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Computational simulation of the
printing of Newtonian liquid from a
trapezoidal cavity

C.A. Powell, M.D. Savage and J.T. Guthrie

Keywords Lagrangian method,
Finite element method, Fluid flow

A Lagrangian finite element algorithm is
described for solving two-dimensional, time-
dependent free surface fluid flows such as
those that occur in industrial printing
processes. The algorithm is applied using a
problem specific structured meshing strategy,
implemented with periodic remeshing to
control element distortion. The method is
benchmarked on the problem of a stretching
filament of viscous liquid, which clearly
demonstrates the applicability of the
approach to flows involving substantial free
surface deformation. The model printing
problem of the transfer of Newtonian liquid
from an upturned trapezoidal trench (3-D
cavity with a large transverse aspect ratio) to
a horizontal substrate, which is pulled
perpendicularly downwards from the cavity,
is solved computationally using the
Lagrangian scheme. The idealized 2-D liquid
motion is tracked from start-up to the point
where a thin sheet forms - connecting the
liquid remaining in the cavity to a ‘‘sessile’’
drop on the moving substrate. The effect of
varying substrate separation speed is briefly
discussed and predictions are made for
approximate drop volumes and ‘‘limiting’’
domain lengths.

The application of roughness model to a
soft EHL contact

M.F.J. Bohan, T.C. Claypole and D.T. Gethin

Keywords Surface roughness, Fluid flow,
Lubrication

The study focuses on the development of a
numerical model to explore the impact of
surface roughness in soft rolling nip contacts,
including representation of a real surface.
The solution of the governing equations
required the application of a multigridding
technique to capture the details of the fluid
flow within the roughness wavelengths and
a minimum number of fluid nodes per
wavelength were established. In the case
studies, two extreme roughness profiles were
considered, longitudinal and circumferential.

The longitudinal roughness had a significant
impact on nip pressures and pumping
capacity, the latter being determined by the
minimum film thickness in the nip. The
circumferential roughness was found to have
a localised effect on film pressure, but only a
very small impact on the film thickness
profile. The consequent effect on pumping
capacity was small.

Numerical study of transient
instabilities in reverse-roller
coating flows

M.S. Chandio and M.F. Webster

Keywords Numerical simulation,
Finite elements, Free form surfaces

A semi-implicit Taylor-Galerkin/pressure-
correction algorithm of a transient finite
element form is applied to analyse the flow
instabilities that commonly arise during
reverse-roller coating. A mathematical model
is derived to describe the solvent coating
applied to the underside of the sheet,
assuming that the lacquer is a Newtonian
fluid and considering the flow between
application roller and foil. Here, we have
investigated the effects of temporal instabilities,
caused by adjustment of nip-gap width and
foil-position, extending our previous steady-
state analysis. Foil shifting is found to have
a significant influence upon pressure and
lift on the foil, drag on the roller, and free
coating profiles. This would result in process
instabilities, such as chatter and flow-lines. In
contrast, nip-gap adjustment has no influence
on the coating finish.

Viscoelastic computations of polymeric
wire-coating flows

H. Matallah, P. Townsend and M.F. Webster

Keywords Coatings, Finite elements, Flow

This study considers both a single and
multi-mode viscoelastic analysis for wire-
coating flows. The numerical simulations
utilise a finite element time-stepping
technique, a Taylor-Petrov-Galerkin/pressure-
correction scheme employing both coupled
and decoupled procedures between stress and
kinematic fields. An exponential Phan-Thein/
Tanner model is used to predict pressure-
drop and residual stress for this process.
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Rheometrical data fitting is performed for
steady shear and pure extensional flows,
considering both high and low density
polyethylene melts. Simulations are
conducted to match experimental pressure-
drop/flowrate data for a contraction flow.
Then, for a complex industrial wire-coating
flow, stress and pressure drop are predicted
numerically and quantified. The benefits are
extolled of the use of a multi-mode model
that can incorporate a wide-range discrete
relaxation spectrum to represent flow
response in complex settings. Contrast is
made between LDPE and HDPE polymers,
and dependency on individual relaxation
modes is identified in its contribution to
overall flow behaviour.

Numerical simulation for viscous
free-surface flows for reverse
roller-coating

M.S. Chandio and M.F. Webster

Keywords Free form surfaces,
Numerical simulation, Finite elements

This article is concerned with the numerical
simulation of a reverse roller-coating process,
which involves the computation of Newtonian
viscous incompressible flows with free-
surfaces. A numerical scheme is applied of a
transient finite element form, a semi-implicit
Taylor-Galerkin/pressurecorrection algorithm.
For free-surface prediction, we use kinematic
boundary adjustment with a mesh-stretching
algorithm. In the present work, an alloy sheet
(foil) passes over a large roller and then a
smaller applicator roller, which provides the
in-feed. In combination, the applicator roller,
the foil and the fluid form part of the
underside coating mechanism. The aim of
this study is to investigate fundamental
aspects of the process, to ultimately address
typical coating instabilities. These may take
the form of chatter and starvation. A uniform
coating thickness is the desired objective. A
mathematical model is derived to describe the
solvent coating applied to the underside of
the sheet, assuming that the lacquer is a
Newtonian fluid. In particular, the work has
concentrated on the flow patterns that result
and a parameter sensitivity analysis covering
the appropriate operating windows of applied
conditions. Effects of independent variation in
roll-speed and foil-speed are investigated, to

find that maxima in pressure, lift and drag
arise at the nip and are influenced in a linear
fashion.

Simulation of pressure- and
tube-tooling wire-coating flows
through distributed computation

A. Baloch, H. Matallah,
V. Ngamaramvaranggul and M.F. Webster

Keywords Finite element method,
Viscous flows, Parallel computing

This article focuses on the comparative study
of annular wire-coating flows with polymer
melt materials. Different process designs are
considered of pressure- and tube-tooling,
complementing earlier studies on individual
designs. A novel mass-balance free-surface
location technique is proposed. The polymeric
materials are represented via shear-thinning,
differential viscoelastic constitutive models,
taken of exponential Phan-Thien/Tanner
form. Simulations are conducted for these
industrial problems through distributed parallel
computation, using a semi-implicit time-
stepping Taylor-Galerkin/pressure-correction
algorithm. On typical field results and by
comparing short-against full-die pressure-
tooling solutions, shear-rates are observed to
increase ten fold, while strain rates increase
one hundred times. Tube-tooling shear and
extension-rates are one quarter of those for
pressure-tooling. These findings across design
options, have considerable bearing on the
appropriateness of choice for the respective
process involved. Parallel finite element results
are generated on a homogeneous network
of Intel-chip workstations, running PVM
(Parallel Vitual Machine) protocol over a
Solaris operating system. Parallel timings
yield practically ideal linear speed-up over the
set number of processors.

Numerical modelling of
elastohydrodynamic lubrication in soft
contacts using non-Newtonian fluids

M.F.J. Bohan, I.J. Fox, T.C. Claypole and
D.T. Gethin

Keywords Lubrication,
Non-Newtonian fluids

The paper focuses on the solution of a
numerical model to explore the sliding and
non-Newtonian fluid behaviour in soft
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elastohydrodynamic nip contacts. The
solution required the coupling of the fluid
and elastomer regimes, with the non-
Newtonian fluid properties being described
using a power law relationship. The analysis
showed that the fluid characteristics as
defined by the power law relationship led to
large differences in the film thickness and
flow rate with a movement of the peak
pressure within the nip contact. The

viscosity coefficient, power law index and
sliding ratio were shown to affect the nip
performance in a non-linear manner in terms
of flow rate and film thickness. This was
found to be controlled principally by the level
of viscosity defined by the power law
equation. The use of a speed differential to
control nip pumping capacity was also
explored and this was found to be most
sensitive at lower entrainment speeds.
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Preface

This issue brings together a number of papers under the theme of thin film
flows that are generic to printing and a wide range of coating applications.
These processes require the deposition of a thin layer of fluid (or polymer) onto
a substrate. The simulation of these processes presents a number of numerical
challenges. Printing and some coating processes comprise roller pairs in
contact, one of which is covered by a soft elastomer that may have a rough
textured surface. Also engraved surfaces are frequently used to meter fluid
transfer and the mechanism of fluid release from the engraved cell is a complex
process. Coatings are applied to thin flexible substrates through a counter
rotating roller system that runs in contact with the substrate. Wire coating
takes place in a closed die in which a layer of polymer is metered onto the wire
substrate to form an insulating surface.

A number of papers are presented covering the issues summarised in the
preceding paragraph. The first paper by Powell, Savage and Guthrie describes
their current work on filamentation at the point of film splitting, focusing on
the behaviour where one surface is engraved. Their model accounts for the
tensile stresses in the filament, its profile, adhesion and final detachment.

The second paper is by Bohan, Gethin and Claypole in which they explore
the inclusion of a roughness model in rolling soft elastohydrodynamic contacts.
In this work the roughness interaction is included directly through the
prescription of a local film thickness and the ability of the approach to treat real
roughness profiles is demonstrated.

The third and fourth papers are by Chandio and Webster in which they
explore numerical techniques to model the reverse roller coating process,
including both steady and transient conditions. This presents challenges in the
handling the deflection of a thin substrate that deflects laterally in response to
the loads generated in the coating nip and in the need to determine
automatically the position of the free surface in the nip. The fourth and fifth
share the theme of wire coating. The fourth reports the work of Matallah,
Townsend and Webster and the fifth the development undertaken by Baloch,
Matallah, Ngamaramvaranggul and Webster. These papers focus on the
requirement to include complex rheology models to represent the behaviour of
the polymer system together with die swell prediction as the product emerges
from the coating die.

The sixth paper also explores the benefit of using multiprocessor systems to
perform simulation, demonstrating the ability to undertake more complex and
demanding simulations efficiently.

The issue is conclude by a paper by Bohan, Fox, Claypole and Gethin in
which the authors explore the application of models to represent coating
systems supplied by non-Newtonian fluids. The model proposed is capable of
accounting for the local shear thinning behaviour that takes place in the plane



Preface

337

of the nip junction. The impact on coating performance is demonstrated
through a number of case studies.

All of these studies highlight fluid-structure interactions that take place
together with the treatment of free surfaces. The issue brings together some of
the most recent work addressing these details that are generic to printing and
coating applications.

D.T. Gethin



Computational simulation of
the printing of Newtonian

liquid from a trapezoidal cavity
C.A. Powell, M.D. Savage

Department of Physics and Astronomy, University of Leeds,
Leeds, UK

J.T. Guthrie
Department of Colour Chemistry, University of Leeds,

Leeds, UK

Keywords Lagrangian method, Finite element method, Fluid flow

Abstract A Lagrangian finite element algorithm is described for solving two-dimensional, time-
dependent free surface fluid flows such as those that occur in industrial printing processes. The
algorithm is applied using a problem specific structured meshing strategy, implemented with
periodic remeshing to control element distortion. The method is benchmarked on the problem of a
stretching filament of viscous liquid, which clearly demonstrates the applicability of the approach to
flows involving substantial free surface deformation. The model printing problem of the transfer of
Newtonian liquid from an upturned trapezoidal trench (3-D cavity with a large transverse aspect
ratio) to a horizontal substrate, which is pulled perpendicularly downwards from the cavity, is
solved computationally using the Lagrangian scheme. The idealized 2-D liquid motion is tracked
from start-up to the point where a thin sheet forms – connecting the liquid remaining in the cavity
to a “sessile” drop on the moving substrate. The effect of varying substrate separation speed is
briefly discussed and predictions are made for approximate drop volumes and “limiting” domain
lengths.

1. Introduction
In a number of industrial printing processes it is necessary to transfer liquids
exhibiting various rheologies from engraved cavities to a substrate in order to
create a liquid pattern on the latter. For example, in both the coating and
printing industries gravure rolls (rolls engraved with tiny cells/cavities) are
used extensively for the deposition of liquid onto a web or other surface prior to
drying, for the production of a wide range of products including: cartons,
packaging systems, plastic films, metal foils and magazine covers. In gravure
printing transfer is direct from tiny cells to a substrate wrapped around a soft
backing roll – giving rise to a pattern of discrete liquid dots. In gravure
coating, however, the liquid transfer mechanism is indirect; liquid, evacuated
from the cells by the action of a passing meniscus (Powell et al., 2000), in turn
supplies a small coating “bead” from which a continuous film of uniform

The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/0961-5539.htm

The authors wish to thank the Field Group for supporting the research. C. Powell is funded by
EPSRC grant GR/M89249.
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thickness is coated to the substrate. Recent experimental studies (eg Benkreira
and Patel (Benkreira and Patel, 1993)) have done much to further our
understanding of the gravure coating process, whilst 2-D finite element (Powell
et al., 2000) and 1-D finite difference (Schwartz et al., 1998) simulations of the
meniscus-driven evacuation of liquid from individual gravure cavities have
further elucidated the process. To date, however, there has been no
corresponding numerical modelling of the gravure printing process to
accompany experimental studies (Kunz, 1983; Piette et al., 1997; Bohan et al.,
2000).

Other common examples of engraved-cavity based printing processes are
pad printing (Collard, 1984), where the relevant transfer of link is from a cavity
to a pad (or tampon) that is pressed downwards against the cavity and then
lifted perpendicularly away, and screen printing (Guthrie, 1992; Mock, 1999), in
which ink is flooded over a screen containing open image areas, and a squeegee
is then drawn across the screen – simultaneously pushing the screen against a
substrate and forcing ink through the open areas. The particular feature of
interest to us in screen printing is the reopening of the gap between screen
and substrate and the subsequent stretching of liquid from the screen image
areas once the squeegee passes. To date there has been no attempt to
computationally simulate liquid transfer in either pad or screen printing.

We note that the problem of drop formation from an orifice, of central
importance to an understanding of ink-jet printing, has – in contrast to the
engraved-cavity based processes mentioned above – received a great deal of
attention both experimental and computational. Indeed, a variety of numerical
approaches have been adopted to simulate drop formation including volume-
of-fluid (VOF) (Zhang, 1999) and an Eulerian finite element method employing
a purpose-designed mesh (Wilkes et al., 1999). These different numerical
approaches have their relative strengths and weaknesses. The VOF method, for
example, does not exhibit a very high degree of accuracy on small scales due to
the use of a fixed mesh, though this is compensated for by the fact that meshing
and logic problems are removed – enabling straightforward simulation of
complicated free surface behaviour.

In the present work we employ of Lagrangian finite element algorithm to
solve the 2-D, time-dependent free surface flows, subject to substantial free
surface deformation, that typically occur in cavity-based printing processes.
Lagrangian finite element analysis is recognised as a very accurate tool for
studying the transient free surface fluid flows that occur in a variety of
engineering applications, including: thin film coating (Bach and Hassager,
1985), sloshing flows (Ramaswamy et al., 1986), industrial metal casting
(Muttin et al., 2001) and wave breaking (Radovitzky and Ortiz, 1998). The major
advantage is the use of a convected computational mesh, which enables simple,
yet very accurate, tracking of the free surfaces – provided, of course, that at
any time a mesh may be generated that discretises the domain effectively. We
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employ a problem specific structured meshing strategy to implement the
Lagrangian algorithm, together with periodic remeshing to control element
distortion. In the next section the method is outlined, with attention drawn to
important features, and then in section 3 the method is benchmarked on the
problem of a stretching liquid filament. As a first step to understanding the
micro-scale liquid transfer processes occurring in cavity-based printing, we
formulate and solve numerically an idealised printing problem in which liquid
is transferred from an upturned trapezoidal cavity to a moving substrate.

2. Lagrangian finite element method
2.1 Governing equations
Denoting a typical velocity by U and a typical length scale by d, then the
non-dimensional equations of momentum and mass conservation for an
incompressible, Newtonian fluid of density r, viscosity m and surface tension t
are written in Eulerian form as:

Re
›u

›t
þ u ·7u

� �
¼ 7 ·sþ Stĝ; ð1Þ

7 · u ¼ 0: ð2Þ

Here u denotes the fluid velocity, ĝ is a unit vector in the direction of gravity
(g ), Re ¼ rUd=m and St ¼ rgd 2=mU are the Reynolds and Stokes numbers,
and the stress tensor, s, is defined by

s ¼ 2pI þ ½7u þ 7uT�: ð3Þ

We use the Lagrangian description of the flow in which the fluid particle
locations, and hence the dependent variables, are functions of some known
initial configuration, x0 (defined at time t0), and the time elapsed. Thus

x ¼ xðx0; t0; tÞ; u ¼ uðx0; t0; tÞ; p ¼ pðx0; t0; tÞ: ð4Þ

The major advantage of this description is that the computational mesh is
identified with the fluid and hence convected with the flow. For free surface
simulations this implies that nodes in the computational discretisation that are
located on a free surface stay there as the fluid domain evolves, and these nodes
are simply found as part of the overall fluid deformation, x ¼ xðx0; t0; tÞ: As a
consequence the location of moving free surfaces and the imposition of
boundary conditions there are rendered straightforward, whereas if one used
the alternative Eulerian description of the fluid it would be necessary to impose
an additional “kinematic” condition to solve for the free surface nodes, e.g. ref.
Wilkes et al., 1999.
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2.2 Boundary conditions
On no-slip boundaries essential velocity conditions are imposed exactly.
Natural free surface conditions are imposed in the standard way (Ruschak,
1980) using the familiar normal stress balance:

n̂ ·s ¼
1

Ca

dt̂

ds
; ð5Þ

where t and n̂ are, respectively, unit vectors tangent and normal to the free
surface, Ca ¼ mU=t is the capillary number, and s denotes length along the
free surface.

Determination of the correct mathematical treatment for a contact line, which
occurs where a free surface meets a solid boundary under dynamic conditions,
is the subject of much theoretical research (see Hocking (1994) and Shikhmurzaev
(1997) for two fundamentally different perspectives on the problem). In terms of
incorporating a contact line into a finite element simulation of flow involving
capillary effects, the two key issues that must be resolved are:

(1) the introduction of local tangential slip near the contact line to remove
the stress singularity that occurs if the usual no-slip conditions are
applied (Dussan, 1976),

(2) the boundary condition at the contact line relating the contact angle to
the independent variables and physical parameters.

In addition a degree of local mesh refinement is required to incorporate the
modeling and accurately resolve the high velocity gradients. A recent paper
(Powell and Savage, 2001) gives the specific numerical details of how this may
be accomplished for the particular choice of a “Tanner law” (Greenspan, 1978)
boundary condition, relating contact angle to contact line speed. An identical
treatment is used for incorporating the moving contact lines in the printing
application presented in this work. The only difference here is the choice of a
constant dynamic contact angle boundary condition, which is imposed by
satisfying the following equation:

t̂b · t̂fs ¼ cos uD; ð6Þ

where uD is the prescribed dynamic contact angle, t̂b is the known tangent to
the solid boundary and t̂fs is the free surface tangent at the contact line, which
may be calculated accurately using the isoparametric element representation.
This equation allows the contact line location to be updated as part of the
overall numerical solution scheme.

2.3 Finite element implementation
The Lagrangian finite element algorithm used to solve the governing
equations, subject to appropriate initial and boundary conditions, has been
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described elsewhere (Powell and Savage, 2001), thus here we only given an
outline. The fluid domain is discretised using isoparametric triangular V6/P3
elements (Zienkiewicz, 1977; Taylor and Hood, 1973), so the velocity
components and pressure are interpolated over an element as:

u ¼
X6

i¼1

Niðx; yÞ�uiðtÞ; v ¼
X6

i¼1

Niðx; yÞ�viðtÞ; p ¼
X3

i¼1

Liðx; yÞ�piðtÞ; ð7Þ

where “–” denotes a nodal value. We apply the Galerkin method to obtain the
finite element equations:

½M�

_U

_V

_P

0
BB@

1
CCAþ ½C�

U

V

P

0
BB@

1
CCA ¼ ðFÞ; ð8Þ

where U ¼ ð�u1; . . .; �u6Þ;V ¼ ð�v1; . . .; �v6Þ;P ¼ ð�p1; �p2; �p3Þ and “ · ” denotes the
material time derivative D/Dt. The matrix M is the mass, or inertia matrix, C is
the diffusion matrix and F contains the gravity and surface tension
contributions [1]. For a given set of element coordinates the matrices M, C and
F may be evaluated using numerical integration; here all domain integrals are
approximated using a 4-point Gaussian scheme and boundary integrals using a
3-point scheme. For time integration we employ a “Q-scheme”:

U

V

P

0
BB@

1
CCA

tþDt

¼

U

V

P

0
BB@

1
CCA

t

þDt Q

_U

_V

_P

0
BB@

1
CCA

tþDt

þð1 2QÞ

_U

_V

_P

0
BB@

1
CCA

t

2
664

3
775 ð9Þ

Q is initially given the value 1, corresponding to a simple backward difference
approximation, then subsequently Q takes a value of 1/2 – thus switching to
the second-order accurate Crank-Nicolson, or trapezoidal, method. This
switching strategy avoids the need for specifying initial conditions on pressure.
In a previous study of surface tension dominated flows (Powell and Savage,
2001) it was noted that changing Q to 1/2 too quickly can introduce significant
inaccuracies into the solution, thus in such flows the switching is delayed for
several time steps. A value for Dt is found heuristically by testing several
different time steps and comparing the solutions.

The iterative solution scheme, used to advance the fluid motion through a
time increment Dt and obtain the new fluid domain and velocity and pressure
fields, is as follows (see refs Bach and Hassager (1985) and Powell and Savage
(2001) for further information):
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(1) Make initial estimates of velocities and coordinates at time t þ Dt:

u1
tþDt ¼ ut; x1

tþDt ¼

xt þ Dtu1
tþDt tstep ¼ 1

xt þ
Dt
2 ðu*

tþDt þ u1
tþDtÞ tstep . 1

8<
: ð10Þ

where tstep is the number of the current time step and u*
tþDt is given by a

two step Adams-Bashforth estimate:

u*
tþDt ¼ ut þ

Dt

2
3

Dut

Dt
2

Dut2Dt

Dt

� �
: ð11Þ

Then starting with n ¼ 1 repeat steps (2)–(4).

(2) Assemble the element equations on configuration xn
tþDt; impose

boundary conditions and solve to find unþ1
tþDt and pnþ1

tþDt; the large
system of linear finite element equations is solved by Gaussian
elimination using Hood’s frontal method (Hood, 1976).

(3) Find a new configuration from:

xnþ1
tþDt ¼ xt þ

Dt

2
unþ1

tþDt þ ut

� �
: ð12Þ

(4) Check for convergence by seeing if xnþ1
tþDt 2 xn

tþDt is less than some
specified tolerance; if not repeat from step (2).

Steps (1)–(4) are repeated until the preassigned total time is reached, or the
simulation reaches steady state.

2.4 Meshing issues
At the end of each time step the amount of mesh deformation is calculated
using the following measure (Bach and Hassager, 1985):

Dp ¼
V p

n
min N JnWn

; ð13Þ

where Jn is the determinant of the transformation Jacobian from local to global
coordinates at the nth Gauss point in element p, Wn is the Gaussian weight for
the nth Gauss point, N is the number of Gauss points and V p ¼

PN
i¼1 J iWi is

the element area. Dp takes its minimum value of 1.0 when element p is
undeformed, but this value grows as the element distorts (becoming infinite if
the Jacobian becomes singular). Our numerical algorithm searches through
each element of the mesh and checks that Dp is less than some maximum
permitted tolerance, if Dp exceeds this limit in one or more elements the
decision is made to remesh.

In a previous application of the present Lagrangian scheme to capillary flow
involving dynamic contact line motion (Powell and Savage, 2001) the free
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surface deformations are not particularly significant and hence the
construction of a structured mesh is not difficult and few remeshings are
required to prevent element distortion. Printing problems, by contrast,
typically involve liquid domains that are subject to severe free surface
deformations thus in order to apply the Lagrangian scheme it is necessary to
either devise more flexible problem specific structured meshes or resort to a
fully automatic unstructured mesh approach. We adopt the former alternative,
and so the fluid domain is initially discretised and then periodically remeshed
using structured meshes of isoparametric triangular V6/P3 elements.

It is worth noting that a great deal of research has been carried out into the
development of unstructured mesh generation and adaptive refinement
algorithms, see, for instance, refs Shephard (1988); Joe (1991); Rebay (1993).
Significant advances in these fields have undoubtably increased the attractions
of Lagrangian finite element analysis to CFD practitioners, since early
Lagrangian-based algorithms were carried out on fixed meshes and could not
cope with large fluid domain deformations. Indeed, in recent years
unstructured meshing algorithms have been incorporated into Lagrangian
finite element simulators in studies of metal casting (Muttin et al., 1993) and
wave breaking (Radovitzky and Ortiz, 1998). However aspects of any fluid
domain meshing procedure invariably remain problem specific, since the
design of a computational mesh represents both a physical as well as a
geometrical problem. Hence adding mesh refinement for special features such
as moving contact lines and sharp boundary corners often requires non-trivial
user interaction even for an unstructured algorithm. Furthermore, serious
programming issues are encountered when an unstructured mesh is used in
conjunction with a highly efficient frontal solution approach such as Hood’s
method (Hood, 1976) which we employ in this study. The task of renumbering
elements and nodes in order to minimize the frontwidth becomes far from
straightforward, and the numbering scheme must be recalculated every time
the mesh is updated. For these reasons in this work we follow the structured
mesh route; details about the mesh structure used for a specific problem are
given in the appropriate place.

Once the new mesh is generated accurate mesh-to-mesh transfer is ensured
by iteratively solving the old element interpolation equations to locate nodes in
the new mesh and then employing the isoparametric mapping (Bach and
Villadsen, 1984). When this is completed the simulation may continue through
another time increment.

3. Validation and applications
3.1 Stretching viscous filament
We consider a stretching (planar) viscous filament, as illustrated in Figure 1. A
quantity of viscous liquid is initially held between two stationary plates, the
top plate is then impulsively pulled perpendicularly away from the bottom
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plate with a constant velocity U. Perfect adherence is assumed between the
liquid and the plates and consequently the filament thins most in its central
region. Stretching filament devices are used in experiments to test the
extensional properties of polymers, and numerical simulations of viscoelastic
fluids often use the stretching filament as a benchmark problem, eg Harlen,
(1996). In the present study inertia effects are assumed to be small
(Re ¼ rUa=m is given a value of 1022), furthermore, gravity, which serves
to create a top-bottom asymmetry in the filament, and surface tension, which
causes an extra squeezing effect in the middle of the filament, are both
neglected. On the plates two no-slip velocity boundary conditions are specified,
and the free surface normal stress balance reduces to:

n̂ ·s ¼ 0: ð14Þ

For simplicity the fluid filament is assumed to have an initially square shape
(with l=a ¼ 1:0), Figure 2 shows the initial finite element mesh containing 200
elements. As the simulation proceeds and the filament stretches the number of
horizontal element strips is increased automatically during remeshing so that
the free surface representation retains a specified level of refinement. Nodes are
equally spaced along the free surfaces, resulting in more element strips in the
regions of high curvature adjacent to the plates. Figure 3 shows the finite
element mesh and the velocity vectors when the aspect ratio is 3.5 and the fluid

Figure 1.
The stretching of a

(planar) viscous fluid
filament
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has undergone considerable deformation; the simulation can be continued
without difficulty until the filament becomes very thin and problems of mesh
resolution are eventually encountered. The mesh shown contains 416 elements
– more than double the initial number. The calculated change in volume for
this simulation is negligible, and the filament is found to be top-bottom
symmetric as predicted in the absence of gravity.

The velocity vectors shown in Figure 3(b) are scaled with respect to the
speed of the top plate; the fluid motion is essentially unidirectional and the
velocities increase linearly with length along the filament.

Figure 4 gives the minimum filament thickness, hmin, as a function of time –
quantities being non-dimensionalised using a and U as typical scales. Initially
hmin decreases quite rapidly but the rate of thinning gradually slows. One may
obtain a simple analytical expression for the evolving free surface position by
assuming that the filament thickness is approximately constant except in the
regions very close to the plates (as suggested by Figure 3). In this case we
assume h is independent of length along the filament, i.e. h ¼ hðtÞ; then
conservation of mass yields the following:

h
›u

›x
þ

dh

dt
¼ 0; ð15Þ

where the velocity u is a function of length along the filament, x, and time.
Taking the plate velocities as approximate conditions on u, imposed at some
unspecified positions “close to the plates”, and taking the initially square
domain shape as an initial condition on h, the above equation may be integrated
to give

h ¼
1

1 þ t
: ð16Þ

This expression is also plotted in Figure 4 where happily the agreement for the
sheet thinning between the simple analytical (ANAL) and numerical (FEM)

Figure 2.
Initial finite element
mesh
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curves is pretty close. Of course, the difference between the two curves occurs
because the simple analytical model takes no account of the regions of high
meniscus curvature at the plates and hence cannot predict the sheet thinning
exactly.

3.2 Printing liquid from a trapezoidal cavity
Here the Lagrangian finite element algorithm is employed to simulate the
idealized 2-D transfer process, involving a Newtonian fluid pulled from an
upturned trapezoidal trench (which may be thought of as a 3-D cavity with a
large transverse aspect ratio) by a downwards moving substrate. The

Figure 3.
Result of filament

stretching simulation
when l=a ¼ 3:5: (a) finite
element mesh, (b) velocity

vectors
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trapezoidal design is commonly used in printing industries and so has been
chosen as a representative cavity for this problem. In our model (see Figure 5)
we initially assume the presence beneath the cavity of a liquid layer bounded
by two vertical free surfaces to overcome the significant theoretical difficulties
that are introduced if the cavity and substrate are initially in contact. The lower
surface is impulsively pulled downwards with constant speed U and the liquid
is set in motion subject to the following assumptions:

(1) There is perfect adherence between the liquid and the moving surface on
which there are two “static” contact lines. In real applications there will
possibly be some amount of slippage between liquid and solid at the

Figure 4.
The minimum filament
thickness as a function
of time calculated
numerically (FEM);
also plotted is the
approximate analytical
expression hmin ¼
1=1 þ t (ANAL)

Figure 5.
Cross-section of the
trapezoidal trench at
t ¼ 0:
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contact lines, though in practice substrates are suitably prepared so that
the printed liquids tend to adhere to them.

(2) Here exists local slip between the liquid and the trapezoidal cavity walls
at two dynamic contact lines – the specific modelling of which is
discussed below.

(3) Away from the edges of the trench the liquid motion is approximately
independent of the transverse coordinate z, up to the time when a thin
viscous sheet is formed, connecting liquid remaining in the trench to that
on the downward moving surface. The computation is terminated when
the minimum sheet thickness falls below a specified tolerance, prior to
which it is assumed that the influence of transverse edge effects and the
formation of instabilities can both be ignored within the main body of
the sheet.

Taking the speed of the lower surface, U, and the cavity depth, d, as typical
scales, then for a Newtonian fluid with viscosity m, density r and surface
tension t, non-dimensionalising the problem introduces the following groups:
Re ¼ rUd=m; Ca ¼ mU=t, and St ¼ rgd 2=mU : To incorporate the dynamic
contact lines we specify:

(1) an explicit linear slip velocity distribution, introducing an unknown slip
length, l, which must be estimated;

(2) a constant dynamic contact angle, uD (measured through the fluid).

Thus the contact lines are allowed to move along the sloped cavity walls,
though they are assumed to re-pin if they reach the bottom corners of the
cavity. There are, of course, a variety of possibilities for the dynamic contact
line treatment. In the absence of any experimental visualisations of micro-scale
cell emptying in printing processes we chose a straightforward constant angle
model, though it would not be difficult to refine the modeling in light of
experimental input at a later time (see Powell and Savage, (2001) for example).

