
CHAPTER 1

INTRODUCTION

1.1 What is thermodynamics?

Thermodynamics is the science which has evolved from the original investiga-

tions in the 19th century into the nature of \heat." At the time, the leading

theory of heat was that it was a type of fluid, which could flow from a hot body

to a colder one when they were brought into contact. We now know that what

was then called \heat" is not a fluid, but is actually a form of energy { it is

the energy associated with the continual, random motion of the atoms which

compose macroscopic matter, which we can’t see directly.

This type of energy, which we will call thermal energy, can be converted

(at least in part) to other forms which we can perceive directly (for example,

kinetic, gravitational, or electrical energy), and which can be used to do useful

things such as propel an automobile or a 747. The principles of thermodynamics

govern the conversion of thermal energy to other, more useful forms.

For example, an automobile engine can be though of as a device which �rst

converts chemical energy stored in fuel and oxygen molecules into thermal en-

ergy by combustion, and then extracts part of that thermal energy to perform

the work necessary to propel the car forward, overcoming friction. Thermody-

namics is critical to all steps in this process (including determining the level of

pollutants emitted), and a careful thermodynamic analysis is required for the

design of fuel-e�cient, low-polluting automobile engines. In general, thermody-

namics plays a vital role in the design of any engine or power-generating plant,

and therefore a good grounding in thermodynamics is required for much work

in engineering.

If thermodynamics only governed the behavior of engines, it would probably

be the most economically important of all sciences, but it is much more than

that. Since the chemical and physical state of matter depends strongly on how

much thermal energy it contains, thermodynamic principles play a central role

in any description of the properties of matter. For example, thermodynamics

allows us to understand why matter appears in di�erent phases (solid, liquid,

or gaseous), and under what conditions one phase will transform to another.
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The composition of a chemically-reacting mixture which is given enough time

to come to \equilibrium" is also fully determined by thermodynamic principles

(even though thermodynamics alone can’t tell us how fast it will get there). For

these reasons, thermodynamics lies at the heart of materials science, chemistry,

and biology.

Thermodynamics in its original form (now known as classical thermodynam-

ics) is a theory which is based on a set of postulates about how macroscopic

matter behaves. This theory was developed in the 19th century, before the

atomic nature of matter was accepted, and it makes no reference to atoms. The

postulates (the most important of which are energy conservation and the impos-

sibility of complete conversion of heat to useful work) can’t be derived within

the context of classical, macroscopic physics, but if one accepts them, a very

powerful theory results, with predictions fully in agreement with experiment.

When at the end of the 19th century it �nally became clear that matter was

composed of atoms, the physicist Ludwig Boltzmann showed that the postu-

lates of classical thermodynamics emerged naturally from consideration of the

microscopic atomic motion. The key was to give up trying to track the atoms in-

dividually and instead take a statistical, probabilistic approach, averaging over

the behavior of a large number of atoms. Thus, the very successful postulates of

classical thermodynamics were given a �rm physical foundation. The science of

statistical mechanics begun by Boltzmann encompasses everything in classical

thermodynamics, but can do more also. When combined with quantum me-

chanics in the 20th century, it became possible to explain essentially all observed

properties of macroscopic matter in terms of atomic-level physics, including es-

oteric states of matter found in neutron stars, superfluids, superconductors, etc.

Statistical physics is also currently making important contributions in biology,

for example helping to unravel some of the complexities of how proteins fold.

Even though statistical mechanics (or statistical thermodynamics) is in a

sense \more fundamental" than classical thermodynamics, to analyze practical

problems we usually take the macroscopic approach. For example, to carry out

a thermodynamic analysis of an aircraft engine, its more convenient to think

of the gas passing through the engine as a continuum fluid with some speci�ed

properties rather than to consider it to be a collection of molecules. But we

do use statistical thermodynamics even here to calculate what the appropriate

property values (such as the heat capacity) of the gas should be.
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1.2 Energy and Entropy

The two central concepts of thermodynamics are energy and entropy. Most

other concepts we use in thermodynamics, for example temperature and pres-

sure, may actually be de�ned in terms of energy and entropy. Both energy

and entropy are properties of physical systems, but they have very di�erent

characteristics. Energy is conserved: it can neither be produced nor destroyed,

although it is possible to change its form or move it around. Entropy has a

di�erent character: it can’t be destroyed, but it’s easy to produce more entropy

(and almost everything that happens actually does). Like energy, entropy too

can appear in di�erent forms and be moved around.

A clear understanding of these two properties and the transformations they

undergo in physical processes is the key to mastering thermodynamics and learn-

ing to use it con�dently to solve practical problems. Much of this book is focused

on developing a clear picture of energy and entropy, explaining their origins in

the microscopic behavior of matter, and developing e�ective methods to analyze

complicated practical processes1 by carefully tracking what happens to energy

and entropy.

1.3 Some Terminology

Most �elds have their own specialized terminology, and thermodynamics is cer-

tainly no exception. A few important terms are introduced here, so we can

begin using them in the next chapter.

1.3.1 System and Environment

In thermodynamics, like in most other areas of physics, we focus attention on

only a small part of the world at a time. We call whatever object(s) or region(s)

of space we are studying the system. Everything else surrounding the system

(in principle including the entire universe) is the environment. The boundary

between the system and the environment is, logically, the system boundary.

The starting point of any thermodynamic analysis is a careful de�nition of the

system.

System

Environment
System
Boundary

1Rocket motors, chemical plants, heat pumps, power plants, fuel cells, aircraft engines, . . .
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Mass

Mass
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Volume

Figure 1.1: Control masses and control volumes.

1.3.2 Open, closed, and isolated systems

Any system can be classi�ed as one of three types: open, closed, or isolated.

They are de�ned as follows:

open system: Both energy and matter can be exchanged with the environ-

ment. Example: an open cup of co�ee.

closed system: energy, but not matter, can be exchanged with the environ-

ment. Examples: a tightly capped cup of co�ee.

isolated system: Neither energy nor matter can be exchanged with the envi-

ronment { in fact, no interactions with the environment are possible at all.

Example (approximate): co�ee in a closed, well-insulated thermos bottle.

Note that no system can truly be isolated from the environment, since no

thermal insulation is perfect and there are always physical phenomena which

can’t be perfectly excluded (gravitational �elds, cosmic rays, neutrinos, etc.).

But good approximations of isolated systems can be constructed. In any case,

isolated systems are a useful conceptual device, since the energy and mass con-

tained inside them stay constant.

1.3.3 Control masses and control volumes

Another way to classify systems is as either a control mass or a control volume.

This terminology is particularly common in engineering thermodynamics.

A control mass is a system which is de�ned to consist of a speci�ed piece

or pieces of matter. By de�nition, no matter can enter or leave a control mass.

If the matter of the control mass is moving, then the system boundary moves

with it to keep it inside (and matter in the environment outside).

A control volume is a system which is de�ned to be a particular region of

space. Matter and energy may freely enter or leave a control volume, and thus

it is an open system.
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1.4 A Note on Units

In this book, the SI system of units will be used exclusively. If you grew up

anywhere but the United States, you are undoubtedly very familiar with this

system. Even if you grew up in the US, you have undoubtedly used the SI

system in your courses in physics and chemistry, and probably in many of your

courses in engineering.

One reason the SI system is convenient is its simplicity. Energy, no matter

what its form, is measured in Joules (1 J = 1 kg-m2/s2). In some other systems,

di�erent units are used for thermal and mechanical energy: in the English sys-

tem a BTU (\British Thermal Unit") is the unit of thermal energy and a ft-lbf

is the unit of mechanical energy. In the cgs system, thermal energy is measured

in calories, all other energy in ergs. The reason for this is that these units were

chosen before it was understood that thermal energy was like mechanical energy,

only on a much smaller scale. 2

Another advantage of SI is that the unit of force is indentical to the unit

of (mass x acceleration). This is only an obvious choice if one knows about

Newton’s second law, and allows it to be written as

F = ma: (1.1)

In the SI system, force is measured in kg-m/s2, a unit derived from the 3 primary

SI quantities for mass, length, and time (kg, m, s), but given the shorthand name

of a \Newton." The name itself reveals the basis for this choice of force units.

The units of the English system were �xed long before Newton appeared on

the scene (and indeed were the units Newton himself would have used). The

unit of force is the \pound force" (lbf), the unit of mass is the \pound mass"

(lbm) and of course acceleration is measured in ft/s2. So Newton’s second law

must include a dimensional constant which converts from Ma units (lbm ft/s2)

to force units (lbf). It is usually written

F =
1

gc
ma; (1.2)

where

gc = 32:1739 ft-lbm/lbf-s2: (1.3)

Of course, in SI gc = 1.

2Mixed unit systems are sometimes used too. American power plant engineers speak of the
\heat rate" of a power plant, which is de�ned as the thermal energy which must be absorbed
from the furnace to produce a unit of electrical energy. The heat rate is usually expressed in
BTU/kw-hr.
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In practice, the units in the English system are now de�ned in terms of their

SI equivalents (e.g. one foot is de�ned as a certain fraction of a meter, and one

lbf is de�ned in terms of a Newton.) If given data in Engineering units, it is

often easiest to simply convert to SI, solve the problem, and then if necessary

convert the answer back at the end. For this reason, we will implicitly assume

SI units in this book, and will not include the gc factor in Newton’s 2nd law.



CHAPTER 2

ENERGY, WORK, AND HEAT

2.1 Introduction

Energy is a familiar concept, but most people would have a hard time de�ning

just what it is. You may hear people talk about \an energy-burning workout,"

\an energetic personality," or \renewable energy sources." A few years ago

people were very concerned about an \energy crisis." None of these uses of the

word \energy" corresponds to its scienti�c de�nition, which is the subject of

this chapter.

The most important characteristic of energy is that it is conserved: you can

move it around or change its form, but you can’t destroy it, and you can’t

make more of it.1 Surprisingly, the principle of conservation of energy was not

fully formulated until the middle of the 19th century. This idea certainly does

seem nonsensical to anyone who has seen a ball roll across a table and stop,

since the kinetic energy of the ball seems to disappear. The concept only makes

sense if you know that the ball is made of atoms, and that the macroscopic

kinetic energy of motion is simply converted to microscopic kinetic energy of

the random atomic motion.

2.2 Work and Kinetic Energy

Historically, the concept of energy was �rst introduced in mechanics, and there-

fore this is an appropriate starting point for our discussion. The basic equation

of motion of classical mechanics is due to Newton, and is known as Newton’s

second law.2 Newton’s second law states that if a net force F is applied to a

body, its center-of-mass will experience an acceleration a proportional to F:

F = ma: (2.1)

The proportionality constant m is the inertial mass of the body.

1Thus, energy can’t be burned (fuel is burned), it is a property matter has (not personali-
ties), there are no sources of it, whether renewable or not, and there is no energy crisis (but
there may be a usable energy, or availability, crisis).

2For now we consider only classical, nonrelativistic mechanics.
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Suppose a single external force F is applied to point particle moving with

velocity v. The force is applied for an in�nitesimal time dt, during which the

velocity changes by dv = a dt, and the position changes by dx = v dt.

F
m

v

Taking the scalar product3 (or dot product) of Eq. (2.1) with dx gives

F � dx = ma � dx

=

�
m

�
dv

dt

��
� [vdt]

= mv � dv

= d(mv2=2): (2.2)

Here v = jvj is the particle speed. Note that only the component of F along

the direction the particle moves is needed to determine whether v increases

or decreases. If this component is parallel to dx, the speed increases; if it is

antiparallel to dx the speed decreases. If F is perpendicular to dx, then the

speed doesn’t change, although the direction of v may.

Since we’ll have many uses for F � dx and mv2=2, we give them symbols and

names. We call F � dx the in�nitesimal work done by force F, and give it the

symbol �dW :

�dW = F � dx (2.3)

(We’ll see below why we put a bar through the d in �dW .)

The quantity mv2=2 is the kinetic energy Ek of the particle:

Ek =
mv2

2
(2.4)

With these symbols, Eq. (2.2) becomes

�dW = d(Ek): (2.5)

Equation (2.5) may be interpreted in thermodynamic language as shown in

Fig. 2.1. A system is de�ned which consists only of the particle; the energy

3Recall that the scalar product of two vectors A = iAi+jAj +kAk and B = iBi+jBj+
kBk is de�ned as A �B = AiBi + AjBj +AkCk. Here i, j, and k are unit vectors in the x,
y, and z directions, respectively.
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d(E )
k

System

Environment

dW

Figure 2.1: Energy accounting for a system consisting of a single point particle
acted on by a single force for time dt.

\stored" within the system (here just the particle kinetic energy) increases by

d(Ek) due to the work �dW done by external force F. Since force F is produced

by something outside the system (in the environment), we may regard �dW as

an energy transfer from the environment to the system. Thus, work is a type of

energy transfer. Of course, �dW might be negative, in which case d(Ek) < 0.

In this case, the direction of energy transfer is actually from the system to the

environment.

The process of equating energy transfers to or from a system to the change

in energy stored in a system we will call energy accounting. The equations which

result from energy accounting we call energy balances. Equation (2.5) is the �rst

and simplest example of an energy balance { we will encounter many more.

If the force F is applied for a �nite time t, the particle will move along some

trajectory x(t).

F(x,t)

m

A

B

v

The change in the particle kinetic energy �Ek = Ek(B) − Ek(A) can be

determined by dividing the path into many very small segments, and summing

Eq. (2.2) for each segment.

∆x i

F
i

In the limit where each segment is described by an in�nitesimal vector dx,
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(E )
kW (E )

kW

W

1

2

Figure 2.2: Energy accounting for a single particle acted on by (a) a single force
(b) multiple forces for �nite time.

the sum becomes an integral:Z
path

�dW =

Z
path

d(Ek) (2.6)

The right-hand side of this can be integrated immediately:Z
path

d(Ek) = �Ek: (2.7)

The integral on the left-hand side de�nes the total work done by F:

W =

Z
path

�dW =

Z
path

F � dx: (2.8)

Note that the integral is along the particular path taken. Eq. (2.6) becomes

W = �Ek: (2.9)

The thermodynamic interpretation of this equation is shown in Fig. 2.2 and is

similar to that of Eq. (2.5): work is regarded as a transfer of energy to the

system (the particle), and the energy stored in the system increases by the

amount transferred in. (Again, if W < 0, then the direction of energy transfer

is really from the system to the environment, and in this case �Ek < 0.)

If two forces act simultaneously on the particle, then the total applied force

is the vector sum: F = F1 + F2. In this case, Eq. (2.9) becomes

W1 +W2 = �Ek; (2.10)

where W1 =
R
path

F1 � dx and W2 =
R
path

F2 � dx.4 The generalization to N

forces is obvious: the work done by all N forces must be considered to compute

�Ek.

4For now we’re considering a point particle, so the path followed is the same for both forces;
this won’t be true for extended objects, which will be considered in section 2.4.
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2.3 Evaluation of Work

Since in general a force may depend on factors such as the instantaneous particle

position x, the instantaneous velocity v, or may depend explicitly on time, the

work done by the force will clearly depend on the path the particle takes from

A to B, how fast it travels, and the particular time it passes each point. Since

there are in�nitely many possible trajectories x(t) which start at point A at

some time and pass through point B at some later time, there are in�nitely

many possible values for W =
R
path

�dW ; we need additional information [i.e.,

x(t)] to evaluate W .

This is the reason we put the bar through �dW but not through d(Ek). It’s

always true that
R
path

d(Q) may be formally evaluated to yield QB−QA, where

Q is some function of the state (position, velocity, etc.) of the particle and of

time, and QA and QB denote the values of Q when the particle is at endpoints

of the path.

But �dW is not like this: it’s only the symbol we use to denote \a little

bit of work." It really equals F � dx, which is not of the form d(Q), so can’t

be integrated without more information. Quantities like �dW are known as

\inexact di�erentials." We put the bar in �dW just to remind ourselves that

it is an inexact di�erential, and so its integral depends on the particular path

taken, not only on the state of the particle at the beginning and end of the path.

Example 2.1 The position-dependent force

F(x; y; z) =

�
+iC if y > 0
−i2C if y � 0

is applied to a bead on a frictionless wire. The bead sits initially at the origin,

and the wire connects the origin with (L; 0; 0). How much work does F do to

move the bead along wire A? How much along wire B? Does the contact force

of the bead against the wire do any work?

y

xL

A

B
Solution:

W =

Z
path

F(x; y; z) � dx:
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Since F always points in the x direction,

F(x; y; z) � dx = Fx(x; y; z)dx

Therefore, along path A, W = CL, and along path B, W = −2CL.

Along path A, the force does work on the particle, while along path B the

particle does work on whatever is producing the force. Of course, for motion

along path B to be possible at all, the particle would have to have an initial

kinetic energy greater than 2CL. The contact force does no work, since it is

always perpendicular to the wire (and therefore to dx), so Fcontact � dx = 0.

If we do know x(t), we can convert the path integral de�nition of work

[Eq. (2.8)] into a time integral, using dx = v(t)dt:

W =

Z tB

tA

F(x(t);v(t); t) � v(t) dt (2.11)

This is often the easiest way to evaluate work. Note that the integrand is F �v.

Therefore, F � v is the rate at which force F does work, or in other words the

instantanteous power being delivered by F. We denote the power by _W :

_W = F � v (2.12)

Example 2.2

FFd a
M x(t)

t

L

T

A ball initially at rest at x = 0 in a viscous fluid is pulled in a straight line

by a string. A time-dependent force Fa(t) is applied to the string, which causes

the ball to move according to

x(t) =
L

2

�
1− cos

�
�t

T

��
:

At time t = T , the ball comes to rest at x = L and the force is removed. As

the ball moves through the fluid, it experiences a drag force proportional to its
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speed: Fd = −C _x(t). How much work is done by the applied force to move the

ball from x = 0 to x = L?

Solution: Newton’s second law requires

Fa + Fd = mẍ(t); (2.13)

so

Fa(t) = mẍ(t) + C _x(t): (2.14)

Since we know x(t), we can di�erentiate to �nd

_x(t) =
L

2

��
T

�
sin � (2.15)

and

ẍ(t) =
L

2

��
T

�2

cos � (2.16)

where � = �t=T . Substituting these expressions into Eq. (2.14) results in

Fa(t) =
CL

2

� �
T

�
sin � +

mL

2

��
T

�2

cos �:

To calculate the work done by Fa(t), we need to evaluate

Wa =

Z
path

Fa � dx =

Z L

0

Fa dx:

Since we know both Fa(t) and x(t), it is easiest to convert this path integral to

a time integral using dx = _x(t)dt:

Wa =

Z T

0

Fa(t) _x(t) dt:

Changing the integration variable to � (d� = (�=T )dt),

Wa =

�
L

2

�2
�

T

Z �

0

h
C sin2 � +

� �
T

�
sin � cos �

i
d�:

Since
R �

0 sin2 � d� = �=2 and
R �

0 sin � cos � d� = 0,

Wa =
�2CL2

8T
:

If there were no drag (C = 0), then the work would be zero, since the work

done to accelerate the ball for t < T=2 would be fully recovered in decelerating

the ball for t > T=2. But in the presence of a drag force, a �nite amount of work

must be done to overcome drag, even though the ball ends as it began with no

kinetic energy.



CHAPTER 2. ENERGY, WORK, AND HEAT 14

System
Boundary

i

j

F

Fij

ji

Fext,j

Fext,i

Figure 2.3: External and internal forces acting on two masses of a rigid body.

Note that the work is inversely proportional to the total time T . It takes

more work to push the ball rapidly through the fluid (short T ) than slowly.

By carrying out the process very slowly, it is possible to make Wa as small as

desired, and in the limit of T !1 the process requires no work. This behavior

is characteristic of systems which exhibit viscous drag.

2.4 Energy Accounting for Rigid Bodies

Up until now we have only considered how to do energy accounting for point

masses. To develop energy accounting methods for macroscopic matter, we can

use the fact that macroscopic objects are composed of a very large number

of what we may regard as point masses (atomic nuclei), connected by chem-

ical bonds. In this section, we consider how to do energy accounting on a

macroscopic object if we make the simplifying assumption that the bonds are

completely rigid. We’ll relax this assumption and complete the development of

energy accounting for macroscopic matter in section 2.8.

Consider a body consisting of N point masses connected by rigid, massless

rods, and de�ne the system to consist of the body (Fig. 2.3). The rods will

transmit forces between the masses. We will call these forces internal forces,

since they act between members of the system. We will assume the internal

forces are directed along the rods. The force exerted on (say) mass j by mass i

will be exactly equal in magnitude and opposite in direction to that exerted on

mass i by mass j (Fij = −Fji), since otherwise there would be a force imbalance

on the rod connecting i and j. No force imbalance can occur, since the rod is

massless and therefore would experience in�nite acceleration if the forces were

unbalanced. (Note this is Newton’s third law.)

Let the masses composing the body also be acted on by arbitrary external

forces from the environment. The external force on mass i will be denoted
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Fext;i.

The energy balance in di�erential form for one mass, say mass i, is

�dWext;i +

0@X
j

Fji

1A � dxi = d(Ek;i); (2.17)

where �dWext;i = Fext;i � dxi and of course Fii = 0. Summing the energy

balances for all masses results in an energy balance for the entire system:X
i

�dWext;i +
X
i

X
j

Fji � dxi = d(Ek); (2.18)

where

d(Ek) =
X
i

d(Ek;i) =
X
i

d(miv
2
i =2) (2.19)

is the change in the total kinetic energy of the body.

Equation (2.18) can be simpli�ed considerably, since the second term on the

left is exactly zero. To see this, recall that the rods are rigid, so

d(jxi − xjj) = 0 (2.20)

for all i and j. Equation (2.20) can be written as

(xi − xj) � d(xi − xj) = 0: (2.21)

Now Fij is parallel to (xi − xj), so multiplying Eq. (2.21) by jFijj=jxi − xj j

results in

Fij � d(xi − xj) = 0: (2.22)

Since Fji = −Fij , we can re-write this as

Fji � dxi = −Fij � dxj: (2.23)

Therefore, because the body is rigid, the work done by Fji on mass i is precisely

equal to the negative of the work done by Fij on mass j. Thus, the internal

forces Fij cause a transfer of kinetic energy from one mass within the body to

another, but considering the body as a whole, do no net work on the body.

Mathematically, the second term on the left of Eq. (2.18) is a sum over all

pairs of mass indices (i; j). Because of Eq. (2.23), for every i and j, the (i; j)

term in this sum will exactly cancel the (j; i) term, with the result that the

double sum is zero.

With this simpli�cation (for rigid bodies), Eq. (2.18) reduces toX
i

�dWext;i = d(Ek): (2.24)
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Mg

Ft

Ft

θ

θ= Mg sin(  )

(a)

v

F

F = M v   / R2

R

(b)

v

B

q

F = q v x B

(c)

Figure 2.4: Some forces which do no work: (a) traction force on a rolling wheel;
(b) centrifugal force; (c) Lorentz force on a charged particle in a magnetic �eld

We see that to carry out an energy balance on a rigid body, we only need consider

work done by external forces, not by internal ones. We can always tell which

forces are external ones { they are the ones which cross the system boundary

on a sketch.

A macroscopic solid object is composed of a huge number of essentially point

masses (the atomic nuclei) connected by chemical bonds (actually rapidly mov-

ing, quantum-mechanically smeared out electrons). If we ignore for the moment

the fact that bonds are not really rigid, a solid object can be approximated as

a rigid body. If this approximation holds, then the appropriate energy balance

equation will be Eq. (2.24).

For simplicity, assume that the external forces act only at L discrete locations

on the surface of the object, where it contacts the environment.5 In this case,

the external work term in Eq. (2.24) becomes
PL
‘=1 F‘ � dx‘, where dx‘ is the

displacement of the surface of the object at the point where the force F‘ is

applied. The energy balance Eq. (2.24) becomes

LX
‘=1

F‘ � dx‘ = d(Ek): (2.25)

It is very important to remember that the displacements to use in this equation

are those where the forces are applied, and may di�er for each force. Do not

make the mistake of using the displacement of some other point (e.g. the center

of mass).

If a force is applied to a macroscopic object at a point where it is stationary,

the force does no work no matter how large the force is. (If you push against a

stationary wall, you may exert yourself, but you do no work on it.) Also, a force

5If the macroscopic force is exerted over some small but �nite contact area, the macroscopic
force F‘ in Eq. (2.25) is simply the sum over the atomic-level forces Fext;i in Eq. (2.24) for
all atoms i in the contact area.
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applied perpendicular to the instantaneous direction of motion of the contact

area can do no work.

Some common forces which do no work are shown in Fig. 2.4. A traction

force jFtj = mg sin � in the plane of the surface keeps a rolling wheel from

sliding down a hill; but since the wheel is instantaneously stationary where it

contacts the ground, Ft � dx = 0 and therefore the traction force does no work.

A centrifugal force and the Lorentz force a charged particle experiences in a

magnetic �eld are both perpendicular to the direction of motion, and thus can

do no work.

Example 2.3 A downward force F1 is applied to a rigid, horizontal lever a

distance L1 to the right of the pivot point. A spring connects the lever to the

ground at a distance L2 to the left of the pivot, and exerts a downward force

F2. An upward force Fp is exerted on the lever at the pivot. Evaluate the work

done by each force if end 2 is raised by dy2, and determine the value of F1 which

achieves this motion without changing the kinetic energy of the lever.

System
Boundary

L L 1

1

2

F

2F pFSpring

Solution: De�ne the system to consist of the lever only (a rigid body). The

body is acted on by three external forces, and so we must evaluate the work

input to the system from each force. Since the lever is rigid, if the height of

end 2 changes by dy2 while the height at the pivot point is unchanged, then the

height of end 1 must change by dy1 = −(L1=L2)dy2. So the three work inputs

are:

�dW1 = (−jF1) � (−jL1dy2=L2) = (F1L1=L2)dy2 > 0 (2.26)

�dW2 = (−jF2) � (+jdy2) = −F2dy2 < 0 (2.27)

�dWp = (+jFp) � (0) = 0: (2.28)

Note that the work due to the pivot force is zero, since the lever does not

move at the pivot. Force F1 does positive work on the lever, since the force

and displacement are in the same direction. The spring which produces force

F2 does negative work on the lever, since the force and displacement are in

opposite directions. In this case, we say that the lever does positive work on the

spring, since the force exerted by the lever on the spring is oppositely directed
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to F2 (Newton’s third law).

The energy balance on the lever is then

�dW1 + �dW2 + �dWp = d(Ek)

(F1L1=L2 − F2)dy2 = d(Ek): (2.29)

If we wish to move the lever without increasing its kinetic energy, then we must

choose

F1L1 = F2L2: (2.30)

This is the familiar law of the lever, but note that we obtained it from an energy

balance, not by balancing torques as would be done in mechanics.

2.5 Conservative Forces and Potential Energy

2.5.1 A Uniform Gravitational Field

Suppose a point particle near the surface of the earth is acted on by gravity,

which exerts a constant downward force Fg = −jmg. It is also acted on by an

arbitrary external applied force Fa(x; t).

F (x,t)
a

Fg

In this case, Eq. (2.10) becomes

Wa +Wg = �Ek (2.31)

where

Wa =

Z
path

Fa � dx (2.32)

is the work done by the applied force, and

Wg =

Z
path

Fg � dx (2.33)

is the work done by the gravitational force. Due to the special character of Fg

(a constant force), Wg can be evaluated for an arbitrary path from A to B:

Wg = −

Z
path

jmg � dx
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= −

Z yB

yA

mgdy

= −mg(yB − yA) (2.34)

= −mg�y: (2.35)

If �y < 0, gravity does work on the particle, and its kinetic energy increases. If

�y > 0, Wg < 0, which means that the particle must do work against gravity.

In this case the kinetic energy decreases.

Note that Wg can be expressed solely in terms of the di�erence in a property

(the height) of the particle at the beginning and end of its trajectory: any path

connecting A and B would result in the same value for Wg. This is due to

the special nature of the force Fg, which is just a constant. Of course, for an

arbitrary force such as Fa(x; t), this would not be possible. The force Fg is the

�rst example of a conservative force.

