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Preface

These notes deal primarily with the subject of Lagrangian mechanics. Matters related to me-
chanics are the dynamics and control of mechanical systems. While dynamics of Lagrangian
systems is a generally well-founded field, control for Lagrangian systems has less of a history.
In consequence, the control theory we discuss here is quite elementary, and does not really
touch upon some of the really challenging aspects of the subject. However, it is hoped that
it will serve to give a flavour of the subject so that people can see if the area is one which
they’d like to pursue.

Our presentation begins in Chapter 1 with a very general axiomatic treatment of basic
Newtonian mechanics. In this chapter we will arrive at some conclusions you may already
know about from your previous experience, but we will also very likely touch upon some
things which you had not previously dealt with, and certainly the presentation is more
general and abstract than in a first-time dynamics course. While none of the material in
this chapter is technically hard, the abstraction may be off-putting to some. The hope,
however, is that at the end of the day, the generality will bring into focus and demystify
some basic facts about the dynamics of particles and rigid bodies. As far as we know, this is
the first thoroughly Galilean treatment of rigid body dynamics, although Galilean particle
mechanics is well-understood.

Lagrangian mechanics is introduced in Chapter 2. When instigating a treatment of
Lagrangian mechanics at a not quite introductory level, one has a difficult choice to make;
does one use differentiable manifolds or not? The choice made here runs down the middle
of the usual, “No, it is far too much machinery,” and, “Yes, the unity of the differential
geometric approach is exquisite.” The basic concepts associated with differential geometry
are introduced in a rather pragmatic manner. The approach would not be one recommended
in a course on the subject, but here serves to motivate the need for using the generality,
while providing some idea of the concepts involved. Fortunately, at this level, not overly
many concepts are needed; mainly the notion of a coordinate chart, the notion of a vector
field, and the notion of a one-form. After the necessary differential geometric introductions
are made, it is very easy to talk about basic mechanics. Indeed, it is possible that the
extra time needed to understand the differential geometry is more than made up for when
one gets to looking at the basic concepts of Lagrangian mechanics. All of the principal
players in Lagrangian mechanics are simple differential geometric objects. Special attention
is given to that class of Lagrangian systems referred to as “simple.” These systems are the
ones most commonly encountered in physical applications, and so are deserving of special
treatment. What’s more, they possess an enormous amount of structure, although this is
barely touched upon here. Also in Chapter 2 we talk about forces and constraints. To talk
about control for Lagrangian systems, we must have at hand the notion of a force. We give
special attention to the notion of a dissipative force, as this is often the predominant effect
which is unmodelled in a purely Lagrangian system. Constraints are also prevalent in many
application areas, and so demand attention. Unfortunately, the handling of constraints in
the literature is often excessively complicated. We try to make things as simple as possible,
as the ideas indeed are not all that complicated. While we do not intend these notes to
be a detailed description of Hamiltonian mechanics, we do briefly discuss the link between
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Lagrangian Hamiltonian mechanics in Section 2.9. The final topic of discussion in Chapter 2
is the matter of symmetries. We give a Noetherian treatment.

Once one uses the material of Chapter 2 to obtain equations of motion, one would like to
be able to say something about how solutions to the equations behave. This is the subject
of Chapter 3. After discussing the matter of existence of solutions to the Euler-Lagrange
equations (a matter which deserves some discussion), we talk about the simplest part of
Lagrangian dynamics, dynamics near equilibria. The notion of a linear Lagrangian system
and a linearisation of a nonlinear system are presented, and the stability properties of linear
Lagrangian systems are explored. The behaviour is nongeneric, and so deserves a treatment
distinct from that of general linear systems. When one understands linear systems, it is
then possible to discuss stability for nonlinear equilibria. The subtle relationship between
the stability of the linearisation and the stability of the nonlinear system is the topic of
Section 3.2. While a general discussion the dynamics of Lagrangian systems with forces is
not realistic, the important class of systems with dissipative forces admits a useful discussion;
it is given in Section 3.5. The dynamics of a rigid body is singled out for detailed attention
in Section 3.6. General remarks about simple mechanical systems with no potential energy
are also given. These systems are important as they are extremely structure, yet also very
challenging. Very little is really known about the dynamics of systems with constraints. In
Section 3.8 we make a few simple remarks on such systems.

In Chapter 4 we deliver our abbreviated discussion of control theory in a Lagrangian
setting. After some generalities, we talk about “robotic control systems,” a generalisation
of the kind of system one might find on a shop floor, doing simple tasks. For systems
of this type, intuitive control is possible, since all degrees of freedom are actuated. For
underactuated systems, a first step towards control is to look at equilibrium points and
linearise. In Section 4.4 we look at the special control structure of linearised Lagrangian
systems, paying special attention to the controllability of the linearisation. For systems
where linearisations fail to capture the salient features of the control system, one is forced
to look at nonlinear control. This is quite challenging, and we give a terse introduction, and
pointers to the literature, in Section 4.5.

Please pass on comments and errors, no matter how trivial. Thank you.

Andrew D. Lewis
andrew@mast.queensu.ca

420 Jeffery
x32395
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Chapter 1

Newtonian mechanics in Galilean spacetimes

One hears the term relativity typically in relation to Einstein and his two theories of rel-
ativity, the special and the general theories. While the Einstein’s general theory of relativity
certainly supplants Newtonian mechanics as an accurate model of the macroscopic world, it
is still the case that Newtonian mechanics is sufficiently descriptive, and easier to use, than
Einstein’s theory. Newtonian mechanics also comes with its form of relativity, and in this
chapter we will investigate how it binds together the spacetime of the Newtonian world. We
will see how the consequences of this affect the dynamics of a Newtonian system. On the
road to these lofty objectives, we will recover many of the more prosaic elements of dynamics
that often form the totality of the subject at the undergraduate level.

1.1 Galilean spacetime

Mechanics as envisioned first by Galileo Galilei (1564–1642) and Isaac Newton (1643–
1727), and later by Leonhard Euler (1707–1783), Joseph-Louis Lagrange (1736–1813), Pierre-
Simon Laplace (1749–1827), etc., take place in a Galilean spacetime. By this we mean that
when talking about Newtonian mechanics we should have in mind a particular model for
physical space in which our objects are moving, and means to measure how long an event
takes. Some of what we say in this section may be found in the first chapter of [Arnol’d 1989]
and in the paper [Artz 1981]. The presentation here might seem a bit pretentious, but the
idea is to emphasise that Newtonian mechanics is a axio-deductive system, with all the
advantages and disadvantages therein.

1.1.1 Affine spaces In this section we introduce a concept that bears some resem-
blance to that of a vector space, but is different in a way that is perhaps a bit subtle. An
affine space may be thought of as a vector space “without an origin.” Thus it makes sense
only to consider the “difference” of two elements of an affine space as being a vector. The
elements themselves are not to be regarded as vectors. For a more thorough discussion of
affine spaces and affine geometry we refer the reader to the relevant sections of [Berger 1987].

1.1.1 Definition Let V be a R-vector space. An affine space modelled on V is a set A and
a map φ : V × A→ A with the properties

AS1. for every x, y ∈ A there exists v ∈ V so that y = φ(v, x),

AS2. φ(v, x) = x for every x ∈ A implies that v = 0,

AS3. φ(0, x) = x, and

AS4. φ(u+ v, x) = φ(u, φ(v, x)). �
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We shall now cease to use the map φ and instead use the more suggestive notation φ(v, x) =
v + x. By properties AS1 and AS2, if x, y ∈ A then there exists a unique v ∈ V such that
v + x = y. In this case we shall denote v = y − x. Note that the minus sign is simply
notation; we have not really defined “subtraction” in A! The idea is that to any two points
in A we may assign a unique vector in V and we notationally write this as the difference
between the two elements. All this leads to the following result.

1.1.2 Proposition Let A be a R-affine space modelled on V. For fixed x ∈ A define vector
addition on A by

y1 + y2 = ((y1 − x) + (y2 − x)) + x

(note y1 − x, y2 − x ∈ V) and scalar multiplication on A by

ay = (a(y − x)) + x

(note that y − x ∈ V). These operations make a A a R-vector space and y 7→ y − x is an
isomorphism of this R-vector space with V.

This result is easily proved once all the symbols are properly understood (see Exercise E1.1).
The gist of the matter is that for fixed x ∈ A we can make A a R-vector space in a natural
way, but this does depend on the choice of x. One can think of x as being the “origin” of
this vector space. Let us denote this vector space by Ax to emphasise its dependence on x.

A subset B of a R-affine space A modelled on V is an affine subspace if there is a
subspace U of V with the property that y − x ∈ U for every x, y ∈ B. That is to say,
B is an affine subspace if all of its points “differ” by some subspace of V . In this case B
is itself a R-affine space modelled on U . The following result further characterises affine
subspaces. Its proof is a simple exercise in using the definitions and we leave it to the reader
(see Exercise E1.2).

1.1.3 Proposition Let A be a R-affine space modelled on the R-vector space V and let B ⊂ A.
The following are equivalent:

(i) B is an affine subspace of A;

(ii) there exists a subspace U of V so that for some fixed x ∈ B, B = {u + x | u ∈ U};
(iii) if x ∈ B then {y − x | y ∈ B} ⊂ V is a subspace.

1.1.4 Example A R-vector space V is a R-affine space modelled on itself. To emphasise the
difference between V the R-affine space and V the R-vector space we denote points in the
former by x, y and points in the latter by u, v. We define v + x (the affine sum) to be v + x
(the vector space sum). If x, y ∈ V then y−x (the affine difference) is simply given by y−x
(the vector space difference). Figure 1.1 tells the story. The essential, and perhaps hard to
grasp, point is that u and v are not to be regarded as vectors, but simply as points.

An affine subspace of the affine space V is of the form x+U (affine sum) for some x ∈ V
and a subspace U of V . Thus an affine subspace is a “translated” subspace of V . Note that
in this example this means that affine subspaces do not have to contain 0 ∈ V—affine spaces
have no origin. �

Maps between vector spaces that preserve the vector space structure are called linear
maps. There is a similar class of maps between affine spaces. If A and B are R-affine spaces
modelled on V and U , respectively, a map f : A→ B is a R-affine map if for each x ∈ A,
f is a R-linear map between the R-vector spaces Ax and Bf(x).
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the vector space V the affine space V

Figure 1.1 A vector space can be thought of as an affine space

1.1.5 Example (1.1.4 cont’d) Let V and U be R-vector spaces that we regard as R-affine
spaces. We claim that every R-affine map is of the form f : x 7→ Ax + y0 where A is a
R-linear map and y0 ∈ U is fixed.

First let us show that a map of this form is a R-affine map. Let x1, x2 ∈ Ax for some
x ∈ V . Then we compute

f(x1 + x2) = f((x1 − x) + (x2 − x) + x)

= f(x1 + x2 − x)

= A(x1 + x2 − x) + y0,

and

f(x1) + f(x2) =
(
((Ax1 + y0)− (Ax+ y0)) + ((Ax2 + y0)− (Ax+ y0))

)
+ Ax+ y0

= A(x1 + x2 − x) + y0

showing that f(x1 +x2) = f(x1)+ f(x2). The above computations will look incorrect unless
you realise that the +-sign is being employed in two different ways. That is, when we write
f(x1 + x2) and f(x1) + f(x2), addition is in Vx and Uf(x), respectively. Similarly one show
that f(ax1) = af(x1) which demonstrates that f in a R-affine map.

Now we show that any R-affine map must have the form given for f . Let 0 ∈ V be the
zero vector. For x1, x2 ∈ V0 we have

f(x1 + x2) = f((x1 − 0) + (x2 − 0) + 0) = f(x1 + x2),

where the +-sign on the far left is addition in V0 and on the far right is addition in V .
Because f : V0 → Uf(0) is R-linear, we also have

f(x1 + x2) = f(x1) + f(x2) = (f(x1)− f(0)) + (f(x2)− f(0)) + f(0) = f(x1) + f(x2)− f(0).

Again, on the far left the +-sign is for Uf(0) and on the far right is for U . Thus we have
shown that, for regular vector addition in V and U we must have

f(x1 + x2) = f(x1) + f(x2)− f(0). (1.1)

Similarly, using linearity of f : V0 → Uf(0) under scalar multiplication we get

f(ax1) = a(f(x1)− f(0)) + f(0), (1.2)
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for a ∈ R and x1 ∈ Vx. Here, vector addition is in V and U . Together (1.1) and (1.2)
imply that the map V ∈ x 7→ f(x) − f(0) ∈ U is R-linear. This means that there exists
A ∈ L(V ;U) so that f(x)− f(0) = Ax. After taking y0 = f(0) our claim now follows. �

If A and B are R-affine spaces modelled on R-vector spaces V and U , respectively, then
we may define a R-linear map fV : V → U as follows. Given x0 ∈ A let Ax0 and Bf(x0) be the
corresponding vector spaces as described in Proposition 1.1.2. Recall that Ax0 is isomorphic
to V with the isomorphism x 7→ x− x0 and Bf(x0) is isomorphic to U with the isomorphism
y 7→ y − f(x0). Let us denote these isomorphisms by gx0 : Ax0 → V and gf(x0) : Bf(x0) → U ,
respectively. We then define

fV (v) = gf(x0) ◦f ◦g−1
x0

(v). (1.3)

It only remains to check that this definition does not depend on x0 (see Exercise E1.5).

1.1.6 Example (Example 1.1.4 cont’d) Recall that if V is a R-vector space, then it is an R-
affine space modelled on itself (Example 1.1.4). Also recall that if U is another R-vector
space that we also think of as a R-affine space, then an affine map from V to U looks like
f(x) = Ax+ y0 for a R linear map A and for some y0 ∈ U (Example 1.1.5).

Let’s see what fV looks like in such a case. Well, we can certainly guess what it should
be! But let’s work through the definition to see how it works. Pick some x0 ∈ V so that

gx0(x) = x− x0, gf(x0)(y) = y − f(x0) = y − Ax0 − y0.

We then see that
g−1

x0
(v) = v − x0.

Now apply the definition (1.3):

fV (v) = gf(x0) ◦f ◦g−1
x0

(v)

= gf(x0) ◦f(v + x0)

= gf(x0)(A(v + x0) + y0)

= A(v + x0) + y0 − Ax0 − y0

= Av.

Therefore we have laboriously derived what can be the only possible answer: fV = A! �

Finally, let us talk briefly about convexity, referring to [Berger 1987] for more details.
We shall really only refer to this material once (see Lemma 1.5.2), so this material can be
skimmed liberally if one is so inclined. A subset C of an affine space A is convex if for any
two points x, y ∈ C the set

`x,y = {t(y − x) + x | t ∈ [0, 1]}

is contained in C. This simply means that a set is convex if the line connecting any two
points in the set remains within the set. For a given, not necessarily convex, subset S of A
we define

co(S) =
⋂
C

{C is a convex set containing S}

to be the convex hull of S. Thus co(S) is the smallest convex set containing S. For
example, the convex hull of a set of two distinct points S = {x, y} will be the line `x,y, and
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the convex hull of three non-collinear points S = {x, y, z} will be the triangle with the points
as vertices.

The following characterisation of a convex set will be useful. We refer to Appendix B for
the definition of relative interior.

1.1.7 Proposition Let A be an affine space modelled on V and let C ( A be a convex set. If
x ∈ A is not in the relative interior of C then there exists λ ∈ V∗ so that C ⊂ Vλ + x where

Vλ = {v ∈ V | λ(v) > 0} .

The idea is simply that a convex set can be separated from its complement by a hyperplane
as shown in Figure 1.2. The vector λ ∈ V ∗ can be thought of as being “orthogonal” to the

C

λ

Vλ

x

Figure 1.2 A hyperplane separating a convex set from its comple-
ment

hyperplane Vλ.

1.1.2 Time and distance We begin by giving the basic definition of a Galilean space-
time, and by providing meaning to intuitive notions of time and distance.

1.1.8 Definition A Galilean spacetime is a quadruple G = (E , V, g, τ) where

GSp1. V is a 4-dimensional vector space,

GSp2. τ : V → R is a surjective linear map called the time map,

GSp3. g is an inner product on ker(τ), and

GSp4. E is an affine space modelled on V . �

Points in E are called events—thus E is a model for the spatio-temporal world of Newtonian
mechanics. With the time map we may measure the time between two events x1, x2 ∈ E
as τ(x2 − x1) (noting that x1 − x2 ∈ V ). Note, however, that it does not make sense to
talk about the “time” of a particular event x ∈ E , at least not in the way you are perhaps
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tempted to do. If x1 and x2 are events for which τ(x2 − x1) = 0 then we say x1 and x2 are
simultaneous .

Using the lemma, we may define the distance between simultaneous events x1, x2 ∈ E
to be

√
g(x2 − x1, x2 − x1). Note that this method for defining distance does not allow us

to measure distance between events that are not simultaneous. In particular, it does not
make sense to talk about two non-simultaneous events as occuring in the same place (i.e., as
separated by zero distance). The picture one should have in mind for a Galilean spacetime is
of it being a union of simultaneous events, nicely stacked together as depicted in Figure 1.3.
That one cannot measure distance between non-simultaneous events reflects there being no

Figure 1.3 Vertical dashed lines represent simultaneous events

natural direction transverse to the stratification by simultaneous events.
Also associated with simultaneity is the collection of simultaneous events. For a given

Galilean spacetime G = (E , V, g, τ) we denote by

IG = {S ⊂ E | S is a collection of simultaneous events}

the collection of all simultaneous events. We shall frequently denote a point in IG by s, but
keep in mind that when we do this, s is actually a collection of simultaneous events. We will
denote by πG : E → IG the map that assigns to x ∈ E the set of points simultaneous with x.
Therefore, if s0 = πG (x0) then the set

π−1
G (s0) = {x ∈ E | πG (x) = s0}

is simply a collection of simultaneous events. Given some s ∈ IG , we denote by E (s) those
events x for which πG (x) = s.

1.1.9 Lemma For each s ∈ IG , E (s) is a 3-dimensional affine space modelled on ker(τ).

Proof The affine action of ker(τ) on E (s) is that obtained by restricting the affine action of
V on E . So first we must show this restriction to be well-defined. That is, given v ∈ ker(τ) we
need to show that v+x ∈ E (s) for every x ∈ E (s). If x ∈ E (s) then τ((v+x)−x) = τ(v) = 0
which means that v+x ∈ E (s) as claimed. The only non-trivial part of proving the restriction



03/04/2003 1.1 Galilean spacetime 7

defines an affine structure is showing that the action satisfies part AS1 of the definition of
an affine space. However, this follows since, thought of as a R-vector space (with some
x0 ∈ E (s) as origin), E (s) is a 3-dimensional subspace of E . Indeed, it is the kernel of the
linear map x 7→ τ(x− x0) that has rank 1. �

Just as a single set of simultaneous events is an affine space, so too is the set of all
simultaneous events.

1.1.10 Lemma IG is a 1-dimensional affine space modelled on R.

Proof The affine action of R on IG is defined as follows. For t ∈ R and s1 ∈ IG , we define
t+ s1 to be s2 = πG (x2) where τ(x2− x1) = t for some x1 ∈ E (s1) and x2 ∈ E (s2). We need
to show that this definition is well-defined, i.e., does not depend on the choices made for x1

and x2. So take x′1 ∈ E (s1) and x′2 ∈ E (s2). Since x′1 ∈ E (s1) we have x′1− x1 = v1 ∈ ker(τ)
and similarly x′2 − x2 = v2 ∈ ker(τ). Therefore

τ(x′2 − x′1) = τ((v2 + x2)− (v1 + x1)) = τ((v2 − v1) + (x2 − x1)) = τ(x2 − x1),

where we have used associativity of affine addition. Therefore, the condition that τ(x2−x1) =
t does not depend on the choice of x1 and x2. �

One should think of IG as being the set of “times” for a Galilean spacetime, but it is
an affine space, reflecting the fact that we do not have a distinguished origin for time (see
Figure 1.4). Following Artz [1981], we call IG the set of instants in the Galilean spacetime

E (s)

s

Figure 1.4 The set of instants IG

G , the idea being that each of the sets E (s) of simultaneous events defines an instant.
The Galilean structure also allows for the use of the set

VG = {v ∈ V | τ(v) = 1} .
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The interpretation of this set is, as we shall see, that of a Galilean invariant velocity. Let us
postpone this until later, and for now merely observe the following.

1.1.11 Lemma VG is a 3-dimensional affine space modelled on ker(τ).

Proof Since τ is surjective, VG is nonempty. We claim that if u0 ∈ VG then

VG = {u0 + v | v ∈ ker(τ)} .

Indeed, let u ∈ VG . Then τ(u− u0) = τ(u)− τ(u0) = 1− 1 = 0. Therefore u− u0 ∈ ker(τ)
so that

VG ⊂ {u0 + v | v ∈ ker(τ)} . (1.4)

Conversely, if u ∈ {u0 + v | v ∈ ker(τ)} then there exists v ∈ ker(τ) so that u = u0 + v.
Thus τ(u) = τ(u0 + v) = τ(u0) = 1, proving the opposite inclusion.

With this in mind, we define the affine action of ker(τ) on VG by v + u = v + u, i.e., the
natural addition in V . That this is well-defined follows from the equality (1.4). �

To summarise, given a Galilean spacetime G = (E , V, g, τ), there are the following objects
that one may associated with it:

1. the 3-dimensional vector space ker(τ) that, as we shall see, is where angular velocities
and acceleration naturally live;

2. the 1-dimensional affine space IG of instants;

3. for each s ∈ IG , the 3-dimensional affine space E (s) of events simultaneous with E ;

4. the 3-dimensional affine space VG of “Galilean velocities.”

We shall be encountering these objects continually throughout our development of mechanics
in Galilean spacetimes.

When one think of Galilean spacetime, one often has in mind a particular example.

1.1.12 Example We let E = R3×R ' R4 which is an affine space modelled on V = R4 in the
natural way (see Example 1.1.4). The time map we use is given by τcan(v

1, v2, v3, v4) = v4.
Thus

ker(τcan) =
{

(v1, v2, v3, v4) ∈ V
∣∣ v4 = 0

}
is naturally identified with R3, and we choose for g the standard inner product on R3 that
we denote by gcan. We shall call this particular Galilean spacetime the standard Galilean
spacetime .

(Notice that we write the coordinates (v1, v2, v3, v4) with superscripts . This will doubtless
cause some annoyance, but as we shall see in Section 2.1, there is some rhyme and reason
behind this.)

Given two events ((x1, x2, x3), s) and ((y1, y2, y3), t) one readily verifies that the time
between these events is t− s. The distance between simultaneous events ((x1, x2, x3), t) and
((y1, y2, y3), t) is then√

(y1 − x1)2 + (y2 − x2)2 − (y3 − x3)2 = ‖y − x‖

where ‖·‖ is thus the standard norm on R3.
For an event x = ((x1

0, x
2
0, x

3
0), t), the set of events simultaneous with x is

E (t) =
{

((x1, x2, x3), t)
∣∣ xi = xi

0, i = 1, 2, 3
}
.
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The instant associated with x is naturally identified with t ∈ R, and this gives us a simple
identification of IG with R. We also see that

VG =
{

(v1, v2, v3, v4) ∈ V
∣∣ v4 = 1

}
,

and so we clearly have VG = (0, 0, 0, 1) + ker(τcan). �

1.1.3 Observers An observer is to be thought of intuitively as someone who is present
at each instant, and whose world behaves as according to the laws of motion (about which,
more later). Such an observer should be moving at a uniform velocity. Note that in a
Galilean spacetime, the notion of “stationary” makes no sense. We can be precise about an
observer as follows. An observer in a Galilean spacetime G = (E , V, g, τ) is a 1-dimensional
affine subspace O of E with the property that O ( E (s) for any s ∈ IG . That is, the affine
subspace O should not consist wholly of simultaneous events. There are some immediate
implications of this definition.

1.1.13 Proposition If O is an observer in a Galilean spacetime G = (E ,V, g, τ) then for each
s ∈ IG there exists a unique point x ∈ O ∩ E (s).

Proof It suffices to prove the proposition for the canonical Galilean spacetime. (The reason
for this is that, as we shall see in Section 1.2.4, a “coordinate system” has the property
that it preserves simultaneous events.) We may also suppose that (0, 0) ∈ O. With these
simplifications, the observer is then a 1-dimensional subspace passing through the origin in
R3 ×R. What’s more, since O is not contained in a set of simultaneous events, there exists
a point of the form (x, t) in O where t 6= 0. Since O is a subspace, this means that all
points (ax, at) must also be in O for any a ∈ R. This shows that O ∩ E (s) is nonempty for
every s ∈ IG . That O ∩ E (s) contains only one point follows since 1-dimensionality of O
ensures that the vector (x, t) is a basis for O. Therefore any two distinct points (a1x, a1t)
and (a2x, a2t) in O will not be simultaneous. �

We shall denote by Os the unique point in the intersection O ∩ E (s).
This means that an observer, as we have defined it, does indeed have the property of

sitting at a place, and only one place, at each instant of time (see Figure 1.5). However,
the observer should also somehow have the property of having a uniform velocity. Let us
see how this plays out with our definition. Given an observer O in a Galilean spacetime
G = (E , V, g, τ), let U ⊂ V be the 1-dimensional subspace upon which O is modelled. There
then exists a unique vector vO ∈ U with the property that τ(vO) = 1. We call vO the
Galilean velocity of the observer O. Again, it makes no sense to say that an observer is
stationary, and this is why we must use the Galilean velocity.

An observer O in a Galilean spacetime G = (E , V, g, τ) with its Galilean velocity vO

enables us to resolve other Galilean velocities into regular velocities. More generally, it
allows us to resolve vectors in v ∈ V into a spatial component to go along with their
temporal component τ(v). This is done by defining a linear map PO : V → ker(τ) by

PO(v) = v − (τ(v))vO .

(Note that τ(v− (τ(v))vO) = τ(v)− τ(v)τ(vO) = 0 so PO(v) in indeed in ker(τ).) Following
Artz [1981], we call PO the O-spatial projection . For Galilean velocities, i.e., when v ∈
VG ⊂ V , PO(v) can be thought of as the velocity of v relative to the observer’s Galilean
velocity vO . The following trivial result says just this.
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O

O ∩ E (s)

E (s)

Figure 1.5 The idea of an observer

1.1.14 Lemma If O is an observer in a Galilean spacetime G = (E ,V, g, τ) and if v ∈ VG ,
then v = vO + PO(v).

Proof This follows since τ(v) = 1 when v ∈ VG . �

The following is a very simple example of an observer in the canonical Galilean spacetime,
and represents the observer one unthinkingly chooses in this case.

1.1.15 Example We let Gcan = (R3 × R,R4, gcan, τcan) be the canonical Galilean spacetime.
The canonical observer is defined by

Ocan = {(0, t) | t ∈ R} .

Thus the canonical observer sits at the origin in each set of simultaneous events. �

1.1.4 Planar and linear spacetimes When dealing with systems that move in a plane
or a line, things simplify to an enormous extent. But how does one talk of planar or linear
systems in the context of Galilean spacetimes? The idea is quite simple.

1.1.16 Definition Let G = (E , V, g, τ) be a Galilean spacetime. A subset F of E is a sub-
spacetime if there exists a nontrivial subspace U of V with the property that

Gsub1. F is an affine subspace of E modelled on U and

Gsub2. τ |U : U → R is surjective.

The dimension of the sub-spacetime F is the dimension of the subspace U . �

Let us denote Uτ = U ∩ ker(τ). The idea then is simply that we obtain a “new” spacetime
H = (F , U, g|Uτ , τ |U) of smaller dimension. We shall often refer to H so defined as the
sub-spacetime interchangeably with F . The idea of condition Gsub2 is that the time map
should still be well defined. If we were to choose F so that its model subspace U were a
subset of ker(τ) then we would lose our notion of time.
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1.1.17 Examples If (E = R3×R, V = R4, gcan, τcan) is the standard Galilean spacetime, then
we may choose “natural” planar and linear sub-spacetimes as follows.

1. For the planar sub-spacetime, take

F3 =
{

((x, y, z), t) ∈ R3 × R
∣∣ z = 0

}
,

and
U3 =

{
(u, v, w, s) ∈ R4

∣∣ w = 0
}
.

Therefore, F3 looks like R2 × R and we may use coordinates ((x, y), t) as coordinates.
Similarly U3 looks like R3 and we may use (u, v, s) as coordinates. With these coordinates
we have

ker(τcan|U3) =
{

(u, v, s) ∈ R3
∣∣ s = 0

}
,

so that gcan restricted to ker(τcan) is the standard inner product on R2 with coordinates
(u, v). One then checks that with the affine structure as defined in Example 1.1.12, H3 =
(F3, U3, gcan|U3,τcan , τcan|U3) is a 3-dimensional Galilean sub-spacetime of the canonical
Galilean spacetime.

2. For the linear sub-spacetime we define

F2 =
{

((x, y, z), t) ∈ R3 × R
∣∣ y = z = 0

}
,

and
U2 =

{
(u, v, w, s) ∈ R4

∣∣ v = w = 0
}
.

Then, following what we did in the planar case, we use coordinates (x, t) for F2 and
(u, s) for U2. The inner product for the sub-spacetime is then the standard inner product
on R with coordinate u. In this case one checks that H2 = (F2, U2, gcan|U2τcan , τcan|U2)
is a 2-dimensional Galilean sub-spacetime of the canonical Galilean spacetime.

The 3-dimensional sub-spacetime of 1 we call the canonical 3-dimensional Galilean
sub-spacetime and the 2-dimensional sub-spacetime of 2 we call the canonical 2-
dimensional Galilean sub-spacetime . �

The canonical 3 and 2-dimensional Galilean sub-spacetimes are essentially the only ones
we need consider, in the sense of the following result. We pull a lassez-Bourbaki, and use
the notion of a coordinate system before it is introduced. You may wish to refer back to this
result after reading Section 1.2.4.

1.1.18 Proposition If G = (E ,V, g, τ) is a Galilean spacetime and F is a k-dimensional
sub-spacetime, k ∈ {2, 3}, modelled on the subspace U of V, then there exists a coordinate
system φ with the property that

(i) φ(F ) = Fk,

(ii) φV(U) = Uk,

(iii) τ ◦φ−1
V = τcan|Uk, and

(iv) g(u, v) = gcan(φV(u), φV(v)) for u, v ∈ U.

Proof F is an affine subspace of E and U is a subspace of V . Since U 6⊂ ker(τ), we must
have dim(U ∩ ker(τcan)) = k − 1. Choose a basis B = {v1, . . . , vk, vk+1} for V with the
properties

1. {v1, . . . , vk−1} is a g-orthonormal basis for U ,
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2. {v1, . . . , vk} is a g-orthonormal basis for V , and

3. τ(vk+1) = 1.

This is possible since U 6⊂ ker(τ). We may define an isomorphism from V to R4 using the
basis we have constructed. That is, we define iB : V → R4 by

iB(a1v1 + a2v2 + a3v3 + a4v4) = (a1, a2, a3, a4).

Now choose x ∈ F and let Ex be the vector space as in Proposition 1.1.2. The isomor-
phism from Ex to V let us denote by gx : E → V . Now define a coordinate system φ by
φ = iB ◦gx. By virtue of the properties of the basis B, it follows that φ has the properties
as stated in the proposition. �

Let G = (E , V, g, τ) be a Galilean spacetime with H = (F , U, g|Uτ , τ |U) a sub-
spacetime. An observer O for G is H -compatible if O ⊂ F ⊂ E .

1.2 Galilean mappings and the Galilean transformation group

It is useful to talk about mappings between Galilean spacetimes that preserve the struc-
ture of the spacetime, i.e., preserve notions of simultaneity, distance, and time lapse. It turns
out that the collection of such mappings possesses a great deal of structure. One important
aspect of this structure is that of a group, so you may wish to recall the definition of a
group.

1.2.1 Definition A group is a set G with a map from G × G to G, denoted (g, h) 7→ gh,
satisfying,

G1. g1(g2g3) = (g1g2)g3 (associativity),

G2. there exists e ∈ G so that eg = ge = g for all g ∈ G (identity element), and

G3. for each g ∈ G there exists g−1 ∈ G so that g−1g = gg−1 = e (inverse).

If gh = hg for every g, h ∈ G we say G is Abelian .
A subset H of a group G is a subgroup if h1h2 ∈ H for every h1, h2 ∈ H. �

You will recall, or easily check, that the set of invertible n × n matrices forms a group
where the group operation is matrix multiplication. We denote this group by GL(n; R),
meaning the general linear group. The subset O(n) of GL(n; R) defined by

O(n) =
{

A ∈ GL(n; R) | AAt = In

}
,

is a subgroup of GL(n; R) (see Exercise E1.7), and

SO(n) = {A ∈ O(n) | det A = 1}

is a subgroup of O(n) (see Exercise E1.8). (I am using At to denote the transpose of A.)

1.2.1 Galilean mappings We will encounter various flavours of maps between Galilean
spacetimes. Of special importance are maps from the canonical Galilean spacetime to itself,
and these are given special attention in Section 1.2.2. Also important are maps from a
given Galilean spacetime into the canonical Galilean spacetime, and these are investigated
in Section 1.2.4. But such maps all have common properties that are best illustrated in a
general context as follows.
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1.2.2 Definition A Galilean map between Galilean spacetimes G1 = (E1, V1, g1, τ1) and
G2 = (E2, V2, g2, τ2) is a map ψ : E1 → E2 with the following properties:

GM1. ψ is an affine map;

GM2. τ2(ψ(x1)− ψ(x2)) = τ1(x1 − x2) for x1, x2 ∈ E1;

GM3. g2(ψ(x1)−ψ(x2), ψ(x1)−ψ(x2)) = g1(x1−x2, x1−x2) for simultaneous events x1, x2 ∈
E1. �

Let us turn now to discussing the special cases of Galilean maps.

1.2.2 The Galilean transformation group A Galilean map φ : R3×R → R3×R from
the standard Galilean spacetime to itself is called a Galilean transformation . It is not
immediately apparent from the definition of a Galilean map, but a Galilean transformation is
invertible. In fact, we can be quite specific about the structure of a Galilean transformation.

The following result shows that the set of Galilean transformations forms a group under
composition.

1.2.3 Proposition If φ : R3×R → R3×R is a Galilean transformation, then φ may be written
in matrix form as

φ :

(
x
t

)
7→
[
R v
0t 1

](
x
t

)
+

(
r
σ

)
(1.5 )

where R ∈ O(3), σ ∈ R, and r,v ∈ R3. In particular, the set of Galilean transformations is
a 10-dimensional group that we call the Galilean transformation group and denote by
Gal.

Proof We first find the form of a Galilean transformation. First of all, since φ is an affine
map, it has the form φ(x, t) = A(x, t) + (r, σ) where A : R3 × R → R3 × R is R-linear and
where (r, σ) ∈ R3×R (see Example 1.1.5). Let us write A(x, t) = (A11x+A12t, A21x+A22t)
where A11 ∈ L(R3; R3), A12 ∈ L(R; R3), A21 ∈ L(R3; R), and A22 ∈ L(R; R). By GM3, A11

is an orthogonal linear transformation of R3. GM2 implies that

A22(t2 − t1) + A21(x2 − x1) = t2 − t1, t1, t2 ∈ R, x1,x2 ∈ R3.

Thus, taking x1 = x2, we see that A22 = 1. This in turn requires that A21 = 0. Gathering
this information together shows that a Galilean transformation has the form given by (1.5).

To prove the last assertion of the proposition let us first show that the inverse of a
Galilean transformation exists, and is itself a Galilean transformation. To see this, one need
only check that the inverse of the Galilean transformation in (1.5) is given by

φ−1 :

(
x
t

)
7→
[
R−1 −R−1v
0t 1

](
x
t

)
+

(
R−1(σv − r)

−σ

)
.

If φ1 and φ2 are Galilean transformations given by

φ1 ◦φ2 : :

(
x
t

)
7→
[
R1 v1

0t 1

](
x
t

)
+

(
r1

σ1

)
,

(
x
t

)
7→
[
R2 v2

0t 1

](
x
t

)
+

(
r2

σ2

)
,

we readily verify that φ1 ◦φ2 is given by(
x
t

)
7→
[
R1R2 v1 + R1v2

0 1

](
x
t

)
+

(
r1 + R1r2 + σ2v1

σ1 + σ2

)
.