Figure 6 shows the evolving liquid domain for a sample calculation in which
the following parameter values were used: a=d ¼ 1:0; St ¼ 0:1; Ca ¼ 0:1;
Re ¼ 1:0; uD ¼ 758. In the early stages of the motion the menisci become highly
curved and the effect of surface tension appears to dominate. As the liquid
domain extends the gravitational acceleration has more of an effect, the liquid
being forced downwards out of the cavity and into the sheet. In the later stages
of the simulation a thin liquid sheet forms, connecting the fluid that remains
in the cavity to a “sessile” drop forming on the moving surface. In this
calculation the contact lines do in fact reach the base of the cavity where it is
assumed that they re-pin. The simulation is terminated when the minimum
sheet thickness falls below 0.1, this is an arbitrary stopping point when it is
possible to obtain an estimate of the fraction of the initial liquid in the large
sessile drop by calculating the fraction below the minimum sheet (or “neck”)
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location – though it should be noted that the algorithm may in fact be
continued without trouble until the sheet is much thinner. For this sample
calculation approximately 93 per cent of the liquid lies below the neck when the
simulation is terminated.

Two snapshots of the computational mesh and velocity vectors, taken at
times t ¼ 0:072 and t ¼ 2:3; are shown in Figure 7. The mesh pictures
illustrate how a structured strategy using horizontal strips of elements is able
to effectively discretise the liquid domain from start-up through to the later
stages of the motion. Local mesh refinement is included in the dynamic contact
line regions in order to accurately resolve the velocity field. At t ¼ 2:3; when
the contact lines have re-pinned at the cavity base and the rounded sessile drop
is well formed, the mesh shown is constructed by equally spacing the nodes
along the free surface. This naturally results in a greater number of element
strips in the regions of rapidly changing velocity adjacent to the cavity base
and where the sheet opens out into the sessile drop. Furthermore, since each
horizontal element strip contains the same number of elements, we achieve a
much higher mesh refinement in the thin sheet region. The corresponding
velocity plot at t ¼ 2:3 shows that gravity is indeed the dominant effect in the
later stages of the simulation, with the highest velocities generated as fluid is
forced downwards through the neck region and into the drop. We note that
simulations are restricted to cases where uD is strictly greater than 458, since
the use of horizontal element strips in the discretisation cannot cope with free
surfaces that become multi-valued functions of the vertical coordinate, y. Of
course, if subsequent visualization experiments point to much smaller values of
the contact angle then a modified, more general meshing strategy can be

Figure 6.
Result of simulation
performed with the
following parameters:
a=d ¼ 1:0; uD ¼ 758,
Re ¼ 1:0; Ca ¼ 0:1;
St ¼ 0:1; the evolving

liquid domain is shown
at six different times:
t ¼ 0:072; 0.215, 0.931,

1.498, 1.868, 2.3

HFF
12,4

350



implemented into the Lagrangian algorithm. Mesh resolution studies have been
conducted to determine levels of refinement resulting in mesh independent
results; at the point when a simulation is terminated a suitable mesh typically
contains around 600 elements.

Figure 8 shows the minimum sheet thickness as a function of time for
the same simulation. In the early stages of the liquid motion the rate of
domain thinning is large, but this rate gradually slows as the sheet forms
and continues to stretch. It is not possible to determine if the thin sheet is
close to rupture since there is no large negative gradient on the curve; indeed
this suggests that at later times any sheet rupture will be three-dimensional in
nature.

To demonstrate the predictive use of our algorithm to industrialists and
experimentalists seeking to control their liquid transfer process, the effect of
varying the separation speed of the substrate is explored. Denoting a reference

Figure 7.
Computational mesh and
velocity vectors shown at

times (a) t ¼ 0:072 and
(b) t ¼ 2:3
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substrate speed by U* which gives Reynolds, Stokes and capillary numbers
(Re*, St*, Ca*) say, then changing the speed to U ¼ nU* changes the
dimensionless groups to (n Re*, St*/n, nCa*). Here it is assumed that U* leads
to the following group values: Re* ¼ 1:0; St* ¼ 0:1 and Ca* ¼ 0:1 (with a=d ¼
1:0 and uD ¼ 758), and the effects of halving and doubling the separation speed
by taking n equal to 0.5 and 2, respectively, are considered. It is immediately
clear from Figure 9(a), which compares liquid domains when the minimum
sheet thickness falls below 0.1, that increasing U/U* from 0.5 to 2.0 leads to:

. a significant lengthening of the “final” fluid domain,

. a longer thin sheet region and

. a corresponding decrease in the fraction of liquid in the sessile drop.

These trends are quantified in Figures 9(b), which plots the final distance from
cavity to substrate, and 9(c), which gives the fraction of liquid lying below the
neck. The shortest limiting domain length and largest sessile drop fraction
(when approximately 94 per cent of the liquid lies below the neck) occur at the
lowest separation speed, which is in accord with intuition since the gravity-
driven cavity emptying has more time to occur than at a higher substrate
speed. This suggests that one may control the approximate sessile drop size to
a certain extent by simply varying the substrate speed, but a high speeds the
creation of a long thin sheet prior to rupture may be an undesirable side-effect.

Figure 8.
Minimum sheet
thickness versus time for
the sample calculation
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4. Conclusion
A Lagrangian finite element algorithm for solving time-dependent free surface
flows, which uses a structured meshing strategy to allow for large free
surface deformations, has been described and successfully applied to both a
stretching filament and a model printing problem. We stress that the cavity
emptying work presented here constitutes a first step towards simulating
and understanding the (fully three-dimensional) micro-scale liquid transfer
phenomena occurring in a range of industrial printing processes. Numerous
extensions to the present work are underway, including:

. introduction of an asymmetric separation between the cavity and
substrate to account for a roll-based printing configuration such as
gravure printing

. incorporation of non-Newtonian rheology to model more realistically the
types of inks used in printing processes

Figure 9.
The effect of U/U* upon

the cavity emptying
process (U* denoting a

reference substrate
speed – see text):

(a) “final” liquid domain
profiles, (b) “final”

distance from top of
cavity to moving

substrate,
(c) approximate final

liquid fraction in
“sessile drop”
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. consideration of process instabilities that occur due to imperfect cell
filling prior to printing.

An experimental program into the micro-scale printing of liquid from engraved
cells under different conditions is currently underway at the University of
Leeds. It is intended to report some of the experimental results together with
complementary numerical simulations in a future publication.

Note

1. Details of the individual contributions to the matrices M, C and F are given in numerous
papers, see, for example, ref (Bach and Villadsen, 1984).
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The application of roughness
model to a soft EHL contact
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Keywords Surface roughness, Fluid flow, Lubrication

Abstract The study focuses on the development of a numerical model to explore the impact of
surface roughness in soft rolling nip contacts, including representation of a real surface. The
solution of the governing equations required the application of a multigridding technique to
capture the details of the fluid flow within the roughness wavelengths and a minimum number of
fluid nodes per wavelength were established. In the case studies, two extreme roughness profiles
were considered, longitudinal and circumferential. The longitudinal roughness had a significant
impact on nip pressures and pumping capacity, the latter being determined by the minimum film
thickness in the nip. The circumferential roughness was found to have a localised effect on film
pressure, but only a very small impact on the film thickness profile. The consequent effect on
pumping capacity was small.

Introduction
The transfer of a fluid to a substrate in a controlled manner is used in many
industrial applications. This is often achieved by the use of alternate hard and
rubber covered rollers, Figure 1 and these will operate under conditions
ranging from pure rolling to pure sliding dependent on the process. In certain
instances a simultaneous lateral motion of the rollers is also employed. In many
designs, the systems are used with positive engagements, imposing the

The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/0961-5539.htm

Nomenclature
a ¼ Hertzian contact width
bk ¼ body forces within boundary domain
ci
lk ¼ corner factor for the boundary integral

equation
E* ¼ equivalent elastic modulus
g ¼ fundamental solution of Reynolds

equation
h ¼ fluid film thickness
L ¼ load
p ¼ fluid pressure
pk ¼ traction for the boundary integral

equation
p*

lk ¼ traction for Kelvin solution
pn ¼ fluid pressure at point xn

R ¼ equivalent roller radius
ra ¼ roughness amplitude

rf ¼ roughness frequency
rp ¼ roughness phase
U ¼ mean sum of the roller surface

velocities
u ¼ surface indentation
uk ¼ displacement for the boundary integral

equation
u*

lk ¼ displacement for Kelvin solution
vn ¼ pressure gradient dp=dx at point xn

x ¼ co-ordinate for film
G ¼ boundary surface
d ¼ Dirac delta function
z ¼ point on the boundary
m ¼ fluid viscosity
c ¼ term within the Reynolds equation
V ¼ boundary domain
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requirement to use a roller covered with a soft rubber and the consequent
pressures generated in the nip contact result in significant rubber
deformations.

Pressure is generated in the nip by mechanical deformation and
hydrodynamic action as the fluid is entrained through the contact. This
pressure field developed by this combined action will lead to the deformation of
the elastomeric layer and this deformation will affect the film thickness and
hence the hydrodynamic pressure component in the nip contact. This contact is
referred to as that of Soft Elasto Hydrodynamic Lubrication (Soft EHL) and
since the rollers are usually long in comparison with diameter and especially
the contact geometry, this effectively forms a line contact.

The emphasis in this paper is concerned with roughness effects in soft EHL
contacts, however it is appropriate to review briefly previous work on smooth
contacts and this will be dealt with initially. The experimental and numerical
analyses of nips have been reported on extensively in the literature. Initial work
on dry contacts (Hannah, 1951) has formed the basis of much of this analysis.
The methods have been expanded to evaluate boundary conditions (Miller,
1966) and the roller parameters (Meijer, 1968; Jaffar, 1993). The lubrication of
layered contacts was first explored in the field of journal bearings (Higgson,
1965–1966) and this was later generalised to contacts with different surfaces in
which only small deformations were present (Bennett and Higginson, 1970).
The general treatment of large deformation is counterformal contacts is
discussed in Hooke and O’Donoghue, 1972. It is assumed that pressure in the
nip is dominated by a Hertzian component and separate functions are used to
describe the inlet and outlet regions. This was later extended to layered solids
(Gupta, 1976), including developments to accommodate a Poissons ratio of 0.5
that is appropriate for rubber and normally introduces a singularity into the

Figure 1.
Schematic of a roller

contact
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governing elasticity equations. The model was used to explore a wide range of
loading conditions.

In many of the preceding works, the linkage between deformation and
hydrodynamic action was excluded since the contacts were either dry, or
heavily loaded with emphasis on transmissions or rolling element bearing
application. The necessity to iterate between the fluid and structural domains
was first highlighted in Cudworth, 1979 with specific emphasis on a soft EHL
analysis. This has since been developed to evaluate different modes of
lubrication dependent on the nip conditions (Hooke, 1986). These have then
been further extended to different inlet and process conditions for Newtonian
(MacPhee et al., 1992; Bohan et al., 1997) and non-Newtonian fluids (Lim et al.,
1996).

All the work reviewed above assumes that the roller surfaces are smooth.
One of the first approaches to modelling rough lubricated contacts is set out in
Patir and Cheng, 1978 where the authors describe a model where flow
coefficients are introduced into the Reynolds equation to capture both isotropic
and anisotropic surfaces, idealised using a Gaussian distribution and
incorporating anisotropy via a length scale. This approach is particularly
applicable in hydrodynamic lubrication, or under circumstances where
piezoviscous fluids are not used and the usual pressure term in the Reynolds
equation is still significant. Some controversy surrounds the determination of
the coefficients that capture the surface geometry, particularly where the film
thickness gradients associated with asperities are steep. This has received
attention recently in Lunde and Tønder, 1997 in which the authors examine a
patch within a bearing film, but use the Reynolds equation to approximate the
flow. Subject to the local application of the Reynolds equation, this allowed a
calculation of pressure fluctuation details in response to the local asperity
profile and the distribution was superimposed on an average pressure
generated from the mean film profile.

Surface roughness studies in contacts between hard counter-formal surfaces
has focused on nips lubricated by fluids that exhibit a strong piezoviscous
behaviour and this has been coupled with elastic deformation of the contact.
The consequent high viscosity in the denominator of the pressure term in the
Reynolds equation effectively removes this term from the equation. This
modelling approach has been explored vigorously recently, mainly in
connection with gear and rolling element contacts (Hooke, 1999; Greenwood,
1999). These studies develop models focusing on transport of roughness
through the contact, leading to pressure waves and roughness waves of
different frequency moving through the contact under circumstances of sliding
motion. Under conditions of rolling motion, the original roughness profile is
retained and the pressure profile reflects the local film thickness variations.

An up to date review of work in hard elastohydrodynamic lubrication is set
out in Dowson and Ehret, 1999 in which the authors have critically examined
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key studies chronicling the developments in this area, culminating in work on
real surfaces and real lubricants. The present study also addresses this topic,
but with specific application to soft elastohydrodynamic contacts in which the
deformations are large and the viscosity remains low. Therefore the roughness
transport models are not appropriate and the film model will need to account
for pressure terms as well as the surface topography.

The purpose of this paper is to evaluate high frequency roughness profiles in
a computationally efficient manner. It will to explore the effect of both
circumferential and longitudinal roughness profiles on the roller. The applicability
of the idealised sinusoidal roughness as an approximation to the real roughness
profiles will also be assessed.

Theoretical model background
The overall solution of the soft elastohydrodynamic lubrication problem that
is generic to many printing and coating applications is obtained by coupling
the solutions from the Reynolds equation with that of the elastic deformation
of the roller. Following the review of previous work, this requires a procedure
that iterates between the solutions for the structural and fluid domains. Of
particular importance to this study is the background theory for solution, with
the introduction of roughness characteristics. This will be discussed, followed
by its incorporation into the solution procedure.

Reynolds equation
For a Newtonian fluid and a thin film the Reynolds equation may be used to
describe the hydrodynamic behaviour in the nip (Dowson, 1962). Provided that
the contact width is small in comparison with the roller diameter and the
analysis plane is some distance from the roller edge then the Reynolds equation
can be written in a one-dimensional form as

d

dx

h3

12m

dp

dx

� �
¼

u1 þ u2

2

� �
dh

dx
ð1Þ

The assumption of a Newtonian fluid is retained in this work and this is shared
with many other publications (MacPhee et al., 1992; Bohan et al., 1997). Some
printing inks are non-Newtonian and this can affect the flow characteristics
(Lim et al., 1996), however this will be described in a separate investigation. In
this solution, the pressure at the inlet and outlet were set to zero together with
the pressure gradient, satisfying a well-established Swift-Steiber condition.
This was set automatically within the code and it effectively determines the
rupture point in the contact to ensure flow continuity. However this condition
ignores the possible occurrence of sub-ambient pressures (Lim et al., 1996) that
may be treated using an approach balancing viscous and surface tension forces
(Carvalho and Scriven, 1997). The choice of the simpler Swift-Steiber condition
is justified at this point since this work focuses on the inclusion of roughness
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effects, treatment of different film boundary conditions in association with
roughness effects will require further detailed attention.

For the purpose of computational efficiency, the Reynolds equation was
solved using Green’s function with the right hand side of equation (1) replaced
by the Dirac delta function d(x2z ). The solution can be obtained using the
following for g(x,z ) and its differential, where h* ¼ h3:

gðx; zÞ ¼

Z x

z

1

2h*
dx for z . x

2

Z x

z

1

2h*
dx for z , x

8>>>><
>>>>:

;
dgðx; zÞ

dx
¼

1

2h*
for z . x

2
1

2h*
for z , x

8>>><
>>>:

ð2Þ

Using equation (2) and the Dirac function, the Reynolds equation (1) can be
solved providing the following expression for the pressure

pðzÞ ¼ ½2h* ðx1Þgðx1; zÞ; h* ðx2Þgðx2; zÞ�
v1

v2

� �

þ h* ðx1Þ
dg

dx






x¼x1

;2h* ðx2Þ
dg

dx






x¼x2

" #
p1

p2

" #
þ

Z x2

x1

cðxÞ · gðx; zÞdx

ð3Þ

Elasticity equations
A number of schemes are available for solving the elasticity equations in the
rubber layer. Since deformation is the main focus in this application, this is
achieved most economically using a boundary element approach. Assuming
the rubber layer on the roller to be linearly elastic due to the relatively small
deformation in comparison with its thickness, for a plain strain case, the
boundary element integral equation for the solution of the general problem of
elastostatics is given below (Brebbia and Dominguez, 1989).

ci
lku

i
k þ

Z
G

p*
lk uk dG ¼

Z
G

u*
lk pk dGþ

Z
V

u*
lk bk dV ð4Þ

However, for the problem examined, the body forces are zero, with no thermal
or gravitational forces and the equation can be simplified to

ci
lku

i
k þ

Z
G

p*
lk uk dG ¼

Z
G

u*
lk pk dG ð5Þ

This equation can be formulated as a matrix and solved readily for the
displacement of the rubber layer. The integrals of the elasticity equation were
calculated over the boundary and represented by the sum of integrals over each
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of the boundary elements. The element integrals were calculated analytically to
ensure computational efficiency. In the model, compatible with the assumption
for the film, the elastomer was unwrapped as shown in Figure 2. The lower
surface was constrained rigidly to represent adhesion between the steel core
and rubber cover and no circumferential movement was allowed at the lateral
extremes of the calculation domain.

Film thickness equation
The film thickness is defined by equation (6). The roller roughness is
incorporated into this together with the deformation due to the roller loads and
a negative value of h0 represents roller engagement.

hðxÞ ¼ h0 þ
x2

2R
þ uðxÞ þ rðxÞ ð6Þ

In equation (6), r(x ) is the roughness applied to the surface of the roller. This
can be defined either as a regular roughness profile or actual measured data
can be incorporated as a function of distance through the nip. Within the paper
both methods have been employed and their impact investigated. When treated
as a function, the roughness profile is given by the equation

rðxÞ ¼
ra

2
· sinðrf ðxÞ þ rpÞ ð7Þ

For the actual roughness data a look up table has been generated at the correct
nodal intervals based on experimentally measured surfaces and the roughness
obtained from an array, given as

rðxÞ ¼ rmðxÞ ð8Þ

In utilising the approach set out above, it is assumed that the amplitude and
wavelength of the roughness is not sufficient to generate localised reverse
flows within the asperity zone itself (Lunde and Tønder, 1997). If this occurs,
then it can only be dealt with accurately via solution of the Navier Stokes
equations and this is computationally prohibitive at this time.

Figure 2.
Schematic discretisation

of the boundary
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Load
To reflect operation, the rollers are forced into engagement at a pre set level of
load. This was embodied in the model and closure of the solution was obtained
by the load meeting the following criterionZ x2

x1

p · dx ¼ L ð9Þ

Solution procedure
Calculations have been carried out for a rolling nip contact since this is free
from the additional complication of roughness and pressure waves travelling
through the nip as discussed in Hooke, 1999; Greenwood, 1999. Where sliding is
present, coupled with longitudinal roughness, the asperity on the rubber roller
surface is likely to be deformed and it will tend to a smoother surface, however
this is excluded from the current investigation. However, prior to this
investigation, the local deformation of the roughness profile when subjected to
a pure pressure loading was analysed using commercial finite element analysis
software. The roughness profile was entered as a sinusoidal function based on
data obtained from white light interferometry measurements of actual surface
roughness profiles from which indications of wavelength and amplitude were
derived. Pressure levels were used from experimental data on smooth rollers
(Lim et al., 1996) and the material properties of the rubber were determined
experimentally. The variables investigated using this system were the mean
rubber thickness, pressure, roughness amplitude and the roughness frequency.

In all the models, load was applied to the waveform surface such that the
pressure was normal to the rubber surface. For the section considered, the sides
of the rubber were constrained in only the X direction allowing for
compression, while the base was fixed in both X and Y as they are bonded to a
metal core.

Typical displacements computed suggest a change in the profile of 0.5mm
for a roughness depth of 50mm, the maximum percentage change in the profile
height for all the model cases was 1 per cent, essentially capturing the near
incompressible rubber property. The analysis shows that for the rubber
covering materials and surface profiles used within printing and roller coating
applications in which there is a near pure rolling action, the use of a fixed
roughness profile is applicable. For further details refer to Bohan et al., 2001.

Compatible with the derivation set out above, within the current
approximation an equivalent radius approach was used and the elastomer
was unwrapped as shown in Figure 2 where the boundary of the elastomer is
subdivided into a number of elements. The equivalent radius approach is
appropriate for narrow contact widths and has been shown not to significantly
affect the results (Dowson and Higginson, 1959). From the elastomer mesh the
fluid domain is applied over the nip contact, Xsa to Xb. Since this is sufficiently
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remote from the extreme ends of the elastomer, this will eliminate the effect of
structural boundary conditions on the simulation of this local fluid structure
interaction.

Numerical singularities can occur when a field point z0 is located at a node
where the integration takes place. These can be eliminated with the use of
corner factors and the techniques are indicated in Brebbia and Dominguez,
1989; Banerjee and Butterfield, 1981.

Consistent with the elastomer mesh, the fluid domain was solved over the
nip contact, Xa to Xb. Since this solution strategy accounts for roughness
directly by modification of the film thickness profile, the Reynolds equation
was solved within the scale of the roughness profile. The interaction with the
elastomer was then applied directly via local integration of the pressure field
and assigning the resultant force to the adjacent node on the elastomer surface.
This may include the data from multiple roughness wavelengths, Figure 3. To
achieve an accurate solution, the divisions for the pressure equation solution
must be appropriate for the roughness profile wavelength. This effectively
leads to a multi grid solution strategy and the sensitivity with respect to this
strategy will be explored within the initial numerical studies.

The solution of soft EHL contacts is particularly troublesome due to the
large deformation of the elastomer in response to the pressure field and this can
lead to large and diverging oscillation (Lim et al., 1996). Following extensive
previous development a stable strategy to handle this coupled system has been
established as

(1) Assign mesh division and calculate the roughness frequency;
recalculate the mesh division if the required nodal sub division is not
appropriate.

(2) Set an initial value for the engagement, h0, from this the Hertzian
pressure and the consequent deformation is calculated.

(3) Calculate the film thickness in the nip junction.

(4) Calculate the film pressure.

(5) Recalculate the deformation.

(6) If the deformation has not met the convergence criterion, then repeat
from stage (3) with the new deformation.

(7) Once the deformation criterion has been met, examine the load
equilibrium. If this is not met then appoint a new value for h0 and repeat
from (2).

The convergence requirement for the analysis was set to be 0.1 per cent on the
pressure and indentation, with a minimum number of elements within the
roughness wavelength being 36. Overall solution convergence was generally
obtained within 500 iterations.
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Sensitivity of surface parameters on the behaviour in the nip
For the purposes of the analysis, a typical industrial printing configuration was
chosen and the relevant details are, shown in Table I. They relate to press
geometry and the material parameters and guidance on roughness parameters
has been derived from measurements. These have been used to show the
influence of roller surface roughness on the pressure profile, film thickness and
fluid flow rate through the nip. The latter is a main concern in printing and
coating application and this is in contrast with hard nip contacts where
pressure and film thickness is the focus of attention.

Roughness on the roller surface can be described in extreme circumstances
as either longitudinal or circumferential. These are shown in Figure 4 with the
longitudinal roughness (a) representing areas of roughness along the roller axis
while the circumferential roughness (b) represents the roughness peaks going
around the roller. The two types of roughness appear in different applications,
dependent on the machine finish applied to the roller. When treating roughness
effects directly it is convenient to represent the effect of roughness in both

Parameter Conditions

Load (Nm21) 1750
Roller speed (ms21) 0.25
Fluid viscosity (Pa.s) 3.0
Roller radius (m) 0.045
Rubber layer elastic modulus (Pa) 4.0e+6
Rubber thickness (mm) 8
Rubber roller roughness amplitude (mm) 50
Rubber roller roughness frequency (mm) 50

Table I.
Process parameters
used in the
sensitivity study

Figure 3.
Discretisation of the fluid
regime and connectivity
to the elastomer nodes
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directions by combining the solution routines for both the longitudinal or
circumferential analysis. A more formal treatment will require a two-dimensional
application of the Reynolds equation (Lunde and Tønder, 1997) and when
coupled with a deformation analysis, this will again be computationally
prohibitive.

Longitudinal roughness
Initially a sensitivity analysis was carried out to evaluate the number of nodes
required within each roughness wavelength. The consistency of the results on
the pressure, film thickness and flow were evaluated and the results from the
flow analysis are shown in Figure 5. The flow was used since this combines
both the pressure and film thickness and was the most sensitive parameter
with which to optimise the nodal frequency. This work showed that the
minimum number of fluid elements within a roughness wavelength should be
36 to obtain a reliable result as well as enforcing local mass conservation. This
was used for all subsequent analysis.

The pressure distribution throughout the nip contact shows significant
effects for changes in the roughness wavelength, Figure 6, with the effects
increasing through the contact. As the wavelength of the roughness increases,
noticeable pressure fluctuations are set up in the contact and progressively
larger pressure perturbations are predicted. In addition, these increased
perturbations lead to some change in the rupture point at the outlet from the
contact, particularly at the longer wavelength.

Recent work (Hooke, 1999), primarily on hard narrow contacts, has focussed
on relatively long wavelengths, leading to only 5 to 10 complete wavelengths
through the contact. The results in Figure 6 show that the profiles obtained
under these conditions may not be representative of those found in many

Figure 4.
Schematic of roughness
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printing applications where the wavelength of the roughness is much smaller
and the contact is significantly wider.

The main purpose of the analysis is to focus on the nip pumping capacity
that combines both pressure gradient and film thickness components.
Although the roughness profile has an impact on the pressure profile, it may be
more appropriate to present averaged (or smoothed) profiles, particularly
where the roughness wavelength is short. Thus to aid interpretation of the
influence of roughness on the performance through the nip, the pressure and
film thickness profiles have had a smoothing function applied. In the analysis,

Figure 5.
Multi-griding sensitivity

Figure 6.
Pressure distribution for
changing wavelength:
mean roughness
amplitude 50mm
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smoothing combines all the data over a single wavelength and provides an
average pressure or film thickness at the mean x co-ordinate of the data that
has been analysed.

The roughness amplitude has a large effect on the film thickness profile,
Figure 7. The pressure profiles were not modified substantially with only a
small increase in maximum pressure, less than 1 per cent. The profiles clearly
reflect the constant level of load application demonstrating no marked
deviations. In contrast, as the roughness increases the mean film thickness
increases, but maintains a consistent form. However, analysis of the actual (non
smoothed) film thickness profiles showed that while the mean thickness
increases, the minimum gap through the contact decreases. The consequent
impact on flow through the nip will be highlighted below.

The impact of changes in the roughness wavelength and phase have also
been explored (Bohan et al., 2001). These parameters induce only small changes
to both the mean pressure and film thickness profiles, the largest differences
are apparent for the maximum pressure encountered in the nip contact. The
averaging for the longer wavelengths showed quantization errors due to the
length of the cycle compared to the overall nip contact.

The changes of flow rate with the roughness parameters are shown in
Figure 8 where clearly roughness amplitude has the most dramatic impact
through reduction in flow. This is contrary to what may be expected based on

Figure 7.
Pressure and film

thickness variations with
roughness amplitude
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the average film thickness that increases with roughness, whereas the minimum
film thickness reduces. This confirms that the minimum film thickness
determined by the nominal thickness and roughness in the contact determines
the pumping capacity. These result compare directly and favourably with the
trends for transverse roughness presented in Patir and Cheng, 1978 where the
flow factor drops off as the ratio of roughness amplitude to mean film thickness
increases. The remaining parameters of wavelength and phase have negligible
impact on the pumping capacity within the nip.

Circumferential roughness
Using a direct modelling approach, the treatment of circumferential roughness
as shown schematically in Figure 4 is not straight forward. In this work, it has
been tackled by dividing the roller into slices through the diameter and solving
the governing equations of Soft EHL on the slice. Two extreme scenarios exist,
where there is positive clearance in which hydrodynamic deformation is
neglected, and where there is complete engagement. Where a clearance gap
exists, this infers the neglect of any lateral flow and combining solutions
having different minimum film thickness, dependent on the surface profile and
slice location. For the loaded condition, the film thickness is determined from
the nip analysis modified according to the roughness amplitude. The behaviour
has been explored for the case of the sinusoidal profile shown in Figure 9 and
the physical parameter settings defined in Table I. For these extreme cases, the

Figure 8.
Flow rate changes with
roughness amplitude
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nip width will vary relative to the film thickness, representing flooding for
a thin film and starvation in the case of a thick gap. The choice of an
appropriate setting is therefore not straightforward and strictly requires a
mass balance on the flow entering the nip coupled with its impact on pumping
capacity to estimate a formation position. This requires a two dimensional
representation of the film that is outside the scope of the present analysis and
therefore contact width will need to be estimated as an input variable to the
analysis.

Numerical models evaluating the nip performance for a pair of rigid rollers
in close contact was carried out. This sensitivity of the system for the roller gap
between 1 and 10 microns showed the flow was dominated by the Couette
component and minimum film thickness, the gap between the two rollers. The
degree of starvation of the contact (prescribed by the contact width) was found
to have minimal effects on the flow through the nip.

For the case of engagement, initial calculation was performed for a smooth
surface. This gave an engagement (h0) of 250mm and this has been used as the
datum. Altering this by the roughness amplitude then simulates the surface
roughness effect. This necessitates a change in the solution sequence presented
above, with the load being the variable altered while the engagement is now
fixed.

For a change of 50mm engagement, the most significant changes occur in the
pressure profile and the consequent film width, Figure 10. As the engagement
is reduced the contact width reduces and the maximum pressure in the nip also
reduces. However, there is much less impact on the final film thickness in the
nip, even though the roughness amplitude is 20 per cent of the engagement.
There are minor effects such as the point of minimum fluid film thickness
moving forward towards the centre of the nip while also increasing, but only by
a very small amount.

The results indicate that the circumferential roughness has a much greater
impact on the pressure profile than the longitudinal roughness, although this
result is likely to be mitigated if a two dimensional film analysis is applied. The
most significant result is that the final film thickness profile is not affected
significantly by roughness and the pressure profiles retain a similar form.

The impact of the different engagements on flow rate is shown in Figure 11.
As expected, as the engagement between the two rollers is increased, the flow
rate decreases and conversely. The most important result is that the overall

Figure 9.
Schematic of a rough

roller surface
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impact of circumferential roughness on nip pumping capacity is likely to be
small. This is also supported by noting that the ratio of film thickness to
roughness is typically 5 for which the effect on flow factor in the film is small
(Patir and Cheng, 1978). This is particularly fortuitous since the rubber rollers
are generally finish machined by grinding, giving a roughness profile that is

Figure 10.
Pressure and film
thickness variations with
varying nip gap

Figure 11.
Flow rate changes with
varying nip gap
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mainly circumferential. The result implies that achieving a fine surface finish
in the circumferential direction may not be so important with respect to
pumping capacity within the nip. In comparing longitudinal and circumferential
roughness effects, the results indicate that there are significant differences for
equal changes in roughness amplitude. Longitudinal roughness changes will
affect the flow rate to a much greater extent, with more than double the
reduction in pumping capacity in the nip.

Modelling actual roughness profiles
The roughness definition, equation (7), has been incorporated such that it can
be replaced with an actual roughness profile recorded digitally from a roller
surface. To illustrate this, the roughness of a typical surface was measured
using white light interferometry, with a measurement area of 1 mm side
dimension. This yields roughness data in both circumferential and longitudinal
directions. According to Figure 5, the frequency of the roughness profile
effectively defines the discretisation of the fluid domain. To capture the varying
frequency of the local surface roughness requires a structural discretisation
that adapts to the local roughness wavelength and where high frequency
components are present this will lead to a very fine discretisation and
consequently long computation times. In this analysis, a mask of wavelength of
50mm was applied to the roughness profile and in accordance with Figure 5,
this was divided into 36 increments, effectively dividing the trace into 1.36mm
increments. Digitising the surface trace gave the roughness profile displayed in
Figure 12 and because the contact nip exceeds 1 mm, this profile group was
then repeated six times over the contact width. On a local basis, the film
gradients are large and these may have an impact on the flow within this

Figure 12.
An actual surface
roughness profile
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microscopic region (Lunde and Tønder, 1997). Strictly accurate simulation will
require solution of the Navier Stokes equation within the region and it is
beyond the capability of currently available computation to extend this over
the contact width.