Since Wg is independent of the particular path taken, we can bring it to the

other side of Eq. (2.31):

Wa = (−Wg) + �Ek

= mg�y + �Ek

= �(Ek +mgy) (2.36)

We de�ne mgy to be the gravitational potential energy Eg of the particle in

this uniform gravitational �eld:

Eg = mgy: (2.37)

With this de�nition, Eq. (2.31) becomes

Wa = �(Ek +Eg): (2.38)

Equations (2.31) and (2.38) are mathematically equivalent, but have di�erent

interpretations, as shown in Fig. 2.5. In Eq. (2.31), the gravitational force

is considered to be an external force acting on the system; the work Wg it

does on the system is included in the energy balance but not any potential

energy associated with it. In (b), the source of the gravitational force (the

gravitational �eld) is in e�ect considered to be part of the system. Since it is

now internal to the system, we don’t include a work term for it, but do include

the gravitational potential energy (which we may imagine to be stored in the

�eld) in the system energy. It doesn’t matter which point of view we take { the

resulting energy balance is the same because �Eg is de�ned to be identical to
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(E  + E  ) 
k gWa(E )

kW

W

a

g
(a) (b)

Figure 2.5: Two energy accounting schemes to handle the e�ects of a constant
gravitational force. In (a), the gravitational �eld is considered to be external to
the system, while in (b) the �eld is part of the system.

−Wg . But remember not to mix these points of view: don’t include both Wg

and �Eg in an energy balance!

We may generalize this analysis to a macroscopic body. In this case, the

gravitational potential energy becomes

Eg =

Z
body

�(x)gy dV; (2.39)

where �(x) is the local mass density (kg/m3) at point x within the body. This

can be re-written as

Eg = Mgycm; (2.40)

where

M =

Z
body

�(x) dV (2.41)

is the total mass of the body and ycm is the y-component of the center of mass,

de�ned by

xcm =
1

M

Z
�(x) x dV: (2.42)

2.5.2 General Conservative Forces

A constant force, such as discussed above, is the simplest example of a conser-

vative force. The general de�nition is as follows:

a force is conservative if and only if the work done by it in going

from an initial position xA to a �nal position xB depends only on

the initial and �nal positions, and is independent of the path taken.

Mathematically, this de�nition may be stated as follows:

Wc =

Z
path

Fc � dx = f(xB)− f(xA); (2.43)
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where f is some single-valued scalar function of position in space.

For the special case of a closed path (xB = xA), Eq. (2.43) reduces toI
Fc � dx = 0; (2.44)

where
H

denotes integrating all the way around the path. Therefore, the work

done by a conservative force on a particle traversing any arbitrary closed loop

is exactly zero. Either Eq. (2.43) or Eq. (2.44) may be taken as the de�nition

of a conservative force.

Only very special functions F(x;v; t) can satisfy the conditions for a con-

servative force. First of all, consider the dependence on velocity. The only way

Eq. (2.44) can be satis�ed by a velocity-dependent force for all possible loops,

traversing the loop in either direction at arbitrary speed, is if the velocity-

dependent force does no work. This is possible if F(x;v; t) is always perpendic-

ular to v. Thus, any conservative force can have an arbitrary velocity-dependent

force Fv added to it and still be conservative as long as Fv � v = 0 at all times.

It seems that in nature there is only one velocity-dependent conservative

force, which is the Lorentz force felt by a charged particle moving through a

magnetic �eld B. This Lorentz force is given by

FL = qv �B; (2.45)

which is always perpendicular to both v and B. Unless stated otherwise, we will

assume from here on that conservative forces do not have a velocity-dependent

part, keeping in mind that the Lorentz force is the one exception.

Having dealt with the allowed type of velocity dependence, consider now the

time dependence. It is clear that Fc can have no explicit time dependence (i.e.,

F(x(t)) is OK but F(x(t); t) is not). If Fc depended explicitly on time, then the

result for Wc would too, rather than on just the endpoint positions in space. So

we conclude that a conservative force (or at least the part which can do work)

can depend explicitly only on position: Fc(x).

2.5.3 How to Tell if a Force is Conservative

If we are given a force function F(x), how can we tell if it is conservative?

First consider the inverse problem: If we know the function f(x), can we derive

what Fc must be? Consider a straight-line path which has in�nitesimal length:

xB = xA + dx. Then equation 2.43 reduces to

Fc(xA) � dx = f(xA + dx)− f(xA): (2.46)
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Since dx is in�nitesimal, we may expand f(xA + dx) in a Taylor series:6

f(xA + dx) = f(xA) +rf(xA) � dx + O(jdxj2); (2.47)

where the gradient of f is de�ned by

rf = i
@f

@x
+ j

@f

@y
+ k

@f

@z
: (2.48)

As we let jdxj go to zero, the higher-order terms go to zero rapidly, so Eq. (2.46)

becomes

Fc(x) � dx = rf(xA) � dx (2.49)

The only way this equation can hold for arbitrary xA and dx is if

Fc(x) = rf(x): (2.50)

Therefore, a conservative force which depends only on position must be the

gradient of some scalar function of position in space f(x).

How can we tell if a given vector function F(x) is the gradient of some

unknown scalar function f(x)? The easiest way is to write them both out

explicitly:

F(x; y; z) = iFi(x; y; z) + jFj(x; y; z) + kFk(x; y; z) (2.51)

rf(x; y; z) = i
@f

@x
+ j

@f

@y
+ k

@f

@z
: (2.52)

If these are equal, then each component must be equal, so

Fi(x; y; z) = @f(x; y; z)=dx (2.53)

Fj(x; y; z) = @f(x; y; z)=dy (2.54)

Fk(x; y; z) = @f(x; y; z)=dz: (2.55)

Consider now the mixed second derivatives of f(x; y; z). It doesn’t matter

which order we do the di�erentiation:

@

@x

�
@f

@y

�
=

@

@y

�
@f

@x

�
=

@2f

@x@y
; (2.56)

with similar results for the partial derivatives involving z. Therefore, if F = rf ,

we may substitute eqs. (2.53) and (2.54) into Eq. (2.56) and obtain

@Fj
@x

=
@Fi
@y

: (2.57)

6If this is not clear to you in vector form, write it out component by component.
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Similarly,
@Fi
@z

=
@Fk
@x

; (2.58)

and
@Fj
@z

=
@Fk
@y

; (2.59)

Equations (2.57){(2.59) provide a simple test to determine if F(x) is conserva-

tive. If F passes this test, it should be possible to integrate equations (2.53){

(2.55) and �nd a function f(x) such that F = rf . If F fails the test, then no

such f(x) exists.

2.5.4 Energy Accounting with Conservative Forces

We can easily generalize the analysis of the mass in a constant gravitational

�eld to handle an arbitrary conservative force acting on a particle. The energy

balance is

Wa +Wc = �Ek: (2.60)

Since the force is conservative, Wc = f(xB)− f(xA) = �f . Therefore, we may

write the energy balance as

Wa = �Ek −�f = �(Ek − f): (2.61)

Now de�ne the potential energy associated with this conservative force as

follows:

Ep(x) = −f(x) +C: (2.62)

Since only di�erences in potential energy have any physical signi�cance, we can

set the additive constant C to any convenient value. The energy balance now

becomes

Wa = �(Ek +Ep): (2.63)

As with the gravitation example, the energy balances (2.60) and (2.63) are

completely equivalent mathematically, and we can use whichever one we prefer.

They di�er only in interpretation. Using Eq. (2.60), we regard whatever pro-

duces the conservative force (e.g. a gravitational, electric, or magnetic �eld, a

frictionless spring, etc.) as part of the environment { external to the system.

Therefore, we include the work Wc done by this force on our system when we

do energy accounting. If we write the energy balance as in Eq. (2.63), we are

regarding the source of the conservative force as part of the system. Since in

this case the force becomes an internal one, we don’t include the work Wc in

the energy balance, but we must account for the potential energy stored in the

�eld or spring as part of the system energy.
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2.6 Elementary Forces and Conservation of Energy

Elementary forces are those forces which are part of the basic structure of

physics, such as the gravitational force, electromagnetic forces, nuclear forces,

etc. These forces are responsible for all atomic-level or subatomic behavior,

including chemical and nuclear bonding and the forces atoms feel when they

collide with one another. (But quantum mechanics, rather than classical me-

chanics, must be used to correctly predict these features).

As far as we know now, every elementary force of nature is conservative -

that is, it may be derived from some potential energy function. Considering how

special conservative forces are (there are in�nitely more functions F(x) which

are not the gradient of some f(x) than there are functions which are), this can

be no accident { it must be a deep principle of physics.

The universe can be thought of as a very large number of elementary par-

ticles interacting through conservative, elementary forces. If we do an energy

accounting for the entire universe, treating the conservative interactions between

particles by adding appropriate potential energy terms to the system energy as

discussed in section 2.5.4, we �nd7

�(Ek + Ep) = 0; (2.64)

where Ek and Ep represent the kinetic and potential energies, respectively, of

the entire universe. Of course there can be no external work term, since the

entire universe is inside our system!

Therefore, the total energy of the universe (kinetic + all forms of potential)

is constant. Everything that has happened since the birth of the universe | its

expansion, the condensation of protons and electrons to form hydrogen gas, the

formation of stars and heavy nuclei within them, the formation of planets, the

evolution of life on earth, you reading this book | all of these processes simply

shift some energy from one type to another, never changing the total.

The constancy of the energy of the universe is the principle of conservation

of energy. Of course, any small part of the universe which is isolated from the

rest in the sense that no energy enters or leaves it will also have constant total

energy. Another way of stating the principle of conservation of energy is that

there are no sinks or sources for energy | you can move it around or change

its form, but you can’t create it, and you can’t destroy it.

7Of course, to calculate Ek and Ep correctly we would have to consider not only quantum
mechanics but general relativity. These change the details in important ways, but not the
basic result that the energy of the universe is constant.
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Why is the energy of the universe constant? This is equivalent to asking

why all elementary forces are conservative. Quantum mechanics provides some

insight into this question. In quantum mechanics, a system has a well-de�ned

constant total energy if two conditions are met: a) there are no interactions with

external forces, and b) the laws governing the elementary forces are constant

in time. If this is applied to the whole universe condition a) is automatically

satis�ed, and b) says simply that the basic laws of physics have always been

the same as they are now. As far as we know, this is true { the laws of physics

don’t depend on time.

2.7 Non-Conservative Forces

Since all elementary forces are conservative, it might be thought that any macro-

scopic forces between macroscopic objects (which, after all, are composed of ele-

mentary particles interacting through elementary forces) should be conservative.

This is actually not true, as a simple thought experiment demonstrates.

Imagine sliding an object around in a circle on a table, returning to the

starting point. If the table were perfectly frictionless, it would take no net work

to do this, since any work you do to accelerate the object would be recovered

when you decelerate it. But in reality, you have to apply a force just to overcome

friction, and you have to do net work to slide the object in a circle back to its

original position. Clearly, friction is not a conservative force.

If we were to look on an atomic scale at the interface between the object

and the table as it slides, we don’t see a \friction force" acting at all. Instead,

we would notice the roughness of both the table and the object { sometimes

an atomic-scale bump sticking out of the object would get caught behind an

atomic-scale ridge on the table. As the object continued to move, the bonds to

the hung-up atoms stretch or bend, increasing their potential energy (like springs

or rubber bands); �nally, the stuck atoms break free and vibrate violently, as

the energy due to bond stretching is released. The increased vibrational kinetic

energy of these few atoms is rapidly transferred through the bonds to all of the

other atoms in the object, resulting in a small increase in the random, thermal

energy of the object.8

If we reverse the direction we slide the object, the apparent friction force

8Essentially the same process happens in earthquakes as one plate of the earth’s crust
attempts to slide past another one along faults (such as the San Andreas fault or the many
other faults below the LA basin). The sliding slabs of rock get hung up, and as the plates
keep moving, huge strain energy is built up. Eventually, the plates break free, converting the
pent-up strain energy (potential energy) into the kinetic energy of ground motion, which we
experience as an earthquake. Sliding friction is a microscopic version of an earthquake!
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reverses direction too, always opposing the direction of motion. This means

that the friction force depends on the velocity of the object. For sliding friction,

the dependence is usually only on the direction of the velocity vector (not its

magnitude). But viscous drag in a fluid (also a type of friction) depends on the

magnitude also, increasing with speed. This behavior is in sharp contrast to

conservative forces, which only depend on position. For example, the gravita-

tional force on an object of mass m is always mg directed in the same direction

(toward the center of the earth) no matter what the velocity of the object is.

We see then that macroscopic forces which are non-conservative (friction) are

actually \e�ective" forces which result from very complex atomic-level motion.

Frictional forces always result in an irreversible conversion of macroscopic kinetic

energy (the motion of the object) to disorganized, random thermal energy, and

always oppose the direction of motion, so Fnc � dx is always negative.

2.8 The First Law of Thermodynamics

We now wish to do energy accounting for arbitrary macroscopic material sys-

tems. We’re already part way there { in Section 2.4 we developed an energy

balance equation for macroscopic matter valid if the bonds between atoms were

rigid. Unfortunately, this is not really the case. Bonds in solids can stretch and

bend like springs, so the atoms are continually vibrating. This means that a

solid will have kinetic energy associated with this motion, and potential energy

due to stretching bonds. In liquids and gases, molecules can move and rotate,

as well as vibrate.

In this section, we extend our previous analysis to account for these e�ects,

and develop a purely macroscopic statement of energy accounting, which is the

celebrated First Law of Thermodynamics.

2.8.1 The Internal Energy

Consider a macroscopic sample of matter (solid, liquid, or gaseous) at rest.

Although no motion is apparent, on a microscopic level the atoms composing

the sample are in continual, random motion. The reason we don’t perceive

this motion, of course, is that all macroscopic measurements we can do average

over a huge number of atoms. Since the atomic motion is essentially random,

there are just as many atoms travelling to the right with a given speed as to

the left. Even though individual atomic speeds may be hundreds of meters per

second, the atomic velocities tend to cancel one another when we sum over a

large number of atoms.

But the kinetic energies due to the atomic motion don’t cancel, since the
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Figure 2.6: Potential energy of a chemical bond as a function of bond length r.
The unstretched length is r0.

kinetic energies are all positive, scalar numbers. Even a sample of matter at

rest (no center-of-mass motion) has microscopic kinetic energy, which we will

call the internal kinetic energy:

Ek;int =
X
j

mjv
2
j=2; (2.65)

where the sum is over all atoms in the sample.

The sample has microscopic potential energy too. As the atoms move, they

stretch or compress the bonds holding them together. The bonds may be mod-

eled as springs, although ones with a spring constant which depends on bond

length. The potential energy of these \springs" as a function of length typically

looks something like the curve in Fig. 2.6. If the bond is compressed so that

it is shorter than r0, the potential energy rises rapidly. If it is stretched, the

potential energy rises, too. The bond can be broken (r !1) if work � is done

to pull the atoms apart.

Other types of interactions between atoms can be modeled in a similar way.

Molecules in a gas hardly feel any force from other molecules far away, but when

two molecules approach closely (collide) the potential energy rises rapidly, caus-

ing them to repel one another and move apart again. Similarly, the interaction

of two atoms which are charged may be described by a repulsive or attrac-

tive electrostatic potential energy which depends on their separation. If the

atoms or molecules have a magnetic moment (e.g. iron or nickel atoms, oxygen

molecules), then their interaction is described by a potential energy function

which depends on their separation and the relative alignment of their magnetic

moment vectors. In fact, every atomic-level interaction between atoms can be

described in terms of some potential energy function. We know this is possible,

since we know atomic-level forces are conservative.

At any instant in time, the sample has a microscopic, internal potential

energy, which is the sum of all of the potential energy contributions describing
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the interactions between the atoms or molecules:

Ep;int =
X
k

Ep;k: (2.66)

The index k runs over all pairs 9 of atoms which exert forces on one another in

any way.

Of course, since the particles are constantly moving and interacting, both

the atomic positions and atomic velocities keep changing. Hence, both Ek;int

and Ep;int are constantly changing, as energy shifts from kinetic to potential

and back again (for example, as two atoms in a gas collide and rebound).

In doing energy accounting for this sample, we will �rst of all choose the

system to consist of the sample itself (a closed system). We will furthermore

choose to treat the conservative interactions between atoms within it by includ-

ing Ep;int in the system energy, rather than accounting explicitly for the work

done by these forces. Therefore, the only work terms which will appear are

those due to external forces.

If no external forces act on the atoms of the sample (if it is completely

isolated from the environment), then energy accounting leads to the conclusion

that the sum of Ek;int and Ep;int must be constant:

�(Ek;int + Ep;int) = 0: (2.67)

We de�ne the internal energy U by

U = Ek;int + Ep;int; (2.68)

For a stationary sample which is isolated from the environment �U = 0.

The internal energy includes all of the kinetic energy associated with the

atomic-level, random motion of the atoms of the system, and all of the potential

energy associated with all possible interactions between the atoms. Since the

potential energy associated with chemical bonds is included in Ep;int, chemical

energy is part of the internal energy. Chemical energy is essentially the energy

required to break chemical bonds (� in Fig. 2.6). Since � di�ers for every

di�erent type of bond, if a chemical reaction occurs which breaks bonds of one

type and forms bonds of another type, Ep;int may go up or down. If the system

is isolated, U must be constant, and therefore Ek;int must change oppositely to

9The potential energy of some interactions { for example, bending of chemical bonds { may
depend on the positions of three or more atoms. This doesn’t change anything { we simply
add these terms too to Ep;int .
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the change in Ep;int. The change in Ek;int would be experienced as a change in

temperature. 10

Example 2.4 At su�ciently low density and a temperature of 300 K, the

internal energy of gaseous H2 is -2441 kJ/kmol11 and the internal energy of

gaseous I2 is 59,993 kJ/kmol. (We will show later that in the limit of low

density the internal energy per mole of a gas is a function only of temperature {

assume this limit applies here.) The internal energy of gaseous hydrogen iodide

HI is given by the formula

UHI = 17; 655 + 21:22T kJ/kmol (2.69)

which is valid for 300 < T < 600 K.

If one kmol of H2 is reacted with one kmol of I2 to form two kmol of HI in a

closed, constant-volume container with no energy transfer to the environment,

what is the �nal temperature if the initial temperature is 300 K?

Solution: The internal energy of the initial mixture of H2 and I2 at 300 K

is

U = (1 kmol)(-2441 kJ/kmol) + (1 kmol)(59,993 kJ/kmol) = 57,552 kJ:

(2.70)

Since the system is isolated (no energy transfer to the environment), U does not

change during the reaction. The �nal state consists of 2 kmol of HI, so the �nal

internal energy per kmol of HI is 28,776 kJ/kmol. From Eq. (2.69), the �nal

temperature is 524 K.

Note that the internal energy of H2 is negative at 300 K. This is not a

problem, since only di�erences in internal energy matter. It simply reflects a

particular choice for the arbitrary constant C in the internal potential energy

for H2.

Nuclear or even relativistic mass energy (E = mc2) could be included in U

if we like. A nuclear physicist would certainly want to do this. But since only

changes in energy have physical signi�cance, we can disregard these forms of

energy if we don’t plan to consider processes in which they change.

The internal energy is de�ned in a reference frame in which the sample is at

rest. If this frame is moving and/or rotating with respect to the lab frame, then

the macroscopic kinetic energy associated with these motions must be added to

10Temperature will be formally introduced in the next chapter. For now, think of it as a
measure of the internal kinetic energy per atom. This would be exactly true if atomic motions
were really described by classical mechanics, but when quantum e�ects are important (and
the usually are) it is only approximately true.

11One kmol is 6:023�1026 molecules. The mass of 1 kmol in kg equals the molecular weight
of the molecule.



CHAPTER 2. ENERGY, WORK, AND HEAT 30

U to determine the total sample energy E in the lab frame:

E = U +
1

2
Mv2

cm +
1

2
I!2; (2.71)

where vcm is the center-of-mass speed and ! is the rotation rate (assumed to

be about a principal axis which has moment of inertia I).12

It is important to note that Ep;int does not include any potential energy

arising from interactions of atoms in the sample with gravitational, electric,

or magnetic �elds produced by external sources. If we choose to include these

macroscopic potential energy terms in the sample energy, we have to add them

explicitly. If the sample is near the surface of the earth and has charge q, the

total energy including potential energy terms would be

E = U +
1

2
Mv2

cm +
1

2
I!2 +Mgy + qE ; (2.72)

where E is the value of the electrostatic potential (volts).

With macroscopic kinetic and potential energy modes, the energy balance

for an isolated sample is

�E = 0; (2.73)

not �U = 0. For example, a rubber ball dropped onto a rigid table will even-

tually come to rest, even if there is no energy loss to the environment. The

gravitational potential energy Mgy is converted into an increase in U , which

would be experienced as an increase in temperature. E, however, remains con-

stant.

2.8.2 Atomic Level Energy Transfer: Microscopic Work

No sample of matter can really be completely isolated from the environment.

Usually, it is in contact with other matter (e.g., a container for a gas or liquid;

a table a solid rests on). Even if it were floating in interstellar space it would

still exchange energy with the environment through radiation.

We now need to consider how to do energy accounting for a macroscopic

sample allowing for external work done by forces from the environment. Con-

sider a sample of gas in a container such as shown in Fig. 2.7 which has one

movable wall (a piston). We will take the system to be the gas, and container

to be part of the environment.

On an atomic level, both the gas and container consist of atoms which are in

constant motion. The atoms of the gas are moving randomly in all directions,

12We assume here that all parts of the sample are moving or rotating macroscop-
ically together. If not, then the macroscopic kinetic energy must be determined as
(1=2)

R
�(x)v(x)2 dV , where the integration is over the sample and � is the mass density.
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Figure 2.7: A gas in a container, as seen from the macroscopic and microscopic
points of view.

colliding with one another and occasionally with the container walls. The atoms

in the container are vibrating chaotically about their equilibrium positions as

they are bu�eted by the neighboring atoms they are bonded to, or (at the

surface) by gas atoms.

When a gas atom collides with a wall atom, the gas atom may rebound with

either more or less kinetic energy than it had before the collision. If the wall

atom happens to be moving rapidly toward it (due to vibration) when they

hit, the gas atom may receive a large impulse and rebound with more kinetic

energy. In this case, the wall atom does microscopic work on the gas atom:

positive microscopic work is done by the environment on the system.

On the other hand, the wall atom may happen to be moving away when

the gas atom hits it, or it may rebound signi�cantly due to the impact. In

this case, the gas atom will rebound with less kinetic energy than it had before

| therefore, the gas atom does microscopic work on the wall atom: negative

microscopic work is done by the environment on the system.

We see that collisions between the gas atoms and the walls can do microscopic

work even if macroscopically the walls appear stationary. If we let time dt elapse,
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then the energy balance on the gas is

�dWmicro = dU; (2.74)

where �dWmicro is the total work done on the gas by wall collisions during time

dt.

2.8.3 Energy Transfer as Heat

Suppose the piston is held �xed, but the container starts out \hotter" than the

gas, meaning that the container atoms have more kinetic energy per atom than

do the gas atoms.13 Then over time the gas atoms on average will pick up

kinetic energy from collisions with wall, and wall atoms will lose kinetic energy:

�dWmicro will be positive, Ugas will tend to go up, and Ucontainer will tend to go

down. Of course, if the gas started out hotter, then �dWmicro would be negative,

and the changes in internal energy would be reversed.

Eventually, when their kinetic energies per atom are comparable,14 the num-

ber of collisions per unit time which impart extra energy to the gas atoms will

just balance the number per unit time which remove energy from the gas atoms,

and Ugas and Uwall will stop changing on average. There would still be very

rapid statistical fluctuations about these average values, but for a reasonable

sized sample these fluctuations are not observable, since it can be shown from

statistics that random fluctuations like this have a relative magnitude propor-

tional to 1=
p
N . For example, if N = 1020, then �U=U � 10−10: the internal

energy is constant to one part in 1010 in this case.

The process we have just described is energy transfer between the wall (part

of the environment) and the gas (the system) due to microscopic work. However,

macroscopically it doesn’t appear that any work is being done, since the piston

isn’t moving, and we can’t see the microscopic deflections due to atomic motion.

Therefore, there is no observable, macroscopic F �dx, and no macroscopic work.

We call this process of energy transfer by microscopic work without observ-

able macroscopic work energy transfer as heat, or heat transfer for short. The

amount of energy transferred in this way is denoted by the symbol Q. For an

in�nitesimal amount, we use the symbol �dQ. As for work, the bar in �dQ re-

minds us that it is not the di�erential of any function, it only means \a little

bit of heat." (Or the other way to say it is that �dQ, like �dW , is an inexact

di�erential.)

13Of course, \hotness" is really related to temperature, which we’ll introduce in the next
chapter.

14More precisely, when their temperatures are equal.
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The energy balance for this process is then

�dQ = dU: (2.75)

2.8.4 Energy Transfer as Macroscopic Work

Each collision of a gas atom with a wall delivers an impulse to the wall. At

typical gas densities, the number of collisions per unit area of wall per unit

time is very large. For example, objects sitting in room temperature ambient

air experience roughly 1024 collisions per cm2 per second. Macroscopically, it is

not possible to detect the individual impulses from so many frequent collisions.

Instead, a macroscopic force on the wall is felt, which is proportional to wall

area:

Fwall = PA: (2.76)

The propotionality constant P is the gas pressure.

Suppose the piston is now moved slowly toward the gas a distance dx. The

macroscopic work required to do this is

�dWmacro = F � dx = (PA)dx: (2.77)

The gas atoms which collide with the moving piston have their kinetic energy

increased on average slightly more than if the pison had been stationary; there-

fore, Ugas increases. If �dQ = 0, then the energy balance is

dU = �dWmacro = PAdx: (2.78)

Of course, there may also be microscopic work occurring which is not visible

macroscopically (heat transfer). To account for this, we must write the energy

balance as

dU = �dQ+ �dWmacro: (2.79)

For a more general system, macroscopic kinetic energy and potential energy

may also be part of the system energy. If energy is transferred to such a system

by macroscopic work and by heat transfer, the most general energy balance for

a closed system is

dE = �dQ+ �dW: (2.80)

We have to stipulate that the system is closed, since if matter were to enter

or leave the system, it would carry energy with it which is not accounted for



CHAPTER 2. ENERGY, WORK, AND HEAT 34
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Figure 2.8: The First Law for a Closed System.

in Eq. (2.80). Note that we have removed the subscript \macro" on the work

term. In thermodynamics generally, and from here on in this book, the term

work means macroscopic work, unless otherwise stated.

Equation (2.80) is known as the First Law of Thermodynamics. The First

Law simply states that the change in the total energy of a system equals the

energy transfer to it as heat, plus the energy transfer to it as work. It is simply

a statement of conservation of energy for a macroscopic system.

Note that there is no formula for �dQ like �dW = F � dx. In practice, �dQ is

determined from equation 2.80 once �dW and dE have been evaluated.

We can integrate Eq. (2.80) for some �nite change from an initial state to a

�nal one, yielding

�E = Q+W (2.81)

where

W =

Z f

i

�dW =

Z f

i

Fmacro � dxmacro (2.82)

and

Q =

Z f

i

�dQ: (2.83)

The interpretation of Eq. (2.81) is as shown in Fig. 2.8. Both work and heat rep-

resent energy transfers across the system boundary; the energy E stored within

the system (in whatever form) changes by the amount of energy transferred in.

Alternatively, we may divide Eq. (2.80) by the elapsed time dt to obtain

dE

dt
= _Q+ _W (2.84)
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where the ratio �dQ=dt is the heat transfer rate _Q and the ratio �dW=dt is the

power input or work rate we’ve de�ned previously.

All three equations (2.80), (2.81), and (2.84) are di�erent forms of First Law

of Thermodynamics for a closed system. In solving problems involving the First

Law, you should carefully consider which form is most appropriate to use. If

the process occurs during an in�nitesimal time dt, use Eq. (2.80). If you are

given initial and �nal states of the system, often Eq. (2.81) is the best choice.

If you are given a heat transfer or work rate, then probably Eq. (2.84) would be

easiest to use.

For many processes, both Q and W will be signi�cant, and must be included

to correctly calculate the change in the system energy E from the First Law.