14 1 Newtonian mechanics in Galilean spacetimes 03/04/2003

This shows that the Galilean transformations form a group. We may regard this group as
a set to be R3 ×O(3)× R3 × R with the correspondence mapping the Galilean transforma-
tion (1.5) to (v,R, σ, r). Since the rotations in 3-dimensions are 3-dimensional, the result
follows. �

1.2.4 Remark In the proof we assert that dim(O(3)) = 3. In what sense does one interpret
“dim” in this expression? It is certainly not the case that O(3) is a vector space. But on the
other hand, we intuitively believe that there are 3 independent rotations in R3 (one about
each axis), and so the set of rotations should have dimension 3. This is all true, but the
fact of the matter is that to make the notion of “dimension” clear in this case requires that
one know about “Lie groups,” and these are just slightly out of reach. We will approach a
better understanding of these matters in Section 2.1 �

Note that we may consider Gal to be a subgroup of the 100-dimensional matrix group
GL(10; R). Indeed, one may readily verify that the subgroup of GL(10; R) consisting of those
matrices of the form 

1 σ 0 0 0 0
0 1 0t 0 0t 0
0 0 R r 03×3 0
0 0 0t 1 0t 0
0 0 03×3 0 R v
0 0 0t 0 0t 1


is a subgroup that is isomorphic to Gal under matrix composition: the isomorphism maps
the above 10× 10 matrix to the Galilean transformation given in (1.5).

Thus a Galilean transformation may be written as a composition of one of three basic
classes of transformations:

1. A shift of origin: (
x
t

)
7→
(

x
t

)
+

(
r
σ

)
for (r, σ) ∈ R3 × R.

2. A rotation of reference frame: (
x
t

)
7→
[
R 0
0t 1

](
x
t

)
for R ∈ O(3).

3. A uniformly moving frame: (
x
t

)
7→
[
03×3 v
0t 1

](
x
t

)
for v ∈ R3.

The names we have given these fundamental transformations are suggestive. A shift of origin
should be thought of as moving the origin to a new position, and resetting the clock, but
maintaining the same orientation in space. A rotation of reference frame means the origin
stays in the same place, and uses the same clock, but rotates their “point-of-view.” The final
basic transformation, a uniformly moving frame, means the origin maintains its orientation
and uses the same clock, but now moves at a constant velocity relative to the previous origin.
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1.2.3 Subgroups of the Galilean transformation group In the previous section we
saw that elements of the Galilean transformation group Gal are compositions of temporal
and spatial translations, spatial rotations, and constant velocity coordinate changes. In this
section we concern ourselves with a more detailed study of certain subgroups of Gal.

Of particular interest in applications is the subgroup of Gal consisting of those Galilean
transformations that do not change the velocity. Let us also for the moment restrict attention
to Galilean transformations that leave the clock unchanged. Galilean transformations with
these two properties have the form(

x
t

)
7→
[
R 0
0t 1

](
x
t

)
+

(
r
0

)
for r ∈ R3 and R ∈ O(3). Since t is fixed, we may as well regard such transformations as
taking place in R3.1 These Galilean transformations form a subgroup under composition,
and we call it the Euclidean group that we denote by E(3). One may readily verify that
this group may be regarded as the subgroup of GL(4; R) consisting of those matrices of the
form [

R r
0t 1

]
. (1.6)

The Euclidean group is distinguished by its being precisely the isometry group of R3 (we
refer to [Berger 1987] for details about the isometry group of Rn).

1.2.5 Proposition A map φ : R3 → R3 is an isometry (i.e., ‖φ(x)− φ(y)‖ = ‖x− y‖ for all
x,y ∈ R3) if and only if φ ∈ E(3).

Proof Let gcan denote the standard inner product on R3 so that ‖x‖ =
√
gcan(x,x). First

suppose that φ is an isometry that fixes 0 ∈ R3. Recall that the norm on an inner product
space satisfies the parallelogram law:

‖x + y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2 )

(see Exercise E1.9). Using this equality, and the fact that φ is an isometry fixing 0, we
compute

‖φ(x) + φ(y)‖2 = 2 ‖φ(x)‖2 + 2 ‖φ(y)‖2 − ‖φ(x)− φ(y)‖2

= 2 ‖x‖2 + 2 ‖y‖2 − ‖x− y‖2 = ‖x + y‖2 .
(1.7)

It is a straightforward computation to show that

gcan(x,y) =
1

2

(
‖x + y‖2 − ‖x‖2 − ‖y‖2)

for every x,y ∈ R3. In particular, using (1.7) and the fact that φ is an isometry fixing 0,
we compute

gcan(φ(x), φ(y)) =
1

2

(
‖φ(x) + φ(y)‖2 − ‖φ(x)‖2 − ‖φ(y)‖2)

=
1

2

(
‖x + y‖2 − ‖x‖2 − ‖y‖2) = gcan(x,y).

We now claim that this implies that φ is linear. Indeed, let {e1, e2, e3} be the standard
orthonormal basis for R3 and let (x1, x2, x3) be the components of x ∈ R3 in this basis (thus

1One should think of this copy of R3 as being a collection of simultaneous events.
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xi = gcan(x, ei), i = 1, 2, 3). Since gcan(φ(ei), φ(ej)) = gcan(ei, ej), i, j = 1, 2, 3, the vectors
{φ(e1), φ(e2), φ(e3)} form an orthonormal basis for R3. The components of φ(x) in this
basis are given by {gcan(φ(x), φ(ei)) | i = 1, 2, 3}. But since φ preserves gcan, this means
that the components of φ(x) are precisely (x1, x2, x3). That is,

φ

(
3∑

i=1

xiei

)
=

3∑
i=1

xiφ(ei).

Thus φ is linear. This shows that φ ∈ O(3).
Now suppose that φ fixes not 0, but some other point x0 ∈ R3. Let Tx0 be translation

by x0: Tx0(x) = x + x0. Then we have Tx0
◦φ ◦T−1

x0
(0) = 0. Since Tx0 ∈ E(3), and since

E(3) is a group, this implies that Tx0
◦φ ◦T−1

x0
∈ O(3). In particular, φ ∈ E(3).

Finally, suppose that φ maps x1 to x2. In this case, letting x0 = x1 − x2, we have
Tx0

◦φ(x1) = x1 and so Tx0
◦φ ∈ E(3). Therefore φ ∈ E(3).

To show that φ ∈ E(3) is an isometry is straightforward. �

Of particular interest are those elements of the Euclidean group for which R ∈ SO(3) ⊂
O(3). This is a subgroup of E(3) (since SO(3) is a subgroup of O(3)) that is called the
special Euclidean group and denoted by SE(3). We refer the reader to [Murray, Li and
Sastry 1994, Chapter 2] for an in depth discussion of SE(3) beyond what we say here.

The Euclidean group possesses a distinguished subgroup consisting of all translations.
Let us denote by Tr translation by r:

Tr(x) = x + r.

The set of all such elements of SE(3) forms a subgroup that is clearly isomorphic to the
additive group R3.

For sub-spacetimes one can also talk about their transformation groups. Let us look at
the elements of the Galilean group that leave invariant the sub-spacetime F3 of the canonical
Galilean spacetime. Thus we consider a Galilean transformation(

x
t

)
7→
[
R v
0t 1

](
x
t

)
+

(
r
σ

)
(1.8)

for R ∈ SO(3) (the case when R ∈ O(3) \ SO(3) is done similarly), v, r ∈ R3, and σ ∈ R.
Points in F3 have the form ((x, y, 0), t), and one readily checks that in order for the Galilean
transformation (1.8) to map a point in F3 to another point in F3 we must have

R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 , v =

uv
0

 , r =

ξη
0


for some θ, u, v, η, η ∈ R. In particular, if we are in the case of purely spatial transforma-
tions, i.e., when v = 0 and σ = 0, then a Galilean transformation mapping F3 into F3 is
defined by a vector in R2 and a 2×2 rotation matrix. The set of all such transformations is a
subgroup of Gal, and we denote this subgroup by SE(2). Just as we showed that SE(3) is the
set of orientation-preserving isometries of R3, one shows that SE(2) is the set of orientation
preserving isometries of R2. These are simply a rotation in R2 followed by a translation.
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In a similar manner, one shows that the Galilean transformation (1.8) maps points in
F2 to other points in F2 when

R =

1 0 0
0 1 0
0 0 1

 , v =

u0
0

 , r =

ξ0
0

 ,

for some u, ξ ∈ R. Again, when v = 0, the resulting subgroup of Gal is denoted SE(1),
the group of orientation preserving isometries of R1. In this case, this simply amounts to
translations of R1.

1.2.4 Coordinate systems To a rational person it seems odd that we have thus far
disallowed one to talk about the distance between events that are not simultaneous. Indeed,
from Example 1.1.12 it would seem that this should be possible. Well, such a discussion
is possible, but one needs to introduce additional structure. For now we use the notion
of a Galilean map to provide a notion of reference. To wit, a coordinate system for
a Galilean spacetime G is a Galilean map φ : E → R3 × R into the standard Galilean
spacetime. Once we have chosen a coordinate system, we may talk about the “time” of an
event (not just the relative time between two events), and we may talk about the distance
between two non-simultaneous events. Indeed, for x ∈ E we define the φ-time of x by
τcan(φ(x)). Also, given two events x1, x2 ∈ E we define the φ-distance between these events
by ‖pr1(φ(x2)− φ(x1))‖ where pr1 : R3×R → R3 is projection onto the first factor. The idea
here is that a coordinate system φ establishes a distinguished point φ−1(0, 0) ∈ E , called the
origin of the coordinate system, from which times and distances may be measured. But be
aware that this does require the additional structure of a coordinate system!

Associated with a coordinate system are various induced maps. Just like the coordinate
system itself make E “look like” the canonical Galilean spacetime R3×R, the induced maps
make other objects associated with G look like their canonical counterparts.

1. There is an induced vector space isomorphism φV : V → R4 as described by (1.3).

2. If we restrict φV to ker(τ) we may define an isomorphism φτ : ker(τ) → R3 by

φV (v) = (φτ (v), 0), v ∈ ker(τ). (1.9)

This definition makes sense by virtue of the property GM3.

3. A coordinate system φ induces a map φIG
: IG → R by

φ(x) = (x, φIG
(πG (x)))

which is possible for some x ∈ R3. Note that this defines φIG
(πG (x)) ∈ R. One can

readily determine that this definition only depends on s = πG (x) and not on a particular
choice of x ∈ E (s).

4. For a fixed s0 ∈ IG and a coordinate system φ for E we define a map φs0 : E (s0) → R3

by writing
φ(x) = (φs0(x), σ), x ∈ E (s0),

which is possible for some σ ∈ R due to the property GM3 of Galilean maps.

5. The coordinate system φ induces a map φVG
: VG → (0, 0, 0, 1) + ker(τcan) by

φVG
(u) = (0, 0, 0, 1) + φτ (u− u0)

where u0 ∈ VG is defined by φV (u0) = (0, 0, 0, 1).
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Just as with the various spaces ker(τ), E (s), IG , and VG we can associate with a Galilean
spacetime G , we will often encounter the maps φτ , φx, φIG

, and φVG
as we proceed with our

discussion.
We shall often be in a position where we have a representation of an object in a specific

coordinate system, and it is not clear what this object represents, if anything, in terms
of the Galilean spacetime G = (E , V, g, τ). To understand what something “really” is,
one way to proceed is to investigate how its alters if one chooses a different coordinate
system. The picture one should have in mind is shown in Figure 1.6. As is evident from

coordinate
invariant
object

φ′ φ

φ′ ◦φ−1representation
in coordinate

system φ′

representation
in coordinate

system φ

Figure 1.6 Changing coordinate systems

the figure, if we have coordinate systems φ : E → R3 × R and φ′ : E → R3 × R, the map
φ′ ◦φ−1 : R3 × R → R3 × R will tell us what we want to know about how things alter as we
change coordinate systems. The advantage of looking at this map is that it is a map between
canonical spacetimes and we understand the canonical spacetime well. Note that the map
φ′ ◦φ−1 has associated with it maps φ′V ◦φ−1

V , φ′x ◦φ
−1
x , and φ′τ ◦φ

−1
τ telling us, respectively,

how elements in V , E (πG (x)), and ker(τ) transform under changing coordinate systems.
The following result records what these maps look like.

1.2.6 Proposition If φ and φ′ are two coordinate systems for a Galilean spacetime G =
(E ,V, g, τ) then φ′ ◦φ−1 ∈ Gal. Let x0 ∈ E , s0 = πG (x0), and denote (x0, t0) = φ(x0) and
(x′0, t

′
0) = φ′(x0). If φ′ ◦φ−1 is given by

φ′ ◦φ−1 :

(
x
t

)
7→
[
R v
0t 1

](
x
t

)
+

(
r
σ

)
,

then

(i) φ′V ◦φ−1
V satisfies

φ′V ◦φ−1
V :

(
u
s

)
7→
[
R v
0t 1

](
u
s

)
,

(ii) φ′s0 ◦φ
−1
s0

satisfies
φ′s0 ◦φ

−1
s0

: x 7→ Ru + r + t0v,
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(iii) φ′τ ◦φ
−1
τ satisfies

φ′τ ◦φ
−1
τ : u 7→ Ru,

(iv) φ′IG ◦φ−1
IG

satisfies

φ′IG ◦φ−1
IG

: t 7→ t + σ,

and

(v) φ′VG
◦φ−1

VG
satisfies

φ′VG
◦φ−1

VG
: (u, 1) 7→ (Ru + v, 1)

Furthermore, let A: ker(τ) → ker(τ) be a linear map, with A = φτ ◦A ◦φ−1
τ its represen-

tation in the coordinate system φ, and A′ = φ′τ ◦A ◦φ
′−1
τ its representation in the coordinate

system φ′. Then A′ = RAR−1.

Proof (i) The map φ′V ◦φ−1
V is the linear part of the affine map φ′ ◦φ−1. That is

φ′V ◦φ−1
V :

(
u
s

)
7→
[
R v
0t 1

](
u
s

)
.

(ii) φ′s0
◦φ−1

s0
is the restriction of φ′ ◦φ−1 to R3 × {t0}. Thus

φ′s0
◦φ−1

s0
:

(
x
t0

)
7→
[
R v
0t 1

](
x
t0

)
+

(
r

t′0 − t0

)
,

since we are given that φ′(x0) = (x′
0, t

′
0). Since the t-component is fixed in this formula,

φ′s0
◦φ−1

s0
is determined by the x-component, and this is as stated in the proposition.

(iii) By the definition of φτ , the map φ′τ ◦φ
−1
τ from ker(τcan) to ker(τcan) is as stated, given

the form of φ′V ◦φ−1
V from (i).

(iv) For (x, t) ∈ R3×R the set of simultaneous events is identified with t. Then φ′IG
◦φ−1

IG
(t)

is the collection of events simultaneous with φ′ ◦φ−1(x, t). Since φ′ ◦φ−1(x, t) = (x′, t + σ)
for some appropriately chosen x′, this part of the proposition follows.

(v) Let u0 ∈ V be defined by φ(u0) = (0, 0, 0, 1). From (i) we have φ′(u0) = (v, 1).
Therefore for u ∈ ker(τ) we have

φ′VG
◦φ−1

VG
((0, 0, 0, 1) + u) = φV ◦φ−1

V ((0, 0, 0, 1) + u) = (v, 1) + (Ru, 0),

as claimed.
The final assertion of the proposition follows from (iii) and the change of basis formula

for linear maps. �

1.2.5 Coordinate systems and observers We let G = (E , V, g, τ) be a Galilean space-
time with O an observer. A coordinate system φ is O-adapted if (1) φV (vO) = (0, 1) and
(2) φ(O ∩ E (s0)) = (0, 0) for some s0 ∈ IG . We denote the collection of all O-adapted
coordinate systems by Coor(O). The idea is that the coordinate system is O-adapted when
the velocity of the observer is zero in that coordinate system.

The definition we give hides an extra simplification, namely the following.

1.2.7 Proposition If O is an observer in a Galilean spacetime G = (E ,V, g, τ) and if φ ∈
Coor(O), then for each x ∈ E , φ(OπG (x)) = (0, t) for some t ∈ R.
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Proof By definition there exists x0 ∈ E so that φ(OπG (x0)) = (0, 0). This means that φ(O)
will be a 1-dimensional subspace through the origin in R3 × R. Therefore, since O is an
observer, we can write a basis for the subspace φ(O) as (v, 1) for some v ∈ R3. However,
(v, 1) must be φV (vO) so that v = 0. Therefore

φ(O) = {(0, t) | t ∈ R} ,

which is what we were to show. �

The interpretation of this result is straightforward. If at some time an observer sits at the
origin in coordinate system that is adapted to the observer, then the observer must remain
at the origin in that coordinate system for all time since an adapted coordinate system has
the property that it renders the observer stationary.

Let us see how two O-adapted coordinate systems differ from one another.

1.2.8 Proposition Let O be an observer in a Galilean spacetime G = (E ,V, g, τ) with φ, φ′ ∈
Coor(O). We then have

φ′ ◦φ−1 :

(
x
t

)
7→
[
R 0
0t 1

](
x
t

)
+

(
0
σ

)
for some R ∈ O(3) and σ ∈ R.

Proof We will generally have

φ′ ◦φ−1 :

(
x
t

)
7→
[
R v
0t 1

](
x
t

)
+

(
r
σ

)
for R ∈ O(3), v, r ∈ R3, and σ ∈ R so that

φ′V ◦φ−1
V :

(
u
t

)
7→
[
R v
0t 1

](
u
t

)
.

Let vO = φV (vO) and v′O = φV (vO). Since φ, φ′ ∈ Coor(O) we have vO = v′O = (0, 1).
Therefore

φ′V ◦φ−1
V (vO) = (R0 + v, 1) = (0, 1),

from which we deduce that v = 0.
To show that r = 0 we proceed as follows. Since φ ∈ Coor(O) let x0 ∈ O be the point

for which φ(x0) = (0, 0). Since φ′ ∈ Coor(O) we also have φ′(x0) = (0, t0) for some t0 ∈ R
by Proposition 1.2.7. Therefore

φ′ ◦φ−1(0, 0) = (R0 + r, σ) = (0, t0),

so that in particular, r = 0 as desired. �

This is perfectly plausible, of course. If an observer is stationary with respect to two
different coordinate systems, then they should have zero velocity with respect to one another.
Also, if observers sit at the spatial origin in two coordinate systems, then the spatial origins
of the two coordinate systems should “agree.”

In Section 1.2.4 we saw how a coordinate system φ induced a variety of maps that are
used to represent the various objects associated with a Galilean spacetime (e.g., ker(τ), IG ,
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VG ) in the given coordinate system. If we additionally have an observer O along with the
coordinate system φ, there is a map φO : VG → R3 defined by

φO(v) = φτ ◦PO(v). (1.10)

Referring to Lemma 1.1.14 we see that the interpretation of φO is that it is the coordinate
representation of the relative velocity with respect to the observer’s Galilean velocity.

The following coordinate representation of this map will be useful.

1.2.9 Proposition If O is an observer in a Galilean spacetime G = (E ,V, g, τ) and φ is a
coordinate system, then the map φO ◦φ−1

VG
satisfies

φO ◦φ−1
VG

: (u, 1) 7→ u− vO

where vO ∈ R3 is defined by φVG
(vO) = (vO , 1). In particular φO is invertible.

Proof Let u ∈ R3 and let v = φ−1
VG

(u, 1) ∈ VG . We have

φO ◦φ−1
VG

(u, 1) = φτ ◦PO ◦φ−1
VG

(u, 1)

= φτ ◦PO(v)

= φτ

(
v − (τ(v))vO

)
= φτ ◦φ

−1
τ

(
(u, 1)− (vO , 1)

)
= u− vO ,

as claimed. �

If φ is additionally a coordinate system that is O-adapted, then φO has a particularly
simple form.

1.2.10 Corollary If O is an observer in a Galilean spacetime G = (E ,V, g, τ) and φ ∈
Coor(O), then the map φO ◦φ−1

VG
satisfies

φO ◦φ−1
VG

: (u, 1) 7→ u.

1.3 Particle mechanics

In order to get some feeling for the signficance of Galilean spacetimes and Galilean
transformations in mechanics, let us investigate the dynamics of particles, or point masses.
We start with kinematics, following [Artz 1981].

1.3.1 World lines Let G = (E , V, g, τ) be a Galilean spacetime. A world line in G
is a continuous map c : IG → E with the property that c(s) ∈ E (s). The idea is that a world
line assigns to each instant an event that occurs at that instant. What one should think of
is a world line being the spatio-temporal history of something experiencing the spacetime G
(see Figure 1.7). A world line is differentiable at s0 ∈ IG if the limit

lim
t→0

c(t+ s0)− c(s0)

t
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E (s)

s

c(s)

c

Figure 1.7 The idea of a world line

exists. Note that if the limit exists, it is an element of V since c(t + s0) − c(s0) ∈ V and
t ∈ R. Thus, we denote this limit by c′(s0) ∈ V called the velocity of the world line at the
instant s0. Similarly, for a differentiable world line, if the limit

lim
t→0

c′(t+ s0)− c′(s0)

t

exists, we denote it by c′′(s0) which is the acceleration of the world line at the instant s0.
The following properties of velocity and acceleration are useful.

1.3.1 Lemma If c : IG → E is a world line, then c′(s0) ∈ VG and c′′(s0) ∈ ker(τ) for each
s0 ∈ IG where the velocity and acceleration exist.

Proof By the definition of a world line we have

τ(c′(s0)) = lim
t→0

τ(c(t+ s0)− c(s0))

t
= lim

t→0

t

t
= 1,

and

τ(c′′(s0)) = lim
t→0

τ(c′(t+ s0)− c′(s0))

t
= lim

t→0

1− 1

t
= 0.

This completes the proof. �

A world line has a simple form when represented in a coordinate system.

1.3.2 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime and c : IG → E a world line.
If φ is a coordinate system for E then φ ◦c ◦φ−1

IG
has the form t 7→ (x(t), t) for some curve

t 7→ x(t) ∈ R3. Thus φ ◦c ◦φ−1
IG

is a world line in the standard Galilean spacetime.
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Proof Since the map φG maps instants in IG to instants in the canonical Galilean spacetime,
and since φ maps simultaneous events in E to simultaneous events in the canonical Galilean
spacetime, the result follows. �

One readily ascertains that the velocity φV ◦c′ ◦φ−1
IG

and acceleration φV ◦c′′ ◦φ−1
IG

have the
form

t 7→ (ẋ(t), 1), t 7→ (ẍ(t), 0)

in the coordinate system φ.

1.3.2 Interpretation of Newton’s Laws for particle motion One of the basic pos-
tulates of Newtonian mechanics is that there are coordinate systems in which the “laws of
nature” hold. Just what constitutes the laws of nature is something that one cannot get into
too deeply without subjecting oneself to some debate. The essential point is that they are
obtained by observing the physical world, and deriving principles from these observations.
The laws of nature we will deal with include, for example, Newton’s Laws of Motion :2

NL1. First Law: Every body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed upon it.

NL2. Second Law: The change of motion is proportional to the motive force impressed; and
is made in the direction of the right line in which that force is impressed.

NL3. Third Law: To every reaction there is always opposed an equal reaction: or, the mutual
action of two bodies upon each other are always equal, and directed to contrary parts.

A coordinate system in which the laws of nature are valid is called an inertial coordinate
system .

1.3.3 Assumption An inertial coordinate system exists. �

Inertial coordinate systems do not in fact exist. However, we assume that they do for
the purpose of carrying out Newtonian mechanics. Furthermore, we often make choices
of coordinate systems as inertial that have varying degrees of badness. For example, the
infamous “lab frame” is often used as an inertial coordinate system, where one says that
choosing as origin a spot on your workbench, and resetting your clock, defines an inertial
coordinate system. This is a demonstrably bad choice of inertial coordinate system (see
Exercise E1.14). Despite this lack of existence of actual exact inertial frames, we proceed as
if they do exist. And the fact of the matter is that the frames we typically are tempted to
use are often good enough for their intended modest purpose.

Now we can talk about particles in a Galilean spacetime G = (E , V, g, τ). We define a
particle to be a real numberm > 0 that is the mass of the particle. We suppose the particle
resides at x0 ∈ E (s0). An important postulate of Newtonian mechanics the determinacy
principle that states that the world line of a particle is uniquely determined by its initial
position x0 ∈ E and velocity v0 ∈ VG in spacetime. Thus, to determine the time-evolution of
a particle we need to specify its acceleration. This renders Newton’s Second Law to be the
following: for a world line c of a particle of mass m there exists a map F : E × VG → ker(τ)
so that at each point c(s) along the world line c of the particle we have

mc′′(s) = F (c(s), c′(s)), c(s0) = x0, c
′(s0) = v0. (1.11)

2The statements we give are from [Newton 1934]. Newton wrote in Latin, however.
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Thus the mass is the “constant of proportionality” and F is the “impressed force” in Newton’s
Second Law. Note that this equation is somewhat remarkable as it is an observer independent
formulation of the dynamics of a particle.

Now let us see how this relates to the usual observer dependent dynamics one is presented
with. Let O be an observer with φ a coordinate system that is O-adapted. Let us see how
to represent the force F in a coordinate system. We recall that the coordinate system φ
induces a linear map φV from V to R4. The observer also induces a linear map PO from V to
ker(τ) and so a map φO from VG to R3 as in (1.10). We then define Fφ,O : R×R3×R3 → R3

by
Fφ,O(t,x,v) = φτ

(
F (φ−1(x, t), φO ◦φ−1

VG
(v, 1))

)
.

Thus Fφ,O is the representation of the impressed force in the coordinate system φ. By
Corollary 1.2.10 the initial value problem (1.11) is represented in coordinates by

mẍ(t) = Fφ,O

(
t,x(t), ẋ(t)

)
, x(t0) = x0, ẋ(t0) = v0,

where t0 = φIG
(s0). It is these equations that one typically deals with in Newtonian dy-

namics. What we have done is correctly deduce how these are derived from the observer
independent equations (1.11) when one has an observer and a coordinate system adapted to
this observer. Note that if the coordinate system is not O-adapted, then one must replace
ẋ(t) with ẋ(t)− vO , where vO is defined by φVG

(vO) = (vO , 1) (cf. Proposition 1.2.9).
Now let us suppose that we are interested in the dynamics of N particles with masses

m1, . . . ,mN . Each particle will have associated with it its world line c1, . . . , cN . When one
has a collection of particles, one typically wishes to allow that the forces exerted on a particle
depend on the positions and velocities of the other particles. One often also asks that the
force exerted by particle i on particle j at the instant s0 depends only on the position and
velocity of particle i at that same instant.3 Therefore, in order to make sure that the forces
have the proper property, we introduce the following notation:

Ẽ N =
{

(x1, . . . , xN) ∈ E N
∣∣ x1, . . . , xN are simultaneous

}
.

We then define the force exerted on particle i to be a map FI : Ẽ N × V N → ker(τ), so that
the world lines for the entire collection of N particles are governed by the N equations

c′′1(s) = F1(c1(s), . . . , cN(s), c′1(s), . . . , c
′
N(s)), c1(s0) = x10, c

′
1(s0) = v10

...

c′′N(s) = FN(c1(s), . . . , cN(s), c′1(s), . . . , c
′
N(s)), cN(s0) = xN0, c

′
N(s0) = vN0.

Now let us represent these equations with respect to an observer and in a coordinate
system adapted to that observer. Define a map φN : Ẽ N → R× (R3)N by

φN(x1, . . . , xN) = (φIG
(s), φs0(x1), . . . , φs0(xN)),

where x1, . . . , xN ∈ E (s0). We can then define Fi,φ,O : R× (R3)N × (R3)N → R3 by

Fi,φ,O(t,x1, . . . ,xN ,v1, . . . ,vN) =

φτ

(
Fi(φ

−1
N (t,x1, . . . ,xN), φO ◦φ−1

VG
(v1, 1), . . . , φO ◦φ−1

VG
(v1, 1)

)
,

3It is not altogether uncommon for this not to be the case, but let us simplify our presentation by only
dealing with this situation.



03/04/2003 1.4 Rigid motions in Galilean spacetimes 25

for i = 1, . . . , N . This results in the differential equations

m1ẍ1(t) = F1,φ,O(t,x1(t), . . . ,xN(t), ẋ1(t), . . . , ẋN(t)), x1(t0) = x10, ẋ1(0) = v10,

...

mN ẍN(t) = FN,φ,O(t,x1(t), . . . ,xN(t), ẋ1(t), . . . , ẋN(t)), xN(t0) = xN0, ẋN(0) = vN0,

where t0 = φIG
(s0). Note that these are 3N coupled second-order differential equations.

Typically, any sort of understanding these equations are beyond current knowledge, except
for a few simple examples. We will look at a few techniques for investigating the dynamics
of such systems in Chapter 3.

For “closed” systems, i.e., those in which the effects of external sources are neglected,
things may be made to simplify somewhat. Indeed, the Galilean relativity principle
states that for a closed system in a Galilean spacetime G = (E , V, g, τ) the governing phys-
ical laws are invariant under Galilean mappings of E to itself. For multi-particle systems
m1, . . . ,mN this means that

mic
′′
i = Fi((c1(t), . . . , cN(t)), (c′1(t), . . . , c

′
N(t))) =⇒

m(ψ ◦ci)
′′ = Fi((ψ ◦c1(t), . . . , ψ ◦cN(t)), (ψV ◦c′1(t), . . . , ψV ◦c′N(t)))

for i = 1, . . . , N and for Galilean maps ψ : E → E . Again, since a coordinate system maps
world line to world lines, it suffices to investigate the implications of this in a fixed coordinate
system φ : E → R3×R. Some simple cases are given in the exercises at the end of the chapter.

It is easy to imagine that the laws of nature should be invariant under shifts of origin,
or rotations of reference frame. That the laws of nature should be invariant under a change
to a uniformly moving frame is also consistent with common experience. After all, we on
the earth are moving roughly in a uniformly moving frame with respect to, say, the sun.
One begins to see a problem with Galilean spacetime when the relative velocity of inertial
frames becomes large. Indeed, in such case, Newton’s Laws are seen to break down. The
modification of Newtonian mechanics that is currently held to best repair this problem is
the theory of general relativity.

1.4 Rigid motions in Galilean spacetimes

Many of the examples we will deal with will consist of connected rigid bodies. Unlike
particles, rigid bodies possess rotational inertia as well as translational inertia. Thus, to
consider rigid body motion, one needs to understand angular velocity and related notions. In
this section we deal solely with kinematic issues, saving dynamical properties of rigid bodies
for Sections 1.5 and 1.6. We should remark that our treatment of rigid body dynamics is
somewhat different from the usual treatment since we allow arbitrary observers. While this
to some extent complicates the treatment, at the end of the day it makes all the dependencies
clear, whereas this is not altogether obvious in the usual treatment. Some of the issues here
are more fully explained in [Lewis 2000a]. Since there are a lot of formulas in this section,
and we want to draw attention to some of these, we shall box the equations defining the
most essential objects.

1.4.1 Isometries We let G = (E , V, g, τ) be a Galilean spacetime. For s ∈ IG , a map
ψ : E (s) → E (s) is an isometry if, in the usual manner,

g(ψ(x2)− ψ(x1), ψ(x2)− ψ(x1)) = g(x2 − x1, x2 − x1)
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for every x1, x2 ∈ E (s). We denote by Isom(G ) the collection of all isometries of E (s)
for all s ∈ IG . We call the projection ΠG : Isom(G ) → IG the isometry bundle of G .
Since for fixed s ∈ IG the set E (s) is “a lot like” (i.e., exactly like in a coordinate system)
R3, we expect there to be a relationship between isometries E (s) and the characterisation
of E(3) as the isometries of R3. In preparation for such a description, we let O(ker(τ))
denote the g-orthogonal linear transformations of ker(τ). Corresponding to this, for reasons
we shall see shortly, is the collection øker(τ) of linear transformations of ker(τ) which are
g-skew-symmetric. That is, a linear transformation A : ker(τ) → ker(τ) is in øker(τ) if

g(A(u1), u2) = −g(u1, A(u2))

for all u1, u2 ∈ ker(τ). It is possible to establish an isomorphism from ker(τ) to øker(τ) as
follows. Let {v1, v2, v3} be an orthonormal basis for ker(τ). Thus any vector u ∈ ker(τ) can
be written as

u = u1v1 + u2v2 + u3v3

for u1, u2, u3 ∈ R. Now, to such a u ∈ ker(τ) we assign the element of øker(τ) whose matrix
representation with respect to the basis {v1, v2, v3} is 0 −u3 u2

u3 0 −u1

−u2 u1 0

 .
Let us denote this matrix by û, and it is easy to check that the map ·̂ : ker(τ) → øker(τ)
defined in this manner does not depend on the choice of orthonormal basis, and is an iso-
morphism. We can also define the cross-product on ker(τ) by using an orthonormal basis
{v1, v2, v3}. Thus if x, y ∈ ker(τ) are written

x = x1v1 + x2v2 + x3v3, y = y1v1 + y2v2 + y3v3,

we define x×y to be the vector whose components are the usual cross-product of the vectors
(x1, x2, x3) and (y1, y2, y3):

(x1, x2, x3)× (y1, y2, y3) = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

One then readily verifies that for u ∈ ker(τ), the matrix û is the unique g-skew-symmetric
linear transformation with the property that û(v) = u× v for each v ∈ ker(τ).

Now, if we have an observer O ⊂ E then the isometry bundle can be more easily under-
stood. We then let O(ker(τ)) n ker(τ) be the “semi-direct product” of the groups O(ker(τ))
and ker(τ). Thus O(ker(τ)) n ker(τ) as a set is simply O(ker(τ)) × ker(τ), and is a group
with the product defined by

(R1, u1) · (R2, u2) = (R1R2, u1 +R1u2).

The following result gives a concrete description of Isom(G ) in the presence of an observer.

1.4.1 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with O ⊂ E an observer.
There exists a bijection ΦO :

(
O(ker(τ)) n ker(τ)

)
× IG → Isom(G ) with the properties

(i) ΦO((R, u), s) is an isometry of E (s) and

(ii) ΦO commutes with the product structure for fixed s ∈ IG , i.e.,

ΦO(R1R2, u1 + R1u2, s) = ΦO((R1, u2), s) ◦ΦO((R2, u2), s).
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Proof We define ΦO(R, u) by

ΦO(R, u)(x) =
(
R(x− Os) + u

)
+ Os,

it is then easy to check that ΦO has the properties set out in the proposition. �

The observer O establishes an “origin” Os in the affine space E (s), thus rendering it a vector
space as in Proposition 1.1.2. We can thus consider rotations about this origin. This makes
it possible to describe a general isometry as a rotation about this origin plus a translation,
and it is this which gives us the correspondence ΦO .

1.4.2 Rigid motions We define a rigid motion of a Galilean spacetime G =
(E , V, g, τ) to be a pair Σ = (Ψ, ν) where Ψ: IG → Isom(G ) is a smooth map having
the property that Ψ(s) is an isometry of E (s), and ν ∈ VG . Corresponding to a rigid motion
Σ we define a map TΣ : E → IG × E by

TΣ(s, x) = Ψ(s)
(
(s− πG (x))ν + x),

and we call TΣ the motion corresponding to the rigid motion Σ. That ν ∈ VG ensures that
τ(ν) = 1 so that TΣ(s, x) ∈ E (s). The idea is that if an event x ∈ E is subjected to the
rigid motion Σ, then at the instant s it is located at TΣ(s, x) ∈ E (see Figure 1.8). The

x

(s− πG (x))ν + x

TΣ(s, x)

Figure 1.8 The motion of a rigid motion

Galilean velocity ν defines the manner in which the motion is transferred from one instant
to the next. Note that it is not necessarily the case that TΣ(πG (x), x) = x. This reflects the
fact that there is no reason to expect Ψ(πG (x)) to be the identity isometry on E (πG (x)).

1.4.2 Remarks 1. There are other ways one could define a rigid motion. For example, one
could define a rigid motion to be a triple (R, r,O) where R : IG → O(ker(τ)) and r : IG →
ker(τ) are smooth maps, and O is an observer. One then could define an isometry Ψ(s)
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of E (s) by Ψ(s)(x) = (R(s)(x−Os) + r(s)) + Os where Os is, as usual, the unique point
in O ∩ E (s). One could also define the motion of this rigid motion by

(s, x) 7→ Ψ(s)((s− πG (x))vO + x).

As we shall shortly see, this notion of a rigid motion is contained in the definition we
have given. The disadvantage of the alternate definition is that it unnecessarily provides
a distinguished origin Os for each instant.

2. It is evident that the most interesting thing about a rigid motion, at least as concerns
the motion of a rigid body, is the motion it defines. However, it is readily shown (Ex-
ercise E1.15) that a motion uniquely determines the rigid motion which gives rise to it.
That is, if TΣ1 = TΣ2 then Σ1 = Σ2. �

To make the notion of a rigid motion more concrete, we shall fix an observer O. Following
Proposition 1.4.1, we define smooth maps RΨ : IG → O(ker(τ)) and rΨ,O : IG → ker(τ) by
asking that Ψ(s) = ΦO(RΨ(s), rΨ,O(s)). We may then write

Ψ(s)(x) =
(
RΨ(s)(x− Os) + rΨ,O(s)

)
+ Os, x ∈ E (s). (1.12)

The following result makes sensible our notation that does not include the dependence
of RΨ on O.