When subjected to a load of 1750 Nm21 the consequent pressure and film
thickness profiles are shown in Figure 13. In performing this analysis, no
numerical stability difficulties were encountered. When compared with Figure 6
and Figure 7, the generic characteristics such as film width, pressure level and
clearance profile remain closely similar. However, differences in detail are
present, most specifically in the pressure profile where a smooth excursion to a
maximum value is absent. The flow rate through the nip contact is reduced, by
a similar amount to that calculated for the longitudinal roughness amplitude of
30 microns. This indicates that it is the total range of the roughness profile, “Rz”
and not the “Ra” that is the key factor in relating the simplified sinusoidal
roughness to the real roughness values.

Conclusions
A fast and computationally efficient model including roughness effects has
been developed for a soft elastohydrodynamic contact lubricated using a
Newtonian fluid. This is capable of assessing both axial and circumferential
sinusoidal roughness profiles and it can also quantify the effects of real rough
surfaces. The numerical analysis couples the solution of the Reynolds equation
and those of the elastomer and incorporates the roughness profile directly
within the film thickness profile in the Reynolds equation. A sensitivity study
has been completed to establish the impact of roughness on the film thickness

Figure 13.
Pressure and film
thickness profiles for the
actual roughness profile
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and pumping capacity within the nip. The following conclusions can be drawn
from this work.

. A multi gridding technique was found to work successfully, linking the
hydrodynamic pressure to elastomer deformation and a sensitivity study
confirmed that for a sinusoidal roughness profile, a minimum of 36 fluid
nodes is required within each roughness wavelength.

. For longitudinal roughness and a fixed loading level, amplitude has the
most significant impact on the mean film thickness. However, the flow
rate through the nip is governed completely by the local minimum film
thickness and not its averaged value. Therefore, increasing the roughness
results in a significant decrease in the flow rate. Roughness wavelength
only affects the pressure profile, with increased response at the longer
wavelengths when waviness exists.

. The effect of circumferential roughness on final film thickness was found
to be negligible and consequently had only a small impact on the
pumping capacity within the nip.

. For a longitudinal roughness and the incorporation of real surface
topography the generic form of the pressure and film thickness remain
relatively unchanged, however on a local basis it has a most significant
impact on the pressure that is generated within the nip.
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Abstract A semi-implicit Taylor-Galerkin/pressure-correction algorithm of a transient finite
element form is applied to analyse the flow instabilities that commonly arise during reverse-roller
coating. A mathematical model is derived to describe the solvent coating applied to the underside
of the sheet, assuming that the lacquer is a Newtonian fluid and considering the flow between
application roller and foil. Here, we have investigated the effects of temporal instabilities, caused by
adjustment of nip-gap width and foil-position, extending our previous steady-state analysis. Foil
shifting is found to have a significant influence upon pressure and lift on the foil, drag on the roller,
and free coating profiles. This would result in process instabilities, such as chatter and flow-lines. In
contrast, nip-gap adjustment has no influence on the coating finish.

1. Introduction
This work addresses the reverse-roller coating between an application roller
and a sheet-foil. The study of roller-coating with free-surfaces is an important
topic that commonly arises in many industrial areas, particularly those
associated with the production of tape, film and printing situations. Over the
past two decades, roller-coating processes have been analysed extensively,
involving experimental, analytical and computational studies. Forward roller-
coating has attracted the attention of many research groups. Forward
roller-coating and reverse roller-coating processes are distinguished by
counter-rotating and co-rotating moving rolls, respectively. The ultimate aim of
such procedures is to deposit a thin uniform layer to a continuous flexible
substrate. There is little reported in the literature concerning reverse roller-
coating between foil and roller, taking into account start-up behaviour and
time-dependent instabilities. Hence, we briefly comment upon related studies.

Cohu and Magnin (1997) conducted experimental investigations into
forward roller-coating of Newtonian fluids between deformable rolls. These
authors observed that the decrease of the thickness of a rubber cover on a roller,
below a critical value, tends to decrease the coating thickness significantly.
Based on forward roller-coating Carvalho and Scriven (1997a) have argued in
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their numerical work, that the upstream free-surface touches the top roll, and
air is trapped between the roll surface and the coating liquid. Consequently, the
coated film that is delivered is defective. Various flow states are described, both
metered and premetered, by moving the rolls apart and bringing them together.
As the rolls are pushed together, the gyre moves upstream towards the inlet
plane. These authors have replaced the fixed inlet film thickness condition with
a weighted kinematic residual, which guarantees that the flow is normal to the
inlet boundary in some averaged sense.

Carvalho and Scriven (1997b) conducted a similar study, where the stability
of the given system to transverse perturbation is analysed theoretically,
numerically and experimentally. A mathematical model is presented to predict
the critical capillary number for the onset of ribbing, concluding that roll cover
deformation alters the wavelength of the ribbing pattern. Roll cover softness is
related to increasing the solids elasticity number. Increasing the elasticity
number of the soft roll cover, largens the wavelengths and diminishes wave
numbers, and this stimulates a faster increase in instability modes. The
consequence is a larger ribbing wavelength and the retardation of the levelling
rate. To obtain a desired coating thickness, an appropriate criterion must be
selected to pinpoint the choice of roll covers.

Fourcade et al. (1999) investigated a coating operation of a reverse roller-
coating process between two rollers. The main attention is focused on the
deformation of the elastomer on the coated roll. The pressure is reported to
increase in the converging section of the gap, and reaches its peak slightly to
the left of the contact point of the rollers. The largest deformation of the
elastomer cover of 70mm is observed to occur at the location where the
pressure reaches a maximum. The lower the gap size, the higher the pressure
peak that is observed. Chen and Scriven (1988) chose to set the inflow rate
based upon the incoming liquid layer, treated as a plug flow following
Benjamin (1994). According to Benjamin, in meniscus coatings, the flow is
always pre-metered and, therefore, imposing a velocity profile at the inflow
boundary is a satisfactory boundary condition.

One difficulty with computer modelling of such coating scenarios lies in the
treatment of moving free-surface problems, accommodating kinematic and
dynamic boundary conditions on the free-surface and the simultaneous
calculation of its position. For the last two decades the finite element method
has played an important role in simulating the flow of fluids subject to free
surfaces. Literature of relevance on this topic can be found in (Keunings, 1986;
Sizaire and Legat, 1997; Tanner et al., 1975; Silliman and Scriven, 1980; Saito
and Scriven, 1981; Ramaswamy, 1990; Hirt et al., 1974; Sato and Richardson,
1994; Chandio and Webster, 2001; Regalt et al., 1993). For details on this
issue we refer to our previous steady analysis (Chandio and Webster, 2001),
where attention is focused upon the flow patterns that result and variation in
pressure, lift and drag at various roll and foil-speeds. Here, a finite element
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simulation of the roller-coating process is presented, based on a semi-implicit
Taylor-Galerkin/Pressure-correction algorithm (Townsend and Webster, 1987;
Hawken et al., 1990; Carew et al., 1993). For free-surface prediction, we use
kinematic boundary adjustment with a mesh-stretching algorithm.

The main purpose of the present work is to provide a description of reverse
roller-coating flows, accounting for the parameters affecting the coating
process, and, in particular, those of most practical significance. Major attention
is focused upon flow instabilities, seeking to investigate transient effects and
the influence these have upon typical processing instabilities. Various nip-flow
conditions are considered, to take into account some leakage at the nip and to
provide consistent local settings. The effects of such leakage upon the flow are
determined. In particular, temporal variations between leakage and no-leakage
states are simulated. Finally, temporal foil-shifting is investigated. Foil-shifting
is invoked in two distinct forms: first, via global uniform shifting, and second,
through more local adjustment. Results are interpreted through pressure, lift
and drag, quantified locally, and through the influence of such temporal
fluctuations upon the free-surface shape of the lacquer coating.

2. Problem specification and governing equations
The isothermal and two-dimensional coating flow of Newtonian liquid is
considered. The system consists of a roller of radius r1, rotating at speed Uroll,
applying a coating to the underside of the alloy sheet of thickness Gðx; tÞ. The
sheet rests on both the roller and the thin film of fluid trapped between the
roller and the sheet. The sheet moves with speed Ufoil in the horizontal direction
(negative x ) and the problem is posed in a Cartesian frame of reference. A
schematic diagram of the flow is illustrated in Figure 1.

The isothermal flow of Newtonian fluid is governed by equations for the
conservation of mass and transport of momentum. In the absence of body
forces, the system may be expressed in the form

r
›u

›t
¼ 7 · t2 ru ·7u 2 7p ð1Þ

7 · u ¼ 0 ð2Þ

where r is the fluid density, t is the time, u(x,t ) is the fluid velocity and p is the
isotropic pressure. For Newtonian flows, the stress t is defined via a constant
viscosity m, and the rate of deformation tensor D,

t ¼ 2mD ð3Þ

D ¼
L þ Lt

2
and L ¼ 7u: ð4Þ
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For a Newtonian fluid, the Navier-Stokes equations can be recovered, by
recourse to the continuity equation (2),

r
›u

›t
¼ m72u 2 ru ·7u 2 7p ð5Þ

where m72u is a diffusion term.
For conciseness and convenience, adopting characteristic scales on velocity,

U (standard foil speed), length, L (steady-state coating thickness, no leakage)
and viscosity, m, we may define non-dimensional variables u ¼ Uu* and p ¼
½mU=L�p* : Hence, we may define an equivalent non-dimensional system of
equations to (2) and (5), discarding the * notation for clarity of representation,

Re
›u

›t
¼ 72u 2 Re u ·7u 2 7p;

7 · u ¼ 0;

ð6Þ

where the non-dimensional group Reynolds number is defined as Re ¼ rUL=m:
For the solution of the given system of governing equations, both initial and

boundary conditions are required. Initial conditions can be formed by
prescribing initial values for the primitive field variables at t ¼ 0;

Figure 1.
Schematic flow diagram
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U ðx; tÞ ¼ u0ðx; 0Þ;

pðx; tÞ ¼ pðx; 0Þ:

Conditions at the free-surface require a normal constraint,

p þ tnn ¼ 2p0 þ ssb; ð7Þ

whilst the absence of friction ensures the tangential constraint,

tnt ¼ 0: ð8Þ

Here, tnn, tnt are normal and tangential stress components, respectively, p0 is
atmospheric pressure and p local pressure, ss is a surface tension coefficient
and b is the mean curvature of the free-surface (Saito and Scriven, 1981).
Remaining boundary conditions are taken of no-slip on roller and foil, uniform
flow at inlet on the roller and outlet on the foil. In a no-leakage state, there is
vanishing flux across the nip. No-slip boundary conditions for the flow on solid
surfaces are taken as:

on foil : Ux ¼ 2U foil; Uy ¼ 0;

on roller : Ux ¼ U roll cosu; Uy ¼ U roll sinu;
ð9Þ

where U roll ¼ Rv;R is the radius and v the angular rotation rate of the roller.
The evolving position of the free-surface, is unknown apriori and must

therefore be computed as part of the solution. In this respect, we appeal to the
kinematic boundary conditions (Keunings, 1986). On flat free-surface
boundaries (lines at constant y) this leads to:

On flat free-surface boundaries (lines at constant y ):

›h

›t
¼ 2Ux

›h

›x
þ Uy; ð12Þ

On the curved meniscus boundary section (lines at fixed azimuthal angle u
setting):

›h

›t
¼ 2Uq

1

r

›h

›q
þ Ur ð11Þ

A combination of both equations (10) and (11) is required for the current flow
problems.

3. Finite element analysis
A Taylor-Galerkin algorithm is used to solve the governing equations (6).
This involves a two-step Lax-Wendroff approach, based on a Taylor series
expansion up to second order in time, to compute solutions through a time
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stepping procedure. A two-step pressure-correction method is applied to handle
the incompressibility constraint. Employing a Crank-Nicolson treatment on
diffusion terms, produces an equation system of three fractional-staged
equations (Hawken et al., 1990). In stage one a non-solenodal velocity field
u n+1/2 and u* are computed via a predictor-corrector doublet. The resulting
mass-matrix bound equation is solved via a Jacobi iteration. With the use of u*,
the second stage computes the pressure difference, pnþ1 2 pn; via a Poisson
equation, and the application of a direct Choleski solver. The third stage
completes the time step loop, calculating the end-of-time-step solenoidal
velocity field u n+1, again by a Jacobi iterative solver. Full details upon this
implementation may be found in Townsend and Webster (1987) and Hawken
et al. (1990).

Following the notation of Cuvelier et al. (1986), the velocity and pressure
fields are approximated by Uðx; tÞ ¼ U jðtÞ fjðxÞ and Pðx; tÞ ¼ P kðtÞ ckðxÞ;
where U and P represents the vectors of nodal values of velocity and pressure,
respectively, and fj are piecewise quadratic and ck linear basis functions on
triangles.

The fully-discrete semi-implicit Taylor-Galerkin/pressure-correction system
of equations may be expressed in matrix form:

Stage 1a:
2Re

Dt
M þ

1

2
S

� �
U nþ1

2 2 U n
� �

¼ { 2 ½S þ Re N ðU Þ�U þ LTP}n

Stage 1b:
Re

Dt
M þ

1

2
S

� �
ðU* 2 U nÞ ¼ ð2½SU þ LTP�n 2 ½Re N ðU ÞU �nþ

1
2

Stage 2 KðP nþ1 2 P nÞ ¼ 2
2

Dt
Re LU*

Stage 3
Re

Dt
M ðU nþ1 2 U* Þ ¼

1

2
LTðP nþ1 2 P nÞ;

ð12Þ

where M, S, N(U ), L, and K are consistent mass matrix, momentum diffusion
matrix, convection matrix, pressure gradient matrix and pressure stiffness
matrix, respectively. With elemental fluid area dV, such matrix notation
implies,

Mij ¼

Z
V

fifj dV;

N ðU Þij ¼

Z
V

fi flU l
›fj

›x
þ flU l

›fj

›y

� �
dV;
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ððLkÞijÞ ¼

Z
V

›fj

›xk

dV;

Kij ¼

Z
V

7ci 7cj dV;

Sij ¼

Z
V

7fi 7fj dV:

For the computation of the free-surface, we have used the kinematic boundary
conditions (Keunings, 1986; Sizaire and Legat, 1997). These can be expressed in
a general discrete variational form:

Stage 4

1

Dt

Z
G

ðci þ ða1 þ u:7ciÞÞðck þ ða2 þ u:7ckÞÞDHnþ1
k dGF

2

Z
G

ðci þ ða1 þ u:7ciÞÞu:7ckH
n
kdGF

ð13Þ

adopting notation for time-step, Dt, interpolant, H n(x ), interpolating functions,
ck(x ), and nodal solution increment, DHn

k ;

H nðxÞ ¼ Hn
kckðxÞ and DHnþ1

k ¼ ðHnþ1
k 2 Hn

k Þ: ð14Þ

The scheme expressed in (13) is quite flexible, where we define generalized
scalar factors ai to switch between Galerkin and Streamline-Upwind Petrov-
Galerkin (SUPG) (explicit and implicit) schemes, as and when required. A free-
surface boundary segment is indicated by GF, over which quadrature may be
established. In equation (13), the generalized form of convective term is
represented, subsuming either equation (10) or (11), depending upon the
particular boundary segment under consideration. We have found it most
effective to use a1 ¼ ah (an SUPG parameter3) and a2 ¼ Dt=2 to recover
an implicit SUPG scheme. Then, both ci (and ck) are taken as linear functions
on straight-sided boundary element sections.

4. Numerical results and discussion
A standard foil-speed setting of one unit and roller speed, 90 per cent of foil-
speed, constitutes the base scenario around which solutions are sought. Results
are reported in non-dimensional form for convenience of representation. The
mesh used is displayed in Figure 2, with 2925 nodes, 1302 elements and 6662
degrees of freedom. A typical steady-state flow pattern is shown in Figure 2d,
represented in space-filled motion blur format, based on the velocity vector
field (Chandio and Webster, 2001) (colour implies speed magnitude; red-fast,
green-medium, blue-slow). In this section, we are particularly interested in
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pressure maxima across the nip region (see Figure 2c), lift is considered along
the foil surface and drag on the roller. For a Newtonian fluid, the lift (Lfoil) and
drag (Droller) are given through the following expressions:

Lfoil ¼

Z
Gfoil

{ 2 p sinuþ txy cosuþ tyy sinu} du ¼

Z
Gfoil

Lf du ð14Þ

Droller ¼

Z
Groller

{ 2 p cosuþ txx cosuþ txy sinu} du ¼

Z
Groller

ð2DRÞ du ð15Þ

where t ¼ 2mD; so that Lf and DR are distributional quantities on the
respective surfaces (unassigned where possible)

Results are categorised into different sections. The first deals with the
variation in nip velocity and pressure profile conditions. This is in order to
choose a suitable velocity profile at the nip, prior to investigating temporal

Figure 2.
Finite element mesh
sections and flow
representation
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changes. A second section is devoted to the study of temporal changes in
leakage, but without foil-shifting. This allows us to interpret transient
variations of pressure at the nip. Global foil-shifting at steady-state is studied
in a third section. Lastly, we consider foil-shifting locally and globally in time.
All settings discussed are concerned with nodal positions N2, N4 and N5. No-
slip boundary conditions (9) apply on nodes N1 and N3, see Figure 3. In the
standard no-leakage setting, fluid is not permitted to traverse through the nip-
gap. So fluid travels along the roller and is carried away by the foil. The
parameter of importance here in the numerical algorithm, is the time-step (Dt ).
This is chosen for pragmatic reasons, to satisfy accuracy and stability
constraints, as 0.005 units.

4.1 Variation in nip flow conditions
Prior to analysing flow instabilities, it is instructive to choose an appropriate
velocity profile to allow a degree of leakage at the nip. This automatically
implies flow, out through the nip, that must be counterbalanced by
inflow/coatoutlet-flow. Temporal adjustments to nip boundary conditions are
consigned to later sections. There is no flow (leakage) through the nip under
standard settings. No-slip boundary conditions apply on the foil and roller
nodes at the nip, see Figure 3a. A typical schematic diagram of plug and
Couette flow is shown in Figure 4 (vanishing vertical velocity). Natural
unconstrained boundary conditions are referred to as free, and strong
constrained boundary conditions as fixed. In Figure 5, various examples of
horizontal velocity component profiles of plug and Couette-type are displayed
over a fixed nip-gap width. At nodal positions N2, N4, N5 corresponding values
are charted in Tables I and II. For stable numerical calculations, one has to treat
the severe conditions at the nip with care. It is found necessary to constrain
some solution variables. Imposing either opposing plug (setting I) or Couette
flow profiles (setting II and III), provides results (pressure, lift and drag) that lie
close to the standard no-leakage setting. Couette flow setting III, is held to be
more physically representative, see Figure 5c and Tables I and II.

Figure 6 shows the distributional pressure (Pf), lift (Lf) along the foil and
drag (DR) along the roller. The section of the foil considered would amount to a
distance of 500 units from the nip. The maximum lift around 82 £ 103 units, is
observed on the nip outlet with the Couette flow setting (see Figure 5c). With
the standard no-leakage setting, a negligible leakage is observed through the
nip-gap, inherent to the FE discretisation, and the lift value is 63 £ 103 units.
With a Couette flow setting, a larger degree of leakage is allowed that generates
larger lift than the standard setting. Differences in total lift across the various
settings are practically identical, as shown in Table II. As pressure decreases,
lift and drag also decrease, see Table II. The drag on the roller is fairly small
along most of the roller-length, see Figure 6. The distributional drag on the
roller, DR, is negated to imply physical meaning through magnitude, as with
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pressure. DR first rises along the roller travelling towards the nip, then declines
around 100 units from the nip, dropping into negative values close to the nip.
The sudden kinematic changes at 10 units from the nip cause a rapid rise in DR,
where large shear-rates are observed (Chandio and Webster, 2001). Such
negative drag values can be attributed to the increase in cross-stream flux close
to the nip (that has generated negative shear-stress) before it merges with the
imposed Couette-flow profile. These sharp adjustments into negative drag
values vanish as nip-gap width increases, see Figures 9–11. Since these
changes are purely local and are restricted to the nip region, so the free-surface
remains unaffected. Maxima of forces in Table II, are shown over Nipoutlet and
Nipfoil regions, defined in Figure 3b.

Figure 3.
Nip mesh and velocity
conditions
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4.2 Temporal adjustment of nip conditions
The main purpose here is to evaluate the effect of temporal leakage adjustment
upon the pressure and lift acting on the foil, with a fixed nip-gap width. This is
performed through variations in conditions across the time steps with a
corresponding sensitivity analysis. The pressure variation is observed at
various time step setting protocols, by switching between standard setting (no
leakage) and Couette flow setting (leakage setting III, see Table I) in time. This
applies to all leakage settings adopted below. Pressure, lift and drag reflect
almost identical results, to those at standard settings, see Figure 7 and Table
III. With temporal adjustment of nip conditions, but without foil movement, we
observe in Figure 8, a trend towards a constant periodicity (regular frequency)
in the temporal change of the pressure at the nip. There is only minimal
pressure variation and this is local to the nip. Hence, there is hardly any
influence over the coating free-surface profile on the foil.

4.3 Global foil-shifting
Thus far, we have observed that there is only minimal pressure variation and
this is local to the nip. Hence, foil/meniscus pressure profiles remain unaffected.
Next, the effects of foil-shifting are investigated in response to flow-
instabilities. Nip-gap size is increased by shifting the foil vertically upwards,

Figure 4.
Schematic diagram of

(a) plug and (b) Couette
flow velocity profiles

at nip
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uniformly across its length, relocating at a specified new nip-width, taken as a
function of time-step variation.

4.3.1 Shift and solve to steady state. The variation of leakage is considered
at various nip-width settings. At 2 per cent nip-width, the pressure peak at
the nip has decreased by 83 per cent to that of the standard setting result.
Correspondingly, there is a decline of similar form in lift. However, these
settings have no significant influence on the drag, see Table IV. It is to be noted

Figure 5.
Flow pattern with
various nip
velocity/pressure
settings

U
Settings N2 N4 N5

Standard 0 0 0
I (constrained u) 0 UN1 UN3

II (constrained u at N4, N5) 21.8 Ufoil(ho2y ) Uroller(ho+y )
III (constrained u) 0 Ufoil(ho2y ) Uroller(ho+y )

Table I.
Nip conditions;
velocity

Pmax

Settings Nipoutlet Nipfoil Lift Drag

standard 160 160 1311 1.30
I 152 150–121 1286 1.30
II 85 95–102 1286 1.30
III 156 153–123 1298 1.30

Table II.
Nip conditions;
maxima in P, lift (on
foil) and drag (on
roller), values £ 103

units
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Figure 6.
Distributional pressure

(Pf) and lift (Lf) along foil,
and drag (DR) on roller,

ðvalues £ 103Þ:
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Figure 7.
Temporal leakage
adjustment: settled
distributional pressure
(Pf) and lift (Lf) along foil,
and drag (DR) on roller,
values £ 103; 10l210nl,
true for all protocols
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that drag is a trivial quantity in the present study. Locally to the nip, lift
decreases by 68 per cent and drag by 60 per cent. This is shown to be largely
restricted to the nip region, see Figure 9. Similarly, at 3 per cent nip-width,
pressure maxima at the nip have decreased by 90 per cent and lift by 78 per
cent, see Table IV.

Such global foil shifting, considered to steady state in time, hardly affects
the outlet/meniscus flow. This is entirely reasonable as the adjustment incurs
such minor leakage, which hardly reduces the flow rate at the outlet, i.e. coating
on the foil. We may discern the influence of nip-width adjustment, prior to
transient fluctuations. That is, in contrast to the Couette flow studies of section
4.2, where an increasing degree of leakage also applied, but imposed for a 1 per
cent fixed nip-gap width. The findings are broadly similar with localized force
balance adjustments restricted to the nip, so that the free-surface remains
unaffected. Hence, an important point to note is that changes imposed in nip-
gap width have influence around the nip region only.

4.3.2 Temporal adjustment of foil position. Here, foil vibration is performed
at set time-steps intervals. So, for example, the foil is allowed to move up/down
by creating/removing a gap between roller and foil, after every N alternate
time-steps. Effectively the foil is either rising off/laying on the roller. Nip
conditions that switch between different foil positions are taken as of sub-
section 4.2. The results presented below are associated with data sampled when
the foil is in a shift-up mode, and are compared with the standard setting. The
foil is shifted at different time-step protocols. The drop of pressure is related
not only to nip-width, but also to foil shift-up time. Increment in foil shift-up
time retards the pressure and lift considerably, see Table V. It is found helpful
to consider integrated quantities on surfaces in their contributions per unit area
(distributional), to appreciate their spread. As regards distributional

Figure 8.
Temporal leakage

adjustment, pressure
at nip node N1,

values £ 103
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Figure 9.
Global foil shifting,
steady state:
distributional pressure
(Pf) and lift (Lf) along foil,
and drag (DR) on roller,
values £ 103:
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pressure/lift on the foil and drag on the roller in a no-leakage (nl) state, it is
noted that, the greater time-step variation protocol (100l2100nl) does attain a
level, close (within 10 per cent) to that of the standard nl-setting, see Figures 10
and 11. Pressure profiles, are illustrated in contrast to the standard setting. The
decline and rise of pressure is clearly exhibited, at leakage (Couette velocity
profile) and no-leakage (standard setting) states, across time-step variations,
see Figure 11. On average, pressure and lift decrease, with increasing nip-
width, see Table V.

Temporal variation in pressure is sampled at a single point, on the foil, at the
nip region, see Figure 12. Pressure is observed to be a direct sensor of lift, and
hence, the choice to plot this quantity. The rise and fall of pressure is clearly
apparent at alternate specified time-steps. Therein, we see regular periodicity in
pressure sampled at the nip. The sharpness of the profiles, over an individual
period is associated with high frequency protocols. At low frequency, this
sharpness is dispersed, such as with the 100l2100nl protocol. This is so, even
with increase in nip-gap width cases.

We comment that by employing an appropriate nip-width setting, one can
control the threshold level of pressure. This may be used as a mechanism to
constrain lift, which mitigates foil-vibration. The plots of Figure 13 for Pmin(t)
in a leakage-state, for 2 per cent, 3 per cent and 5 per cent settings, at high
and low frequency protocols, indicate corresponding settling times (to a steady-
position). These are more rapid at larger nip-widths. Permitting a leakage/no-
leakage pattern over a specified time-step variation sequence generates foil
vibration, which creates oscillations at the flow-outlet free-surface region on the
foil. When the roller rotates at a certain speed, the fluid exerts a potentially
increasing force upwards on the foil, and the lift/pressure forces reach a
maximum level. This level is sufficient to push the foil upwards, creating a
larger gap between the roller and the foil at the nip region. Accordingly, a small
degree of leakage may occur. The pressure/lift forces exerted by the fluid
subsequently diminish in time and have the effect of resettling the foil back
onto the roller. This is a transient (periodic) phenomenon. During the process of
foil shifting (up/down), one may equate and balance the respective flow rates
between in-flow, coat-outlet flow and nip-outlet flow. The film-layer thickness
varies, in a uniform manner, along its length. When there is no-leakage, the
required wet film thickness implies a flow rate balance between in-flow and
coat-outlet flow. When the foil rises off the roller, a minimal degree of leakage,
between 1 per cent–3 per cent of the coat-outlet, is allowed through the nip-gap.
This affects the wet film-thickness, reducing its thickness by the same order as
that of the leakage, so that, now the coat-outlet flow rate is decreased by the
leakage flow rate at the nip.

In Figures 14 and 15, free-surface profiles are given at 2 per cent nip-width
for the 100l2100nl protocol. Identical free-surface profiles are obtained for other
protocols. Wave patterns on the free-surface are apparent. The intensity of such
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Figure 10.
Global foil shifting,
temporal variations,
settled distributional
pressure (Pf) and lift (Lf)
along foil, and drag (DR)
on roller, values £ 103 at
L per cent nip-width of
coatoutlet, 10l210nl

protocol
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Figure 11.
Global foil shifting,

temporal variations,
settled distributional

pressure (Pf) and lift (Lf)
along foil, and drag (DR)

on roller at L per cent
nip-width of coatoutlet,

100l2100nl protocol
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instabilities is demonstrated in Figure 15 on the coat-outlet layer and at the
meniscus. These instabilities develop in time and reach a steady-state after
long time periods. Such effects onset at the meniscus and propagate towards
the coat-outlet region in time, see Figure 16. The amplitude of these oscillations
enlarge with increasing nip-width. In Figure 15 oscillations are apparent on the
free-surface. These would contribute to the final coating finish, rendering an
uneven coating layer. The film-width would vary as a consequence, along the
complete length of the sheet-foil. Over a leakage period, a slight decrease in the
coat-outlet thickness arises to compensate and conserve flow rate. Free-surface
profiles at meniscus and coatoutlet regions for various nip-width settings are
shown in Figure 16. In Figure 17, flow is presented in motion blur format at the
various times of Figure 16 on the coat-outlet. At steady-state, a layer of uniform
width is achieved, see Figure 17a. When the plate is allowed to move up
and down in time by adjusting a nip-gap width, film-thickness varies along

Force Nip-width 10up210reset 20up250reset 100up2100reset

Max Pnip 2% 31.5–57.6 37.8–102 11.5–113
3% 15.6–46.8 17.4–94.6 1.9–113
5% 2.2–38.6 8.5–88.8 23.2–113

Lift (on foil) 2% 407.5–805 408.3–1128 277–1186
3% 228.2–722 216.4–1096 136–1181
5% 49.4–649 37.5–1071 13.1–1181

Drag (on roller) 2% 1.13–1.33 1.14–1.31 1.27–1.31
3% 1.11–1.24 1.13–1.13 1.25–1.27
5% 1.08–1.06 1.11–1.14 1.11–1.13

Table V.
Foil shifting
(globally); temporal
force variations,
values £ 103 units

Nip-width % of coat-outlet Leakage Pnip Lift Drag

1% Nil 160 1311 1.301
2% 0.0044 27 424 1.308
3% 0.0067 16 289 1.247

Table IV.
Global foil shifting
to steady state;
maxima in Pnip, lift
(on foil) and drag
(on roller), values £
103 units

Lift Drag

Protocol P mean ampl. leakage. n.leakage. leakage. n.leakage

alternate Dt 157.9 0.05 1293 1296 1.279 1.305
10l210nl 156.8 0.25 1293 1296 1.278 1.305
20l250nl 157.3 0.55 1293 1299 1.278 1.305
50l250nl 157.8 0.75 1300 1309 1.279 1.279
100l2100nl 157.8 1.25 1300 1309 1.279 1.280
std. Setting 159.8 – 1311 1.30

Table III.
Temporal leakage
adjustment; P mean,
lift (on foil) and drag
(on roller),
values£ 103 units
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Figure 12.
Global foil shifting;

pressure ð£ 103Þ line
plots at nip node N1, L

per cent nip width
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Figure 13.
Global foil shifting;
pressure ð£ 103Þ line
plots at nip node N1,
leakage state Pmin(t )

HFF
12,4

396



the strip length. An appropriate criterion is required to constrain the foil
vibration, so that the pressure/lift generated remains within acceptable
operating levels. We speculate that this may be achieved by selecting suitable
leakage/no-leakage times.

4.4 Temporal foil shifting (locally)
The motivation here is to discern whether foil vibration, local only to the nip,
may have the same influence as that detected from global foil movement. Here,
we are particularly concerned with lift and the adjustment of free-surface
shape. The temporal solution response detected thus far, would indicate that
local foil vibration may stimulate similar surface-finish fluctuations.
Understanding the fundamental physical reasons behind such fluctuations is
our goal.

In the preceding sections, it is observed that, the level of forces is fairly low
along most of the foil/roller surfaces and rises significantly close to the nip
region. Hence, the foil is shifted vertically upwards, in a local fashion, so that it
takes up a linear slope of inclination within the nip region extending over a
fraction of the foil length (30 per cent, 10 per cent, 4 per cent). Nip conditions are
taken as of section 4.2. Maximum values of forces are charted below, and
compared against those of section 4.3.1 with standard settings. We observe
from Table VI and through Figures 17 and 18, that pressure and lift values,

Figure 14.
Global foil shifting; free-
surface profile- full view
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increase with decreasing length of the slope (approximating more closely to the
standard setting). It is the elevation of peak values that varies between
settings. The more local the foil shifting, the more elevated the peak
pressures reached.