But in some cases, either Q or W may be very much smaller than the other.

In analyzing such processes, it is often acceptable to only include the dominant

energy transfer mechanism, although this all depends on how accurate an answer

is required for �E.

For example, if a solid is heated, it usually expands a little bit. But in many

cases the work done in the expansion against atmospheric pressure is so small

that W � Q. In this case, it might be OK to neglect W in calculating �E due

to heating.

The opposite case would occur, for example, if a rubber band were rapidly

stretched. Since heat transfer takes some time to occur, if the stretching is

rapid enough it might be OK to neglect Q in calculating the increase in internal

energy of the rubber band due to the work done to stretch it.15 Processes for

which Q = 0 are called adiabatic.

2.9 Reversible and Irreversible Work

An important concept in thermodynamics is the idea of reversible work. Work

�dW = F(x;v) � dx is reversible if and only if the work done in moving dx is

exactly recovered if the motion is reversed. That is,

Forward: �dWforward = F(x;v) � dx (2.85)

Reverse: �dWreverse = − �dWforward = F(x;−v) � (−dx): (2.86)

Note that the velocity changes sign when the direction of motion is reversed.

This condition is satis�ed if

F(x;v) � v = F(x;−v) � v: (2.87)

15You can verify for yourself that rubber bands heat up when stretched by rapidly stretching
one and holding it to your lip.
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Figure 2.9: (a) Quasi-static and (b) rapid compression and expansion of a gas.

Therefore, the condition is that the force component in the direction of v be the

same for forward and reverse motion. A force which depends only on position

x will satisfy this, and therefore work done by any F(x) is reversible.

Friction and drag forces always depend on velocity, and act opposite to the

direction of motion, changing sign when the direction of motion is reversed.

Therefore, work done on a system by a friction or drag force is always negative

(i.e., the system must do work against the friction force). Work done by or

against such forces is never reversible { work must always be done to overcome

friction, and you can never recover it.

Consider compressing a gas in a cylinder by pushing in a piston, as shown

in Fig. 2.9. As discussed above, the gas exerts a force on the piston due to

collisions of gas atoms with the piston surface. To hold the piston stationary, a

force F = PA must be applied. We will assume the piston is lubricated, and is

well-insulated so the compression process is adiabatic.
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The piston can be moved very slowly by applying a force just slightly greater

than PA. If the piston velocity is su�ciently small, then the work required to

overcome viscous drag in the lubricant will be negligible (example 2.2). Also, if

the piston speed is slow enough, the gas molecules which collide with the piston

have plenty of time to move away from it and distribute their excess energy with

other molecules through collisions before the piston has moved any signi�cant

distance. In this case, the state of the gas is the same as would occur if the

piston were stationary at the instantaneous value of x: The gas molecules are

uniformly distributed in the cylinder, and the force on the piston is the same as

if the piston were not moving { it is PA.

In this limit of zero piston speed, the force on the piston approaches PA, no

matter whether the piston is moving in or out. In this limit, the compression

or expansion process is called quasi-static, since the force on the piston is the

same as if the piston were static. Therefore, the work done during quasi-static

compression of a gas is reversible work.

If the piston velocity is high, two things happen which make the process

irreversible. First, the work to overcome viscous drag in the lubricant may no

longer be negligible. Second, if the piston velocity is comparable to the average

molecular speed in the gas, then the piston will tend to sweep up molecules

near it, forming a high-density region just in front of it (similar to a snowplow).

Since the rate at which molecules collide with the piston is proportional to their

number per unit volume, the piston will experience more collisions at a given x

location than if it were moving slowly. Therefore, the applied force F to move

the piston must be greater than the quasi-static force, and thus the work to

compress the gas is greater than in the quasi-static limit. A typical plot of F (x)

for rapid compression is shown in Fig. 2.9(b).

If this process is now reversed and the gas is rapidly expanded, we still have

to do work to overcome viscous drag in the lubricant (not only do we not get

back the work done to overcome drag during compression, we have to do still

more work to overcome it during expansion). Also, there is now a low density

gas region near the piston, since the piston is moving away so fast the molecules

lag behind. So the gas pushes on the piston with less force than if the expansion

were done very slowly. Therefore, the work we get back in the expansion is less

than we put in during compression.

Since W =
R

F � dx, the work input WAB to move the piston from A to B

is
R B
A Fcomp(x)fx, where Fcomp(x) is the force applied along the compression

part of the curve. This of course is simply the area under the Fcomp(x) curve.

The work input to expand the gas from B to A is WBA =
R A
B Fexp(x)dx =
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−
R B
A
Fexp(x)dx.

If we consider the entire process A ! B ! A, then the total work input

W = WAB + WBA. In the quasi-static case Fcomp(x) = Fexp(x) = PA, so

W = WAB + (−WAB) = 0. No net work is required to return the piston to its

starting point. From the �rst law for this process (remember Q = 0)

W = �U = 0: (2.88)

Therefore, the gas internal energy returns to its starting value after quasi-static

compression followed by quasi-static expansion.

In the non-quasi-static case, Fcomp(x) > Fexp(x). Therefore, W > 0: net

work input must be done if the piston is rapidly moved from A to B and then

back to A. From the First Law then, �U > 0. The gas ends up with more

internal energy (hotter) at the end of the process than at the beginning.

2.10 Some Reversible Work Modes

There are several di�erent ways of doing reversible (quasi-static) work on matter.

A few of these are described here.

2.10.1 Compression

We saw in the last section that if a gas is slowly compressed, the work required

to move the piston dx is �dW = (PA)dx. The same analysis would apply if the

gas in the cylinder were replaced by any compressible substance, so this result

is quite general. The volume change of the substance is dV = −Adx, so we may

write this as

�dWqs = −PdV: (2.89)

We add the subscript \qs" since this only applies if the compression is done

quasi-statically. Note this expression is for the work done on the substance

(input to the system); For compression, dV < 0 and �dWqs > 0, for expansion

dV > 0 and �dWqs < 0.

2.10.2 Stretching a Liquid Surface

If a liquid �lm is suspended on a wire frame, as shown in Fig. 2.10, a force is

exerted on the wire that is proportional to its wetted length L that results from

a tensile force16 per unit length in the surface of the liquid. This is known as the

16A tensile force is the opposite of a compression force { it pulls, rather than pushes.
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Figure 2.10: Surface tension in a liquid.

surface tension �, and has units of N/m. For example, for a water/air interface

at 25 �C, � = 0:072 N/m.

The physical origin of the surface tension is that molecules in a liquid exert

attractive forces on one another, which hold the liquid together. These forces are

much weaker than covalent chemical bonds, but nevertheless have a dependence

on distance similar to that shown in Fig. 2.6. A molecule will have lower poten-

tial energy in the bulk, where it is surrounded by molecules on all sides, than

at the surface, where it feels the attractive force only on one side. Therefore,

surface molecules will try to move into the bulk, until as many have crowded

into the bulk as possible and there is a shortage of surface molecules left to cover

the area. The remaining surface molecules will be spaced slightly further apart

than ideal (r > r0), and therefore they will pull on their neighboring surface

molecules, resulting in the surface tension.

Since the �lm has two surfaces, the force required to hold the movable wire

stationary is

F = 2�L: (2.90)

If the wire is now quasi-statically pulled, so that F is only in�nitesimally greater

than 2�L, the work done to move dx is

�dWqs = 2�Ldx: (2.91)

During this process the total surface area of the �lm has increased by 2Ldx.

Therefore, we may write

�dWqs = �dA: (2.92)

This expression for the work required to quasi-statically increase the surface

area of a liquid is valid for arbitrary geometry.
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Figure 2.11: Forces exerted by an electric �eld on a polar diatomic molecule.

2.10.3 Electric Polarization

Many materials are polar, which means that although they are electrically neu-

tral, they are composed of positively and negatively charged atoms. Any ionic

crystal (NaCl) is polar, as is water (the hydrogen atoms have positive charge,

and the oxygen atom has negative charge). If an electric �eld is applied to a

polar material, it is possible to do work on it.

Consider the situation shown in Fig. 2.11. A polar diatomic gas molecule is

oriented at a particular instant in time at an angle � with respect to an applied

electric �eld. (Due to collisions between the gas molecules, at any instant in

time there is a distribution of orientations { they are not all lined up with the

�eld, except at absolute zero.)

The force on a charge q in an electric �eld E is given by

F = qE: (2.93)

Therefore, the positive end of the molecule at position x+ feels a force qE, and

the negative end at x− feels a force −qE. The molecule will turn and may be

stretched by the forces due to the electric �eld acting on each end. (The center

of mass motion is una�ected, since there is no net force.) If, due to the �eld,

the atoms move by dx+ and dx−, respectively, then the work done on this one

molecule is

�dW1 = (qE � dx+) + (−qE � dx−) (2.94)

= qE � d(x+ − x−): (2.95)

The electric dipole moment p of the molecule is de�ned by

p = q(x+ − x−): (2.96)
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The dipole moment is a vector which points along the direction from the negative

charge to the positive charge. In terms of p, the work done is

�dW1 = E � dp: (2.97)

This is the work done on one polar molecule; to determine the work done on

the entire polar gas, we must sum over all N molecules in the gas:

�dW =
NX
n=1

E � dpn = E � d

 
NX
n=1

pn

!
: (2.98)

The quantity in parenthesis is the total dipole moment of the gas. This may be

rewritten in terms of purely macroscopic quantities by de�ning the polarization

P to be the dipole moment per unit volume:

P =
1

V

 
NX
n=1

pn

!
: (2.99)

Then Eq. (2.98) becomes

�dW = E � d(VP): (2.100)

Although we derived this equation for a polar gas, it is in fact completely general

and applies to polar solids and liquids also.

For static polarization, P is some function of E and temperature T . Except

in extremely strong �elds, the dependence on E is linear, so that P may be

expressed as P = �0�e(T )E. In Rationalized MKSA units (the most common

electromagnetic unit system for engineering work), �0 = 8:90�10−12 C2� s2/kg�

m3. The dimensionless material property �e(T ) is the electric susceptibility.

The susceptibility for many materials may be expressed as

�e(T ) = A +B=T; (2.101)

where A and B are constants. The A term describes polarization due to stretch-

ing of polar chemical bonds, a process which is not strongly temperature de-

pendent. The B=T term describes orientation of polar molecules in a liquid or

a gas, as we considered above.

It is not hard to see why this orientation process should be temperature-

dependent. If E = 0, then the dipoles are oriented randomly, so just as many

point up as down. In this case, P = 0. For non-zero E, the �eld will try to align
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p for each molecule with E, but collisions between molecules will upset this

alignment, tending to randomize p. The net e�ect of the competition between

alignment by E and randomization by collisions is that molecules point in all

directions, but p � E is somewhat more likely to be positive than negative.

This means that there is non-zero polarization, with P directed along E. Since

higher E increases the tendency to align, and higher T increases the tendency

to randomize direction, P typically increases with increasing E, and decreases

with increasing T .

Example 2.5

A dielectric material is one which may be polarized, but has no mobile free

charges, so no electrical currents can flow through it. Dielectrics are often used

to �ll the space between the plates in capacitors. A particular dielectric liquid,

which obeys Eq. (2.101) with A = 0, is quasi-statically polarized at constant

temperature starting at E = 0 and ending at E = E1. For this material, the

internal energy depends only on T . Determine the work and heat transfer during

this process.

Solution:

W =

Z
�dW =

Z
E � d(VP): (2.102)

For quasi-static polarization, the static relationship between P, E, and T holds,

so

Wqs =

Z E1

0

Ed(V �0BE=T ) =
�0V BE

2
1

2T
: (2.103)

Since this process is carried out isothermally, and for this particular material

U = U(T ), �U = 0 for this process. The �rst law applied to this system is

�U = 0 = Q+Wqs; (2.104)

from which we conclude that Q = −�0V BE2
1=2T . Therefore, heat must be re-

moved (Q < 0) to polarize this material at constant temperature; if no heat

were removed (adiabatic polarization), U would increase by Wqs, and the tem-

perature would increase.

2.10.4 Magnetization

Some materials are magnetic { that is, they contain atoms which have magnetic

dipole moments and behave just like atomic-scale magnets. Magnetic atoms are

usually ones with unpaired electrons, such as iron, nickel, or rare-earth elements.

Some molecules can have unpaired electrons also, for example O2.

An applied magnetic �eld can do work on magnetic materials. The analysis

is very similar to that for electric polarization. If a single magnetic dipole with
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dipole moment m is placed in a uniform magnetic �eld H, the �eld exerts a

torque on the dipole given by

� = �0m�H: (2.105)

where �0 is a constant which depends on the unit system we use to measure m

and H known as the permeability of free space. In Rationalized MKSA units

�0 = 4� � 10−7 kg� m/C2.

The work done by this torque is

�dW1 = �0H � dm: (2.106)

Summing over all magnetic dipoles in the material and de�ning the magnetiza-

tion M by

M =
1

V

NX
n=1

mn; (2.107)

we obtain an expression for the work required to change the magnetization of a

magnetic material:

�dW = �0H � d(VM) (2.108)

Analogous to the discussion above for dielectrics, if a magnetic material

is placed in a static magnetic �eld, it will develop some static magnetization

M(H; T ), which results from the balance between the �eld trying to align the

dipoles and random thermal motion (collisions, vibrations) upsetting perfect

alignment. If the �eld is increased very slowly (quasi-statically), then this rela-

tion between M, H, and T will still hold, and we may write

�dWqs = �0H � d [VM(H; T )] (2.109)

Example 2.6 A Curie substance is one for which the static magnetization is

M = C
H

T
; (2.110)

where C is a material-speci�c constant. Most magnetic materials behave as

Curie substances in the limit of high temperature and low �eld strength.

A Curie substance in a uniform magnetic �eld H0 is quasi-statically, isother-

mally magnetized by slowly increasing the �eld to H1 > H0. Calculate the work

done on the substance, and the change in its internal energy. It may be shown
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that for a Curie substance U = U(T ). Calculate the heat transfer which must

occur in this process.

Solution: Since the process is quasi-static, the static relationship M(H; T )

holds at every step in the process. Therefore,

W =

Z H1

H0

�0C

T
H � dH

=
�0C

2T
(H2

1 −H
2
0): (2.111)

(2.112)

The First Law for this process is

�U = Q+W: (2.113)

Since the process is isothermal and we are given U = U(T ), �U = 0. Therefore,

Q = −W = −(�0C=2T )(H2
1 −H

2
0 ): (2.114)

Example 2.6 shows that heat must be given o� to the environment in order

to quasi-statically (reversibly) magnetize a Curie substance at constant temper-

ature. If the process had been done adiabatically instead (Q = 0), the internal

energy and temperature of the substance would have increased. The reason for

this is that the microscopic torque exerted on the individual dipoles by the �eld

imparts to them some rotational kinetic energy, which is then transferred to the

rest of the substance by collisions. The reverse process of quasi-static isothermal

demagnetization require heat input to maintain the sample temperature; if no

heat is supplied (adiabatic demagnetization), the sample temperature drops.

These processes may be combined to produce useful devices, such as mag-

netic engines or magnetic refrigerators. Magnetic refrigerators are used in prac-

tice to achieve very low temperatures (T < 1 K), where conventional refrigera-

tors cannot function.

2.10.5 Generalized Forces and Displacements

The expressions for quasi-static work are always of the general form FdX or F �

dX: −PdV , �dA, E�dP, �0H�dM, etc. We can think of these as generalizations

of F �dx. We call the F terms (−P , �, E, H) generalized forces and the X terms

(V , A, P, M) generalized displacements.

The work done by any of these for a �nite change is

W =

Z
path

F � dX: (2.115)
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This is still a path integral, but note it is not an integral in physical coordinate

space, but in the space de�ned by X. For example, polarization work would

involve integrating E � dP along some P(t) trajectory.

2.11 Some Irreversible Work Modes

If any of the processes discussed in the last section are done too rapidly, the

work done will not be reversible. For example, if the magnetic �eld is increased

too rapidly, the induced magnetization will lag behind the static M(H; T ). This

will result in �0H �dM being greater than the quasi-static value for a given dM.

Therefore, more magnetization work must be done to e�ect a given change in

magnetization; less work is recovered during demagnetization.

Some other ways of doing work are inherently irreversible { if the direction

of the motion is reversed, the force changes sign, so you can’t recover any of

the work put in. As we’ve already discussed, work done to overcome friction or

viscosity is like this.

2.11.1 Stirring a Viscous Fluid

An example of purely irreversible work is stirring a viscous fluid.17 Work must

be done to turn the stirrer, no matter which direction it is turned. The fluid will

have some macroscopic kinetic energy for a while due to stirring, but eventually

it will come to rest, with the energy transfer as work to the system due to

stirring appearing �nally as an increase in internal energy U .

In fact, the state of the fluid after it is stirred and has come to rest again

is no di�erent than if the same amount of energy had been added to it as heat.

Fully irreversible work is equivalent to heat addition.

2.11.2 Electrical Current Flow Through A Resistor

Another common type of fully irreversible work is electrical current flow through

a resistor. As electrons move through a resistor with an electrical potential

�E > 0 across it, they lose electrostatic potential energy in the amount je�Ej

by doing this amount of irreversible work. The work is done by colliding with

atomic scattering centers within the resistor, which transfers energy to them,

increasing the internal energy of the resistor.

If the number of electrons flowing through the resistor per second is _Ne, then

the rate at which irreversible work is done is

_We = _Neje�Ej = I�E : (2.116)

17All fluids, even water and gases, have some viscosity.
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where I = e _Ne is the electrical current. The current through the resistor is

proportional to the voltage across it: I = �E=R, where R is the resistance.

Therefore, Eq. (2.116) can be also written _We = I2R, or _We = (�E)2=R.

As was true for stirring a fluid, passing a current through a resistor is fully

irreversible, since changing the sign of the voltage also reverses the direction of

current flow. The irreversible electrical work done on the resistor is equivalent

thermodynamically to heat addition to the resistor.

Problems

2.1 A cart is sitting near the edge of a flat, horizontal table. The wheels of

the cart have radius r, and a lever of length R > r is attached to one

wheel. When the lever is straight down, it is pushed by a force ~F to the

left, causing the wheels to turn a small amount d� and the cart to move

to the right. A traction force is also present on the wheels, which keeps

the cart from sliding when the force ~F is applied. Determine the work

done by force ~F and by the traction force. (Hint: calculate displacements

with respect to the table carefully, remembering the cart moves. Make

sure your answer is sensible when R = r.)

r

R

F

Ft

2.2 Which of the following forces are conservative? The forces are all two-

dimensional { the component in the z direction is zero. Here {̂ is a unit

vector in the x direction, and |̂ is a unit vector in the y direction.

~F1 = iy − jx (2.117)

~F2 =
ix+ jy

x2 + y2
(2.118)

~F3 = i2xy + jx2 (2.119)

~F4 = i2x+ jx2 (2.120)
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~F5 = ia sin(ax) sin(by) − jb cos(ax) cos(by) (2.121)

~F6 = i sin(ax) cos(by) + j cos(ax) sin(by) (2.122)

2.3 Show that any force with the properties listed below which acts between

two particles must be conservative.

1. The force is directed along the line connecting the particles.

2. The force depends only on the distance r between the particles.

2.4 A ball of mass m is dropped at height y = H onto a plate which at the

moment the ball hits is at y = 0 and is travelling upward with constant

speed vp. Assuming the ball rebounds elastically and assuming air resis-

tance is negligible, how high does the ball bounce? How much work does

the plate do on the ball?

2.5 You are a scientist on your way to the new research station on Mars in the

year 2020. Your spacecraft has just undocked from the space station in

earth orbit, and is beginning to accelerate to cruising speed for the trip

to Mars. The ion engines are turned on at t = 0, and the engine thrust

begins to increase, producing for a while a spacecraft acceleration linear

in time: a = Ct. Within the spacecraft, the e�ects of the acceleration are

identical to those of a linearly-increasing gravitational �eld. Free-floating

objects at t = 0 begin \falling" toward the rear wall. You notice a ball

which at t = 0 is a distance H from the rear wall. In terms of the mass of

the ball, C, and H, what is the kinetic energy (in the local reference frame

within the spacecraft) of the ball when it strikes the wall? Is the concept

of potential energy useful to solve this problem? Why or why not?

2.6 An ideal gas is de�ned to be one which satis�es PV = NR̂T , where N is the

number of kg-moles (kmol) of gas, and R̂ = 8:3143 kJ/kmol/K. Consider

an ideal gas contained in a vertical cylinder, with a piston of mass M at

the top.

1. Initially, no external force is applied to the piston, and it comes to

some equilibrium height. If the atmospheric pressure is P0 and the

cylinder area is A, what is the gas pressure in the cylinder?

2. The gas is now heated quasi-statically at constant pressure until its

volume is tripled. How much work does the gas do against the envi-

ronment (which includes the massive piston) during this process?
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3. Finally, a force is applied to the top of the piston, and the gas is

quasi-statically, isothermally compressed back to its initial volume.

How much work must be done?

2.7 A Curie substance undergoes a three-step quasi-static process:

1. The substance is isothermally magnetized from (H0;M0) to (H1;M1),

where H1 = 2H0

2. The �eld is reduced back to H0, holding M �xed

3. The magnetization is reduced to M0, holding H �xed

At the end of this process, the substance is back in its initial state.

Sketch this process on a plot of H vs. M . For each step, determine

1. Whether work is done on or by the substance, and how much

2. Whether heat is transferred to or from the substance, and how much

3. The temperature at the end of the step.

Explain how this process might be used as the basis for a magnetic refrig-

erator.

2.8 For a particular dielectric material, the susceptibility is given by �e =

A + B=T . With ~E held constant, the material is cooled to half its initial

temperature, causing the polarization to increase. How much work is done

on the material by the electric �eld in this process?

2.9 Due to surface tension, the pressure inside a small water droplet will be

greater than the air pressure outside. Show that

�P = Pi − Po =
2�

r
;

where � is the surface tension and r is the droplet radius. Hint: consider

a force balance in the x direction on the system de�ned by the dotted line,

which cuts the droplet in half.

Pi

Po

System

x
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Small water droplets in a fog may be only a few microns in size. Evaluate

numerically the pressure inside a water droplet for diameter D = 1 �m

and for D = 10 �m if the air pressure is 1 atm. (1 atm = 1:01325� 105

N/m2). Express your answer in atmospheres.

2.10 An ideal gas has the properties described in problem 2.6. In addition, for

monatomic ideal gases (He, Ar, etc.) the internal energy is related to N

and T by

U =
3

2
NR̂T:

Consider a process in which a monatomic ideal gas is quasi-statically adi-

abatically compressed from a state with V0; P0; T0 to a �nal state with

properties V; P; T .

1. Derive an expression for how the temperature varies with volume

during this process { that is, �nd the function T (V ). Do your analysis

systematically: draw a sketch showing the system and any energy

transfers from the environment, state any assumptions, invoke the

�rst law, use necessary property data, etc.

2. Using this formula, evaluate the �nal temperature (K), �nal pressure

(MPa), and work input (J) if argon at 300 K and 0.1 MPa is quasi-

statically, adiabatically compressed to one-fourth of its initial volume.

(Recall 1 Pa = 1 N/m2.)



CHAPTER 3

EQUILIBRIUM

3.1 Introduction

In this chapter, we introduce the important idea of equilibrium, and some new

properties which tell us about equilibrium. We discuss how to measure two of

these properties (pressure and temperature), and conclude with some observa-

tions about thermodynamic equilibrium states of matter.

3.2 Equilibrium

It’s a universal observation that any real system, if left alone for enough time,

reaches a state where the macroscopic properties stop changing. If a ball is

dropped onto the floor, it will bounce for a while but eventually it will sit

motionless. If a drop of dye is placed in a glass of water, the dye will slowly

di�uses away until the dye concentration is the same everywhere in the glass,

after which no further change is observed. If a fluid is stirred and then left

alone, the motion will eventually cease, due to viscosity. We call the motionless,

unchanging state a physical system approaches at long times the equilibrium

state.

The word equilibrium is de�ned as \a state of balance between opposing

forces or actions."1 When a physical system is in an equilibrium state, every

part of it is in balance (equilibrium) with every other part. There is no net

transfer of matter or energy between any two parts of the system. The balance

is dynamic, since molecules may leave one region and enter another (in a liquid or

gas), but the same number must be going the opposite direction, since otherwise

there would be a net transfer of molecules.

Some idealized systems studied in introductory physics courses do not ap-

proach equilibrium states. Perfectly elastic balls keep bouncing forever, objects

sliding across frictionless tables don’t slow down, and a mass hanging from a

frictionless spring will oscillate forever. But the motion of every real object is

subject to non-zero friction or drag forces. No matter how small these forces are,

they will eventually cause the object to stop moving and come into equilibrium.

1Webster’s New Collegiate Dictionary

50
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Initial State Intermediate Equilibrium

Figure 3.1: Di�usion of a drop of dye in water.

A general characteristic of equilibrium states is that they are much simpler

to describe than non-equilibrium states. For example, to describe the state

shortly after a drop of dye has been introduced into a glass of water requires

specifying the concentration C(x) throughout the glass. Once equilibrium has

been achieved, it is only necessary to know how much dye was added to fully

specify the state.

The dye/water example illustrates another characteristic of equilibrium states:

they depend only on \intrinsic" factors (the amount of dye in this case), not one

the time history of the non-equilibrium states which preceded it. In general, the

characteristics of systems in equilibrium states depend on intrinsic factors such

as the volume available to the system, the energy and mass it contains, and

its chemical composition. They do not depend on the time-history of how the

state was prepared. Any substance which has properties which depend on past

processing history is not in an equilibrium state. For example, the properties of

glass depend on the rate it is cooled from the molten state. Therefore, glass is

not an equilibrium state.

Thermodynamics deals primarily with the properties of matter in the simple-

to-describe equilibrium states. To describe matter in non-equilibrium states, we

would have to supplement thermodynamics with results from the theories of

fluid mechanics, di�usion, heat conduction, electromagnetics, or other areas of

physics beyond the scope of thermodynamics. The nature of these states and

how they evolve with time is the subject of courses in these other �elds.

Although the restriction to equilibrium states seems drastic, it’s really not so

bad. In many processes, a system begins and ends in an equilibrium state, even

if it passes through non-equilibrium states during the process (for example, rapid

exansion of a gas). Since the First Law only requires evaluation of �U = Uf−Ui,

in many cases we only need to evaluate properties (e.g. U) in equilibrium states.

We can de�ne several di�erent types of equilibrium, depending on what type
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P  > P
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P  = P
A B
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Figure 3.2: Mechanical equilibrium: the piston moves until PA = PB.

of \force or action" is in balance within a system. For every type of equilibrium,

we would like to de�ne some property which can be used to determine if two

parts of a system are in equilibrium. In the following sections, various types of

equilibrium, and the properties associated with each type, will be discussed.

3.2.1 Mechanical Equilibrium

Suppose a cylinder is divided in two parts (A and B) by a piston, which can

move back and forth (Fig. 3.2). The piston is initially locked rigidly in place and

some gas is added to each side of the cylinder. The piston is now unlocked, and

oscillates back and forth a while. Eventually, friction or viscous forces damp out

the piston motion, and it will stop, though perhaps not at its initial position.

Once it has stopped, we say A and B are in mechanical equilibrium with each

other.

If the piston is stationary, the force must be the same on both sides. There-

fore, PA = PB if A and B are in mechanical equilibrium. Pressure is seen to be

the property which tells us if two adjacent parts of a system are in mechanical

equilibrium with one another.

3.2.2 Thermal Equilibrium

Consider now two systems connected by a rigid wall which can conduct heat

(Fig. 3.3). (We say they are in \thermal contact.") When they are placed in

thermal contact, energy may transfer through the wall as heat, but eventually no

net energy transfer will occur. When this condition is reached, the two systems

are in thermal equilibrium.

What property tells us if two systems are in thermal equilibrium? It’s clearly
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Figure 3.3: Thermal equilibrium: heat flows until TA = TB.

not the energy, since the two systems may have very di�erent compositions and

sizes, and so will have di�erent energies even at thermal equilibrium.

We introduce a new property, speci�cally for the purpose of determining if

systems are in thermal equilibrium. We make the following postulate.

