51 IEZ_S_; X1
reactions, rate laws, and parameters in the rate laws. To
analyze or simulate this network, additional components 51 153_‘9_} X2
must be made explicit, including compartments for the
species and units on the various quantities. The top level of an SBML
model definition simply consists of lists of these components:

beginning of model definition
Iist of unit definitions (optional)
list of compartments
list of species
list of parameters (optional)
list of rules (optional)
list of reactions
end of model definition

Michael Hucka, et al.

129

The meaning of each component is as follows:

Unit definition: A name for a unit used in the expression of quantities in a
model. Units may be supplied in a number of contexts in an SBML model,
and it is convenient to have a facility for both setting default units and for
allowing combinations of units to be given abbreviated names.

Compartment: A container of finite volume for substances. In SBML
Level 1, a compartment is primarily a topological structure with a vol-
ume but no geometric qualities.

Specie: A substance or entity that takes part in a reaction. Some example
species are ions such as Ca>™ and molecules such as glucose or ATP. The
primary qualities associated with a specie in SBML Level 1 are its initial
amount and the compartment in which it is located.

Parameter: A quantity that has a symbolic name. SBML Level 1 provides
the ability to define parameters that are global to a model, as well as
parameters that are local to a single reaction.

Reaction: A statement describing some transformation, transport or bind-
ing process that can change the amount of one or more species. For ex-
ample, a reaction may describe how certain entities (reactants) are trans-
formed into certain other entities (products). Reactions have associated
rate laws describing how quickly they take place.

Rule: In SBML, a mathematical expression that is added to the differential
equations constructed from the set of reactions, and can be used to set
parameter values, establish constraints between quantities, etc.

A software package can read in a model expressed in SBML and trans-
late it into its own internal format for model analysis. For instance, a pack-
age might provide the ability to simulate a model, by constructing a set of
differential equations representing the network and then performing nu-
merical time integration on the equations to explore the model’s dynamic
behavior. The output of the simulation might consist of plots of various
quantities in the model as they change over time.

SBML allows models of arbitrary complexity to be represented. We
present a simple, illustrative example of using SBML in Appendix A, but
much more elaborate models are possible. The complete specification of
SBML Level 1 is available from the project’s World Wide Web site (http:
//www.cds.caltech.edu/erato/).

Relationships to Other Efforts

There are a number of ongoing efforts with similar goals as those of SBML.
Many of them are oriented more specifically toward describing protein
sequences, genes and related elements for database storage and search.
These are generally not intended to be computational models, in the sense
that they do not describe entities and behavioral rules in such a way that
a simulation package could “run” the models.

The ERATO Systems Biology Workbench

130

The effort closest in spirit to SBML is CellML"™ (CellML Project, 2001).
CellML is an XML-based markup language designed for storing and ex-
changing computer-based biological models. It includes facilities for rep-
resenting model structure, mathematics and additional information for
database storage and search. Models are described in terms of networks
of connections between discrete components; a component is a functional
unit that may correspond to a physical compartment or simply a con-
venient modeling abstraction. Components contain variables and con-
nections contain mappings between the variables of connected compo-
nents. CellML provides facilities for grouping components and specify-
ing the kinds of relationships that may exist between components. It uses
MathML (Ausbrooks et al., 2001) for expressing mathematical relation-
ships and provides the ability to use ECMAScript (formerly known as
JavaScript; ECMA, 1999) to define functions.

The constructs in CellML tend to be at a more abstract and general
level than those in SBML Level 1, and it provides somewhat more general
capabilities. By contrast, SBML is closer to the internal object model used
in model analysis software. Because SBML Level 1 is being developed in
the context of interacting with a number of existing simulation packages,
it is a more concrete language than CellML and may be better suited to its
purpose of enabling interoperability with existing simulation tools. How-
ever, CellML offers viable alternative ideas and the developers of SBML
and CellML are actively engaged in ensuring that the two representations
can be translated between each other.

THE SYSTEMS BIOLOGY WORKBENCH

In this section, we describe how we approached the development of the
Systems Biology Workbench from both philosophical and technical stand-
points; we also summarize the overall architecture of the system and ex-
plain how it enables integration and sharing of software resources.

Driving Principles

The Systems Biology Workbench is primarily a system for integrating re-
sources. It provides infrastructure that can be used to interface to software
components and enable them to communicate with each other. The com-
ponents in this case may be simulation codes, analysis tools, user inter-
faces, database interfaces, script language interpreters, or in fact any piece
of software that conforms to a certain well-defined interface.

We knew from the outset that the success of the Workbench would be
contingent on contributors benefitting from sharing resources through the
system. For this reason, we made three commitments toward this goal:

Michael Hucka, et al.

131

e The Systems Biology Workbench software will be made publicly and
freely available under open-source licensing (O'Reilly, 1999; Raymond,
1999). The agency funding the development of the Workbench (the Japan
Science and Technology Corporation) has formally agreed that all SBW
code can be placed under open-source terms. At the same time, the li-
cense terms will not force contributors to apply the same copying and dis-
tribution terms to their contributed software—developers will be free to
make their components available under license terms that best suit them.
They may choose to make a component available under the same open-
source license, in which case it may be packaged together with the Sys-
tems Biology Workbench software distribution; however, there is nothing
preventing an author from creating an SBW-compatible component that is
closed-source and distributed privately.

e The Workbench architecture is designed to be symmetric with respect to
facilities made available to components. All resources available through
the Workbench system are equally available to all components, and no
single component has a controlling share. All contributors thereby benefit
equally by developing software for the Workbench.

e The direct interface between a software component and the Systems Bi-
ology Workbench is a specific application programming interface (API).
The component’s authors may chose to implement this API directly and
publish the details of the operations provided by the component. Alterna-
tively, they may enter into a formal agreement with us (the authors of the
Workbench) in which they reveal only to us their component’s API, and
we will write an interface between the Workbench and this API. The latter
alternative allows contributors to retain maximum confidentiality regard-
ing their component, yet still make the component available (in binary
executable form) for users of the Workbench.

The Overall Architecture of the Workbench

Although our initial focus is on enabling interaction between the seven
simulation/analysis packages already mentioned, we are equally inter-
ested in creating a flexible architecture that can support future develop-
ments and new tools. We have approached this by using a combination
of three key features: (1) a framework divided into layers, (2) a highly
modular, extensible structure, and (3) inter-component communications
facilities based on message-passing.

Layered Framework

We sought to maximize the reusability of the software that we developed
for the Workbench by dividing the Workbench infrastructure into two
layers: the Systems Biology Workbench itself, and a lower-level substrate
called the Biological Modeling Framework (BMF). The latter is a general

The ERATO Systems Biology Workbench

132

software framework that can be used in developing a variety of biological
modeling and analysis software applications. It not directly tied to the
current architecture of SBW, allowing us the freedom to evolve and change
SBW in the future while still maintaining a relatively stable foundation.

BMF provides basic scaffolding supporting a modular, extensible ap-
plication architecture (see below), as well as a set of useful software com-
ponents that can be used as black boxes in constructing a system (cf. Fayad
et al., 1999). Other projects should be able to start with BMF, add their
own domain- and task-specific elements, and thereby implement a sys-
tem specialized for other purposes. This is how the neuroscience-oriented
Modeler’s Workspace (Hucka et al, 2000) is being implemented. Compu-
tational biologists and other users do not need to be aware of the