In the comparison of local versus global shifting, it is observed that the
extent of disturbance from the nip coincides between global and local tests to
within 10 per cent of the foil-length from the nip. This is true in all variables
and for the standard no-leakage setting (i.e. time independent). Lift and drag
also decrease. It is observed that, despite these differences in forces, both global

Figure 15.
Global foil shifting;
free-surface profiles-
meniscus and coat-outlet;
2 per cent nip-width,
100l2100nl protocol,
zoomed view at different
time-steps
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and local settings have the same influence over the coat-outlet free-surface
region, see Figure 19.

5. Conclusions
Generally, it is noted that when fluid travels on a coating roller, which is
moving in the opposing direction to a foil, a pressure build-up will develop
against whichever surface is moving with the greater differential speed. Under

Figure 16.
Global foil shifting; free-

surface profiles,
meniscus and coat-outlet;
comparison at 2 per cent,
3 per cent and 5 per cent

nip-width, 100l2100nl,
zoomed view; times 1000,

2600, 4800 (time step
numbers)
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the present circumstances, it is generally the foil that moves with greater speed.
When the pressure build-up reaches a threshold, the foil will rise away from the
roller. This will create a widening of the gap (nip-width) between foil and roller.
As a consequence, there will be relief of pressure that will act to bring the foil
back down upon the roller. This sequence of events will generate temporal foil
vibration. In this regard, a major observation of the present study emerges.
Disturbances on the coatoutlet free-surface may be associated primarily with
foil-vibration, either of a global or local nature. These oscillations begin at the
meniscus free-surface region and propagate towards the coatoutlet region.
Vibration in the free-surface profiles has been demonstrated at different time-
step protocols, under various L per cent foil shifting, and in both leakage and
no-leakage states. It is observed that the disturbance ratio factor on the
coatoutlet free-surface is around 2 per cent for all leakage settings, once a settled
periodic state has been established.

Figure 17.
Global foil shifting;
coat-outlet free-surface
profiles, motion blur
format, different times
(t0, t1, t2, t3)

Force £ 103 units Global foil-shifting 30% foil_l 10% foil_l 4% foil_l (Standard nl)

Max Pnip 31.5–57.6 71.5–83 81.0–88 105–110 160
Lift (on foil) 408.– 805 833–917.5 1025–1081 1191–1458 1311
Drag (on roller) 1.13–1.33 1.21–1.36 1.24–1.36 1.11–1.35 1.301

Table VI.
Comparison
between global and
local foil-shifting, at
2 per cent nip-width,
10l210nl protocol
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Figure 18.
Comparison of settled

distributional pressure
(Pf) and lift (Lf) along foil,

and drag (DR) on roller;
values £ 103: global foil
shifting verses local foil

shifting (slope over 30
per cent of foil length)
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Figure 19.
Comparison of settled
distributional pressure
(Pf) and lift (Lf) along foil,
and drag (DR) on roller;
values £ 103: global foil
shifting verses local foil
shifting (slope over 4 per
cent of foil length)
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Viscoelastic computations of
polymeric wire-coating flows

H. Matallah, P. Townsend and M.F. Webster
Institute of Non-Newtonian Fluid Mechanics, University of Wales,

Swansea, UK

Keywords Coatings, Finite elements, Flow

Abstract This study considers both a single and multi-mode viscoelastic analysis for wire-coating
flows. The numerical simulations utilise a finite element time-stepping technique, a Taylor-Petrov-
Galerkin/pressure-correction scheme employing both coupled and decoupled procedures between
stress and kinematic fields. An exponential Phan-Thein/Tanner model is used to predict pressure-
drop and residual stress for this process. Rheometrical data fitting is performed for steady shear
and pure extensional flows, considering both high and low density polyethylene melts. Simulations
are conducted to match experimental pressure-drop/flowrate data for a contraction flow. Then, for
a complex industrial wire-coating flow, stress and pressure drop are predicted numerically and
quantified. The benefits are extolled of the use of a multi-mode model that can incorporate a wide-
range discrete relaxation spectrum to represent flow response in complex settings. Contrast is
made between LDPE and HDPE polymers, and dependency on individual relaxation modes is
identified in its contribution to overall flow behaviour.

1. Introduction
In the field of polymer coating of wires, experimental studies are extremely
difficult to perform due to the small size of the dies and minute volume of
polymer melt within the region of interest. This leads to the need for numerical
simulation as a predictive aid to optimise the process via die design and flow
modelling. This allows for the analysis of variation in certain key parameters,
without having to resort to trial-and error expensive and difficult experiments.
There are two basic types of cable or wire-coating die designs commonly
employed. These are represented schematically in Figure 1, and are termed
pressure and tube-tooling designs. In pressure-tooling, the melt is driven under
pressure making contact with the wire inside the die. In contrast, for tube-
tooling, the melt is drawn down by the motion of the wire and the melt is
extruded beyond the die. In both instances, the geometry is annular in cross
section. The setting of the flow geometry is found to be crucial in obtaining
optimal coatings.

There have been a number of studies that have addressed the modelling of
wire-coating flows; see for example Fenner and Williams (1967); Caswell and
Tanner (1978), Mitsoulis (1986); Mitsoulis et al. (1988); Huang et al. (1994);
Binding et al. (1996) for pressure-tooling, and Gunter et al. (1996); Mutlu et al.
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(1998a); Mutlu et al. (1998b); Mutlu et al. (1997) for tube-tooling. These have
provided some progress within the inelastic, non-isothermal and viscoelastic
regimes. In a wider flow and processing context, some recent attempts have
been made to embrace differential multi-mode simulations, see for example the
works of Baaijens (1994); Baaijens et al. (1997); Azaiez et al. (1996) and Gupta
et al. (1997). Such a multi-mode approach for differential constitutive models is
more costly, yet can provide a more accurate representation of the material
rheology. The present study addresses the significance of employing a multi-
mode, as opposed to a single-mode, differential constitutive modelling approach to
predict numerically the behaviour of tube-tooling wire-coating flows for two
polymer melts, low and high density polyethylene. We concentrate on the
quality and significance of numerical predictions attainable from multi-mode
approximations in contrast to single-mode alternatives. The modelling assumes

Figure 1.
Schematic diagram of

wire coating dies
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incompressible melt flow, isothermal conditions, no-slip within the die, and an
estimated location for the free-surfaces, see Refs. Mutlu et al. (1998a); Mutlu
et al., 1998b, Practical experience from the process itself provides this location.

We are concerned with two parts of the tube-tooling wire-coating process,
namely flow within the die itself and a draw-down flow beyond the die onto the
wire cable. The flow is generated by a pressure head and the dragging action of
the moving wire. This type of tooling design is prevalent for wide bore cables,
or outer coatings of multi-cable combinations. Cable speed is taken as
0.334 m/s. The main goal of modelling such a complex industrial problem is to
achieve process optimisation. This is governed typically by minimisation of the
flow-induced residual stress locked into the coating, and in addition, acceptable
levels of pressure-drop across the die. The flow response of the coating material
and the die design (Matallah et al., 2000) both have a role to play in this
optimisation procedure. Pressure-drop predictions provide some means of
correspondence between simulation and practice.

An exponential Phan-Thien/Tanner (PTT) differential constitutive model is
selected to represent the rheometrical behaviour of low and high density
polyethylene melts (LDPE and HDPE) in steady shear and uniaxial flow.
Typically, such material samples display both shear thinning and strain
softening properties and an exponential PTT model is capable of reproducing
such behaviour in qualitative form (Phan-Thien and Tanner, 1977; Saramito
and Piau, 1994). Simple shear and uniaxial flows are used to evaluate the PTT
parameter set (e , j ), for which a close fit to the experimental data must be
established. To calibrate pressure drops as a function of flowrate and compare
experimental with predicted observations, a nineteen to one axi-symmetric
contraction flow is adopted. For this flow, both single and multi-mode models
are implemented. Once optimality in parameter set is established, we turn
attention to tube-tooling flow and the multi-mode simulations for LDPE and
HDPE polymer coatings.

The numerical implementation is a Taylor-Petrov-Galerkin/pressure-
correction scheme that involves a finite element time-stepping technique
(Matallah et al., 1998), in conjuction with a recovery scheme to capture
continuous velocity gradients. Both decoupled and coupled numerical
approaches have been employed previously for a single mode analysis
(Mutlu et al., 1998a), where the results were found to be comparable. Here, only
coupled solutions are considered for single-mode computations. For efficiency
and pragmatism, multi-mode calculations are performed via a decoupled
approach. This strategy is supported by the fact that in many flows the
kinematics themselves do not vary significantly with variation of material
(Pearson and Richardson, 1983), and hence a reasonable approximation is a
linearisation of the system, adopting frozen coefficients and Picard iteration.
This implies segmenting the equations of the complete system into those for
stress and kinematics separately, computing each to a steady state with frozen
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coefficients. We note here that the choice of initial frozen kinematic fields are
taken as associated with viscoelastic and shear thinning behaviour. Such a
pragmatic approach is adopted similarly by others (see Schoonen et al. (1998),
but with fixed inelastic kinematics).

Single mode modelling is pragmatic, recognised as qualitative not quantitative,
and yet effective in terms of relatively low computational cost. A flowrate-
maximum shear rate relationship may be established for a particular material
and flow, such as within a contraction flow. Once this behaviour has been
determined, such knowledge may be employed to seek an acceptable
rheometrical parameter fit within a neighbourhood of the maximum shear rate,
referencing standard viscometric flows. This model specification may then be
utilised to predict behaviour in a more general complex flow, such as in a wire-
coating setting. To satisfy such criteria, single-mode modelling unfortunately
leads to continually having to adjust parameter fits to suit each different flow
problem (with flowrate). In this regard, preference shifts to the multi-mode
scenario. In contrast, multi-mode modelling with single choice of rheological
parameters provides a closer match to the shear viscosity data over a range of
shear rates. This facilitates consistent and wide ranging application for
complex flows without parameter adjustment. In addition it is possible in the
multi-mode context, to identify the contribution of each mode to the total stress
and hence determine the most dominant component.

We commence with a single-mode analysis for a Phan-Thien/Tanner (PTT)
model and consider the fitting of this model to the rheometrical data of Walters
et al. (1994), supplied for two independent case studies. The first is essentially a
parameter fitting study for viscometric flows, steady simple shear and pure
extension. Fitting of the various material parameters (e , j and m1) is
investigated for shear viscosity in shear flow. Likewise, elongational viscosity
behaviour is charted under steady uniaxial extension, according to a Binding
analysis for contraction flow (Binding, 1988). The second case study, involves
simulations for a more complex flow, the contraction flow (Walters et al., 1994).
Here, selected combinations of material parameters, that represent different
fluids recommended from the first case study, is employed at different flowrate
settings. Of course, ideally one requires a model that for one set of parameters
approximates flow over a wide range of conditions. The single mode case
proves inadequate for this task. Quantitative agreement is sought on predicted
pressure-drop against the available experimental pressure-drop/flowrate data.

The ultimate objective of this work is to relate the significance and
sensitivity of the match for the chosen constitutive model to the flow response
of the polymer melts in question, under tube-tooling processing conditions.
Proceeding in a structured manner from the preliminary case studies above, a
single-mode analysis is conducted for this complex industrial flow. Particular
attention is paid to pressure-drop and stress build-up across the flow from
entry to exit. A second aspect to this work carries over to a multi-mode
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analysis, under which the three problem settings outlined above are revisited,
see (Azaiez et al., 1996; Quinzani et al., 1990) for motivation. From a single-mode
analysis it is observed that pressure-drop prediction is sensitive to the
determination of the material parameters of the PTT model. These are governed
by the maximum shear rate sustained in the process at any specific flowrate.
Nevertheless, for the complex industrial flows of interest, that involves flow
through a tube-tooling die and draw-down section, experimental data is
unavailable. Hence for guidance, we turn to a comparison between single and
multi-mode model simulations to provide greater insight on the underlying
flow behaviour of principle significance.

2. Governing equations and constitutive model
The flow of shear and elongational thinning LDPE and HDPE fluids is
modelled using a multi-mode Phan-Thien/Tanner (PTT) model, invoking both
single and multi-mode approximations. The momentum and continuity
equations are given as

r
›u

›t
¼ 7·t2 ru·7u 2 7p; ð1Þ

7·u ¼ 0; ð2Þ

with velocity vector u, fluid density r, pressure p, stress t, time t and rate
of deformation tensor D ¼ ð7u þ 7u †Þ=2: Within the single mode
approximation, the stress t is decomposed into two parts, viscous and
polymeric parts viz

t ¼ t1 þ 2m2D ; ð3Þ

for which m2 is a solvent viscosity. The extra stress tensor t1 is then defined by

ft1 þ l1
A
t1 ¼ 2m1D ; ð4Þ

A
t1 ¼ 1 2

j

2

� �
7
t1 þ

j

2
7
t1 ¼

7
t1 þ jðD · t1 2 t1 · DÞ; ð5Þ

where f is given by

f ¼ exp
el1

m1
traceðt1Þ

� �
; ð6Þ

see Phan-Thien and Tanner (1977); Phan-Thien, 1978. Material parameters l1

and m1, represent relaxation time and polymeric viscosity, respectively. The
zero shear viscosity is then

m0 ¼ m1 þ m2: ð7Þ

Model parameters ðe $ 0Þ; ð0 # j # 2Þ are non-dimensional parameters that
can be evaluated by fitting to experimental data. 7 and D are upper and
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lower-convected derivatives, whose combination introduces second normal
stress effects.

The PTT model has been chosen because of its shear thinning and strain
softening properties, as displayed by the melts in question. Within the complex
flows of interest both shear and extension are present. It is instructive,
therefore, to analyse the PTT model response in pure shear and extension in
isolation. With this in mind, we first present the theoretical response of this
model in ideal flows, for which we are able to conduct a multi-variate
sensitivity analysis in (e , j, m1) against experimental values of shear viscosity
ms and extensional viscosity me given by Walters et al. (1994). It is found
appropriate to first seek an optimal fit to the shear viscosity, prior to qualifying
goodness of fit to extensional viscosity, see below.

In the multi-mode context, the equations of state are given for each mode
(i ) as

f iti þ li
1
A
ti ¼ 2mi

1D ; ð8Þ

where the total stress is

t ¼
i

X
ti; ð9Þ

and fi is defined as above, but with respect to each mode (i ). Accordingly, li
1

represents the relaxation time of each mode. A vanishing solvent viscosity is
considered in the multi-mode case i.e. m2 ¼ 0 appropriate for polymer melts, so
that here the partial zero-shear viscosity for each mode (i ) is mi

0 ¼ mi
1: In this

case, e is the only parameter that is varied, as j is chosen to be zero, see on.
Hence Equations. 8 and 9 are solved with Equation 1 and 2 for momentum and
continuity.

In completely general form, retaining a solvent contribution we consider a
steady simple shear flow with shear rate ġ. Following (Arsac et al., 1994), the
representation of the total shear viscosity ms over all modes is the sum of the
partial shear viscosities, viz.

msð _gÞ ¼ m2 þ
i

X mi
1f i

f 2
i 2 ðli

1 _gÞ
2jð2 2 jÞ

; ð10Þ

where each fi satisfies

f 2
i þ li

1 _g
� �2

jð2 2 jÞ
n o

lnð f iÞ2 2e li
1 _g

� �2
ð1 2 jÞ ¼ 0: ð11Þ

Accordingly, first and second normal stress-differences, N1 and N2 respectively,
are defined as

N 1ð _gÞ ¼
i

X 2mi
1l

i
1 _g

2

f 2
i þ ðli

1 _gÞ
2jð2 2 jÞ

; ð12Þ
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N 2ð _gÞ ¼ 2
j

2
N 1ð _gÞ: ð13Þ

In contrast, for a single mode approximation, the summation collapses to a single
term.

In steady uniaxial extension, the elongational viscosity me is a function of
extension rate ė , of the form

með _eÞ ¼ 3m2 þ
i

X 2mi
1

f 2
i 2 2li

1 _eð1 2 jÞ
þ

mi
1

f i þ li
1 _eð1 2 jÞ

; ð14Þ

where each fi is now determined from

f 2
i 2 li

1 _eð1 2 jÞ2 2ðli
1 _eÞ

2ð1 2 jÞ2
n o

lnð f iÞ2 6ðli
1 _eÞ

2eð1 2 jÞ ¼ 0: ð15Þ

Equations (11) and (15) are solved in each case for the relevant fi through a
Newton-Raphson iteration, from which ms, me, and N1 may be determined. We
note that via Equation 13 the second normal stress-difference, N2, may be
expressed via dependency on j and N1. In this form, it may be observed that as
j tends to zero then so does N2. Hence, in the multi-mode context, where j is
taken as zero for simplicity, this implies vanishing N 2; which in turn justifies
the setting of m2 ¼ 0:

3. Numerical scheme
Single-mode solutions are generated employing a coupled procedure previously
described in detail in (Matallah et al., 1998). The coupled scheme involves
solving for kinematics and stress simultaneously. The implementation is a
fractional-stage time stepping scheme, woven around a pressure-correction
method, that involves some three stages within each time step. The first stage
solves for velocity and stress, in a predictor-corrector doublet. The second
stage, solves for a pressure temporal increment. The third stage computes a
correction to the velocity field, enforcing incompressibility at each time step to
the order of the scheme. The scheme embodies implicit and explicit treatment
simultaneously, and hence is of classical semi-implicit type. Diffusion terms are
approximated with a Crank Nicolson discretisation over a time step, which
introduces implicitness and stability for these viscous flows. A direct method of
solution is employed to solve for the pressure equation step, whilst indirect
Jacobi iteration is invoked for the remaining stages. Also, the benefits are
realised of stability enhancing recovery-based methods and consistent
streamline upwinding procedures, that are incorporated within the
implementation (Zienkiewicz and Zhu, 1995; Matallah et al., 1998). For these
single-mode coupled calculations a continuation procedure in relaxation time
parameter is employed to reach a specific value of lspec

1 ; chosen appropriately,
(see on for discussion).
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With a multi-mode decoupled procedure, a frozen kinematic field
corresponding to a single-mode solution ðl

spec
1 Þ is used in Equation (8) to

solve for stress components and each mode (i ) of the PTT model in parallel,
corresponding to ðli

1;m
i
1Þ parameters. For simplification, in the multi-mode

context, the solvent part of the viscosity m2 ¼ 0; and hence for the polymeric
part of each mode (i ), mi

1 may be replaced by the partial zero-shear rate
viscosity mi, and the relaxation time li

1 by li. Non-dimensional numbers are
defined as follows. For each mode (i ), a Weissenberg number is

Wei ¼ li
Uch

Lch

; ð16Þ

where, Uch, Lch are velocity and length scales, respectively. An average single
mode l

spec
1 is estimated from the experimental data following the procedures

outlined in Ref. Gunter et al. (1995). This value is gathered from the base
material function fits to satisfy ms, me, N1. For the LDPE polymer, lspec

1 is taken
as 5s, giving a Weissenberg number of Wespec of 28 according to Equation 16.
Similarly, lspec

1 is 9s for HDPE polymer, from which Wespec equals 50.
The total zero-shear viscosity is given viz

m0 ¼
i

X
mi: ð17Þ

Also, the shear elastic modulus gi for each mode (i ), is defined as

gi ¼
mi

li

: ð18Þ

Time steps of Oð1023 –1024Þ are used and convergence to a steady state is
monitored via a relative temporal increment norm on the solution taken to a
tolerance of O(1026). A summary of the steps in the numerical procedure is
provided as follows:

Stage 1: calculate a Newtonian field (u, p ), as in Ref. Hawken et al. (1990).
Stage 2: Starting from the Newtonian solution and quiescent initial stress

conditions a single-mode viscoelastic solution is calculated for l
spec
1 : The

Recovery coupled scheme is used with a solvent viscosity of m2 ¼ 0:01m0:
Thus, viscoelastic kinematics are derived.

Stage 3: Commencing from such a single-mode solution, each of the three
stress modes is calculated in a decoupled sense, on resetting the solvent
viscosity to zero and freezing the viscoelastic kinematics. For each mode (i ), the
viscosity, pressure and stress are non-dimensionalised as follows

ðm iÞ* ¼
m i

mi
0

¼ 1; p ¼ mi
Uch

Lch

p* and ti ¼ mi
Uch

Lch

t*
i ð19Þ
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Stage 4: The total stress is then calculated through Equation 9. Updated
velocity and pressure fields are recomputed by freezing the total stress. Here
nondimensionalisation is performed according to the total zero-shear viscosity
m0 given by Equation 17. After a single pass, this procedure is noted to correct
the pressure filed, meanwhile variation in the velocity field is found to be
insignificant, so that further computation is found subsequently to be
unnecessary.

4. Parameter fitting for steady shear and pure extension
4.1 Single mode analysis
Under a single mode analysis, which can be taken as qualitative only, we
consider the case of an LDPE polymer. The investigation into parameter
sensitivity commences with the polymeric viscosity coefficient m1. The zero
shear viscosity is estimated as 54,700 Pa.s. Employing different fits to the
experimental shear data, a single mode relaxation time is evaluated as l1 of 5s
for LDPE, as cited above (see also Gunter et al., 1996; Mutlu et al., 1998a;
Walters et al., 1994). The density r for both polymers considered is 760 Kg/m3.

4.1.1 m1 variation. Theoretically in steady shear flow, by increasing the
parameter m1 and keeping (e , j ) fixed, the PTT model thins at high shear rates
and accordingly, will give rise to diminishing pressure-drop due to decreasing
flow resistance. When m1 ¼ 0; there is no polymeric contribution. In Figure 2a,
we indicate that the m1 parameter (recorded in non-dimensional form) plays an
important role when the range of the shear rates is high. As the shear rates
observed experimentally (Walters et al., 1994) increase, it is necessary to adjust
m1 to match the data for any isolated shear rate extrema. The inadequacy of a
fixed parameter is clearly apparent here in contrast to the multi-mode model
(see on). Experimental data were measured for shear viscosity at shear rates
between 0.1 s21 to 1 s21 and 10 s21 to 103 s21. On the other hand in steady
uniaxial extension, the extensional viscosity for the LDPE fluid exhibits strain-
softening at high strain-rates, as illustrated in Figure 2b. Such materials may
display some hardening at low strain-rates. The PTT model displays a slight
increase of the extensional viscosity at extension rates less than unity, before
decreasing to a high strain rate limiting plateau. The experimental
measurements for elongational viscosity were taken between strain rates of
10 s21 and 103 s21. We comment that the Binding Analysis, used here to derive
the experimental me data, is an approximate theory (Binding, 1988; Cogswell,
1972; Binding, 1993; Binding et al., 1998). The only difference observed in the fit
for different settings of m1 is in the tail of the curve at high strain rates. As in
Figure 2, larger values of m1 that asymptote to unity, tend to inherit viscosity
behaviour of lesser m1 values over lower shear rate ranges. However, it is
necessary to gradually increment values of m1 towards unity for reasons of
numerical convergence in the continuation procedure.
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4.1.2 e variation. We proceed to analyse the effect of increasing e at fixed
(j, m1). In steady shear flow, the viscosity of the PTT model decreases
correspondingly, but at a lower rate than with increase of m1. Shear thinning
behaviour of this form, with increasing e , will generate a decrease in pressure-
drop. In Figure 3a with e ¼ 0:15; the PTT model provides a near-optimal least
squares fit across the complete range of shear rates displayed, for a match to
the experimental data at a maximum value of _g ¼ 103 s21: In contrast, a best fit
for shear rates less than 10 s21 is for a value of e ¼ 0:7: Switching to uniaxial
extension, a reduction in elongational viscosity with increase in e is observed,
yet without influencing the asymptotic plateau at high strain rates. Clearly,

Figure 2.
Shear and elongational

viscosities fits; m1

variation, e ¼ 0:15;
j ¼ 0:02:
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here there is only limited experimental data available and the model can only
give a qualitative representation of elongational behaviour.

4.1.3 j variation. Finally, adjusting the parameter j for constant values of
m1 and e , gives a decrease in the shear viscosity for increasing j. At high values
of e ¼ 1:0; there is barely any change in the shear viscosity for 0 # j # 0:1:
Some departure from the experimental values is noted at the lower value of
e ¼ 0:15 for j ¼ 0:1: The elongational viscosity is unaffected by such minor
adjustment in parameter j, that is with the exception of j ¼ 1; for which a
constant elongational viscosity is derived. The comment above regarding
quality of representation also applies here.

4.2 Multi-mode analysis
Table I provides material data for LDPE and HDPE polymers at a temperature
of 2008C (Davies et al., 1996), in the form of relaxation times and partial zero-
shear rate viscosities for a three-mode approximation. The fits to the shear data
yield zero-shear viscosities of 105,390 and 139,184 Pa.s for LDPE and HDPE,
respectively. Note, the variation to the single-mode case is due to the difference
in parameters that alters the fits. Any solvent viscosity contribution is taken
as minuscule for the polymer melts of interest, simply a mathematical
convenience to both aid data fitting and numerical convergence. For a melt any
solvent contribution is insignificant in practice; hence in the multi-mode
context, m2 is assumed to vanish. Here, this is made practically possible from a
numerical standpoint via the decoupled approach employed. Also, the second
normal stress difference (N2) is negligible compared with the first normal stress
difference (N1). Hence from Equation 13, the value of the non-dimensional
parameter j is small, and to simplify the analysis can be taken as zero. To
estimate the remaining parameter e , the shear viscosity is plotted against the
shear rate in Figure 3a for LDPE and Figure 4a for HDPE with various values
of e . For both materials, the best fit for 102 # _g # 103 s21 corresponds to a
value of e of unity. At such a value, we observe from both Figures 3b and 4b,
the elongational viscosity (me) fits provide appropriate trends in general
behaviour, but gives a lower estimated value than the limited set of
experimental data. This is due to the inability of the PTT model to match both
shear and elongational data simultaneously.

LDPE HDPE
li(s) mi (Pa.s) gi ¼ mi=li liðsÞ miðPa:sÞ gi ¼ mi=li

Model 1 0.017 1234 72588 0.017 2792 164222
Model 2 0.87 15982 18370 0.87 19595 22523
Model 3 33.9 88174 2601 59.57 116797 1961

Table I.
Material parameters
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From the knowledge gained through the single-mode study, we observe that
the key factor to estimating the pressure-drop accurately in complex flows (see
below) is the quality of fit to the shear viscosity “in situ” at the associated
maxima of shear rate. Bearing this point in mind, in Figure 3 for LDPE we
compare shear and elongational viscosity fits to the experimental data for both
the single mode of l1 ¼ 5 s (from above) and a three-mode model. In general,
and accordance with Figure 3a for shear viscosity, the multi-mode case
provides the better fit to the experimental data, throughout a wide range of
shear rate. The multi-mode trends of response for elongational viscosity of
Figure 3b is a much better reflection of the actual fluid properties than those
observed with a single-mode approximation. Nevertheless, the match here is

Figure 3.
Single and multi-mode

fits for LDPE
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somewhat adrift from the experimental data values, derived from the Binding
analysis. The same fitting procedure has also been carried out using a seven
mode model. It is of note that no substantial improvement of fit is obtained if
seven modes are employed in place of three (see Matallah et al. (2000)).

5. Contraction flow
Armed with the parameter fits to steady shear and pure extension, we proceed
to analyse a contraction flow, testing our simulated solution pressure-drops
across the domain against those observed experimentally at a series of different
flowrates (Walters et al., 1994).

Figure 4.
Rheometrical data fits
with e variation for
3-mode HDPE
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5.1 Problem specification
A schematic flow diagram for the axi-symmetric 19:1 contraction flow with its
associated finite element mesh is represented in Figure 5. The finite element
discretisation is represented by 1830 elements and 3829 nodes. This problem is
representative of flow in a contraction Capillary rheometer. The flow may be
assumed to be symmetric about the central axis. Characteristic length and
velocity scales are taken as the radius Rc of the die tube and mean exit velocity
Uc, whilst the zero-shear rate viscosity m0 is considered as the characteristic
viscosity. A non-dimensional Reynolds number is defined as

Re ¼
rUcRc

m0
; ð20Þ

and, for a single relaxation time, a Weissenberg number is taken as

We ¼ l
spec
1

Uc

Rc
: ð21Þ

Figure 5.
Schematic flow diagram
and finite element mesh

for 19:1 contraction
geometry

Polymeric wire-
coating flows
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For the multi-mode case, see above for comparable definitions. With respect to
boundary conditions, no-slip conditions are taken on the downstream tube
walls, and symmetry conditions apply on the flow centerline. The upstream
length is chosen to be sufficiently large 68Rc, to establish fully developed
Poiseuille flow in the inlet region. The downstream die length is 40Rc. At the
domain exit, a fixed pressure datum is adopted for consistency and a fully
developed Poiseuille flow prevails. Each individual flowrate is treated as a
separate problem to which a steady state is sought. Though we are interested
in steady state solutions, we note that these complex flows are transient in
Lagrangian sense, so that a particle following the flow will in fact encounter
different conditions at different locations (or times). For a single-mode, initial
conditions are taken of a Newtonian kinematic filed, coupled to a fully relaxed
stress field with appropriate inlet boundary modification. In the multi-mode
case, initial kinematics are supplied from a prior single-mode computation.
Then for each stress component mode, it is found suitable to impose relaxed
inlet boundary conditions that rapidly adopt their appropriate levels in the
entry flow region.

5.2 Results for a single mode model
In this section, we analyse our results in trends only for single-mode modeling.
To establish a pressure drop versus flowrate relationship numerically and
to compare this to experimental observations, three flowrates have been
employed for different PTT fluid parameter sets (e , j ), in combination with m1.
A given flowrate, Q, covers a particular shear-rate range. The shear viscosity
ms(ġ ) may be adjusted through m1, e and j parameters to fit the experimental
data. Indeed, rising m1 tending towards m0, governs the second Newtonian
plateau level for ms(ġ ). Hence, elevating m1, effectively extends the range of
fit for the ms(ġ ) function over wider ġ ranges. Thus the larger the value of Q,
the more m1must be elevated to enhance the ms(ġ ) fit to the data. The
classification of various test fluids, with m1-values rising up to m0, highlights
Fluids B-H as indicated in Table II. There, m1 ¼ 0:875m0 for Fluid B, m1 ¼
0:99m0 for Fluid C, m1 ¼ 0:995m0 for Fluid D, m1 ¼ 0:999m0 for Fluid E,
m1 ¼ 0:998m0 for Fluid F and m1 ¼ m0 for Fluids G and H. We note that, lower
m1-values aids numerical convergence as the solvent contribution incorporates
damping into the system. For the single mode approximation, a single
relaxation time of l

spec
1 ¼ 5 s is adopted to represent the relaxation time

spectrum for an LDPE polymer (see Ref. Davies et al. (1996)). Reynolds
numbers are of Oð1026Þ; whilst Weissenberg number values at various
flowrates are summarised in Table III, and pressure-drop results in Table IV
and Figure 6.

Overall, a summary of our findings reads as follows. By comparing the
numerical and experimental data for these three flowrates, and investigating
the parameter sensitivity of shear visocity on m1, e and j at different shear
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rates, we conclude that the most influential parameter governing Dp is m1; the
remaining parameters (e , j ) provide fine tuning of the fit. The choice of
parameter m1 depends on the value of maximum shear rate _gmax attained
for any given flowrate. Hence with knowledge of ġmax, m1 may be determined
by choosing a value to fit the experimental data of (Walters et al., 1994). In
Figure 7, maximum shear rates observed for the contraction flow are plotted
against flowrate, from which a quadratic relationship emerges. From this, one
may predict ġmax for a given flowrate and hence extract a particular m1-fit
(Figure 6).