Postulate: There exists a scalar property called temperature with

the following characteristic: two systems placed in thermal contact

will be in thermal equilibrium if and only if they have the same value

of temperature.

The so-called zeroth law of thermodynamics is the postulate that if A is in

thermal equilibrium with B, and B is with C, then A is with C. The zeroth law

is equivalent to the postulate that the temperature property exists.

3.2.3 Di�usive Equilibrium

If a dye drop is added to a glass of water, we know that at equilibrium the dye

will di�use throughout the glass. This type of equilibrium is known as di�usive

equilibrium. We would like to de�ne some property of the water/dye system we

could calculate for various regions in the water, to test if they are in di�usive

equilibrium.

We might consider using the dye concentration as this property. But this is

not a good choice in general, since there are some situations where the concentra-

tion is not equal everywhere, even though the system is in di�usive equilibrium.

These situations arise if more than one phase is present or if external conser-

vative forces act on the system. For example, in a gasous mixture of heavy
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and light species in a very tall column, the heavy ones will be preferentially

concentrated near the bottom of the column, and the light ones near the top.

We would like a property that can handle even these cases. Not knowing

what else to do, let us postulate that such a property exists:

Postulate: There exists a scalar property called chemical poten-

tial with the following characteristic: two parts of a system will be

in di�usive equilibrium if and only if they have the same value of

chemical potential.

The chemical potential is given the symbol �. In situations where multiple

chemical species are present, we need to test for di�usive equilibrium for each

one, so each will require its own chemical potential. We will show later that �

for a particular species depends on its concentration2 and on temperature and

pressure. If the system has macroscopic potential energy (e.g. due to gravity),

the chemical potential will also depend on the local value of the potential energy.

We’ll see in Chapter 6 how to calculate the chemical potential.

3.2.4 Phase Equilibrium

If a substance is placed in a sealed container, under some conditions it seg-

regates into separate regions with distinct properties (for example, solid and

liquid, or liquid and vapor). We call each region with homogeneous properties

a phase. When the amount of each phase is constant, the substance is in phase

equilibrium.

What property tells us when systems are in phase equilibrium? Again it’s

the chemical potential. Phase equilibrium is similar to di�usive equilibrium,

since molecules are moving between the phases, but at equilibrium the rate

they move is the same for both directions. For example, in a mixture of ice and

liquid water, the rate at which H2O molecules from the liquid stick onto the

solid ice equals the rate molecules detach from the ice and enter the liquid.

The chemical potential of any given phase of a pure substance is some func-

tion of T and P . For example, for water there exist two functions �ice(T; P )

and �liquid(T; P ). The condition �ice(Tm; P ) = �liquid(Tm; P ) determines the

temperature where the two phases can co-exist (the melting temperature Tm)

for a given P .

2In some cases, it depends on the concentration of other species too.
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3.2.5 Chemical Equilibrium

If multiple chemical species are mixed together, they might chemically react.

If they do, the concentration of each reactant will decrease, and the concen-

trations of the products of the reaction will build up. The products may react

with one another, too, \reversing" the reaction and re-forming the reactants.

Eventually, the concentrations of all species will settle at values such that the

forward reaction rate just balances the reverse one. When this happens, the

concentrations will no longer change, and we say the system is in chemical equi-

librium. As we’ll see later, the chemical potential is again the relevant property

to determine when a system is in chemical equilibrium, although the analysis is

more complicated than for di�usive or phase equilibrium.

3.2.6 Thermodynamic Equilibrium

When all parts of a system are equilibrated in all ways (mechanical, thermal,

di�usive, phase, chemical), we say the system is in thermodynamic equilibrium.

The temperature, pressure, and chemical potential will be the same in all parts

of a system in thermodynamic equilibrium, and the concentrations of every

chemical species will be constant in time.

3.2.7 Restricted Equilibrium

Sometimes a system is kept from attaining one type of equilibrium, although it

is equilibrated in other ways. For example, a rigid, heat-conducting partition

dividing a system in two parts will allow thermal, but not mechanical, equi-

librium to be attained. In other cases, there is no partition but one type of

equilibrium is attained very slowly compared to other types. When a system is

equilibrated in some ways but not others, we say it is in restricted equilibrium.

For example, a mixture of methane and air at room temperature is not in

chemical equilibrium, although it may be in mechanical, thermal, and di�usive

equilibrium. The reaction

CH4 + 2O2 ! CO2 + 2H2O (3.1)

is running very slowly in the forward direction, while the reverse reaction is

hardly occurring due to the very low CO2 and H2O concentrations. Therefore,

some of the methane is continually being oxidized, but the rate is so small at

room temperature to be virtually impossible to detect. If the temperature is

increased by adiabatically compressing the mixture or a spark is provided, the

mixture may rapidly approach chemical equilibrium (it may burn or explode).

Almost always the slow component is some type of chemical, phase, or nuclear
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equilibrium. Examples of substances approaching true equilibrium very slowly

include radioactive elements with very long half-lives, any type of glass, or cold-

worked steel. In many cases, the slow process is so slow that it may be neglected

entirely { the properties of cold-worked steel do not change measurably over any

practical timescale.

3.3 Pressure and Its Measurement

3.3.1 Hydrostatics

The pressure at any point in a fluid at rest is the same in all directions. If a

fluid is contained in a cylinder and you push on a piston to apply a force in one

direction, the fluid transmits the force in all directions, so the pressure at the

piston equals the pressure on the cylinder walls.

If no external body forces act on a fluid at rest, then the pressure is the same

at every point. But in a fluid sitting in a gravitational �eld, the pressure will

depend on height y, due to the weight of the fluid above y.

Mg

P A2

P A1

y

y1

2

A force balance on a vertical column of fluid yields

P1A = P2A +Mg: (3.2)

Since M = �A(y2 − y1) (assuming constant density), we �nd

P1 − P2 = �g(y2 − y1): (3.3)

Di�erentiating with respect to y1 yields

dP

dy
= −�g (3.4)
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which is the basic equation of hydrostatics, and describes how pressure varies

with height in a static fluid. Since Eq. (3.4) is a di�erential equation, it applies

even if the density � depends on height y, as would be the case if the fluid is a

gas. In this case, Eq. (3.3) would be replaced by

P2 − P1 = −

Z
�(y)g dy: (3.5)

Example 3.1 A dam of length L holds water to depth H. What is the net

horizontal force on the dam if L = 200 m and H = 30 m?

Solution: Taking the density of water to be constant at � = 103 kg/m3,

the pressure distribution on the dam is

P (y) = P0 + �gy; (3.6)

where P0 is atmospheric pressure and y is the distance below the surface. The

force due to the water is

Fw = L

Z H

0

P (y)dy = L(P0H + �gH2=2): (3.7)

Since the force due to atmospheric pressure on the other side is P0LH, the net

force is

Fnet = �gLH2=2 = 8:8� 108 N: (3.8)

We have neglected the variation in air pressure with height. Since the density

of air is about 1.2 kg/m3, for H = 30 m, �Pair = 345 N/m2, which is much

less that P0, which is about 105 N/m2. If H were several km, then �Pair would

have to be considered.

3.3.2 Manometers

A simple arrangement to measure the pressure of a gas is shown in Figure 3.4.

Mercury �lls a U-shaped tube of constant cross-sectional area, which is closed

on the left side and can be connected to a system of unknown pressure on the

right. The region on the left above the mercury column is evacuated.3 A device

like this is known as a manometer.

At the height of the gas/mercury interface in the right-hand column, the

pressure is the gas pressure Pgas. The pressure in the left-hand column at the

same height must therefore also equal Pgas. From Eq. (3.3), the pressure at

3Actually it is �lled with mercury vapor. But mercury has a very low vapor pressure, and
exerts negligible force on the liquid.
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Figure 3.4: A manometer.

this location is also �gh. Therefore, the unknown gas pressure is related to the

measurable height h by

Pgas = �gh: (3.9)

A di�erent type of manometer can be used to measure the pressure di�erence

between two systems. If instead of evacuating the region above the column on

the left we attach it to a system with some pressure PA, and attach the other

side to a system with PB, then

PB − PA = �gh: (3.10)

The SI unit for pressure is the Pascal, which is simply the name given to 1

N/m2. A standard atmosphere (1 atm) is de�ned to be 1:01325� 105 Pa, or

0.101325 MPa. Other common units for pressure are the Torr (1/760 atm or

133.32 Pa), the bar (105 Pa), and lbf/in2 or psi (1 atm = 14.7 psi).

Usually, pressure is measured with other, more convenient instruments which

may be calibrated against mercury manometers. In some pressure gauges, gas

at the unknown pressure enters a curved, flexible tube. The tube tends to

straighten as the gas pressure increases, which causes a needle on a dial to

move. Another type of gauge, known as a capacitance manometer, consists of

an evacuated disk-shaped cavity, one side of which consists of a thin, flexible

membrane. As the membrane deflects due to external pressure, the capacitance

of the disk changes. Since capacitance can be determined very accurately by

electrical measurements, capacitance manometers are designed to produce an

electrical signal (usually a voltage) proportional to pressure.

Sometimes you will hear a pressure described as a \gauge pressure." This

is de�ned as the pressure di�erence between the actual pressure and the local
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atmospheric pressure, and is what is directly measured by some types of pressure

gauges.

3.4 Temperature and Its Measurement

3.4.1 Thermometers

To measure temperature, we need some system with an easily-measurable prop-

erty which changes as its temperature changes (a \thermometer"). A simple

thermometer can be constructed by �lling a glass tube with some fluid which

expands when heated. Mercury is again a convenient choice. The tube is marked

at the mercury level corresponding to some reference temperature (maybe the

freezing point of water), and marked again at another reference temperature

(maybe the boiling point).

The interval between the two marks is then divided into an arbitrary number

of equal segments, and the mark the mercury rises is used as the measure of

temperature. The marks could be assigned numbers, but letters, names, or any

other symbols would work too. The Fahrenheit temperature scale assigns the

values 32 and 212 to the freezing and boiling points, respectively, of water at

a pressure of 1 atm. The Celsius scale (formerly called the centigrade scale)

assigns the values 0 and 100.

This procedure de�nes a practically-useful temperature scale, but has a few

shortcomings for accurate work. For example, the freezing and boiling points

of water depend on pressure; if you wanted to check the calibration of the

thermometer you’d have to know and reproduce the atmospheric pressure when

the marks were made. The thermal expansion properties of mercury also depend

slightly on pressure. For a temperature reading to be meaningful, you would

need to report the pressure at which the measurement was made.

If a thermometer were contructed using a di�erent fluid (an alcohol, for

example), the freezing and boiling points measured by the two thermometers

would agree, but other temperatures would not, since the second fluid expands

with temperature in a somewhat di�erent way than mercury does. So when the

mercury thermometer reads, say, 50 marks above the freezing-point mark, an

alcohol thermometer might read 52 marks. To record a meaningful temperature,

you’d have to always record what sort of thermometer was used.

3.4.2 Ideal Gas Temperature Scales

It would be preferable to measure temperature in a way which is completely

independent of the particular thermometer used. One interesting possibility is

to use the fact that all gases obey the same equation { the ideal gas law { in
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the limit of zero density. (No real gas exactly satis�es the ideal gas law at any

�nite density { see Chapter 4).

The procedure to construct a substance-independent ideal-gas thermometer

is as follows. A low density gas is put in a small, �xed-volume closed con-

tainer. This serves as the thermometer. A pressure gauge of some sort (maybe

a capacitance manometer) is connected to the container to measure its pressure.

Now a single reproducible reference state is chosen, and the ideal-gas ther-

mometer is put in thermal contact with it and allowed to come to thermal

equilibrium.4 The pressure reading Pref is recorded.

To measure an unknown temperature, the ideal-gas thermometer is placed in

thermal contact with the system of unknown temperature and allowed to come

to thermal equilibrium. The pressure in the gas in the container will change to

a new value P (remember the thermometer volume and amount of gas inside

are �xed). We will de�ne the temperature on the ideal-gas scale by

T = Tref

�
P

Pref

�
: (3.11)

Here Tref is an arbitrary constant, which sets the size of a degree.

An interesting feature about this temperature scale is that only one reference

state is needed (not two, as with the Celsius or Fahrenheit scales). It is best

to pick a reference state which can be precisely reproduced. It will be shown

in Chapter 4 that for any pure substance there is a single temperature (and

pressure) at which solid, liquid, and vapor all co-exist. This point is called the

triple point. The most common procedure is to take the triple point of water as

the reference point.

Then to specify a particular ideal-gas scale, all that is left is is to decide

what number we should assign to Tref . It might seem logical to pick a round

number (say, 1, 100, 1000, etc.). On the other hand, it might be convenient if

the size of a degree was the same as we are accustomed to on the Celsius or

Fahrenheit scale.

To �nd the necessary Tref value to reproduce the degree size of the Celsius

scale, the following experimental procedure can be used. Go to the reference

temperatures used to establish the Celsius scale (the freezing and boiling points

of water at 1 atm), and measure the pressure ratios (Pfp=Pref) and (Pbp=Pref)

with the ideal-gas thermometer. If we want Tbp−Tfp to be 100 on the ideal-gas

4We assume that the ideal gas only exchanges a negligibly small amount of energy with
the system in coming to thermal equilibrium, so that it doesn’t a�ect the temperature being
measured. We can make this assumption as good as we like by simply decreasing the total
amount of gas in the thermometer.
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scale, then Tref must satisfy

Tref

��
Pbp

Pref

�
−

�
Pfp

Pref

��
= 100: (3.12)

With the measured pressure ratios, the required value for Tref is found to be

Tref = 273:16: (3.13)

The temperature scale de�ned in this way is known as the Kelvin scale. Since

the triple point of water occurs at 0.01 �C,

T (K) = T (�C) + 273:15: (3.14)

Note that the Kelvin temperature scale has an absolute zero, where the

pressure in the gas in principle becomes zero. The only freedom we have is in

setting the size of a degree, not where the zero point is.

To construct an ideal-gas scale with the degree size of the Fahrenheit scale,

choose Tref = 1:8 � 273:16 = 491:69. This scale is known as the Rankine

temperature scale, and of course has its zero at the same temperature as the

Kelvin scale. Since on the Fahrenheit scale the triple point of water is at 32:02
�F,

T (R) = T (�F) + 459:67: (3.15)

In practice, ideal gas temperature scales have some limitations. First of all,

the pressure readings not entirely independent of the gas chosen, since P may

be small but it is not zero. To remove this dependence, multiple thermometers

would have to be used, each with a di�erent amount of gas inside, and their

readings extrapolated down to zero pressure. Also, gases condense at low tem-

perature. Even using helium it is not possible to measure temperatures below 1

K with an ideal gas thermometer. At the other extreme, at temperatures above

a few thousand Kelvin, gases dissociate to form plasmas. This puts an upper

limit on the useful temperature range. Outside this range, temperature must

be de�ned and measured some other way.

3.4.3 Thermodynamic Temperature

We’ll show in Chapter 6 that there is a more fundamental thermodynamic way

to de�ne temperature, which is not dependent on the behavior of any particular

type of thermometer, not even an ideal gas one. This thermodynamic tem-

perature may be de�ned over the range zero to in�nity, and can be measured

with good accuracy in various temperature ranges using di�erent physical phe-

nomena. Temperatures as low as 10−8 K and higher than 106 K have been
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measured using techniques which rely on the de�nition of the thermodynamic

temperature.

In the temperature range where ideal-gas thermometers can be used, the

thermodynamic temperature is identical to the temperature de�ned by the ideal

gas scale. Both the Kelvin and Rankine scales may be considered to be thermo-

dynamic temperature scales. The Celsius and Fahrenheit scales are not, how-

ever, since they have their zero points in the wrong place. They are acceptable

to use for temperature di�erences, but not for absolute (i.e. thermodynamic)

temperatures.

3.5 Intensive and Extensive Properties

In Chapter 2, we introduced several thermodynamic properties of macroscopic

matter, such as the volume V , the mass M , the total energy E, the internal

energy U , the surface area A, the total electric dipole moment VP, and the total

magnetic moment VM. These properties are de�ned both for equilibrium and

non-equilibrium states of matter. They are also additive: if we have a system

composed of two parts A and B, MA+B = MA +MB , EA+B = EA + EB, etc.

Thermodynamic properties with these characteristics are called extensive.

In this chapter, we have introduced three new properties (T , P , �) which

serve to determine whether or not two systems or parts of a single system

are in equilibrium with one another. These properties have a very di�erent

character. For a system composed of parts A and B, TA+B is meaningful only

if TA = TB (thermal equilibrium). Otherwise, there is no single temperature of

the whole system. If A and B are in thermal equilibrium, then TA+B = TA (not

2TA). Pressure and chemical potential have similar characteristics: they are only

de�ned for systems in equilibrium, and are not additive for systems composed

of multiple parts. Properties like this are called intensive. All properties in

thermodynamics are either extensive or intensive.

The extensive properties depend on how much matter the system contains. If

a substance in an equilibrium state with mass M , volume V and internal energy

U is divided into n equal parts, each part will have mass M=n, volume V=n,

and internal energy U=n. Because the extensive properties are proportional to

how much matter is in the system, it is usually more convenient to work with

quantities normalized to a unit amount.

One choice is to normalize to a unit mass. The speci�c internal energy is

de�ned to be the internal energy per unit mass:

u =
U

M
: (3.16)
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We always use the term \speci�c" to mean \per unit mass," and use a lower-case

letter to denote a speci�c property. We can also de�ne the speci�c volume

v =
V

M
; (3.17)

which is simply the reciprocal of the mass density �.

Alternatively, we could choose to normalize to one mole. The molar internal

energy is de�ned to be

û =
U

N
; (3.18)

where N is the number of moles, and the molar volume is

v̂ =
V

N
: (3.19)

We use the hat notation to denote molar properties. Note that both speci�c

and molar properties are intensive (independent of the size of the system), since

they are the ratio of 2 extensive properties.

In engineering thermodynamics, it is most common to work with speci�c

properties (per unit mass), since mass is conserved in any process but moles

may not be if chemical reactions occur. Also, important engineering quantities

like the momentum of a flowing fluid depend on the rate of mass flow, not the

molar flow rate.

3.6 The Thermodynamic State

We’ve now introduced a rather long list of material properties (U , V , M , P , T ,

�, A, E, P, H, M) and we will soon introduce more properties. Fortunately, we

usually only need to work with a subset of these which relate to the ways energy

can be transferred to or from the substance as work or heat.5 For equilibrium

states, even the properties in this subset are not all independent. Specifying a

small number of them is su�cient to determine all the rest. For example, if the

mass, volume, and temperature of an equilibrium sample of water are given,

then its pressure, internal energy, and phase are fully determined.

When enough property values for an equilibrium state are speci�ed so that

all the other relevant properties of that state can be determined, we say that

the thermodynamic state is speci�ed. The number of properties which must

be given to specify the thermodynamic state is called the number of degrees of

freedom f of the substance.

5For example, we don’t usually care about the magnetization of water, since for achievable
magnetic �elds it is very, very, small, and the possible magnetic work is therefore negligible.
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The number of degrees of freedom is also equal to the number of independent

ways the equilibrium state can be altered. If there are two independent ways

to change the state, two independent properties will be needed to specify the

state, etc.

Consider a �xed massM of some substance for which the only reversible work

mode is compression, and which is in an equilibrium state with no macroscopic

kinetic or potential energy. The substance is in a cylinder with a piston which

can be used to change its volume. The substance may be solid, liquid, or gaseous,

or may consist of an equilibrium mixture of phases.

If we add heat �dQ and do quasi-static work �dWqs = −PdV , the First Law

for this process is

dU = �dQ− PdV: (3.20)

From this, we see that the two extensive properties U and V may be varied

independently. To change U by dU holding V constant, just add heat in the

amount �dQ = dU . To change V by dV holding U constant, add heat in the

amount �dQ = +PdV while changing the volume. This is true no matter what

the details are of the substance in the container (a single phase, a mixture of

phases, etc.)

Suppose U and V are held �xed and we try to vary something else (maybe

T or P ). Since V is �xed, no compression work can be done. But since U is

�xed, no heat can be added either. So there’s really no way to change any other

properties (T , P , etc.) without changing U or V or both. We conclude that

specifying U and V (for given M) fully speci�es the thermodynamic state of

this substance.

Now consider a substance with two reversible work modes { maybe in ad-

dition to being compressible, it has a surface area, and non-negligible surface

tension. Then the First Law would become

dU = �dQ− PdV + �dA: (3.21)

Now it is possible to hold U and V �xed and vary another property: all we have

to do is change the shape at constant volume, changing the surface area. This

does some work, but as before we just remove some heat to get U back to the

original value ( �dQ = −�dA). So in this case, A can be varied independently of

U and V . But there would be no way to hold U , V , and A �xed for this system

and vary something else. We conclude that specifying U , V , and A in this case

fully speci�es the thermodynamic state of the system.

We begin to see a pattern here: The number of degrees of freedom equals the

number of reversible work modes, plus one more (to account for heat addition).
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If the number of reversible work modes is r, then we have

f = r + 1 (3.22)

The independently-variable properties which serve to specify the thermody-

namic state are U plus the generalized displacements corresponding to each

reversible work mode.

It might be objected that in this analysis we have only considered reversible

work, and have ignored irreversible work modes. But as we discussed in Chapter

2, the change of state produced by irreversible work can be reproduced by

reversible work plus some amount of heat input. For example, electrical work

done on a system by current flowing through a resistor is fully equivalent to

heat addition, while rapid compression of a gas results in a state which can be

reproduced by quasi-static, reversible compression plus heat input. Irreversible

work does not represent an independent way to alter the state of the system, and

therefore does not a�ect the calculation of the number of degrees of freedom.

3.7 Equations of State

From Eq. (3.22), we see that a substance with only one reversible work mode

has 2 degrees of freedom. Such substances are known as simple substances. If

only compression work can be done, then the substance is a simple compressible

substance (SCS); if only magnetic work can be done, it is a simple magnetic

substance (SMS), and so on. Often, a substance may really have more than one

reversible work mode, but only one is important. In this case, the substance

is often approximated as a simple one, considering only the dominant work

mode. For example, we usually may neglect compression work in comparison to

magnetic work when dealing with magnetic solids.

For a simple compressible substance, specifying U and V �xes the thermo-

dynamic state for given M . Since U and V are extensive and simply scale

with the total mass, the more important parameters are actually u = U=M and

v = V=M . Therefore, properties such as temperature and pressure are �xed once

u and v are speci�ed: there must exist some single-valued function T (u; v) and

some single-valued function P (u; v). We call functions like this which express

relationships among properties of substances in equilibrium states equations of

state.

The two independent variables in the equation of state don’t have to be (u; v).

For example, if heat �dQ is added to an SCS holding v constant, u increases
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T(u,v)

u

u(T,v)

T

Invert

Figure 3.5: Inverting T (u; v) to form u(T; v) by reflecting across the dashed
u = T line for speci�ed v.

by �dQ (the First Law); it is also always observed that the temperature change

dT is positive.6 That is, (@T (u; v)=@u)v > 0, which means that T (u; v) is a

monotonically increasing function of u for �xed v. Since monotonic function

can be inverted, it is possible to form the function u(T; v) (Fig. 3.5).

Therefore, the pair (T; v) are always independently variable. Now substitute

u(T; v) into P (u; v) = P (u(T; v); v) resulting in a new function P (T; v). This

new function doesn’t involve energy, and is called the mechanical equation of

state. It is also relatively easy to measure, which is why most experimental

investigations of equations of state of simple compressible substances focus on

measuring P (T; v). We will examine the nature of this function for an SCS in

the next chapter.

Note that P (T; v) is a very di�erent function than P (u; v), and the partial

derivative (@P=@v) depends very much on whether it is u or T we’re holding

constant. For this reason, we always use a subscript in thermodynamics to

state what variable is being held constant in a partial derivative: (@P=@v)T is a

partial derivative of P (T; v), while (@P=@v)u is a partial derivative of P (u; v).7

We have to be a little careful in choosing which 2 variables to take as the

independent ones. Both (u; v) and (T; v) are always independent, but not all

pairs of variables are. In particular, P and T are not always independent. If, for

example, the substance consists of an equilibrium solid/liquid mixture, then P

and T become coupled { T must equal the melting temperature at the pressure

P .

Equations of state also may be de�ned for substances other than simple com-

pressible substances. For a simple magnetic substance, an argument analogous

6This observation will be proven to be true in Chapter 6.
7This is no di�erent than with any other functions. For example, consider f(x; y) = x2y.

Di�erentiating with respect to x, (@f=@x)y = 2xy. Now change variables to (x; z), where
z = xy. Then f(x; z) = xz and (@f=@x)z = z = xy not 2xy.
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to the one above leads to the conclusion that u and M are always independently

variable, and can be used to de�ne the thermodynamic state. Therefore, there

must exist equations of state T (u;M) and H(u;M). Also, T (u;M) can be in-

verted to form u(T;M), which can then be used to form the equation of state

H(T;M). Like P (T; v), this equation of state can be easily measured. For other

simple substances, the procedure is analogous to that outlined here.



CHAPTER 4

THE SIMPLE COMPRESSIBLE SUBSTANCE

4.1 Introduction

Since all matter can be compressed if a large enough pressure is applied, a study

of the thermodynamic properties of the simple compressible substance is a good

starting point for any description of the macroscopic properties of matter in

equilibrium. Simple compressible substances are also by far the most important

ones for engineering thermodynamics, since most (but not all) power plants and

engines employ compression, heating, and expansion of a fluid to produce power.

A substance may be approximated as a simple compressible substance if

e�ects due to other reversible work modes are negligible. For example, if the

surface-to-volume ratio of a large body of water is small enough, then surface

tension will not measurably a�ect the properties of the water except very near

the surface. On the other hand, surface tension will have a dramatic influence

on the properties of a very small water droplet, and will, for example, cause the

pressure inside the droplet to be elevated above the value predicted if surface

tension were neglected. Clearly, a very small water droplet can’t be treated

accurately as a simple compressible substance, while a large body of water is

approximated very well in this way.

In this chapter, we examine the properties of simple compressible substances.

We will restrict attention to pure substances, which contain only one type of

molecule. Mixtures will be considered in a later chapter.

4.2 Phases of a Simple Compressible Substance

A simple compressible substance may exist in di�erent phases: solid, liquid, or

gas. Some substances have multiple solid phases, some even have multiple liquid

phases (helium), but all have only one gas phase.

An experimental apparatus is shown in Fig. 4.1 which can be used to measure

the properties and phases of a simple compressible substance as a function of

temperature and pressure. A cylindrical solid sample is placed in a vertical

cylinder of the same diameter, which is �tted with a piston. The ambient

pressure is P0, and the piston weight provides a constant downward force F =

68



CHAPTER 4. THE SIMPLE COMPRESSIBLE SUBSTANCE 69
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Figure 4.1: Constant-pressure heating experiment.

Mpg. The pressure in the cylinder is

P = F=A = Mpg=A+ P0: (4.1)

The sample height is small enough that the pressure may be taken to be uniform

within the sample. The cylinder and piston are well insulated, so there is no

heat loss to the environment.

A small amount of heat Q is added by briefly passing current through a

resistor mounted in the cylinder wall, after which the system is allowed to re-

establish equilibrium. Once the system has come back to equilibrium, both

the temperature and the volume may have changed. The new temperature is

measured with a thermometer, and the new volume by the piston height.

If Q is su�ciently small, the expansion will occur slowly enough that friction

between the piston and cylinder is negligible. In this case, even if the piston

oscillates for a while due to the perturbation, once the oscillations have died out

and the piston has settled down at a new height, the work done by the substance

on the piston will be equal to the work done against atmospheric pressure, plus

the change in the gravitational potential energy of the piston:1

W = (Mpg+P0A)�y = (Mpg+P0)(�V=A) = (Mpg=A+P0)�V = P�V: (4.2)

An energy balance on the substance yields the change in its internal energy:

�U = Q− P�V: (4.3)

1If friction were not negligible, some kinetic energy of the piston would be converted to
internal energy in the piston or cylinder due to friction, and therefore the work would be
> P�V .
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The quantities Q, P , and �V are all measured, so we can calculate �U . Since

P is a constant in this experiment, this equation may be rearranged in the form

�(U + PV ) = Q: (4.4)

The combination U + PV occurs often in analysis of problems at constant

pressure. Since U , P , and V are material properties, so is U + PV . Rather

than always write U +PV , we give this property its own name and symbol: the

enthalpy!de�nition H is de�ned by

H = U + PV: (4.5)

Like U and V , H is an extensive property.