1.4.3 Proposition Let Σ = (Ψ, ν) be a rigid motion in a Galilean spacetime G = (E ,V, g, τ).
The maps RΨ and rΨ,O defined by (1.12) are uniquely determined by Ψ and the observer O.

If Õ is another observer and R̃Ψ and r̃Ψ,Õ are defined by

Ψ(s)(x) =
(
R̃Ψ(s)(x− Õs) + r̃Ψ,Õ(s)

)
+ Õs, x ∈ E (s),

then

R̃Ψ(s) = RΨ(s)

r̃Ψ,Õ(s) = rΨ,O(s) + (RΨ(s)− idτ )(Õs − Os),

where idτ denotes the identity map on ker(τ).

Proof Let us show that for a given observer O, RΨ and rΨ,O are uniquely determined. If
R̃Ψ and r̃Ψ,O satisfy

Ψ(s)(x) =
(
R̃Ψ(s)(x− Os) + r̃Ψ,O(s)

)
+ Os, x ∈ E (s),

then we have (
R̃Ψ(s)(x− Os)−RΨ(s)(x− Os)

)
+
(
r̃Ψ,O(s)− rΨ,O(s)

)
= 0

for every x ∈ E (s). In particular, choosing x = Os shows that r̃Ψ,O(s) = rΨ,O(s) from which
we then ascertain that R̃Ψ(s) = RΨ(s).

Now let us choose a different observer Õ and let us denote Õs to be the unique point in
Õ ∩ E (s). We then have a unique R̃Ψ(s) ∈ O(ker(τ)) and r̃Ψ,Õ(s) ∈ ker(τ) so that

Ψ(s)(x) =
(
R̃Ψ(s)(x− Õs) + r̃Ψ,Õ(s)

)
+ Õs, x ∈ E (s).
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This means that(
R̃Ψ(s)(x− Õs)−RΨ(s)(x− Os)

)
+
(
r̃Ψ,Õ(s)− rΨ,O(s)

)
+ (Õs − Os) = 0

for every x ∈ E (s). Letting x = Õs we get

RΨ(s)(Õs − Os) = r̃Ψ,Õ(s)− rΨ,O(s) + (Õs − Os)

and letting x = Os we get

R̃Ψ(s)(Õs − Os) = r̃Ψ,Õ(s)− rΨ,O(s) + (Õs − Os).

From this we deduce that

R̃Ψ(s)(Õs − Os) = RΨ(s)(Õs − Os).

Therefore
r̃Ψ,Õ(s) = rΨ,O(s) + (RΨ(s)− idτ )(Õs − Os) (1.13)

and so we compute(
R̃Ψ(s)(x− Õs) + r̃Ψ,Õ(s)

)
+ Õs =

(
R̃Ψ(s)(x− Os) + R̃Ψ(s)(Os − Õs)+

rΨ,O(s) + (RΨ(s)− idτ )(Õs − Os)
)

+ Õs

=
(
R̃Ψ(x− Os) + rΨ,O(s) + (Os − Õs)

)
+ Õs

=
(
R̃Ψ(x− Os) + rΨ,O(s)

)
+Os.

From the first part of the proposition it now follows that R̃Ψ = RΨ. The desired expression
for r̃Ψ,Õ is already given in (1.13). �

Note that our definitions of RΨ and rΨ,O make no reference to the Galilean velocity ν
that comes with a rigid motion Σ = (Ψ, ν). However, this dependence on ν will show up
when we write the motion TΣ in terms of RΨ and rΨ,O . That is, we have

TΣ(s, x) =
(
RΨ(s)

(
x−

(
(πG (x)− s)ν + Os

))
+ rΨ,O(s)

)
+ Os.

It will be convenient when we write the motion to use the fact that

Os = (s− πG (x))vO + OπG (x).

In this case we have

TΣ(s, x) =
(
RΨ(s)

(
x−

(
(πG (x)− s)(ν − vO) + OπG (x)

))
+ rΨ,O(s)

)
+ Os.

A rigid motion Σ = (Ψ, ν) distinguishes a class of observers O with the property that vO = ν.
Let us denote this class of observer by Ob(Σ). If O ∈ Ob(Σ) then Os2 = (s2 − s1)ν + Os1 .
In this case, the expression for the motion thus simplifies to

TΣ(s, x) =
(
RΨ(s)

(
x− OπG (x)

)
+ rΨ,O(s)

)
+ Os.

Let us look at a simple example.
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1.4.4 Example We consider perhaps the simplest rigid motion: rotation about a fixed line.
We work with the canonical Galilean spacetime (R3 × R,R4, gcan, τcan) and we fix ω0 ∈ R3.
We define ν = (0, 1) and for t ∈ R we define an isometry Ψ(t) of R3 by

Ψ(t)(x) = exp(tω̂0)x (1.14)

where exp is here the matrix exponential. This gives us our rigid motion Σ = (Ψ, ν). If
we choose the canonical observer Ocan then R(t) ∈ O(3) and r(t) ∈ R3 are defined by
ΦOcan((R, r), t) = Ψ(t). Therefore R(t) = exp(tω̂0) and r(t) = 0. The definition of TΣ gives

TΣ(t,x) = (exp(tω̂0)x, t).

Thus the motion is simply a rotation about 0.
Let us now show that this is a rotation about the vector ω0. We claim that all points on

the line
`ω0 = {aω0 | a ∈ R} .

are fixed by the rigid motion Σ. Since this particular rigid motion is linear in the given
coordinate system, this will follow if we can show that ω0 is fixed by the rigid motion. We
compute

R(t)ω0 = exp(tω̂0)ω0 = ω0

where we have used Exercise E1.11(c). Therefore Ψ(t) satisfies

Ψ(t)(ω0) = ω0,

which shows that Ψ(t) fixes `ω0 as claimed. It therefore follows that Ψ(t) is indeed a rotation
about the vector ω0. We will have to wait until we actually talk about angular velocity to
see that this is a uniform rotation, i.e., one with constant speed. �

1.4.3 Rigid motions and relative motion It is convenient in our discussion of spatial
and angular velocities to regard these as contributing to the description of the same thing
in two different coordinate systems. Let us fix s0 ∈ IG and we think of E (s0) as something
which gets moved around with the rigid motion Σ = (Ψ, ν). Thus one could think of fixing
some origin O in E (s0) and attaching to it an orthonormal frame {v1, v2, v3}. As we subject
E (s0) to the motion TΣ, the origin and the frame will be moved in a corresponding manner.
A planar picture is given in Figure 1.9. What we wish to do is relate how something looks
in the moving coordinate systems to how it looks in an inertial coordinate system.

1.4.4 Spatial velocities In this section we introduce concepts of velocity associated
with a rigid motion and an observer. The notions of velocity we introduce will have the
advantage of being Galilean invariant quantities in a sense that we will make precise. We
also talk about velocity in two ways, one as seen from an inertial frame, and the other as seen
in a frame moving with the motion. Except for the fact that we are working in a Galilean
spacetime, much of what we say here may be found in [Murray, Li and Sastry 1994].

We retain the notation from the previous sections, in particular that of the maps RΨ and
rΨ,O that are associated to a rigid motion Σ = (Ψ, ν) and an observer O. We do not assume
that O ∈ Ob(Σ). The following result provides us with the natural interpretation of spatial
velocity, both angular and linear.
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Figure 1.9 Rigid motion in the plane

1.4.5 Proposition (Spatial velocities) Let Σ = (Ψ, ν) be a rigid motion in a Galilean space-
time G = (E ,V, g, τ) and let O be an observer in G . Let Os denote the unique point in
O ∩ E (s). Fix s0 ∈ IG and suppose that curves s 7→ ξ(s) ∈ E (s0) and s 7→ x(s) ∈ E are
related by x(s) = TΣ(s, ξ(s)).

Then there exists smooth maps ωΨ : IG → ker(τ) and vΨ,O : IG → ker(τ) so that

PO(x′(s)) = RΨ(s)(ξ′(s) + (ν − vO)) + ωΨ(s)× (x(s)− Os) + vΨ,O(s).

Furthermore, ωΨ and vΨ,O may be chosen in such a manner that ωΨ does not depend on the
observer O, and neither ωΨ nor vΨ,O depend on ν.

Proof We differentiate the equality

x(s) = TΣ(s, ξ(s)) =
(
RΨ(s)

(
ξ(s)−

(
(s0 − s)(ν − vO) + Os0

))
+ rΨ,O(s)

)
+ Os

with respect to s:

x′(s) = RΨ(s)(ξ′(s) + (ν − vO)) +R′
Ψ(s)

(
ξ(s)−

(
(s0 − s)(ν − vO) + Os0

))
+

r′Ψ,O(s) + O ′
s

= RΨ(s)(ξ′(s) + (ν − vO)) +R′
Ψ(s) ◦R−1

Ψ (s)
(
(x(s)− Os)− rΨ,O(s)

)
+ (1.15)

r′Ψ,O(s) + O ′
s.

We note that since RΨ(s) is orthogonal, RΨ(s) ◦Rt
Ψ(s) = idτ . Differentiating with respect to

s gives

RΨ(s) ◦R
′t
Ψ(s) +R′

Ψ(s) ◦Rt
Ψ(s) = 0

=⇒ (R′
Ψ(s) ◦Rt

Ψ(s))t = −R′
Ψ(s) ◦Rt

Ψ(s),

which means that R′
Ψ(s) ◦R−1

Ψ (s) is skew-symmetric with respect to g. Thus there exists a
vector ωΨ(s) ∈ ker(τ) so that R′

Ψ(s) ◦R−1
Ψ (s) = ω̂Ψ(s).

The following simple lemma records some useful facts.

1 Lemma For each s ∈ IG , PO(O ′
s) = 0 and PO ◦RΨ(x)(ξ′(s)+(ν−vO)) = RΨ(s)(ξ′(s)+(ν−

vO)).
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Proof For the first assertion we compute

O ′
s = lim

t→0

Ot+s − Os

t

= lim
t→0

(tvO + Os)− Os

t

= lim
t→0

tvO

t
= vO .

By definition of PO our assertion follows.
For the second assertion, we claim that if A ∈ gl(ker(τ)) then

PO ◦A(u) = A ◦PO(u) = A(u)

for every u ∈ ker(τ). Indeed, since u ∈ ker(τ) we have

PO ◦A(u) = A(u)− τ(A(u))vO = A(u),

and
A ◦PO(u) = A((u)− τ(u)vO) = A(u),

as claimed. The statement in the lemma follows directly from our more general claim. H

Using the lemma, applying PO to (1.15), existence of ωΨ and vΨ,O follows if we now define

vΨ,O = r′Ψ,O(s) + rΨ,O(s)× ωΨ(s).

The final assertion of the proposition follows since our definition of ωΨ depends only
upon RΨ which is itself independent of O, and vΨ,O is evidently independent of ν. �

Summarising the previous result, given a rigid motion Σ = (Ψ, ν) and an observer O, we
define the spatial angular velocity for Σ to be the unique map ωΨ : IG → ker(τ) satisfying

ω̂Ψ(s) = R′
Ψ(s) ◦R−1

Ψ (s).

The spatial linear velocity for the rigid motion Σ with respect to the observer O is given
by

vΨ,O = r′Ψ,O(s) + rΨ,O(s)× ωΨ(s).

Clearly ωΨ is an observer independent quantity, and vΨ,O depends on a choice of observer.
Note that the first term in the expression for PO(x′(s)) in the proposition simplifies if O ∈
Ob(Σ). Furthermore, this term exactly vanishes if ξ′(s) is also independent of s, e.g., in the
case when one is following the motion of a single point as it gets transported by the rigid
motion.

Let us make some comments concerning these definitions.

1.4.6 Remarks 1. The definition we give of spatial linear velocity seems weird. Why not
just go with r′Ψ,O(s)? The answer will come when we define body velocities. Given the
definition as it is, it becomes not entirely clear what it means. An interpretation is given
in [Murray, Li and Sastry 1994].
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2. The term RΨ(s)(ξ′(s) + (ν − vO)) in the proposition is to be thought of as the relative
velocity measured in the frame of the body. For example, if RΨ(s) = idτ for all s ∈ IG ,
and if O ∈ Ob(Σ), then we simply obtain

PO(x′(s)) = ξ′(s) + rΨ,O(s),

which is the usual addition of velocities for rectilinear motion.

3. When rΨ,O(s) = 0 for all s ∈ IG , then we have rotational motion with respect to the
observer O. If we further suppose that ξ(s) is independent of s (as for example if we
are observing the motion of a point in the body itself) and that O ∈ Ob(Σ), then
ξ′(s) = ωΨ(s)× (x(s)− Os), which may resemble a familiar formula. �

It is about time to resume our example.

1.4.7 Example (Example 1.4.4 cont’d) We again take the canonical Galilean spacetime (R3×
R,R4, gcan, τcan) and the rigid motion Σ = (Ψ, ν) defined by (1.14). We compute the spatial
angular velocity to be, by definition,

ω̂(t) = R′(t)R−1(t) = exp(tω̂0)ω̂0 exp(−tω̂0) = ω̂0

where we have used Exercise E1.10. This justifies our original claim that Ψ is a uniform
rotation about the vector ω0. Note also that the spatial linear velocity v(t) vanishes since
r(t) = 0.

Note that Ocan ∈ Ob(Σ) and that r′(t) = 0 for each t ∈ R. Thus if we fix a point x in
the set E (0) of simultaneous events, Proposition 1.4.5 gives its velocity at time t as

x′(t) = ω(t)× x(t) = ω(t)× (exp(tω̂0)x) = ω0 × (exp(tω̂0)x.

Note then that if x = aω0 for some a ∈ R, then the velocity of this point at time t is

ẋ(t) = ω0 × (exp(tω̂0)ω0) = ω0 × ω0 = 0,

by Exercise E1.11(c). This again verifies our previous conclusion that Ψ fixes points on the
line `ω0 . See Figure 1.10. Note that rotations obey the “right-hand rule:” If you point
your right thumb in the direction of the spatial angular velocity, the rotation will be in the
direction that your fingers curl. �

1.4.5 Body velocities Now let us turn to defining body velocities. We proceed in
very much the same manner as in Proposition 1.4.5.

1.4.8 Proposition (Body velocities) Let Σ = (Ψ, ν) be a rigid motion in a Galilean spacetime
G = (E ,V, g, τ) and let O be an observer in G . Let Os denote the unique point in O ∩E (s).
Fix s0 ∈ IG and suppose that curves s 7→ ξ(s) ∈ E (s0) and s 7→ x(s) ∈ E are related by
x(s) = TΣ(s, ξ(s)).

Then there exists smooth maps ΩΨ : IG → ker(τ) and VΨ,O : IG → ker(τ) so that

ξ′(s)+(ν−vO) = R−1
Ψ (s)(PO(x′(s)))−ΩΨ(s)×

(
ξ(s)−

(
(s0− s)(ν−vO)+Os0

))
−VΨ,O(s).

(1.16 )

Furthermore, ΩΨ and VΨ,O may be chosen in such a manner that ΩΨ does not depend on
the observer O, and neither ΩΨ nor VΨ,O depend on ν.
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0

ω0

x(0)

R
−1(t)ẋ(t)

ẋ(t)

R(t)x(0)

Figure 1.10 Simple rotational motion

Proof Differentiating the equality

x(s) =
(
RΨ(s)

(
ξ(s)−

(
(s0 − s)(ν − vO) + Os0

))
+ rΨ,O(s)

)
+ Os

and solving for ξ′(s) + (ν − vO) gives

ξ′(s) + (ν − vO) = R−1
Ψ (s)

(
(x′(s)− O ′

s)− r′Ψ,O(s)
)
−

R−1
Ψ (s) ◦R′

Ψ(s)
(
ξ(s)−

(
(s0 − s)(ν − vO) + Os0

))
.

If we follow along the same lines as the proof of Proposition 1.4.5 and differentiate the
equality Rt

Ψ(s) ◦RΨ(s) = idτ with respect to s, we can show that R−1
Ψ (s) ◦R′

Ψ(s) is skew-
symmetric with respect to g. Therefore there exists ΩΨ(s) ∈ ker(τ) so that R−1

Ψ (s) ◦R′
Ψ(s) =

Ω̂Ψ(s).
By Lemma 1 in the proof of Proposition 1.4.5, we have

PO ◦R−1
Ψ

(
(x′(s)− O ′

s)− r′Ψ,O(s)
)

= R−1
Ψ (PO(x′(s)))−R−1

Ψ (r′Ψ,O(s))

and
PO(ξ′(s) + (ν − vO)) = ξ′(s) + (ν − vO).

Thus the result follows if we take

VΨ,O(s) = R−1
Ψ (s)(r′Ψ,O(s)).

This concludes the proof. �

We use this result to define the body velocities for the rigid motion Σ = (Ψ, ν) with
respect to the observer O. Thus we define the body angular velocity to be the map
ΩΨ : IG → ker(τ) with the property that

Ω̂Ψ(s) = R−1
Ψ (s) ◦R′

Ψ(s).

The body linear velocity for the rigid motion Ψ with respect to the observer O is given
by

VΨ,O(s) = R−1
Ψ (s)(r′Ψ,O(s)).

Again, we reiterate that ΩΨ is observer independent. Note that the relation (1.16) simplifies,
as did the similar expression for spatial velocity, when O ∈ Ob(Σ).
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1.4.9 Remarks 1. The interpretation of the body linear velocity here is somewhat easier to
digest than is its spatial counterpart: it is merely the velocity of the origin of the moving
frame.

2. If ξ(s) is constant, i.e., the point is stationary with respect to the moving frame, and if
O ∈ Ob(Σ) then we have

R−1
Ψ (s)(PO(x′(s))) = ΩΨ(s)× (ξ(s)− Os0) + VΨ,O(s).

In particular, for rotational motion where VΨ,O(s) = 0, we have a ready interpretation of
the body angular velocity. �

Let us look at our simple example of rotation about a fixed line.

1.4.10 Example (Example 1.4.4 cont’d) The body angular velocity in this example is given
by

Ω̂(t) = R−1(t)R′(t) = exp(−tω̂0) exp(tω̂0)ω̂0 = ω̂0,

where we have used Exercise E1.11(c). Note that Ω(t) can be thought of as the angular
velocity at the time t as it would appear to an observer who is moving along with the rigid
motion. This is generally the interpretation of body angular velocity, and in this case it is
just quite simple. It just happens in this case that because the motion is so simple the body
and spatial angular velocities coincide. One also readily checks that the body linear velocity
V (t) is identically zero. �

Let us now observe the relationship between the spatial and body velocities. The follow-
ing result is readily verified by direct calculation using the definitions of spatial and body
velocities.

1.4.11 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with Σ = (Ψ, ν) a rigid
motion in G and O an observer. Let ωΨ and vΨ,O be the spatial angular and linear velocity,
and let ΩΨ and VΨ,O be the body angular and linear velocity. We then have[

ωΨ,O(s)
vΨ(s)

]
=

[
RΨ(s) 0

r̂Ψ,O(s) ◦RΨ(s) RΨ(s)

] [
ΩΨ,O(s)
VΨ(s)

]
.

Let us look at this in another way, just for fun. Motivated by (1.6), let us represent
elements of the group O(ker(τ)) n ker(τ) by matrices like[

R r
0t 1

]
,

for R ∈ O(ker(τ)) and r ∈ ker(τ). Thus, given a rigid motion Σ = (Ψ, ν) and an observer
O with RΨ(s) and rΨ,O(s) curves in O(ker(τ)) and ker(τ) defined in the usual manner, we
denote

GΨ,O(s) =

[
RΨ(s) rΨ,O(s)

0t 1

]
.

One then verifies (Exercise E1.17) that

G′
Ψ,O(s)G−1

Ψ,O(s) =

[
ω̂Ψ(s) vΨ,O(s)

0t 0

]
, G−1

Ψ,O(s)G′
Ψ,O(s) =

[
Ω̂Ψ(s) VΨ,O(s)

0t 0

]
. (1.17)
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We therefore also see that[
ω̂Ψ(s) vΨ,O(s)

0t 0

]
= GΨ,O(s)

[
Ω̂Ψ(s) VΨ,O(s)

0t 0

]
G−1

Ψ,O(s). (1.18)

The implications of this formalism run all through [Murray, Li and Sastry 1994], and form
part of the analysis of Section 4.4 of [Abraham and Marsden 1978].

1.4.12 Example (Example 1.4.4 cont’d) We can also check that Proposition 1.4.11 holds for
our example of uniform rotation about ω0. In this case it amounts to verifying that[

ω(t)
v(t)

]
=

[
ω0

0

]
=

[
exp(tω̂0)ω0

0

]
=

[
R(t) 03×3

r̂(t)R(t) 03×3

] [
Ω(t)
V (t)

]
,

since r(t) = 0 and using Exercise E1.11(c). �

1.4.6 Planar rigid motions Very often one wishes to restrict consideration to motions
that take place in a plane. Although one can consider these cases within the context of the
general notion of a rigid motion, things simplify so significantly for planar rigid motions that
it is worth going to the effort of treating them separately.

Let G = (E , V, g, τ) be a Galilean spacetime and let F be a 3-dimensional Galilean sub-
spacetime of E modelled on a subspace U of V . Recall that Uτ = U ∩ ker(τ). Let us denote
H = (F , U, g|Uτ , τ |U). A rigid motion Σ = (Ψ, ν) is H -compatible if TΣ(s, x) ∈ F
for every (s, x) ∈ IG × F . Thus the motion of an H -compatible rigid motion will leave
F invariant. The following result gives the description of an H -compatible rigid motion
relative to an H -compatible observer.

1.4.13 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with F a 3-dimensional
sub-spacetime modelled on a subspace U of V. Let O be an H -compatible observer. For an
H -compatible rigid motion Σ = (Ψ, ν) define Ψ(s) = ΦO(RΨ(s), rΨ,O(s)). Then rΨ,O(s) ∈ Uτ

and RΨ(s) leaves Uτ invariant for each s ∈ IG .

Proof Fix s ∈ IG and denote F (s) = E (s) ∩F . By definition of ΦO , we have

Ψ(s)(x) = (RΨ(s)(x− Os) + rΨ,O(s)) + Os.

Since Σ and O are H -compatible, if x ∈ F (s) then RΨ(s)(x − Os) + rΨ,O(s) ∈ Uτ . In
particular, choosing x = Os shows that rΨ,O(s) ∈ Uτ . Therefore, for each x ∈ F (s) we have

RΨ(s)(x− Os) + rΨ,O(s) ∈ Uτ =⇒ RΨ(s)(x− Os) ∈ Uτ ,

which implies that RΨ(s) leaves Uτ invariant since every vector in Uτ can be written as x−Os

for some x ∈ F (s). �

Let us investigate the upshot of this for the spatial and body velocities. Recall (see
Appendix A) that since (ker(τ), g) is an inner product space and Uτ is a codimension 1
subspace of U , there exists a unique positively oriented unit vector which is g-orthogonal to
Uτ . Let us denote this unit vector by uτ .

1.4.14 Proposition Let H = (F ,U, g|Uτ , τ |U) be a 3-dimensional sub-spacetime of a
Galilean spacetime G = (E ,V, g, τ). Let Σ = (Ψ, ν) be an H -compatible rigid motion
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and let O be an H -compatible observer. Let ωΨ and vΨ,O be the spatial angular and linear
velocities, and let ΩΨ and VΨ,O be the body angular and linear velocities.

Then vΨ,O(s),VΨ,O(s) ∈ Uτ for each s ∈ IG , and for each s ∈ IG there exists
ω̄Ψ(s), Ω̄Ψ(s) ∈ R so that

ωΨ(s) = ω̄Ψ(s)uτ , ΩΨ(s) = Ω̄Ψ(s)uτ .

Proof Let us first deal with the angular velocities. Since RΨ(s) is orthogonal and leaves Uτ

invariant, then RΨ(s)(uτ ) = uτ . Therefore R′
Ψ(s)(uτ ) = 0 or ω̂Ψ(s) ◦R−1

Ψ (s)(uτ ) = 0. This in
turn implies that ω̂Ψ(s)(uτ ) = 0 which implies, by Exercise E1.11(c), that ωΨ(s) = ω̄Ψ(s)uτ

for some ω̄Ψ(s) ∈ R, as claimed. A similar argument holds for the body angular velocity.
For the spatial linear velocity we have

vΨ,O(s) = r′Ψ,O(s) + rΨ,O(s)× ωΨ(s).

By Proposition 1.4.13, r′Ψ,O(s) ∈ Uτ . Properties of the cross-product, and the above proved
characterisation of ωΨ, imply that rΨ,O(s)× ωΨ(s) is orthogonal to uτ . But this means that
rΨ,O(s) × ωΨ(s) ∈ Uτ . For the body linear velocity, VΨ(s) = R−1

Ψ (s)(r′Ψ,O(s)), the lemma

follows since R−1
Ψ (s)(uτ ) = uτ . �

The above result merely formalises the usual notion that for a planar motion the angular
velocity is represented by a real number rather than by a vector.

1.5 Rigid bodies

In the previous section we have on occasion been talking about rigid bodies as if we
knew what they were, and without relation to an actual rigid body. Now let us actually say
what we mean by a rigid body. We will spend some considerable effort obtaining the inertial
characteristics of a rigid body as they are defined by its inertia tensor. Though these are
well-known, they seem to be “lore,” and it is instructive to use our general setting to give
proofs.

1.5.1 Definitions To discuss in a precise way the inertial properties of a rigid body one
actually should use some very simple measure theory. We present the necessary background
in Appendix D. However, if one wishes to exclude such degenerate rigid bodies as point
masses and lines with no thickness, one may escape without the measure theory. For those
who wish to avoid Appendix D, whenever a µ is encountered in the sequel, you may replace
it with ρ dV where ρ : B → R is the “mass density” and where dV is the standard volume
element. But know that in doing this, you are not allowed to think of a point mass as being
a rigid body without invoking absurdities.

Let G = (E , V, g, τ) be a Galilean spacetime. A rigid body is a pair (B, µ) where
B ⊂ E (s0) is a compact subset of simultaneous events, and µ is a mass distribution (see
Appendix D) on E (s0) with support equal to B. Our definition thus allows such degenerate
rigid bodies as point masses, and bodies whose mass distribution is contained in a line in
E (s0). We denote

µ(B) =

∫
dµ

as the mass of the body. If H = (F , U, g|Uτ , τ |U) is a sub-spacetime of G , a planar rigid
body is H -compatible if B ⊂ F (s0) = E (s0)∩F . In actuality one can talk about planar
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motions for rigid bodies not contained in F . However, one loses no generality in making
this restriction, and it is very often made as a matter of course when planar motions are
discussed.

Here are some typical rigid bodies, forgoing for the moment any discussion of their inertial
properties.

1.5.1 Examples 1. A particle of mass m is a special case of a rigid body. In this case we
suppose the particle to be situated at the point x0 ∈ E (s0).

2. A slightly more interesting case consists of a rigid body that is contained in a line segment

`y1,y2 = {ξ(y2 − y1)/ ‖y2 − y1‖+ y1 | ξ ∈ [0, ‖y2 − y1‖]} ,

for some y1, y2 ∈ E (s0). An example of such a situation would consist of two particles
constrained so as to be equidistant at all times. Also, an infinitely thin rod will fall into
this category.

3. The above two cases are degenerate examples of rigid bodies. The typical nondegenerate
situation is when B occupies a subset of E (s0) that cannot be contained in any line. �

The centre of mass of the body is the point

xc =
1

µ(B)

(∫
(x− x0) dµ

)
+ x0,

for some x0 ∈ E (s0). Note that the integrand is in ker(τ) and so too will be the integral.
The following lemma gives some properties of this definition.

1.5.2 Lemma Let (B, µ) be a rigid body in a Galilean spacetime with B ⊂ E (s0). The fol-
lowing statements hold:

(i) the expression

xc =
1

µ(B)

(∫
(x− x0) dµ

)
+ x0

is independent of choice of x0 ∈ E (s0);

(ii) xc is the unique point in E (s0) with the property that∫
(x− xc) dµ = 0;

(iii) xc is in the interior of the convex hull of B (relative to the topology induced from
E (s0)).

Proof (i) To check that the definition of xc is independent of x0 ∈ E (s0) we let x̃0 ∈ E (s0)
and compute

1

µ(B)

(∫
(x− x̃0) dµ

)
+ x̃0 =

1

µ(B)

(∫
(x− x0) dµ

)
+

1

µ(B)

(∫
(x0 − x̃0) dµ

)
+ (x̃0 − x0) + x0

=
1

µ(B)

(∫
(x− x0) dµ

)
+ (x0 − x̃0) + (x̃0 − x0) + x0

=
1

µ(B)

(∫
(x− x0) dµ

)
+ x0.
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(ii) By definition of xc and by part (i) we have

xc =
1

µ(B)

(∫
(x− xc) dµ

)
+ xc,

from which it follows that ∫
(x− xc) dµ = µ(B)(xc − xc) = 0.

Now suppose that x̃c ∈ E (s0) is an arbitrary point with the property that∫
(x− x̃c) dµ = 0.

Then, by (i),

xc =
1

µ(B)

(∫
(x− x̃c) dµ

)
+ x̃c,

from which we conclude that xc = x̃c.
(iii) If xc is on the relative boundary of co(B) or not in B at all, then there exists a

hyperplane P in E (s0) passing through xc so that there are points in B which lie on one side
of P , but there are no points in B on the opposite side. In other words, as in Proposition 1.1.7,
there exists λ ∈ ker(τ)∗ so that the set

{x ∈ B | λ(x− xc) > 0}

is nonempty, but the set
{x ∈ B | λ(x− xc) < 0}

is empty. But this would imply that∫
λ(x− xc) dµ > 0,

contradicting (ii). �

Let us look at our examples of rigid bodies to see how one might determine their centres
of mass.

1.5.3 Examples 1. Example 1.5.1–1 cont’d: In this case we had a particle of mass m sitting
at x0 ∈ E (s0). Since the support of µ must be {x0}, the centre of mass is

xc = µ(B)−1

∫
(x− x0) dµ = m−1m(x0 − x0) + x0 = x0.

Therefore, unsurprisingly the centre of mass for a point mass is that point at which the
mass is located.

2. Example 1.5.1–2 cont’d: Here we have a rigid body (B, µ) so that B is contained in a line
segment in E (s0). Let us better understand the mass distribution in this case. Define a
map i : [0, ‖y2 − y1‖] → E (s0) by

i(ξ) =
ξ

‖y2 − y1‖
(y2 − y1) + y1.
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0 ‖y2 − y1‖

[ ]

`y1,y2

i

Figure 1.11 Coordinates for `y1,y2

Thus i takes a point on the interval in R whose length is the same as `y1,y2 , and maps this
point to the corresponding point on the rigid body (see Figure 1.11). With i so defined,
we define a mass distribution dµ`y1,y2

on [0, ‖y2 − y1‖] by∫
f ◦ i dµ`y1,y2

=

∫
f dµ.

With this notation, the centre of mass xc can be written as

xc = µ(B)−1

∫ (
ξ

‖y2 − y1‖
(y2 − y1) + (y1 − x0)

)
dµ`y1,y2

+ x0.

3. Example 1.5.1–3 cont’d: For the case where the rigid body does not have its mass distri-
bution supported in a line, there is not much one can say about its centre of mass other
than reiterate its definition. �

1.5.2 The inertia tensor The properties of a rigid body are characterised by three
things: (1) its mass, (2) its centre of mass, and (3) its inertia tensor. It remains to define
the latter. Let x0 ∈ E (s0). We define the inertia tensor about x0 of a rigid body (B, µ)
to be the linear map Ix0 : ker(τ) → ker(τ) defined by

Ix0(u) =

∫
(x− x0)× (u× (x− x0)) dµ.

We denote the inertia tensor about the centre of mass of (B, µ) by Ic.
Let us record some of the basic properties of the inertia tensor.

1.5.4 Proposition The inertia tensor Ix0 of a rigid body (B, µ) is symmetric with respect to
the inner product g.

Proof Using the vector identity

g(u, v × w) = g(w, u× v) (1.19)
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we compute

g(Ix0(u1), u2) =

∫
g((x− x0)× (u1 × (x− x0)), u2) dµ

=

∫
g(u1 × (x− x0), u2 × (x− x0)) dµ

=

∫
g(u1, (x− x0)× (u2 × (x− x0))) dµ

= g(u1, Ix0(u2)),

which is what we wished to show. �

It is often useful to be able to compute the inertia tensor about a general point by first
computing it about its centre of mass. The following result records how this is done.

1.5.5 Proposition Ix0(u) = Ic(u) + µ(B) (xc − x0)× (u× (xc − x0)).

Proof We compute

Ix0(u) =

∫
(x− x0)× (u× (x− x0)) dµ

=

∫
((x− xc) + (xc − x0))×

(
u× ((x− xc) + (xc − x0))

)
dµ

=

∫
(x− xc)× (u× (x− xc)) dµ+

∫
(xc − x0)× (u× (xc − x0)) dµ+∫

(x− xc)× (u× (xc − x0)) dµ+

∫
(xc − x0)× (u× (x− xc)) dµ. (1.20)

It then follows from Lemma 1.5.2(ii) that the last two terms in (1.20) vanish, and from this
the result follows. �

1.5.3 Eigenvalues of the inertia tensor Since Ix0 is symmetric, its eigenvalues are
certainly real. Furthermore, they are nonnegative. The following result demonstrates this,
as well as other eigenvalue related assertions.

1.5.6 Proposition Let (B, µ) be a rigid body with B ⊂ E (s0) and let x0 ∈ E (s0). Let Ix0

denote the inertia tensor of (B, µ) about x0. The following statements hold:

(i) the eigenvalues of the inertia tensor Ix0 of a rigid body (B, µ) are never negative;

(ii) if Ix0 has a zero eigenvalue, then the other two eigenvalues are equal;

(iii) if Ix0 has two zero eigenvalues, then Ix0 = 0.

Proof (i) Since Ix0 is symmetric, its eigenvalues will be nonnegative if and only if the
quadratic form u 7→ g(Ix0(u), u) is positive semi-definite. For u ∈ ker(τ) we compute

Ix0(u, u) =

∫
g(u, (x− x0)× (u× (x− x0))) dµ

=

∫
g(u× (x− x0), u× (x− x0)) dµ.

Since the integrand is nonnegative, so too will be the integral.
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(ii) Let I1 be the zero eigenvalue with v1 a unit eigenvector. We claim that the support
of the mass distribution µ must be contained in the line

`v1 = {sv1 + x0 | s ∈ R} .

To see that this must be so, suppose that the support of µ is not contained in `v1 . Then
there exists a Borel set S ⊂ E (s0) \ `v1 so that µ(S) > 0. This would imply that

Ix0(v1, v1) =

∫
g(v1 × (x− x0), v1 × (x− x0)) dµ

≥
∫

S

g(v1 × (x− x0), v1 × (x− x0)) dµ.

Since S ∩ `v1 = ∅ it follows that for all points x ∈ S, the vector x− x0 is not collinear with
v1. Therefore

g(v1 × (x− x0), v1 × (x− x0)) > 0

for all x ∈ S, and this would imply that Ix0(v1, v1) > 0. But this contradicts v1 being an
eigenvector with zero eigenvalue, and so the support of B must be contained in the line `v1 .

To see that this implies that the eigenvalues I2 and I3 are equal, we shall show that any
vector that is g-orthogonal to v1 is an eigenvector for Ix0 . First write

x− x0 = f 1(x)v1 + f 2(x)v2 + f 3(x)v3

for functions f i : E (s0) → R, i = 1, 2, 3. Since the support of µ is contained in the line `v1

we have ∫
(x− x0)× (u× (x− x0)) dµ = v1 × (u× v1)

∫
(f 1(x))2 dµ

for all u ∈ ker(τ). Now recall the property of the cross-product that v1 × (u × v1) = u
provided u is orthogonal to v1 and that v1 has unit length. Therefore we see that for any u
that is orthogonal to v1 we have

Ix0(u) =
(∫

(f 1(x))2 dµ
)
u,

meaning that all such vectors u are eigenvectors with the same eigenvalue, which is what we
wished to show.

(iii) It follows from our above arguments that if the eigenvalues I1 and I2 are zero, then
the support of µ must lie in the intersection of the lines `v1 and `v2 , and this intersection is
a single point, that must therefore be x0. From this and the definition of Ix0 it follows that
Ix0 = 0. �

Note that in proving the result we have proven the following corollary.