Fluid B m1 ¼ 0:875m0 Fluid C m1 ¼ 0:99m0 Fluid D m1 ¼ 0:995m0

B1: (0.1,0.01) C1: (0.15,0.02) D1: (0.15,0.02)
B2: (0.3,0.01) C2: (2.0,0.02) D2: (0.3,0.02)
B3: (2.0,0.01)
Fluid E m1 ¼ 0:999m0

(0.3,0.02)
Fluid F m1 ¼ 0:998m0

(0.15,0.02)
Fluid G m1 ¼ m0; j ¼ 0

G1: e ¼ 1:0
G2: e ¼ 2:5
G3: e ¼ 3:0

Fluid H m1 ¼ m0; j ¼ 0

H1: e ¼ 1:0
H2: e ¼ 2:5
H3: e ¼ 3:0

Table II.
Classification of

fluids

LDPE HDPE
Q mm3/s 2.37 39.9 2.37 34.0

Mode 1 0.10 1.73 0.10 1.47
We Mode 2 5.30 88.4 5.30 75.3

Mode 3 204.6 3444 360.3 5156.7

Table III.
We for contraction

flow

Q mm3/s
Dp Exp (MPa)

LDPE
Dp Sim (MPa)

Single mode, lspec
1 ¼ 5s

Dp Sim (MPa)
Multi-mode

2.37 3.27 4.09, fluid C1 5.90, G1, e ¼ 1:0
We ¼ 30:18; e ¼ 0:15; j ¼ 0:02 4.00, G2, e ¼ 2:5

39.9 10.9 11.7, fluid D2 10.3, G1, e ¼ 1:0
We ¼ 508:0; e ¼ 0:3; j ¼ 0:02

Table IV.
Pressure drop for
contraction flow,
LDPE polymer
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coating flows
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It is clear that with a single-mode approximation, it is necessary to continually
adjust the fluid parameters at each flowrate setting, to adequately reproduce
quantitative pressure-drop predictions. This keeps pace with the shear rate
maxima observed, though does not provide a single fluid model representation
suitable across a range of flowrates. This is a drawback to the use of a single

Figure 6.
Pressure drop v flowrate
for contraction problem,
single mode model

Figure 7.
Maximum shear-rate v
flowrate correlation for
contraction problem,
LDPE
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mode PTT model. Essentially, what is being achieved here is to provide
a localised fit to data around the range of shear rates that dominates the
process at each particular flowrate. As regards incrementation of m1 towards
unity, this leads to more severe numerical difficulties in convergence to
steady state. Thus care in continuation with this parameter is advisable
purely on numerical grounds. At this juncture, it is natural to widen the study
to embrace a multi-mode approximation and follow a similar line of
investigation.

5.3 Results for a three-mode model
With a three-mode PTT approximation, results for both LDPE and HDPE
grade polymers are presented and compared to the experimental data for the
contraction flow. Comparison against the single-mode approximation is made
only for the LDPE polymer, and j is taken as zero (see above, N 2 ! N 1Þ: Our
observations are that computation times double from single to three-mode
model calculations.

5.3.1 LDPE fluid. With the LDPE polymer a first flowrate of Q2 ¼
39:96 mm3=s is considered, for which the values of Weissenberg numbers
for the corresponding three modes are given in Table III. The Reynolds
number is Re ¼ 1:8 £ 1027 and the experimental pressure-drop is 10.9 MPa.
With fluid G1 offering a parameter combination ðe ; j;m1Þ ¼ ð1:0; 0:0;m0Þ; a
simulated pressure-drop of 10.3 MPa is predicted. This contrasts to the best
single mode computation of 11.7 MPa for fluid D2 with ðe ; j;m1Þ ¼
ð0:3; 0:02; 0:995m0Þ:

In contrast, at a second lesser flowrate of Q1 ¼ 2:37 mm3=s; and the same
parameter combination ðe ; j;m1Þ ¼ ð1:0; 0:0;m0Þ; i.e. fluid G1, a simulated
pressure-drop of 5.90 MPa is generated; an over-estimation compared to the
experimental data of 3.27 MPa. This is in accordance with the shear viscosity
fit, where for the shear rate range 10 # _g # 102 s21; the best fit renders a value
of e ¼ 2:5: For fluid G2 of e ¼ 2:5; the pressure-drop is 4.00 MPa compared to
4.09 MPa for the single mode calculation of fluid C1. Figure 8a summarises
graphically the comparison of numerical and experimental data at both
flowrates, including the single mode results. The values are tabulated in a
unified manner in Table IV. Conventional use of the PTT class of models, is
restrictive with a constant value for the parameter e . If this parameter is taken
in the range 1:0 # e # 2:5; pressure-drop will be better estimated by the
multi-mode than the single mode model for the flowrate range 2:37 # Q #
40 mm3=s: We observe in Figure 8a, that the discrepancy from the experimental
value is huge for the single mode fluid C1 – parameter set ðe ; j;m1Þ ¼
ð0:15; 0:02; 0:99m0Þ at Q2 ¼ 39:9 mm3=s:

5.3.2 HDPE fluid. For the HDPE polymer, computations are conducted for
flowrates of Q1 ¼ 2:37 mm3=s and Q2 ¼ 34:0 mm3=s: At the former flowrate,
the fitting of the PTT model to the experimental shear viscosity, as in Figure 4,
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provides an equally good dual set of parameters with either ðe ; j;m1Þ ¼
ð2:5; 0:0;m0Þ or ðe ; j;m1Þ ¼ ð3:0; 0:0;m0Þ; i.e. fluid H2 or H3. Simulated pressure-
drops are 7.40 MPa for fluid H 2 e ¼ 2:5; and 6.90 MPa for fluid H 3 e ¼ 3:0;
that compare against an experimental value of Dp ¼ 5:83 MPa: It is implied
that additional increase in the parameter e , will lead to further decrease in
pressure-drop.

At a second flowrate of Q2 ¼ 34:0 mm3=s; and according to Figure 4,
the best fit to the shear viscosity data, results in the set of parameters

Figure 8.
Simulated and
experimental pressure
drops for contraction
flow; (a) LDPE, (b) HDPE
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ðe ; j;m1Þ ¼ ð1:0; 0:0;m0Þ for the range 102 # _g # 103 s21; i.e. fluid H1. The
simulated pressure-drop is 19.2 MPa, whilst the experimental value is
19.9 MPa. This evidence is taken as endorsement for the choice of multi-
mode representation with fluids G1 and H 1; that is wholy acceptable across the
flowrates selected. A summary of simulated and experimental pressure-drop
values is provided for HDPE in Table V and Figure 8b.

6. Wire-coating flow
Having established the goodness of fit to experimental pressure-drop data for a
complex contraction flow, we now proceed to the industrial flow of interest that
provides the motivation for this study. The flow quantities of specific relevance
are residual flow-induced stress and pressure-drop. The former is fresh
information to be gathered for this problem that is important to control coating
properties. These quantities have impact on the optimisation of the process
design. Only fluid G1 (i.e. one set of parameters ðe; jÞ ¼ ð1; 0ÞÞ is adopted
throughtout the study of tube-tooling wire-coating for LDPE and H1 for HDPE
polymer, since a reasonable fit is achieved in the shear-rate range under
consideration ð _g # 103 s21Þ:

6.1 Problem specification
A schematic flow diagram for the tube-tooling problem with its finite element
mesh is displayed in Figure 9. The flow enters the annular tube AB, then a
converging cone section BC and a land region CD, and is draw-down by the
wire in a converging cone form DE, and coating part of the wire EF, as shown
in Figure 9a. Due to symmetry, it is necessary to model only one half of the
problem. Characteristic length and velocity scales are taken as the horizontal
distance between the die exit of the tube and the contact point on the wire, i.e.
the draw-down length Ldraw and the velocity of the wire Uwire; respectively.
The zero-shear viscosity m0 is considered as the characteristic viscosity. Here,
the same definition for Reynolds and Weissenberg numbers is taken as for the
contraction flow problem. Boundary conditions are given as follows. No-slip
conditions are taken on tube walls for the die tube, ABCD and D’C’B’A’. At the
entry AA’ a fully developed Newtonian annular velocity profile corresponding
to a specific flow rate Q is imposed, ðUr ¼ 0 and Vz ¼ V zðrÞÞ: From this
velocity profile, a PTT stress profile is generated analytically. This specifies
inlet flow boundary conditions. Free surface boundary conditions along DE

Q mm3/s Dp Exp (MPa) HDPE Dp Sim (MPa)

2.37 5.83 7.40, fluid H2, e ¼ 2:5
6.90, fluid H3, e ¼ 3:0

34.0 19.9 19.2, fluid H1, e ¼ 1:0

Table V.
Pressure drop for
contraction flow,
HDPE polymer,

multi-mode
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and F’D’ are taken equivalent to the average velocity per cross sectional area,
consistent with draw-down flow. On EF, the fluid is considered to be moving
with the wire (no slip). A uniform structured mesh is used in the finite element
discretisation, 2680 elements and 5649 nodes, (thoroughly investigated in our
prior studies, see Mutlu et al. (1998a); Mutlu et al. (1998b)). To capture sharp
velocity gradients near singular regions, different meshes were employed
elsewhere (see Mutlu et al. (1998a); Mutlu et al., 1996). In the present study only
the finest mesh of Ref. (Mutlu et al., 1998a) is employed, for which the number
of elements per region is given in Table VI.

Figure 9.
Schematic diagram and
finite element mesh for
wire coating tube-tooling
die

ABB’A’ BCC’B’ CDD’C’ DEE’D’ EFF’E’

680 680 120 800 400

Table VI.
Number of elements
per region
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6.2 LDPE fluid
Table VII provides values of Weissenberg numbers for an LDPE polymer, with
material parameters given in Table I, for a standard flowrate (1Q) and double
flowrate (2Q). The Reynolds numbers are Re ¼ 1:5 £ 1024 and Re ¼
3:0 £ 1024; respectively. Figure 10 plots the pressure-drop line for both 1Q
and 2Q, along a sample line tangential to the flow. The sample line for plotting
lies along the inner radius of the annular settings. Cross stream variation
is hardly significant. Simulated pressure-drop values are 6.90 and
8.40 MPa, respectively, and are compared to 7.49 and 11.2 MPa using fluid C1

for the single mode approximation (as (Mutlu et al., 1998a) using m1 ¼ 0:99m0;
e ¼ 0:15 and j ¼ 0:02). Pressure-drop results are tabulated in Table VIII
accordingly. For the single mode, pressure-drop at 2Q is one and a half times
that at 1Q, whilst for a multi-mode model, this factor reduces to 1.22. Overall,
the trend in variation of pressure-drop is similar for single and multi-mode
models in the tube-tooling die sections, notwithstanding the elevation of the
single-mode 2Q result. In contrast in the draw-down section for the single
mode, pressure-drop is almost constant for 1Q, but for 2Q, it increases around
the location where the fluid meets the wire. Traveling with the wire, pressure

LDPE HDPE
1Q 2Q 1Q 2Q

Mode 1 0.095 0.19 0.095 0.19
We Mode 2 4.843 5.686 4.843 5.686

Mode 3 188.7 377.4 332.3 664.6

Table VII.
We for tube-tooling

flow

Figure 10.
Tube-tooling flow,

streamwise pressure
profiles, single and multi-

mode models, LDPE

Polymeric wire-
coating flows
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diminishes to zero. However for a multi-mode model, the pressure-drop
decreases continuously with only a slight change in the slope on encountering
the wire. These differences in response for these models, are due to the
variation in radial shear stress gradients, particularly at die exit, that are about
one third of the level observed in the inlet tube-tooling section.

In Figure 11, the shear stress is plotted along the inner annular radius. A
constant value is observed in the inlet tube (shear flow), followed by a change
of sign over the contracting flow within the tube-tooling cone. Shear stress
increases in absolute value as the cone contracts. In the land section, the degree
of shearing increases again, sharply at the start, flattens across the land region,
and rises slightly at the end. There is then a dramatic sharp drop and
oscillation in shear stress at the inlet of the draw-down cone. This is where
there is a sudden adjustment from the annular shear flow to an extensional
drawing flow. Thereafter, it decreases gradually but smoothly along the draw-
down cone, to increase slightly when the wire is met and subsequently remains
steady. This behaviour is similar for both flowrates, only differing in the
absolute level of the stress.

For the normal stress component in the axial direction, tzz, a sharp
oscillation is experienced at the inlet of the tube-tooling cone due to the sudden
geometry changes. This is followed by a smooth increase in tzz as the shear
rate increases in the cone. Over the land region, tzz suddenly decreases as
the polymer enters, and remains fairly constant to the land region exit. A
shock is noted in the transition from land to draw-down flow. Over the draw-
down section, the stress component decreases. A smaller variation rate in tzz

is observed as opposed to that in the tube-tooling cone, and there is a
marginal increase when the fluid meets the wire. A relaxation of stress occurs
within the coating flow on the wire, with larger slope than in the draw-down
cone.

In summary, a build-up of shear and normal stress is observed in the tube-
tooling cone, followed by relaxation in the draw-down and wire-coating flow
sections.

For stress, the trends are identical for single to multi-mode cases, the
differences lie in the stress levels, that are dictated by the inlet flow. At inlet
and for the shear rates that apply there, see Figure 3, a closer match to ms is
observed with a single mode model, yielding a lower value of shear stress (via
viscosity) than with the multi-mode model. We note also that in the converging

LDPE HDPE
1Q 2Q 1Q 2Q

Dp (MPa) Single mode 7.49 11.2, fluid C1 – –
Multi-mode 6.90 8.40, fluid G1 12.4 15.4, fluid H1

Table VIII.
Pressure drop for
tube-tooling flow

HFF
12,4

426



tube the rate of increase of tzz in the multi-mode case is greater than that
corresponding to the single mode instance. This is due to the influence of the
shortest mode l1 ¼ 0:017 s; see below for further comment on the contributions
due to the separate modes.

6.3 HDPE fluid
Results for the HDPE polymer are also presented at the same flowrates as
above for LDPE. In this case, the parameter e ¼ 1:0 represents the best fit to
the shear viscosity, as in Figure 4, hence fluid H1. Predicted pressure-drops
are 12.4 and 15.4 MPa for the two associated flowrates, respectively. Figure 12
shows a sample line plot for pressure-drop at both flowrates, and a similar

Figure 11.
Tube-tooling flow,
streamwise stress

profiles, single and
multi-mode models,
LDPE, (a) trz, (b) tzz
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trend to that for the LDPE polymer is observed. We note that pressure-drop at
the double flowrate is 1.24 times as great as that at the standard flowrate; the
factor relating pressure-drops is similar to that found for LDPE, of 1.22. It is
conspicuous that corresponding pressure-drops for HDPE polymer are almost
double those for LDPE polymer. According to Figure 13, line plots for shear
and normal stress components along a sample line tangential to the flow, the
general behaviour of stress is similar to that for LDPE, though scales are
doubled in shear stress and increase by about 20 per cent in normal stress.
These findings are in keeping with general expectations for these materials and
flows.

6.4 Analysis of separate modes
To understand the contribution of each mode (i ) to the total stress of the
multi-mode model, both trz and tzz are plotted for the standard flowrate,
LDPE polymer in Figure 14. Of the individual modal contributions, the two
shorter relaxation time modes dominate. The shear stress is dominated by the
shortest relaxation time. This is true for all cases studied, covering both
materials and flowrates, as confirmed in Figure 14 for LDPE and Figure 15
for HDPE.

Alternatively, for the tzz component, according to Figure 14 and LDPE,
the shortest relaxation time dominates in the tube-tooling cone; this made
dictates the shape of the total stress in all the sections of the flow. In
contrast, the second shortest relaxation time dominates in the inlet tube and
draw-down sections, including the flow on the wire. For the HDPE polymer, as
in Figure 15, the shortest relaxation time dominates throughout the tube-

Figure 12.
Tube-tooling flow,
streamwise stress
profiles, standard and
double flowrate, HDPE,
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tooling die sections, whilst in the draw-down, the second shortest relaxation
time dominates.

7. Conclusions
A contraction flow has been used effectively to demonstrate how single and
multi-mode PTT models perform in quantitatively replicating pressure-
drop/flowrate data. Essentially this is governed by the goodness of fit to
the shear viscosity. In this regard, the multi-mode instance performs better
across the range of shear rates of interest. In the single-mode case
reasonable qualitative correspondence has been derived, presupposing a
judicious choice of averaged relaxation time, which has been possible here.

Figure 13.
Tube-tooling flow,
streamwise stress

profiles, multi-mode,
HDPE, (a) trz, (b) tzz

Polymeric wire-
coating flows
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Also, the choice of material parameter combination must vary with each
flowrate (and its associated maximum shear rate) to adequately reflect the
experimental data. This generates different fluid model representations and
demonstrates the shortcomings of an averaged mode approximation. The
multi-mode alternative, performs better in this respect with a fixed fluid
parameter set.

In the more generalised context of the industrial tube-tooling wire-
coating flow, the differences in results on stress distributions and pressure-
drop between these modelling approaches is more stark. Here, the multi-mode
approximation reveals the fine detail of stress response throughout the

Figure 14.
Tube-tooling flow,
streamwise stress
profiles for individual
stress mode, LDPE,
(a) trz, (b) tzz
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flow, peak values attained and dominance of individual components. The key
point emerges that the shorter relaxation time modes are observed to dominate
within the process. These modes are of the order of less than one second,
being synonymous with a representative particle residence time as it travels
through the flow domain. Stress and pressure-drop levels are practically
doubled for the HDPE above the LDPE polymer, which is consistent with
practical industrial experience for these materials. Also pressure-drop
variation with flowrate doubling is held to be more realistic with the multi-
mode option. The differences from single to multi-mode total stress appear
minimal in the draw-down and coating regions, taking into account the
elevations in stress levels within the steady shear die entry flow as discussed
above.

Figure 15.
Tube-tooling flow,
streamwise stress

profiles for individual
stress mode, HDPE,

(a) trz, (b) tzz
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viscous free-surface flows for

reverse roller-coating
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Abstract This article is concerned with the numerical simulation of a reverse roller-coating
process, which involves the computation of Newtonian viscous incompressible flows with free-
surfaces. A numerical scheme is applied of a transient finite element form, a semi-implicit Taylor-
Galerkin/pressurecorrection algorithm. For free-surface prediction, we use kinematic boundary
adjustment with a mesh-stretching algorithm. In the present work, an alloy sheet (foil) passes over
a large roller and then a smaller applicator roller, which provides the in-feed. In combination, the
applicator roller, the foil and the fluid form part of the underside coating mechanism. The aim of
this study is to investigate fundamental aspects of the process, to ultimately address typical coating
instabilities. These may take the form of chatter and starvation. A uniform coating thickness is the
desired objective. A mathematical model is derived to describe the solvent coating applied to the
underside of the sheet, assuming that the lacquer is a Newtonian fluid. In particular, the work has
concentrated on the flow patterns that result and a parameter sensitivity analysis covering the
appropriate operating windows of applied conditions. Effects of independent variation in roll-speed
and foil-speed are investigated, to find that maxima in pressure, lift and drag arise at the nip and
are influenced in a linear fashion.

1. Introduction
In this study the effectiveness of finite element modelling is investigated to
predict the flow associated with the reverse roller-coating of alloy sheets using
a protective film of solvent-based lacquer. A mathematical model is derived
to describe the coating applied to the underside of the foil sheet, assuming that
the lacquer is a Newtonian fluid. In particular, the work has concentrated on the
flow patterns that result and a parameter sensitivity analysis covering
appropriate operating windows of applied conditions. This covers variation in
application roll-speed and foil-speed, and consideration of flow conditions in
the nip region. A finite element simulation of the roller-coating process is
presented, based on a semi-implicit Taylor-Galerkin/Pressure-correction
algorithm (Townsend and Webster, 1987; Hawken et al., 1990; Carew et al., 1993).
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Viscous flow with free-surfaces is common and arises in many important
industrial application areas, particularly in coating and printing situations. In
the literature, flows between pairs of rolls have been extensively studied
(Fourcade et al., 1999; Cohu and Magnin, 1997; Carvalho and Scriven, 1997;
Carvalho and Scriven, 1997; Chen and Scriven, 1988; Benjamin, 1994), where a
substrate is pressed between a set of contra or forward rotating rollers. The
general requirement is to achieve a uniform coating thickness. It is reported in
The literature would indicate that, high-pressure in the nip region generates
instability in the flow, that subsequently affects the coating liquid layer, see
Fourcade et al. (1999); Cohu and Magnin (1997); Carvalho and Scriven (1997);
Carvalho and Scriven (1997); Chen and Scriven (1988). Similar findings are
observed in this study, where pressure has an elevated value in the nip region.
There is a sparsity of work in the open literature on reverse roller-coating
between foil and roller. Hence, we first review work cited on roller-coating
between two rollers. Fourcade et al. (1999) investigated a coating operation of a
reverse roller-coating process between two rollers. The main attention is
focused on the deformation of the elastomer on the coated roll. It is reported
that the pressure increases in the converging section of the gap, and reaches its
peak slightly to the left of the contact point of the rollers. The largest
deformation of the elastomer cover of 70 mm is observed to occur at the location
where the pressure reaches a maximum. The lower the gap size, the higher the
pressure peak that is observed.

Cohu and Magnin (1997) conducted experimental investigations into
forward roller-coating of Newtonian fluids between deformable rolls. These
authors observed that the decrease of the thickness of a rubber cover on a
roller, below a critical value, tends to decrease the coating thickness
significantly. Carvalho and Scriven (1997) have argued in their numerical work,
based on forward roller-coating, that the upstream free-surface touches the top
roll, and air is trapped between the roll surface and the coating liquid.
Consequently the coated film that is delivered is defective. Various flow states
are described, both metered and premetered, by moving the rolls apart and
bringing them together. As the rolls are pushed together, the gyre moves
upstream towards the inlet plane. These authors have replaced the fixed inlet
film thickness condition with a weighted kinematic residual that guarantees
the flow is normal to the inlet boundary in an integral sense.

Carvalho and Scriven (1997) investigated the effect of soft-roll deformation
with respect to the onset of ribbing on the coated liquid layer. Their main
findings showed how a deformable cover may be used to lessen the ribbing on
the liquid layer to achieve a required coating thickness. They found that in
forward-roller coating, deformation influenced gap geometry and this
generated ribbing on the liquid layer, on each of the roll surfaces at high
roller speeds. They also analysed time-dependent response to infinitesimal
transverse disturbances. A mathematical model was presented to predict the
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critical capillary number for the onset of ribbing. They concluded that roll
cover deformation alters the wavelength of the ribbing pattern. Roll cover
softness is related to increasing the solids elasticity number. Increasing the
elasticity number of the soft-roll cover makes the ribbing pattern wavelengths
larger and wave numbers smaller; this stimulates the fastest instability modes.
The consequence is a larger ribbing wavelength and consequently an extended
period to achieve a level film.

It is necessary to consider the state of inflow to provide appropriate flow
conditions, stipulating flow rate and profile form. According to Benjamin
(1994), in meniscus coatings, the flow is always pre-metered and therefore
imposing a plug-velocity profile at the inflow boundary is a satisfactory
boundary condition. Hence, we follow this thinking, as do Chen and Scriven
(1988) likewise. This implies that we adopt a constant inflow rate, as delivered
by the premetering. Largely, this flow rate is determined by that at outflow,
based upon a known film-speed and thickness.

For the last two decades the finite element method has played an important
role in simulating the flow of fluids subject to free surfaces. Literature of
relevance on this topic can be found in Keunings (1986); Sizaire and Legat
(1997); Tanner et al. (1975); Silliman and Scriven (1980); Saito and Scriven
(1981); Ramaswamy (1990); Hirt et al. (1974); Sato and Richardson (1994);
Ding et al. (1993); Regalt et al. (1993). One difficulty with computer modelling
of such coating scenarios, lies in the treatment of moving free-surface problems,
accommodating kinematic and dynamic boundary conditions (Keunings, 1986)
on the free-surface and the simultaneous calculation of its position. Sizaire and
Legat (1997) have adopted an approach similar to that of Keunings (1986) for
the treatment of free-surface boundaries, within the viscoelastic regime.

Tanner et al. (1975), constructed a Galerkin finite element scheme for
computing free surfaces with the use of the kinematic condition. Drawbacks
to this approach are commented upon by Silliman and Scriven (1980) who
argue that such a choice is expensive to implement and relies heavily upon
the initial guess. Furthermore, such kinematic conditions alone will not
provide an efficient way to update the free surface in stagnant regions. This
technique is suitable only when surface tension effects dominate viscous effects.

Saito and Scriven (1981) have illustrated a particular strategy to represent
the free-surface position, referencing the meniscus section with the polar arm of
length f ðuÞ and flat sections by height hðxÞ. This introduces a new degree of
freedom on each free-surface node that corresponds to the nodal position. A
variant of this is advocated in the present study, as this is taken to be most
suitable for the present requirements. A corresponding Petrov-Galerkin
formulation is derived for free-surface location and the subsequent adjustment
of the original mesh. This allows for local point wise corrections that
may supplement the solution procedure and invoke remeshing locally, if
required.
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Generally, Eulerian techniques are used to compute the field variables at
fixed nodal points of the mesh. A separate system of equations is generated for
the free surface location. These schemes are suitable even with meshes that see
large distortions. Lagrangian approaches localize the fluid location properties
to a finite number of particles that move with the fluid. This approach fails
when distortions are large. Ramaswamy (1990) has presented an arbitrary
Lagrangian-Eulerian finite element technique, similar to that of Hirt et al.
(1974). In the Lagrangian section, the mesh velocity equates to the fluid
velocity, that removes the convective fluxes from the momentum transport
equation. In this manner, nodal point location may be computed via a velocity-
correction scheme. Subsequently, the mesh velocity is updated using these
nodal point locations. In the Eulerian phase, convective fluxes are evaluated.
Finally, an updated position of the free-surface is computed, using both fluid
and mesh velocities. A conventional Galerkin-Bubnov finite element method is
employed. This mixed Lagrangian-Eulerian method (Ramaswamy, 1990) takes
advantage of these aspects and mitigates any mesh distortion difficulties that
may arise during the Lagrangian phase.

Sato and Richardson (1994) proposed a fringe element generation method
based upon a hybrid finite element/finite volume method. There is no global
remeshing performed with this method. Instead, the fluid flows over a fixed
mesh wetting new portions. New fringe elements are created in the surface
neighbourhood, conforming to the original mesh structure. In contrast to
local remeshing/stretching methods, such an approach avoids mesh
distortion. Each element and node is assigned a dry-wet Boolean flag to
identify whether it is wetted by the fluid or not. Starting from the nodal flag
information, the new location of the free surface at time t n+1 is traced via
kinematics considerations, based on an Euler scheme. A similar strategy is
adopted by Ding et al. (1993) for the computation of moving free-surface
boundaries. Regalt et al. (1993) used a nodal displacement scheme with a
combination of remeshing of the flow domain for a dip coating process. Since
the free surface position is not known apriori and if its initial guess is far
from the actual solution, then it is observed in Regalt et al. (1993) that the use
of kinematic boundary conditions directly lead to convergence difficulties. In
order to force the search procedure to converge with this scheme, the
kinematic boundary conditions were under-relaxed, during the first few
iterations.

The present work introduces new aspects of implementation, based on the
ideas of Saito and Scriven (1981) for the computation of free-surfaces. This
scheme is not restricted to a particular shape. Rather it can be transformed
from one coordinate system to another, locally or globally, according to the
free-surface orientation and domain. The method is tested on the complex flow
section, described below in Figure 1, that contains both flat and curved
meniscus shapes. The flow zone comprises of the inflow on the roller, passing
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to the nip between roller and foil, and the coating flow, from the meniscus to the
outflow on the foil.

2. Governing equations
For an incompressible and isothermal laminar flow, the system of governing
equations may be described by momentum and the continuity equations. In the
absence of body forces, the system may be expressed in the form

r
›u

›t
¼ 7 · T 2 ru ·7u 2 7p ð1Þ

7 · u ¼ 0 ð2Þ

where r is the fluid density, t is the time, u(x,t ) is the fluid velocity and p is
the isotropic pressure. For Newtonian flows, the stress T is defined via a
Newtonian viscosity m, and the rate of deformation tensor D,

T ¼ 2mD ð3Þ
where

D ¼
L þ Lt

2
and Lt ¼ 7u: ð4Þ

With a constant viscosity and using the continuity equation (2), the Navier-
Stokes equation can be recovered,

r
›u

›t
¼ m72u 2 ru ·7u 2 7p ð5Þ

where m72u is the diffusion term.
Adopting characteristic scales on velocity, U, length, L and viscosity, m, we

may define non-dimensional variables u ¼ Uu* and p ¼ ½mU=L�p* . Hence, we
may define an equivalent non-dimensional system of equations to (5) and (2),
discarding the * notation for convenience of representation,

Re
›u

›t
¼ 72u 2 Re u ·7u 2 7p;

7 · u ¼ 0;
ð6Þ

where the non-dimensional group Reynolds number is defined as Re ¼ rUL=m:
For the solution of the given system of governing equations, both initial

and boundary conditions are required. Initial conditions can be formed by
prescribing initial values for the primitive field variables at t ¼ 0;

U ðx; tÞ ¼ u0ðx; 0Þ;

pðx; tÞ ¼ pðx; 0Þ:
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Conditions at the free-surface require a normal constraint,

p þ tnm ¼ 2p0 þ sb; ð7Þ

whilst the absence of friction ensures the tangential constraint,

tnt ¼ 0: ð8Þ

Here, tnn, tnt are normal and tangential stress components, respectively, p0

is atmospheric and p local pressure, s is a surface tension coefficient and b
is the mean curvature of the free-surface (Chen and Scriven, 1988). The
effects of surface tension are neglected in these calculations. On the free-
surface boundary, the normal stress is equated to that of atmospheric
pressure, which is taken as ambient ðp0 ¼ 0Þ and the tangential stress should
vanish, so the surface tension is zero. Remaining boundary conditions are
taken of no-slip on roller and foil, uniform flow at inlet on the roller and
outlet on the foil, with vanishing flux across the nip. This suffices to specify
the problem.

3. Finite element analysis
The general procedure adopted is one of time-stepping to a steady-state
solution. This approach may be used either in a true transient context or one
simply to achieve steady-state. Here, we are interested primarily in steady
conditions, though subsequently, we wish to consider transient instabilities.
A Taylor-Galerkin algorithm is used to solve the governing equations (6).
A twostep Lax-Wendroff approach, based on a Taylor series expansion up to
second order in time, is used to find the solution at steady-state. A two-step
pressurecorrection method is applied to handle the incompressibility
constraint. Employing the Crank-Nicolson treatment on diffusive term, the
resultingsolution method produces three fractional-staged (Hawken et al.,
1990).

In stage one non-solenoidal velocity field u n+1/2 and u* are computed via a
predictor-corrector doublet. A Jacobi method is used to solve the resulting mass
matrix equation. With the use of u*, the second stage computes the pressure
difference, p n+12p n, via a Poisson equation, applying Choleski method. The
third stage completes the loop, calculating the end-of-time-step solenodal velocity
field u n+1 by Jacobi iterative solver. The details upon this implementation may
be found in Townsend and Webster (1987) and Hawken et al. (1990).

Following the notation of Cuvelier et al. (1986), the velocity and pressure fields
are approximated by U ðx; tÞ ¼ U jðtÞfjðxÞ and Pðx; tÞ ¼ P kðtÞwkðxÞ; where U
and P represents the vector of nodal values of velocity and pressure respectively
and fj is a piecewise quadratic and wk is a linear basis function.