In terms of the enthalpy, Eq. (4.4) becomes

�H = Q: (4.6)

For heat addition at constant pressure, the heat added equals the change in

enthalpy of the substance. In contrast, recall from the First Law that if heat is

added at constant volume (W = 0), then �U = Q.

Returning to our experiment, the process in now repeated many times, and

the resulting property values are recorded at every step: heat Q is added, time

is allowed to elapse to re-establish equilibium, the new T and V are measured,

H is incremented by Q.

After n heat addition steps, the volume and temperature have values Vn and

Tn, and enthalpy Hn of the substance relative to its starting value H0 is

Hn −H0 = nQ: (4.7)

Since the extensive properties (V and H) depend on how much of the substance

was placed in the container, it is preferable to convert them to speci�c quantities

(v = V=M , h = H=M). In Fig. 4.2, the measured temperature and change in

speci�c enthalpy are shown plotted vs. the measured speci�c volume (connecting

the individual measurements with solid lines).

When heat is �rst added to the solid, its temperature increases and it ex-

pands slightly (region a-b in Fig. 4.2). At point b, the temperature stops in-

creasing, although the volume still increases. A look inside the cylinder reveals

the presence of some liquid { the solid is melting.

At point c, all of the solid has melted, and precisely at this point the temper-

ature begins to rise again. But when point d is reached, it stops again and the

volume begins to increase signi�cantly. Bubbles are observed to begin forming
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Figure 4.2: Measured temperature (a) and speci�c enthalpy change (b) vs. mea-
sured speci�c volume for constant-pressure heating.

in the liquid at point d { the liquid is boiling. Moving across from point d

to e, the amount of vapor in the cylinder increases, and the amount of liquid

decreases. At point e, no liquid remains, and both temperature and volume

increase upon further heat addition.

Figure 4.2 shows that when two phases are present (solid/liquid or liq-

uid/vapor), h − h0 continues to increase with v even though T is constant,

since energy input is required to convert solid to liquid, or liquid to vapor. Note

that the only way to measure h is by means of Eq. (4.7), which actually only

allows the change in h from the initial state to be determined. There is no

experiment we could do to measure the value in the initial state h0.2 Since

h = u + Pv, if h0 can’t be determined, then u0 can’t be either. This isn’t a

problem, however, since only di�erences of energy (or enthalpy) have any phys-

ical signi�cance. We can start the experiment in some convenient, reproducible

state, and simply assign any value we like to h0 (for example, h0 = 0). We call

the initial state with arbitrarily-chosen h0 the reference state or datum state.

The results shown in Fig. 4.2 are for a single pressure, P = Mpg=A + P0.

By changing the mass of the piston, we can repeat the experiment for di�erent

pressures, determining T (v) and h(v) − h0 curves for a range of pressures.

Typical T (v) curves are shown in Fig. 4.3(a) with the points on di�erent

curves where the slope is discontinuous connected by dotted lines. The curve

corresponding to Fig. 4.2(a) is labeled P1 on this plot. In Fig. 4.3(b), the dashes

2We could measure it by starting in some other state, but it wouldn’t be the initial state;
the measured value would be relative to the enthalpy in this new initial state, which would
still be undetermined.
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Figure 4.3: (a) T − v curves for constant-pressure heating; (b) phase diagram.

lines are drawn solid, and each region is labeled by which phase or phases are

present in the cylinder. Diagrams like this are called phase diagrams.

The experimental observations are as follows. As the pressure is increased,

the temperature at which liquid appears (the melting point) and the tempera-

ture at which vapor appears (the boiling point) both increase. Also, the spe-

ci�c volume of the liquid increases to a larger value before boiling begins, and

the speci�c volume of the vapor once the last liquid has evaporated decreases.

Therefore, the change in speci�c volume upon boiling decreases as the pressure

increases.

Beyond a particular pressure P3, the T (v) curve changes character. As P3 is

approached, the change in speci�c volume upon boiling goes to zero { the liquid

and vapor approach the same density, and in fact become identical in all respects

at P3. For P > P3, there is no longer a meaningful distinction between liquid

and vapor, and there is no longer any conventional boiling behavior observed.

In this pressure regime, as heat is added the high-density fluid simply expands

continuously and homogeneously to a low-density fluid, without ever breaking

up into separate liquid and vapor regions within the cylinder.

Pressure P3 is known as the critical pressure Pc. Below Pc, the transfor-

mation from liquid to vapor upon heating occurs by means of the fluid in the

cylinder splitting into two separate regions (high-density liquid and low-density

vapor); as more heat is added, the liquid portion shrinks, and the vapor portion

grows. Above Pc, the transformation from liquid to vapor occurs continuously,

with the fluid remaining uniform throughout the cylinder at all times.

As P approaches Pc from below, the limiting value approached by the boiling
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Table 4.1: Critical temperature, pressure, and density for a few substances.

Tc (K) Pc (MPa) �c (kg/m3)
Helium-4 5.20 0.2275 69.64
Hydrogen 32.94 1.28 31.36
Nitrogen 126.2 3.4 314.03
Oxygen 154.6 5.04 436.15
Methane 190.6 4.60 160.43
Carbon Dioxide 304.2 7.38 464.00
Water 647.3 22.1 317.0

temperature is known as the critical temperature Tc. The T (v) curve for P = Pc

has an inflection point at T = Tc:�
@T

@v

�
P

= 0 and

�
@2T

@v2

�
P

= 0 at T = Tc, P = Pc: (4.8)

The speci�c volume of the fluid at the point where P = Pc and T = Tc

is known as the critical speci�c volume vc; the reciprocal of vc is the critical

density �c. The quantities Tc; Pc; and vc (or �c) de�ne the critical point. The

critical point quantities for a few substances are listed in Table 4.2.

If the pressure is now lowered below P1, another change in the character of

the T (v) curve is observed. On the P0 curve, there is only one segment where

T is constant, not two. On the flat segment, a solid/vapor mixture is found in

the cylinder, rather than a solid/liquid or liquid/vapor mixture. Evidently, at

su�ciently low pressure no liquid phase forms { instead, the solid transforms

directly to vapor. This process is known as sublimation.

4.3 P − v − T Surfaces

Since any two independent properties serve to de�ne the thermodynamic state

for a simple compressible substance, we may regard any other property as a

function of these two. For example, at every (T; v) point in Fig. 4.3 we know

the pressure, so we can construct P (T; v).

The function P (T; v) de�nes a surface over the T − v plane. A typical

P −v−T surface is shown in Fig. 4.4. Every equilibrium state of the substance

corresponds to some point on the P−v−T surface. In the pure solid region and

in the pure liquid region below Tc, the slope of the surface is very steep, since

compressing a solid or liquid even a little requires a huge increase in pressure.

In the gas or vapor region, the surface is gently sloped, since gases are easily
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Figure 4.4: A P − v − T surface for a substance which expands upon melting.

compressed. Of course, above the critical point the liquid and gas regions merge

smoothly.

In Fig. 4.4 the term \gas" is used above the critical point, and \vapor"

below it. This convention dates back to the early 19th century, when it was

thought that \gases" like oxygen were di�erent than \vapors" like steam. Va-

pors could be condensed to liquid, but gases (it was believed) could not be.

When it was demonstrated in 1877 that oxygen and nitrogen could be liqui�ed

at su�ciently low temperature, it became clear that there was no fundamental

distinction between gases and vapors; the only di�erence is that substances such

as oxygen have critical temperatures well below room temperature, while the

critical temperature of water is above room temperature. Thus, liquid water is

commonplace, but liquid oxygen, nitrogen, hydrogen, or helium are not. How-

ever, processes to produce these as liquids are now straightforward, and liquid

oxygen, nitrogen, and helium have very signi�cant technological applications.3

The slope of the P −v−T surface is discontinuous on the boundary between

the single-phase and the two-phase regions. Note that since T remains constant

3For example, liquid hydrogen and oxygen as used as propellants in the Space Shuttle Main
Engine; liquid nitrogen is widely used to cool electronic equipment and photodetectors; liquid
helium is used to cool large superconducting magnets to temperatures a few degrees above
absolute zero.
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Table 4.2: Triple-point temperatures and pressures.

Tt (K) Pt (kPa)
Helium-4 2.18 5.1
Hydrogen 13.8 7.0
Nitrogen 63.15 12.5
Oxygen 54.34 0.14
Methane 90.68 11.7
Carbon Dioxide 216.54 517.3
Water 273.16 0.61

in the two-phase regions during constant-pressure heating, any horizontal slice

through the surface in a two-phase region must produce a line perpendicular to

the T axis; in other words, the slope of the surface in the T direction is zero in

the two-phase regions.

The solid-vapor two-phase region intersects the solid-liquid and liquid-vapor

regions in a single line parallel to the volume axis. This line is known as the

triple line, since along this line all three phases may coexist in equilibrium. The

pressure and temperature are the same everywhere along the triple line. There-

fore, for a given substance, there is only one pressure Pt and one temperature Tt

at which solid, liquid, and vapor may coexist in equilibrium. The combination

(Tt; Pt) is known as the triple point. Of course it is only a point in the P − T

plane; when the volume axis is considered, it is a line. This is in contrast to the

critical point, which is really a point in (P; v; T ) space.

The triple points for several substances are listed in Table 4.3. Note that

of the ones listed, only carbon dioxide has Pt > 1 atm (1 atm = 101.325 kPa).

Therefore, at 1 atm pressure, solid carbon dioxide (\dry ice") sublimates, while

solid water melts.

Th P − v− T surface shown in Fig. 4.4 is appropriate for a substance which

expands upon melting, which we assumed implicitly in our discussion above.

However, a few substances { including water { contract when they melt. For

these substances, the P − v − T surface looks like that shown in Fig. 4.5.

If a substance has multiple solid phases, the P − v − T surface can become

very complex. A portion of the actual surface for water is shown in Fig. 4.6,

showing the di�erent phases of ice.

Two-dimensional phase diagrams may be obtained by projecting the P−v−T

surface onto the P − T , T − v, or P − v planes. We have already looked at the

T − v projection in constructing the P − v− T surface [Fig. 4.3(b)]. The P −T
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Figure 4.5: A P − v − T surface for a substance which contracts upon melting.

Figure 4.6: A portion of the P − v − T surface for water.
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Figure 4.7: P −T phase diagrams for (a) a substance which expands on melting;
(b) a substance which contracts on melting.

projection is shown in Fig. 4.7 for a substance which expands on melting (a)

and for one which contracts on melting (b). The critical point (c) and the triple

point (t) are both shown.

The lines separating the single-phase regions on a P − T plot are known as

coexistence lines, since on these lines two phases may coexist. The liquid-vapor

coexistence line terminates at the critical point. In contrast, the solid-liquid

coexistence line never terminates, no matter how high the pressure. This is

because solid and liquid are fundamentally di�erent { in a solid, atoms are

arranged in a highly regular, periodic way, while in a liquid they are arranged

randomly. There is no way for these states with very di�erent symmetry to

transform into one another continuously, and so it is not possible for a critical

point to exist on the solid-liquid coexistence line.

Each of the coexistence lines in a P − T phase diagram can be described by

some function P (T ), so clearly P and T are not independent when two phases

are simultaneously present. On the liquid-vapor and solid-vapor coexistence

lines, the term vapor pressure is used to denote P (T ), since this is the pressure

of the vapor in equilibrium with the solid or liquid. An equivalent term is

saturation pressure Psat(T ). If pressure is speci�ed, the saturation temperature

Tsat(P ) is de�ned to be the temperature on the coexistence curve where the

pressure is P . The saturation temperature is just another name for the boiling

temperature. For example, for water, Tsat(1 atm) is 373.15 K (100 �C), and

Psat(373.15 K) = 1 atm.

4.4 Determining Properties in the Mixed-Phase Regions

Under conditions where two phases coexist in equilibrium, some care must be

taken to correctly determine the properties and amount of each phase from a
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Figure 4.8: In the liquid/vapor two-phase region, the liquid has speci�c volume
vf and the vapor has speci�c volume vg.

phase diagram. The two phases have very di�erent properties. For example,

the speci�c volume of a liquid is much less than that of a gas. How can we

determine both values from a phase diagram?

The key is to realize that in a two-phase region, the properties of each phase

present are those at the \edges" of the region. For example, consider boiling

a liquid at constant pressure. Just before the temperature where gas bubbles

�rst appear, the cylinder is still �lled with liquid. Call the speci�c volume at

this point vf .4 As more heat is added at constant pressure, the only thing that

happens is that some liquid becomes vapor { the properties (per unit mass)

of the remaining liquid don’t change. Although there is less liquid, the liquid

remaining still has speci�c volume vf .

What is the speci�c volume of the vapor which has been created? It too is

constant during the constant-pressure boiling process, and thus must equal the

value of v obtained once the cylinder contains only vapor. Call this value vg .

Suppose now that the system is somewhere in the two-phase region on the

isobar5 labeled P in Fig. 4.8 and the measured total volume V results in a value

for v = V=M as shown in this �gure. This v does not actually correspond to

the speci�c volume of either the liquid or the vapor in the container. These are

vf and vg , respectively. Instead, v is an average of vf and vg, weighted by the

mass of each in the container.

We use the term \saturated" to denote the states on either side of the vapor

dome (Fig. 4.9). Thus, \saturated liquid" has speci�c volume vf , and \saturated

4Although it is not entirely logical, it is conventional to use the subscript \f" to denote
properties of the liquid and \g" to denote properties of the vapor in an equilibriumliquid/vapor
mixture.

5An isobar is a line of constant pressure. The P in a circle simply labels the pressure of
this isobar.
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Figure 4.9: De�nition of saturated, superheated, and subcooled states.

vapor" has speci�c volume vg . When liquid and vapor are present together in

equilibrium, the liquid is always saturated liquid, and the vapor is saturated

vapor. Vapor at a temperature above Tsat(P ) is called superheated vapor, and

liquid at a temperature below Tsat(P ) is called subcooled liquid. Subcooled liquid

is also called compressed liquid, since it is at a higher pressure than Psat(T ).

Let the mass of the vapor in the container be Mx, where 0 � x � 1. Then

the mass of the liquid must be M(1− x), since the total mass is M . The total

volume is then

V = M(1− x)vf +Mxvg; (4.9)

or

v =
V

M
= (1− x)vf + xvg: (4.10)

If we know v, we can then solve for x:

x =
v − vf
vg − vf

: (4.11)

The vapor mass fraction x is an intensive thermodynamic property of a

liquid/vapor mixture. The common name in engineering thermodynamics for

x is the quality. This name was given to x by engineers developing steam

engines and power plants: the presence of liquid droplets in the steam damages

engine parts such as turbine blades, hence from the engineer’s perspective higher

\quality" steam had less liquid content. Of course, for other applications the

relative merits of liquid and vapor might be reversed. In this book, we will

usually refrain from making a value judgement about liquid vs. vapor, and

simply call x the vapor mass fraction.
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Equation (4.11) is known as the lever rule. It may be interpreted in terms

Fig. 4.8 as follows. To determine the mass fraction of a phase in a saturated

vapor/liquid mixture, locate the system point in the two-phase region on a T−v

or P − v plot. Now take the length of the horizontal line segment from v to the

saturation line corresponding to the other phase, and divide this length by the

total width of the 2-phase region (vg − vf ). Note that this rule works for any

2-phase region, for example for liquid/solid mixtures.

Example 4.1 A bottle contains 10 kg of carbon dioxide at 260 K. If the volume

of the bottle is 100 liters, does the bottle contain liquid, solid, gas, or a mixture?

How much of each? What is the pressure?

Solution: Since 260 K is greater than the triple-point temperature for CO2,

no solid will be present. Calculate v = V=M = (100 liters)/(10 kg): v = 0:01

m3/kg. From a phase diagram for CO2 at 260 K, we �nd that vf = 0:001001

m3/kg, and vg = 0:01552 m3/kg. Since v is between these two values, the bottle

contains a mixture of liquid and gaseous CO2. The vapor mass fraction is

x =
0:01− 0:001001

0:01552− 0:001001
= 0:62:

Since it is in the mixed phase region, the pressure is the saturation pressure at

260 K, which is 2.421 MPa.

4.5 Software for Property Evaluation

To solve problems involving real substances (such as the last example), some

source of property data is required. Traditionally in thermodynamics courses,

properties were looked up in tables, or estimated from detailed phase diagrams.

A typical diagram for oxygen is shown in Fig. 4.10. Here the pressure is plotted

against the enthalpy, and many curves representing particular values of other

properties are shown. Since P and h are two valid, independent properties, the

thermodynamic state is represented by a point on this plot. The point may

be �xed by interpolation if any two properties are known for which curves are

plotted on the chart. Once the state point is found, any other properties can

be read o� (with some care and practice).

Most thermodynamics textbooks now come with at least some rudimentary

software to evaluate properties. In many cases, the programs are simply elec-

tronic versions of tables, which print to the screen the property values. In other

cases, more elaborate software is provided which allows you to do a complete

thermodynamic analysis. But even these packages are specialized applications,

which you use for thermodynamics but nothing else.
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Figure 4.10: A pressure-enthalpy plot for oxygen.
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A new software package is provided as a supplement to this book which im-

plements thermodynamic property functions in Microsoft Excel (a spreadsheet

program). The thermodynamic property functions are provided by an \add-in"

module called TPX (\Thermodynamic Properties for EXcel"). Details of how

to load it into Excel and use it are given in Appendix A.

Calculating properties is easy with TPX. For example, if you want to know

the speci�c enthalpy of oxygen at 1 MPa and 500 K, you simply type into a cell:

=h("o2","PT",1,500)

The parameters are: the substance name (case is unimportant); a string stating

the properties which will be used to �x the state (here P and T ); the value of

the �rst parameter (P ); the value of the second parameter (T ). The value of

the function returned in the cell is 655.83 kJ/kg. You can select any system of

units you like; all inputs and outputs will then be in those units. (This example

assumes the user selected units of Kelvin for temperature, MPa for pressure, kJ

for energy, and kg for mass.)

The real power of using a spreadsheet becomes apparent in more complex

analyses. For example, the temperature and pressure may not be speci�ed

inputs, but are themselves the result of calculations in other cells. In this case,

simply replace the numerical value in the function parameters by the appropriate

cell address (e.g. B4).

The same functions implemented by TPX are also available in a WWW

property calculator. The calculator is convenient for simple calculations, if you

have access to the Web but not to Excel.

Example 4.2 One kg of water is placed in a closed container and heated at

constant volume. The initial temperature is 300 K. If the desired �nal state

is the critical point, determine the necessary container volume, initial pressure,

initial vapor mass fraction, and energy transfer as heat.

Solution: Two properties are needed to specify the initial state. The tem-

perature is given, so one more is required. Since the process occurs at constant

volume, the initial volume V1 must equal the �nal volume V2. The �nal state is

the critical point, so

V2 = (1 kg)� vc:

The critical speci�c volume of water may be calculated using TPX:

vc = vcrit("h2o") = 0:003155 m3/kg:

Therefore, state 1 is �xed by T1 = 300 K and v1 = vc. Using TPX, any other
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desired property for state 1 may be computed:

P1 = 3528:2 Pa P("H2O","TV",300,vcrit("H2O"))

X1 = 5:49� 10−5 x("H2O","TV",300,vcrit("H2O"))

u1 = 112:727 kJ/kg u("H2O","TV",300,vcrit("H2O"))

h1 = 112:738 kJ/kg h("H2O","TV",300,vcrit("H2O"))

Note that the initial state is a mixed liquid/vapor state, and so P1 = Psat(300

K). The vapor fraction is very small, since vc is only slightly greater than the

speci�c volume of the saturated liquid.

The required heat transfer Q is determined from the First Law:

�U = Q+W:

Since the volume is constant, W = 0, so

Q = �U = M(u2 − u1):

Using TPX,

u2 = u("h2o","tv",tcrit("h2o"),vcrit("h2o"))= 2029:6 kJ/kg:

so Q = (1 kg)(2029.6 kJ/kg - 112.7 kJ/kg) = 1916.9 kJ.

4.6 More Properties: Partial Derivatives of Equations of State

Consider an equation of state like P (T; v). Clearly, a partial derivative of this

function, for example (@P=@T )v, is some new function of (T; v) and may rightly

be regarded as a thermodynamic property of the system. Some useful derivative

properties are de�ned here.

4.6.1 Thermal Expansion Coe�cient

Most substances expand when heated. The property which tells us how much a

substance expands when heated at constant pressure is the thermal expansion

coe�cient �, de�ned by

� =
1

v

�
@v

@T

�
P

(4.12)

To calculate �, the equation of state v(T; P ) would be di�erentiated with respect

to T .
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Note the 1=v in the de�nition { � is de�ned as the fractional change in

volume per degree of temperature increase. Also, note that this de�nition is

only really meaningful if a single phase is present, since otherwise T can’t be

increased holding P constant.

Example 4.3 What is the thermal expansion coe�cient of liquid water at 300

K and 1 atm?

Solution: � may be calculated approximately using TPX, evaluating the

partial derivative by a �nite-di�erence approximation. Taking a small increment

of, say, 0.1 K, use TPX (with units set to K and atm) to evaluate (@v=@T )P :�
@v

@T

�
P

� (v("h2o","tp",300.1,1) - v("h2o","tp",300,1)/0.1)

= 2:75� 10−7 m3/kg-K:

(4.13)

Since

v = v("h2o","tp",300,1)= 0:001003378 m3/kg;

� � 2:74� 10−4 K−1:

4.6.2 Isothermal Compressibility

All matter decreases slightly in volume if the pressure is increased at constant

temperature. The property how the volume varies with pressure at constant

temperature is the isothermal compressibility �, de�ned by

� = −
1

v

�
@v

@P

�
T

(4.14)

As with �, if the equation of state v(T; P ) is known, it can be di�erentiated to

�nd �(T; P ). And as with the thermal expansion coe�cient, � is only meaningful

if the substance is in a single phase.

4.6.3 Speci�c Heats

Suppose a unit mass of a substance absorbs an amount of heat �dQ; how much

does the temperature increase? It depends in part on how the heating is done.

From the First Law,

du = �dQ+ �dW = �dQ− Pdv: (4.15)



CHAPTER 4. THE SIMPLE COMPRESSIBLE SUBSTANCE 85

Constant Volume

If the heating is done at constant volume, the work term is zero. Therefore

du = �dQ: (4.16)

Di�erentiating the equation of state u(T; v) at constant v, we may also write

for du

du =

�
@u(T; v)

@T

�
v

dT: (4.17)

Equating these two expressions for du produces the desired relationship between

�dQ and dT :

�dQ =

�
@u

@T

�
v

dT: (4.18)

The speci�c heat at constant volume cv is de�ned by

cv =

�
@u

@T

�
v

(4.19)

Then

du = cvdT (4.20)

for constant-volume heating. The SI units of cv are J/kg/K.

Constant Pressure

At constant pressure, we have to be careful to remember to account for the work

done against the environment as the sample expands. Rearranging Eq. (4.15),

we �nd �dQ = du+ Pdv. But since P is constant in the process, du+ Pdv =

d(u+ Pv). We recognize u+ Pv to be the speci�c enthalpy h.

Therefore, for constant pressure heating, �dQ = dh. We can also write

dh =

�
@h(T; P )

@T

�
P

dT; (4.21)

since P is constant. Therefore, for constant pressure heating, �dQ and dT are

related by

�dQ =

�
@h

@T

�
P

dT: (4.22)

The speci�c heat at constant pressure cp is de�ned by

cp =

�
@h

@T

�
P

(4.23)
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The units are the same as those for cv.

Another common term for cv and cp is heat capacity. Heat capacities may

also be de�ned per mole of substance (ĉv and ĉp) or for a total amount of

substance of mass M (Cv and Cp).

Finally, it is worth noting that the names \heat capacity" and \speci�c

heat" both derive from the old idea that a body can store \heat." The names

shouldn’t be taken too literally { cv and cp are simply de�ned in terms of the

derivatives given above.

4.7 Model Equations of State

A software package like TPX evaluates properties using some mathematical

functions which have been �t to a large number of experimental measurements.

The measured data might be P (T; v), cp(T; v), or more indirect quantities like

the speed of sound. The functions are empirical, and contain many adjustable

constants which may be set to �t the measurements as accurately as possible.

For example, the functions used by TPX to represent the properties of water

contain more than 60 constants, with values chosen to provide the best �t to

measurements. 6

Sometimes it is desirable to work with much simpler approximate equations

of state. The price for simplicity is lack of accuracy, but in some cases we

are interested in examining qualitative behavior rather than calculating precise

numbers. Here we examine some common approximate or model equations of

state, starting with the simplest and working up to more complex but more

accurate ones.

4.7.1 The Ideal Gas

The quantity P v̂=T (where v̂ is the molar volume) is found to approach the

same value for all fluids in limit of low density when the molecules are far from

one another (Fig. 4.11). The limiting value is found to be

lim
P!0

P v̂

T
= R̂ = 8.314 kJ/mol-K (4.24)

The constant R̂ is known as the universal gas constant. If the pressure is low

enough that P v̂=T has reached this limiting value, then the equation of state is

approximated by

P v̂ = R̂T: (4.25)

6J. H. Keenan et al., Steam Tables, John Wiley and Sons, New York, 1969.
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Figure 4.11: Demonstration that P v̂=T approaches the same value for all fluids
as P ! 0.

This equation of state is known as the ideal gas law, and represents the low-

density limit of the equilibrium equation of state of all real simple compressible

substances. An ideal gas (or perfect gas) is de�ned to be any gas which obeys

Eq. (4.25).

Since v̂ = V=N , the ideal gas law can be written in terms of the total volume

V and total number of moles N :

PV = NR̂T: (4.26)

The value of R̂ depends on how N is expressed. If N is expressed as a number of

gram-moles (mol), then R̂ = 8:3143 kJ/mol-K; if N is expressed in kg-moles (1

kmol = 1000 mol), then R̂ = 8314:3 kJ/kmol-K. Alternatively, we could dispense

with using mole numbers, and express N as the actual number of molecules. In

this case, R̂ needs to be converted from mol or kmol units to molecule units (1

mol = 6:023� 1023 molecules; 1 kmol = 6:023� 1026 molecules). In this case,

R̂ = (8.3143 kJ/mol-K)(1000 J/kJ)(1 mol/6:023� 1023) = 1:38� 10−26 J/K:

(4.27)

In these units R̂ is usually called Boltzmann’s constant kB:

kB = 1:38� 10−26 J/K: (4.28)
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In this case, the ideal gas law becomes

PV = NkBT: (4.29)

It’s important to remember that kB and R̂ are really the same thing { just

di�erent units. We’ll see Boltzmann’s constant again in Chapter 6 when we

discuss entropy.

We can also divide Eq. (4.26) by the total mass to obtain

Pv =

 
NR̂

M

!
T =

 
R̂

M̂

!
= RT (4.30)

where M̂ = M=N is the molecular weight, and R = R̂=M̂ . Unlike R̂, R is

di�erent for every gas. For helium, R = (8314:3 J/kmol-k)(1 kmol=4:0026 kg) =

2077:2 J/kg-k, while for water R = (8314:3 J/kmol-K)(1 kmol=18:016 kg) =

461:5 J/kg-K. It is often more convenient to work per unit mass rather than

per mole, and so the form of the ideal gas law we will most often use is Eq. (4.30),

Pv = RT .

It is important to bear in mind that the ideal gas law is not rigorously true,

but becomes a good approximation at \su�ciently low" density. Some students

reflexively invoke Pv = RT if a problem involves a substance they normally

think of as a gas (e.g. helium, oxygen), forgetting that these substances not

only can behave as non-ideal gases, but also can be liquid or solid { it all

depends on the conditions.