1.5.7 Corollary Let (B, µ) be a rigid body with inertia tensor Ix0. The following statements
hold:

(i) Ix0 has a zero eigenvalue if and only if B is contained in a line through x0;

(ii) if Ix0 has two zero eigenvalues then B = {x0}, i.e., B is a particle located at x0;

(iii) if there is no line through x0 that contains the support of µ, then the inertia tensor is
an isomorphism.
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In coming to an understanding of the “appearance” of a rigid body, it is most convenient
to refer to its inertia tensor Ic about its centre of mass. Let {I1, I2, I3} be the eigenvalues of
Ic that we call the principal inertias of (B, µ). If {v1, v2, v3} are orthonormal eigenvectors
associated with these eigenvalues, we call these the principal axes of (B, µ). Related to
these is the inertial ellipsoid which is the ellipsoid in ker(τ) given by

E(B) =
{
x1v1 + x2v2 + x3v3 ∈ ker(τ)

∣∣ I1(x1)2 + I2(x
2)2 + I3(x

3)2 = 1
}
,

provided that none of the eigenvalues of Ix0 vanish. If one of the eigenvalues does vanish,
then by Proposition 1.5.6(ii), the other two eigenvalues are equal. If we suppose that I1 = 0
and I2 = I3 = I then in the case of a single zero eigenvalue, the inertial ellipsoid is

E(B) =
{
x1v1 + x2v2 + x3v3 ∈ ker(τ)

∣∣ x2 = x3 = 0, x1 ∈
{
− 1√

I
, 1√

I

}}
.

In the most degenerate case, when all eigenvalues are zero, we define E(B) = {0}. These
latter two inertia ellipsoids, note, correspond to the cases (i) and (ii) in Corollary 1.5.7.

To relate properties of the eigenvalues of Ic with the inertial ellipsoid E(B), it is helpful
to introduce the notion of an axis of symmetry for a rigid body. We let Ic be the inertia
tensor about the centre of mass, and denote by {I1, I2, I3} its eigenvalues and {v1, v2, v3} its
orthonormal eigenvectors. A vector v ∈ ker(τ) \ {0} is an axis of symmetry for (B, µ) if
for every R ∈ O(ker(τ)) which fixes v we have R(E(B)) = E(B). The following result gives
the relationship between axes of symmetry and the eigenvalues of Ic.

1.5.8 Proposition Let (B, µ) be a rigid body with inertia tensor Ic about its centre of mass.
Let {I1, I2, I3} be the eigenvalues of Ic with orthonormal eigenvectors {v1, v2, v3}. If I1 = I2
then v3 is an axis of symmetry of B.

Conversely, if v ∈ ker(τ) is an axis of symmetry, then v is an eigenvector for Ic(B). If
I is the eigenvalue for which v is an eigenvector, then the other two eigenvalues of Ic(B)
are equal.

Proof Write I1 = I2 = I. We then see that any vector v ∈ spanR {v1, v2} will have the
property that

Ic(v) = Iv.

Now let R ∈ O(ker(τ)) fix the vector v3. Because R is orthogonal, if v ∈ spanR {v1, v2} then
R(v) ∈ spanR {v1, v2}. What’s more if

v = a1v1 + a2v2,

then
R(v) = (cos θa1 + sin θa2)v1 + (− sin θa1 + cos θa2)v2 (1.21)

for some θ ∈ R since R is simply a rotation in the plane spanned by v1, v2. Now let u ∈ E(B).
We then write u = x1v1 + x2v2 + x3v3, and note that

I(x1)2 + I(x2)2 + I3(x
3)2 = 1.

It is now a straightforward but tedious calculation to verify that R(v) ∈ E(B) using (1.21)
and the fact that R fixes v3. This shows that R(E(B)) = E(B), and so v3 is an axis of
symmetry for B.

For the second part of the proposition, note that R ∈ O(ker(τ)) has the property that
R(E(B)) = E(B) if and only if R maps the principal axes of the ellipsoid E(B) to principal
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axes. Since R is a rotation about some axis, this means that R fixes a principal axis of
E(B). Thus if v ∈ ker(τ) is an axis of symmetry, then v must lie along a principal axis of
the ellipsoid E(B). By our definition of E(B), this means that v is an eigenvector of Ic. Let
I be the associated eigenvalue, and let {I1, I2, I3 = I} be the collection of all eigenvalues of
Ic with eigenvectors {v1, v2, v3 = v}. Since v is an axis of symmetry, any rotation about v
must map principal axes of E(B) to principal axes. This means that for every θ ∈ R the
vectors

v′1 = cos θv1 − sin θv2, v′2 = sin θv1 + cos θv2 (1.22)

are eigenvectors for Ic. This means that all nonzero vectors in spanR {v1, v2} are eigenvectors
for Ic. This means that the restriction of Ic to spanR {v1, v2} is diagonal in every orthonormal
basis for spanR {v1, v2}. Therefore, if {v1, v2} are chosen to be orthonormal then {v′1, v′2} as
defined in (1.22) are also orthonormal. Our conclusions assert the existence of I ′1, I

′
2 ∈ R so

that
Ic(v

′
i) = Iiv

′
i, i = 1, 2.

But by the definition of v′1 and v′2 we also have

Ic(v
′
1) = cos θIc(v1)− sin θIc(v2)

= cos θI1v1 − sin θI2v2

= cos θI1(cos θv′1 + sin θv′2)− sin θI2(− sin θv′1 + cos θv′2).

Therefore,
I ′1v

′
1 = (cos2 θI1 + sin2 θI2)v

′
1 + sin θ cos θ(I1 − I2)v

′
2

for every θ ∈ R. Since v′1 and v′2 are orthogonal, this means choosing θ so that sin θ cos θ 6= 0
implies that I1 − I2 = 0. This is what we wished to show. �

Finally, let us say what happens to the inertia tensor for a planar rigid body. Recall that
uτ is denotes the positively-oriented unit vector orthogonal to Uτ .

1.5.9 Proposition If H = (F ,U, g|Uτ , τ |U) is a 3-dimensional sub-spacetime of a Galilean
spacetime G = (E ,V, g, τ), and if (B, µ) is an H -compatible rigid body with B ⊂ F (s0),
then uτ is a principal axis for (B, τ).

Proof Let {v1, v2, v3 = uτ} be a positively-oriented basis for ker(τ). For x ∈ E (s0) let us
write

x− xc = f 1(x)v1 + f 2(x)v2 + f 3(x)v3,

thus defining f i(x) ∈ R, i = 1, 2, 3. We therefore compute

Ic(uτ ) =

∫
(x− xc)× (uτ × (x− xc)) dµ

=

∫
(f 1(x)v1 + f 2(x)v2 + f 3(x)v3)×

(
uτ × (f 1(x)v1 + f 2(x)v2 + f 3(x)v3)

)
dµ.

Since B ⊂ F (s0), xc ∈ F (s0) so that we get

Ic(uτ ) =

∫
(f 1(x)v1 + f 2(x)v2)×

(
uτ × (f 1(x)v1 + f 2(x)v2)

)
dµ.

Now one recalls that if u is a unit vector and if v is a unit vector orthogonal to u we have
v × (u× v) = u. Therefore

Ic(uτ ) =
(∫ ∥∥f 1(x)v1 + f 2(x)v2

∥∥2
dµ
)
uτ .
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Thus uτ is an eigenvector of Ic as asserted. �

As we shall see, this property of a planar rigid body is essential if the natural motion of
a rigid body is indeed to remain in the sub-spacetime H . With this in mind, one can more
generally consider motions of a general rigid body in a planar sub-spacetime H provided
that uτ is a principal axis of (B, µ). But, again, this extra little piece of generality does not
add any substance.

1.5.4 Examples of inertia tensors In this section we give the three “typical” types of
inertia tensors one can encounter. As we shall see, two of the three are somewhat degenerate.

1.5.10 Examples 1. Example 1.5.1–1 cont’d: Let us compute the inertia tensor of a particle
of mass m, thought of as a rigid body. Thus B = {xc} and since the particle is located
at its centre of mass by Example 1.5.3–1. Note that the inertia tensor of the particle
about its centre of mass is obviously zero. Therefore, using Proposition 1.5.5 we readily
compute

Ix0(u) = m(xc − x0)× (u× (xc − x0)).

The matrix representation of Ix0 with respect to an orthonormal basis {v1, v2, v3} for
ker(τ) is

m

(a2)2 + (a3)2 −a1a2 −a1a3

−a1a2 (a1)2 + (a3)2 −a2a3

−a1a3 −a2a3 (a1)2 + (a2)2

 (1.23)

where (a1, a2, a3) are the components of (xc − x0) in the basis {v1, v2, v3}. One may
verify that the eigenvalues of this matrix are {‖a‖2 , ‖a‖2 , 0} with the corresponding
orthonormal eigenvectors {u1,u2,a/ ‖a‖} where {u1,u2} are any orthonormal basis for
spanR {a}

⊥, the orthogonal complement to spanR {a}. Thus, for a particle at xc, there
is no resistance to angular velocities collinear with xc − x0. This is reflected by the zero
eigenvalue for Ix0 with eigenvector (xc − x0). What’s more, if we choose x0 = xc then
Ix0 = 0, again reflecting the fact that the inertia tensor about the centre of mass is zero.
Note that this all agrees with Propositions 1.5.6 and 1.5.8. Also note that xc − x0 is an
axis of symmetry if x0 6= xc.

2. Example 1.5.1–2 cont’d: Let us consider the slightly less degenerate case where µ is a
mass distribution who support, is contained in the line `y1,y2 . We shall determine the
inertia tensor of B about its centre of mass. By Example 1.5.3–2, the centre of mass,
that we denote by xc, can be written as

xc = µ(B)−1

∫ (
ξ

‖y2 − y1‖
(y2 − y1) + (y1 − x0)

)
dµ`y1,y2

+ x0.

The reader will recall the definition of the coordinate ξ from Example 1.5.3–2.

Using this relation, a straightforward computation yields

Ic(u) =
(y2 − y1)× (u× (y2 − y1))

‖y2 − y1‖2

[∫
ξ2 dµ`y1,y2

− 1

m

(∫
ξ dµ`y1,y2

)2
]

(1.24)

Similar with the single particle, the inertia tensor vanishes when applied to angular
velocities collinear with y2 − y1. However, unlike what is seen with the single particle,
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the inertia tensor in this example never vanishes, regardless of the choice of the point
about which the moment is measured.

A special case when µ has support in `y1,y2 occurs when there are particles m1 and m2

located at y1 and y2. In this case one may compute the centre of mass to be

xc = µ(B)−1
(
m1(y1 − x0) +m2(y2 − x0)

)
+ x0

where m = m1 +m2. It is also an easy computation to determine that in this case

Ic(u) =
m1m2

m1 +m2

(y2 − y1)× (u× (y2 − y1)). (1.25)

One may verify that if m1 and m2 are given by

m1 =
1

2
(m+ ∆), m2 =

1

2
(m−∆), (1.26)

where

∆ =

[
m2 +

4

‖y2 − y1‖2

(∫
ξ dµ`y1,y2

)
− 4m

‖y2 − y1‖2

∫
ξ2 dµ`y1,y2

]1/2

,

then (1.24) and (1.25) agree. One may show that m1 and m2 make sense in (1.26) (see
Exercise E1.21). Thus we have the following assertion:

A rigid body whose mass distribution is supported on a line segment is equiva-
lent to two appropriately chosen particles at the endpoints of the line segment.

3. Example 1.5.1–3 cont’d: The remaining case to consider is when the mass distribution µ
corresponding to B ⊂ E (s0) has support that cannot be contained in a line. Let us first
note that Ic is an isomorphism in this case by Corollary 1.5.7(iii). Now let m be the mass
of B and let {I1, I2, I3} be the three principal moments of inertia with {v1, v2, v3} the
corresponding principal axes, and suppose that these vectors are orthonormal. We now
construct a “simple” rigid body that is equivalent to a nondegenerate rigid body. Define
ri =

√
6Ii/m, i = 1, 2, 3. We now define a new rigid body B′ consisting of six points:

B′ = {r1v1} ∪ {−r1v1} ∪ {r2v2} ∪ {−r2v2} ∪ {r3v3} ∪ {−r3v3}.
Now place a mass distribution on B′ by asking that the mass of each of the points in B′

be 1
6
m. One then readily verifies that B′ has the same inertial ellipsoid as B, and thus

the rigid bodies are equivalent.

A rigid body whose mass distribution cannot be supported on a line segment is
equivalent to six appropriately chosen particles, two placed at points along each
of the principal axes of the rigid body. �

1.6 Dynamics of rigid bodies

In this section we get to the heart of the matter: the “Euler equations” for a rigid body.
To derive the Euler equations we first define spatial and body momenta for a rigid body.
It is comparatively simple within our general formalism to demonstrate that the laws of
conservation of momentum are independent of observer. We then invoke these conservation
laws to derive the equations that govern the behaviour of a rigid body. Note that this is not
a typical situation. That is, one cannot typically just derive the equations of motion for a
system knowing that it conserves linear and angular momentum. The reason it will work
for us in this section is part of the magic of the dynamics of a rigid body, the principles of
which are generalised in Section 4.4 of [Abraham and Marsden 1978].
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1.6.1 Spatial momenta We let G = (E , V, g, τ) be a Galilean spacetime with Σ =
(Ψ, ν) a rigid motion, O an observer, and (B, µ) a rigid body with B ⊂ E (s0). We wish to
see how to define angular momentum with respect to the point x0 and so shall suppose that
the observer O contains the point x0. As usual, we denote by Os the unique point in the
intersection O ∩ E (s) for s ∈ IG .

Let us try to motivate our definition of spatial angular momentum by recalling how it
might be defined for a particle of mass m. If the particle is moving in R3 following the curve
t 7→ x(t), then we would define the spatial angular momentum at time t to be mx(t)× ẋ(t).
Motivated by this, if the particle were following a world line s 7→ x(s), then we might define
its spatial angular momentum with respect to the observer O to be

m(x(s)− Os)× PO(x′(s)).

Note that the angular momentum at the instant s is measured about the observers origin
Os. Now let us see the implications of this for a rigid body. We suppose that we have a rigid
motion Σ = (Ψ, ν). We let s0 = πG (x0) so that the rigid body is located at the instant s0.
At the instant s a point x ∈ E (s0) will be located at

TΣ(s, x) =
(
RΨ(s)

(
x−

(
(s0 − s)(ν − vO) + Os0

))
+ rΨ,O(s)

)
+ Os ∈ E (s).

By Proposition 1.4.5 its velocity will be given by

PO(T ′Σ(s, x)) = RΨ(s)(ν − vO) + ωΨ(s)× (TΣ(s, x)− Os) + vΨ,O(s).

Note that since we are supposing that x0 ∈ O it must be the case that Os0 = x0. Motivated by
the situation for the point mass, we use as our definition of spatial angular momentum ,

`Σ,O(s) =

∫
(TΣ(s, x)− Os)× PO(T ′Σ(s, x)) dµ.

Generally, a substitution of the expressions TΣ(s, x) and PO(T ′Σ(s, x)) into the formula for
spatial angular momentum will produce a somewhat lengthy expression. We do not include
it here, although it is in principle straightforward. In any case, one of the advantages to
our Galilean presentation is that it is straightforward to write down the formula for spatial
angular momentum with respect to a general observer.

Now let us talk about the spatial linear momentum. Again, we start by analogy with a
particle of mass m moving along a curve t 7→ x(t) in R3. Its linear momentum is taken to be
m ẋ(t). For a particle following a world line s 7→ x(s), an observer O would determine the
linear momentum of the particle to be mPO(x′(s)). The key point here is that one measures
the linear momentum of the centre of mass. Therefore, for a rigid body (B, µ) undergoing a
rigid motion Σ = (Ψ, ν), a reasonable definition for the spatial linear momentum would
be

mΣ,O(s) = µ(B)PO(T ′Σ(s, xc)).

Using Proposition 1.4.5 one can readily write this expression in terms of spatial angular and
linear velocities.

When the observer has a special form, then the expressions for spatial momenta may
be simplified to the point where they may conveniently be expressed in terms of spatial
linear velocity. The following result records the result of the corresponding easily verified
computations.
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1.6.1 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with (B, µ) a rigid body with
B ⊂ E (s0). Also let Σ = (Ψ, ν) be a rigid motion with O ∈ Ob(Σ) an observer having the
property that xc ∈ O. Then we have

`Σ,O(s) = Ic(R
−1
Ψ (s)ωΨ(s)) + µ(B)

(
rΨ,O(s)×

(
(ωΨ(s)× rΨ,O(s)) + vΨ,O(s)

))
mΣ,O(s) = µ(B)

(
ωΨ(s)× rΨ,O(s) + vΨ,O(s)

)
.

Prove

Proof �

Note that by using Proposition 1.4.5 it is readily verified that

ωΨ(s)× rΨ,O(s) + vΨ,O(s) = r′Ψ,O(s),

so that the expression for the spatial momenta in Proposition 1.6.1 are simply

`Σ,O(s) = Ic(R
−1
Ψ (s)ωΨ(s)) + µ(B)

(
rΨ,O(s)× r′Ψ,O(s)

)
mΣ,O(s) = µ(B) r′Ψ,O(s),

which are the familiar expressions.
Let us look at the spatial angular momentum for our rotational rigid motion.

1.6.2 Example (Example 1.4.4 cont’d) For this example, recall that we had a rotation about
the origin in the canonical Galilean spacetime which fixed the vector ω0 ∈ R3. As we have
already computed, the spatial angular velocity of this rigid motion is ω0. To talk about the
angular momentum, one must have a rigid body of some sort. Let us suppose that we have
a rigid body (B, µ) and that B ⊂ E (0). Thus our rigid body occupies the set of points B at
time 0. As our base point for measuring the inertia tensor we choose x0 = 0, and we shall
also suppose this to be the centre of mass for (B, µ). We shall also suppose that ω0 is in
fact an eigenvalue of the inertia tensor I0 with eigenvalue I. We also keep with our previous
convention with this example, and use the canonical observer Ocan.

Now, using Proposition 1.6.1 we compute the spatial angular momentum to be

`(t) = I0(ω(t)) = I0(ω0) = I ω0.

Thus for this simple example the spatial angular momentum is simply a multiple of the
angular velocity. This is reminiscent of the situation where linear momentum is a multiple
(the mass) of the linear velocity of a particle. Of course, in this example since the spatial
linear velocity is zero, so too is the spatial linear momentum zero. �

To finish off our discussion of spatial momentum, let us look at the spatial momentum
in the planar case. To state the result, it is helpful to introduce an extra bit of notation.
For a 3-dimensional sub-spacetime H = (F , U, g|Uτ , τ |U) of G = (E , V, g, τ), Uτ is as usual
a 2-dimensional subspace of ker(τ). Therefore, given u1, u2 ∈ Uτ the cross-product u1 × u2

is orthogonal to Uτ . Also recall that uτ is the positively-oriented unit vector orthogonal to
Uτ . We denote by fτ (u1, u2) ∈ R the number satisfying

u1 × u2 = fτ (u1, u2)uτ .

With this notation we have the following.
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1.6.3 Proposition Let H = (F ,U, g|Uτ , τ |U) be a 3-dimensional Galilean sub-spacetime
of G = (E ,V, g, τ), let Σ = (Ψ,O) be an H -compatible rigid motion, let O be an H -
compatible observer, and let (B, µ) be an H -compatible rigid body. Then mΣ,O(s) ∈ Uτ for
each s ∈ IG , and for each s ∈ IG there exists ¯̀

Σ,O(s) ∈ R so that

`Σ,O(s) = ¯̀
Σ,O(s)uτ .

Further suppose that we have O ∈ Ob(Σ) and xc ∈ O, and then define ω̄Ψ(s) ∈ R by
ωΨ(s) = ω̄Ψ(s)uτ as in Proposition 1.4.14. Also let I be the eigenvalue of Ic for which uτ is
an eigenvector. Then the expression for ¯̀

Σ,O simplifies to

¯̀
Σ,O(s) = I ω̄Ψ(s)) + µ(B)fτ (rΨ,O(s), r′Ψ,O(s)).

Proof First note the following facts:

1. TΣ(s, x)− Os ∈ Uτ for each s ∈ IG and x ∈ B;

2. PO(T ′Σ(s, x)) ∈ Uτ .

The first fact holds since O, (B, µ), and Σ are H -compatible. The second holds since
T ′Σ(s, x) ∈ U for each s ∈ IG and for each x ∈ B. It now holds that

(TΣ(s, x)− Os)× PO(T ′Σ(s, x))

is orthogonal to Uτ for each s ∈ IG and each x ∈ B. Therefore, by definition, `Σ,O(s) is
orthogonal to Uτ for each s ∈ IG which gives that part of the result referring to `Σ,O with
respect to a general H -compatible observer. The similar statement for the spatial linear
momentum follows directly from Proposition 1.6.1 and the fact 2 above.

The second part of the proposition follows directly from the definition of fτ . �

1.6.2 Body momenta Now let us turn to defining the body momentum. Here we
take our motivation from Proposition 1.4.11 and define the body angular momentum LΣ,O

and the body linear momentum MΣ,O by asking that[
`Σ,O(s)
mΣ,O(s)

]
=

[
RΨ(s) 0

r̂Ψ,O(s) ◦RΨ(s) RΨ(s)

]−t [
LΣ,O(s)
MΣ,O(s)

]
=

[
RΨ(s)(LΣ,O(s)) + rΨ,O(s)×

(
RΨ(s)(MΣ,O(s))

)
RΨ(s)(MΣ,O(s))

]
.

This reflects the fact that momentum is to be thought of as an element in the dual to the
vector space occupied by velocity. We shall not be able to understand all the implications
of this here, but again refer to Section 4.4 of [Abraham and Marsden 1978]. Since spatial
and body velocities are related by the adjoint representation, the spatial and body momenta
should be related by the coadjoint representation. In any event, inverting the above relation
gives

LΣ,O(s) = R−1
Ψ (s)

(
`Σ,O(s) +mΣ,O(s)× rΨ,O(s)

)
as the body angular momentum and

MΣ,O(s) = R−1
Ψ (s)mΣ,O(s)

as the body linear momentum of the body (B, µ) undergoing the motion Ψ with respect
to the observer O.
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Again, if the observer has a special form, the expressions for body momenta may be con-
veniently expressed in terms of the body velocities. The following result, easily derived from
our definitions for body momenta and Proposition 1.6.1, records the form of the expressions
in the case of the simplified observer.

1.6.4 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with (B, µ) a rigid body with
B ⊂ E (s0). Also let Σ = (Ψ, ν) be a rigid motion with O ∈ Ob(Σ) an observer having the
property that xc ∈ O. Then we have

LΣ,O(s) = Ic(ΩΨ(s))

MΣ,O(s) = µ(B) VΨ,O(s).

Let us return to our running example.

1.6.5 Example (Example 1.4.4 cont’d) We carry on with the situation described in Exam-
ple 1.6.2. Using the definition of body angular momentum we determine it to be

L(t) = R−1(t)`(t) = I exp(−tω0)ω0 = I ω0.

Thus, as with spatial and body angular velocities, in this case the spatial and body angular
momenta are the same. �

Let us duplicate for body momenta Proposition 1.6.3, describing the spatial momenta
for planar rigid motions. The proof of this result follows exactly along the lines of the proof
of Proposition 1.6.3

1.6.6 Proposition Let H = (F ,U, g|Uτ , τ |U) be a 3-dimensional Galilean sub-spacetime of
G = (E ,V, g, τ), let Σ = (Ψ,O) be a H -compatible rigid motion, let O be an H -compatible
observer, and let (B, µ) be an H -compatible rigid body. Then MΣ,O(s) ∈ Uτ for each s ∈ IG ,
and for each s ∈ IG there exists L̄Σ,O(s) ∈ R so that

LΣ,O(s) = L̄Σ,O(s)uτ .

Further suppose that we have O ∈ Ob(Σ) and xc ∈ O, and then define Ω̄Ψ(s) ∈ R by
ΩΨ(s) = Ω̄Ψ(s)uτ as in Proposition 1.4.14. Also let I be the eigenvalue of Ic for which uτ is
an eigenvector. Then the expression for L̄Σ,O simplifies to L̄Σ,O(s) = I Ω̄Ψ(s)).

1.6.3 Conservation laws The equations of motion of a free rigid body are derived
from the principle, experimentally verified to some degree of accuracy, of the conservation
of momentum. In this section we demonstrate that this principle is observer independent.
This is rather simple, given the notation we have adopted.

1.6.7 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with (B, µ) a rigid body with
B ⊂ E (s0). Suppose that Σ = (Ψ, ν) be a rigid motion and let O and Õ be observers. Denote
by `Σ,O , mΣ,O , `Σ,Õ , and mΣ,Õ the spatial angular and linear momenta for the rigid motion

Σ relative to the observers O and Õ. If the rigid motion has the property that `′Σ,O = 0 and
m′

Σ,O = 0, then it also has the property that `′
Σ,Õ

= 0 and m′
Σ,Õ

= 0.
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Proof First let us show that m′
Σ,O = 0 implies that m′

Σ,Õ
= 0. We write

mΣ,Õ(s) = µ(B)PÕ(T ′Σ(s, xc))

= mΣ,O(s) + µ(B)
(
PÕ(T ′Σ(s, xc))− PO(T ′Σ(s, xc))

)
.

Now we note that for v ∈ VG we have

PÕ(v)− PO(v) = (v − τ(v)vÕ)− (v − τ(v)vO) = vO − vÕ . (1.27)

It now follows directly from the definition of TΣ that m′
Σ,Õ

(s) = m′
Σ,O(s).

Now we look at angular momentum. Here we compute, using (1.27),

`Σ,Õ =

∫
(TΣ(s, x)− Õs)× PÕ(T ′Σ(s, x)) dµ

=

∫ (
(TΣ(s, x)− Os) + (Os − Õs)

)
×
(
PO(T ′Σ(s, x)) + (vO − vÕ)

)
dµ

= `Σ,O(s) +

∫
(Os − Õs)× PO(T ′Σ(s, x)) dµ+∫

(TΣ(s, x)− Os)× (vO − vÕ) dµ+

∫
(Os − Õs)× (vO − vÕ) dµ.

Let us investigate the derivative with respect to s of the last three terms.

Term 1: Here we compute

Os − Õs = (Os0 + (s− s0)vO)− (Õs0 + (s− s0)vÕ)

= (Os0 − Õs0) + (s− s0)(vO − vÕ). (1.28)

Therefore, the derivative of the first term is∫
(vO − vÕ)× PO(T ′Σ(s, x)) dµ+

∫ (
(Os0 − Õs0) + (s− s0)(vO − vÕ)

)
× PO(T ′′Σ(s, x)) dµ.

Here we have used the fact that differentiation with respect to s commutes with PO , a fact
that is readily checked. We now claim that∫

PO(T ′′Σ(s, x)) dµ = 0.

To prove this claim we write

T ′′Σ(s, x) = T ′′Σ(s, (x− xc) + xc).

By direct calculation it is observed that x appears in the expression T ′′Σ(s, x) “linearly,” so
that an application of Lemma 1.5.2(ii) gives∫

PO(T ′′Σ(s, x)) dµ = PO(T ′′Σ(s, xc)) dµ.

However, since we are supposing that m′
Σ,O = 0, our claim follows. Thus we have the

derivative of the first term as ∫
(vO − vÕ)× PO(T ′Σ(s, x)) dµ (1.29)
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Term 2: We first note that by direct computation and using Proposition 1.4.5 we may
ascertain that the derivative with respect to s of TΣ(s, x) − Os is equal to PO(T ′Σ(s, x)).
Therefore the derivative of the second term is determined easily to be∫

PO(T ′Σ(s, x))× (vO − vÕ) dµ. (1.30)

Term 3: Here we use (1.28) to readily check that the derivative of the third term is∫
(vO − vÕ)× (vO − vÕ) dµ = 0 (1.31)

Now we combine the expressions (1.29), (1.30), and (1.31) to see that, provided that
m′

Σ,O = 0, `′Σ,O = `′
Σ,Õ

. �

1.6.8 Remarks 1. Let us call a rigid motion Σ = (Ψ, ν) natural for a rigid body (B, µ) if
the spatial momenta `Σ,O and mΣ,O are constant functions of s for some observer O (and
hence for all observers by the proposition).

2. Typically when one deals with rigid body dynamics, an observer O is assumed fixed, and
then one tacitly considers rigid motions Σ = (Ψ, ν) for which O ∈ Ob(Σ). This restricts
the changes of observer to effectively changing the point about which one measures
spatial angular momentum. Therefore, when we demonstrate here that conservation of
momentum is observer independent, we are doing more than is usually done. �

Returning to our example.

1.6.9 Example (Example 1.4.4 cont’d) Let us now show that the rigid motion Σ defined in
Example 1.4.4 is natural for the rigid body (B, µ) described in Example 1.6.2. Indeed,
by Proposition 1.6.7 all we need to observe is that the spatial momentum is constant, the
constant in this case being I ω0. Note that if ω were not an eigenvector for the inertia
tensor, then the rigid motion Σ would not be natural. �

1.6.4 The Euler equations in Galilean spacetimes Now we use the conservation laws
to derive the equations of motion for a rigid body relative to a general observer. When we
use an observer with the properties of those in Propositions 1.6.1 and 1.6.4, we recover the
usual Euler equations. However, when the observer is not so distinguished, the equations do
not decouple in the usual manner to give separate equations that determine the evolution of
the body momenta.

1.6.10 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with (B, µ) a rigid body
with B ⊂ E (s0). Suppose that Σ = (Ψ, ν) be a natural rigid motion for the rigid body
(B, µ) and let O be an observer with ΩΨ,O and VΨ,O the body angular and linear velocities,
and LΣ,O and MΣ,O the body angular and linear momenta. Define RΨ(s) and rΨ,O(s) by
Ψ(s) = ΦO(RΨ(s), rΨ,O(s)).

The body momenta, and RΨ and rΨ,O satisfy

R′
Ψ(s) = RΨ(s) ◦ Ω̂Ψ(s)

r′Ψ,O(s) = RΨ(s)(VΨ,O(s))

L′Σ,O(s) = LΣ,O(s)× ΩΨ(s) + MΣ,O(s)× VΨ,O(s)

M′
Σ,O(s) = MΣ,O(s)× ΩΨ(s).
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If the inertia tensor Ix0 (where x0 = Os0) is an isomorphism, then the body velocities ΩΨ

and VΨ,O can be expressed in terms of RΨ, rΨ,O , LΣ,O , and MΣ,O using the definitions for
body momenta.

Proof The equations for R′
Ψ and r′Ψ,O follow directly from the definition of RΨ and rΨ,O .

To obtain the equations for L′Σ,O and M ′
Σ,O we use the expressions giving spatial momenta

in terms of body momenta:

`Σ,O(s) = RΨ(s)(LΣ,O(s)) + rΨ,O(s)×
(
RΨ(s)(MΣ,O(s))

)
mΣ,O(s) = RΨ(s)(MΣ,O(s)).

Differentiating mΣ,O gives

0 = R′
Ψ(s)(MΣ,O(s)) +RΨ(s)(M ′

Σ,O(s)) = RΨ(s)
(
ΩΨ(s)×MΣ,O(s) +M ′

Σ,O(s)
)
,

and from this directly follows the equation for M ′
Σ,O . Similarly, differentiating the expression

for `Σ,O , and using the fact that spatial linear momentum is conserved, we have

0 = R′
Ψ(s)(LΣ,O(s)) +RΨ(s)(L′Σ,O(s)) + r′Ψ,O(s)×

(
RΨ(s)(MΣ,O(s))

)
= RΨ(s)

(
L′Σ,O(s) + ΩΨ(s)× LΣ,O(s) +

(
R−1

Ψ (s)(r′Ψ,O(s))
)
×MΣ,O(s)

)
.

From this follows the equation given for L′Σ,O .
For the final assertion of the proposition, we merely remark that a lengthy calculation

does indeed show that the body velocities may be determined as functions of the body
momenta and RΨ and rΨ,O . �

1.6.11 Remarks 1. We shall call the equations of Proposition 1.6.10 the Galilean Euler
equations.

2. Although initially the governing equations of Proposition 1.6.10 look innocuous enough,
they are in fact quite formidable if one wishes to work with a general observer and then
express the body velocities in terms of the body momenta. We shall see in Section 2.1 that
it is possible to make things more palatable by eliminating the complications that derive
from the choice of an observer not in Ob(Σ). However, if one wishes to use an observer
that does not contain the centre of mass of the body, the equations are still somewhat
complicated, and in particular, the equations for L′Σ,O and M ′

Σ,O will not decouple from
the equations for RΨ and rΨ,O .

3. Even when one makes the simplification of measuring the spatial angular momentum
about the centre of mass, the equations of Proposition 1.6.10 will be potentially more
complicated than the usual Euler equations, resulting from the fact that O may not be
in Ob(Σ). Thus we see that an observer whose Galilean velocity is not the same as
that for the rigid motion will not see motion of the same nature as an observer with the
same Galilean velocity. Following Remark 1.6.8–2, the upshot of this is that we obtain
equations that are genuinely more general than the usual rigid body equations, although
they are still derived from the principle of conservation of spatial momentum.

4. When Ix0 is not an isomorphism, then the equations of Proposition 1.6.10 will be overde-
termined. This is a result of the fact that when the inertia tensor has zero eigenvalues,
then O(ker(τ)) is too large to describe the rotations of the body, as may be seen from
Corollary 1.5.7. For a body that lies in a line through x0, an appropriate space to de-
scribe the rotational motion of the body is the 2-sphere S2. When the body is the point
{x0}, then there are no rotational degree of freedom, and all equations describing them
can be eliminated. �
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As usual, if the observer has certain typical properties, then the equations of motion
simplify. The next result follows directly from Propositions 1.6.1 and 1.6.4.

1.6.12 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with (B, µ) a rigid body with
B ⊂ E (s0). Also let Σ = (Ψ, ν) be a natural rigid motion for the rigid body (B, µ) with
O ∈ Ob(Σ) an observer having the property that xc ∈ O. Let ΩΨ,O and VΨ,O be the body
angular and linear momenta. Define RΨ(s) and rΨ,O(s) by Ψ(s) = ΦO(RΨ(s), rΨ,O(s)).

The body velocities, and RΨ and rΨ,O satisfy

R′
Ψ(s) = RΨ(s) ◦ Ω̂Ψ(s)

r′Ψ,O(s) = RΨ(s)(VΨ,O(s))

Ic(Ω
′
Ψ(s)) =

(
Ic(ΩΨ(s))

)
× ΩΨ(s)

µ(B) V′
Ψ,O(s) = µ(B) VΨ,O(s)× ΩΨ(s).

Our running example illustrates the concepts.

1.6.13 Example (Example 1.4.4 cont’d) In Example 1.6.9 we saw that the rigid motion of
Example 1.4.4 was natural for the rigid body considered in Example 1.6.2. Let us verify that
it also satisfies the Galilean Euler equations. Things are made simpler by our considering
an observer whose Galilean velocity is the same as that for the rigid motion, and that
the observer contains the centre of mass. We thus only need to consider the equations of
Proposition 1.6.12. Since the body linear velocity V (t) is zero and since r(t) = 0, the linear
equations are trivially satisfied. To verify that the equations for R(t) and Ω(t) are also
satisfied we need only see that

R′(t) = exp(tω̂0)ω̂0 = R(t)Ω̂(t),

and that
I0(Ω′(t)) = 0 = I ω0 × ω0 =

(
I0(Ω(t))

)
×Ω(t),

as required. �

Let us now see how the Galilean Euler equations simplify for planar rigid motions. The
proof of the following result follows directly from Proposition 1.6.10, and the characterisa-
tions of spatial and body angular momenta for planar rigid motions.

1.6.14 Proposition Let H = (F ,U, g|Uτ , τ |U) be a 3-dimensional Galilean sub-spacetime
of G = (E ,V, g, τ), let Σ = (Ψ,O) be an H -compatible rigid motion, let O be an
H -compatible observer, and let (B, µ) be an H -compatible rigid body. Define Ψ(s) =
ΦO(RΨ(s), rΨ,O(s)), define Ω̄Ψ(s) as in Proposition 1.4.14, and define L̄Ψ(s) as in Proposi-
tion 1.6.6.

The following equations hold:

R′
Ψ(s) = Ω̄Ψ(s) RΨ(s) ◦ ûτ

r′Ψ,O(s) = RΨ(s)(VΨ,O(s))

L̄′Σ,O(s) = fτ (MΣ,O(s),VΨ,O(s))

M′
Σ,O(s) = MΣ,O(s)× ΩΨ(s).
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Further suppose that we have O ∈ Ob(Σ) and xc ∈ O, and then define Ω̄Ψ(s) ∈ R by
ΩΨ(s) = Ω̄Ψ(s)uτ as in Proposition 1.4.14. Let I be the eigenvalue of Ic for which uτ is an
eigenvector. Then the above equations simplify to:

R′
Ψ(s) = Ω̄Ψ(s) RΨ(s) ◦ ûτ

r′Ψ,O(s) = RΨ(s)(VΨ,O(s))

I Ω̄′
Ψ(s) = 0

µ(B) V′
Ψ,O(s) = µ(B)Ω̄Ψ(s)VΨ,O(s)× uτ .

(1.32 )

Of course, these equations now have a very simple solution (see Exercise E1.24).

1.6.5 Solutions of the Galilean Euler equations Now that we have seen that the
equations which describe the motion of a rigid body can be quite complicated in form, let
us show that, as expected, one may determine the solutions of these equations directly from
the solutions for observers satisfying the hypotheses of Proposition 1.6.12.