On a specified field domain, the fully discrete semi-implicit Taylor-
Galerkin/pressure-correction system of equations in matrix form is given as
follows:

Viscous free-
surface flows

439



Stage 1a:
2Re

Dt
M þ

1

2
S

� �
U nþ1

2 2 U n
� �

¼ { 2 ½S þ Re N ðU Þ�U þ LTP}n

Stage 1b:
Re

Dt
M þ

1

2
S

� �
ðU* 2 U nÞ ¼ ð2½SU þ LTP�n 2 ½Re N ðU ÞU�nþ

1
2

Stage 2: KðP nþ1 2 P nÞ ¼ 2
2

Dt
Re LU*

Stage 3:
Re

Dt
M ðU nþ1 2 U* Þ ¼

1

2
LTðP nþ1 2 P nÞ;

ð9Þ

where M, S, N(U ), L, and K are consistent mass matrix, momentum diffusion
matrix, convection matrix, pressure gradient matrix and pressure stiffness
matrix respectively. In matrix form, these can be expressed as follows:

Mij ¼

Z
V

fifj dV;

N ðU Þij ¼

Z
V

fi fiU 1
›fj

›x
þ f1U 1

›fj

›y

� �
dV;

ððLkÞijÞ ¼

Z
V

›fj

›xk

dV;

Kij ¼

Z
V

7ci7cj dV;

Sij ¼

Z
V

7fi7fj dV:

4. Free-surface location
Some of the difficulties, which arise in the mathematical modelling, are
associated with the presence of a free-surface, whose position is unknown
apriori and must therefore be computed as part of the scheme. In the first
instance, the geometry of the free-surface is based on a set (estimated) initial
position, see Figure 1. The coat-outlet flow on the foil is taken as uniform
thickness (width of aoutlet, qualifies positions A and B). The same is true on the
roller for inflow (gives D and E). The meniscus is specified on the basis of
extremities B and D, and interconnecting arc through C. Guidance on the angle
of location of meniscus from the nip, can normally be obtained by experiment.
Here, the intersection of the angle bisector between foil and roller, with the
polar arm to the origin is taken at an angle of 948, establishing point C. Arcs BC
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and CD are then taken as circular arc segments, so that BC tangents the coating
level and, likewise, CD tangents the roller inflow level (radius of arcs is then
equally distant from B, C and D; this locates B and D precisely). A meniscus
shape is sketched for illustration in Figure 1. The eventual position of the free-
surface h(x,t ), is determined via solution of the following two equations:

On flat free-surface boundaries (lines at constant y):

›h

›t
¼ 2Ux

›h

›x
þ Uy; ð10Þ

On the curved meniscus boundary section (lines at fixed azimuthal angle u
setting):

›h

›t
¼ 2Uq

1

r

›h

›q
þ Ur; ð11Þ

where the translation between Cartesian and polar coordinates is assumed.
Initial conditions for the transient algorithm are taken as quiescent upon the

field, but with plug flow imposed at inflow and outflow. It is also found helpful,
to enhance efficiency in convergence to a steady scenario, to first fix the free
boundary as a solid surface (location as above) and compute an internal flow
field from which to commence the free-surface solution. This provides a
contrast to free-surface movement from a predefined position. With free-surface

Figure 1.
Schematic flow diagram
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movement, the new position of each node on the free-surface is computed using
the above equations (10) or (11), according to the particular boundary section.
Remeshing must be performed after each time-step to avoid excessive
distortion of elements in the boundary zones.

In a general discrete variational form, equation (10) and (11) can be expressed
in a fourth algorithmic stage to the time-step cycle:

Stage 4

1

Dt

Z
G

ðci þ ða1 þ u ·7ciÞÞðck þ ða2 þ u ·7ckÞÞDHnþ1
k dGF

2

Z
G

ðci þ ða1 þ u ·7ciÞÞu ·7ckH
n
k dGF

ð12Þ

adopting notation for time-step, Dt, interpolant, H n(x ), interpolating functions,
ck(x ), and nodal solution increment, DHn

k ;

H nðxÞ ¼ Hn
kckðxÞ and DHnþ1

k ¼ ðHnþ1
k 2 Hn

k Þ: ð13Þ

We utilise generalized scalar factors ai to switch between Galerkin and SUPG
(explicit and implicit) schemes, as and when required. A free-surface boundary
segment is indicated by GF, over which quadrature may be established. In
equation (12), the generalized form of convective term is represented,
subsuming either equation (10) or (11), depending upon the particular boundary
segment under consideration. We have found it most effective to use a1 ¼ ah

(an SUPG parameter (Carew et al., 1993)) and a2 ¼ Dt=2 to recover an implicit
SUPG scheme. Then, both ci (and ck) are taken as linear functions on straight-
sided boundary elements sections. In the present work, the free-surface location
is computed by an SUPG approach. This is due to the dominant hyperbolic
type of the corresponding equations (10–11), for which some form of
upwinding is appropriate. This approach has accelerated solution convergence
in comparison to a conventional Galerkin approach. In addition, we have the
freedom of choice of free-surface time step size. Here, we have employed the
same Dt for field and free-surface computations, as we are interested only in
steady-state solutions. Elsewhere, when transient accuracy is important, we
may take advantage of socalled pseuodo-time-steps (Ding et al., 1993;
Nithiarasu and Zienkiewicz, 2000).

5. Problem specification
In the first instance, we confine attention to the model problem as illustrated
in Figure 1. The problem is parameterised through coating thickness
(characteristic length), foil speed, Ufoil, (characteristic speed, typically O(102)),
and rotation speed of the roller, Uroll, 90 per cent of the foil speed. A roller of
radius r1, rotates at angular rate v (speed U roll ¼ vr1), applying a coating to
the underside of the alloy sheet of thickness hðx; tÞ. The sheet rests on both the
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roller and the thin film of fluid between the roller and the sheet. The sheet
moves with speed Ufoil in the horizontal direction (negative x ) and the problem
is posed in a Cartesian frame of reference. As a first approximation, there is no
leakage assumed in the nip region and steady-state flow configurations are
sought.

The system of governing equations, in conjunction with free boundary
equations, in the absence of surface tension, is solved by employing a
timemarching finite element semi-implicit Taylor-Galerkin/Pressure-correction
algorithm (Townsend and Webster, 1987; Hawken et al., 1990; Carew et al.,
1993), applying appropriate initial and boundary conditions. The mesh used is
displayed in Figure 2 and has 2925 nodes, 1302 elements and 6662 degrees of
freedom. Three distinct mesh views are displayed. Figure 2a is a full mesh
view that clearly indicates the wide aspect ratios involved. Figure 2b and 2c
provide zoomed sections of mesh at the meniscus region and towards the nip,
accordingly.

Variation in roll speed covers settings of 90 per cent, 99 per cent, 108 per cent
and 120 per cent of the standard foil speed, Ūfoil, typically O(102)m/min.
Similarly, variation in foil-speed is taken from 0.5*Ūfoil to 2.5*Ūfoil at
increments of 0.5*Ūfoil.

No-slip boundary conditions for the flow on solid surfaces are taken as:

on the foil: Ux ¼ 2 �Ufoil;Uy ¼ 0;

on the roller: Ux ¼ U roll cos u;Uy ¼ U roll sin u;

where U roll ¼ Rv; R is the radius and v the angular rotation rate of the roller.

Figure 2.
Finite element mesh

sections
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On free-surface boundaries, conditions (7) and (8) apply, and there, pressure
remains unspecified. Hence, once foil and roll-speeds have been set, there is a
balance imposed between inflow and outflow, presuming there is no leakage at
the nip. If we assume that the coating thickness is given (experimentally
determined) and that a plug flow is generated both on the foil and roller, then
the roller feed thickness is also set.

5.1 Lift and drag
Lift and drag are mechanical forces that arise between solid and liquid
surfaces. Here we are concerned with the lift on the foil and the drag on the
roller. For a Newtonian fluid the lift, drag and stress may be expressed through
the following expressions:

Lfoil ¼

Z
Gfoil

{ 2 p sin uþ txy cos uþ tyy sin u}du ¼

Z
Gfoil

Lf du ð14Þ

Droller ¼

Z
Groller

{ 2 p cos uþ txx cos uþ txy sin u}du ¼

Z
Groller

ð2DRÞ du ð15Þ

where t ¼ 2mD; Lf and DR are distributional lift and drag quantities.

6. Numerical results
The simulation results begin with the standard setting as discussed in section 5,
that follows four sub-sections of study. The first is associated with the
increment of roll-speed at fixed foil-speed. The second considers the effects
upon the flow behaviour of variation in foil-speed at fixed roll-speed. Next we
switch our attention to inlet flow instability on roller. Presentation of results is
achieved through flow field representation of streamlines in the meniscus free-
surface regions and pressure line contours in the nip region. At various flow
settings, tabulations in pressure, shear-rate, and lift on the foil and drag on the
roller are provided, from which we may infer certain properties of the flow. All
values are reported in a non-dimensional form.

6.1 Flow patterns at standard settings
A standard foil-speed setting of 1 unit and roller speed, 90 per cent of foil-
speed, constitutes the base scenario around which variations are subsequently
sought. A steady-state solution is obtained, starting from rest, by imposing
Dirichlet boundary conditions. Here, free boundary conditions refer to natural
unconstrained forms, where boundary location is also determined. Fixed
implies strong constrained boundary conditions on restrained boundary
locations. When the boundaries are set as fixed, a flow reversal around the
meniscus is apparent, see Figure 3a. Switching from fixed to free boundary
settings, removes any flow reversal around the meniscus, see Figure 3b. So that
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in the free-surface configuration, streamline patterns indicate that flow travels
with the roller to the nip, before reversing and being taken up by the foil, to
pass into the coating film on the sheet. A central long thin vortex is set up in the
flow region between the roller and the foil, see Figure 3. Free boundary
conditions apply to all calculations performed below.

6.2 Analysis with increasing roll-speeds
We study the streamline patterns that emerge in the meniscus region for speeds
of 90 per cent, 99 per cent, 108 per cent and 120 per cent of foil-speed, see
Figure 4, with ten contours per field plot from maximum at the vortex center to
minimum at the meniscus. A slight distortion is observed of the streamline
adjoining the meniscus, indicating a shift with dominance of foil over roll-speed
initially at 90 per cent setting, to a balanced scenario at 99 per cent setting. The
distortion is reversed for 108 per cent and 120 per cent settings. A single vortex
has dominated the flow field at each speed setting, and the maximum
magnitude of these streamlines increases with increasing roll-speed (Isaksson
and Rigdahl, (1994) reported similar results).

Pressure maxima in the nip region are O(106) units, and are gradually
decreasing with linear trend as roll-speed increases, see Figure 5a. Foil
distributional pressure (Pf ) is shown in Figure 5b along the foil length. The
pressure level is fairly low along most of the foil, rises significantly close to the
nip and decreases with increasing roll-speed. However, the magnitude of these
decreasing trends is small due to the small variation in roll-speeds. Therefore,
insignificant changes in pressure line contours are observed for the different
roll-speeds. Pressure line contours are included in Figure 5c for 90 per cent roll-
speed of Ūfoil. The region of maximum pressure broadens away from the nip as

Figure 3.
Streamline patterns:
a) fixed and b) free

boundary conditions,
U roll ¼ 90% Ūfoil
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rollspeed increases. Likewise, maximum shear-rate is charted against
increasing roll-speed setting in Table I, attaining values of O(103) units in
the nip region, see Figure 5a. Maxima in shear-rate shift from the foil at 90 per
cent roll-speed, to a balanced pattern at 99 per cent roll-speed, and finally
towards the roller at 108 per cent speed and above, see Figure 7. Since the
locations of application of shear-rate maxima shift, from foil to roller with
increasing roll-speed, it is no surprise that shearrates increase with roll-speed,
see Table I. Inlet layer thickness ainlet is taken relative to outlet, that is
maintained at a constant level as speed of roller increases. Note, that due to
pre-metering, a constant flow rate is assumed for all settings.

Lift (Lfoil) on the foil and drag (Droller) on the roller are charted
correspondingly against roll-speed setting (see Table I, Figure 6). Lift on the
foil is O(107) units and decreases with increasing roll-speed, in contrast drag on

Figure 4.
Streamline patterns,
increasing roll-speed
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uroll/Ūfoil ainlet ġnip Pnip Lfoil Droller

0.9 1.1 0.424E+00 0.160E+03 0.131E+04 0.131E+01
0.99 1.01 0.417E+00 0.155E+03 0.126E+04 0.136E+01
1.08 0.92 0.438E+00 0.151E+03 0.122E+04 0.142E+01
1.20 0.83 0.494E+00 0.147E+03 0.116E+04 0.149E+01

Table I.
Solution variation

with roll-speed,
values *103 units.

Figure 5.
a. Pressure and shear-

rate line plots
(values*103), increasing

roll-speed b. Foil
distributional pressure

(Pf) values*103, towards
the nip c. Pressure line
contours (values *105),

U roll ¼ 90% Ūfoil
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the roller is O(104) units and increases with increasing roll-speed, but remains
three orders of magnitude lower in size than the lift. Hence, with increasing roll-
speed, decreasing linear trends are observed in pressure and lift, and increasing
trends in drag and shear-rate. It is not surprising that the lift on the foil
decreases with increasing roller speed. As the roll-speed is increased, the foil-
speed becomes smaller in comparison. Thus, the lift on the foil decreases with
increasing roll-speed (or decreasing foil-speed). The variation in each quantity
is noted in Table I, where ainlet is the inlet layer thickness carried by the roller.
We reiterate, outlet-coating thickness is maintained throughout at 1 unit.

Free-surface location and its adjustment with increasing roll-speed may be
discerned from Figure 8 and is calibrated by the departure from the initial fixed
location setting. These adjustments are noted to be only minor perturbations.
The inflow feed decreases in thickness with increasing roll-speed, as the outlet
strip-coating width is held fixed.

6.3 Analysis with increasing/decreasing foil-speeds
With the alternative series of adjustments based upon variation in foilspeeds,
flow patterns in streamlines indicate a rise in vortex location with increase

Figure 6.
Line plots, lift on foil and
drag on roller (values
*103), increasing roll-
speed
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in foil-speed, see Figure 9. Since flow rate is determined by the coat-oulet
flow, increasing foil speed implies enhanced flow rate from one setting to
another, presuming adjustment in pre-metering. The rising inflow rate at
increasing foil-speeds, generates high pressures that push the vortex up
towards the foil, see Figure 9b–e. Correspondingly, there is a drop in vortex
location with decrease in foil-speed to 0.5 Ūfoil, see Figure 9a. Distortion in
the streamline patterns near the meniscus region is clearly apparent with
increasing and decreasing foilspeeds. Meniscus shapes adjust accordingly. At
fixed-strip coating width, the inflow thickness on the roller widens as foil-
speed increases, see Figure 9b–e, and narrows with decreasing foil-speed, see
Figure 9a.

In contrast to the scenario of increasing roll-speeds, here foil-pressures, nip
shear-rates, foil-lift and roller-drag all demonstrate essentially linear increasing
trends with increasing foil-speed, see Figure 10. This means that the levels of
foilpressure, foil-lift and roller-drag double, with doubling of foil-speed. It is
noticeable once more that lift on the foil is three orders of magnitude larger
than that of drag on the roller. The corresponding results are charted in
Table II. Figure 11 shows the foil-pressure distribution travelling towards the

Figure 7.
Shear-rate contours

(values *102), increasing
roll-speed
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nip-region. The level of pressure increases with increasing foil-speed raising
the maximum nip-pressure level. In contrast to roller-speed variation, the
region of maximum pressure is drawn towards the nip as foil-speed
increases and pressure levels rise at the meniscus region, correspondingly.
Limiting trends at both meniscus and nip are displayed in line contours of
Figure 12, to associate the spatial distribution of pressure. The rising
pressure at the nip with foil-speed is clearly evident by inspection in
Figure 13. Here, the increase in foil-speed is more than twice the standard
setting. For foil-speeds lower than roll-speeds, maximum shear-rates shift to
the roller, see Figure 14, and pressure levels decline at the meniscus zone
(Figure 12a).

6.4 Instability analysis: inlet flow on roller
Lastly, we consider flow response to variation in roller inflow. This is to
identify flow sensitivity (coating outlet) to inlet flow perturbations. We note
that the roller-inlet flow may inherit any flow disturbances generated, either
from the pickup-metering roll or metering-applicator roll. To accomplish this a
small sinusoidal wave (Carvalho and Scriven, 1997) is imposed at the free-
surface inlet boundary on the roller and the full flow is solved up to the nip,
meniscus and coating regions. As shown in Figure 3, no flow penetrates the
flow zone internal to the meniscus free-surface region (recirculation region).
Such sinusoidal disturbances die away, due to the presence of the roller-inlet
and meniscus free-surfaces, see Figure 15. The crosssection velocity profiles are
observed to merge into a plug flow form, similar to those in the standard
setting (with absence of imposed inlet disturbances). Hence, plug flow patterns
are resumed prior to the meniscus region. The freesurface setting has
dissipated inlet oscillations, so that these do not influence the meniscus or

Figure 8.
Free-surface profiles,
increasing roll-speed
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foil-coating flow structure. We illustrate these findings in Figure 15, on profiles
and free-surface shapes, covering the zoomed section at the roller inlet alone.
Fluid travels along the roller to the nip, the flow reverses at the nip-region and
returns along the foil. We conclude that these influences do not affect the
coatoutlet flow.

On this evidence and under constant inflow due to pre-metering, it would
appear reasonable to disregard roller inflow spatial instabilities, within the

Figure 9.
Streamline patterns,
increasing foil-speed
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Figure 10.
a. Line plots, pressure
and shear-rates (values
*103), increasing
foilspeed, b. Line plots,
lift and drag (values
*103), increasing foil-
speed

Figure 11.
Foil distributional
pressure (values *103),
towards nip, increasing
foilspeeds

ufoil/Ūfoil ainlet ġnip Pnip Lfoil Droller

0.5 0.55 0.388E+00 0.678E+02 0.427E+03 0.094E+01
1.0 1.1 0.424E+00 0.160E+03 0.131E+04 0.130E+01
1.5 1.6 0.660E+00 0.258E+03 0.219E+04 0.166E+01
2.0 2.2 0.898E+00 0.357E+03 0.307E+04 0.203E+01
2.5 2.7 0.114E+01 0.456E+03 0.395E+04 0.239E+01

Table II.
Solution variation
with foil-speed,
values *103 units.

HFF
12,4

452



overall scheme of analysis. Flow adjustment at the nip and temporal
instabilities remain outstanding.

7. Conclusions
A complex roller-coating problem of industrial relevance is analysed. The
effects of increasing foil and roll-speeds on characteristic flow quantities such
as pressure, lift, drag and shear-rate are reported. At increasing roll-speeds,
pressure and lift on the foil display a linear decreasing trend, the levels of
maximum field pressure broaden away from the nip and the location of
maximum shear-rate shifts towards the roller. In contrast with increasing
foil-speeds, a linear increasing trend is observed in foil-pressure and lift.
Also the levels of maximum pressure migrate towards the nip and the
location of maximum shear-rate switches towards the foil. As for drag on the
roller, a linear increasing trend is observed with both increasing roller and foil
speeds.

Figure 12.
Pressure line contours,

meniscus-nip zones,
increasing foil-speed
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Distorted streamline patterns are identified adjoining the meniscus upon
increasing foil-speed. The higher the speed, the greater the streamline
distortion in the direction of dominant flow (roller or foil speed). Vortex centres
shift towards the foil at increasing foil-speed, and towards the roller at
decreasing foil-speed. Any inherited flow disturbances generated, from the
pickupmetering-applicator rollers, are not found to have any influence on the
coatoutlet flow, due to the presence of the roller inlet and meniscus free-
surfaces.

Significantly, no flow reversal is encountered around and in the vicinity of
the free-surface meniscus. The lacquer coatings are essentially Newtonian in
character. It is not surprising therefore that, linear trends are observed with
parameter variation in the different quantities measured. As excess of lift
above sheet weight may be equated unequivocally to vertical shift of foil
position, hence it is conspicuous that flow instability is more likely to be

Figure 13.
Pressure line contours,
nip zone; full range of foil
speeds
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stimulated by increase of foil-speed than that through roll-speed. The excessive
build-up of pressure in the nip region (magnitude of 106 units), influences
vortex flow structure and meniscus shapes. The elevated pressure in the nip,
will force the foil to move vertically and relax the normal forces by creating a
wider gap between roller and foil. This phenomenon, occurring in time,
will create foil vibration and generate flow instabilities, subsequently giving
rise to wavy patterns on the film coating (chatter and starvation, causing flow

Figure 14.
Shear-rate contours

(values *102), increasing
foil-speed

Figure 15.
Interior velocity fields at

roller inlet
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lines). Future studies are intended to focus on these temporal processing
instabilities.
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Simulation of pressure- and
tube-tooling wire-coating flows

through distributed
computation
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Keywords Finite element method, Viscous flows, Parallel computing

Abstract This article focuses on the comparative study of annular wire-coating flows with
polymer melt materials. Different process designs are considered of pressure- and tube-tooling,
complementing earlier studies on individual designs. A novel mass-balance free-surface location
technique is proposed. The polymeric materials are represented via shear-thinning, differential
viscoelastic constitutive models, taken of exponential Phan-Thien/Tanner form. Simulations are
conducted for these industrial problems through distributed parallel computation, using a semi-
implicit time-stepping Taylor-Galerkin/pressure-correction algorithm. On typical field results and
by comparing short-against full-die pressure-tooling solutions, shear-rates are observed to increase
ten fold, while strain rates increase one hundred times. Tube-tooling shear and extension-rates are
one quarter of those for pressure-tooling. These findings across design options, have considerable
bearing on the appropriateness of choice for the respective process involved. Parallel finite element
results are generated on a homogeneous network of Intel-chip workstations, running PVM
(Parallel Vitual Machine) protocol over a Solaris operating system. Parallel timings yield practically
ideal linear speed-up over the set number of processors.

1. Introduction
A number of highly viscoelastic, complex extrusion flows are investigated,
commonly associated with the coatings of glass rovings, fibre-optic cables,
wire and cable manufacturing processes. Three flow problems are considered,
die swell/drag flow (short-die pressure-tooling), full pressure-tooling, and
tube-tooling flow. The first two cases are suitable for simulating industrial
narrow-bore wire-coating processes. Tube-tooling deals with thicker (wide-
bore) wire-coating processes. To provide realistic flow representation for the
polymer melt materials used in practice, the specific choice is made of a
viscoelastic constitutive model to support shear-thinning and strain-softening
behaviour. To this end, an exponential Phan-Thien/Tanner (EPTT) model is
selected, flows are computed in a two-dimensional annular coordinate system
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under creeping flow conditions, and a parallelised version of a semi-implicit
time-marching finite element scheme is used, Taylor-Galerkin/pressure-
correction (TGPC).

Wire-coating has been studied extensively in experimental and
computational form over recent years, see Ngamaramvaranggul and Webster
(2002) for review. Most studies concentrate on the pressure-tooling design.
Modelling assumptions commonly include isothermal flow conditions,
incompressibility of the coating flow (Chung, 1986), concentricity of the wire
(Tadmor and Bird, 1974), and wire speeds ranging up to one meter per second
(Mutlu et al., 1998a). Wire-coating, in the pressure-tooling context, constitutes a
process of two flow regimes: a shear dominated flow within an annular die, and
an extension-dominated flow along the wire-coating region beyond the die.
Injection of the molten polymer into the tooling die establishes a pressure-
driven flow. Contact between the molten plastic tube and the wire is made
within the die for pressure-tooling, where the travelling wire induces a drag
flow, drawing out the polymer melt to form a sheath around the cable. Unique
to tube-tooling design is the dependency upon the effects of draw-down beyond
the die. Coating production lines for narrow-bore wire use relatively high
speeds, around one meter per second, and the deposition of the fluid on a rigid
moving wire is treated as a free surface problem.

Recent attention by a number of authors has focused on the simulation of
pressure-tooling flow for viscous fluids, such as those of Caswell and Tanner
(1978); Pittman and Rashid (1986); Mitsoulis (1986); Mitsoulis et al. (1988) and
Wagner and Mistsoulis (1985). Their work dealt mainly with shear flow under
both isothermal and non-isothermal conditions. Molten polymers have been
noted to exhibit highly elastic behaviour when subject to large deformation
(Matallah et al., 2001). Only recently, numerical techniques have proven capable
of reaching solutions for sufficiently high and relevant levels of elasticity.
Many attempts involving either lubrication or inelastic approximations have
been conducted to addressed these shortcomings (Caswell and Tanner, 1978;
Mitsoulis et al., 1988; Han and Rao, 1978). With finite elements (FE) Mitsoulis
(1986) studied the wire-coating flow of power-law and Newtonian fluids.
Mitsoulis concluded that the inclusion of shear-thinning reduced the levels of
die-swell at the die-exit, as well as the recirculation that occurred within the die.
In a subsequent article, Mitsoulis et al. (1988) provided a detailed investigation
into high-speed industrial wire-coating. Two flow formulations were used; a
planar FE analysis for non-isothermal flows, and a lubrication approximation
for isothermal, power-law fluids. Results corroborated the experimental
findings of Haas and Skewis (1974).

The inadequacy of inelastic modelling was made apparent by (Binding et al.,
1996), rediscrepancies in stress and pressure drop. To predict residual stressing
within the melt coating, a viscoelastic analysis was recommended to account
for the influence of short residence times of the particles within the flow. Hence,
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we have adopted differential viscoelastic models, to predict stress development,
using state-of-the-art FE techniques to reach the high deformation rates
encountered and associated high Weissenberg numbers, O(104). For tube-
tooling flows and fixed free-surface estimation, we have conducted single-mode
PTT (Phan-Thien/Tanner) simulations in Mutlu et al. (1998a); Mutlu et al
(1998b) and Matallah et al. (2001). Tube-tooling was analysed in sections in
Mutlu et al. (1998a), isolating draw-down flow and studying the effects of stress
pre-history and various boundary conditions. This led to a further study (Mutlu
et al., 1998b) on coupled and decoupled solution procedures for a range of model
fluids, approaching those of industrial relevance. In Matallah et al. (2001),
single-mode calculations were compared to those of multi-mode type for LDPE
and HDPE grade polymers. The multi-mode computations revealed the
dominant modes of most significance to the process and gave insight as to the
levels of residual stress in the resultant coatings. Further work on multi-mode
modelling of Matallah et al. (2000), emphasised the influence of die-design
on optimal process setting. Three, as opposed to seven modes, were found
adequate to sufficiently describe the flow. The draw-down residence time,
which dictates the dominance of certain modes within the relaxation time
spectrum, was found to be a major factor to influence the decay of residual
stressing in the coating.

With specific attention paid to slip for viscous flows, a semi-implicit Taylor-
Galerkin/pressure-correction procedure was used by the present authors
(Ngamaramvaranggul and Webster, 2000a) for pressure-tooling and tube-tooling.
There, the influence of slip onset, as opposed to no-slip conditions within the die,
was examined. Tracking free surfaces, our earlier work on model problems
addressed stick-slip and die-swell flows, see Ngamaramvaranggul and Webster
(2000b); Ngamaramvaranggul and Webster (2001). In a recent article for pressure-
tooling (Ngamaramvaranggul and Webster, 2002), the influence of material
rheology was investigated on free-surface flow, whilst tube-tooling was the
subject in Matallah et al (2001). The present analysis extends upon this work,
contrasting comparative designs via a distributed parallel implementation. The
computational efficiency over various processor-cluster sizes is of particular
interest. Distributed computations are performed over homogeneous network
clusters of Intel-chip workstations, running a Solaris Operating System. In this
respect, our earlier experience with parallelisation for large, yet model
problems (Baloch et al., 2000), is taken into the industrial processing realm.
There, Parallel Virtual Machine (PVM) message passing libraries were used
over heterogeneous clusters, comprising of DEC-alpha, Intel-Solaris and AMD-K7
(Athlon) Linux processors.

The outline of the current paper is as follows. First, the governing equations
are described, followed by the rheological behaviour of the PTT model. In
section 4, the three different problems are specified. This is followed, by an
outline to the parallel TGPC numerical method employed for the simulations.
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The results of the simulations are presented in section 6 and some conclusions
are drawn in section 7.

2. Governing equations
Isothermal flow of incompressible viscoelastic fluid can be modelled through a
system comprising of the generalised momentum transport, conservation of
mass and viscoelastic stress constitutive equations. The problems in this study
are modeled as annular and two-dimensional. In the absence of body forces,
such a system can be represented in the form:

7 · v ¼ 0; ð1Þ

r
›v

›t
¼ 7 ·s2 rv ·7v: ð2Þ

Here, v is the fluid velocity vector field, s is the Cauchy stress tensor, r is the
fluid density, t represents time, and divergence and gradient operations are
implied via 7. The Cauchy stress tensor can be expressed in the form:

s ¼ 2pdþ T e;

where p is the isotropic fluid pressure, d is the Kronecker delta tensor, and Te is
the stress tensor. For viscoelastic flows, stress Te can be decomposed into
solvent and polymeric contributions,

T e ¼ tþ 2m2d ;

with tensors, t, the elastic extra-stress and rate-of-strain d ¼ 0:5½7vþ ð7vÞ†�
(superscript † denotes a matrix transpose). m2 is a solvent and m1 a polymeric
solute viscosity, such that m ¼ m1 þ m2. The particular choice of constitutive
model is that of Phan-Thien and Tanner (1977); Phan-Thien (1978), in
exponential form (EPPT). In contrast to models, such as constant shear
viscosity Oldroyd-B, this EPPT version supports shear-thinning and finite
extensional viscosity behaviour. The constitutive equations for the extra-stress
of the EPTT model is expressed as:

l1
›t

›t
¼ 2m1d þ f t2 l1{t ·7v þ ð7vÞ† · t2 v ·7t}; ð3Þ

with an averaged relaxation time l1 and function f, defined in terms of trace of
stress, trace (t ), as:

f ¼ exp
1l1

m1
traceðtÞ

� �
:

The material parameters that control shear and elongational properties of
the fluid are e and m1, respectively. These may be evaluated by fitting to the
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experimental data (Matallah et al., 2001; Matallah et al., 2000). When 1 vanishes,
the Oldroyd-B model is recovered and f ¼ 1.

We find it convenient to express the governing equations in non-dimensional
form, by defining corresponding scales of characteristic length R, taken as
coating length (Figures 2–4), and wire-speed as characteristic velocity scale, V.
Then, stress and pressure are scaled by a factor of mV=R,and time by R=V .
There are two non-dimensional group numbers of relevance, Weissenberg
number We ¼ Vl1=R and Reynolds number Re ¼ rVR=m.

3. Shear and elongational behaviour of EPTT
Many common non-Newtonian fluids exhibit non-constant viscosity behaviour.
So, for example, such materials may display shear-thinning, where the
viscosity is a decreasing function of increasing shear rate as illustrated in
Figures 1a in pure shear. Figure 1b reflects a similar plot, demonstrating the
functional dependence of viscosity under increasing strain-rate in pure uniaxial
extension. This is termed the elongational or extensional viscosity behaviour.
The merits of the PTT model over the Maxwell model are highlighted by Phan-
Thien and Tanner (1992), noting that, the Maxwellian elongational viscosity is
singular at finite strain rates. The shear and extensional viscosity functions, ms

and me, of the PTT model variants may be expressed as a function of f itself,
taken of exponential form as above, via

msð _gÞ ¼ m2 þ
m1

f
; ð4Þ

and

með _1Þ ¼ 3m2 þ
2m1

f 2 2l1 _1
þ

m

f þ l1 _1
: ð5Þ

Under general flow conditions, there is need to record generalized shear and
strain-rates, that are defined via flow invariants as, respectively:

_g ¼ 2
ffiffiffiffiffiffi
IId

p
; _1 ¼ 3

IIId

IId

; ð6Þ

where IId and IIId are the second and third invariants of the rate of strain
tensor d. Such quantities are represented as

IId ¼
1

2
traceðdÞ ¼

1

2

›vr

›r

� �2

þ
›vz

›z

� �2

þ
vr

r

� �2

þ
1

2

›vr

›z
þ

›vz

›r

� �2
( )

; ð7Þ

IIId ¼ detðdÞ ¼
vr

r

›vr

›r

›vz

›z
2

1

4

›vr

›z
þ

›v2

›r

� �2
( )

: ð8Þ
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In pure shear, ms varies with e , m1, and l1. The effect of elevating m1 from levels
of 0.88 to 0.99 and 0.95 reduces the second Newtonian plateau level from
0(1021) to 0(1022) and below. Here m1 ¼ 0:99 solute fraction is taken as
suitable. Shifting of l1, (via We) from unity to 0(10) and 0(102), translates ms in a
constant shift fashion. The larger l1, the earlier the departure occurs from the
first Newtonian plateau. Current material and process settings suggest l1 of
0(1s ) is a reasonable choice, so that We ¼ 200: With selection of m1 ¼ 0:99
and We ¼ 200; the influence of the e-parameter choice is relatively minor.