It is simple to check whether the ideal gas law is a suitable approximation

under speci�ed conditions. Simply compute the compressibility factor Z, de�ned

by

Z =
Pv

RT
: (4.31)

If the ideal gas law is valid, then Z should equal 1. The deviation from Z = 1 is

a measure of the error made in assuming ideal-gas behavior under the speci�ed

conditions.

Example 4.4 How much error is made in using the ideal gas law to calculate

the speci�c volume of hydrogen at 20 MPa and 90 K?

Solution: For hydrogen, R = 8314:3=2:016 = 4124 J/kg-K. Using TPX,

v = v("h2","tp",90,20) = 0:023 m3/kg under these conditions, so Z = (2 �
107)(0:023)=4124� 90) = 1:24. Therefore, the actual volume is 24% larger than

would be predicted by the ideal gas law.
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Internal Energy, Enthalpy, and Speci�c Heats

The speci�c internal energy of any simple compressible substance may be ex-

pressed as a function of T and v: u(T; v). Alternatively, we could take the

independent variables to be (T; �) instead of (T; v), in which case we would

write the speci�c internal energy as u(T; �). Since every simple compressible

substance approaches ideal gas behavior as � ! 0, the speci�c internal energy

in the ideal-gas limit is u(T; � = 0), which is a function of temperature alone:

u(T; 0) = u0(T ). We shall use a superscript \0" to denote properties in the

ideal-gas, �! 0 limit.

The speci�c enthalpy of an ideal gas is

h0 = u0(T ) + Pv = u0(T ) + RT: (4.32)

Therefore, the speci�c enthalpy of an ideal gas is also a function only of tem-

perature (independent of pressure).

From the de�nitions of cv and cp, in the ideal gas limit

c0v(T ) =
du0(T )

dT
; (4.33)

and

c0p(T ) =
dh0(T )

dT
: (4.34)

Since h0(T ) = u0(T ) +RT ,

c0p(T ) = c0v(T ) + R: (4.35)

The analogous equation on a molar basis would be ĉ0p(T ) = ĉ0v(T ) + R̂. Of

course, Eq. (4.35) holds only in the ideal gas limit, where Pv = RT applies.

The function c0p(T )=R is shown in Fig. 4.12 for several gases. Since c0p and

c0v have the same units as R, the ratio c0p=R(= ĉ0p=R̂) is dimensionless. By

multiplying the non-dimensional c0p=R by the appropriate appropriate R (or R̂)

value, c0p or ĉ0p may be determined in any desired unit system.

If c0p(T ) is known, Eq. (4.34) may be integrated between any two tempera-

tures to �nd the change in enthalpy:

h0(T1) = h0(T0) +

Z T1

T0

c0p(T )dT : (4.36)
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Figure 4.12: The ideal-gas speci�c heat c0p(T ) for several gases.

If u0(T1) is desired, it could be computed by integrating Eq. (4.33), or from

u0(T1) = h0(T1)− RT .

For the special case of c0p independent of T , Eq. (4.36) becomes

h0(T1) = h0(T0) + c0p(T1 − T0); (4.37)

and the analogous expression for u0 is

u0(T1) = u0(T0) + c0v(T1 − T0): (4.38)

For some gases, c0p and c0v are truly independent of temperature. This is the

case for any monatomic gas, such as argon, helium, neon, etc. In other cases, it

may be approximately true for a limited temperature range (e.g., for N2 from

300-500 K or from 2000-3000 K).

Physics of the Temperature Dependence of cp(T )

From Figure 4.12, it is apparent that the behavior of the function c0p(T )=R

depends on the molecular structure of the gas. Using the methods of statistical

physics, it is possible to calculate this dependence exactly. We will do this

later, but for now we will discuss qualitatively the physics governing the ideal-

gas speci�c heat, and learn how to compute at least the high-temperature limit

of c0p(T ) from molecular structure.
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A principle of classical statistical physics known as the principle of equipar-

tition of energy says that every \square term" in the classical expression for the

energy of a molecule will contribute a factor of (1=2)R to c0v. For example, the

kinetic energy of a single atom contains three square terms:

� =
1

2
m
(
v2
x + v2

y + v2
z

�
: (4.39)

So c0v = (3=2)R and c0p = c0v + R = (5=2)R.

For a diatomic molecule (assuming it can be approximated as two point

masses joined by a linear spring), the energy is

� =
1

2
(m1 +m2)

(
v2
x + v2

y + v2
z

�
| {z }

translation

+
1

2
m12r

2(!2
y + !2

z)| {z }
rotation

+
1

2
m12v

2
r +

1

2
k(r − r0)2| {z }

vibration
(4.40)

where m12 = m1m2=(m1 +m2) is the reduced mass and vr = dr=dt.

Translation Rotation Vibration
Center-of-mass motion (translation) contributes 3 square terms, rotation

about 2 mutually orthogonal axes contributes 2 square terms, and vibration

contributes 2 square terms (one for kinetic energy of vibration, and one for

potential energy due to stretching the bond). The principle of equipartition of

energy would predict c0v=R = 1=2(3 + 2 + 2) = 7=2, and thus c0p=R = 9=2:

This is in fact observed at high temperatures for diatomic gases (see the N2

curve in Fig. 4.12). But at lower temperatures, c0p is found to be less than

the value predicted by the equipartition principle. The reason for this is that

equipartition of energy is a classical principle, which is valid only if classical

physics provides an acceptable description of the molecular motion.

If we had calculated the energy of the molecule using quantum mechanics,

we would have found that the possible energies for translation, rotation, and vi-

bration are quantized. According to the correspondence principle, whenever the

spacing between quantum levels is very small compared to the average energy

a molecule possesses, the predictions of quantum mechanics approach those of

classical mechanics. An appropriate comparison would be the average transla-

tional energy per molecule, which is just (3=2)kBT . Actually, we’re interested

only in orders of magnitude so we can drop the 3/2 and just compare to kBT .
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Mode �=kB (K)
Translation 10−15

Rotation 2.9
Vibration 3390

Table 4.3: Characteristic quantum level spacings divided by kB, in Kelvin. The
value for translation assumes a 1 cm3 box.

Typical numbers for the energy level spacings of N2 are shown in Table 4.3.

These energies are shown divided by kB, giving them the units of Kelvin and

making the comparison to kBT easy.

We see that a classical description of translation is essentially always valid,

and for rotation it is valid except at very low temperatures, when in any case

N2 wouldn’t be a gas. But vibration is another matter entirely. The spac-

ing between vibrational levels for N2 predicted by quantum mechanics is large

compared to the average energy per molecule at room temperature. For this

reason, collisions of a room-temperature N2 molecule with others do not have

enough energy to \excite" vibration, and so the molecule can’t acquire vibra-

tional energy. Higher temperatures are needed for vibration to become \fully

excited."

This explains the c0p(T ) behavior for N2. At room temperature, c0p � 7=2.

This suggests that the contribution from vibration is missing. The molecule

is translating and rotating, but essentially not vibrating at all, since the low-

est vibrational level is too high to be reached by collisions with other room-

temperature molecules. As the temperature increases, c0p approaches 9/2 as

expected, as vibration becomes excited.

High Temperature Limit for Polyatomic Molecules

Molecules containing more than 2 atoms have several di�erent vibration modes,

with di�erent frequencies and therefore di�erent spacings between vibrational

levels. The vibrational modes become excited at di�erent temperatures in gen-

eral. As each mode becomes active, the value of c0p increases by R.

The vibrational modes of CO2 are shown below, along with the vibrational

frequencies of each. (The units used are the standard spectroscopic units of

wavenumbers. To convert to Hz, multiply by the speed of light.) There are

actually two bending modes with the same frequency, since the molecule may

bend in the plane of the paper (as shown) or out of the plane, so CO2 has a

total of four vibrational modes.
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Symmetric
Stretch

Asymmetric
Stretch

Bending
(2 modes)

1,388 cm 2,349 cm 667 cm-1 -1 -1

We can determine the high-temperature limit for c0p for any polyatomic

molecule using the equipartition principle. Suppose the molecule contains N

atoms, has NR rotational modes, and NV vibrational modes.

If the molecule is linear (such as CO2), it has only 2 possible rotations, just

like a diatomic, so NR = 2. (It is impossible to rotate about the molecular axis,

since the nuclei are e�ectively point masses.) But a nonlinear, bent molecule

(such as H2O) has 3 possible independent rotations (NR = 3).

The number of vibrational modes is given by 7

NV = 3N − 3−NR: (4.41)

From the discussion of the equipartition principle above, we see that each

rotational mode contributes (1=2)R to c0p, while each vibrational mode con-

tributes a full R. (Vibration has 2 square terms { one for kinetic energy, one

for potential energy.) So the general formula for a polyatomic molecule is

cp(T !1)

R
=

5

2
+

1

2
NR +NV : (4.42)

Therefore,
cp(T !1)

R
=

�
3N − 3=2 linear
3N − 2 nonlinear

(4.43)

4.7.2 The van der Waals Equation of State

In 1873, The Dutch physicist van der Waals proposed (as part of his doctoral

thesis) two simple, empirical modi�cations to the ideal gas law, in an attempt to

�nd a gas law valid over a wider range of conditions. The �rst modi�cation was

to replace v in the ideal gas law by (v− b), where b is a small positive constant.

This accounts for the fact that real gases are not in�nitely compressible, since the

7It takes 3N numbers to specify the instantaneous con�guration of the molecule (x, y, and
z for each atom). Therefore, the molecule has 3N \degrees of freedom." We can alternatively
describe the molecular con�guration by specifying its center-of-mass position (3 numbers),
angular orientation (1 angle for each rotational mode), and amplitude of each vibrational
mode (1 number for each mode). The sum of these must equal 3N .
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molecules have �nite volume (v does not approach zero as P increases holding

T constant). The constant b corresponds roughly to the speci�c volume of the

fluid when the molecules are packed together | essentially the liquid or solid

speci�c volume.

The second modi�cation accounts approximately for the attractive forces

between molecules. Molecules about to strike the wall feel a net restraining

force due to their attraction to the other molecules in the gas behind them; this

lowers the speed with which they strike the wall and the impulse delivered to

the wall in the collision. Since any pressure measurement can be thought of as

measuring the force on a wall due to the impulse of many collisions per second,

the measured pressure P will be somewhat lower than the value which would be

measured if the attractive forces were absent. The magnitude of the lowering,

van der Waals argued, should be proportional to 1=v2, since the wall collision

frequency per unit area is proportional to 1=v, and to �rst approximation the net

restraining force should be proportional to the number of \nearby" molecules,

which also scales with 1=v.

Based on these considerations, van der Waals proposed replacing P in the

ideal gas law by P +a=v2, since the measured P is lower than it \should be" in

the ideal gas law by a factor a=v2, where a is a positive constant.

With these modi�cations to the ideal gas law, the van der Waals equation

(P + a=v2)(v − b) = RT (4.44)

is obtained. For large v (low density), this equation reduces to the ideal gas

law, as it should.

Unlike the ideal gas equation of state, the van der Waals equation has a

critical point, where (@T=@v)P = 0 and (@2T=@v2)P = 0. It is left as an

excercise to show that setting these two partial derivatives to zero results in the

solution for Tc and Pc

RTc =
8a

27b
(4.45)

Pc =
a

27b2
: (4.46)

Solving for a and b in terms of Tc and Pc,

a =
27

64

(RTc)
2

Pc
(4.47)

b =
RTc
8Pc

: (4.48)
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If we pick a and b using these expressions, the van der Waals equation is

guaranteed to reproduce the correct critial temperature and pressure, although

this certainly does not mean it must produce any other accurate property values.

In Fig. 4.13, the predictions of the van der Waals equation, the ideal gas

equation, and TPX are compared near the critical point of methane. Three

isotherms at 0:94Tc, Tc, and 1:06Tc are shown, along with the actual vapor

dome of methane. All three agree fairly well at large v, where the ideal gas

law holds approximately. For smaller v, the ideal gas law does not adequately

approximate the actual P (v; T ) at all.

The van der Waals equation does much better. For T > Tc, the shape of the

isotherm is qualitatively right, although quantitatively it overpredicts P (v; T )

at small v. It also overpredicts the critical volume vc slightly. An interesting

thing happens below Tc: the van der Waals P (v; T ) is no longer monotonic in

v { instead, the isotherm exhibits a local maximum and a local minimum.

Stability and the Liquid-Vapor Phase Transition

Suppose we prepare a van der Waals gas in a cylinder at T0 < Tc, with v0 chosen

such that the state lies on the portion of the T0 isotherm where (@P=@v)T > 0

(Fig. 4.14). The piston weight is chosen to balance P0 = P (v0; T0) exerted by

the gas. But due to very small random fluctuations in the number of molecules

striking the piston from both sides, the piston position (and therefore v) will

fluctuate very slightly.

Suppose due to a small fluctuation v increases very, very slightly. Then since

(@P=@v)T > 0 on this portion of the isotherm, P will increase. This will create

a net upward force on the piston, so v will increase even more. The process will

stop only when point b is reached, where the pressure again balances the piston

weight.

Now consider the other case: suppose v decreases very slightly. Now the

pressure in the gas drops, so there is a net downward force on the piston, and

it falls until point a is reached.

We conclude from this thought experiment that the entire portion of the

isotherm with (@P=@v)T > 0 is unstable. A small fluctuation in v, no matter

how small, results in the system changing state: it will either go to the low-

volume state a, or the high-volume state b (both of which are stable to small

fluctuations, since (@P=@v)T < 0 for these states).

Thus, the van der Waals equation predicts that for a given T < Tc, there

is a range of pressures for which there are two possible states which are stable

to small fluctuations. One state has v < vc, and may be regarded as the liquid
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Figure 4.13: Isotherms for methane predicted by TPX, the van der Waals equa-
tion, and the ideal gas equation. The temperatures are 179.1, 190.5, and 202.0
K.
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Figure 4.14: An isotherm of the van der Waals equation for T < Tc.
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Figure 4.15: Comparison of actual behavior during isothermal compression to
prediction of van der Waals equation.

state, and the other has v > vc, and may be regarded as the vapor state.

In reality, of course, we don’t observe isotherms which have the shape in

Fig. 4.14 for T < Tc. Instead, at some pressure Psat(T ) the fluid abruptly

switches from the low-density (vapor) state to the high-density (liquid) state or

visa versa, as shown in Fig. 4.15. The reason this happens is that although both

the liquid and vapor states for pressures within the shaded region are stable to

small perturbations, only one is stable to \big" perturbations. For P > Psat(T ),

it is the liquid state which is most stable, and for P < Psat(T ) it is the vapor

state. We’ll see how to predict Psat(T ) soon.

This qualitative behavior applies to real fluids, not only to idealized van

der Waals fluids: the liquid-vapor phase transition results from an instabil-
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ity of an \underlying" smooth P (v; T ) function. By carefully avoiding \big"

perturbations (like dirt particles or scratches on the container wall where va-

por bubbles can get a start) it is actually possible experimentally to prepare

liquid at P < Psat(T ). Similarly, by carefully compressing a vapor in very

clean conditions pressures greater than Psat(T ) can be reached without liquid

droplets forming. Such states are called metastable states. Metastable states

are not thermodynamic equilibrium states, since if the system is given a big

enough perturbation (a dust particle, a scratch, gently shaking the container),

it switches to the more stable state.

To experimentally prepare metastable states, it is actually more common to

vary temperature at a given P . In this case, liquid is stable below Tsat(P ) (the

boiling point), and metastable above it. Liquid heated above the boiling point

without boiling is called superheated liquid and vapor cooled below the boiling

point without condensing is called supercooled vapor.

A Generalized Equation of State

The van der Waals equation of state may be put in non-dimensional form by

de�ning the nondimensional reduced pressure P � = P=Pc and reduced tempera-

ture T � = T=Tc. If we write Eq. (4.44) in terms of P � and T �, and substitute

for a and b from Eq. (4.47) and Eq. (4.48), it reduces to

Z3 −

�
P �

8T �
+ 1

�
Z2 +

�
27P �

64T �2

�
Z −

27P �2

512T �3
= 0; (4.49)

where Z is the compressibility factor Pv=RT . The roots of this cubic equation

determine Z(T �; P �). Depending on T � and P �, this equation will have either

one root, or three. (If three, then as discussed above the middle one is unstable.)

Note that a and b do not appear in Eq. (4.49). Thus, the van der Waals

equation of state reduces to a single equation for all fluids, independent of a and

b, as long as T and P are expressed in reduced form. Equations of state which

depend only on T � and P � are called generalized equations of state. The van

der Waals equation is the simplest example of a generalized equation of state.

At the critical point (P � = 1, T � = 1) the solution to Eq. (4.49) is Z = 3=8.

Thus, the van der Waals equation predicts that all fluids should have Zc =

Pcvc=RTc = 0:375.

Unfortunately, Zc for real fluids is not 0.375, and di�ers from one fluid to the

next. Most fluids have Zc in the range from about 0.23 to about 0.33 { less than

the van der Waals equation of state would predict. So clearly the van der Waals

equation of state is not very accurate for real fluids. This is also clear from

Fig. 4.13: the critical speci�c volume is overpredicted, as is the liquid speci�c
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Figure 4.16: Compressibility factor Z vs. P � (Pr) for several values of T � (Tr).

volume at high pressure.

4.7.3 The Principle of Corresponding States

Even though the van der Waals equation is not particularly accurate, the ability

to write it as a universal function Z(T �; P �) is intriguing | maybe Z really can

be expressed as a function of only T � and P �, but the function resulting from

the van der Waals equation simply isn’t the right one.

To test this hypothesis, we can take measured P − v − T data for di�erent

fluids, calculate Z = Pv=RT , and the plot Z as a function of P � = P=Pc and

T � = T=Tc, where of course Tc and Pc di�er for each fluid.

If Z = Z(T �; P �), plotting Z in this way should collapse the experimental

P − v − T data onto the same set of curves for all fluids. A plot of this type is

shown in Fig. 4.16, in which Z is plotted vs. P � for T � values from 1 to 2. It

is observed that the experimental values for di�erent fluids do tend to fall onto

the same curves for a given T �, independent of the particular fluid.

However, it is also clear that this result is only approximate. For example,

on the T � = 1:5 curve in Fig. 4.16, the propane data points are systematically

above the mean, and the methane points systematically below. Also, we have

already stated that Zc varies slighly from one fluid to another, which could not

be true if Z = Z(T �; P �) were exactly true, since Zc = Z(1; 1).
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The statement that Z = Z(T �; P �) is known as the Principle of Correspond-

ing States. As we have already seen, it an approximate principle, not an exact

one. Several empirical �ts for Z(T �; P �) have been proposed which seek to re-

produce the \average" behavior shown in Fig. 4.16. The earliest was a set of

charts due to Nelson and Obert in 1954.

A more recent, popular generalized equation of state is one proposed by Lee

and Kesler in 1975. The function they propose for Z(T �; P �) for \simple" fluids

is shown graphically in Fig. 4.17. It can be seen that this function corresponds

fairly closely to the experimental data shown in Fig. 4.16. Simple fluids are

basically ones composed of small, simple molecules, but the precise de�nition of

a simple fluid is circular: it is one for which Z(T �; P �) is as shown in Fig. 4.17.

Lee and Kesler (following earlier work by Pitzer) also introduced a third

parameter, the so-called acentric factor !, to allow better correlation of ex-

perimental data than can be achieved using only the parameters T � and P �.

They observe that simple fluids have Psat(T )=Pc = 0:1 when T=Tc = 0:7. To

parameterize deviations from the behavior of Fig. 4.17, they de�ne ! as

! = − log10

�
Psat(0:7Tc)

Pc

�
− 1:0: (4.50)

The acentric parameter is zero for a simple fluid, and usually positive for other

fluids.

Lee and Kesler assume that the e�ects of non-zero ! can be accounted for

by adding a correction term linear in !:

Z = Z(0)(T �; P �) + !Z(1)(T �; P �): (4.51)

Here Z(0) is the function shown in Fig. 4.17, and Z(1) is a correction factor

to account for non-simple-fluid e�ects. Speci�cally, Z(1) is computed so that

an accurate Z(T �; P �) function is obtained for octane (C8H18), which is not a

\simple" fluid and has ! = 0:3978. Of course, Eq. (4.51) is still approximate, but

it is found to be accurate to within 2% or 3% for most non-polar or slightly polar

fluids. For highly-polar fluids (e.g. water) or very light ones (e.g. hydrogen,

helium, or neon) for which quantum e�ects are important, it is less accurate.

Equation 4.51 is implemented in TPX as the function ZLK(T*, P*, Omega).

The Omega parameter is optional { if omitted, the result will be calculated for

! = 0 (a simple fluid).

4.7.4 The Incompressible Substance

Finally, now that we have considered some rather complex model equations of

state, we turn to the simplest possible equation of state. The compressibility
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Figure 4.17: The Lee-Kesler generalized compressibility function Z(0) for a sim-
ple fluid.
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of most liquids and solids is quite low. Unless very large pressures are applied,

the speci�c volume hardly changes at all.

If we wish to ignore entirely the compressibility of a liquid or a solid, we can

replace the real P (v; T ) behavior by a simple model:

v = v0; (4.52)

where v0 is a constant. A idealized substance which obeys Eq. (4.52) is called

an incompressible substance. It is not possible to do compression work on an

incompressible substance, since by de�nition dv = 0. Therefore, the First Law

for an incompressible substance is

du = �dQ: (4.53)

Therefore, the only way to change u is by heat addition. This implies that an

incompressible substance has only one degree of freedom, so u = u(T ).

If we choose to approximate a real liquid as incompressible in solving a

particular problem, we simply neglect the small pressure dependence of v and

u. A common choice is to evaluate v and u at the saturation pressure at the

local temperature, and use these values no matter what the real liquid pressure

is.

Note that by de�nition h = u + Pv, so h will still depend on P for an

incompressible substance, even though u does not. Therefore, for a process in

which T and P change, �h = �u+v�P . For most liquids and solids, v is small

enough that the v�P term is small compared to �u.

Note also that (@h=@T )P = du=dT in this case, so

cp(T ) = cv(T ) (4.54)

for an incompressible substance. This relationship is very di�erent than the one

for ideal gases [Eq. (4.35)].

Problems

4.1 Some properties of ice, liquid water, and water vapor at the triple point

T = 273:16 K are given below.

Phase Density (kg/m3) Speci�c enthalpy (kJ/kg)
Ice 917.0 -333.5
Liquid 999.8 0.0
Vapor 4:84� 10−3 2501.4
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The enthalpy values are relative to the liquid enthalpy.

A closed, constant volume 1 liter container initially is at a temperature

in�nitesimally below 273.16 K. It holds solid and vapor in equilibrium,

with 80% solid by mass. Heat is now added until equal masses of liquid

and solid are present. Write down equations expressing energy, mass, and

volume balance. Determine numerically how much heat must be added.

4.2 The air pressure in aircraft cabins is kept lower than sea level atmospheric

pressure, since otherwise the pressure force on the airframe would be too

great at high altitude. A typical value for a transatlantic flight would be a

cabin pressure equivalent to atmospheric pressure at an elevation of 8,000

ft. On such a flight, to what temperature should the flight attendants heat

water for it to boil? How much heat must be added to boil a unit mass

of water, and how does it compare to the heat needed at sea level? Make

any reasonable assumptions you need for the analysis, but state what you

are assuming.

4.3 Five kg of methane are contained in a closed, 150 liter container. If the

pressure is 1 MPa, determine:

1. Whether any liquid is present, and if so how many kg

2. The temperature

3. The internal energy U of the methane (J)

4.4 A particular substance has an isothermal compressibility � = aT 4=P 3 and

a thermal expansion coe�cient � = bT 3=P 2. Determine the equation of

state v(T; P ) to within an additive constant and the ratio a=b.

4.5 Ten kg of saturated nitrogen vapor at 90 K is heated at constant pressure

until its volume is 3 m3. Determine

1. The pressure

2. The �nal temperature

3. The heat added

4. The work done by the nitrogen on the environment.

4.6 Using TPX, plot the compressibility factor Z for hydrogen and for oxygen

at 300 K vs. pressure. For hydrogen, plot Z over the pressure range of 1

atm to 100 MPa, and for oxygen over the pressure range of 0.02 MPa to

20 MPa. Use a logarithmic scale for pressure.
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For a particular gas storage tank design, it is necessary to estimate to

within 1% accuracy the tank volume required for a given mass of gas and

pressure at T = 300 K. For both hydrogen and oxygen, determine the

pressure below which use of the ideal gas equation provides acceptable

accuracy.

4.7 Estimate the temperature water at the bottom of a 500 ft deep lake would

have to be heated before it begins to boil.

4.8 The speci�c heat at constant volume cv for insulating solids at low temper-

ature is given by the equation

cv

R
=

�
12�4

5

��
T

�

�3

;

which is known as the Debye T 3 law. The constant � is known as the

Debye temperature, and is a characteristic of the material in question.

For diamond, � = 2200 K. Treating diamond as incompressible, how much

heat in Joules must be added to raise the temperature of 1 kg of diamond

from 1 K to 50 K?

4.9 Show that for any simple compressible substance�
@P

@T

�
v

=
�

�

and �
@�

@P

�
T

= −

�
@�

@T

�
P

4.10 Derive the results for a van der Waals gas

RTc =
8a

27b

and

Pc =
a

27b2
:

4.11 A particular substance is found to obey the Dieterici equation of state

P (v − b) exp(a=vRT ) = RT:

1. Derive expressions for the properties at the critical point Pc, vc, and

Tc in terms of the constants a, b, and R.
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2. Compare the values for Zc = Pcvc=RTc predicted by this equation

with the values from Table 4.2 or calculated using TPX for hydrogen,

carbon dioxide, and water.

4.12 A particular fluid has critical state parameters Tc = 300 K and Pc = 6

MPa, and a molecular weight of 30. Estimate its speci�c volume at T =

330 K and P = 12 MPa using

1. the van der Waals equation of state

2. the Lee-Kesler generalized compressibility function, assuming it is a

simple fluid.

4.13 Determine the high-temperature limit for cp for Ar, N2, H2O, CO2, and

CH4, and compare to the results in Figure 4.12. What is the value of cp

(kJ/kg/K) in the high-temperature limit for C60?

4.14 Calculate the acentric parameter ! for N2, CH4, and CF4H2 (\HFC134a")

using TPX. Compare the predictions for Z at T � = 1:2, P � = 1:5 using

1. TPX

2. Lee-Kesler with ! = 0

3. Lee-Kesler with the actual !.
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CHAPTER 5

THE FIRST LAW FOR OPEN SYSTEMS

5.1 Introduction

An open system is one which matter may enter or leave. An uncovered cup

of co�ee is an open system, since water evaporates from it. Open systems are

very common in engineering thermodynamics. A simple example is a jet engine,

which takes in air and fuel, mixes and burns them, and then exhaust the hot

combustion products at high speed to produce thrust. Design of an e�cient jet

engine requires a careful thermodynamic analysis, which we will discuss in more

detail soon.

In this chapter, we develop one of the major tools needed to carry out such

an analysis | an expression of the First Law of Thermodynamics suitable for

open systems. Following this development, we will apply it to examine the

characteristics of some very useful devices for changing the state of a flowing

fluid, and take a �rst look at how such simple devices may be combined to do

useful tasks, such as generate electrical power.

5.2 Some Approximations Involving Flowing Fluids

In most cases of interest to us, the matter which enters or leaves an open system

is a fluid. Problems involving flowing fluids are more complicated than the

problems we have considered up to now, since strictly speaking a flowing fluid

is not in equilibrium | unbalanced forces are causing it to move. Depending

on the particular features of the flow, it may be turbulent, and properties such

as temperature, pressure, velocity, and density may vary from point to point

within the fluid. To make the analysis of problems with flowing fluids tractable,

we need to make some approximations.

5.2.1 Equilibrium Properties

What property relationships should we use to determine the properties of a

flowing fluid? We now know a great deal about the properties of fluids in

equilibrium (at rest). But if the velocity varies from point-to-point in a fluid,

as it does in all real viscous fluids, then there is no reference frame in which it

106



CHAPTER 5. THE FIRST LAW FOR OPEN SYSTEMS 107

appears stationary.