1.6.15 Proposition Let G = (E ,V, g, τ) be a Galilean spacetime with (B, µ) a rigid body with
B ⊂ E (s0). Also let Σ = (Ψ, ν) be a natural rigid motion for the rigid body (B, µ) with
Õ a general observer. Let ΩΨ,Õ and VΨ,Õ be the body angular and linear velocities. Define
RΨ(s) and rΨ,Õ(s) by Ψ(s) = ΦÕ(RΨ(s), rΨ,Õ(s)). Let O ∈ Ob(Σ) be an observer having the
property that xc ∈ O with ΩΨ and VΨ,O the corresponding body angular and linear velocities
(note that the body angular velocities with respect to the two observers are indeed the same).

Then we have

VΨ,Õ(s) = VΨ,O(s0) + (idτ −R−1
Ψ (s))(vÕ − vO)+

ΩΨ(s)×
(
(Õs0 − Os0) + (s− s0)(vÕ − vO)

)
.

In particular, if O is also in Ob(Σ) then

VΨ,Õ(s) = VΨ,O(s0) + ΩΨ(s)× (Õs0 − Os0).

Proof Note that VΨ,O(s) = VΨ,O(s0) for all s ∈ IG by Proposition 1.6.12. The second
equation of the proposition follows from combining the relations

rΨ,Õ(s) = rΨ,O(s) + (RΨ(s)− idτ )(Õs − Os)

ΩΨ(s) = R−1
Ψ (s)R′

Ψ(s)

Õs − Os = (Õs0 − Os0) + (s− s0)(vÕ − vO),

which are derived in Propositions 1.4.3, 1.4.5, and Proposition 1.6.7, respectively, with the
definition of VΨ,Õ . �

Let us see how this plays out with our ongoing example.

1.6.16 Example (Example 1.4.4 cont’d) We have observed that the rigid motion Σ described
in Example 1.4.4 is natural for the rigid body (B, µ) described in Example 1.6.2. For the
canonical observer Ocan this led us to the verification that the body angular momentum does
indeed satisfy the Galilean Euler equations.

Now let us introduce a non-canonical observer Õ defined by

Õ = {(x0 + v0t, t) | t ∈ R} .
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Thus this new observer does not contain the centre of mass (unless x0 = 0, and it has
a Galilean velocity (v0, 1) which differs from the rigid body Galilean velocity ν = (0, 1).
Nevertheless we can use Proposition 1.6.15 to obtain the solution to the Galilean Euler
equations with respect to this observer without having to solve the equations . According to
Proposition 1.6.15, if Ω̃(t) and Ṽ (t) are the body angular velocities with respect to the new
observer we have

Ω̃(t) = Ω(t) = ω0.

We also have

Ṽ (t) = V (t) + (I3 −R(t))v0 + Ω(t)× (x0 + tv0)

= (I3 − exp(tω̂0))v0 + ω0 × (x0 + tv0).

Thus, even though the Galilean Euler equations may not look so pleasant with respect to a
general observer, their solutions may be written down. Note that the body linear velocity is
not constant with respect to a general observer. �

1.7 Forces on rigid bodies

The previous sections have been dedicated to producing a description of rigid body
motion in the absence of forces. Let us now consider how forces affect a rigid body. Note
that the matter of adding a force to a particle did not cause us concern, so let us use this
as our basis. Let us consider a mass moving in R3 and following a curve t 7→ x(t). We also
suppose that the mass is subjected to a force which at time t is F (t). We then know that
the familiar Newton equations tell us that m ẍ(t) = F (t). The spatial momentum about
the origin, which is conserved for unforced motions, is no longer conserved when forces is
present. The linear momentum evolves according to

d

dt

(
m ẋ(t)

)
= m ẍ(t) = F (t),

and the angular momentum evolves according to

d

dt

(
mx(t)× ẋ(t)

)
= mx(t)× ẍ(t) = x(t)× F (t).

With these calculations in mind, let us proceed to look at a general rigid body.
We let G = (E , V, g, τ) be a Galilean spacetime with (B, µ) a rigid body with B ⊂ E (s0).

We let xc denote the centre of mass of B and suppose that a force acts on B, being applied
at the point xc, and that a pure moment acts on B, again about the point xc. The force
we regard as a map F : IG → ker(τ) and the moment we similarly regard as a map τ : IG →
ker(τ). We suppose that the rigid body undergoes the rigid motion Σ = (Ψ, ν) as a result
of the given applied forces, and that O ∈ Ob(Σ) has the property that xc ∈ O. Using as
motivation our above calculations with a particle, we declare that the rigid motion Σ should
satisfy

m′
Σ,O(s) = F (s), `′Σ,O(s) = τ(s) + (TΣ(s, xc)− Os)× F (s).

Add more here
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1.8 The status of the Newtonian world view

Newtonian mechanics is a powerful tool. Let us see what our above development says
about how the world looks from a Newtonian point of view.

1. In a Newtonian world, we do not have a distinguished origin in either space or time. That
is, one cannot say, “Time starts here,” or, “All distances should be measured relative to
this point.”

2. Although there is no “time zero,” all clocks in a Newtonian world move at the same rate.
Similarly, although there is no spatial origin, all rulers look the same to all observers.

3. The notion of “stationary” is senseless in the Newtonian world. That is to say, if one is
in an inertial frame, there is no way to determine whether you are moving or not moving
by performing experiments within your inertial frame. Thus, in Newtonian mechanics
one does not say the train is moving at constant velocity and the person at the station
is fixed. One merely says that each is an inertial reference frame, and the one can only
determine relative velocities of one observer with respect to another.

4. The Newtonian world is comprised of objects sitting in a universe (that is a Galilean
spacetime) and interacting with one another in a way consistent with the Galilean rela-
tivity principle. In particular, determinacy principle says that to see what will happen
in the universe, one need only specify initial conditions for the differential equations of
Newtonian mechanics, and all else follows, at least in principle. As you might imagine,
there are philosophical upshots of this that may or may not be disturbing.

Is the Newtonian world view empirically accurate? That is, is it consistent with all
experimental observations? For many years after Newton, his view of the world, or more
accurately, that view of the world that follows from his mechanics was extremely influential
exactly because it was so very successful. The world did indeed behave as if it were governed
by the laws of Newton. However, things began to fall apart for Newton in the latter part
of the 19th century. A Scottish physicist, James Clerk Maxwell (1831–1879) introduced in
1873 the partial differential equations that describe the interaction of electric and magnetic
fields. One of the consequences of his equations is that the speed of light is an observer
independent quantity. This throws a wrench into Galilean invariance, because according to
the latter, if the speed of light is observer independent, then if observer A is travelling at the
speed of light with respect to observer B, then the speed of light as seen by observer B must
be twice the speed of light; clearly a contradiction! This is repaired by special relativity, a
theory attributed to Albert Einstein (1879–1955).4 However, Newtonian mechanics is still
the tool of choice for everyday use, and it is only when we are dealing with objects moving
at enormous relative velocities that relativistic effects need to be accounted for.

4The ideas behind the special theory of relativity predate Einstein’s 1905 paper in the work of Hendrik
Antoon Lorentz (1853–1928), and the mathematical ideas were present in a paper of Henri Poincaré (1854–
1912) that was published roughly concurrently with Einstein’s paper. Thus special relativity was not a
uniquely Einsteinian vision. However, his general theory of relativity presented in 1915 was uniquely his.
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Exercises

E1.1 Prove Proposition 1.1.2.

E1.2 Prove Proposition 1.1.3.

E1.3 Let U and V be R-vector spaces, A : U → V a linear map, and v ∈ V . Show that the
set of solutions to the equation Au = v is a R-affine space modelled on ker(A). You
may suppose that v ∈ image(A).

E1.4 Let A be an affine space modelled on V and let v1, v2 ∈ V and x ∈ A. Show that
(v1 + x)− (v2 + x) = v1 − v2.

E1.5 Show that the definition (1.3) is independent of the choice of x0 ∈ A.

E1.6 Is the group GL(n; R) Abelian?

E1.7 Prove that O(n) is a subgroup of GL(n; R).

E1.8 Show that SO(n) a subgroup of O(n). Is the set

{A ∈ O(n) | det A = −1}

a subgroup of O(n)?

E1.9 Let V be a R vector space with inner product g and let ‖·‖ be the norm on V induced
by g. Show that ‖g‖ satisfies the parallelogram law:

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2 ), u, v ∈ V. (E1.1)

If you are feeling very energetic, try to demonstrate the converse. That is, let V be a
vector space with norm ‖·‖ not necessarily derived from an inner product. Show that
if ‖·‖ satisfies (E1.1) then there exists an inner product g on V so that ‖v‖ =

√
g(v, v)

for every v ∈ V .

E1.10 Show that for every matrix A ∈ gl(n; R) we have eAA = AeA.

E1.11 Let ω ∈ R3 \ {0}.
(a) Show that ker(ω̂) = spanR {ω}.
(b) Show that image(ω̂) = (spanR {ω})⊥, where ⊥ means orthogonal complement.

(c) Show that eω̂tω = ω for ω ∈ R3.

For ω1,ω2 ∈ R3 show that

(d) ω̂1 × ω2 = ω̂1ω̂2 − ω̂2ω̂1 and that

(e) ω1 · ω2 = tr(ω̂1ω̂2).

E1.12 Let O1 and O2 be observers in a Galilean spacetime G = (E , V, g, τ), and suppose
that O1 ∩ O2 6= ∅. Show that there exists φ1 ∈ Coor(O1) and φ2 ∈ Coor(O2) so that
φ2 ◦φ

−1
1 satisfy

φ2 ◦φ
−1
1 :

(
x
t

)
7→
[
R v
0t 1

](
x
t

)
.

E1.13 Suppose that you inhabited a world that was accelerating at a uniform rate with
respect to an inertial coordinate system. Also suppose that you were Isaac Newton.
What would be the laws of motion you would formulate?

E1.14 In this exercise, you will show that a “lab frame” is not inertial.Finish

E1.15 Show that for rigid motions Σ1 = (Ψ1, ν1) and Σ2 = (Ψ2, ν2), the equality TΣ1 = TΣ2

implies that Σ1 = Σ2.
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E1.16 Suppose that you inhabited a world that was rotating at a variable angular velocity
Ω(t) with respect to an inertial reference frame. Show that an object of mass m in
your world, located at a point X in its own coordinate system with respect to the
point of rotation, and moving with velocity V with respect to its own coordinate
system, would feel the effects of the following three forces:

1. the rotational inertial force : m Ω̇×X;

2. the Coriolis force : 2mΩ× V ;

3. the centrifugal force : mΩ× (Ω×X).

Are you an occupant of such a world (assuming that an inertial frame exists)?

E1.17 Verify the formulae (1.17).

E1.18 Let G = (E , V, g, τ) be a Galilean spacetime inhabited by a single particle of mass
m. If the particle is subjected to an external force F : E × VG → ker(τ), what can
one say about the form of F if the Galilean relativity principle holds? What are the
corresponding motions of the particle?

E1.19 Let G = (E , V, g, τ) be a Galilean spacetime inhabited by two particles, one of mass
m1 and the other of mass m2.

(a) If the particle mi is acted upon by a force Fi : E 2, V 2 → ker(τ) for i ∈ {1, 2},
what must be the form of F1 and F2 if the Galilean relativity principle is to hold?

(b) Show that for each set of initial conditions (x1, v1) ∈ E ×V for m1 and (x2, v2) ∈
E × V for m2, there exists a 3-dimensional sub-spacetime F of E so that the
world line for each of m1 and m2 lie in F .

(c) Show that the total angular of the system is conserved.

E1.20 Let (B, µ) be a rigid body with the property that B is contained in a line `, but is
not a point. Show that if x0 6∈ ` then the inertia tensor Ix0 is an isomorphism.

E1.21 Show that m1 and m2 as defined by (1.26) are positive real numbers.

E1.22 For a planar rigid body, state and prove the Parallel Axis Theorem. Make sure that
the statement of the theorem begin, “Let (B, µ) be a planar rigid body in a Galilean
spacetime G = (E , V, g, τ). . . ”

E1.23 In this exercise you will derive the equations of motion for a rigid body which is fixed
at a point x0, not necessarily the centre of mass.

(a) In a Galilean spacetime G = (E , V, g, τ), make sense of the statement that a rigid
body (B, µ) is to move so that it is fixed at a point x0 ∈ B.

Let Σ = (Ψ, ν) be a rigid motion which fixes the point x0 (according to your notion
of doing so from (a)), and let O ∈ Ob(Σ) be an observer for which x0 ∈ O.

(b) Determine the spatial and body angular and linear velocities of the rigid motion
with respect to the observer O.

(c) Determine the spatial and body angular and linear momenta for the rigid motion
with respect to the observer O.

(d) What are the Galilean Euler equations for the rigid body motion with respect to
the observer O?

E1.24 Determine the solution to the equations (1.32) subject to the initial conditions

RΨ(s0) = R0, rΨ,O(s0) = r0, Ω̂Ψ(s0) = Ω0, VΨ,O(s0) = V0.
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Chapter 2

Lagrangian mechanics

After understanding some essential concepts in Newtonian mechanics we are in a position
to get to Lagrangian mechanics proper. Lagrangian mechanics can be quite abstract, but to
be really precise, some of this abstraction is necessary. The starting point for Lagrangian
mechanics in the modern framework [Abraham and Marsden 1978, Arnol’d 1989] is with a
configuration space that is a “differentiable manifold.” From here one is able to construct
the objects of Lagrangian mechanics as defined on a differentiable manifold. While I feel that
such a treatment has much to recommend it, it does necessitate something of a buildup, and
at this level this buildup may not be appropriate. Thus our approach is to (1) identify the
reasons why concepts such as a differentiable manifold might be helpful, (2) initiate a way
to redress the issues without having to actually define a differentiable manifold (although
we come close), and (3) essentially fall back on the classical “generalised coordinates,” but
now hopefully with a better understanding for what they are and what they are not.

After a discussion of coordinate related matters, we discuss Lagrangian mechanics, start-
ing with its formulation as a variational principle. Then we discuss so-called simple mechan-
ical systems. These are not so named because their behaviour is simple, but rather because
they are not completely general. Most of the systems one encounters in applications are in
fact simple mechanical systems. Next we introduce the concept of a force in the Lagrangian
setting. Our treatment will seem upsetting to some, because a force does not naturally appear
as a vector, but rather as a “covector.” Constraints are often part and parcel of a description
of a mechanical system, and a common class of constraints is presented in Section 2.6. With
the basic data for Lagrangian mechanics now at hand, in Section 2.7 we investigate the re-
lationship between Newtonian and Lagrangian mechanics, proving that the two descriptions
are equivalent whenever they may both be applied. Although we are primarily interested
in Lagrangian mechanics, it would be something of a sham not to mention the Hamiltonian
formalism, and this we do in Section 2.9. Connoisseurs of the Hamiltonian formalism will
be disappointed by the shallowness of the presentation, but they will already know where to
go to get what they want [e.g., Abraham and Marsden 1978, Arnol’d 1989, Guillemin and
Sternberg 1984, Libermann and Marle 1987]. Finally, in Section 2.10 we observe the effects
that symmetries of the Lagrangian can have on the behaviour of solutions of the Euler-
Lagrange equations. This study of symmetry in mechanics is something of an industry these
days [Marsden and Ratiu 1999], and we give only the barest outline.

2.1 Configuration spaces and coordinates

When one sees a classical treatment of Lagrangian mechanics, the typical starting point is
“generalised coordinates.” This is normally satisfactory, and we will eventually get ourselves
to this starting point. However, we wish to not start there in order that we may emphasise
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the critical concept of coordinate invariance . The idea with coordinate invariance is
that, at least when dealing with general considerations (as opposed to a specific example),
one should never deal with things that are not coordinate invariant. In order to see what
that might mean, we begin at the beginning.

2.1.1 Configuration spaces Suppose that we are given a collection of particles and
rigid bodies, perhaps interconnected in some way. We wish to assign to this mechanical
entity a set that describes its configuration. That is to say, we wish to find a set whose
points are in one-to-one correspondence with the set of configurations of the system. There
is generally speaking something of an art to doing this, and we shall demonstrate how this
might be done via examples. As we introduce the examples, we will introduce the notation
one often encounters when trying to assign a set to the collection of configurations for a
system.

2.1.1 Examples 1. Consider a mass moving in a plane and constrained to move on a circle
of radius r in that plane.

We need to parse this description with the language we know. First of all, when we say
something is moving in a plane, what we really mean is that it is constrained to move in a
three-dimensional Galilean sub-spacetime F of a big Galilean spacetime G = (E , V, g, τ).
Let U be the subspace of V upon which F is modelled. We then choose a coordinate
system φ for E that maps F to the canonical 3-dimensional Galilean sub-spacetime F3.
If the mass is further constrained to move on a circle, this means that for each collection
E (s) of simultaneous events there exists a point xs ∈ E (s) with the property that the
particle must lie on the circle

{xs + ru | u ∈ U, g(u, u) = 1} .

It is not clearly stated, but we may suppose that with respect to some observer, the
centre of the circle is stationary. This means that we may select the coordinate system
φ so that all points xs get mapped to 0 ∈ R3. Therefore, we have reduced ourselves to
the situation that we would have guessed by the initial description:

The particle moves on the circle of radius r centred at (0, 0) ∈ R2.

We still need to describe the configuration space. Let us define

Sn =
{

x ∈ Rn+1
∣∣ ‖x‖ = 1

}
to be the n-dimensional sphere . We claim that we may take S1 as the configuration
space for the system. Indeed, the particle moves on the circle of radius r, and there is
certainly a simple correspondence between points on the circle of radius r and those on
the circle of radius 1 (see Figure 2.1). Thus we select Q = S1 as the configuration space
for the system.

Why not choose the configuration space to be the sphere of radius r rather than the
sphere of radius 1? There is no reason not to do this. However, the configuration space
is typically chosen to be some dimensionless abstract object, and the physics of the
problem, in this case the exact radius of the circle, are shoved into other aspects of the
problem description, as we shall see.

2. Our next mechanical system is depicted in Figure 2.2. We have two rigid bodies, each
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S1

{

x ∈ R2
∣

∣ ‖x‖ = r

}

Figure 2.1 Assigning a point on the unit circle to a point on the
circle of radius r

`1

`2

Figure 2.2 A double link pendulum

moving in the same plane, one with a stationary base point, and connected to the base
of the other link at its tip.

Let us see how to define a configuration space for this system. The links move in the
same plane so there exists a three-dimensional Galilean sub-spacetime F of E to which
the dynamics restricts. We take a coordinate system φ that maps F to F3. The links
then move around in a nice copy of R2. As one of the links has a fixed point, let us
choose our coordinate system so that this point is at the origin in R2. Now, to fix the
position of the link whose base point is fixed, we need only specify its angle relative to,
say, the x-axis in R2. Note that one we know the position of the link with the fixed base
point, we also know the position of one point on the other link since we are told that they
are connected at a point. Therefore we need only position the second link with respect
to this point whose position we know. But to do this, we again only need specify its
angle with respect to, say, the x-axis. Therefore, the configuration space for this system
consists of two copies of S1. If we define

Tn = S1 × · · · × S1︸ ︷︷ ︸
ntimes

to be the n-dimensional torus then the configuration space of our double linked
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pendulum is T2.

Note that the datum with respect to which we measure the angles—we arbitrarily choose
the x-axis—will not change the configuration space. However, it will change the corre-
spondence between the abstract configuration space and the actual configurations of the
system. This will generally be the case. That is to say, my choice of correspondence
might differ from yours.

3. Next we consider a rigid body that is fixed at a point. Again, we want to put this in
terms of the language of the previous chapter.

As we have a rigid body, this means that the body is B ⊂ E (s0) for some s0 ∈ IG . We are
also told that one point in B remains fixed throughout the motion. A good interpretation
of this is to infer the existence of an observer O for E so that any motion of the body is
described by a rigid motion Σ = (Ψ, ν) with O ∈ Ob(Σ) and so that Ψ(s) = ΦO(RΨ(s), 0)
for every s ∈ IG . Let φ ∈ Coor(O) and suppose that

φs ◦RΨ(s) ◦φ−1
s (0) = 0.

Thus in the coordinate system φ, the origin in R3 is fixed by the rigid motion. Let us
denote R(s) ∈ O(3) by

R(s) = φs ◦RΨ(s) ◦φ−1
s .

Thus, after time s of the motion, the rigid body φs0(B) ⊂ R3 is mapped to the rigid
body

{R(s)(ξ) | ξ ∈ φs0(B)} .
Thus we may identify each configuration of the body with the matrix R(s) ∈ SO(3).
Therefore, we take SO(3) as the configuration space for the system. �

Although we have made long work of defining the configuration spaces in these examples,
with a little experience one often “just knows” from the problem description what is the con-
figuration space. But with these examples we want to illustrate how the problem description
interacts with our machinations with Galilean spacetimes in Chapter 1. Note that in none
of the above examples have we said anything about the system other than its configuration
space. We have said nothing about the quantitative geometry of the system (e.g., the radius
r of the circle in Example 2.1.1–1 or the lengths of the links in Example 2.1.1–2). We have
also said nothing about the inertial properties of the system or the external forces acting on
the system. As a general rule, a good idea with a mechanical problem is to first determine
its configuration space. It is with respect to the configuration space that everything else is
done, as we shall see.

2.1.2 Coordinates In the preceding examples we identified sets that describe the
configurations of a system. Note that in none of the cases was the configuration space
Euclidean. That is to say, it is not possible to establish a smooth correspondence with the
configuration spaces and open subsets of Rn for some appropriate n. This is problematic. To
describe the dynamics of these systems, we need to be able to differentiate things, and if we
are only able to differentiate on Euclidean spaces, then it is not clear how to proceed to deal
with the configuration spaces in the examples. But on the other hand, what’s the problem?
Certainly in Example 2.1.1–1 you would just choose an angular coordinate and proceed.
Similarly, in Example 2.1.1–2 you’d assign two angular coordinates and proceed. Here,
however, you begin to see that you have some choices to make. Should you measure the angle
of the second link with respect to the first link, or with respect to the “horizontal”? Moving
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on to Example 2.1.1–3 things seem altogether less transparent. What coordinates should you
use? The fact of the matter is that things were not so transparent in Example 2.1.1–1, but
you got over it because you were familiar with the configuration space. In Example 2.1.1–2
you saw you had a choice to make, but any hesitation about how things might depend on
this choice were washed away by your anxiousness to proceed. However, for Example 2.1.1–3
it is not really clear how to begin.

We wish to systematise the above discussion by clearly identifying the process you readily
undertook in the easy examples. By understanding these, you at least know what you need
to do to start with Example 2.1.1–3. The idea is that we make somewhat precise the idea
of choosing coordinates. Our definition here actually destructs under close scrutiny, but it
will suffice as long as we are gentle with it.

2.1.2 Definition Let Q be a configuration space for a mechanical system. A coordinate
chart for Q is a pair (U, φ) where

(i) U is a subset of Q and

(ii) φ : U → Uφ is a map from U to an open subset Uφ of Rn, for some n, that is a bijection
(i.e., is one-to-one and onto). �

Let us see if we can make sense of this for the three systems of Example 2.1.1.

2.1.3 Examples 1. Example 2.1.1–1 cont’d: We wish to choose a coordinate chart (U, φ) for
Q = S1. We take

U = S1 \ {(−1, 0)} ⊂ S1

and
φ(x, y) = atan(x, y).

Here atan: R2 \ {(0, 0)} → (−π, π] is the usual angle measured so that atan(x, 0) = 0 for
x > 0. Note here that Uφ = (−π, π) is indeed an open subset of R1.

2. Example 2.1.1–2 cont’d: Here we choose a coordinate chart for Q = T2. We take

S1 = {((x1, y1), (x2, y2)) ∈ Q | x1 = −1}
S2 = {((x1, y1), (x2, y2)) ∈ Q | x2 = −1} ,

and then

U = Q \ (S1 ∪ S2), φ((x1, y1), (x2, y2)) = (atan(x1, y1), atan(x2, y2)).

Note here that Uφ = (−π, π)× (−π, π).

3. Example 2.1.1–3 cont’d As expected, choosing a coordinate chart for SO(3) is not so easy
to do. What’s more, it is regarded in some circles as a silly thing to do as often there are
better ways to handle systems involving SO(3) than choosing coordinates. Nonetheless,
we shall illustrate how one can do that, just so that we might illustrate that it is possible.
We shall provide coordinates for a neighbourhood of I3 in SO(3) by using Euler angles .
Other coordinate charts are possible, and we refer to [Murray, Li and Sastry 1994] for
details.

Let us first be formal, and then we shall give the intuition behind what we do. Let R be
a matrix in SO(3) which is “close” to, but not equal to, I3. We shall be clear about how
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close shortly. Let us write the components for R as Rij, i, j = 1, 2, 3 where first index is
the row index, and the second the column index. We then define

β ∈ (0, π), α ∈ (−π, π), γ ∈ (−π, π) (2.1)

by

β = atan(R33,
√
R2

31 +R2
32)

α = atan(R13/ sin β,R23/ sin β)

γ = atan(−R31/ sin β,R32/ sin β).

(2.2)

This then defines a map φ from some subset U of SO(3) to R3, thereby defining a
coordinate chart. The subset of SO(3) is given by inverting the relations (2.2) to give
the matrix entries, and doing so gives the matrixcosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β

sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β
− sin β cos γ sin β sin γ cos β

 . (2.3)

Thus U is the subset of all matrices in SO(3) of the form (2.3) where the numbers α, β,
and γ satisfy the relations (2.1). The map φ : U → R3 is given by

φ(R) =
(
atan(R33,

√
R2

31 +R2
32), atan(R13/ sin β,R23/ sin β),

atan(−R31/ sin β,R32/ sin β)
)
.

Note that this map does not include I3 in the chart domain U , and so that is kind of
sucky. The fact of the matter is, we will never use coordinates for SO(3). It is far more
convenient when dealing with SO(3) to proceed as we did in Chapter 1 with rigid body
dynamics. �Figure for Euler

angles

If Q is a configuration space with (U, φ) a coordinate chart, we will often pretend that
Uφ = φ(U) ⊂ Rn is the configuration manifold. But note that this is just pretend. But
when we do this, we will often write a point q ∈ Q by its image under φ that we might denote
φ(q) = (q1, . . . , qn). Thus (q1, . . . , qn) are coordinates in the coordinate chart (U, φ). We
will think of functions on Q as being functions of the real variables (q1, . . . , qn). In this way
we reduce ourselves to something with which we are familiar. Note that we put superscripts
on our coordinates! That is, q2 is the second coordinate, not the square of q. We do this
because tradition dictates that this is what we should do. Other objects we encounter will
have subscripts as labels, and one can ascertain the character of something by looking at
where its indices are located. But we will get to this in time.

The idea of Definition 2.1.2 is that one establishes an exact correspondence of a subset
of one’s configuration space with something one can deal with, an open subset of Euclidean
space. In doing so, one makes it so that one can deal with these portions of the configuration
space in a way with which one is familiar. Everything seems okay, but the problem is that
it is generally not possible to find a chart (U, φ) where U = Q. Thus to cover the entire
configuration space we may need two or more charts. Generally, these charts may overlap.
Thus we may have a situation where a subset of the configuration space may have two or
more coordinate charts describing it. These coordinate charts should have some properties
relative to one another.
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2.1.4 Definition Let Q be a configuration space for a mechanical system and let (U1, φ1) and
(U2, φ2) be coordinate charts for Q. The coordinate charts are compatible if the map

φ12 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

x 7→ φ2 ◦φ
−1
1 (x)

satisfies

(i) φ12 is a bijection,

(ii) φ12 is differentiable, and

(iii) φ−1
12 (that exists by (i)) is differentiable.

If there exists compatible coordinate charts (U1, φ1), . . . , (Uk, φk) so that U1 ∪ · · · ∪ Uk = Q
and so that all maps φ1, . . . , φk take their values in Rn, then the dimension of Q is n. A
mechanical system with an n-dimensional configuration space has n degrees of freedom . �

In the following, we shall consider configuration spaces with a well-defined dimension,
and we will reserve the letter n to represent the dimension of an arbitrary configuration
space. Thus, below, whenever you see an n, it will be the dimension of the configuration
manifold that is lying about at the time.

A picture to have in mind with respect to this definition is provided in Figure 2.3. I will

Q

U1

U2

φ1

R
n

φ2

R
n

φ12

Figure 2.3 Compatability of coordinate charts

grant that this seems complicated. But you are actually quite familiar with the content of
this definition, but the formalism is perhaps intimidating. Perhaps a really simple example
will make this clear.

2.1.5 Example We take Q = R2. Let us not be too concerned with how this represents a
physical system, but rather let us think about Q as something quite abstract to which we
will assign two coordinate charts.
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Our first coordinate chart is the “obvious” one. We define a chart (U1, φ1) by U1 = Q
and φ(x, y) = (x, y). Note that we are able to choose a chart that covers all of Q. This is
typically not the case.

Now we define (U2, φ2) by

U2 = R2 \ {(x, y) | x ≤ 0} , φ2(x, y) = (
√
x2 + y2, atan(x, y)).

The coordinate chart is illustrated in Figure 2.4. These coordinates are, of course, the usual

(x, y)

θ

r

Figure 2.4 Polar coordinates for Q = R2

polar coordinates you are all familiar with. We are simply being more careful with the
description.

Let us now see whether these two coordinate charts are compatible in the sense of Defi-
nition 2.1.4. We have

φ1(U1 ∩ U2) = R2 \ {(x, 0) | x ≤ 0}
φ2(U1 ∩ U2) = {(r, θ) | r > 0, θ ∈ (−π, π)} .

Note that we use coordinates (x, y) for φ1(U1 ∩ U2) and coordinates (r, θ) for φ2(U1 ∩ U2).
The map φ12 is then computed to be

φ12(x, y) = (
√
x2 + y2, atan(x, y)).

This map is certainly one-to-one and onto—it establishes a correspondence between points
in φ1(U1 ∩U2) and points in φ2(U1 ∩U2). Thus φ12 satisfies condition (i) of Definition 2.1.4.
Keeping in mind that the domain of φ12 is φ1(U1 ∩ U2), we also see that φ12 satisfies condi-
tion (ii) of Definition 2.1.4 since its Jacobian is

Dφ12(x, y) =

[
x√

x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

]
.

This matrix has continuous entries, so φ12 is differentiable. The inverse of φ12 is readily
determined to be

φ−1
12 (r, θ) = (r cos θ, r sin θ),
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so that

Dφ−1
12 (r, θ) =

[
cos θ sin θ
−r sin θ r cos θ

]
.

Since this matrix has continuous entries, φ−1
12 is differentiable, and so φ12 satisfies condi-

tion (iii) of Definition 2.1.4.
All of the above shows that the two charts (U1, φ1) and (U2, φ2) are compatible. �

With Definition 2.1.4 we are converging to the proper object to describe the configuration
space of a mechanical system: a differentiable manifold. However, having gotten this close,
we are going to back off and generally work in a fixed coordinate chart for Q, and ignore the
fact that it may not cover all of Q. At various times, however, we will point out the effects
of demanding coordinate charts that are compatible.

2.1.3 Functions and curves One can talk of all manner of objects defined on a con-
figuration space once one has the idea of coordinate charts. We shall start by talking about
some of the simpler notions, those of functions and curves.

Let Q be a configuration manifold. A function f : Q → R is differentiable if for each
q ∈ Q and for each coordinate chart (U, φ) with q ∈ U , the function fφ : Uφ → R defined by

fφ(q) = f(φ−1(q))

is differentiable. The idea is very simple, of course. To test differentiability of a function
on Q, one simply tests it in a coordinate chart. One can easily check that one does not
have to check the condition for every chart, but that it suffices to find one for each point.
Also, although our definition is one for differentiability, one can check for any order of
differentiability, including simple continuity by our definition.

Now let us talk about curves. A curve is a map c : I → Q from an interval I ⊂ R with
the property that for each t0 ∈ I and for every coordinate chart (U, φ) with c(t0) ∈ U , the
map cφ : Iφ → Uφ defined by cφ(t) = c(φ(t)) is differentiable. Here Iφ ⊂ I is an interval
with the property that t0 ∈ Iφ and c(t) ∈ U for every t ∈ Iφ.

When representing both functions and curves in a single given coordinate chart, we will
often engage in an abuse of notation and write a function as f(q1, . . . , qn) and a curve as
t 7→ (q1(t), . . . , qn(t)). The abuse of notation is that we are pretending that the single
coordinate chart suffices to define the function and the curve, and this may not be the case.

2.2 Vector fields, one-forms, and Riemannian metrics

Lagrangian mechanics involves certain objects that transform in certain ways when one
changes from a coordinate chart to another compatible one. There is a theory behind how
one talks about such objects, and in this section we give a very cursory introduction to
such things. For a more thorough account, we refer to [Abraham, Marsden and Ratiu 1988].
Although there is some significant formalism to what we do here, it is entirely probable that
the material we cover in this section is familiar, and we shall try as much as possible to make
contact with more commonplace notions.

2.2.1 Tangent vectors, tangent spaces, and the tangent bundle After talking
about configuration spaces, the next thing we must do is talk sensibly about “velocities” on
configuration spaces. Again, things are complicated here by the fact that a configuration
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space is not a nice Euclidean space, and so our presentation of velocities relies on the use of
coordinate charts.

Let Q be a configuration space with (U1, φ1) a coordinate chart for Q and q ∈ U1. A
φ1-tangent vector at q is an element Xφ1 ∈ Rn. This is too boring. What happens if we
have another coordinate chart (U2, φ2) where q ∈ U2? Well, we can certainly talk about a
φ2-tangent vector Xφ2 at q. What we want is a way to say that a φ1-tangent vector and a
φ2-tangent vector are represent “the same thing.” To motivate how to do this, let us consider
a curve c : [−ε, ε] → Q with the property that c(0) = q. Suppose that the curve in the chart
(U1, φ1) is represented by t 7→ (q1(t), . . . , qn(t)) and that the curve in the chart (U2, φ2) is
represented by t 7→ (q̃1(t), . . . , q̃n(t)). We wish to talk about the “velocity” of the curve c as
it passes through q = c(0). In the chart (U1, φ1) this velocity is represented by

(q̇1(0), . . . , q̇n(0)) ∈ Rn,

and in the chart (U2, φ2) it is represented by

( ˙̃q1(0), . . . , ˙̃qn(0)) ∈ Rn.

However, the chain rule dictates that

˙̃qi(0) =
n∑

j=1

∂q̃i

∂qj
(φ1(q))q̇

j(0), i = 1, . . . , n. (2.4)

Before proceeding with our discussion proper, let us introduce an important notational
convention. We shall write

n∑
j=1

∂q̃i

∂qj
(φ1(q))q̇

j(0) =
∂q̃i

∂qj
(φ1(q))q̇

j(0),

thus omitting the summation sign. The idea is that whenever you see a repeated index, one of
which is a superscript and the other of which is a subscript, then summation will be implied,
unless otherwise stated. Note that the j in ∂q̃i

∂qj is a superscript in the denominator; these
are regarded as subscripts! The details regarding the rules of the summation convention are
included in Appendix A. Let us now proceed. From (2.4) we see that if we want a φ1-tangent
vector Xφ1 and a φ2-tangent vector Xφ2 to be “the same,” we should require that

X i
φ2

=
∂q̃i

∂qj
(φ1(q))X

j
φ1
, i = 1, . . . , n.

We note that the matrix with components ∂q̃i

∂qj , i, j = 1, . . . , n, is none other than the Jacobian

matrix Dφ12(φ1(q)). Thus we say that Xφ1 and Xφ2 are equivalent if Xφ2 = Dφ12(φ1(q)) ·
Xφ1 .

We may now formally define what we mean by a tangent vector.

2.2.1 Definition Let Q be a configuration space with q ∈ U . A tangent vector at q is a
pair (X,S) where X ∈ Rn is a φ-tangent vector at q for some chart (U, φ) and

S =
{
(X̃, (Ũ, φ̃))

∣∣
X̃ is a φ̃-tangent vector at q that is equivalent to X for some chart (Ũ, φ̃)

}
.
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The collection of all tangent vectors at q is denoted TqQ and is called the tangent space
at q. The collection ⋃

q∈Q

TqQ

of all tangent spaces is called the tangent bundle and denoted TQ. �

Having stated this formal definition of a tangent vector, we will almost never use it. We
will often refer to a tangent vector by writing it in a specific set of coordinates. Indeed, even
its formal definition relies on an initial choice of coordinate chart for its definition. Some
notation for writing tangent vectors is convenient. Let (U, φ) be a coordinate chart with
coordinates (q1, . . . , qn). For each q ∈ U there are n distinguished tangent vectors given by

Xi = ei, i = 1, . . . , n,

where ei is the ith standard basis vector for Rn. We shall write Xi = ∂
∂qi

∣∣
q
. This may seem

like strange notation, but as we shall see, it is extremely convenient. It is then possible to
write any tangent vector X at q as

X = X i ∂

∂qi

for some X1, . . . , Xn ∈ R called the components of X. Thus the tangent vectors
{ ∂

∂q1

∣∣
q
, . . . , ∂

∂qn

∣∣
q
} form a basis for the tangent space TqQ.