Figure 1.
EPTT model
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Figure 3.
Full-die pressure-tooling

Figure 2.
Short-die pressure-
tooling
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Increasing e from 0.1 to 0(1) slightly retards the ms pattern, so that earlier
departure from the first Newtonian plateau occurs. Here, e of unity is selected.

In steady uniaxial extension, me follows the behavioural trends of ms for both
We and m1 parameters. Distinction may be found via the e-parameter. Taking
the tuple setting ðm1;WeÞ ¼ ð0:99; 200Þ, for 0:1 # e # 0:5; reflects strain-
hardening at low strain rates prior to softening at rates above 1022. Only
softening is apparent for 1 , 0(1). The EPTT (1,0.99,200) model demonstrates
the desired viscometric functional behaviour, shear-thinning and strain-
softening, within the deformation rate ranges of dominant interest for the wire-
coating process, as one might typically encounter, say, for an LDPE grade
polymer at 2308C. As a consequence of these viscometric functions, we observe
later in the actual flows of current interest, that maximum shear-rates may rise
to O(102) units, whilst strain-rates reach O(101). This, in turn, implies that
second Newtonian plateaus will be reached in-situ.

4. Specification of problems
This paper deals with the study of three types of flow: die swell/drag flow
(short-die tooling), full-die pressure-tooling flow, and tube-tooling flow.

4.1 Die-swell/drag flow
This annular problem illustrates the progressive effects of an imposed drag
flow from the travelling wire on both the classic die swell problem (within the
free jet-flow region) and stick-slip flow (see Figure 2). Mesh refinement
considerations follow our previous studies (Ngamaramvaranggul and Webster,
2002; Ngamaramvaranggul and Webster, 2000b; Ngamaramvaranggul and
Webster, 2001), where the fine mesh of Figure 2b is found suitable. The
flowrate through the die is fixed by the fully-developed annular inlet flow
profile under pressure-driven conditions. No-slip conditions are applied at
the die wall boundaries. The wire and inlet channel radii comprise the
characteristic length, while characteristic velocity is directly related to the
constant wire-speed at the lower boundary of the domain. The rapid reduction
in traction at the free jet surface gives rise to the fully-developed plug flow at
the domain outflow.

4.2 Pressure-tooling
Pressure-tooling flow is an extension to the previous die-swell/drag flow study,
the domain of which is specified in Figure 3a. This domain contains an initial
short-die flow zone within the land region of the die (z6, z7), followed by a jet
flow region at the die exit. The traveling wire within the die, moving at a fixed
speed, first makes contact with the pressure-driven annular flow at z3 station.
The influence of the wire on the polymer melt at this boundary region is
referred to in Ngamaramvaranggul and Webster (2002); Binding et al. (1996);
Ngamaramvaranggul and Webster (2000a). Flow within the die is restrained by
no-slip boundary conditions at the die walls. The swelling effects observed in
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the jet flow region are caused by the sudden drop to atmospheric pressure,
combined with the immediate lack of traction. This swell, in the extruded
polymer, levels out to a fully-developed plug flow, by the time it reaches the end
of the pressure-tooling domain. The biased fine mesh of Figure 3b is employed,
for further details see our prior study (Ngamaramvaranggul and Webster,
2002).

4.3 Tube-tooling
A schematic illustration of the full-die tube-tooling domain is shown in
Figure 4a. This was computed upon with the fine mesh of Figure 4b. Problem
dimensions are largely in common with the full pressure-tooling specification.
So, for example, the lower and upper die wall converging angles are 308 and
178, at positions z10 and z3, respectively. No-slip die-wall boundary conditions
apply throughout the die. In the final draw-down region (z4z5 and z8z9), free
surface conditions apply. For tube-tooling, the wire makes contact with
the polymer melt at the end of the draw-down region z5, with the coating
length upon the wire being taken as the characteristic length R2. As for
pressure-tooling, the wire dimensions, inlet hydraulic radius (R2), and total die
length (3R2), again apply in this example. In our previous investigations
(Ngamaramvaranggul and Webster, 2002; Ngamaramvaranggul and Webster,
2001), we focused upon mesh convergence studies. Here, numerical solutions
are generated on fine meshes only, the detailed statistics of which are recorded
in Table I for all three problems, inclusive of degrees of freedom (DOF), for
Newtonian (N ) models and viscoelastic (V ) models.

Figure 4.
Full-die tube-tooling
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5. Numerical scheme
5.1 Sequential Taylor-Galerkin algorithm
A time-marching finite element algorithm is employed in this investigation to
compute steady viscoelastic solution through a semi-implicit Taylor-Petrov-
Galerkin/pressure-correction scheme (Townsend and Webster, 1987; Hawken
et al., 1990; Carew et al., 1993; Baloch and Webster, 1995; Baloch et al., 1998;
Matallah et al., 1998), based on a fractional-step formulation. This involves
discretisation for equations (1–3), first in the temporal domain, adopting a
Taylor series expansion in time and a pressure-correction operator-split, to
build a second-order time-stepping scheme. Spatial discretisation is achieved
via Galerkin approximation for momentum and Petrov-Galerkin for the
constitutive equations. The finite element basis functions employed are
quadratic for velocities and stress, and linear for pressure, defined over two-
dimensional triangular elements. Galerkin integrals are evaluated by a seven
point Gauss quadrature rule. The time-stepping scheme includes a semi-
implicit treatment for the momentum equation to avoid restrictive viscous
stability constraints. Solution of each fractional-staged equation is
accomplished via an iterative solver. That is, with the exception of the
temporal pressure-difference Poisson equation, which is solved through a direct
Choleski procedure. The semi-implicit Taylor-Galerkin/pressure-correction
method may be presented in semi-discrete temporal format as:

Stage 1a:

2Re

Dt
ðv nþ1

2 2 v nÞ ¼ ½7 · ð2m2d þ tÞ2 Rev ·7v 2 7p�n þ 7 ·m2ðd
nþ1

2 2 d nÞ;

2We

Dt
ðtnþ1

2 2 tnÞn ¼ 2m1d 2 f t2 We½v ·7t2 7v · t2 ð7v · tÞ†�n:

Stage 1b:

Re

Dt
ðv* 2 vnÞ ¼ ½7 · ð2m2d 2 7p�n þ ½7�t2 Rev ·7v�nþ

1
2 þ 7 ·m2ðd* 2 d nÞ;

We

Dt
tnþ1

2 2 tn
� �

¼ 2m1d 2 f t2 We½v ·7t2 7v · t2 ð7v · tÞ†�nþ
1
2:

Meshes Elements Nodes DOF(N) DOF(V)

Short-die 288 377 929 2437
Pressure-tooling 3810 7905 17858 49478
Tube-tooling 4714 9755 22031 61051

Table I.
Finite element mesh

data
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Stage 2:
Dt

2
72ðpnþ1 2 pnÞ ¼ Re7 · v*

Stage 3:
2Re

Dt
ðv nþ1 2 v* Þ ¼ 27ðpnþ1 2 pnÞ:

Here, n is the time step number and v* is a non-solenoidal vector field. The
velocity and stress components of Stage 1a are taken for a half time step
(i.e., nþ 1=2), while at Stage 1b, the v* velocities and stresses are computed
over a full time step (nþ 1). In combination, Stage 1 constitutes a predictor-
corrector doublet, performed once per time-step. This concludes derivation
of stress components for a complete time step. Pressure differences over this
period are calculated from the Poisson equation (Stage 2), depending upon
the intermediate vector field v*. Solution of this Poisson equation yields the
solenoidal velocity over a full time step, as shown in Stage 3 (see Townsend
and Webster (1987); Hawken et al. (1990)). Free-surface reassessment is
conducted at a fourth stage (see on). Recovery of velocity gradients within
the constitutive equation further enhances stability of the system, along
with streamline-upwind Petrov-Galerkin weighting. Determination of time
step (typically O(1023)) is made on the basis of a Courant stability
constraint.

5.2 Parallel Taylor-Galerkin algorithm
The semi-implicit time-stepping TGPC algorithm is parallelised as follows.
Each of the individual fractional-stage phases of the algorithm is parallelised
within a single time-step loop. This implies operations of gather and scatter of
data, pre- and post- each phase, respectively. In such a manner, the combined
problem is split into associated sub-problems relating to each subdomain. We
relate such operations with message passing between master and slave
processors, achieved via PVM send and receive communication commands.
This is a crucial issue to ensure correct system configuration and network
communication. This slave processors solve subdomain problems, whilst the
master processor resolves the interface problem and controls master-slave
communication (Grant et al., 1998).

Of the various fractional-stages, the pressure equation step is the only one
that is conducted through a direct solution procedure (Choleski), involving the
explicit parallel construction and solution of a matrix problem. Remaining
stages are associated with an iterative solution procedure (Jacobi). It is upon
this basis that the exceptional parallel performance characteristics are
achieved. The complete detail behind the parallelisation of the TGPC and these
two algebraic solution procedures is provided in Grant et al. (1998). Briefly,
both necessitate an assembly and solution phase, involving finite element loop
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construction of right-hand-side vectors and matrix components. For Choleski,
the matrix components must be stored. Fortunately, this is manageable even
for large problems, as the pressure variable in question is of scalar form on the
field.

Solution phases radically differ between iterative and direct procedures.
The iterative solution phase is nodally-based. Each sub-problem on a slave
processor, first computes contributions for the boundary (interfacing) nodes, so
that their result may be communicated to the master processor directly, whilst
the computation for interior sub-domain nodes is completed. This enables
effective masking of communication. The master processor must then process
the combined domain contributions for the interfacing nodes, as well as
performing system synchronisation and intercommunication processor control.
Utilising an iteration number r, acceleration factor v, right-hand side vector b,
iteration sub-domain vector XPi, system (mass) matrix Mfe and diagonal
matrix Md, the parallel finite element Jacobi iteration may be expressed in
concise notational form, as

par

XP1

. . .

XP2

. . .

XP3

. . .

..

.

. . .

XPn

2
666666666666666666664

3
777777777777777777775

rþ1

nodes

¼ ðI 2 vM21
d M feÞ

XP

. . .

XP

. . .

XP3

. . .

..

.

. . .

XPn

2
666666666666666666664

3
777777777777777777775

r

nodes

þ vM21
d ½b�nodes

The mass-matrix (Mfe) is based on quadratic finite element functions, its
diagonalised form (Md) is one of absolute row-sum, and the iterative
acceleration parameter v may be selected to suit (often simply taken as unity).
System matrices are referenced and evaluated at the element level only, so that
a complete system is never stored. A single iteration sweep of this sort will
maintain integrity levels of the data re-synchronisation. Care likewise must be
taken with respect to consistent solution increment tolerance calculations,
across individual slave and master processors.

The parallel direct solution phase adopts a Schur-complement approach.
This introduces a herring-bone structure to the complete system matrix
problem, via the associated nodal numbering on each subdomain and the
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interfacing boundary nodes. The parallel herring-bone structure of the Choleski
system matrix may be represented as

par

½P1� ½MP1�

½P2� ½MP2�

½P3� ½MP3�

· ·

·

· ½Pn� ½MPn�

½P1M� ½P2M � ½P3M � ½PnM � ½M �

2
66666666666664

3
77777777777775

Herring Bone Structure (Schur-complement)

with [Pi] the subdomain problem for the interior of subdomain i, [PiM ], the
matrix contribution of interior subdomain i to the boundary-node problem, and
[M ] that for the boundary-nodes.

The subdomain problem, for each interior subdomain (on a single slave
processor), may be solved in parallel with all others. Finally, the interfacing-
node matrix problem is solved, for which all available processors may be used.
To date, the size of the interfacing-node matrix problem has been such that a
single processor (the master) has been employed to resolve it. In such a fashion,
it is possible to render large-scale problems tractable, typically of three-
dimensional or viscoelastic form (Grant et al., 1998).

5.3 Free-surface procedure
The term die-swell describes the radial increase of the polymer melt in the free-
jet flow on exiting the die. It is represented as the swelling ratio ðx ¼ Rj=RÞ,
where Rj is the jet radius and R is the tube radius. This phenomenon is of
considerable significance to some polymer processing operations in industry.
For creeping flow, without gravity, and with large surface tension, die swell
was defined analytically by Richardson (1970). A number of numerical schemes
can be used to calculate die swell. Comparisons in performance between free
surface estimation algorithms, utilising finite differences, finite elements, and
boundary element methods can be found in Crochet et al. (1984) and Tanner
(1985). These surveys cover the varying accuracy of the above methods and
asymptotic analysis for viscoelastic and Newtonian fluids in axisymmetric and
planar die flows. Below we introduce two schemes for the numerical prediction
of free surfaces: the streamline prediction method and the mass balance
method. These are incorporated into the present algorithm at a fourth
terminating stage within the time-step loop.

 
	

	
!
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5.4 Stream-line prediction method
A modified iterative free surface location method was used to determine
extrusion profiles. Three boundary conditions are used to describe the free
surface, see Crochet et al. (1984),

vrnr þ vznz ¼ 0; ð9Þ

trnr þ tznz ¼ S
1

r1
þ

1

r2

� �
; ð10Þ

trnz 2 tznr ¼ 0; ð11Þ

Where free surface unit normal components are ðnr; nzÞ, curvature radii
ðr1; r2Þ, surface tension coefficient S (vanishes here), radial and axial velocities
ðvr; vzÞ and surface forces normal to the free surface ðtr; tzÞ.

Boundary condition (10) and (11) are used when iteratively modelling the
free surface. Conditions (9) is then included to define the normal velocity. The
upper extruded flow surface can then be obtained for die-swell extrusion. For a
tube radius R, the distance r(z ) of the free surface from the axis of symmetry is
represented by:

rðzÞ ¼ R þ

Z 1

z¼0

vrðzÞ

vzðzÞ
dz: ð12Þ

In order to accurately predict the extrusion shape, Simpsons quadrature rule is
used to compute the integral of equation (12).

The procedure of solution is as follows. First, the kinematics for a converged
Newtonian solution is used as initial conditions, with a relaxed stress field, and
the fixed free-surface problem is solved. Subsequently, the full problem is
computed, involving the free surface calculation, where the surface location
itself must be determined. Continuation from one particular viscoelastic
solution setting to the next is then employed. In some instances, it is stabilising
to first enforce vanishing surface extra-stress (t of equation (3)), prior to
relaxing such a constraint. To satisfy the zero normal velocity free surface
boundary condition and to compensate for the adjustment of the free surface,
the velocity solution at the advanced time surface position must be reprojected
from the previous surface position.

5.5 Mass balance method
The pressure drop/mass balance method provides an adequate means of
correcting the estimation of the free surface position. Such a technique may
provide improved solution accuracy and stability over the regular streamline
location method. The procedure involves taking, an initial estimate of the
free-surface profile for each Weissenberg number. Sampling points for We
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begin from the stick-slip region. The final correction stage makes use of the
streamline method, to perturb and validate the position of the die swell surface.

By examining the functional dependence of pressure drop (Dp ) in swell (x )
profiles at the centreline, for each We level, the mass balance scheme relates
flow characteristics between the stick-slip to die-swell phases of the problem
(akin to an expression of energy balance). By taking into account known swell
predictions with sampled pressure drop results, a general relationship may be
established between these two scenarios:

xðzÞ ¼
Dpðz;WeÞ

f ðWeÞ
;

By fitting to prior and accepted data (say at low We levels, from the streamline
method), the denominator can be represented by:

f ðWeÞ ¼ 10:68 2 0:133We 2 2:125 We2:

Using this approach, it is possible to derive the approximate swell after
pressure drop calculations are made. This process is then implemented within
an iterative time-stepping procedure, to obtain a converged solution. Such a
strategy is found to be absolutely necessary to achieve converged free-surface
solutions at the extreme levels of parameters relevant to industrial processing,
notably high We and low solvent contribution.

6. Numerical predictions and discussion
6.1 Short-die, pressure-tooling
The solution for short-die pressure-tooling is illustrated through field plots, in
terms of pressure, extension rate and shear rate in Figure 5 and stress
component contours in Figure 7. The short-die problem, taken on the 6 £ 24
element mesh, is idealised flow. It proves useful to encapsulate the essence of
pressure-tooling, devoid of the complexity of the full die. In contrast, the full-die
study reveals the implications of actual processing conditions.

The pressure drop across the flow reaches 0.46 units (relative to ambient
pressure), where the die length to exit gap width ratio is of the order 2:1. This
drop corresponds to that across the die alone. The minimum pressure arises at
the top surface die-exit. The shear rate I2 is two orders of magnitude larger
than the extension rate, peaking with 31.3 units at the top die-exit boundary.
Upon entering the jet region, the shear rate rapidly decline and vanishes. The
flow profile adjusts from a shear flow within the die to a plug flow in the jet.
The flow profiles of Figure 6 reflect this position, with a linear decrease in
pressure observed along the wire within the die. Maximum swell within the jet
reaches 1.054 units. This would correspond to typical results reported in the
literature Mitsoulis (1986); Mitsoulis et al. (1988); Wagner and Mitsoulis (1985);
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Ngamaramvaranggul and Webster (2000b); Ngamaramvaranggul and Webster
(2001).

Field plots on the stress components of Figure 7, illustrate the dominance of
the axial stress, that in maxima is three times larger than the shear stress and
five times larger than the radial stress. The sharp adjustment is noted at
die-exit on the top-surface in both shear and axial stress, Trz and Tzz-profiles of
Figure 8 and 9, respectively. Profiles on the wire are relatively smooth, in
contrast. We have observed in our earlier work (Ngamaramvaranggul and
Webster, 2002), that the strain-softening response of the EPTT model, stabilises

Figure 5.
Short-die
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Figure 6.
Short-die; (a) pressure
along the wire, (b) I2 on
top surface, (c) die swell
on top free
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stress profiles. This stands in stark contrast to models that support strain-
hardening.

6.2 Full-die, pressure-tooling
Following our earlier study on mesh convergence (Ngamaramvaranggul and
Webster, 2002), for this problem our results are plotted upon the biased fine
mesh of Figure 3b, with identical parameter settings as for the short-die flow.
The zonal refinements are outlined in Table II, with greatest density and bias in
the land and die-exit regions.

Figure 7.
Short-die: (a) Trr

contours, (b) Trz

contours, (c) Tzz contours
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The filed plots of Figure 10 indicate an intense drop in pressure local to the land
region, reaching a maximum pressure drop of 10.1 units. Shear rate, I2, also
identifies significant shearing over the land region, reaching a peak of 461 units
at the die-exit, a fifteen fold increase to that obtained for short-die tooling.

Figure 8.
Short-die: Trz (a) on top
surface, (b) on wire

Sub-region zone Biased fine mesh

1. inlet die 15 £ 20
2. converging die 15 £ 25
3. coating region 15 £ 30
4. land region 15 £ 5
5. jet region 15 £ 47

Table II.
Full-die pressure-
tooling; mesh
characteristics,
sub-region zones
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Strain rates, _1, are an order of magnitude lower than shear rates, and display
peaks at melt-wire contact and die-exit. At the melt-wire contact point, _1
increases to 8.37 units. A rapid larger rise occurs in the wire-coating section at
die-exit. The second peak in _1-profile at the top boundary, characteristic for the
full-die, reaches a height of 18.8 units in the post-die exit region.

The pressure along the bottom surface corresponds to the line contour plot
of Figure 11a. Pressure difference is twenty two times greater for the full case,
above short-die pressure-tooling (as compared with Figure 5). Note that, these
drops in pressure, essentially correspond to the same flow zone, that is, over the
land-region at jet-entry. The die-swell profile along the top free-surface is given
in Figure 11b. The swelling ratio is fifteen percent larger than that for short-die
pressure-tooling.

Figure 9.
Short-die Tzz (a) on top

surface, (b) on wire
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Shear rate profiles, along the top and bottom surfaces, are represented in Figure
12. The top surface I2 peak of 461.7 units at the die-exit (Figure 12a), is fifteen
times greater than that for short-die, pressure-tooling (see Figure 6b). Figure
data on I2 maxima may be found in Table III. Along the bottom surface, the
double (sudden shock) peaks of 124 and 140 units of Figure 12b are most
prominent. Such peaks do not appear in the short-die case, being a new
introduction as a consequence of the full-die and melt-wire contact.

The “shock impact” as the fluid makes contact with the wire is most
prominent in the radial, shear and axial stress contour plots of Figure 13.

Figure 10.
Full-die pressure-tooling:
(a) pressure contours,
(b) I2 contours, (c) _1
contours
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Nevertheless, stress levels within the die remain small, the greatest axial stress
of 0.069 units occurs upon melt-wire contact.

Top-surface stress profiles of Figure 14a and 15a, demonstrate most clearly,
the “localised effect” of die-exit point discontinuity. A violent jump in shear
stress is observed over the land region. Comparison of stress between full-die
and short-die pressure-tooling instances reveals factor increases of 1.8 times in
Trz and 1.7 times in Tzz (Table III). Both shear and axial stress profiles along
the bottom wire-surface reveal the influence of the moving-wire on the flow
at the melt-wire contact point (axial position 21.1 units). In axial stress of
Figure 15, along the bottom surface, the characteristic “double peak” profile at
the melt-wire contact point and die-exit regions is observed. The axial stress
peak at the melt-wire contact point exceeds that at die-exit and is followed by a
sharp relaxation on the approach to the land region, upon which a more

Figure 11.
Full-die pressure-tooling:

(a) pressure along the
wire, (b) die swell on top

free
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sustained maxima forms. Notably, in the extrudate, Tzz remains positive, and
provides some residual stressing to the coating. Tzz-maxima increase only
slightly from case to case, with full-case pressure-tooling values being about
twice for the short-die instance.

Figure 12.
Full-die pressure-tooling:
I2 (a) on top surface, (b) on
bottom surface

Solution variables Short-die Full-die Tube-tooling

I2 max, Top 31.35 461.7 127.7
I2 max, Bot – 139.7 144.2
_1 max 0.144 18.83 4.43
Dp 0.462 10.18 16.09
Trx max 0.014 0.025 0.024
Tzz max 0.041 0.069 0.050
x 1.054 1.215 –

Table III.
EPTT ðe ¼ 1; m1 ¼
0:99; We ¼ 200Þ;
solution values
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6.3 Tube-tooling
Concerning the tube-tooling problem, our analyses are based on a single refined
mesh as displayed in Figure 4b, see Townsend and Webster (1987). Mesh
characteristics for each sub-region are provided in Table IV. As displayed in
Figure 16a, the pressure-drop is most prominent across the tube-die. At the
draw-down and coating regions, the pressure hold to an ambient level. The

Figure 13.
Full-die pressure-tooling:

(a) Trr contours, (b) Trz

contours, (c) Tzz contours
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most important rate of change in pressure-drop arises across the land-region, as
is true for pressure-tooling. Here, the maximum value is higher, of 16.1 units for
tube-tooling compared to 10.2 units for pressure-tooling.

In contrast, shear-rate I2, is about a quarter of that corresponding to
pressure-tooling. The maximum is 144 units. Again, higher shear-rates are
attained in the land-region, see Figure 16b. The remaining regions display
smaller shear-rates, so that the shear-viscosity of the polymer melt will be high
there. The shear-rate profiles are also displayed in Figure 17b and c, plotted
along the top and bottom surfaces in the axial direction. The shear-rates
increase across the converging cone, from 0.89 units at the inlet-tube and start
of the converging cone to 14.6 units at its end. A sudden rise in shear-rate
occurs when the polymer enters the land-region, across which a constant value
is generated. Shear-rate maxima are generated at the die-exit, with values of

Figure 14.
Full-die pressure-tooling:
Trz (a) on top surface,
(b) on wire
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144.2 and 127.2 units at the bottom and top surfaces, respectively. Beyond the
die-exit entering the draw-down flow, a sharp drop in shear-rate is observed.
Similar behaviour is observed in both top and bottom surface shear-rate
profiles. There is only a gradual decrease in shear-rate over the draw-down

Figure 15.
Full-die pressure-tooling:

Tzz a) on top surface,
(b) on wire

Sub-region zone Biased fine mesh

1. inlet die 12 £ 45
2. converging die 12 £ 18+15 £ 8
3. land region 15 £ 12+20 £ 12
4. draw-down region 20 £ 25
5. coating region 20 £ 25

Table IV.
Tube-tooling; mesh
characteristics, sub-

region zones
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section, followed by a sharp decline when the polymer meets the wire.
Traveling with the wire, the rate of decrease in shear-rates is minimal. The final
shear-rates, taken up at the end of the coating, are about 0.26 and 1.0 units for
bottom and top surfaces, respectively.

The state of strain-rate _1 is illustrated in Figure 16c. This quantity is
significant in the converging tube. It reaches a maximum of about 4.43 units, an
order of magnitude lower than that for shear-rate maxima. This is a fifth of that
corresponding to pressure-tooling maxima. Large values of strain-rate are also
located, of less magnitude, at the start of the draw-down section just beyond the
die-exit. The value reached is about 2.50 units, half of that observed in the
converging die-cone. The profiles for _1 along the axial direction, for top and
bottom surfaces show similar behaviour to each other, with exceptions at the
sharp adjustments in geometry. Elongation-rates are large at the land region

Figure 16.
Tube-tooling: (a) pressure
contours, (b) I2 contours,
(c) _1 contours
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Figure 17.
Tube-tooling: (a) pressure

along the wire, (b) I2 on
top surface, (c) I2 on

bottom surface
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entrance, reaching a maximum of 4.43 units, being minimal in the remaining
flow section. Shear and strain-rates are important measurable quantities that
describe the state of flow and, according to the ranges encountered, may
explain the polymer response to different flow scenarios.

Component stress profiles along the top surface are provided in Figure 18 a)
for trz and b ) for tzz. One may observe from this, that along the inlet-tube, tzz is
constant, of about 0.02 units. Sudden change occurs with each adjustment in
geometry. An increase of tzz is observed within the converging cone of the die,
reaching a value of 0.045 units at the entrance to the land-region. tzz is constant
over the land-region, followed by a sudden increase due to singularity, where
the polymer departs from the die to the draw-down section. A sharp decrease
within the draw-down is generated. When the polymer makes contact with the
wire, tzz increases providing a residual stress of about 0.012 units. In contrast,

Figure 18.
Tube-tooling: on top
surface (a) Trz (b) Tzz
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the shear-stress trz is lower in value than the tzz component, as displayed in
Figure 18a. trz starts with a value of about 0.007 units at the inlet tube, increase
over the converging cone to reach a constant value of 0.01 units across the land-
region. Subsequently, trz decreases in the draw-down and coating regions to a
minimum value less than 0.001 units. Contours are plotted in Figure 19 to
analyse the state of stress over the whole domain and in various components.
trr can be considered to be small in the inlet-tube and land-region: it is
significant in the converging cone, draw-down and coating regions. A maximum
of about 0.05 units is realised in the draw-down section. For trz, we observe a
peak (0.024 units) in the converging die-cone, near the entrance to the land-
region. The shear-stress is also prominent in the land-region, but of less
magnitude (about half) than that over the converging cone. Axial tzz stress is
most significant in the land-region, as observed in Figure 19c. The maximum

Figure 19.
Tube-tooling: (a) Trr

contours, (b) Trz

contours, (c) Tzz contours
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value, 0.051 units, is double that of the shear-stress. Hence, residual stressing to
the coating is dominated by the axial component.

6.4 Parallel timings
Parallel computation is employed, within the simulations performed through a
spatial domain decomposition method. The domain of interest is decomposed
into a number of subdomains, according to available resources and total
number of DOF. In this study, uniform load distribution is ensured using a
Recursive Spectral Bisection method (Simon, 1991). Though the method is quite
general, uniform load may be organized if domain subdivision is
straightforward, otherwise loading will be approximately uniform, from
which manual adjustment may be made. As the short-die domain has relatively
few DOF, the domain is decomposed into instances with only two and four sub-
domains. In contrast, tube-tooling and pressure-tooling domains are partitioned
into as many as eight sub-domains.

In Table V, information is presented on domain decomposition, the number
of elements and nodes per subdomain, the number of interfacing nodes and
ratio of subdomain nodes to interfacing nodes (Cn¼Nn :Inn), With an increasing
number of subdomains, interfacing nodes (Inn) increase (as does communication
cost), whilst the number of elements, nodes (Nn) and degrees-of-freedom per
subdomain decreases.

Parallel timings are generated on a networked cluster of single processor
Intel 450 MHz Solaris workstations, a distributed-memory homogeneous
platform. A public domain PVM 3.4.3 version for message passing protocol has
been employed to support interprocessor communication through networking
with fast 100 Mbit/s EtherNet. Computed results are presented through the

Domain Elements/ Nodes/ Interface nodes Cn

Short-die subdomain subdomain Master Slave Master Slave

1 288 377 – – – –
2 144 325 13 13 4% 4%
4 72 169 39 26 23% 15.4%
Pressure-tooling
1 3810 7905 – – – –
2 1905 3968 31 31 0.78% 0.78%
4 953 1976 93 62 4.71 3.14%
8 476 988 217 62 22.0% 6.28%
Tube-tooling
1 4714 9755 – – – –
2 2357 4878 31 31 0.64% 2.75%
4 1178 2439 103 67 4.22% 2.75%
8 589 1222 272 71 22.3% 5.81%

Table V.
Domain
decomposition data

HFF
12,4

488



parallel performance of the Taylor-Galerkin scheme, by measuring metrics of
speed-up and efficiency, with increasing numbers of processors (hence, sub-
tasks). The total speed-up (Sn) factor and efficiency (hn) are defined as:

Sn ¼
Tseq

Tn
; hn ¼

Sn

n
;

Where n is the number of processors, Tseq is the CPU time in seconds (s ) for the
sequential algorithm and Tn is the CPU time for the parallel algorithm. CPU
time Tn of the parallel computation can be decomposed into computation time
ðTcomp

n Þand communication time ðTcomm
n Þ. Timings correspond to total job run-

time, inclusive of input-output and communication latency.
In Table VI, speed-up and efficiency factors are tabulated for our parallel

implementations. Speed-up is plotted in Figure 20 for the viscoelastic simulations
if short-die, tube-tooling and pressure-tooling problems, with increasing
numbers of processors. As the short-die problem has fewer DOF, eight percent
loss of efficiency is observed with up to four processors. For two-subdomains,

Short-die Pressure-tooling Tube-tooling
Processors Sn hn Sn hn Sn hn

1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.94 0.97 1.99 0.99 1.99 0.99
4 3.66 0.92 3.98 0.99 3.99 0.99
8 – – 7.44 0.93 7.61 0.95

Table VI.
Parallel speed-up

and efficiency

Figure 20.
Parallel speed-up
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the master processor has to communicate with thirteen interfacing nodes.
Moving to four-subdomains, the size of each task on a slave processor halves.
For full pressure-tooling and tube-tooling, with two and four subdomains, the
ratio between computation and communication remains small. At eight
subdomains, this ratio is of the same order as that for the short-die problem and
four processor. Under such circumstances with tube-tooling, the parallel
algorithm loses five percent efficiency and seven percent for pressure-tooling
problems. The consequence of this is felt within our parallel implementation
via the ratio of internal to boundary nodes in each instance. This ratio will
affect the proportion of cost, split between communication and sub-problem
computation (hence, the masking of communication (Baloch et al., 2000; Grant
et al., 1998)).