Fortunately, for most situations of engineering interest the relationships

among properties in a flowing fluid are indistinguishable from the equilibrium

equations of state we discussed in the last chapter, as long as the thermody-

namic properties are interpreted as \local" values at a point in a fluid. When

this is true, we say the flow is in local thermodynamic equilibrium, sometimes

abbreviated LTE.

For example, a very low density flowing gas will usually still obey Pv = RT

to a very good approximation at every point in the gas, even if P , v, and T

di�er from point to point, as long as the P , v, and T values are all measured at

the same point. Similarly, when LTE holds, the local speci�c internal energy u

will have the same dependence on the local temperature as if the gas were truly

in equilibrium.

There can be some extreme situations where LTE does not hold and equilib-

rium equations of state break down entirely. For example, in a shock wave the

properties of a gas change dramatically over a distance comparable to a molec-

ular mean free path, which in air at 1 atm is about 0.15 �m. When properties

change signi�cantly over a distance of a mean free path, then the equilibrium

property relationships no longer hold, and properties such as pressure and tem-

perature may not even be meaningful. However, the properties of the gas just

a few mean free paths on either side of the shock wave would be found to be

well-described by equilibrium equations of state. Fortunately, we will not need

to evaluate any gas properties right at a shockwave.

Another type of system where non-LTE behavior is often found is a plasma,

which is simply a gaseous mixture of ions and electrons (and often neutral

atoms or molecules too). Plasmas occur naturally in the upper atmosphere

and in outer space, and also can be created in the laboratory. Plasmas have

been investigated actively since the 1950’s as a means to achieve the conditions

necessary for nuclear fusion. Smaller scale plasmas are also widely used in

industry, for example to etch patterns in semiconductors, to clean surfaces,

and to deposit thin coatings. Plasmas can have strange behavior { often the

electrons have much more kinetic energy on average than do the heavy ions or

atoms. In plasmas used in the semiconductor industry, the heavy particles are

at room temperature, while the electrons behave as if they had a much higher

temperature, often greater than 10,000 K. Clearly a gas which behaves as if

di�erent species have di�erent temperatures is not close to equilibrium, and

equilibrium gas properties could not predict the correct properties of such a

plasma.
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Figure 5.1: Approximate one-dimensional flow of a river.

Another situation where deviations from equilibrium equations of state can

be important is if the fluid properties are changing too rapidly for the fluid

to adjust. For example, if the pressure in a liquid is rapidly reduced, it may

drop below Psat(T ) without vapor forming, since formation of vapor bubbles is

not instantaneous. When Psat − P reaches some critical value, vapor bubbles

will form explosively, which is known as cavitation. Some \fluids" like glasses

and polymer melts can take a very long time to re-establish equilibrium when

perturbed, and thus often exhibit non-equilibrium properties.

Situations like these in which the fluid properties di�er signi�cantly from the

equilibrium properties are relatively rare. In this book, we will usually assume

that equilibrium equations of state may also be used to compute the properties

of fluids slightly out of equilibrium (due, for example, to flow). We will call this

the assumption of equilibrium properties.

5.2.2 One-Dimensional Flow

Another often-useful assumption is the assumption of one-dimensional flow.

Contrary to what its name seems to imply, it does not mean the molecules

follow one after another along a mathematical line. Instead, it only means

that the flow velocity is assumed to depend on only a single co-ordinate (not

two or three, which would de�ne two-dimensional or three-dimensional flow,

respectively).

The one-dimensional flow assumption is easily understood by considering

the flow of a river (Fig. 5.1). A detailed description of a river flow would

be quite complicated, since it would have to describe in detail the turbulent

flow around over and around rocks, etc. But on a more global scale, a river
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flow is simple: the water flows basically downstream. When we make the one-

dimensional flow assumption, we ignore the details of the actual fluid flow and

focus on the principal direction the fluid is moving. We approximate the flow

velocity as being the same everywhere on a cross-section normal to the local

downstream direction. Essentially, we are assuming that all fluid \packets" at

a given downstream location are moving with the average velocity of the real

three-dimensional flow at that downstream location.

One-dimensional flow does not necessarily mean the velocity is constant. In

a river, the flow is rapid where the river is narrow, and slow where the river is

wide. What is constant is the water mass flow rate _m (kg/s). The mass flow

rate of water is

_mw = �wV (x)A(x); (5.1)

where x is the distance downstream, �w is the water density (constant), V (x)

is the one-dimensional flow speed at x, and A(x) is the cross sectional area of

the river at x.

Therefore, for a river with constant _m, the product V (x)A(x) is constant. In

practice, Eq. (5.1) would be the equation used to calculate V (x), and so serves

to de�ne the one-dimensional flow speed.

We will be interested in many situations in which a gas or vapor flows through

a tube of variable cross-sectional area A(x). As long as the changes in area are

gradual, the flow down the tube is approximately one-dimensional. The gas

mass flow rate through the tube is given by the same equation as for the river

flow, except that we should allow for the possibility that the gas density may

also depend on x:

_m = �(x)V (x)A(x): (5.2)

The density would depend on x if, for example, the gas heats up or cools down

as it flows down the tube (perhaps the tube walls are heated or cooled). As

we’ll see later, the density can also vary greatly if the flow speed is comparable

to or greater than the speed of sound and the tube area changes. Of course,

Eq. (5.2) also applies to liquids, for which �(x) � constant.

5.2.3 Steady Flow

Equation 5.2 always holds in one-dimensional flow, even if _m is time-dependent.

In this case, the flow is unsteady. If all quantities appearing in Eq. (5.2) do not

depend on time, then the flow in the tube is by de�nition steady.
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Figure 5.2: Control mass and control volumes for analysis of a system with fluid
entering through an inlet pipe. (a) time t; (b) time t+ dt.

5.3 Energy Accounting for an Open System

In order to develop the First Law for an open system, consider the simple

situation shown in Fig. 5.2. A container is connected to an inlet tube, and fluid

(either liquid or gas, it doesn’t matter) is flowing in. There is no outlet, so fluid

builds up in the container.

The flow into the container is assumed to be one-dimensional, with speed

Vin.

Since we know how to write the First Law for closed systems, let’s begin by

analyzing the control mass system labeled CM. Suppose we start the analysis

at time t and allow an in�nitesimal time dt to elapse, during which energy flows

from the environment to the system in the form of heat �dQ and work �dW .

The control mass boundary at time t in the inlet pipe is chosen to include

the fluid which flows into the container in time dt. At time t+ dt, this fluid has

moved into the container, so the control mass boundary has moved flush with

the end of the inlet pipe.

The work done on the system in time dt contains two contributions, which

we will call �dWext and �dWflow . The �rst is the work done by external forces

(such as a stirrer, or electrical work from a battery, or any other type of work).

The second contribution is the force on the moving system boundary in the inlet

pipe. Remember any time a system boundary moves by dx under action of an

external force F, work in the amount F � dx is done by the external force on the

system.

In the present case, the external force is provided by the fluid in the inlet
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pipe just outside the control mass, pushing on the fluid just inside the control

mass. The flow work done in time dt is

�dWflow = Fdx = (PinAin)dx = PinAinVindt: (5.3)

This expression may be re-written in terms of the mass flow rate _min in the

inlet pipe. The mass flow rate (kg/s) is

_min = �inVinAin: (5.4)

Therefore, in terms of _min,

�dWflow = _min(P=�)indt = ( _mPv)indt: (5.5)

The �rst law for system CM is:

dECM = �dQ+ �dW

= �dQ+ �dWext + ( _mPv)indt: (5.6)

The term ECM includes all energy in the control mass, whether internal, kinetic

or potential:

ECM = (U + Ek +Ep)CM : (5.7)

Now consider the control volume CV, which consists only of the container.

At time t, CV does not contain the fluid in CM which is still in the inlet tube.

Therefore,

ECM(t) = ECV (t) + ( _mindt)(ein) (5.8)

where ein is the total speci�c energy of the fluid in the inlet:

ein = uin + ek;in + ep;in: (5.9)

If the inlet flow is one-dimensional and if the potential energy is due to gravi-

tation then

ein = uin +
V 2
in

2
+ gyin; (5.10)

where yin is the elevation of the inlet tube.

At time t+ dt, CM and CV coincide, so

ECM(t + dt) = ECV (t+ dt): (5.11)

Subtracting Eq. (5.8) from Eq. (5.11), we �nd

dECM = dECV − ( _mindt)(ein): (5.12)
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Figure 5.3: Energy accounting for a control volume with fluid entering through
one inlet.

Putting this into Eq. (5.6) yields

dECV − ( _mindt)(ein)E = �dQ+ �dWext + ( _mPv)indt: (5.13)

Rearranging, we have

dECV = �dQ+ �dWext + [ _m(e+ Pv)]in dt: (5.14)

We may divide this equation by the elapsed time dt to express this equation on

a rate basis (per unit time):

d

dt
ECV = _Q+ _Wext + [ _m(e+ Pv)]in ; (5.15)

where
_Q =

�dQ

dt
(5.16)

is the rate at which heat is added to CV, and

_Wext =
�dWext

dt
(5.17)

is the rate at which external work is done on CV. Note that �dQ=dt should be

interpreted as a fraction ( �dQ divided by dt), and not as a derivative; the same

holds for �dW=dt.

Both Eq. (5.14) and Eq. (5.15) are statements of the First Law for an open

system with one fluid inlet. They may be interpreted as shown in Fig. 5.3: the

rate of increase of energy stored in the control volume (dECV =dt) is equal to

the sum of the rates of energy transfer into the system from the environment.

The energy transfer terms are due to
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1. external work: _Wext

2. heat transfer: _Q

3. flow work required to push the fluid into the control volume: ( _mPv)in

4. energy which is carried in (or convected in) by the entering fluid: ( _me)in.

Equation (5.15) may be easily generalized to handle an arbitrary control

volume with multiple fluid inlets and multiple fluid outlets. For the ith inlet,

there is a term [ _m(e + Pv)]i in the energy balance to account for the energy

convected in with the fluid, and the flow work done by the environment to push

it in. For outlets, the analysis is the same as for inlets except V < 0. This

simply changes the sign: for the oth outlet, a term −[ _m(e + Pv)]o must be

added. Therefore, the general statement of the First Law for an open system is

d

dt
ECV = _Q+ _Wext +

X
inlets

[ _m(e+ Pv)]i −
X
outlets

[ _m(e+ Pv)]o (5.18)

Note that _m, e, P , and v may di�er for each inlet and outlet, and may di�er

from the state of the fluid inside the control volume. Also, all quantities in this

equation may be time-dependent.

We have not said anything about the state of the matter inside the con-

trol volume. It might be near equilibrium, or might be very far from it, with

shock waves, plasmas, chemical reactions, or other complex phenomena occur-

ring. Of course, if we wish to relate ECV to other properties (e.g. pressure or

temperature), we would need to know more about just what is happening inside

CV.

We do need to evaluate (e+Pv) for the fluid in each inlet and in each outlet.

Typically, we will make the equilibrium properties assumption for the inlet and

outlet streams to allow evaluating e+ Pv.

Since e = u+ ek + ep,

e+ Pv = (u+ Pv) + ek + ep

= h+ ek + ep: (5.19)

Therefore, e+Pv is simply the speci�c enthalpy h plus any macroscopic kinetic

and potential energy per unit mass. For the common case of a one-dimensional
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flow where the only potential energy is gravitational,

e+ Pv = h+
jVj2

2
+ gy (5.20)

Another way to write Eq. (5.18) for this case is

d

dt
ECV = _Q+ _Wext +

X
inlets

�
_m

�
h +
jV2j

2
+ gy

��
i

−
X
outlets

�
_m

�
h+
jV2j

2
+ gy

��
o

(5.21)

Example 5.1

An insulated tank is to be pressurized with air. A high-pressure air line is

connected to the tank inlet through a flow-regulating valve which produces a

constant mass flow of air _m. The temperature of the air in the high-pressure

line is the ambient temperature T0. Assuming that air may be idealized as an

ideal gas with constant speci�c heats, determine the temperature in the tank as

a function of time.

m
.

T0

CV

Solution: Since mass is entering the tank, this problem is most easily solved

by de�ning a control volume and using the First Law in the form of Eq. (5.18).

The surface of the control volume should always be placed where we know some

information. Since we don’t know the state of the air at the outlet of the valve,

but we do know the state at the valve inlet, let the control surface cut through

the inlet before the valve.

We will assume the following:

1. One-dimensional, steady flow in air line

2. Air inside tank is uniform, with negligble kinetic energy

3. Potential energy may be neglected

4. Kinetic energy in air line may be neglected
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5. Equilibrium properties in air line and in tank

6. Adiabatic process ( _Q = 0)

7. Ideal gas with constant cv

For this problem, Eq. (5.18) becomes

d

dt
ECV = [ _m(e+ Pv)]in : (5.22)

Note that _Wext = 0, since there is no external work in this problem.

Since we are assuming kinetic and potential energies are negligible, ECV =

UCV and (e+ Pv)in = hin. Therefore,

d

dt
UCV = [ _mh]in : (5.23)

Since the flow is steady, the right-hand side of this equation is a constant, and

therefore it is easily integrated:

UCV (t) = UCV (0) + _mhint: (5.24)

We can also write a mass balance on the control volume:

MCV (t) = MCV (0) + _mt (5.25)

The rate of these two equations gives the speci�c internal energy of the air in

the tank as a function of time:

uCV (t) =
UCV (t)

MCV (t)
=
UCV (0) + _mhint

MCV (0) + _mt
: (5.26)

At long times, the terms linear in t will dominate over the constant terms, so

lim
t!1

uCV (t) = hin: (5.27)

For an ideal gas with constant cv, we may write u = cvT and h = cpT , taking

the reference state at T = 0. Then

lim
t!1

TCV (t) =
cp

cv
Tin (5.28)

Thus, the air in the tank ends up hotter than the air in the high-pressure line.

The physical reason for this is that to put more air in the tank, the air already

there has to be compressed to make room. We’ve seen before that adiabatic

compression of a gas causes it to heat up, due to the compression work done on

it. This is one more example of this e�ect.

An interesting feature of this problem is that the temperature in the tank

depends only on Tin and cp=cv, and not on the �nal pressure. For air, cp=cv �
1:4, so if Tin = 300 K, the �nal temperature in the tank is 420 K.
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5.4 Steady State

If the energy and mass contained within the control volume are not changing

with time, we say the control volume is in steady state. In this case, dECV =dt =

0, so Eq. (5.18) becomes

_Q+ _Wext +
X
inlets

[ _m(e+ Pv)]i =
X
outlets

[ _m(e+ Pv)]o : (5.29)

This equation simply states that at steady state the energy inflow rate to the

control volume (the left-hand side) must equal the energy outflow rate (the

right-hand side).

Since no mass can be accumulating inside the control volume at steady state,

we also require X
inlets

_mi =
X
outlets

_mo: (5.30)

It is important to remember the di�erence between the assumption of steady

flow and the assumption of steady state. Steady flow applies to an individual

inlet or outlet stream, and means that _m and the fluid properties of the stream

are constant. Steady state applies to the entire control volume, and means that

energy and mass inflows and outflows balance, so that there is no net change in

the energy or mass contained in the control volume. In the last example, the

inlet flow was a steady flow, but the system was not in steady state, since there

was no outlet and both mass and energy continued to accumulate in the tank.

The steady state assumption is very useful to analyze many real engineering

systems, including most power plants, chemical plants, jet engines, rocket mo-

tors, refrigeration systems, etc. Although they are not always truly in steady-

state (for example, the thrust of an aircraft engine changes from take-o� to

cruise), the transient terms in the energy and mass balances (dECV =dt and

dMCV =dt, respectively) are usually small enough compared to the other terms

that they may be neglected, and the problem treated as a steady state one.

Most of these complex engineering systems are constructed from a set of

simple steady-flow, steady-state devices which alter the state of a flowing fluid

in some way, and may exchange energy as heat or work with the environment.

We will introduce some of the major ones in the next section. Analyzing these

simple systems shows how the First Law for open systems is used, and it allows

us to begin assembling a \toolkit" of devices which we will use to build more

complex systems in later chapters.
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5.5 Some Steady-Flow, Steady-State Devices

5.5.1 Nozzles

A nozzle is a device which is accelerates a fluid flowing steadily through it. For

liquids or subsonic gases, a nozzle simply consists of a converging tube (Fig. 5.4.1

To �rst approximation, nozzles are often idealized as adiabatic. In a real

nozzle, there may be some heat transfer to or from the environment if the fluid

is hotter or colder than the surroundings. But often the fluid flows through

the nozzle so rapidly that there is little time for a signi�cant amount of heat

transfer to occur.

We will make the following assumptions to analyze flow through an adiabatic

nozzle:

1. One-dimensional, steady flow at inlet and outlet (states 1 and 2)

2. Equilibrium properties at states 1 and 2

3. _Q = 0

4. Negligible change in potential energy

5. Steady state

With these assumptions, the energy balance is�
_m

�
h+

V 2

2

��
1

=

�
_m

�
h+

V 2

2

��
2

: (5.31)

Because of the steady-state assumption, _m1 = _m2, so

h1 +
V 2

1

2
= h2 +

V 2
2

2
: (5.32)

Since the fluid accelerates through a nozzle, the pressure must decrease in

the direction of flow. Thus, P2 < P1. The action of an adiabatic, steady nozzle

on the thermodynamic state of the fluid is as shown in the P −h plot in Fig. 5.4:

both the pressure and the enthalpy are lower at the outlet than at the inlet.

The horizontal distance h1−h2 between the inlet and outlet state points equals

the increase in kinetic energy.

The line connecting states 1 and 2 is shown as dashed in Fig. 5.4. A dashed,

straight line is used simply to indicate that state 1 is transformed to state 2 by

1A nozzle for a supersonic gas consists of a diverging tube, as we’ll discuss in more detail
later. To accelerate a gas from subsonic to supersonic speed, a converging-diverging tube is
required (an hourglass shape).
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Figure 5.4: An adiabatic nozzle.

the nozzle. It does not imply that the fluid state really followed a straight-line

trajectory in (P; h) in going from state 1 to state 2. In fact, we have only made

the equilibrium properties assumption for states 1 and 2. Inside the nozzle, the

fluid might not be describable by any equilibrium state { we don’t know.

Of course, the positions of state 1 and state 2 do not need to be as shown in

this diagram. States 1 and 2 could be located anywhere, including in the liquid

or two-phase regions. The only requirement is that P2 < P1 and h2 < h1.

Example 5.2 Nitrogen at 300 K and 2 atm flows at 1 m/s into an adiabatic

nozzle which exhausts into the ambient air at 1 atm. If the exit speed is 300

m/s, what is the temperature at the exit?

Solution: Using TPX,

h1 = h("n2","tp",300,2) = 4:613� 105 J/kg:

The initial speci�c kinetic energy V 2
1 =2 = 0:5 J/kg, and the �nal speci�c kinetic

energy V 2
2 =2 = 4:5� 104 J/kg. Therefore,

h2 = 4:613� 105 + (0:5− 4:5� 104) = 4:163� 105 J/kg:

Since P2 is given, P2 and h2 �x the exit state. From TPX,

T2 = Temp("N2","PH",1,4.163E5)= 256:57 K:

Note that in the last example the initial kinetic energy of the gas is very

small compared to the �nal kinetic energy, and thus �(V 2=2) � V 2
2 =2. When

this is the case, Eq. (5.32) reduces to V2 =
p

2(h1 − h2). We will often assume

that the initial kinetic energy is negligible when analyzing flow through nozzles.
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Figure 5.5: An adiabatic di�user.

5.5.2 Di�users

A di�user is in a sense the opposite of a nozzle. In a di�user, a flow decelerates,

with a corresponding pressure rise. (The pressure must rise, since fluid elements

will only decelerate if they experience a net force directed opposite to the flow

direction.) For liquids and subsonic gases, a di�user simply consists of a diverg-

ing tube (Fig. 5.5. The energy balance for a steady-state adiabatic di�user is

the same as that for an adiabatic nozzle (with the same assumptions):

h1 +

�
V 2

2

�
1

= h2 +

�
V 2

2

�
2

: (5.33)

Now, however, V2 < V1, so h2 > h1. The state of the fluid is transformed by

the di�user as shown in Fig. 5.5.

If the exit area of the di�user is much larger than the inlet area and the

flow is one-dimensional, then V2 � V1 and �(V 2=2) � −V 2
1 =2. In this limit,

h2 = h1 + V 2
1 =2. The quantity

h� = h+
V 2

2
(5.34)

is known as the stagnation enthalpy of a fluid with enthalpy h and speed V , since

it is the enthalpy the fluid would have if it were brought to rest (stagnation) in

an adiabatic di�user. In terms of the stagnation enthalpy, the energy balance

for an adiabatic nozzle or di�user may be written

h�1 = h�2: (5.35)
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Figure 5.6: An adiabatic valve.

5.5.3 Valves

A valve is a device which drops the pressure in a flowing fluid without signif-

icantly increasing its kinetic energy. The interior of a valve looks something

like a nozzle: there is a constriction in the flow passage, requiring the fluid to

accelerate to pass through. But in a valve, the flow passage opens up abruptly

after the constriction, causing one-dimensional flow to break down. A highly

three-dimensional turbulent flow develops, in which most of the kinetic energy

of the flow is converted into internal energy through viscous (friction) forces.

Valves are highly non-equilibrium, irreversible devices. But all we require to

carry out a steady-state analysis of a valve is the ability to evaluate properties

just upstream and just downstream of the valve. As long as the flow is rea-

sonably one-dimensional and describable with equilibrium properties at these

points, what is going on within the valve is irrelevant for the analysis.

Like nozzles and di�users, valves are often approximated as adiabatic, since

usually the fluid does not spend enough time in the valve for appreciable heat

transfer to occur. Therefore we will make the following assumptions for the

analysis of a valve: steady, one-dimensional flow at the inlet and outlet (states

1 and 2); equilibrium properties at 1 and 2; adiabatic; steady state; negligible

change in kinetic and potential energy.

With these assumptions, the energy balance is simply

h1 = h2: (5.36)

Since P2 < P1, the action of a valve on the state of the fluid is as shown in

Fig. 5.6. Of course, state 1 can be anywhere in the (P; h) plane, and state 2
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can be any point directly below state 1. Depending on conditions, the fluid

emerging from the valve could be liquid, vapor, or mixed.

Example 5.3 An adiabatic valve in a liquid oxygen line causes a pressure drop

of 0.5 MPa. If saturated liquid at 1 MPa enters the valve, what is the state of

the oxygen emerging from the valve?

Solution: Assume:

1. steady, 1D flow, equilibrium properties at inlet and outlet

2. steady state

3. adiabatic

4. negligible change in P.E. or K.E.

Then the energy balance is

h1 = h2:

From TPX, h1 = hf (P1) = h("o2","px",1,0) = 114:16 kJ/kg. The inlet

temperature T1 = Tsat(P1) = temp("o2","px",1,0) = 119:68 K. State 2 is

�xed by P2 = 0:5 MPa and h2 = h1. Therefore,

T2 = temp("o2","ph",0.5,114.16)= 108:86 K

X2 = x("o2","ph",0.5,114.16)= 0:106:

log P

h

1

20.5 MPa

1 MPa

5.5.4 Compressors and Pumps

Compressors and pumps have the same function { they increase the pressure of

the fluid flowing through them. We usually use the term pump if the fluid is a

liquid, and compressor if the fluid is a gas. Work input is required to push the

fluid from the low-pressure inlet to the high-pressure outlet. (Unlike a di�user,

the flow entering a compressor or pump does not have signi�cant kinetic energy

at the inlet.) Internally, a compressor or pump has a set of blades or vanes,

which are mounted on a central rotating shaft. The blades are designed so that
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Figure 5.7: An adiabatic compressor.

as the shaft rotates the blades impart momentum to the fluid, pushing it toward

the outlet.

Again, compressors and pumps are usually idealized as adiabatic devices.

Making appropriate assumptions about the system, the energy balance for a

compressor is

_mh1 + _Wc = _mh2: (5.37)

See if you can list the assumptions implied by this equation.2

Since _m is a constant, it is convenient to divide through by it to obtain

h1 +Wc = h2: (5.38)

Here Wc = _Wc= _m is the input compressor work per unit mass of fluid flowing

through the compressor (J/kg).

Of course, for a pump the analogous energy balance is

h1 +Wp = h2; (5.39)

where Wp = _Wp= _m.

5.5.5 Turbines

A turbine is a device which produces continuous power by expanding a fluid

flowing through it. The most familiar example is a windmill, or wind turbine.

A wind turbine has blades mounted on a rotating shaft. As air flows over the

blades, the shaft turns. If the shaft is connected to a load, such as an electrical

generator, power is delivered to the load.

2At inlet and outlet: 1D, steady flow, equilibrium properties, negligible K.E. and P.E.;
steady state; adiabatic.
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Figure 5.8: An adiabatic pump.

Although a wind turbine extracts the power from the kinetic energy of the air

stream, an industrial turbine incorporates internal nozzles to accelerate a high-

pressure input stream to high velocity before it impacts the turbine blades.

Many turbines incorporate several rows of blades, one behind the other, to

convert as much of the kinetic energy at the outlet of the nozzle to useful shaft

power as possible. The flow emerges from the turbine at lower pressure than it

went in, with negligible kinetic energy.

Turbines too are usually idealized as adiabatic. Therefore, to analyze a

turbine we will assume: steady, 1D flow at inlet and outlet; negligible K.E. and

P.E. and inlet and outlet; adiabatic; steady state.

Up until now, when writing down energy balance equations, we have always

regarded heat and work as positive if the energy transfer is from the environment

to the system. Energy transfer in the other direction can be treated as negative

energy transfer to the system. Since a turbine delivers power to an external

load, if we do the energy balance this way we would have to regard the turbine

power as negative.

However, it is usually more convenient to regard heat and work transfers as

positive in doing an analysis. It is simple to modify our procedure to do this.

We only need to remember whether we are de�ning _W and _Q as an energy inflow

or outflow, and put it in the appropriate place in the energy balance equation

(i.e., on the same side of the equation as the other energy inflows or outflows).

To avoid confusion, it is best to always draw a sketch of the process, with the

direction of energy flows clearly labeled.

With the assumptions listed above, and the turbine power regarded as an
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Figure 5.9: An adiabatic turbine.

energy outflow (as shown in the sketch in Fig. 5.9), the energy balance is

_mh1 = _mh2 + _Wt: (5.40)

Dividing by _m,

h1 = h2 +Wt; (5.41)

where Wt = _Wt= _m. An adiabatic turbine changes the state of the fluid as shown

in Fig. 5.9.

5.5.6 Heat Exchangers

The last devices we will introduce are heat exchangers. As the name implies,

these are devices which transfer heat from one fluid stream to another. An

example of a heat exchanger is a car radiator, which transfers heat from the hot

engine coolant to air which is forced to flow over the radiator coils by the fan.

The simplest heat exchanger is a tube which one fluid (\A") flows through,

with the other one (\B") flowing over the tube. If A and B are at di�erent

temperatures and the tube wall is a good conductor of heat (usually a metal)

then heat will flow between the two fluids. If fluid B is the atmosphere (as

in a car radiator) or a body of water such as a river, this open design is �ne.

Otherwise, fluid B should be enclosed in a tube also. One common design is to

use concentric tubes, with A flowing one way through the center tube and B

flowing the other way through the annulus surrounding the center tube.

The change of state for each fluid can be analyzed separately by de�ning

a control volume which encompasses only that fluid. For example, the control

volume shown in Fig. 5.10 is appropriate to determine the change in state of

fluid A.
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Figure 5.10: A simple constant-pressure heat exchanger. Note that A and B
may be di�erent fluids, with di�erent mass flow rates.

Heat exchangers are usually constructed of such that the pressure drop due

from the inlet to the outlet for either fluid due to viscous drag is small. For this

reason, the flow through a heat exchanger is usually modeled (at least to �rst

approximation) as occurring at constant pressure.