Let us see how our basis vector are changed by changing coordinate charts. In the
following result we let (q1, . . . , qn) be coordinates in a chart (U1, φ1) and (q̃1, . . . , q̃n) be
coordinates in a chart (U2, φ2).

2.2.2 Lemma
∂

∂qi

∣∣∣
q

=
∂q̃j

∂qi
(φ1(q))

∂

∂q̃j

∣∣∣
q
, i = 1, . . . , n.

Proof Let us work only in the intersection of the chart domains, and so take U = U1 ∩ U2.
At q ∈ U we have the tangent vector ∂

∂qi |q for fixed i ∈ {1, . . . , n}. We also have the basis of

tangent vectors { ∂
∂q̃1 |q, . . . , ∂

∂q̃n |q}. We can then write

∂

∂qi
|q = ξj ∂

∂q̃j
|q

for a collection of numbers ξ1, . . . , ξn on U . The tangent vectors on the left and right side
of the equation are equivalent. This means that

Dφ12(φ1(q))
( ∂

∂qi

∣∣∣
q

)
= ξj(q)

∂

∂q̃j

∣∣∣
q
.

Now note that the matrix representing the Jacobian Dφ12(φ1(q)) is exactly ∂q̃i

∂qk , i, k =

1, . . . , n. To apply the Jacobian to ∂
∂qi , we apply the matrix ∂q̃i

∂qk to the components of the

vector field ∂
∂qi . But the components of this vector field are

δk
i =

{
1, i = k

0, i 6= k.

Therefore

ξj(q) =
∂q̃j

∂qk

∣∣∣
q
δk
i =

∂q̃j

∂qi

∣∣∣
q
,

which is as we claimed. �
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Note that this result agrees with what the notation looks like! That is to say, if you were
to treat the partial derivative notation in terms of differential operators rather than vector
fields, it would look just like as stated in the lemma.

Let’s see how this plays out in a simple example.

2.2.3 Example (Example 2.1.5 cont’d) Recall that we had defined two coordinate charts on
Q = R2; (U1, φ1) were the standard Cartesian coordinates, and (U2, φ2) were polar coor-
dinates. We shall define tangent vectors in each coordinate chart, and show that they are
equivalent.

Let q = (x, y) so that φ1(q) = (x, y) and φ2(q) = (
√
x2 + y2, atan(x, y)). We define the

φ1-tangent vector at q by

Xφ1 = −y ∂
∂x

∣∣∣
q
+ x

∂

∂y

∣∣∣
q
,

and the φ2-tangent vector by

Xφ2 =
∂

∂θ

∣∣∣
q
.

We shall show that these tangent vectors are equivalent. By Lemma 2.2.2 we have

∂

∂r

∣∣∣
q

=
∂x

∂r

∂

∂x

∣∣∣
q
+
∂y

∂r

∂

∂y

∣∣∣
q

= cos θ
∂

∂x

∣∣∣
q
+ sin θ

∂

∂y

∣∣∣
q

=
x√

x2 + y2

∂

∂x

∣∣∣
q
+

y√
x2 + y2

∂

∂y

∣∣∣
q
,

and

∂

∂θ

∣∣∣
q

=
∂x

∂θ

∂

∂x

∣∣∣
q
+
∂y

∂θ

∂

∂y

∣∣∣
q

= − r sin θ
∂

∂x

∣∣∣
q
+ r cos θ

∂

∂y

∣∣∣
q

= − y
∂

∂x

∣∣∣
q
+ x

∂

∂y

∣∣∣
q
.

Therefore, we directly see that

Xφ2

∂

∂θ

∣∣∣
q

= −y ∂
∂x

∣∣∣
q
+ x

∂

∂y

∣∣∣
q

= Xφ1 ,

which means that the two tangent vectors are indeed equivalent. Understand, however, that
Xφ1 is defined on U1 which is all of Q in this example, while Xφ2 is only defined on the strict
subset U2 of Q.

Note that in Cartesian coordinates the vectors are tangent to circles, so it makes sense
that in polar coordinates, the tangent vectors would have only a component in the θ direction.

�

From Lemma 2.2.2 it also follows that we may determine from one another the compo-
nents of the same vector field represented in different coordinates.
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2.2.4 Lemma Let X be a tangent vector at q ∈ Q and let (q1, . . . , qn) and (q̃1, . . . , q̃n) be
coordinates for Q. If X1, . . . ,Xn are the components for X in the coordinates (q1, . . . , qn),
then

∂q̃1

∂qj1
(φ1(q))Xj1 , . . . ,

∂q̃n

∂qjn
(φ1(q))Xjn

are the components of X in the coordinates (q̃1, . . . , q̃n).

Proof Let X̃1, . . . , X̃n be the components of X in the coordinates (q̃1, . . . , q̃n). We then
have

X i ∂

∂qi

∣∣∣
q

= X̃j ∂

∂q̃j

∣∣∣
q

on the intersection of the two chart domains. However, from Lemma 2.2.2 this means that

X i∂q̃
j

∂qi
(φ1(q))

∂

∂q̃j

∣∣∣
q

= X̃j ∂

∂q̃j

∣∣∣
q
.

Since the vector fields { ∂
∂q̃1

∣∣
q
, . . . , ∂

∂q̃n

∣∣
q
} are linearly independent, this means that X̃j =

∂q̃j

∂qiX
j, as claimed. �

Let us see how this works out in our polar coordinate example.

2.2.5 Example (Example 2.1.5 cont’d) Again we take (U1, φ1) to be Cartesian coordinates for
Q = R2 and we take (U2, φ2) to be polar coordinates for Q. Also again, we take the vector
field X with the property that

Xφ1 = −y ∂
∂x

+ x
∂

∂y
, Xφ2 =

∂

∂θ
.

We take (x, y) as the coordinates (q1, q2) and (r, θ) as the coordinates (q̃1, q̃2). Thus the
components of X in the coordinates (x, y) are (−y, x) and the components in the coordinates
(r, θ) are (0, 1). Following Lemma 2.2.4 we have

∂r

∂x
(−y) +

∂r

∂y
(x) =

x√
x2 + y2

(−y) +
y√

x2 + y2
(x) = 0,

and
∂θ

∂x
(−y) +

∂θ

∂y
(x) = − y

x2 + y2
(−y) +

x

x2 + y2
(x) = 1.

Things are as they should be. �

We will very often wish to think of TQ, the collection of all tangent vectors, as an object
onto itself, with its own set of coordinates. To set about doing this, we let (U, φ) be a
coordinate chart for Q with coordinates (q1, . . . , qn). Let us agree to write a typical tangent
vector in TqQ as vq, thereby emphasising the fact that it is “attached” to the point q. For
any q ∈ Q and any vq ∈ TqQ, we may write

vq = vi ∂

∂qi

∣∣∣
q

for some v1, . . . , vn ∈ R. In this way, for any q ∈ Q and any vq ∈ TqQ, we can assign a unique
set of coordinates (q1, . . . , qn, v1, . . . , vn). We call these the natural coordinates for TQ
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associated with the coordinate chart (U, φ). Thus TQ, the set of all configurations and all
velocities, has dimension 2n. If we have an overlapping set of coordinates (q̃1, . . . , q̃n) then
there is a similarly induced set of coordinates (q̃1, . . . , q̃n, ṽ1, . . . , ṽn) for TQ. Quite clearly,
by Lemma 2.2.4, the velocity coordinates are related by

ṽi =
∂q̃i

∂qj
vj, i = 1, . . . , n. (2.5)

Note that we wish to think of velocity as being an independent coordinate, and so shall steer
away from using the symbols (q̇1, . . . , q̇n) to denote velocity, unless we actually are dealing
with a curve t 7→ (q1(t), . . . , qn(t)), in which case (q̇1(t), . . . , q̇n(t)) have their usual meaning
as time derivatives. To denote the velocity coordinates we shall use the symbols (v1, . . . , vn).
Note, however, that this is not entirely standard notation, although we feel it to be superior
to using q̇ when q̇ is not really what is intended.

Let us see how this notation plays out for our running example.

2.2.6 Example (Example 2.1.5 cont’d) We have Q = R2 with (U1, φ1) the Cartesian coordi-
nate chart and (U2, φ2) the polar coordinate chart. Thus we have coordinates (x, y, vx, vy)
and (r, θ, vr, vθ) for TQ. To see how these are related, we use (2.5). Thus we have

vr =
∂r

∂x
vx +

∂r

∂y
vy =

x√
x2 + y2

vx +
y√

x2 + y2
vy

vθ =
∂θ

∂x
vx +

∂θ

∂y
vy = − y

x2 + y2
vx +

x

x2 + y2
vy.

Notice that this is just as velocities should behave in that we would also compute

ṙ = y =
x√

x2 + y2
ẋ+

y√
x2 + y2

ẏ

θ̇ = − y

x2 + y2
ẋ+

x

x2 + y2
ẏ.

It generally does not hurt to think of vi as being like q̇i, at least heuristically. However,
when one wishes to be precise, this notation often betrays us. �

2.2.2 Vector fields Vector fields are extremely useful objects in many fields of applied
mathematics, and they possess many surprising properties that may be used to answer all
manner of interesting questions. We will get some exposure to the utility of the vector field
in our discussion of mechanics. There are at least two ways in which one can think of a
vector field, and we shall start with that suggested by the words “vector field.”

Vector fields as. . . well. . . fields of vectors Let Q be a configuration space. A vector
field on Q is a map X : Q→ TQ with the property that X(q) ∈ TqQ. The idea of a vector
field is one with which you are undoubtedly familiar. The idea is that X assigns to each
point q ∈ Q a point in the tangent space TqQ, and this is to be thought of as a vector
anchored at the point q (see Figure 2.5).

Let us see how we represent vector fields in coordinates. Choose a chart (U, φ) for Q
with coordinates (q1, . . . , qn). The vectors { ∂

∂q1

∣∣
q
, . . . , ∂

∂qn

∣∣
q
} form a basis for TqQ, and let
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Figure 2.5 A planar vector field

us use these to define n vector fields { ∂
∂q1 , . . . ,

∂
∂qn} on the subset U of Q. Then any vector

field can be written as

X(q) = X i(q)
∂

∂qi

for functions X1, . . . , Xn on Q. Following what we did with tangent vectors, these are the
components of X in the given coordinate chart. Of course, the components of a vector
field obey the same transformation properties that tangent vectors obey when we change
coordinate charts. Note that we will always ask that the components of a vector field be at
least continuously differentiable. If the components are not, then we will generally disallow
the resulting object from being a vector field.

2.2.7 Example (Example 2.1.5 cont’d) In Example 2.2.3 we looked at tangent vectors on Q =
R2 in Cartesian coordinates and polar coordinates. These may be regarded as vector fields
merely by a change of notation. Thus we have a vector field X on Q that is represented as

X = −y ∂
∂x

+ x
∂

∂y

in Cartesian coordinates, and by

X =
∂

∂θ

in polar coordinates. The Cartesian coordinate version of this vector field is the one depicted
in Figure 2.5. �

Vector fields and ordinary differential equations In the above discussion of vectors, we
were merely thinking of vectors as geometric objects that, by definition, obeyed certain
properties with respect to coordinate changes. It turns out that vector fields also are in some
sense equivalent to something you already know about: ordinary differential equations.

To make this connection, letX be a vector field onQ. A differentiable curve c : [0, T ] → Q
is an integral curve for X if for every set of coordinates (q1, . . . , qn) for Q in which the



76 2 Lagrangian mechanics 03/04/2003

curve c has the representation t 7→ (q1(t), . . . , qn(t)), the curve c satisfies

q̇1(t) = X1(q1(t), . . . , qn(t))

...

q̇n(t) = Xn(q1(t), . . . , qn(t)).

Note therefore, that an integral curve for X is determined by its being a solution of an
ordinary differential equation in every coordinate chart, with the right-hand side vector of
the ordinary differential equation being the components of the vector field in that set of
coordinates.

You may be used to trying to solve differential equations when you see them. This is
an almost always futile exercise. It works for differential equations that are linear (but see
Exercise E2.16), and for a small class of other examples, but when faced with a randomly
selected differential equation, you are simply not going to be able to solve it. And even when
you can get a closed form solution, it is often not entirely helpful. For example, one can
solve the nonlinear pendulum equation in terms of elliptic functions. But so what? Unless
you know a lot about elliptic functions, then you are not going to know very much about the
behaviour of a pendulum by looking at its closed form solution. So how should we talk about
differential equations in a sensible manner? The answer lies in trading off a quantitative for
a qualitative description of the dynamics, and to do this, one needs some concepts that may
be new. We will not be entirely thorough in our introduction to the qualitative aspects of
ordinary equations as they relate to vector fields.

Let X be a vector field on Q and let q0 ∈ Q. If we are working in a coordinate chart
(U, φ) for which q ∈ U then, if q0 = φ(q0) ∈ Rn, we have a unique solution to the initial
value problem

q̇1(t) = X1(q1(t), . . . , qn(t)), q1(0) = q1
0

...

q̇n(t) = Xn(q1(t), . . . , qn(t)), qn(0) = qn
0 .

This implies that there is a unique integral curve c with the property that c(0) = q0. Now,
this integral curve may not be extensible for all time, so we let

T (X, q0) = sup
T∈R+

{there exists an integral curve of X through q0 defined on [0, T ]}.

For many well-behaved systems, T (X, q0) = ∞, but there are some innocuous systems for
which T (X, q0) is finite.1 Now we define

D(X) = {(t, q) ∈ R+ ×Q | t < T (X, q)} .

Thus for (t, q) ∈ D(X) there is an integral curve through q that can be defined for at least
time t. The flow of X is the map FX : D(X) → Q defined by FX(t, q0) = q if there exists
an integral curve c with c(0) = q0 and c(t) = q. The idea is that FX(t, q0) is where you end
up when you start at q0 at time 0 and go along with the solution of the differential equation
for time t.

Let us work this out for our example vector field.

1If you have had a decent differential equations course, you will know, for example, that the solutions to
the differential equation ẋ = x2 exist only for a finite time.



03/04/2003 2.2 Vector fields, one-forms, and Riemannian metrics 77

2.2.8 Example (Example 2.1.5 cont’d) We again have the two coordinate charts (U1, φ1) and
(U2, φ2) that have their previous meanings. We also have the vector field X that in the
coordinate chart (U1, φ1) is given by

X = −y ∂
∂x

+ x
∂

∂y
,

and in the coordinate chart (U2, φ2) is given by

X =
∂

∂θ
.

The differential equation in the coordinate chart (U1, φ1) is then

ẋ = − y

ẏ = x,

which is linear, and for the initial conditions (x(0), y(0)) has the solution

(x(t), y(t)) = (x(0) cos t− y(0) sin t, x(0) sin t+ y(0) cos t).

Note that solutions exist for all time, so for each (x, y) ∈ Q we have T (X, (x, y)) = ∞. The
flow is then defined by

FX(t, (x, y)) = (x cos t− y sin t, x sin t+ y cos t).

Let us look at the same thing in the other coordinate chart. The differential equations
in this coordinate chart are

ṙ = 0

θ̇ = 1.

Note that these equations are no longer linear, but are trivially solved for the initial condition
(r(0), θ(0)) as

(r(t), θ(t)) = (r(0), θ(0) + t).

One might be tempted to say that from this one may deduce that T (X, (r(0), θ(0))) = ∞,
but be careful, because this coordinate chart does not cover all of Q. To in fact verify that
all integral curves may be extended for all time, one actually needs to find another chart to
extend the integral curves. But we do not need to do this here since we already know from
our use of the coordinate chart (U1, φ1) that we may extend all integral curves for infinite
time. �

2.2.3 One-forms As we have seen, a vector field on Q is an object defined in a
coordinate chart that has n components if n is the dimension of Q. We shall shortly see
that a “one-form” also has this exact property. This will confuse a newcomer, and many a
long-time practitioner has only a shady understanding of the difference between a one-form
and a vector field. The fact of the matter is that they live in entirely different spaces. Thus,
to get things started, let us look at something that you may be tempted to call a vector field,
and show that it is actually not a vector field. Let f : Q → R be a differentiable function
and let (U, φ) be a coordinate chart for Q. We then have the “gradient” of f that we denote
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by df . Let us agree not to call this the gradient, but the differential of f . Whatever we
call it, it is certainly an object with n components, and these components are none other
than

∂f

∂q1
, . . . ,

∂f

∂qn
,

if (q1, . . . , qn) are coordinates in the chart (U, φ). Is this a vector field? To determine the
answer to this question, we suppose that we have another set of overlapping coordinates
(q̃1, . . . , q̃n) so that the components of the abstract object df in these new coordinates are

∂f

∂q̃1
, . . . ,

∂f

∂q̃n

To relate the two different coordinate expressions, we use the chain rule:

∂f

∂q̃i
=
∂qj

∂q̃i

∂f

∂qj
.

But this is not how the components of a vector field should transform with respect to
coordinate changes, cf. Lemma 2.2.4. Hold on a minute here! The components of a vector
field in our indexing convention are supposed to be superscripts. But the index in ∂f

∂qi is a

subscript (a superscript in the denominator). So things are really not looking good for df
being a vector field. So what is it? It is a one-form!

Now let’s get serious.
Recall from Appendix A that the dual space V ∗ to a vector space V is the collection

of linear maps from V to R. The dual space is a vector space with the same dimension
as V . It turns out that the tangent spaces TqQ to a configuration space Q are themselves
vector spaces. This is clear in coordinates. Let (U, φ) be a coordinate chart with coordinates
(q1, . . . , qn) for Q and coordinates (q1, . . . , qn, v1, . . . , vn) for TQ. Then for fixed q0 ∈ Q with
(q1

1, . . . , q
n
0 ) = φ(q0), the tangent space Tq0Q is represented by{

(q1
0, . . . , q

n
0 , v

1, . . . , vn)
∣∣ (v1, . . . , vn)

}
.

The vector space structure on TqQ is inherited by the usual vector addition and scalar
multiplication on Rn.

With this background, let us look at the dual space to TqQ.

2.2.9 Definition The dual space to TqQ we denote by T ∗q Q and call the cotangent space .
Following what we did with tangent vectors, let us agree to write a typical point in the
cotangent space T ∗q Q as αq. An element αq ∈ T ∗q Q is a covector at q. The collection⋃

q∈Q

T ∗q Q

of all cotangent spaces is called the cotangent bundle of Q and denoted T ∗Q. �

Now let us give some coordinate notation for covectors to match that for tangent vectors.
Let (U, φ) be a coordinate chart for Q with coordinates (q1, . . . , qn). There are then n
distinguished covectors at q ∈ Q defined by

q 7→ ei, i = 1, . . . , n,
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where {e1, . . . , en} is the basis for (Rn)∗ that is dual to the standard basis. Let us denote
by dqi|q, i = 1, . . . , n, these n covectors. As with tangent vectors, this notation is strange
but convenient. Given an arbitrary covector αq ∈ T ∗q Q, we may write

αq = αidq
i|q

for some α1, . . . , αn ∈ R called the components of αq. Note that we are still using the
summation convention, but things for covectors look different from what we have for tangent
vectors. The indices for the basis covectors are superscripts (they were subscripts for the
basis tangent vectors) and the indices for the components of a covector are subscripts (they
were superscripts for the components of a tangent vectors).

Now let us observe how the basis covectors and their components react to changes of
coordinate. In the following lemma, we let (q1, . . . , qn) be coordinates in a chart (U1, φ1) and
(q̃1, . . . , q̃n) be coordinates in a chart (U2, φ2).

2.2.10 Lemma dqi|q = ∂qi

∂q̃j (φ2(q))dq̃j|q, i = 1, . . . , n.

Proof One the intersection U = U1 ∩ U2 of the chart domains we have

ηjdq̃
j|q = dqi|q

for some numbers η1, . . . , ηn. Let us apply both sides of this equation to the tangent vector
∂

∂q̃k

∣∣
q
:

ηk = dqi|q
( ∂

∂q̃k

∣∣∣
q

)
= dqi|q

(∂q`

∂q̃k
(φ2(q))

∂

∂q`

∣∣∣
q

)
=
∂qi

∂q̃k
. �

Now, it should be clear that the components of a covector transform as follows.

2.2.11 Lemma Let α be a one-form on Q and let (q1, . . . , qn) and (q̃1, . . . , q̃n) be coordinates
for Q. If α1, . . . , αn are the components for α in the coordinates (q1, . . . , qn), then

∂qj1

∂q̃1
αj1 , . . . ,

∂qjn

∂q̃n
αjn

are the components of α in the coordinates (q̃1, . . . , q̃n).

Now that we understand what we mean by a covector, we can easily define a one-form
on Q to be a map α : Q → T ∗Q with the property that α(q) ∈ T ∗q Q. Just as we did with
vector fields, we can write a one-form in coordinates (q1, . . . , qn) as

α = αidq
i

where the functions α1, . . . , αn are the components of α. As with vector fields, we require
that the components of a one-form be at least continuously differentiable when represented
in coordinates.

Let us look at an example.

2.2.12 Example (Example 2.1.5 cont’d) As usual in our running example, we have Q = R2

with two coordinate charts (U1, φ1) and (U2, φ2). First let’s see how the basis one-forms in
each coordinate chart are related. We have, by Lemma 2.2.10,

dx =
∂x

∂r
dr +

∂x

∂θ
dθ = cos θdr − r sin θdθ,
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and

dy =
∂y

∂r
dr +

∂y

∂θ
dθ = sin θdr + r cos θdθ.

Now let us consider a one-form that is the differential of a function. We take as our
function that defined in the coordinate chart (U1, φ1) to be f(x, y) = 1

2
(x2 +y2). In the chart

(U1, φ1) we have

df =
∂f

∂x
dx+

∂f

∂y
dy = xdx+ ydy.

Note that dx and dy are not silly “infinitesimals,” but are linearly independent one-forms!
In polar coordinates we have f(r, θ) = 1

2
r2, so

df = rdr.

These components ought to be related as by Lemma 2.2.11, so let us check this directly. We
compute

∂x

∂r
(x) +

∂y

∂r
(y) = cos θ(r cos θ) + sin θ(r sin θ) = r

and
∂x

∂θ
(x) +

∂y

∂θ
(y) = −r sin θ(cos θ) + r cos θ(sin θ) = 0,

and this is as it should be. �

Note that one-forms “eat” vector fields. That is, if we have a vector field X and a
one-form α, then we have a function on Q defined by

Q 3 q 7→ α(q)(X(q)) ∈ R.

We denote this function by 〈α;X〉, or α(X), or α ·X, whichever pleases us. This should not
be confusing since whenever you see a one-form and a vector field sitting beside one another,
about the only thing they can do is combine to give a function!

2.2.13 Example (Example 2.1.5 cont’d) We have the vector field X defined in Cartesian co-
ordinates by

X = −y ∂
∂x

+ x
∂

∂y
,

and the one-form defined in Cartesian coordinates by

df = xdx+ ydy.

In polar coordinates we have

X =
∂

∂θ
, df = rdr.

Thus, in Cartesian coordinate we compute

〈df ;X〉 = x(−y) + y(x) = 0,

and similarly, in polar coordinates we have

〈df ;X〉 = r(0) + 0(1) = 0.

Thus when we feed X to the one-form df we get zero in this case. In this case we can
interpret this as follows: The function f does not change in the direction of the vector field
X. �
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Just as we can think of the tangent bundle TQ as an object having its own sets of
coordinates, we can think of the cotangent bundle T ∗Q as such an object as well. The way
we do so is entirely analogous with how this is done in the tangent bundle case. Given a
coordinate chart (U, φ) for Q with coordinates (q1, . . . , qn) , and given q ∈ U , we can write
a typical element αq ∈ T ∗q Q as

αq = pidq
i|q

for some p1, . . . , pn ∈ R. We think of (q1, . . . , qn, p1, . . . , pn) as coordinates for T ∗Q, which we
call the natural coordinates associated with the coordinate chart (U, φ). The coordinates
for the “one-form part” transform like

p̃i =
∂qj

∂q̃i
pj, i = 1, . . . , n. (2.6)

This works out as we might expect in our polar coordinate example.

2.2.14 Example (Example 2.1.5 cont’d) We again have Q = R2 with (U1, φ1) the Cartesian
coordinate chart and (U2, φ2) the polar coordinate chart. Thus natural Cartesian coordinates
for T ∗Q are denoted (x, y, px, py) and natural polar coordinates are denoted by (r, θ, pr, pθ).
These coordinates are related by

pr =
∂x

∂r
px +

∂y

∂r
py =

x√
x2 + y2

px +
y√

x2 + y2
py

pθ =
∂x

∂θ
px +

∂y

∂θ
py = −ypx + xpy.

As we shall see in Section 2.9, these are what are called “conjugate momenta” in the Hamil-
tonian formalism. �

2.2.15 Remark The Examples 2.2.6 and 2.2.14 exhibit some interesting phenomenon which
are general. If we write (

vr

vθ

)
=

[
x√

x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

](
vx

vy

)
,

then we note, by direct calculation, that(
pr

pθ

)
=

[
x√

x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

]−t(
px

py

)
.

This will generally be the case, and is simply a reflection of the fact that the matrix with
components ∂qi

∂q̃j , i, j = 1, . . . , n, is the inverse of the transpose of the matrix with components
∂q̃i

∂qj , i, j = 1, . . . , n, provided we agree that for ∂q̃i

∂qj the “up” index is the row index and the

“down” index is the column index, and that for ∂qi

∂q̃j the “up” index is the column index and

the “down” index is the row index. This is consistent with the usage if the equations (2.5)
and (2.6) if they are to be thought of as matrix-vector multiplication. �
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2.2.4 Riemannian metrics Let us now move briefly on to talking about another im-
portant object, particularly in mechanics. A Riemannian metric on a configuration
space Q is an assignment of an inner product to each tangent space TqQ. This seems
straightforward enough. How do we represent a Riemannian metric in coordinates? Well,
let (q1, . . . , qn) be coordinates for a chart (U, φ) and let g be a Riemannian metric. Since g(q)
is an inner product on the vector space TqQ, it will, in particular, take any two vectors in TqQ
and return a number. If we feed g(q) two of the basis vectors from the set { ∂

∂q1

∣∣
q
, . . . , ∂

∂qn

∣∣
q
},

then we may define the n2 numbers gij(q), i, j = 1, . . . , n, by

gij(q) = g(q)
(

∂
∂qi

∣∣
q
, ∂

∂qj

∣∣
q

)
.

These are the components of g(q) in the coordinate chart (U, φ). Are these components
with respect to a basis? Yes, and let us describe this basis. For i, j = 1, . . . , n we define a
map

dqi|q ⊗ dqj|q : TqQ× TqQ→ R

by defining it on basis elements by

dqi|q ⊗ dqj|q
(

∂
∂qk

∣∣
q
, ∂

∂q`

∣∣
q

)
=

{
1, i = k, j = `

0, otherwise.

If we feed dqi|q ⊗ dqj|q two general vectors, say u = uk ∂
∂qk

∣∣
q

and v = v` ∂
∂q`

∣∣
q
, we declare by

linearity that
dqi|q ⊗ dqj|q(u, v) = uivj.

Now with this notation we claim that g is represented in our set of coordinates by

g(q) = gij(q)dq
i
∣∣
q
⊗ dqj

∣∣
q
.

Indeed, for u = uk ∂
∂qk

∣∣
q

and v = v` ∂
∂q`

∣∣
q

we have

g(q)(u, v) = giju
ivj,

and this indeed how the correct formula for an inner product.
Let us see how the bases and the components change when we change coordinates. We

will not prove what we say here, as it is straightforward along the lines of Lemma 2.2.10 and
Lemma 2.2.11. As usual, in the following result we are considering (q1, . . . , qn) as coordinates
in a chart (U1, φ1) and (q̃1, . . . , q̃n) as coordinates in a chart (U2, φ2).

2.2.16 Lemma dqi ⊗ dqj = ∂qi

∂q̃k
∂qj

∂q̃` dq̃k ⊗ dq̃`, i, j = 1, . . . , n.

The components now change in the predictable manner.

2.2.17 Lemma Let g be a Riemannian metric on Q and let (q1, . . . , qn) and (q̃1, . . . , q̃n)
be coordinates for Q. If gij, i, j = 1, . . . , n, are the components for g in the coordinates
(q1, . . . , qn), then

∂qk

∂q̃i

∂q`

∂q̃j
gk`, i, j = 1, . . . , n,

are the components of g in the coordinates (q̃1, . . . , q̃n).
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The following example shows that this is all not so bad. In the example, we illustrate
how one deals with Riemannian metrics in practice.

2.2.18 Example (Example 2.1.5 cont’d) We again take Q = R2 with its two coordinate charts
(U1, φ1) and (U2, φ2). Let us define a Riemannian metric on Q by defining it in the chart
(U1, φ1). We define

g = dx⊗ dx+ dy ⊗ dy.

This is something you already know about. Indeed, let X and Y be general vector fields
given by

X = X1
∂

∂x
+X2

∂

∂y
, Y = Y1

∂

∂x
+ Y2

∂

∂y
.

We then have

g(X, Y ) =
(
dx⊗ dx+ dy ⊗ dy

)(
X1

∂

∂x
+X2

∂

∂y
, Y1

∂

∂x
+ Y2

∂

∂y

)
= dx⊗ dx

(
X1

∂

∂x
+X2

∂

∂y
, Y1

∂

∂x
+ Y2

∂

∂y

)
+

dy ⊗ dy
(
X1

∂

∂x
+X2

∂

∂y
, Y1

∂

∂x
+ Y2

∂

∂y

)
= X1Y1 +X2Y2.

Here we have used the rules

dx
( ∂
∂x

)
= 1, dx

( ∂
∂y

)
= 0, dy

( ∂
∂x

)
= 0, dy

( ∂
∂y

)
= 1.

Note that g is just the usual inner product on R2, but that we allow it to take arguments
that depend on the point on Q—that is, its arguments are vector fields.

Now let us see how this Riemannian metric looks in polar coordinates. We shall do this
in two ways. First let us use the change of basis formula Lemma 2.2.16. In practice, one
does this as follows:

dx⊗ dx+dy ⊗ dy = d(r cos θ)⊗ d(r cos θ) + d(r sin θ)⊗ d(r sin θ)

= cos2 θdr ⊗ dr − r sin θ cos θdθ ⊗ dr − r sin θ cos θdr ⊗ dθ + r2 sin2 θdθ ⊗ dθ+

sin2 θdr ⊗ dr + r sin θ cos θdr ⊗ dθ + r sin θ cos θdθ ⊗ dr + r2 cos θdθ ⊗ dθ

= dr ⊗ dr + r2dθ ⊗ dθ.

Notice that this calculation goes just like it would if dx and dy were silly infinitesimals, but
now you are doing something real!

The other way to reach the same answer is by using the formula in Lemma 2.2.17 for the
change of components for a Riemannian metric. We compute

∂x

∂r

∂x

∂r
(1) +

∂x

∂r

∂y

∂r
(0) +

∂y

∂r

∂x

∂r
(0) +

∂y

∂r

∂y

∂r
(1) = cos2 θ + sin2 θ = 1,

and

∂x

∂r

∂x

∂θ
(1) +

∂x

∂r

∂y

∂θ
(0) +

∂y

∂r

∂x

∂θ
(0) +

∂y

∂r

∂θ

∂r
(1) = −r sin θ cos θ + r sin θ cos θ = 0,
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and

∂x

∂θ

∂x

∂r
(1) +

∂x

∂θ

∂y

∂r
(0) +

∂y

∂θ

∂x

∂r
(0) +

∂y

∂θ

∂y

∂r
(1) = r sin θ cos θ − r sin θ cos θ = 0,

and
∂x

∂θ

∂x

∂θ
(1) +

∂x

∂θ

∂y

∂θ
(0) +

∂y

∂θ

∂x

∂θ
(0) +

∂y

∂θ

∂y

∂θ
(1) = r2 sin2 θ + r2 cos2 θ = r2.

Thus
g = dr ⊗ dr + r2dθ ⊗ dθ,

just as before.
As you can see, it is often more straightforward in practice to use the change of basis to

determine the components for a Riemannian metric in a new set of coordinates. �

Associated with a Riemannian metric are two useful pieces of notation. Since g is definite,
the matrix with components gij, i, j = 1, . . . , n, is invertible at each point in any coordinate
system. This allows us to define an invertible map g[ : TQ→ T ∗Q by

〈g[(vq);uq〉 = g(vq, uq).

One readily checks (see Exercise E2.17) that in a set of coordinates (q1, . . . , qn) that

g[
( ∂

∂qi

)
= gijdq

j, i = 1, . . . , n,

if gij, i, j = 1, . . . , n, are the components of g in the given set of coordinates. Therefore, the
representation of g[ in coordinates is

g[(q1, . . . , qn, v1, . . . , vn) = (q1, . . . , qn, g1jv
j, . . . , gnjv

j). (2.7)

Note in particular that g[ maps the tangent space TqQ into the cotangent space T ∗q Q. As

g is definite, g[ is invertible, and we write its inverse as g] : T ∗Q → TQ. If we let gij,
i, j = 1, . . . , n, denote the components of the matrix which is the inverse of the matrix with
components gij, i, j = 1, . . . , n, then

g](q1, . . . , qn, p1, . . . , pn) = (q1, . . . , qn, g1jpj, . . . , g
njpj).

We call the maps g[ and g] the musical isomorphisms .

2.2.19 Example (Example 2.1.5 cont’d) This all works out quite simply in our running ex-
ample where Q = R2. We, as previously,

g = dx⊗ dx+ dy ⊗ dy.

In the Cartesian coordinates, one readily verifies that

g[(x, y, vx, vy) = (x, y, vx, vy).

This looks like we are not saying anything, but remember that on the left, (x, y, vx, vy) are
coordinates for a point in TQ, whereas on the right they are coordinates for a point in T ∗Q.
We also clearly have

g](x, y, px, py) = (x, y, px, py).
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Here again, be careful in saying that nothing is happening. On the right, (x, y, px, py) are
coordinates for a point in T ∗Q, and on the left they are coordinates for a point in TQ.

This becomes less opaque when we represent g[ in polar coordinates:

g[(r, θ, vr, vθ) = (r, θ, vr, r
2vθ)

and
g](r, θ, pr, pθ) = (r, θ, pr,

1
r2pθ).

Although in Cartesian coordinates the maps g[ and g] are “trivial,” they are less so in polar
coordinates. However, both are simply coordinate representations for the same thing. �

2.3 A variational principle

Many important ideas in mechanics have a variational basis. The calculus of variations is
a wide-ranging and complex subject, and we shall only be able to deal with it superficially.
Nevertheless, the notion that the laws of nature act in such a way as to extremise some
function is an important one.

2.3.1 Lagrangians Let Q be a configuration space with tangent bundle TQ. A
Lagrangian is a function on R × TQ. Thus L is a function of time, position, and
velocity. If (U, φ) is a coordinate chart with coordinates (q1, . . . , qn) we might write
L(t, q1, . . . , qn, v1, . . . , vn), or L(t, q,v) for short, if we are working in coordinates.

We will wish to evaluate Lagrangians along curves. To do so, we need to say how to
regard the velocity vector along a curve as a coordinate independent object. Let us start
with a coordinate chart (U, φ) with coordinates (q1, . . . , qn) and suppose that a curve c on Q
is defined in these coordinates by t 7→ (q1(t), . . . , qn(t)). For fixed t0 we define the tangent
vector field to c at t0 to be the tangent vector in Tc(t0)Q that in our given set of coordinates
is given by (q̇1, . . . , q̇n(t)). To see that this is indeed a tangent vector, we need only verify
that it obeys Lemma 2.2.4 as concerns coordinate changes. But, if (q̃1, . . . , q̃n) is another set
of coordinates with c represented by t 7→ (q̃1(t), . . . , q̃n(t)), then by the chain rule we have,
of course,

˙̃qi(t0) =
∂q̃i

∂qj
(φ(c(t0)))q̇

j(t0), i = 1, . . . , n.

But this is, as it surely must be, exactly how a tangent vector should behave. Let us then
denote this tangent vector by c′(t0) ∈ Tc(t0)Q. Therefore, t 7→ c′(t) defines a tangent vector
at each point along the curve c, and the tangent vector c′(t) is to be regarded as a measure
of the velocity of the curve at time t (see Figure 2.6).

c(t)

c
′(t)

Figure 2.6 The tangent vector field to a curve

We will postpone physical examples of Lagrangians to Section 2.4 where we discuss by
far the predominant class of Lagrangians.
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2.3.2 Variations We will be wishing to minimise a certain function over a class of
curves. To do this we need to say how to “vary” a curve in just the same way as one needs
to be able to vary a function near a point to determine its derivative.