In Table V, we have recorded data relating to interfacing nodes and the ratio
between subdomain nodes and interfacing nodes (Cn). For the short-die with
two slave processors, the number of nodes is relatively few and Cn is around
four percent. Therefore, we immediately lose efficiency of about three percent.
The loss is even greater with four slave processors, see Table VI. Such
efficiency loss diminishes as Cn decreases, as clearly demonstrated in both
pressure-tooling and tube-tooling instances. To take full advantage of
parallelism and gain optimal performance levels, we seek to increase problem
size and select a minimal Cn ratio, through a judicious choice of domain
subdivision (sub-task generation, demanding prerequisite slave processors).
For both pressure-tooling and tube-tooling problems and up to four slave
processors, the Cn ratio is about three percent and we lose efficiency of one
percent. At eight slave processors, the parallel implementation loses seven
percent efficiency for the pressure-tooling problem, and five percent for the
tube-tooling problem. To achieve optimal performance levels, we must ensure a
balance between the number of processors and total number of degrees-of-
freedom per subdomain. This will also provide the optimal ratio between
ðTcomm

n Þ and Tcomp
n times. We recognize that communication and computation

times relate to different hardware mechanisms. One may identify an acceptable
threshold level on efficiency loss, of say up to five percent. For the present
study, this would imply the efficient use of two slave-processors for the short-
die problem, four slave-processors for pressure-tooling and eight slave-
processors for tube-tooling. With the proviso of sufficient processors, larger
problems may be tackled in this manner.

7. Conclusions
In the case of short-die pressure-tooling flow, there was no melt-wire sudden
contact and smooth solutions were established on the wire at the die-exit. For
the full-die study in contrast to the short-die, ranges of shear rise ten-fold and
extension rate by one hundred times. For dimensional equivalents, one must
scale by O(103). For the short-die tooling, the major observations are: maximum
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shear rates arise at die-exit, top-surface, whilst for extension rates they lie
within the free-jet region. The corresponding situation for strain rates is more
marked, but displaying similar trends to shear rate. Axial stress maxima occur
at the top surface on die-exit. For full-die pressure-tooling, shear rate maxima on
the top surface occur over the land-region, and in particular, peak at the die-
exit. The level is some fifteen times larger than that for the short-die. Shear rate
maxima on the wire are lower than that at the top surface, by a factor of three.
The double (sudden shock) peaks in shear rate at the bottom surface for full-die
flow, do not appear in the short-die case. These are a new feature, introduced as
a consequence of the full-die and melt-wire contact. There is a double peak
along the wire, with the die-exit value being marginally larger than that at
melt-wire contact. Extension rate maxima are lower than shear rates by one
order, but have increased one hundred fold from the short-die case. Extension
rates peak at the melt-wire contact and across land/die-exit region. The
maximum corresponds to the die-exit. The pressure drop across the flow is
almost entirely confined to the land-region, and is magnified some twenty-two
times over that for the short-die. The behaviour in stress for full-tooling reveals
the “shock impact” as the fluid makes contact with the wire. The largest axial
stress arises at the melt-wire contact point. The swelling ratios for the EPTT
models are 15 per cent higher than that observed for short-die tooling. Hence,
the influence of the die flow itself is exposed. The adequacy of the free-surface
procedures is also commended.

In contrast, focusing on tube-tooling desing, stress and pressure build-up is
realised in the land-region section, as with pressure-tooling. The principal
stress component tzz is significant at the end of the coating, generating a
residual stress of about 0.012 units and vanishing shear-stress. This is similar
to pressure-tooling. Shear-rates are of O(102) units, reaching a maximum of 144
units, a quarter of that corresponding to the pressure-tooling problem. This
maximum is observed at the exit of the die. Tube-tooling strain-rates are an
order of magnitude lower than tube-tooling shear-rates: strain-rate maxima
reach 4.43 units, again one quarter of those for pressure-tooling. Largest strain-
rates are generated throughout the converging did-tube, with lesser values in
the draw-down section (extrudate). Such elements of variation between designs
would have considerable impact upon the processes involved.

Distributed parallel processing has been shown to be an effective
computational tool to simulate industrial wire-coating flows. Ideal linear
speed-up in run-times has been extracted, based on the number of processors
utilised. Increasing the size of the problem, would render even greater
efficiency, providing a wider pool of processors were made available.
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Abstract The paper focuses on the solution of a numerical model to explore the sliding and non-
Newtonian fluid behaviour in soft elastohydrodynamic nip contacts. The solution required the
coupling of the fluid and elastomer regimes, with the non-Newtonian fluid properties being
described using a power law relationship. The analysis showed that the fluid characteristics as
defined by the power law relationship led to large differences in the film thickness and flow rate with
a movement of the peak pressure within the nip contact. The viscosity coefficient, power law index
and sliding ratio were shown to affect the nip performance in a non-linear manner in terms of flow
rate and film thickness. This was found to be controlled principally by the level of viscosity defined
by the power law equation. The use of a speed differential to control nip pumping capacity was also
explored and this was found to be most sensitive at lower entrainment speeds.

Introduction
Many coating processes consist of a number of rollers that form a train to meter
accurately and consistently the transfer of a small amount of fluid onto a
substrate to form a thin coating (Kistler and Schweizer, 1997). In such systems,
alternating rubber covered and steel rollers make up the roller train, Figure 1,
and the roller speeds are set to establish a significant component of sliding in
the nip junction. The contacts between the rollers normally have a positive
engagement that is facilitated by deformation of the elastomer surface. In
addition, at each roller contact, fluid pressure will also deform the rubber
surface, which in turn will affect the hydrodynamic pressure that is generated
within the contact. For the purpose of simulation, this leads to the requirement
for an iterative approach in solution, linking the fluid field model with the
elastic deformation of the rubber cover. This is usually referred to as Soft
Elasto Hydrodynamic Lubrication (SEHL) and since the rollers are long in
comparison with the junction width, the geometry reflects a line contact.
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Roller nip interaction can be classified as a contact problem. This class of
problem has been reported widely in the literature, however the following will
focus on studies that are relevant to this investigation.

Analysis of the behaviour of a roller pair using experimental or numerical
approaches has been reported for both dry and wet contacts in which one or
more surfaces is soft and therefore compliant. One of the first (Hannah, 1951),
which has formed the basis of much subsequent analysis, considered the
contact between narrow discs. These discs comprised one rigid surface and the
second covered with a soft material and they were placed in positive
engagement. The integral equations used the Hertzian theory to define the
pressure distribution within the contact and calculations were carried out for
roller coverings having both thin and thick compliant layers. These early
results highlighted the importance of the layer thickness and contact width.

This numerical scheme was subsequently developed (Parish, 1958; Miller,
1966) from the plane stress, narrow disc model to a plane strain approach that
is pertinent to roller contact analysis. The papers have assessed the influence of
many parameters including layer thickness, elastic modulus, roller radius,
Poisson’s ratio and speed differentials. Results indicated that while the Poisson’s
ratio affected the deformation shape, reflecting the level of incompressibility of
the covering, the thickness affected the degree of deformation.

The above work has considered dry contacts only, one of the first studies of
wet contacts (Bennett and Higginson, 1970) analysed a hard roller rotating
against a polythene target. This used a simple linear elastic deformation model
based on the local pressure and stiffness of the polythene target, the coupling of
which allowed the impact of friction to be evaluated in this simple sliding
contact. Analysis of heavily loaded contacts has been reported in Hooke and
O’Donoghue (1972). This used parabolic functions to express the pressure in
the inlet and outlet regions, blending this with a pressure profile based on a dry
Hertzian contact in the central region. The influence of the contact width to
layer thickness ratio was evaluated showing that as it increased so did the peak
pressure, again confirming the importance of the layer thickness.

Figure 1.
Schematic of a multiple

roller coating application
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The requirement to iterate between the fluid and elastomer regions in the
numerical solution for SEHL problems was highlighted in Cudworth (1979) in
which the authors employed a finite element approach to solve the governing
equations. Again this work confirmed that the film thickness and pressure
profiles were influenced dominantly by layer thickness and load. This result
was also confirmed in Hooke (1986) when the authors explored the effect of
inlet conditions replicating the extent of flooding in the nip.

The preceding works have generally focused on tribology applications.
Limited analysis has been carried out into the application of these methods to
printing (MacPhee et al., 1992; Bohan et al., 1997). The first (MacPhee et al.,
1992) assessed the impact of the inlet conditions, flooded or starved, on the nip
and this showed large differences in the performance when these were altered,
supporting the results presented in Hooke (1986). The second (Bohan et al.,
1997b) adopted a more fundamental approach in which the elastomer
deformation was computed from a basic elastic analysis. This effectively
allowed exploration of the basic assumption that a Hertzian contact model is
applicable. In terms of pressure profile, the analysis showed a favourable
comparison in form with experimental data and a close match could be
achieved when an appropriate Young’s Modulus was chosen. This analysis
also showed that the pressure in the nip departed from a Hertzian form,
reflecting a hydrodynamic profile and a tapering film thickness. Calculations
were also carried out to explore the impact of nip geometry and engagement
conditions and this showed that increasing the contact width increased both
the pressure and film thickness.

Consideration of coating applications is more recent and the work in
Carvalho and Scriven (1997) includes a comprehensive review of relevant work
and also details a combined modelling and experimental programme. The
numerical scheme adopts a Hertzian contact model to compute deformation in
the contact and this is coupled with the solution of the hydrodynamic pressure
in the film, based on a Newtonian fluid. Elastomer deformation is based on a
simple linear spring model. Of particular interest in this work is the application
of a Landau-Levich film rupture model that incorporates a surface tension
mechanism in the film splitting zone. Consequently it is capable of capturing
the subambient pressure that has been measured in the nip (Bohan et al., 1997b;
Carvalho and Scriven, 1997). Case studies were run off for which there is no
positive engagement and deformation of the elastomer is due to hydrodynamic
action alone. From the steady state analysis, the most important result is that
the soft elastomer layer leads to a film splitting location that is less dependent
on roller position for smaller gaps. This is significant since it also makes the
nip pumping capacity nearly independent of roller position for small gaps for
which precise settings are difficult to achieve. The study also includes an
unsteady analysis via a perturbation model to explore the conditions under
which cavitation fingers are developed in the nip exit region and to establish
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conditions under which they can be eliminated from the system. The results
also show the importance of a soft layer in delaying the onset of ribbing
instabilities.

A number of investigations have been carried out by several authors to
evaluate the influence of non-Newtonian fluid behaviour in both rolling and
sliding contacts. A recent review of this type of work is presented in Dowson
and Ehret (1999). This showed that many of these studies have focused on
transmission components where rolling action is common and in which the
pressures are high and the lubricant is treated as a piezoviscous fluid. Fewer
studies have been carried out focusing on the exploration of shear rate
dependent behaviour. One of the most important conclusions stated in Dowson
and Ehret (1999) is the need to treat “real” surface and fluid systems and that
this should be a thrust of future research work.

The use of a power law to express the shear thinning behaviour of the fluid
introduces numerical difficulties, since it infers an extremely high (infinite)
viscosity at very low shear rates. Similarly the application of an upper shear
rate may be used to prevent the fluid viscosity falling below a set level. The
latter does not introduce numerical difficulties, but is driven by the process of
validation against experimental measurement. An example of the use of an
upper shear limit on the behaviour of the fluid is presented in Jacobson and
Hamrock (1984). The limit was utilised allowing analysis using a power law
expression within an operational envelope, beyond which, a Newtonian model
was applied. This was demonstrated through application to a hard EHL
contact for which the effect of fluid behaviour on the nip pressures and film
thickness was calculated. This showed that the influence of non-dimensional
speed and shear strength had only a small impact on the minimum film
thickness.

An early study of SEHL in a rolling contact for a power law fluid (Lim et al.,
1996) was used in the exploration of a printing application in which near pure
rolling takes place. Shear rate cut-off values were used to avoid numerical
singularities under conditions where the shear rate approached a zero value.
The importance of both the power law co-efficient and exponents on the nip
performance was quantified. This showed significant impacts for both
parameters, with increases in each resulting in increased film thickness and
maximum pressure.

The purpose of this paper is to explore the application of numerical
simulation to coating applications that involve combined sliding and rolling
mechanisms. This will extend previous work (Carvalho and Scriven, 1997;
Lim et al., 1996) through the incorporation of actual fluid properties that
exhibit shear thinning and it will also include nip configurations in which
there is positive engagement. Through case studies the effect of the power law
co-efficient, power law exponent and sliding on the nip performance in terms of
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pressure distribution, film thickness profile, strain rate and viscosity variation
through the nip section and flow rate will be investigated.

Theoretical model background
The solution of the soft elastohydrodynamic lubrication contact is obtained by
coupling the solution of the fluid film equations with those describing the
mechanical deformation of the surfaces. The behaviour is coupled since the film
thickness determines the pressure variation in the junction and this is established
in the fluid domain calculation. In turn, the pressure variation defines the rubber
deformation attributed to hydrodynamic action (Cudworth, 1979) and this is
computed within the structural model. This dictates the need for iteration
between the fluid and structural domains within the overall solution process.
The basic equations together with their solution strategy will be discussed in the
following sections, including the approach for handling the non-Newtonian fluid
behaviour.

Elastic deformation
Since the deformation at the roller surface is small, the displacement of the
rubber layer on the roller may be assumed to be linearly elastic. The deformation
of this roller may be established using a number of numerical schemes. In the
present study only the deformation of the surface is of interest and this is derived
economically by using a boundary element approach. For a plain strain case, the
boundary element integral equation for the solution of the general problem of
elasticity under steady loading is given by Brebbia and Dominguez (1989):

ci
lku

i
k þ

Z
G

p*
lk uk dG ¼

Z
G

u*
lk pk dGþ

Z
V

u*
lk bk dV ð1Þ

In coating applications, the speeds are modest and so centrifugal effects are
negligible. Thermal effects may also be present in the nip. Sources are localised
and include the shearing of the fluid film and deformation within the elastomer
structure. The film is thin and therefore the shear stresses are high. However,
the narrowness of the contact (typically 6 mm) is likely to be insufficient to
allow any significant temperature build up to take place. Also the thermal
capacity of the fluid is high, typically an oil based coating has a density of
900 kg/m3 and a specific heat capacity of 2000 J/kg8C and this is also likely to
ensure that the heating effect of fluid shearing is small. Similarly the energy
dissipation in the elastomer will be low due to small engagements and low
speed. Operating experience shows that elastomer heating becomes important
when multiple rigid rollers are in contact with a single rubber covered roller.
This leads to catastrophic failure of the rubber roller at high running speeds
(e.g 700 m/min). This suggests that local thermal influence will be small and
therefore the equation can be written as:
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The discretisation of this equation will be explained below in the solution
procedure section.

Generalised pressure equation
For a non-Newtonian fluid flow the thin film equations are derived accounting
for the variation of viscosity, leading to a generalised pressure equation
(Dowson, 1962). Provided that the analysis plane is some distance from the
roller edge then this equation can be written in a one-dimensional form as:

d

dx
G

dp

dx

� �
¼ U 2

dh

dx

� �
þ ðU 1 2 U 2Þ
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Z h

0

1

m
dy; F ¼
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ð5Þ

The integrals can be evaluated and the pressure equation (3) solved for a non-
Newtonian fluid once the variation of viscosity (m ) due to the combination of
Poiseuille and Couette flow is known over the film thickness. This governing
equation was solved using a finite difference numerical scheme and nodal
pressure convergence within 1026 Pa between successive iterations was
assigned.

The viscosity field can be established either via the solution of a complex set
of equations (Walters, 1975) or more simply by means of a power law equation
(Wilkinson, 1960), where the shear stress is related to velocity gradient via the
equation

t ¼ m
du

dy

����
����
n21

du

dy
ð6Þ

The term mjdu=dyj
n21

effectively represents the viscosity coefficient and for a
Newtonian fluid, n ¼ 1 and m is the dynamic viscosity. When n , 1; the fluid
shear thins and assumes a pseudoplastic form. The determination of viscosity
through the film relies on the calculation of the local velocity gradient and these
may be determined through numerical differentiation of the velocity profile.
Such profiles also need to account for the cross film viscosity variation and
therefore the velocity variation was derived using equation (7). This equation
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embodies the velocity boundary condition that the fluid adheres to each roller
surface and therefore moves at their respective surface velocities U1 and U2.

uðaÞ ¼ U 1 þ
dp

dx

Z a

0

y

m
dy þ

U 2 2 U 1

F0
2

F1

F0

dp

dx

� �Z a

0

dy

m
ð7Þ

Since equation (7) includes a cross film variation of viscosity through the terms
F (see Equation (5)) it needs to be solved iteratively. This was implemented
within the solution algorithm with a close tolerance on viscosity at each point
through the film. Typically convergence to within 1024 Pas between successive
iterations was satisfied. For more extreme conditions it was also necessary to
introduce damping into the solution to ensure stability.

The integration of this equation into the overall solution procedure will be
described in a following section.

Film thickness
Closure of the equation set requires a definition of film thickness. This was
expressed using the following equation that embodies an equivalent roller
radius. A negative value of h0 indicates a roller engagement and the term u(x )
represents the local deformation of the elastomer layer.

hðxÞ ¼ h0 þ
x2

2R
þ uðxÞ ð8Þ

Load
The solution strategy seeks to modify the film thickness profile to satisfy a load
application constraint and completion of the solution was obtained when the
computed load meets the set value, to a tolerance, Tl, of less than 0.1 per cent.Z x2

x1

p:dx

� �
2 L

����
���� # Tl * L ð9Þ

Solution procedure
The thin film model embodies the assumption that the elastomer may be
unwrapped to give a flat surface in the locality of the contact. Previous analysis
(Dowson and Higginson, 1959) has been carried out to compare results from a
flat (unwrapped) model and a model that includes curvature, representing the
actual roller. The latter does not use linear elements and therefore requires a
numerical integration of the boundary elements. This extends the calculation
duration. The work in Dowson and Higginson (1959) has shown that this has a
negligible effect on the predicted deformation. The boundary of the elastomer
was divided into a number of linear elements, Figure 2, from which to obtain
the integrals in the elasticity equation. The use of linear elements in a finite
plane model allows the element integrals to be calculated analytically. As well
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as allowing a rapid solution, this allows elements to be formulated that are
suited to a solution with a Poisson’s ratio of 0.5 (Brebbia and Dominguez, 1989;
Banerjee and Butterfield, 1981), avoiding the numerical singularity that is
usually present with this material property specification. Consistent with the
elastomer mesh, the fluid domain was solved over the nip contact, Xa to Xb.

Following extensive exploration of solution strategies, the following steps
have been established to give an accurate and stable result.

(1) Define the mesh over the elastomer boundary and calculate the division
for the fluid side calculations.

(2) Set an initial value for the engagement, h0, from this the Hertzian
pressure and the consequent deformation is calculated.

(3) Calculate the film thickness in the nip junction.

(4) Solve for the film pressure, including iteration for non-Newtonian
behaviour.

(5) Recalculate the elastomer deformation.

(6) If the deformation has not met the convergence criteria, then repeat from
stage (3) with the new deformation.

(7) Once the deformation criterion has been met, examine the load
equilibrium. If this is not met then appoint a new value for h0 and repeat
from (2).

The convergence requirement for the analysis was 0.1 percent on the pressure
and indentation. Convergence of the solutions was usually obtained in
approximately 5,000 iterations.

Results and discussion
A typical industrial configuration was used in the study to illustrate the
application of the model described above. It is based on a coating application
where the rollers run at different surface speeds thereby introducing a sliding
component as a method to control the flow rate through the nip. The roller
parameters and loading condition are itemised in Table I and have been
derived from process data and the elastic modulus from material property
measurement. Within the calculation different roller speeds as well as different
power law exponents will be explored and these will be defined accordingly.

Figure 2.
Schematic discretisation

of the elastomer layer
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The actual fluid properties of a typical ink has been characterised using a
cone and plate rheometer from which the relationship between shear stress and
shear rate has been quantified (Lim et al., 1996). This provides indicative
values. Some coating fluids are noted to be highly viscous systems, exhibiting
similar consistency. Using this information, the parameters for a power law
fluid have been determined and appropriate values give a dynamic viscosity
coefficient (m ) of 50 and an exponent value (n ) of 0.75. These have been used
as a starting point for the investigation to evaluate the impact of changing
from a Newtonian to non-Newtonian fluid and to explore the variations as a
consequence of using different power law coefficients and exponents. As
explained in the review, a lower cut-off in shear rate value needs to be used to
avoid singularity in the determination of viscosity over the film thickness. An
inappropriate choice can mask the shear-thinning model and therefore a range
of values from 100/s to 500/s was explored. The results in terms of nip flow rate
were virtually identical and therefore a cut-off of 250/s was finally chosen and
this leads to a lower viscosity of limit of 12.57 Pas. This value was used in all
calculations for Newtonian flow that serve as a benchmark with which to
explore the effect of non-Newtonian behaviour.

Influence of non-Newtonian characteristics on nip performance
Initial calculation was carried out for a pure rolling nip in which the surface
velocity was 2.5 m/s for both rollers. The results from this calculation are
displayed in Figure 3 as pressure and film thickness profiles through the nip.
Significant differences in the film thickness profiles and small differences in
the form of the pressure profile may be noted. The latter clearly satisfies the
over all load constraint of equation (9). For the non-Newtonian fluid, the
pressure peak moves nearer to the nip centre and achieves a slightly higher
value. At this point the fluid achieves a Newtonian level because the velocity
gradients through the film are negligible (see Figure 4). In the absence of a
pressure gradient, the velocity profile represents a simple plug flow when the
rollers forming the nip rotate to give identical surface velocities.

The changes in minimum film thickness are much more dramatic. Over the
nip contact there is significant shear thinning and this leads to a 27.4 per cent
reduction in minimum film thickness. The pumping capacity is determined by
the film thickness at which the pressure gradient is zero and the entraining

Parameter Conditions

Load (Nm21) 7000
Roller radius (m ) 0.15
Elastic modulus (Pa) 2.0e+6
Rubber thickness (mm) 15

Table I.
Roller parameter
details
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velocity of the two roller surfaces. Since the point of zero pressure gradient
occurs close to the point of minimum film thickness, the nip shows a
commensurate reduction of 26.4 per cent in its pumping capacity. This result
has an important practical implication when coating systems are set according
to roller load. The shear thinning mechanism leads to a reduction in film
thickness and a reduction in coating weight as a consequence.

The results in Figure 3 suggest that there are significant variations in viscosity
through the film and this is confirmed by the results shown in Figure 4. The
contours depict the shear rate and the corresponding viscosity variation
through the nip section. High shear rates are generated in the inlet region and
just downstream from the minimum film thickness point. These are a
consequence of the pressure gradients that are present at these locations. The
pressure gradients lead to a Poiseulle flow component and in the case of rollers
having identical surface velocities, only this flow component leads to a
shearing action in the film. Thus the highest shear rate occurs near to the roller
surface, in this case resulting in 50 per cent change in viscosity over the film
thickness. The shear rate contours also illustrate the high levels that are
present through the film, even under rolling conditions. This indication is
useful as a guide to the level of shear that is required in characterising fluids
for these applications. The levels exhibited are within the working limits
of rheometers that are commercially available, however when roller speed
differentials are present, these rates will become more extreme, possibly

Figure 3.
Influence of non-

Newtonian behaviour on
the pressure profile and

film thickness
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achieving levels that are at the working limits of the most appropriate
rheometer systems.

Having explored the comparison between a Newtonian and non-Newtonian
model, calculation was completed to investigate the response to changing
viscosity coefficient (m) and power law index (n). The viscosity coefficient (m)
was varied over the range 30 to 70 Pas and the index (n) from 0.65 to 0.85. The
effect of changing the viscosity coefficient is shown in Figure 5. For the
prescribed load, this has the most significant impact on the film thickness
profile with the more viscous fluid giving a larger film thickness. Similar
behaviour has been noted for a Newtonian fluid (Bohan et al., 1997a). The figure
also shows that minimum film thickness decreases non-linearly with a
proportionate change in viscosity coefficient. A 19 per cent reduction in film
thickness occurs when the viscosity changes from 70 Pas to 50 Pas and a drop
of 27 per cent in thickness occurs corresponding to a viscosity coefficient

Figure 4.
Shear rate and viscosity
variation through the
nip section m ¼ 50;
n ¼ 0:75; U 1 ¼ U 2 ¼
2:5 m=s
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change from 50 Pas to 30 Pas. This behaviour is a consequence of employing
the power law equation to represent viscosity behaviour. At the lower viscosity
setting, the film thickness will be affected directly by the value of the viscosity
coefficient, however, for the low viscosity, the reduction in film thickness leads
to higher shear rates in the film and this exacerbates the viscosity reduction.
This mechanism is more dominant at the lower viscosity level and this is
reflected in the more marked reduction in film thickness.

Following on from the discussion of the previous case study concerning the
direct dependence of pumping capacity on minimum film thickness, this is also
reduced in near identical proportions as the viscosity coefficient is dropped from
70 Pas to 30 Pas. From a practical sense this points to a strong requirement to
control viscosity closely since this will have a direct impact on the coating film
thickness.

The power law exponent represents the degree of shear thinning and the
impact of this parameter on nip behaviour is shown in Figure 6. The effect on
the form of the pressure profile is similar to that discussed in connection with
Figure 3, with the peak value moving towards the nip centre for the more shear
thinning fluid. The change in minimum film thickness profile displays the
expected form with the higher viscosity fluid increasing the minimum film
thickness. However this increase does not depend linearly on the index. This is
attributed to the non-linear change in viscosity in response to linear changes in
the power law index value. Also since the pumping capacity in the nip depends

Figure 5.
The influence of

viscosity coefficient on
pressure and film

thickness, n ¼ 0:75;
U 1 ¼ U 2 ¼ 2:5 m=s
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on the film thickness at the point of peak pressure, Figure 6 also suggests that
the nip pumping capacity is also affected nonlinearly by identical change in
power law index value.

As well as determining processing capacity, speed is one of the major control
features for coating applications. Through a series of calculations, it was found
that the influence of rolling speed on the flow rate per unit width of roller and
minimum film thickness is significant and increases non-linearly as depicted in
Figure 7. Two mechanisms are present. The first is associated with a simple
increase in speed, where, for a constant load application, the film thickness is

Figure 6.
Influence of power law
exponent on pressure
and film thickness,
m ¼ 50 Pas; U 1 ¼ U 2 ¼
2:5 m=s

Figure 7.
Influence of speed on
flow rate per unit roller
width and minimum film
thickness, m ¼ 50 Pas;
n ¼ 0:75
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expected to increase in a linear manner. The second mechanism is more subtle,
arising due to the increase in film thickness and the consequent small reduction
in shear rate. The latter also leads to a further small increase in viscosity and
this will also increase the film thickness. Their combined effect is to increase
the film thickness in a nonlinear manner.

The combined effect of higher entrainment velocity together with the non-
linear increase in the film thickness gives an increase in calculated flow rate
that follows a similar pattern to the film thickness variation. Practically this
will be reflected in higher coating weight that can be reduced most directly by
increasing the load on the roller pair, or through the application of a speed
differential to the rollers forming the nip. The latter will be discussed more
fully in a following case study.

Influence of sliding on nip performance
As explained previously, different roller speeds are used as a means of
controlling precisely the pumping capacity of the nip, particularly when thin
films need to be deposited. The pumping capacity is affected by the combined
influence of net entrainment and hydrodynamic action. The latter refers to the
pressure field that is generated in the nip and for a given load this will
determine the working film thickness in the gap. In the following case studies,
the lower roller speed (U1) is maintained constant and the upper roller speed
(U2) is varied. The consequent effect on film pressure and thickness profile is
shown in Figure 8 and the associated viscosity variation through the film
section is shown in Figure 9.

As shown in Figure 8, the impact of a sliding component on the shape of
the pressure profile is negligible. It has a more significant effect on the
minimum film thickness and this is non-linear with respect to the speed
increment. As expected, decreasing the upper roller speed by 2 m/s with respect
to the lower roller leads to a reduction in film thickness whereas increasing it
by an equivalent amount leads to a larger film thickness. However the
difference in film thickness does not vary proportionately. For a constant load
application, in common with previous discussion, two mechanisms are present.
Notably the lower entrainment will lead to a reduction in film thickness due to
hydrodynamic action. Since the pressure profiles will be similar in each case to
satisfy the load criterion, the Poiseulle flow velocity profile will also be similar.
Because the basic film thickness is reduced due to the lower entrainment, this
will lead to a higher shear rate through the film. Consequently there will be a
further reduction in viscosity. This is confirmed on examining the viscosity
contours, Figure 9, where it can be established that the overall effect was to
give lower viscosity at low speed and higher viscosity at high speed.

The effect of sliding on the viscosity profiles is shown in Figure 9. These
show a significant change from the rolling case, Figure 4, in which there
are large zones in which the fluid viscosity is high due to the low velocity
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gradients in these regions. When different roller speeds are present, the velocity
gradients are automatically increased and the viscosity field becomes
asymmetric with respect to the film centreline. As shown in Figure 9, by
changing the upper roller speed from 0.5 to 4.5 m/s the viscosity profile is
approximately inverted. However the latter condition leads to a viscosity field
that is, on average, higher in value and this affects the nip behaviour in the
manner discussed above.

The application of speed differential is used as a precise control to determine
the flow rate through the nip. Also the influence of roller speed and speed ratio
is important since in combination they determine process through flow and
coating weight. The result from a series of calculations in which their combined
effect is explored is shown in Figure 10. The characteristics are similar in
form with the non-linear increase in flow rate being a combination of film
thickness and entrainment velocity. The governing physics has been discussed
in connection with Figure 8 and Figure 9. Superimposed are different sliding
ratios with the top roller speed (U2) ranging from half to four times the speed of
the bottom roller (U1). The characteristic shows clearly the application of speed
differential in controlling flow through the nip. Fortuitously this control
becomes most precise as the upper roller running at speed U2 decreases below
that of the lower roller running at speed U1 for which the ratio U1/U2 exceeds
unity. As shown in Figure 10, large changes in relative roller speed in this
operating region lead to only small changes in nip pumping capacity.

Figure 8.
Influence of sliding on
pressure and film
thickness, U 1 ¼ 2:5 m=s;
m ¼ 50 Pas; n ¼ 0:75
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Conclusions
A fast and computationally efficient model has been developed for a SEHL
contact lubricated using a non-Newtonian fluid. This has been effected with
the use of a power law fluid. The numerical analysis couples the solution of the
generalised pressure equation and those of the elastomer and incorporates the
non-Newtonian behaviour in the generalised pressure equation. A sensitivity
study has been completed to establish the impact of rheology and speed on the
film thickness and pumping capacity within the nip operating in pure rolling
and under combined rolling/sliding conditions.

From this work it may be concluded that for SEHL problems, significant
differences occur in the nip performance between the Newtonian and non-
Newtonian fluids. For shear thinning fluids the high shear in the nip cause a

Figure 9.
Viscosity contours

through the nip junction,
m ¼ 50 Pas; n ¼ 0:75;

U 1 ¼ 2:5 m=s U 2 ¼
0:5 m=s U 2 ¼ 4:5 m=s
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drop in the local viscosity. This change in the fluid properties leads to a
reduction in the film thickness and for the peak pressure to move closer to the
centre of the nip.

With regard to fluid properties, reducing either the viscosity coefficient (m)
and power law index (n) results in a reduction of the minimum film thickness
with an associated reduction in the flow rate through the nip. The pressure
profiles, for a constant load case, are also altered slightly with the peak
pressure moving towards the centre of the nip.

In sliding, the shear rate and viscosity profiles become asymmetric. For a
constant nip load, the lower entrainment leads to lower viscosity since the film
thickness is reduced and the shear rates increase as a consequence. The
opposite effect is observed for the higher entrainment. Roller speed has been
shown to have a large impact on the flow rate and film thickness, causing
increases for all roller speed ratios. For a fixed load, the increased speeds
increase the film thickness and reduce the shear rate as a consequence. The
combined effect is a non-linear increase in the nip pumping capacity.

For constant load, speed differential is very effective in controlling nip
pumping capacity and the system response is particularly sensitive at the
lower entrainment speed.
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