An appropriate set of assumptions to analyze flow through a heat exhanger

is:

1. Steady, 1D flow at inlet and outlet; equilibrium properties at these points

2. Steady state

3. Constant pressure

For stream A in Fig. 5.10, with the direction of heat transfer as shown, the

energy balance is

_mAhA1 + _Q = _mAhA2: (5.42)

Dividing by _mA,

hA1 +QA = hA2; (5.43)

where QA = _Q= _mA.
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Of course, the heat added to stream A came from stream B, so the energy

balance on B is

_mBhB1 = _Q+ _mBhB2; (5.44)

or

hB1 = QB + hB2; (5.45)

where QB = _Q= _mB . Note that in general _mA 6= _mB , so QA 6= QB, even though
_Q is the same for both.

The inlet state for either fluid may be anywhere on the P − h plot, and the

outlet state may be anywhere at the same pressure. Some particular types of

heat exchangers are given names, depending on their primary function.

An evaporator or boiler is as heat exchanger which takes in liquid and pro-

duces vapor (as shown for stream A in Fig. 5.10). The minimum heat input

required to do this is for the case where the input is saturated liquid, and the

output saturated vapor. In this case,

Qin = hg − hf : (5.46)

The symbol hfg is used to denote hg − hf , and is called the enthalpy of vapor-

ization or heat of vaporization. If the output of the evaporator is superheated

vapor, the last segment of the heat exchanger where liquid is no longer present

is often called the superheater.

A condenser is just the opposite: it takes in vapor, removes heat causing the

vapor to condense, and outputs liquid. A condenser must transfer at least hfg

of heat to the other fluid stream in order to condense the vapor.



CHAPTER 6

ENTROPY AND THE SECOND LAW

6.1 Introduction

We have now developed the First Law of Thermodynamics for both closed and

open systems, and shown how it may be used to solve practical problems. But

the First Law is not the end of the story. There are many imaginable processes

which satisfy the First Law, but are nevertheless don’t seem to happen. We

need another principle, or \law," to explain why not. In this chapter, we intro-

duce this principle { the second law of thermodynamics and the new property

associated with it, the entropy.

6.2 Possible and Impossible Processes

Of all processes which satisfy the First Law, some actually happen and some

never do. If a few ice cubes are added to a thermos bottle containing boiling

water, the ice spontaneously melts and the initially-hot water cools. When

equilibrium is reached, only warm water is left. The reverse, however, never

happens: warm water has never been observed to spontaneously transform into

hot water + ice cubes, even though it is possible to do so in a way which

conserves energy.

If a rubber ball is held above a table and then dropped, it bounces a few

times and comes to rest. The initial gravitational potential energy of the ball

is converted to internal energy of the ball (and possibly of the table): the ball

ends up slightly warmer than it began. The reverse process | a ball cooling o�

slightly and jumping o� a table { has never been observed, although it could

conserve energy.

In fact, for every process that really happens, the time-reversed version |

in which the initial and �nal states of the system + environment are switched

| never seems to. Eggs break when dropped on the floor; broken eggs have

never been seen to \unbreak" and rise o� the floor. Heat flows spontaneously

from a high temperature body to a low temperature one it contacts; it has never

been observed to flow spontaneously from low temperature to high. A helium

balloon slowly deflates due to di�usion of helium atoms through the balloon

127



CHAPTER 6. ENTROPY AND THE SECOND LAW 128

skin; a deflated balloon has never been observed to spontaneously inflate due to

helium atoms di�using from the surroundings to the interior.

Despite the observed one-way nature of real processes, the First Law makes

no distinction between possible process and their impossible time-reversed ver-

sions. Consider, for example, a closed system which undergoes a process during

which heat Q and work W are transferred to it from the environment. The First

Law requires

Efinal −Einitial = Q+W: (6.1)

For the time-reversed version, the energy transfers occur in the other direction,

so

E
(rev)
final −E

(rev)
initial = (−Q) + (−W ): (6.2)

But since E
(rev)
initial = Efinal and E

(rev)
final = Einitial, this is equivalent to

−(Efinal −Einitial) = (−Q) + (−W ); (6.3)

which is of course equivalent to Eq. (6.1). We see that the First Law is satis�ed

equally by the forward and reverse processes. This must be true, since the First

Law takes the form of an equality: if A = B, then −A = −B. What we would

need to distinguish forward from backward would be an inequality: if A and

B satisfy A > B, then (−A) and (−B) do not. Evidently, the reason some

energy-conserving processes occur spontaneously and others don’t has nothing

to do with the First Law.

6.3 The Microscopic View of Spontaneous Processes

When we consider what happens on an atomic level, it is clear why some pro-

cesses happen spontaneously and others don’t. We’ll consider two speci�c ex-

amples | dropping a ball, and letting a gas expand into vacuum. The general

principles apply to any spontaneous process.

6.3.1 Dropping A Ball

Consider what happens on an atomic level when a rubber ball is dropped on a

table (Fig. 6.1). To simplify matters, let’s neglect the thermal energy the ball

has before being dropped, ignore any energy transfer to the table, and assume

the ball is dropped in vacuum, so there is no air resistance. Let’s also imagine

we have some way of taking an atomic-level \snapshot" of the positions and

velocities of all atoms in the ball at any desired time { we can’t do this in a real

experiment, but it’s quite easy in a thought experiment.
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Figure 6.1: A rubber ball dropped on a table.
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The ball has mass M and is dropped from a distance h above the table.

Three di�erent macroscopic states of the ball are shown in Fig. 6.1. In state A,

the ball hasn’t yet been dropped, so is stationary at a height h above the table.

In state B, the ball is just about to strike the table the �rst time. In state C,

the ball has stopped bouncing and reached the equilibrium state, resting on the

table.

A set of atomic-level snapshots are taken in each state A, B, and C. In state

A, all atoms are initially stationary (no thermal energy), so repeated snapshots

always �nd the same atomic-level con�guration. In state B, all atoms moving

downward in unison at speed V =
p

2gh. Still, every snapshot is the same.

But in state C, every snapshot is di�erent. The atoms are vibrating chaoti-

cally, and the velocity of each atom changes in an apparently random way from

one snapshot to the next as the atom is pulled or pushed by the stretched or

compressed bonds to neighboring atoms. Of course, energy is still conserved. If

we computed for any snapshot the sum of the kinetic energies of all atoms plus

the potential energies of all stretched or compressed bonds, the result would

always be Mgh.

Each snapshot fully determines the instantaneous microscopic state of the

ball, which we will call the microstate. In contrast, the macroscopic state of

the ball is speci�ed by only a few numbers, such as the height, center-of-mass

velocity, temperature, etc. A macroscopic description of a ball (or any other

system) is certainly simpler than a detailed, atomic-level speci�cation of the

microstate. But it is also much less precise, since a system in a given macroscopic

state (sometimes called a macrostate) might be found in any one of a very large

number of microstates.

If we tried to compile a list of all observed microstates for the ball in

macrostate C, it would be a very long list. In fact, if position and velocity are

measured with arbitrary precision (and therefore speci�ed by real numbers),

we would never �nd exactly the same value for any atomic position or velocity;

there would be an uncountably in�nite number of microstates.

But usually there is some uncertainty in measurements. For example, if the

measurements are acquired by a computer or stored in one, they need to be

represented by a �nite number of bits, leading to round-o� error. In this case,

positions which di�er by less than the round-o� error �x would be recorded as

the same position, and velocities which di�er by less than the velocity round-o�

error �v would be recorded as the same velocity. In this case, the number of

microstates observed in state C would be �nite, but extremely large.

If we were extraordinarily patient, we could take enough snapshots to build
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up statistics on the number of times each microstate is found. If after taking

Ns snapshots, the ball was found in the jth microstate in Nj;s snapshots, then

as Ns !1 the probability pj of �nding the ball in microstate j is

pj = lim
Ns!1

Nj;s
Ns

: (6.4)

There is no particular reason to think that any one microstate of the ball

in macrostate C should be found more often than any other one. Remember,

we said the ball is in equilibrium in state C, which means it has been sitting on

the table a very long time (at least compared to atomic vibration time scales).

After enough time has elapsed, the atoms of the ball have \forgotten" about

any coordinated motion (bouncing) they were executing previously, and are all

moving more or less randomly.

Of course, we’re only considering microstates which are \accessible," given

the initial conditions and the conserved quantities (total energy, number of

atoms, etc.). There are microstates of the ball which have total energy di�erent

than Mgh, or with a few atoms missing or bonded di�erently, but with the

given initial conditions the ball will never be found in one of these inacessible

states.

With the assumptions we’ve made, the ball does not interact in any way

with the environment, which is why its total energy must be constant. This

means we are treating the ball as an isolated system.

The assumption that all microstates of the ball are equally probable at equi-

librium can be generalized to any isolated system. In fact, this is the basic

postulate of statistical mechanics:

Postulate: At equilibrium, all accessible microstates of an isolated

system are equally probable.

We can’t prove this postulate, but we can ask what consequences follow from

it, and whether they agree with experiment.

Let’s now return to the question of why some processes occur, and some

don’t. On a microscopic level, all accessible microstates are equally likely at

equilibrium. A particular microstate of the ball with atoms moving in various

directions such that there is no center of mass velocity is just as likely as another

one which has all atoms moving upward with the same speed, or one with the

ball hovering completely stationary a distance h above the table. At �rst glance,

this might lead you to conclude that a ball should be just as likely to jump o�

a table as to remain sitting there.
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But of course, once the atoms are moving randomly in state C, it is highly

unlikely that they would just happen to all move in such a way to push o� from

the table and rise up in unison, although there is no physical law preventing it.

Another way of saying this is that the number of microstates in which the

ball is sitting on the table with all atoms moving more or less randomly (and

thus with negligible net center-of-mass velocity) is huge compared to those few

special microstates with the atoms all moving in one direction, or all displaced

above the table. All accessible microstates | even ones corresponding to biz-

zare macroscopic behavior | are equally probable, but there are far, far more

microstates which correspond to the ball simply sitting on the table.

Therefore, we would expect to hardly ever observe one of the microstates

corresponding to the ball doing anything but sitting on the table. If we worked

out the numbers, we would �nd that we would have to wait much longer than

the age of the universe to see the ball spontaneously move { during which time,

of course, other processes would occur which would make the whole experiment

moot (disintegration of the ball and table, the end of life on earth, etc.)

So the basic idea is as follows. Denote by Ω the number of microstates which

a system might be in when it is in some speci�ed macroscopic state. Suppose an

isolated system starts out in some equilibrium macrostate 1 which has a certain

number of microstates Ω1. Now some process occurs within the system (e.g. the

ball is dropped) which changes the number of available microstates to Ω2 � Ω1.

Once enough time has elapsed, the system is again in equilibrium, so it could

be in any one of its Ω2 microstates with equal probability. It is still possible

that it could be found in one of the original microstates, which would mean that

macroscopically it would appear to be in macrostate 1. But the probability of

this happening is Ω1=Ω2, which is very small if Ω2 � Ω1.

6.3.2 Irreversible Expansion of an Ideal Gas

To see how the numbers work out, we need a system so simple that we can

actually compute the number of microstates. (This would be hard to do in

practice for a rubber ball.) Consider a gas of N identical point atoms in a

container of volume V .

For the purposes of this discussion, we’ll only specify the microstate by the

spatial location of the atoms, and not consider how many ways there are to

assign velocities to the atoms consistent with a speci�ed energy. We’ll come

back to the question of how to partition the energy in Section 6.7.

If we specify the microstate by the exact position of each atom (fx1; : : : ;xNg),

then there are an uncountably in�nite number of microstates, since each coordi-
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nate position is speci�ed by a real number. To make the number of microstates

countable, let’s assume each position measurement has some �nite round-o�

error �x. This is equivalent to dividing the volume into small cubes of volume

(�x)3, and only recording which small cube an atom is in, rather than the exact

co-ordinates within the cube. This makes the number of microstates �nite and

countable, although the answer will depend on �x.

The number of small cubes nc is

nc =
V

(�x)3
: (6.5)

We will assume that nc � N , so that if we place the N atoms in cubes ran-

domly, the odds of �nding two or more in the same cube are very low. The

vast majority of states do not have any cubes multiply-occupied. We’ll allow

multiple-occupancy in counting states, but it won’t a�ect the result much one

way or the other as long as nc � N .

The number of spatial arrangements Ωx is the number of ways of placing

N identical atoms in nc cubes. Since the atoms are identical,1 we won’t count

arrangements which di�er only by a permutation of atom labels as being di�er-

ent. That is, for N = 2, the arrangement with atom 1 in cube 47 and atom 2 in

cube 129 is no di�erent than arrangement with atom 2 in cube 47 and atom 1

in cube 129. We should count this arrangement once, but not twice. Therefore,

for N = 2, Ωx(N = 2) = n2
c=2. For N = 3, we have to divide the number of

arrangements of 3 labeled atoms (n3
c) by the number of ways to permute labels

among 3 atoms (3! = 6). So Ωx(N = 3) = n3
c=6. The general result is

Ωx(V;N) =
1

N !
nNc =

1

N !

�
V

(�x)3

�N
: (6.6)

Let’s use this result to analyze the process shown in Fig. 6.2.

A container is divided into two compartments, of volume VA and VB , re-

spectively. Initially, compartment A contains an equilibrium gas of N identical

point atoms, and compartment B is empty. A shutter is now opened in the par-

tition, allowing atoms to move freely between A and B. Enough time is allowed

to elapse so that the gas comes to equilibrium in the new volume VA + VB .

Now a sensitive detector is turned on, which can detect the presence of

even one atom in compartment B. The detector looks for atoms in B every �t

1Quantum mechanics requires that identical atoms (the same isotope of the same element)
are indistinguishable even in principle. So just exchanging two identical atoms, keeping
everything else the same, can’t yield a new microstate.
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Figure 6.2: Irreversible expansion of a gas.

seconds. If the detector ever detects that B is empty, it sends a signal which

closes the shutter, which returns the gas to its original state of being con�ned

in compartment A. How much time elapses on average before B is found to be

empty and the shutter closes?

Once the shutter has opened and the atoms have had ample time to move

back and forth between A and B, the number of available microstates has in-

creased by the factor

Ωfinal
Ωinitial

=

�
VA+B

VA

�N
: (6.7)

Since all microstates are equally probable at equilibrium, the probability pempty

that the detector will �nd none of the N atoms in B in any one measurement

is simply the ratio of the number of microstates which have all of the atoms in

A to the total number of microstates:

pempty =
Ωinitial
Ωfinal

=

�
VA

VA+B

�N
: (6.8)

If N is small, then pempty is fairly large, and only a few measurements would

be needed, on average, before the detector �nds B empty. For example, if

VA = VB and N = 2, then pempty = 1=4, so the detector would be expected to

�nd B empty after only about 4 measurements. If N = 20, pempty = 9:5�10−7.

Now it is unlikely to �nd B empty on any given measurement, but statistically

once every million or so times it should happen, and the shutter would then

close, trapping the gas in A. If the detector took a measurement, say, every

second, then it would take about 12 days (a million seconds) before we would

expect the shutter to close and e�ectively \reverse" the e�ect of opening the

shutter. We conclude that if N is small (say, 20 or so) then the process of

opening the shutter can be reversed, if we are willing to wait a little while.
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Suppose, however, that we have a macroscopic gas, with N � 1023. Then

pempty =

�
VA

VA+B

�1023

: (6.9)

If VA = VB ,

p1023 = 2−1023

= 10−1023 log10 2

� 10−3�1022

: (6.10)

Now that is a small probability | its reciprocal would be written as a \1"

followed by about 3� 1022 zeros.

The universe is of order 1010 years old, which is 3�1017 seconds. Therefore,

the chance of detecting no atoms in B during the age of the universe, checking

every second, is

(3� 1017)(10−3�1022

) = 3� 10−(3�1022−17):

Thus, it is overwhelmingly unlikely to occur in the age of the universe. Even if

the detector looked every microsecond, this would only change the probability

to 3� 10−(3�1022−23) | still far too small. Even if we could wait 1010 universe

lifetimes it would still be overwhelmingly unlikely. We conclude therefore that

if N � 1023, the process of opening the shutter is truly irreversible: it won’t

spontaneously reverse, even over times much longer than the age of the universe.

For this reason, the process of a macroscopic gas expanding into vacuum is called

irreversible expansion. It is also called unrestrained expansion, since there is no

piston restraining the gas expansion that the gas must do work against.

This example illustrates a common feature of macroscopic systems. Since the

number of atoms is very large (say, > 1020), and the formula for Ω typically has

N in an exponent, making a minor change like opening a shutter to increase the

volume expands the number of available microstates by an unimaginably huge

degree. Once the system can be found in any of these with equal probability, the

probability of �nding it in one of its original allowed microstates is e�ectively

zero, even if we watch it for the age of the universe. When this is the case, we

say that the \minor change" which was made is irreversible.

Of course, it is possible to restore a system to its initial state, but only at

the cost of altering the environment irreversibly. In the previous example, a

piston could be used to compress the gas back into compartment A. However,

this would require work input, which would increase the energy of the gas.
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This extra energy would have to be removed to the environment as heat, which

would irreversibly alter the microscopic state of the environment. In particular,

the energy added to the environment would increase its number of possible

microstates by a huge factor.

6.4 The Second Law of Thermodynamics

The Second Law of Thermodynamics simply expresses as a general \law" the

characteristics of spontaneous, irreversible processes discussed in the last sec-

tion. Consider �rst an isolated system (constant energy), since in this case all

accessible microstates have the same energy, and we don’t have to be concerned

about what is happening in the environment. The Second Law states that

No process will occur within an isolated, macroscopic system that

decreases the number of accessible microstates.

All this says is that isolated, macroscopic systems will proceed in the direc-

tion of increasing Ω if allowed to (say, by letting go of a ball, or opening an

internal shutter in a gas container, etc.), but will never proceed in the direction

of decreasing Ω. Of course, we mean \never" in the sense of the irreversible

expansion example of the last section.

The second law says only that the number of possible microstates of an

isolated system cannot decrease; it does not require the number to increase by

any speci�c amount. In particular, processes which do not change the number

of microstates are allowed. Such processes are called reversible, since they are

the only ones which may be reversed without violating the Second Law.

For non-isolated systems which interact with the environment, the system

+ environment together constitute an isolated system, so the Second Law may

be state more generally:

No process that decreases the number of accessible microstates of

the system + environment will occur.

6.5 The Entropy

The number of microstates Ω associated with some macroscopic, equilibrium

state of matter is a useful quantity to know. As we saw in the irreversible expan-

sion example, knowing Ω and its dependence on macroscopic parameters such as

the volume allows us to determine what sort of processes can occur (expansion

of gas through an opening in a partition), and what sort can’t (spontaneous

collection of gas atoms in one part of a container).
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However, there are two reasons why working with Ω directly is inconvenient.

First, it is di�cult to work with numbers as large as, say, 101023

{ we don’t have

much intuitive feel for them.

The second problem becomes clear if we consider a system which is composed

of two non-interacting parts, A and B. If A and B are independent, and A has

ΩA microstates, and B has ΩB microstates, then

ΩA+B = ΩAΩB : (6.11)

Therefore, the property Ω is multiplicative for systems composed of separate

parts. Since other properties we’ve worked with like mass, volume, and energy

are additive (extensive), it is inconvenient to have to work with a multiplicative

property.

Both problems can be solved by working with ln Ω, rather than Ω. The

logarithm of Ω typically is proportional to N , which is still a big number but is

quite manageable compared to 10N . Also, ln Ω is additive:

ln ΩA+B = ln ΩA + ln ΩB: (6.12)

We will de�ne the entropy S as

S = kB ln Ω: (6.13)

The constant kB is \Boltzmann’s constant," named after Ludwig Boltzmann,

who �rst proposed this equation. It is introduced only for convenience, and can

be set to any desired value. Given S, it is always possible to recover Ω =

exp(S=kB). Sometimes it is most convenient to use kB = 1, in which case

the entropy is dimensionless. But we’ll soon see that the choice of kB a�ects

the units of other properties, in particular temperature. If we have already

decided what units we want to use for temperature (e.g. Kelvin), then this will

determine the value for kB . We’ll discuss this point more in Section 6.9.

It is important to remember that we have been considering equilibrium states

of isolated systems (constant energy U , volume V , number of atoms N). For

isolated systems, the only accessible microstates are the ones with the right

values of U and N , and for which all atoms are contained within V . The number

of these will depend on U , V , and N : Ω(U; V;N). Therefore, the entropy has

the same functional dependence: S(U; V;N).

Since the system is in equilibrium, all accessible microstates are assumed

to be equally likely, and therefore all that really matters is how many of them

there are. If it were not in equilibrium, then some microstates would be more
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probable than others. For example, in the irreversible expansion example, just

after the shutter is opened microstates with most atoms in A are more probable

than ones with most atoms in B. It can be shown that in this case the entropy

should be de�ned as

S = kB
X
j

pj lnpj ; (6.14)

where the sum is over all accessible microstates. If all microstates are equally

probable, (pj = 1=Ω) Eq. (6.14) reduces to Eq. (6.13).

For our purposes, we won’t need to evaluate S for non-equilbrium states, so

we won’t need Eq. (6.14). The only sort of non-equilibrium states we’ll need to

consider explicitly are ones composed of separate parts, each of which is in local

thermodynamic equilbrium. Since S is extensive, in this case S can be written

as

S =
KX
k=1

Sk(Uk; Vk; Nk): (6.15)

Here the system is divided intoK parts, each of which is internally in equilibrium

(all of its microstates are equally probable), but which may not be in equilibrium

with one another. Each term Sk is evaluated as the entropy of the equilibrium

state with energy Uk, volume Vk, and Nk atoms.

Once we have S(U; V;N), we could change variables from number of atoms

to the total mass, since M = mN , where m is the mass of one atom. This

would produce the function S(U; V;M), which depends only on macroscopically-

measurable quantities.

Now we also know that S is extensive, like U , V , N , and M . The extensive

properties have the characteristic that they all scale with the amount of the

substance present. Therefore, if we scale up the size of the system by some

factor �, all extensive variables must be scaled by �. The entropy function

evaluated for the scaled-up system S(�U; �V; �M) must be � times larger than

the entropy function evaluated for the original system S(U; V;M):

�S(U; V;M) = S(�U; �V; �M): (6.16)

Taking � = 1=M ,
S

M
= S

�
U

M
;
V

M
; 1

�
: (6.17)

Therefore, as for the other extensive properties, we de�ne the speci�c entropy s

by

s =
S

M
= s(u; v); (6.18)



CHAPTER 6. ENTROPY AND THE SECOND LAW 139

which from Eq. (6.17) depends only on (u; v).

Therefore, for a simple compressible substance in equilibrium, there exists

some entropy equation of state s(u; v). Of course, as we discussed in Chapter

3, any two independent properties can be used to specify the thermodynamic

state. To construct, for example, s(h; P ) we only need to know the equations

of state u(h; P ) and v(h; P ): s(h; P ) = s(u(h; P ); v(h; P )). The speci�c entropy

can also be used as one of the properties to �x the state. For example, s(h; P )

could be inverted to form h(s; P ).

For most substances, �guring out all of the microstates consistent with speci-

�ed (U; V;N) is too di�cult to do in practice, although in principle it can always

be done. But the function s(u; v) still exists, even if we have di�culty calculat-

ing it directly from S = kB ln Ω. Fortunately, as we’ll discuss below, there are

ways to determine s(u; v) purely from macroscopic measurements except for an

arbitrary constant of integration.

6.6 Entropy Production

If some process occurs within an isolated system, the Second Law requires

Ωfinal � Ωinitial. Therefore,

�S = Sfinal − Sinitial = kB ln

�
Ωfinal
Ωinitial

�
� 0: (6.19)

Since this extra entropy wasn’t transferred into the system from the environment

(the system is isolated), we must regard the extra entropy to have been produced

inside the system during this process.

Thus, irreversible processes produce entropy { unlike energy and mass, en-

tropy is not conserved. We’ll call the amount of entropy produced by a pro-

cess the entropy production Ps. Every irreversible process produces entropy

(Ps > 0). Besides unrestrained expansion, some other processes which produce

entropy include motion against frictional forces, combustion, electrical current

flow through a resistor, heat transfer through a �nite temperature di�erence,

mixing of two di�erent fluids, and even clearing data in the memory of a digital

computer.

For a process occurring in a non-isolated system, the entropy produced by

the process equals the increase in the entropy of the system + environment. A

very compact, general way of writing the Second Law is

Ps � 0 (6.20)
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That is, entropy can be produced, but it can never be destroyed. Since this

form of the Second Law applies to all types of systems, it is the form we will

use most often.

The special class of processes for which Ps = 0 are reversible, since reversing

them would not result in destruction of entropy, as it would for a process with

Ps > 0. Reversible processes can’t be actually achieved in practice, since friction

or other irreversibilities are always present, even if only in very small amounts.

However, real processes can approach reversible ones as a limiting case, as we

make irreversibilities (electrical resistance, friction, etc.) smaller and smaller.

6.7 The Entropy of a Monatomic Ideal Gas

One of the few systems which is simple enough to allow computing s(u; v) from

�rst principles is the monatomic ideal gas. We’ve introduced the ideal gas pre-

viously as the low-density limit of a simple compressible substance, and stated

that it satis�es Pv = RT . From a microscopic viewpoint, an ideal gas is a

gas of particles of negligible size, which have kinetic energy but have negligible

interaction potential energy. A real gas approximates this when the container

volume per atom is much larger than the atomic size, and the average distance

between atoms is much greater than the distance over which they exert appre-

ciable attractive or repulsive forces on one another. A monatomic ideal gas (e.g.

He, Ar, Ne) is particularly simple, since in this case the energy of each particle is

simply (1=2)mjvj2 { there is no rotational or vibrational energy, as there would

be in a molecular ideal gas.

Consider an isolated system consisting of a monatomic ideal gas of N atoms

contained in volume V . For simplicity, assume the volume is a cube with side

length L. Since it is isolated, the total energy is �xed at some value; call it

U . Then every possible microstate fx1; : : : ;xN ; v1; : : : ;vNg of the system must

satisfy
NX
n=1

mv2
n

2
= U: (6.21)

It will turn out to be more convenient to work with the momentum of an atom

pn = mvn, rather than velocity. In terms of momentum, this equation becomes

NX
n=1

p2
n

2m
= U: (6.22)

Also, all N atoms must be in the container, so the microstate must satisfy

0 � xn � L; n = 1; : : : ; N
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0 � yn � L; n = 1; : : : ; N

0 � zn � L; n = 1; : : : ; N: (6.23)

How many microstates are there which satisfy these constraints? Clearly, if

we can really measure position and momentum with arbitrary accuracy, there is

an uncountably-in�nite number. So let’s introduce some small round-o� error

to make the states countable. Say the position round-o� error is �x, and the

momentum round-o� error is �p.

We already solved part of this problem when we calculated how many ways

there are to arrange N atoms in volume V [Eq. (6.6)]. Since for an ideal gas

the energy depends only on the atomic momenta, not on their positions, the

calculation of the number of ways to arrange the atoms in space (Ωx) and the

number of ways to distribute the energy as kinetic energy among the atoms

(Ωp) can be done independently. The total number of microstates is simply the

product:

Ω = ΩxΩp: (6.24)

The details of the calculation of Ωp are relegated to Appendix A. The result

is

Ωp =
(2�mU)3N=2

(�p)3N
(

3N
2

�
!
: (6.25)

Therefore, using Eq. (6.6), the total number of microstates is

Ω = ΩxΩp =
1

N !

V N (2�mU)3N=2

(�x�p)3N
(

3N
2

�
!
: (6.26)

Classically, the choice of �x�p is arbitrary. Nevertheless, when S = kB ln Ω

is evaluated, the term involving �x�p just becomes an additive constant equal

to −3NkB ln(�x�p), so this classical treatment determines the entropy of an

ideal gas to within an arbitrary additive constant. Since we only need to know

di�erences in entropy to determine if a process satis�es the Second Law, any

additive constant will cancel when the di�erence is taken.

We can do a little better if we supplement this classical analysis with the

uncertainty principle of quantum mechanics. The uncertainty principle states

that a particle (which in quantum mechanics is a wave packet) cannot simul-

taneously have precise values of position and momentum | x or p or both

must have some \fuzziness" or uncertainty. The momentum uncertainty in any

direction �p and the position uncertainty in that direction �x are related by

(�x)(�p) � h; (6.27)