2.3.1 Definition Let c : [a, b] → Q be a curve that is twice continuously differentiable. A
variation of c is a map σ : [−ε, ε]× [a, b] → Q with the properties

(i) σ(0, t) = c(t),

(ii) σ(s, a) = c(a), and

(iii) σ(s, b) = c(b).

The infinitesimal variation associated with a variation σ is the vector field defined at
points along c by

δσ(t) =
d

ds

∣∣∣
s=0

σ(s, t) ∈ Tc(t)Q. �

The idea is that a variation of c is a “wiggling” of c, and an infinitesimal variation
corresponding to a certain manner of wiggling is a measure of the wiggle for small values of
the “wiggle parameter.” Some intuition is as seen in Figure 2.7. Note that the endpoints of

c(t)

σ(s, t)

c(t)

δσ(t)

Figure 2.7 A variation (on the left) and an infinitesimal variation
(on the right)

a variation, as we have defined it, remain stationary, so the infinitesimal variations vanish
at the endpoints.

2.3.3 Statement of the variational problem and Euler’s necessary condition We
let Q be a configuration space, and let a < b ∈ R with qa, qb ∈ Q. We let

C2([a, b], qa, qb) = {c : [a, b] → Q| c(a) = qa, c(b) = qb, and

c is twice continuously differentiable}

be the collection of twice continuously differentiable curves that are defined on [a, b] and
that start at qa and end at qb. Now we suppose that we have a Lagrangian on Q and define
a function JL : C2([a, b], qa, qb) → R by

JL(c) =

∫ b

a

L(t, c′(t)) dt,

where t 7→ c′(t) is the tangent vector field of c. A curve c0 ∈ C2([a, b], qa, qb) minimises JL

if JL(c0) ≤ JL(c) for every c ∈ C2([a, b], qa, qb).
The following condition gives what might be regarded as a first-order necessary condition

for a curve c ∈ C2([a, b], qa, qb) to be a minimiser for JL. Thus it should be thought of as
being analogous to the first derivative condition for determining the minimum of a function.
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2.3.2 Theorem If a curve c ∈ C2([a, b], qa, qb) minimises JL then for any chart (U, φ) with
the property that the image of c intersects U, the representation t 7→ q(t) of c in that chart
must satisfy

d

dt

( ∂L

∂vi

)
− ∂L

∂qi
= 0, i = 1, . . . , n,

at (t,q(t), q̇(t)) for each t with the property that c(t) ∈ U.

Proof Let us first show that if c is a minimiser, then any subarc of c is also a minimiser.
Thus let t1, t2 ∈ [a, b] satisfy a ≤ t1 < t2 ≤ b, and define a curve c̃ : [t1, t2] → Q by c̃(t) = c(t)
(i.e., c̃ is the restriction of c to [t1, t2]). With t1 and t2 as defined we can also define the
set of curves C2([t1, t2], c(t1), c(t2)) analogously to our definition of C2([a, b], qa, qb). We also
define a function J̃L on the set of curves C2([t1, t2], c(t1), c(t2)) by

J̃L(c̃) =

∫ t2

t1

L(t, c̃′(t)) dt.

We claim that if c is a minimiser for JL, then c̃ is a minimiser for J̃L. Indeed, if c̃ were not a
minimiser for J̃L, this could imply the existence of a curve c̃1 ∈ C2([t1, t2], c(t1), c(t2)) with
the property that J̃L(c̃1) < JL(c̃). Now define a curve c1 : [a, b] → Q by

c1(t) =


c(t), t ∈ [a, t1]

c̃1(t), t ∈ [t1, t2]

c(t), ∈ [t2, b].

We then have

JL(c1) =

∫ t1

a

L(t, c′(t)) dt+

∫ t2

t1

L(t, c̃′1(t)) dt+

∫ b

t2

L(t, c′(t)) dt

<

∫ t1

a

L(t, c′(t)) dt+

∫ t2

t1

L(t, c̃′(t)) dt+

∫ b

t2

L(t, c′(t)) dt

=

∫ b

a

L(t, c′(t)) dt = JL(c).

This would complete our assertion that the restriction of c to any subinterval of [a, b] is itself
a minimiser, but for the fact that the curve c1 may not be twice continuously differentiable, as
it may fail to be differentiable at t1 and t2. However, one may show (see Exercise E2.18) that
it is possible to modify c1 slightly to a curve c̃1 so that c̃1 is twice continuously differentiable
on [a, b], and so that |JL(c̃1)− JL(c1)| ≤ ε for any ε > 0. In this way, one can ensure that
JL(c̃1) < JL(c), contradicting the fact that c is a minimiser.

The above argument says that c is a minimiser along every subinterval of [a, b] if it is a
minimiser along the entire interval. Therefore, if (U, φ) is a chart so that c(t) ∈ U for some
t ∈ [a, b], if c is a minimiser on [a, b], it is also a minimiser for the curve restricted to an
interval [t1, t2] with the property that c(t) ∈ U for t ∈ [t1, t2]. The upshot is that without
loss of generality, we may suppose that the curve c lies in the domain of a chart (U, φ), and
we do this for the remainder of the proof.

Let σ be a variation of c and let cσ,s ∈ C2([a, b], qa, qb) be defined by cσ,s(t) = σ(s, t).
Consider the function fσ defined on [−ε, ε] by fσ(s) = JL(cσ,s). If c is a minimiser for JL then
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s = 0 should be a minimum of fσ for every variation σ of c. We let qσ,s be the coordinate
representative of cσ,s. We have

0 =
d

ds

∣∣∣
s=0

fσ(s) =
d

ds

∣∣∣
s=0

∫ b

a

L(t, qσ,s(t), q̇σ,s(t)) dt

=

∫ b

a

(
∂L

∂qi

dqi
σ,s(t)

ds

∣∣∣
s=0

+
∂L

∂vi

dq̇i
σ,s(t)

ds

∣∣∣
s=0

)
dt.

Now note that
dq̇i

σ,s(t)

ds

∣∣∣
s=0

=
d

ds

∣∣∣
s=0

dqi
σ,s

dt
=

d

dt

dqi
σ,s(t)

ds

∣∣∣
s=0

.

Therefore

0 =
d

ds

∣∣∣
s=0

fσ(s) =

∫ b

a

(
∂L

∂qi

dqi
σ,s(t)

ds

∣∣∣
s=0

+
∂L

∂vi

d

dt

dqi
σ,s(t)

ds

∣∣∣
s=0

)
dt

=

∫ b

a

(
∂L

∂qi

dqi
σ,s(t)

ds

∣∣∣
s=0

− d

dt

( ∂L
∂vi

))dqi
σ,s(t)

ds

∣∣∣
s=0

dt+
∂L

∂vi

dqi
σ,s(t)

ds

∣∣∣
s=0

∣∣∣∣t=b

t=b

=

∫ b

a

(
∂L

∂qi

dqi
σ,s(t)

ds

∣∣∣
s=0

− d

dt

( ∂L
∂vi

))dqi
σ,s(t)

ds

∣∣∣
s=0

dt

where in the next to last step we have used integration by parts, and in the last step we
have used the fact that an infinitesimal variation vanishes at the endpoints. Since∫ b

a

(
∂L

∂qi

dqi
σ,s(t)

ds

∣∣∣
s=0

− d

dt

( ∂L
∂vi

))dqi
σ,s(t)

ds

∣∣∣
s=0

dt = 0

for every variation, this means that
dqi

σ,s(t)

ds

∣∣∣
s=0

can be arbitrary, and so the only way for the

integral to vanish is for
∂L

∂qi
− d

dt

( ∂L
∂vi

)
to be zero when evaluated at (q, q(t), q̇(t)). �

The equations
d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= 0, i = 1, . . . , n,

are called the Euler-Lagrange equations , and they are what we will be primarily con-
cerned with in the remainder of these notes. Though innocent enough in appearance, they
hide an enormous amount of beautiful structure. Note that the Euler-Lagrange equations are
only necessary conditions. A solution to the Euler-Lagrange equations may or may not be an
actual minimiser. The common language is to call a curve in C2(qa, qb, [a, b]) an extremal
when it satisfies the Euler-Lagrange equations. This reflects the fact that the Euler-Lagrange
equations are essentially analogous to the first derivative conditions in calculus.

Let’s look at a very simple example.

2.3.3 Example (Example 2.1.5 cont’d) We work again with Q = R2 and its two coordinate
charts (U1, φ1) and (U2, φ2). We define a Lagrangian on Q by defining it in the coordinate
chart (U1, φ1) to be

L(t, x, y, vx, vy) =
1

2
(v2

x + v2
y).



03/04/2003 2.3 A variational principle 89

Suppose that we have a curve t 7→ (x(t), y(t)) that is a minimiser for JL for some interval and
with some endpoints. Then the Euler-Lagrange equations say that this curve must satisfy

d

dt

( ∂L
∂vx

)
− ∂L

∂x
=

d

dt
vx = v̇x(t) = ẍ(t) = 0

d

dt

( ∂L
∂vy

)
− ∂L

∂y
=

d

dt
vy = v̇y(t) = ÿ(t) = 0.

Thus the Euler-Lagrange equations are the simple second-order differential equations

ẍ(t) = 0, ÿ(t) = 0,

and these have solution x(t) = x(0) + ẋ(0)t and y(t) = y(0) + ẏ(0)t. These describe straight
lines in the plane Q = R2.

Now let us look at the same example in the polar coordinate chart (U2, φ2). First we
need to determine the Lagrangian in these coordinates. Using the transformation rule (2.5)
we have

vx =
∂x

∂r
vr +

∂x

∂θ
vθ = cos θvr − r sin θvθ

vy =
∂y

∂r
vr +

∂y

∂θ
vθ = sin θvr + r cos θvθ.

With these relations we readily compute

v2
x + v2

y = v2
r + r2v2

θ

so that

L =
1

2
(v2

r + r2v2
θ).

The Euler-Lagrange equations are then

d

dt

( ∂L
∂vr

)
−∂L
∂r

=
d

dt
vr − r(t)v2

θ(t) = v̇r(t)− r(t)v2
θ(t) = r̈(t)− r(t)θ̇2(t) = 0

d

dt

( ∂L
∂vθ

)
− ∂L

∂θ
=

d

dt
(r2vθ) = r2v̇θ(t) + 2r(t)ṙ(t)vθ(t) = r2(t)θ̈(t) + 2r(t)ṙ(t)θ̇(t) = 0.

That is, the Euler-Lagrange equations are the two coupled second-order differential equations

r̈(t)− r(t)θ̇2(t) = 0, r2(t)θ̈(t) + 2r(t)ṙ(t)θ̇(t) = 0.

These equations are less amenable to solution by inspection than their Cartesian coordinate
counterparts. However, since we know the Cartesian solutions and the change of coordinate
formulae, we may in principal write the solutions to the polar coordinate equations. However,
to do so is straightforward, and not a very interesting display of symbology. �

2.3.4 The Euler-Lagrange equations and changes of coordinate In the previous
example, we wrote the Euler-Lagrange equations in two different sets of coordinates, and
somehow we think that the two sets of equations should represent the same thing. Let us
explore exactly what is meant by this. First of all, we remark that the problem of minimising
JL over curves in C2([a, b], qa, qb) obviously does not depend upon any choice of coordinates.
Now, if the problem statement is not dependent on coordinate chart, then so should be any
statements relating to its solution. Thus we should hope that the Euler-Lagrange equations
are in some sense coordinate invariant. Indeed they are, and in just the way of the following
result.
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2.3.4 Proposition Let Q be a configuration space with (q1, . . . , qn) and (q̃1, . . . , q̃n) coordi-
nates for Q. If L is a Lagrangian on Q then

d

dt

( ∂L

∂ṽi

)
− ∂L

∂q̃i
=
∂qj

∂q̃i

[
d

dt

( ∂L

∂qj

)
− ∂L

∂qj

]
.

In particular, the Euler-Lagrange equations are satisfied in the coordinates (q1, . . . , qn) if and
only if they are satisfied in the coordinates (q̃1, . . . , q̃n).

Proof Note that by (2.5) we have

∂vj

∂ṽi
=
∂qj

∂q̃i
,

∂vj

∂q̃i
=

∂2qj

∂q̃i∂q̃k
ṽk

Therefore, using the chain rule, we have

∂L

∂ṽi
=
∂L

∂vj

∂vj

∂ṽi
+
∂L

∂qj

∂qj

∂ṽi

=
∂L

∂vj

∂qj

∂q̃i

∂L

∂q̃i
=
∂L

∂vj

∂vj

∂q̃i
+
∂L

∂qj

∂qj

∂q̃i

=
∂L

∂vj

∂2qj

∂q̃i∂q̃k
ṽk +

∂L

∂qj

∂qj

∂q̃i
.

Now note that
d

dt

( ∂L
∂ṽi

)
=

d

dt

( ∂L
∂vj

)∂qj

∂q̃i
+
∂L

∂vj

∂2qj

∂q̃i∂q̃k
˙̃qk.

Therefore, simple addition verifies the first part of the proposition. As for the second as-
sertion, it follows from the first since the matrix with components ∂qj

∂q̃i , i, j = 1, . . . , n, is
invertible. �

2.3.5 Important remark Note that the components of the Euler-Lagrange equations transform
just like the components of a one-form on Q. However, the Euler-Lagrange equations are not
a one-form, because their coefficients depend time, velocity, and acceleration. A utilisation
of this fact is to be found in [Lewis 2000c]. �

Let’s see how this plays out in our running example.

2.3.6 Example (Example 2.1.5 cont’d) We have, as usual, Q = R2 with its Cartesian and
polar coordinate charts. In Example 2.3.3 we derived the Euler-Lagrange equations for a
particular Lagrangian in both sets of coordinates. Let us verify that these equations are
indeed related as in Proposition 2.3.4.

In Cartesian coordinates the Euler Lagrange equations were

ẍ = 0, ÿ = 0,

and in polar coordinates we had

r̈ − rθ̇2 = 0, r2θ̈ + 2rṙθ̇ = 0.
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We compute

∂x

∂r

[
d

dt

( ∂L
∂vx

)
−∂L
∂x

]
+
∂y

∂r

[
d

dt

( ∂L
∂vy

)
−∂L
∂y

]
= cos θ(ẍ) + sin θ(ÿ)

= cos θ(cos θr̈ − 2 sin θṙθ̇ − r cos θθ̇2 − r sin θθ̈)+

sin θ(sin θr̈ + 2 cos θṙθ̇ − r sin θθ̇2 + r cos θθ̈)

= r̈ − rθ̇2.

Similarly we compute

∂x

∂θ

[
d

dt

( ∂L
∂vx

)
−∂L
∂x

]
+
∂y

∂θ

[
d

dt

( ∂L
∂vy

)
−∂L
∂y

]
= −r sin θ(ẍ) + r cos θ(ÿ)

= − r sin θ(cos θr̈ − 2 sin θṙθ̇ − r cos θθ̇2 − r sin θθ̈)+

r cos θ(sin θr̈ + 2 cos θṙθ̇ − r sin θθ̇2 + r cos θθ̈)

= r2θ̈ + 2rṙθ̇.

Thus the components do indeed transform as they ought to, although a direct verification
of this, even in a simple example, is a not entirely pleasant task. �

2.4 Simple mechanical systems

“Simple” mechanical systems are not so named because they behave in a particularly
simple manner. The usage of the word simple here has a precise meaning, and the fact of
the matter is that the vast majority of mechanical systems one encounters are “simple” by
our usage of the word. Simple mechanical systems are characterised by having a special sort
of Lagrangian.

2.4.1 Kinetic energy The most important feature of a simple mechanical system is
that it has kinetic energy. This means something very particular in the terminology we
introduced in Section 2.2.4. Let g be a Riemannian metric on Q. The kinetic energy
associated with g is the function K on TQ defined by K(vq) = 1

2
g(vq, vq). Note that we

need a Riemannian metric to define kinetic energy! This is why we introduced the concept
of a Riemannian metric. However, when working with an example, one can often readily
determine by elementary methods its kinetic energy in a set of coordinates (q1, . . . , qn),
without knowing what is the Riemannian metric in these coordinates. But the fact of the
matter is that the Riemannian metric is there. To recover it proceed as follows. The
kinetic energy you derive will be a function K(q1, . . . , qn, v1, . . . , vn). The components gij,
i, j = 1, . . . , n, of the corresponding Riemannian metric are then determined by

gij =
∂2K

∂vi∂vj
, i, j = 1, . . . , n.

Note that if you apply this formula and the components for g turn out to involve the
velocities, then you have either made a mistake, or the system you are dealing with is not a
simple mechanical system.

Let us see how this works in our simple example.
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2.4.1 Example (Example 2.1.5 cont’d) We now add some physics to this example. The con-
figuration space Q = R2 we take to be the configuration space for a particle of mass m
moving in a plane. Thus we have chosen an appropriate coordinate system for a Galilean
spacetime to reduce ourselves to this situation. In Cartesian coordinates, the kinetic energy
of such a mass is simply

K =
1

2
m(ẋ2 + ẏ2) =

1

2
m(v2

x + v2
y).

One then computes

gij =
∂2K

∂vi∂vj
= mδij, i, j = 1, . . . , n.

Therefore, the kinetic energy of a particle in the plane is in exact correspondence with the
standard Riemannian metric on R2, scaled by m > 0.

Although we have illustrated this correspondence via the Cartesian coordinate system,
it does not rely on this system of coordinates. Let us see how this pans out in polar
coordinates. Clearly the particle example is essentially like the Example 2.2.18 as concerns
the Riemannian metric, and like Example 2.3.3 as concerns the Lagrangian. Referring to
those examples, the Riemannian metric g in polar coordinates is

g = m
(
dr ⊗ dr + r2dθ ⊗ dθ

)
,

and we also have K = 1
2
m(v2

r + r2v2
θ) so that

∂2K

∂vi∂vj
=


m, i = 1,

mr2, i = 2,

0, otherwise.

This demonstrates that ∂2K
∂vi∂vj = gij, even in polar coordinates. �

2.4.2 Remarks 1. Since we have a 1–1 correspondence between the concept of kinetic energy
and a Riemannian metric, let us agree to use the latter as basic, since, as we shall see, a
Riemannian metric possesses many interesting properties.

2. In very simple examples like the previous one, one can see that it is a bit overkill to for-
mally compute ∂2K

∂vi∂vj in order to determine the components of the Riemannian metric;
one can simply look at the expression for kinetic energy and write down the corre-
sponding metric components. However, for more complicated system formed on multiple
components, one often will write the kinetic energy of each component, then taking the
total kinetic energy to be the sum of the component energies. In this case, the formula
gij = ∂2K

∂vi∂vj can be used, perhaps in a symbolic manipulation language, to produce the
metric components with relative ease. �

2.4.2 Potential energy The notion of potential energy is quite simple as concerns its
basic definition: a potential function is a function V on the configuration space Q. In
particular, it is a function independent of velocity.

2.4.3 Example (Example 2.1.5 cont’d) Let us resume talking about a mass m moving about
in the plane. Now let us suppose that the plane is oriented in such a way that the force
of gravity acts in the y-direction in Cartesian coordinates. In this case, our elementary
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physics tells us that potential energy should be a “storage function” for the energy that
the system has when it is at a given height. This, of course, requires us to declare some
height as being the zero height, where the body has no gravitational potential energy. This
choice is arbitrary, so let us choose it to be y0. The gravitational potential energy is then
V = mag(y − y0) where ag is the acceleration due to gravity (e.g., ag ≈ 13.24m/sec2 on the
surface of Neptune). One of the drawbacks of the classical (due to Einstein, I expect) use of
g for a Riemannian metric is that one cannot now use that symbol for the acceleration due
to gravity.

Let us see what this function looks like in polar coordinates. Define r0 ∈ R+ and
θ0 ∈ (−π, π) by y0 = r0 sin θ0. This supposes that y0 6= 0. We then have

y − y0 = r sin θ − r0 sin θ0,

so the gravitational potential in polar coordinates is

V = mag(r sin θ − r0 sin θ0).

Note that, even in the Newtonian world, this is really only an approximation of the
gravitational force (see Exercise E2.24). �

Although the concept of potential energy is benign enough, there is actually a reason
why it is a wee bit subtle, and we will touch on that soon.

2.4.3 The Euler-Lagrange equations for simple mechanical systems We now have
the data to say what we mean by a simple mechanical system.

2.4.4 Definition A simple mechanical system is a triple (Q, g, V ) where

(i) Q is a configuration space,

(ii) g is a Riemannian metric on Q, and

(iii) V is a potential energy function on Q.

The Lagrangian associated to a simple mechanical system (Q, g, V ) is the function on TQ
defined by

L(vq) =
1

2
g(vq, vq)− V (q). �

One might well ask, “Why use a minus sign on the potential?” Indeed, the “natural”
quantity seems to be the total energy 1

2
g(vq, vq) + V (q). The reasons for using the minus

sign cannot be explicated in a coherent manner until we look at the Lagrange-d’Alembert
principle in Section 2.5. For now, let us just say that we use it because it works.

Let us look at the Euler-Lagrange equations for simple mechanical systems. To do so,
given a potential function V on Q, define a vector field gradV on Q by

gradV (q) = g](dV (q)).

Note that since dV is a one-form, gradV is indeed a vector field as claimed. In coordinates
we have

gradV = gij ∂V

∂qj

∂

∂qi
.

Now we may state the following result.
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2.4.5 Proposition Let (Q, g,V) be a simple mechanical system with associated Lagrangian L.
Let c : I → Q be a curve which is represented by t 7→ (q1(t), . . . , qn(t)) in a coordinate chart
(U, φ). The following statements are equivalent:

(i) t 7→ (q1(t), . . . , qn(t)) satisfies the Euler-Lagrange equations for the Lagrangian L;

(ii) t 7→ (q1(t), . . . , qn(t)) satisfies the second-order differential equation

q̈i + Γi
jkq̇

jq̇k = −(grad V)i, i = 1, . . . , n,

where Γi
jk, i, j, k = 1, . . . , n, are functions of q defined by

Γi
jk =

1

2
gi`
(∂gj`

∂qk
+
∂gk`

∂qk
− ∂gjk

∂q`

)
.

Proof In coordinates we have

L =
1

2
gjkv

jvk − V (q).

We therefore have
∂L

∂v`
= g`jv

j,
∂L

∂q`
=

1

2

∂gjk

∂q`
vjvk − ∂V

∂q`
.

Therefore the Euler-Lagrange equations are

g`j q̈
j +
(∂g`j

∂qk
− 1

2

∂gjk

∂q`

)
q̇j q̇k +

∂V

∂q`
= 0. (2.8)

Since the expression q̇j q̇k is symmetric with respect to transposing the indices j and k, only
the symmetric part of the expression

A`jk ,
∂g`j

∂qk
− 1

2

∂gjk

∂q`

with respect to the indices j and k will contribute to the expression(∂g`j

∂qk
− 1

2

∂gjk

∂q`

)
q̇j q̇k.

But the symmetric part of A`jk with respect to j and k is

1

2
(A`jk + A`kj) =

1

2

(∂gj`

∂qk
+
∂gk`

∂qj
− ∂gjk

∂q`

)
.

The result now follows by multiplying (2.8) by gi`. �

We shall see in the next section the meaning of the functions Γi
jk, i, j, k = 1, . . . , n. They

represent a very important object in the study of simple mechanical systems.
Let us see how the description of the Euler-Lagrange equations plays out for our running

example.

2.4.6 Example (Example 2.1.5 cont’d) We take as our simple mechanical system (Q =
R2, g, V ) where g is the Riemannian metric of Example 2.4.1 and V is the potential function
of Example 2.4.3.



03/04/2003 2.4 Simple mechanical systems 95

In Cartesian coordinates, the resulting Lagrangian on TQ is given by

L(x, y, vx, vy) =
1

2
m(v2

x + v2
y)−mag(y − y0).

The Euler-Lagrange equations are then readily computed to be

mẍ = 0, mÿ +mag = 0. (2.9)

Given that
g = m(dx⊗ dx+ dy ⊗ dy)

in these coordinates, one readily determines that the functions Γi
jk are zero for all i, j, k = 1, 2.

One also sees that

gradV = ag
∂

∂y
.

Therefore the equations of part (ii) of Proposition 2.4.5 read

ẍ = 0, ÿ = −ag,

and these equations are obviously equivalent to the equations (2.9).
Now let us also check that things work out in polar coordinates. In these coordinates we

have

L(r, θ, vr, vθ) =
1

2
m(v2

r + r2v2
θ)−mag(r sin θ − r0 sin θ0).

The Euler-Lagrange equations are then

mr̈ −mrθ̇2 +mag sin θ = 0, mr2θ̈ + 2mrṙθ̇ +magr cos θ = 0. (2.10)

To check the equations of part (ii) of Proposition 2.4.5, we note that

g = m(dr ⊗ dr + r2dθ ⊗ dθ),

and a simple, slightly tedious, computation gives

Γr
θθ = −r, Γθ

rθ = Γθ
θr =

1

r
,

with the remaining Γ’s being zero. One also computes

gradV = ag sin θ
∂

∂r
+

1

r
ag cos θ

∂

∂θ
.

Therefore the equations of part (ii) of Proposition 2.4.5 are

r̈ − rθ̇2 = −ag sin θ, θ̈ +
2

r
ṙθ̇ = −1

r
ag cos θ.

These equations are clearly equivalent to the equations (2.10).
Note that the equations are independent of the datum y0 from which potential energy

was measured. �
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2.4.4 Affine connections In the previous section, we saw arise the functions Γi
jk,

i, j, k = 1, . . . , n, defined in a set of coordinates for a configuration space Q. We shall now
address the question, “What are these functions?” The answer may seem weird, but it is
nonetheless the answer, dictated by the physics of the problem.

In order to make the definition, we need a few simple concepts. If X is a vector field on
Q and f is a function on Q, then fX is also a vector field on Q with (fX)(q) = f(q)X(q)
for each q ∈ Q. Thus fX is simply the vector field with the vectors scaled by the values of
f . Also, given a vector field X and a function f we define the Lie derivative of f with
respect to X to be the function on Q defined by

L Xf(q) = 〈df(q);X(q)〉 .

In coordinates (q1, . . . , qn) we have

L Xf = X i ∂f

∂qi
,

thus L Xf may be known to you as the “directional derivative.”
With this language, we make the following definition.

2.4.7 Definition An affine connection on a configuration space Q is an assignment to each
pair of vector fields X and Y on Q a vector field ∇XY and the assignment has the properties:

(i) the map (X, Y ) 7→ ∇XY is bilinear with respect to multiplication by real numbers;

(ii) for each pair of vector fields X and Y and for each function f on Q, we have ∇fXY =
f(∇XY );

(iii) for each pair of vector fields X and Y and for each function f on Q, we have ∇X(fY ) =
f(∇XY ) + (L Xf)Y .

We also call ∇XY the covariant derivative of Y with respect to X. �

What can this possibly have to do with mechanics?! Well, let us see what an affine
connection looks like in coordinates. Let (U, φ) be a coordinate chart with coordinates
(q1, . . . , qn). Given a pair of coordinate vector fields ∂

∂qi and ∂
∂qj their covariant derivative

is also a vector field. Therefore, ∇ ∂

∂qi

∂
∂qj must be a linear combination of the basis vector

fields { ∂
∂q1 , . . . ,

∂
∂qn}. Thus there exists n functions Γk

ij, k = 1, . . . , n, so that

∇ ∂

∂qi

∂

∂qj
= Γk

ij

∂

∂qk
. (2.11)

As this must be true for each i, j = 1, . . . , n, this defines n3 functions Γk
ij, i, j, k = 1, . . . , n,

of the coordinates (q1, . . . , qn) which are called the Christoffel symbols for the affine
connection ∇ in the coordinate chart (U, φ). Note that the affine connection is determined
uniquely in a coordinate chart by its Christoffel symbols. This is made clear by the following
result.

2.4.8 Proposition Let ∇ be an affine connection on a configuration space Q and let X and
Y be vector fields on Q. If (U, φ) is a coordinate chart with coordinates (q1, . . . , qn) then
we have

∇XY =
(∂Yk

∂qi
Xi + Γk

ijX
iYj
) ∂

∂qk

on U, where Γk
ij, i, j, k = 1, . . . , n, are the Christoffel symbols for ∇ in the coordinate chart

(U, φ).
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Proof This follows by the properties of an affine connection. Indeed we have

∇XY = ∇Xi ∂

∂qi
Y j ∂

∂qj

= X iY j∇ ∂

∂qi

∂

∂qj
+X iL ∂

∂qi
Y j ∂

∂qj

=
(
X iY jΓk

ij +X i∂Y
k

∂qi

) ∂

∂qk
,

just as claimed. �

Now we see that Γ’s may come up as claimed, but it is still not clear how the Γ’s of
Proposition 2.4.5 are related to the Christoffel symbols. To see how this relationship is
established, we will associate with a Riemannian metric, i.e., with kinetic energy, a unique
affine connection. In order to carry this out, we need to have at hand the concept of a Lie
bracket between two vector fields X and Y on Q. This is defined to be the vector field
[X,Y ] on Q which, in any set of coordinates (q1, . . . , qn) is given by

[X, Y ] =
(∂Y i

∂qj
Xj − ∂X i

∂qj
Y j
) ∂

∂qi
. (2.12)

Of course, for this definition to make sense, one must check that this definition does not
depend on coordinates, and we leave this straightforward calculation to the reader (Exer-
cise E2.15). The Lie bracket is an extremely important object in differential geometry, and we
will put it to rather pedestrian usage here in our discussion of affine connections. However,
in Sections 2.6 and 4.5, we shall see a more interesting application of the Lie bracket.

Let us proceed with our discussion. The following result is not difficult to prove, but
its proof is perhaps a bit sophisticated for our purposes here. We refer the reader to, for
example, [Kobayashi and Nomizu 1963] for a proof.

2.4.9 Theorem Let g be a Riemannian metric on a configuration space Q. There exists a

unique affine connection
g

∇ on Q with the following properties:

(i)
g

∇XY −
g

∇YX = [X,Y] for all vector fields X and Y on Q;

(ii) L Z(g(X,Y)) = g(
g

∇ZX,Y) + g(X,
g

∇ZY) for all vector fields X, Y, and Z on Q.

Furthermore, in a set of coordinates (q1, . . . , qn) for Q, the Christoffel symbols for
g

∇ are
given by

g

Γi
jk =

1

2
gi`
(∂gj`

∂qk
+
∂gk`

∂qk
− ∂gjk

∂q`

)
.

The affine connection
g

∇ is the Levi-Civita connection corresponding to the Riemannian
metric g.

Now we at last see the meaning of the functions Γi
jk in the statement of Proposition 2.4.5.

They are the Christoffel symbols of an affine connection, called the Levi-Civita connection,
which one may associate with the Riemannian metric defining the kinetic energy. Let us look
a little more closely at the differential equation of part (ii) of Proposition 2.4.5, concentrating
on the case when the case when the potential energy function is zero. The differential
equation in question is then,

q̈i +
g

Γi
jkq̇

j q̇k = 0, i = 1, . . . , n,
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where we now acknowledge explicitly the dependence of the Γ’s on g. Clearly, there is
nothing preventing us from talking about this equation when we do not use the Christoffel
symbols for the Levi-Civita connection, but rather Christoffel symbols for a general affine
connection. To this end, let ∇ be a general affine connection on Q. A curve c : I → Q is
called a geodesic for ∇ when for any t0 ∈ I and any coordinate chart (U, φ) around c(t0)
with coordinates (q1, . . . , qn), the coordinate representation t 7→ (q1(t), . . . , qn(t)) satisfies
the differential equation

q̈i + Γi
jkq̇

j q̇k = 0, i = 1, . . . , n,

where Γi
jk, i, j, k = 1, . . . , n, are the Christoffel symbols of ∇ in the coordinate chart (U, φ).

Of course, for this to make sense, the definition needs to be shown to be independent of coor-
dinates. We leave this only slightly tedious computation to the reader (Exercise E2.26). Note,
however, that each of the terms in the geodesic equations are not coordinate independent!
Thus one should not write q̈i as a tangent vector, since it does not obey a transformation law
like a tangent vector should! To talk about acceleration as a vector one genuinely needs an
affine connection. In this case, the notation one uses for the quantity which in coordinates
is q̈i + Γi

jkq̇
j q̇k is ∇c′(t)c

′(t), and a geodesic is a curve c for which ∇c′(t)c
′(t) = 0.

We may now offer the following coordinate independent restatement of Proposition 2.4.5.

2.4.10 Theorem Let (Q, g,V) be a simple mechanical system with associated Lagrangian L.
Let c ∈ C2([a, b], qa, qb). The following statements are equivalent:

(i) c satisfies the Euler-Lagrange equations for the Lagrangian L;

(ii) c satisfies
g

∇c′(t)c
′(t) = − grad V(c(t)).

Let us see how this looks in our running example.

2.4.11 Example (Example 2.1.5 cont’d) The Q = R2 example we have been using, although
simple, is ample to illustrate why one cannot regard acceleration as a tangent vector. On Q
we consider a curve c : R → Q defined in Cartesian coordinates by

c(t) = (cos t, sin t).

Thus c describes a circle. In Cartesian coordinates we then have (x(t), y(t)) = (cos t, sin t)
so that

(ẋ(t), ẏ(t)) = (− sin t, cos t), (ẍ(t), ÿ(t)) = (− cos t,− sin t).

In polar coordinates the curve is represented by (r(t), θ(t)) = (1, t), but note that r(t) and
θ(t) are only defined for t ∈ (−π, π). We readily compute

(ṙ(t), θ̇(t)) = (0, 1), (r̈(t), θ̈(t)) = (0, 0).

Therefore the acceleration along the curve is zero in polar coordinates, but nonzero in polar
coordinates. This precludes acceleration from being a tangent vector since it cannot be both
zero and nonzero.

Now let us look at the acceleration represented by the Levi-Civita connection corre-
sponding to the Riemannian metric g from Example 2.4.1. In Cartesian coordinates, the
Christoffel symbols are zero so we have

g

∇c′(t)c
′(t) = ẍ

∂

∂x
+ ÿ

∂

∂y
= − cos t

∂

∂x
− sin t

∂

∂y
.
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In polar coordinates, the Christoffel symbols were computed in Example 2.4.1, and using
these we have

g

∇c′(t)c
′(t) = (r̈ − rθ̇2)

∂

∂r
+
(
θ̈ + 2

r
ṙθ̇
) ∂
∂θ

= − ∂

∂r
.

Thus in both Cartesian and polar coordinates, the quantity
g

∇c′(t)c
′(t) is a vector of “unit

length” (if m = 1, remove the quotes) pointing towards the origin (see Figure 2.8). The

c
′(t)

∇c′(t)c
′(t)

c(t)

Figure 2.8 Velocity and “geometric acceleration” along a curve

quantity
g

∇c′(t)c
′(t) is sometimes called the geometric acceleration . Note that since the

geometric acceleration is nonzero, the curve c is not a geodesic. Well, of course it is not:
geodesics, as we have seen, are straight lines for this affine connection. �

2.4.12 Remark One often sees the Euler-Lagrange equations for a simple mechanical La-
grangian L(vq) = 1

2
g(vq, vq)− V (q) written as

M(q)q̈ + C(q, q̇) +K(q) = 0,

or something similar to this, where M(q) is a matrix whose entries are gij(q) in some set of
coordinates. In our manner of writing the equations of motion, the term C(q, q̇) is given by

gi`

g

Γ`
jkq̇

j q̇k, and is called by some authors “Coriolis forces.” This, as we can see, is nonsensical
in a certain sense. The term C(q, q̇) makes no sense by itself. Indeed, as Example 2.4.11
shows, this term in the equations can be zero in one set of coordinates, and nonzero in
another set of coordinates. The term C(q, q̇) should not be taken by itself as meaningful. �

2.5 Forces in Lagrangian mechanics

If one wishes to talk about control theory for mechanical systems, as we do, then the
natural “inputs” for these systems are forces. In this section we discuss forces generally,
concentrating on the various nature of forces which can arise in mechanical systems. We
begin with a discussion of how forces appear in the Euler-Lagrange equations.

2.5.1 The Lagrange-d’Alembert principle The appearance of forces in Newtonian
mechanics is done using the laws Newton laid out as motivation. How one should go about
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adding forces to the Euler-Lagrange equations is not altogether obvious. First let us say that
a force on a configuration space Q is a map F : R×TQ→ T ∗Q which has the property that
F (t, vq) ∈ T ∗q Q. Thus a force is a function of time, position, and velocity, and for each fixed
value (t, vq) of these arguments, it is a covector in the cotangent space T ∗q Q. Just why a force
should naturally be regarded as a covector rather than a tangent vector is a question best
answered by saying, “Because that’s the way it works out.” Some motivation may be drawn
from Proposition 2.3.4 which indicates how that the Euler-Lagrange equations themselves
change like the components of a one-form under coordinate changes. In any event, we can
write a force in coordinates as

F (t, q,v) = Fi(t, q,v)dqi,

for some function F1, . . . , F
n of time, configuration, and velocity, called the components

of the force F .
The Lagrange-d’Alembert principle, often simply called “d’Alembert’s principle,” tells

us how a force F should appear in the Euler-Lagrange equations.

2.5.1 Definition Let L be a Lagrangian on a configuration space Q and let F be a force. A
curve c : [a, b] → Q satisfies the Lagrange-d’Alembert principle for the force F if for
every variation σ : [−ε, ε]× [a, b] → Q we have

d

ds

∣∣∣
s=0

∫ b

a

L
(
t, d

dt
σ(s, t)

)
dt+

∫ b

a

〈F (t, c′(t)); δσ(t)〉 dt = 0. �

The idea behind this definition is that when the external forces are not present, they make
no contribution in the second term in Definition 2.5.1. However, when they are present, they
do work, and this is evidently properly accounted for in the variational formulation which
we call the Lagrange-d’Alembert principle.

Let us see what are the implications of the Lagrange-d’Alembert principle for the equa-
tions describing the motion of a Lagrangian system in the presence of forces.

2.5.2 Proposition Let L be a Lagrangian on Q with F a force on Q. A curve c : [a, b] → Q
satisfies the Lagrange-d’Alembert principle if and only if for any coordinate chart (U, φ)
which intersects the image of c, the coordinate representation t 7→ (q1(t), . . . , qn(t)) satisfies

d

dt

( ∂L

∂vi

)
− ∂L

∂qi
= Fi, i = 1, . . . , n, (2.13 )

where F1, . . . ,Fn are the components of F. The equations (2.13) are the forced Euler-
Lagrange equations.

Proof Fix a coordinate chart (U, φ) which intersects the image of c. By considering vari-
ations of c whose infinitesimal variation vanishes outside a coordinate chart, we may sup-
pose that c(t) ∈ U for each t. Let σ be a variation of c with cσ,s the curve defined by
cσ,s(t) = σ(s, t). Denote the coordinate representation of cσ,s by qσ,s. Then, by following the
calculations of Theorem 2.3.2, we arrive at∫ b

a

(
∂L

∂qi

dqi
σ,s(t)

ds

∣∣∣
s=0

− d

dt

( ∂L
∂vi

)
+ Fi

)
dqi

σ,s(t)

ds

∣∣∣
s=0

dt = 0.

Since this must hold for every variation, the result follows. �
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Thus the manner in which one adds forces to the Euler-Lagrange equations, governed
by the Lagrange-d’Alembert principle, is very simple: one merely sticks the components
of the force on the right-hand side of the Euler-Lagrange equations. The question of why
this is the right thing to do often results in a pointless metaphysical discussion. The real
reason is, “Because it works,” meaning that the Lagrange-d’Alembert principle agrees with
measurement to a tolerable degree. Mathematical descriptions of our physical world must
be a slave to empirical data.

2.5.2 Potential forces A potential force is one resulting from potential energy. More
usefully, given a potential function V on Q, its potential force is the force given by
F (t, vq) = −dV (q). In particular, potential forces are independent of time and velocity.2

However, potential forces are more than simply independent of time and velocity. They
have a useful property with respect to the “work” done by a mechanical system. We need
to define work. One normally takes as the definition of work “force times distance.” This is
fine for defining work done on straight line paths in Euclidean space. However, our setting
is more general than this in several ways. First, we are working with general configuration
spaces. Second, on a general configuration space, there is no such thing as a straight line
path. Thus we are led to the following definition. On a configuration space Q, we define the
work done by a force F along a curve c : I → Q to be the quantity

W (F, c) =

∫
I

〈F (t, c′(t)); c′(t)〉 dt. (2.14)

One should be able to readily see that this properly generalises the classical notion of work
(see Exercise E2.27).

Now with this notion of work, we have the following characterisation of a potential force.
A curve c : [a, b] → Q is closed if c(a) = c(b).

2.5.3 Proposition Let F be a force on a configuration space Q. The following statements are
equivalent:

(i) the work done by F on any closed curve is zero;

(ii) F is a potential force.

Proof The implication (ii) =⇒ (i) is readily made. Indeed, if F is a potential force, then
F (t, vq) = −dV (q) for some function V . We then have

W (F, c) =

∫ b

a

〈F (t, c′(t)); c′(t)〉 dt

= −
∫ b

a

〈dV (c(t)); c′(t)〉 dt

= −
∫ b

a

dV (c(t))

dt
dt

= − (V (c(b))− V (c(a))) = 0,

for every closed curve c : [a, b] → Q.

2One can actually define potential forces to be time-dependent by allowing V to depend on time. Some-
times it is interesting to do this, but we shall not do so.
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The implication (i) =⇒ (ii) goes as follows. Suppose that F is a potential force and let
q0 ∈ Q. For q ∈ Q define V (q) ∈ R by

V (q) = −
∫ 1

0

〈F (c(t)); c′(t)〉 dt,

where c : [0, 1] → Q is any curve satisfying c(0) = q0 and c(1) = q. We will first show that
the function V defined in this manner does not depend on the choice made for the curve
c. Let c1, c2 : [0, 1] → Q be two curves satisfying c1(0) = c2(0) = q0 and c1(1) = c2(1) = q.
Define a curve σ : [0, 1] → Q by

σ(t) =

{
c1(2t), t ∈ [0, 1

2
]

c2(2− 2t), t ∈ [1
2
, 1].

Note that σ(0) = σ(1) so that ∫ 1

0

〈F (σ(t));σ′(t)〉 dt = 0.

However, we also have∫ 1

0

〈F (σ(t));σ′(t)〉 dt =

∫ 1
2

0

〈F (σ(t));σ′(t)〉 dt+

∫ 1

1
2

〈F (σ(t));σ′(t)〉 dt

=

∫ 1

0

〈F (c1(t)); c
′
1(t)〉 dt+

∫ 0

1

〈F (c2(t)); c
′
2(t)〉 dt,

from which we conclude that∫ 1

0

〈F (c1(t)); c
′
1(t)〉 dt =

∫ 1

0

〈F (c2(t)); c
′
2(t)〉 dt.

Thus our definition of V is independent of curve, as desired.
Finally, let us show that F = −dV , thus making F a potential force. Let (U, φ) be

a coordinate chart around q ∈ Q and suppose that φ(q) = 0. Let Bε(0) be the ball of
radius ε centred at the origin in Rn, and suppose that Bε(0) ⊂ φ(U). Let v ∈ Rn and let
x1 = ε

‖v‖v be the point on Bε(0) which lies in the direction of v. Denote q1 = φ−1(x1). Let

c : [0, 1] → Q be a curve with the properties

1. c(0) = q0;

2. c(1−ε
‖v‖ ) = q1;

3. φ ◦c(t) = ‖v‖(1−t)
‖v‖+ε−1

x1, t ∈ [1−ε
‖v‖ , 1].

Now we define ψ : [1−ε
‖v‖ , 1] → R by

ψ(t) =

∫ t

1−ε
‖v‖

〈F (φ ◦c(s)); v〉 ds,

where F is the representation of F is the coordinate chart (U, φ). Let Vφ : Bε(0) → R be
defined by Vφ(x) = V ◦φ−1(x). Note that with ψ defined as we have done, we have

Vφ(tv) = ψ(1− t), t ∈ [0, ε
‖v‖ ].
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Therefore we have

〈dVφ(0); v〉 = − d

dt

∣∣∣∣
t=1

ψ(t).

By the definition of ψ this gives

〈dVφ(0); v〉 = −〈F (0); v〉.

If vq ∈ TqQ is the tangent vector whose coordinate representation in the chart (U, φ) is v,
then this means that

〈dV (q); vq〉 = −〈F (q); vq〉.

Since our above construction can be done for any v ∈ Rn this shows that F (q) = −dV (q),
as desired. �

Of course, we have already seen a potential function, but let us explicitly identify the
force associated with it.

2.5.4 Example (Example 2.1.5 cont’d) We consider the gravitational potential introduced in
Example 2.4.3. In Cartesian coordinates we had V (x, y) = mag(y − y0), so the potential
force is simply

F = −dV = −magdy.

In polar coordinates we had V = mag(r sin θ− r0 sin θ0), so that the potential force in these
coordinates is

F = −dV = −mag(sin θdr + r cos θdθ).

Were one to derive from “first principles” the formula for the potential force, one would have
some work to do, but using the blind calculations, it is quite simple. �

Rayleigh

dissipation

function2.5.3 Dissipative forces A force F on a configuration space Q is a dissipative force
if 〈F (t, vq); vq〉 ≤ 0 for every (t, vq) ∈ R×TQ. A dissipative force is strictly dissipative if
strict inequality holds for each vq ∈ TQ. Dissipative forces “dissipate energy.” Although we
have talked about kinetic energy and potential energy, we have not really talked about the
total energy of a Lagrangian system. Certainly, for a simple mechanical system (Q, g, V )
one is inclined to define the total energy to be the sum of the kinetic and potential energy:
E(vq) = 1

2
g(vq, vq) + V (q). This can be generalised for arbitrary Lagrangians.

Let L : R × TQ → R be a Lagrangian on a configuration space Q. For (t, q) ∈ R × Q
let L(t,q) : TqQ → R be the function L(t,q)(vq) = L(t, vq). Thus L(t,q) is simply obtained by
restricting L to a given time and configuration, leaving velocity free. This function on TqQ
can then be differentiated with respect to velocity, and let us denote the derivative at vq by
FL(t, vq). In natural coordinates (q1, . . . , qn, v1, . . . , vn) for TQ, FL is given by

FL(t, q,v) =
∂L

∂vi
(t, q,v),

the derivative with respect to velocity.

2.5.5 Lemma FL(t, vq) ∈ T∗
qQ.
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Proof We need to show that the coordinate expression transforms in the correct way when
we change coordinates. If (q1, . . . , qn) and (q̃1, . . . , q̃n) are coordinates in overlapping coor-
dinate charts, then we have

∂L

∂ṽi
=
∂L

∂qj

∂qj

∂ṽi
+
∂L

∂vj

∂vj

∂ṽi
.

But qj, j = 1, . . . , n, is independent of ṽi, i = 1, . . . , n (the q’s are only functions of the q̃’s,
not the ṽ’s). Also, we have

vj =
∂qj

∂q̃k
vk,

so that
∂vj

∂ṽi
=
∂qj

∂q̃i
.

The result now follows from Lemma 2.2.11. �

Thus we have defined a map FL : R × TQ → R × T ∗Q which has the property that
FL(t, vq) ∈ T ∗q Q. This map is called the Legendre transformation associated with the
Lagrangian L. The energy we now define to be the function EL : R× TQ→ R given by

EL(t, vq) = 〈FL(t, vq); vq〉 − L(t, vq).

In natural coordinates (q1, . . . , qn, v1, . . . , vn) for TQ we have

EL =
∂L

∂vi
vi − L. (2.15)

Let us verify that this gives the usual expression for energy when L is the Lagrangian
for a simple mechanical system.

2.5.6 Proposition If (Q, g,V) is a simple mechanical system with L the associated La-
grangian, then

(i) FL(t, vq) = g[(vq) and

(ii) EL(t, vq) = 1
2
g(vq, vq) + V(q).

Proof In coordinates we have L(q,v) = 1
2
gijv

ivj − V so that

FL =
∂L

∂vi
dqi = gijv

jdqi.

That is to say, FL(t, vq) = g[(vq). The definition of energy now gives

EL(t, vq) = 〈FL(t, vq); vq〉 − L(t, vq)

=
〈
g[(vq); vq

〉
− 1

2
g(vq, vq) + V (q)

=
1

2
g(vq, vq) + V (q),

where we have used the defining properties of g[. �

Let us now show that a dissipative force dissipates energy, which is the whole point of
defining energy at this point.
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2.5.7 Proposition Let L be a time-independent Lagrangian on a configuration space Q and let
F be a dissipative force. If a curve c : [a, b] → Q satisfies the Lagrange-d’Alembert principle
for the Lagrangian L and the force F, then

d

dt
EL(t, c′(t)) ≤ 0

for every t ∈ [a, b].

Proof The proof is easily carried out in coordinates, using the fact that L is time-
independent. Using the coordinate expression (2.15) for EL we have

d

dt
EL(t, c′(t)) =

∂EL

∂qi
q̇i +

∂EL

∂vi
v̇i

=
∂2L

∂vi∂vj
v̇iq̇j +

∂2L

∂qi∂vj
q̇iq̇j +

∂L

∂vi
v̇i − ∂L

∂qi
q̇i − ∂L

∂vi
v̇i. (2.16)

Since the Euler-Lagrange equations hold, we may expand them fully to give

∂2L

∂vi∂vj
v̇j +

∂2L

∂vi∂qj
q̇j − ∂L

∂qi
= Fi, i = 1, . . . , n. (2.17)

Comparing the expressions (2.16) and (2.17) gives the coordinate independent expression,
true for general forces,

d

dt
EL(t, c′(t)) = 〈F (t, c′(t)); c′(t)〉 .

If F is a dissipative force, the result clearly follows. �

This yields the following corollary of independent interest. It states that for an unforced
Lagrangian system, energy is conserved.

2.5.8 Corollary If L is a time-independent Lagrangian on a configuration space Q then the
function EL is constant along solutions of the Euler-Lagrange equations.

Let’s look at our simple example.

2.5.9 Example (Example 2.1.5 cont’d) We return to our example of a mass m moving in the
plane Q = R2. We consider three examples of dissipative forces.

1. We take as an example of a dissipative force the force defined in Cartesian coordinates
by

Fδ(t, x, y, vx, vy) = −δ(vxdx+ vydy),

where δ > 0. That this is indeed a dissipative force follows since

〈Fδ(t, x, y, vx, vy); (vx, vy)〉 = −δ(v2
x + v2

y),

and this quantity is negative except when vx = vy = 0. This kind of dissipative force
is often called viscous friction , and is characterised by its being a linear function of
velocity. It is often a good model when the contact is “lubricated.”
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We can also represent this same force in polar coordinates. Trying to do this from “first
principles” is a bit annoying. But just writing the above force in polar coordinates is
quite simple: we compute

vxdx+ vydy = (vr cos θ − rvθ sin θ)(cos θdr − r sin θdθ)+

(vr sin θ + rvθ cos θ)(sin θdr + r cos θdθ)

= vrdr + r2vθdθ.

Therefore the viscous dissipation force in polar coordinates is

F (t, r, θ, vr, vθ) = −δ(vrdr + r2vθdθ).

2. Another example of a dissipative force is given by

FK,δ(t, x, y, vx, vy) =

{
K(dx+ dy), vx = vy = 0

−δ(vxdx+ vydy), otherwise,

where both K and δ are positive numbers. This kind of dissipative force is discontinuous,
and is called sticking friction . It is commonly observed when there is no lubrication,
and the contact between surfaces needs to be “broken” before motion can commence.

We may again compute the polar coordinate version of this force. Doing the calculations
gives

FK,δ(t, r, θ, vr, vθ) =

{
K
(
(cos θ + sin θ)dr + r(cos θ − sin θ)dθ

)
, vx = vy = 0

−δ(vrdr + r2vθdθ), otherwise.

Again, if one were to try to derive such a force in polar coordinates using first principles,
it would not be a trivial task. But by understanding the force as a one-form, and so as
a coordinate independent object, the calculations become systematic.

3. A final example of a dissipative force is what is termed rolling friction . This is the
friction encountered when two surfaces are in rolling contact, and is intended to model
the force required as one surface deflects as the other rolls across it. No matter, rolling
friction is modelled by a force

Fα(t, x, y, vx, vx) =

{
0, vx = vy = 0

−α vx√
v2

x+v2
y

dx− α vy√
v2

x+v2
y

dy, otherwise.

Note that this force is independent of the magnitude of velocity, and points in the opposite
“direction” as velocity.

As alway, we may compute the rolling friction force in polar coordinate, and it is readily
determined to be

Fα(t, x, y, vx, vx) =

{
0, vx = vy = 0

−α vr√
v2

r+r2v2
θ

dr − α r2vθ√
v2

x+r2v2
θ

dθ, otherwise.

We shall leave to the reader the simple task of verifying that both sticking and rolling
friction meet our criteria of being dissipative forces. �
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2.5.4 Forces for simple mechanical systems When dealing with simple mechanical
systems, because of their special structure, one can write forces in a slightly different man-
ner, making them compatible with the writing of the equations using the affine connection
formalism. The idea is quite simple, and is encapsulated in the following result, which gives a
nice coordinate free way of expressing the forced equations for a simple mechanical system.

2.5.10 Proposition Let (Q, g,V) be a simple mechanical system with Lagrangian L, and let
F be a force on Q. A curve c : [a, b] → Q satisfies the Lagrange-d’Alembert principle for F
if and only if

g

∇c′(t)c
′(t) = − grad V(c(t)) + g](F(t, c′(t))). (2.18 )

Proof This follows directly from Proposition 2.5.2 and the computations of Proposi-
tion 2.4.5. �

As always, this is readily illustrated via our running example.

2.5.11 Example (Example 2.1.5 cont’d) Let us consider the particle of mass m of Exam-
ple 2.4.1 with the potential function of Example 2.4.3 and the viscous friction force of
Example 2.5.9. Therefore, in Cartesian coordinates, the force on the mass is

F = −δ(vxdx+ vydy).

If we wished, we could consider the potential force as part of the total force, or we could leave
it in the Lagrangian as the potential energy function; the equations are the same, of course.
Just make sure you do not account for the potential force twice! The forced Euler-Lagrange
equations, using the Lagrangian L = 1

2
m(v2

x + v2
y)−mag(y − y0) are therefore

mẍ = −δẋ
mÿ +mag = −δẏ.

(2.19)

On the other hand, we compute

g](F ) = − δ

m

(
vx

∂

∂x
+ vy

∂

∂y

)
.

Therefore the equation (2.18) is given by

ẍ = − δ
m
ẋ

ÿ = −ag − δ
m
ẏ.

(2.20)

Clearly the two sets of differential equations (2.19) and (2.20) are equivalent.
Now let us do the same thing in polar coordinates. In polar coordinates the dissipative

force is
F = −δ(vrdr + r2vθdθ).

Therefore, the forced Euler-Lagrange equations with Lagrangian

L =
1

2
m(v2

r + r2v2
θ)−mag(r sin θ − r0 sin θ0)

are
mr̈ −mrθ̇2 +mag sin θ = −δṙ
mr2θ̈ + 2mrṙθ̇ +magr cos θ = −δr2θ̇.

(2.21)
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To compare these equations with equations (2.18), we compute

g](F ) = − δ

m

(
vr
∂

∂r
+ vθ

∂

∂θ

)
.

Therefore we may compute the equations (2.18), with the aid of our computations in Exam-
ple 2.4.6, to be

r̈ − rθ̇2 = −ag sin θ − δ

m
ṙ

θ̈ +
2

r
ṙθ̇ = −1

r
ag cos θ − δ

m
θ̇.

(2.22)

One readily sees that equations (2.21) and (2.22) are indeed equivalent. �

2.6 Constraints in mechanics

The subject of constraints in mechanics seems to be one which lends itself readily to
notational confusion. However, this need not be the case. With our notion of an abstract
configuration space and its tangent bundle, it is quite easy to give a coherent definition of
a constraint, and then write the equations of motion in the presence of a constraint. Thus
you will find the treatment in this section brief compared to the often seen treatment, and
devoid of the bizarre posturing one typically encounters.

2.6.1 Definitions For us, a constraint will be a specification of an affine subspace
Cq of the tangent space TqQ for each q ∈ Q. Recall from Example 1.1.4 that as Cq is an
affine subspace, there exists a subspace `(Cq) of TqQ so that

Cq = {ηq + uq | uq ∈ `(Cq)}

for some vector ηq ∈ TqQ. We call `(Cq) the linear part of the constraint. A constraint
is linear if Cq = `(Cq) for each q ∈ Q. For simplicity, we will ask that dim(`(Cq)) be
independent of q and that for each q0 ∈ Q there exists a neighbourhood U of q0 and linearly
independent vector fields X1, . . . , Xr on U so that

`(Cq) = spanR {X1(q), . . . , Xr(q)} , q ∈ U,

and a vector field η on Q so that Cq = η(q) + `(Cq). The integer r is the rank of the
constraint, denoted rank(C). These assumptions are almost always (but not always) satisfied
for physical systems. Note that it may not be possible to find vector fields X1, . . . , Xr defined
on all of Q which have this property. We shall typically denote a constraint by C where, as
expected,

C =
⋃
q∈Q

Cq.

A curve c : I → Q satisfies the constraint C if c′(t) ∈ Cc(t) for each t ∈ I. Thus we see that
what a constraint does is places restrictions on the allowable velocities.

An example here might do some good.

2.6.1 Example Let us introduce a new example into the mix. As this is the first time we
have seen the example, let us take this opportunity to describe its configuration space and
its Lagrangian.
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z

y

x

φr

θ

Figure 2.9 A rolling disk

The example is a disk rolling upright on a flat surface as shown in Figure 2.9. The
configuration space for the disk is Q = R2 × T2, where R2 gives the point where the disk
touches the plane and where the angles in T2 describe the two angles of rotation, “roll” and
“spin.” For coordinates on Q, we shall take (x, y, θ, φ) as shown in Figure 2.9.

We suppose the disk to have a uniform mass distribution with support in a vertical plane.
Thus its inertia tensor has two equal eigenvalues as seen in Proposition 1.5.9. We denote
the inertia for the “spin” motion by J and the inertia for the “roll” motion by I. The mass
of the body we denote by m. The kinetic energy for the disk is then

K =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jφ̇2,

giving the associated Riemannian metric as

g = m(dx⊗ dx+ dy ⊗ dy) + Idθ ⊗ dθ + Jdφ⊗ dφ.

We suppose the system to be without potential, which will be the case if gravity acts in the
z-direction in Figure 2.9.

Now let us describe the constraints. We ask that the disk roll without slipping on the
plane. This will place constraints on the velocities allowed to us, as we shall now see. In
Figure 2.10, we view the disk from directly above. A little thought with this picture, and

θ

(x, y)

Figure 2.10 The rolling disk from above

one realises that the condition that the disk roll without slipping may be expressed as the
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condition
ẋ = r cos θφ̇, ẏ = r sin θφ̇,

where r is the radius of the disk. This means that the points (x, y, θ, φ, vx, vy, vθ, vφ) in TQ
which are allowed by the constraints must satisfy

vx − r cos θvφ = 0, vy − r sin θvφ = 0.

We now must put this into the form we have given for a constraint. That is, we must write
down the set of allowable velocities at each configuration (x, y, θ, φ). We shall do this by
writing down vector fields on Q which span the linear part of the constraint distribution at
each point. To do this, we note that a vector field X given by

X = Xx
∂

∂x
+Xy

∂

∂y
+Xθ

∂

∂θ
+Xφ

∂

∂φ

will satisfy the constraints if and only if the vector (Xx, Xy, Xθ, Xφ) lies in the kernel of the
matrix [

1 0 0 −r cos θ
0 1 0 −r sin θ

]
.

One readily ascertains that two such vector fields are

X1 = r cos θ
∂

∂x
+ r sin θ

∂

∂y
+

∂

∂φ
, X2 =

∂

∂θ
.

We therefore have

C(x,y,θ,φ) = spanR {X1(x, y, θ, φ), X2(x, y, θ, φ)} .

We note that this is therefore a linear constraint. �

2.6.2 Holonomic and nonholonomic constraints We have already seen that a con-
straint is linear when Cq = `(Cq) for each q ∈ Q. Linear constraints are by far the predom-
inant type, although others certainly occur. Within the set of linear constraints, however,
there is an important distinction which can be made. Let q0 ∈ Q. Denote by Mq0 the set of
points q ∈ Q for which there exists a piecewise differentiable curve c : [0, 1] → Q, satisfying
the constraints, with the property that c(0) = q0 and c(1) = q. Thus Mq0 is the set of
points reachable from q0 with curves which satisfy the constraint. The set of points Mq0

will typically be some smooth surface in Q running through the point q0, and so Mq0 will
have a well-defined dimension. We shall suppose that this dimension is independent of the
point q0, something which is frequently true. A linear constraint C is holonomic if the
dim(Mq0) = rank(C). A constraint which is not holonomic is called nonholonomic. Thus,
the idea with an holonomic constraint is that one can only access as many dimensions in
configuration space as directions are allowed by the constraints. Perhaps a newcomer would
expect that this would always be the case. But the fact of the matter is that many linear
constraints are in fact nonholonomic. If this were not so, you would not be able to park
your car. Indeed, your car can be thought of as having a configuration space of dimension
5 (at least for present purposes): (1) 3 dimensions for the position and orientation of the
car (say (x, y, θ)); (2) 1 dimension for the steering wheel angle; (3) 1 dimension for the drive
wheel angle i.e., what makes the car move forward. However, you have direct access to only
2 of the 5 directions, one via the steering angle, and the other via the drive wheel angle.
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Nonetheless, by properly using these two directions, you can move your car anywhere you
want!

Let us give a simple example of an holonomic constraint.

2.6.2 Example We work with Q = R2 \ {0}. We exclude the origin, as we shall see, because
we want the constraint we define to satisfy the property that rank(C) be independent of q.
For (x, y) ∈ Q we define

C(x,y) = spanR

{
−y ∂

∂x
+ x

∂

∂y

}
.

Thus C is a linear constraint of rank 1. We shall show that it is holonomic by explicitly
constructing the set of points reachable from any point (x0, y0). Let t 7→ (x(t), y(t)) be
a curve starting at (x0, y0) which satisfies the constraint. This means that (ẋ(t), ẏ(t)) ∈
C(x(t),y(t)). Since C(x,y) is 1-dimensional, this means that there exists a(t) so that

(ẋ(t), ẏ(t)) = a(t) (−y(t), x(t)).

However, this simply means that (x(t), y(t)) satisfy the differential equation

ẋ = −a(t)y
ẏ = a(t)x.

Supposing that a(t) 6= 0 we may rescale time by τ(t) =
∫ t

0
a(s) ds. We then have

dx

dτ
= ẋ

dt

dτ
= −y

dy

dτ
= ẏ

dt

dτ
= x.

Thus we have rendered the equation linear with constant coefficients:(
ẋ
ẏ

)
= A

(
x
y

)
, A =

[
0 −1
1 0

]
.

The curve τ 7→ (x(τ), y(τ)) then satisfies(
x(τ)
y(τ)

)
= eAt

(
x0

y0

)
=

[
cos t − sin t
cos t sin t

](
x0

y0

)
.

Thus the set of points reachable from (x0, y0) by curves which satisfy the constraint must lie
on the circle of radius

√
x2

0 + y2
0 with centre at the origin. This is illustrated in Figure 2.11.

Notice that the subspace Cq ⊂ TqQ is tangent to the set Mq0 of reachable points. This is
generally the case. �

Note that with an holonomic constraint, we may as well specify Mq0 since the tangent
vectors in Cq0 will always simply be tangent to Mq0 . Indeed, one often does simply specify
the subset of accessible points Mq0 rather than specifying the vectors tangent to this set. In
such cases, one directly restricts the configuration space to Mq0 , and so in some sense, one
may as well just take Mq0 to be the configuration space. The following example, following
from Example 2.6.2, illustrates this.
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Figure 2.11 An holonomic constraint

`

θ

Figure 2.12 The classical pendulum

2.6.3 Example (Example 2.6.2 cont’d) We suppose that we wish to model a classical pen-
dulum. Thus the model we use is that of a point mass at the end of a massless rod of
length ` (see Figure 2.12). We shall declare that the configuration space for the system is
Q = R2 \{0}, and then add the constraint that all configurations (x, y) of the system satisfy√
x2 + y2 = `. Note, however, that the set of all points which satisfy the constraint is exactly

the set Mq0 for the constraint C of Example 2.6.2, provided that one chooses q0 = (x0, y0) to

satisfy
√
x2

0 + y2
0 = `. Thus, in principle, there is not much difference between writing the

constraint as C or by asking that all points satisfy the relation
√
x2 + y2 = `.

It is also now obvious that by taking Q = R2 \ {0}, we have a configuration space that is
simply too large for the problem. To fix this, we simply take our actual configuration space
to be

Q̃ =
{
(x, y) ∈ Q

∣∣ √x2 + y2 = `
}
.

The smaller configuration space is therefore S1 in this example. As we shall see, it is of
no consequence whether one chooses to define a holonomic constraint by specifying C or by
specifying the smaller configuration space. �

Let us now address the question of how one may determine whether a given linear con-
straint is holonomic or nonholonomic. By using the definition, or by following Example 2.6.2,
we would have to construct all curves which start at a given point, and try to determine
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the dimension of the set of points reached in this manner. Clearly this is not an attractive
proposition. The following result, which we shall not prove, is a famous one, and relies on
the Lie bracket which we defined in coordinates in (2.12). We refer to [van der Schaft and
Maschke 1994] for a proof of this theorem.

2.6.4 Frobenius’s Theorem A linear constraint C is holonomic if and only if the vector field
[X,Y] takes values in C for every pair of vector fields X and Y taking their values in C.

The idea, then, is simple. Although the statement of the result suggests that we need to take
every pair of vector fields taking values in C and check their Lie bracket, in fact it suffices
to choose a set of vector fields which form a basis, possibly only locally, for C.

This is best illustrated with an example.

2.6.5 Example (Example 2.6.1 cont’d) We continue on with our example of the rolling disk.
As we have seen, the constraint in this example is linear, and has as basis the following two
vector fields:

X1 = r cos θ
∂

∂x
+ r sin θ

∂

∂y
+

∂

∂φ
, X2 =

∂

∂θ
.

Theorem 2.6.4 tells us that to check whether the constraint is holonomic, we need only take
the Lie bracket of the vector fields X1 and X2; if the resulting vector field satisfies the con-
straint, then the constraint is holonomic, if it does not then the constraint is nonholonomic.
The expression (2.12) for the Lie bracket tells us that the vector of components of the Lie
bracket [X1, X2] is the Jacobian of X2 times X1 minus the Jacobian of X1 times X2. Doing
this gives

DX2 ·X1 −DX1 ·X2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



r cos θ
r sin θ

0
1

−


0 0 −r sin θ 0
0 0 r cos θ 0
0 0 0 0
0 0 0 0




0
0
1
0



=


r sin θ
−r cos θ

0
0

 .
Since the Lie bracket does not satisfy the constraint, the constraint is nonholonomic.

That the constraint should be nonholonomic in this example is not surprising, and let us
explain why. Start the disk with the initial configuration (0, 0, 0, 0) and with zero velocity.
Were the constraint to be holonomic, then, from this configuration, we should only be able to
reach a 2-dimensional subset of other configurations. However, it is possible to explicitly give
a 3-dimensional subset of reachable configurations. There are two obvious directions which
are reachable. The disk can “spin” and “roll.” Therefore, we can reach any configuration of
the form (rθ, 0, θ, φ) where θ and φ are arbitrary. However, by combining a spin and a roll,
one can see that it is possible to make the disk move in a circle of any radius. Therefore, it is
possible to reach any configuration of the type (0, y, π, 2π y

r
) where y is arbitrary (the angle

2π y
r

is the angle through which the disk would have to roll in a semi-circular arc so that
the point of contact would reach the point (0, y)). This then explicitly demonstrates a 3-
dimensional subset of configurations which are reachable from (0, 0, 0, 0), thereby precluding
the constraint from being holonomic. �
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A question which now arises is, “What does Mq0 look like when the constraint is not
holonomic?” We know that when it is holonomic, the set of configurations available from a
given configuration is restricted. Is the set of available configurations unrestricted when the
constraint is nonholonomic? The answer is, “Maybe.” The fact is that the set of available
configurations can in principle be described using constructions involving the Lie bracket,3

but we postpone this description until Section 4.5.1 where it will be given a control theoretic
context. We will say here, however, that the dimension of the set of accessible configurations
can be pretty arbitrary, ranging from a minimum possible value of rank(C) to a maximum
possible value of dim(Q). For the rolling disk example, it turns out that all points in Q are
accessible from any point with curves which satisfy the constraint.

Let us finish off this section by giving a useful example of an holonomic constraint. This
may seem like something of a contrived and silly example, but we shall see in Section 2.7
that it is actually quite useful.

2.6.6 Example We let Q = (R3)6 be six copies of R3. Let r1, r2, and r3 be positive real
numbers. We shall construct an holonomic constraint by directly specifying the subset Q̃ of
points which we will consider. Given (x1, . . . ,x6) ∈ Q define yi = xi − xi+3, i = 1, 2, 3. We
shall say that a point q = (x1, . . . ,x6) ∈ Q is in the subset Q̃ if it satisfies the conditions

1. ‖yi‖ = 2ri, i = 1, 2, 3,

2. the vectors {y1,y2,y3} are orthogonal,

3. the matrix [
y1 y2 y3

]
has positive determinant, and

4. the three lines
`i = {xi + tyi | t ∈ R} , i = 1, 2, 3,

have a point of intersection.

The picture is that there is a point O ∈ R3 (the point of intersection `1 ∩ `2 ∩ `3) with the
property that the points xi and xi+3 lie a distance ri from O, and that the lines `i, i = 1, 2, 3
are orthogonal. An attempt to illustrate this is Figure 2.13.

What we are trying to account for here is the configurations of a rigid body using the fact,
demonstrated in Example 1.5.10–3, that a general rigid body with nondegenerate inertia
tensor is dynamically equivalent to six appropriately placed points in R3. Therefore, the
set Q̃ we are claiming to be the configuration space of six point masses which are rigidly
constrained so that they form a rigid body. We should therefore be able to provide an
identification of Q̃ with SE(3), since the latter is the set of configurations of a rigid body.
Indeed, this is easily done as follows. Let (x1, . . . ,x6) ∈ Q̃ and define yi = xi − xi+3,
i = 1, 2, 3. Since the vectors {y1,y2,y3} are orthogonal and since the matrix[

y1 y2 y3

]
has positive determinant, the vectors

{ y1

‖y1‖
, y2

‖y2‖
, y3

‖y3‖

}
form a positively oriented orthonor-

mal basis for R3. Therefore, there exists a unique matrix R ∈ SO(3) with the property
that Rei = yi

‖yi‖
, i = 1, 2, 3, where {e1, e2, e3} is the standard basis for R3. Also, the point

O = `1 ∩ `2 ∩ `3 ∈ R3 is uniquely defined by our point in Q̃. This therefore gives a unique

3The result is often call “Chow’s theorem” [Chow 1939].
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O

r3

r3

r2

r2 r1

r1

Figure 2.13 Six points in R3 satisfying the constraint of Exam-
ple 2.6.6

element (R, O) of SE(3) which we can associated to each point in Q̃. One can also easily
provide a unique point in Q̃ for each element of SE(3), which establishes that indeed Q̃ is
the configuration space for a rigid body. �

2.6.3 The Euler-Lagrange equations in the presence of constraints Up til now,
our discussion of constraints has focussed on how to write constraints and how to classify
them. We have not told you how to actually give dynamical equations which describe the
motion of a constrained system. It turns out that to do this, the correct thing to do is to add
forces to the Euler-Lagrange equations which are “constraint forces.” These constraint forces
have the property that they maintain the constraint. However, they should also have some
other properties which ensure that the resulting equations do in fact agree with physical
observations.

To provide the magical characterisation of constraint forces, for a constraint C, and
a curve c : [a, b] → Q which satisfies the constraint, a virtual displacement along c is
an assignment of a tangent vector v(t) ∈ Tc(t)Q for each t ∈ [a, b] with the property that
v(t) ∈ `(Cc(t)). We then define a constraint force along c to be an assignment of a covector
α(t) ∈ T ∗c(t)Q for each t ∈ [a, b] which satisfies 〈F (t); v(t)〉 = 0 for every virtual displacement
v.

2.6.7 Remarks 1. A natural question to ask is why virtual displacements are not required to
satisfy v(t) ∈ Cc(t) rather than v(t) ∈ `(Cc(t)). Of course, the two competing definitions
would agree when the constraints are linear, but when they are not, there is a genuine
difference. Some authors choose to call v a “possible displacement” when v(t) ∈ Cc(t).
The introduction of the additional terminology seems to have nothing to recommend it,
however. I have not seen a reasonable description of why virtual displacements need to
be defined the way we have defined them. Thus we must resort to the old mantra of,
“Because it agrees with the physics.”

2. For linear constraints, where C = `(C), constraint forces have the property that they do
no work (in the sense of our definition (2.14)) on curves which satisfy the constraints.
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However, for constraints which are not linear, the constraint forces will generally do work
on curves which satisfy the constraint. �

We may now say what it means for a curve to be a solution for a Lagrangian system with
a constraint.

2.6.8 Definition Let Q be a configuration space. A constrained Lagrangian system on
Q is a triple (L, F,C) where L is a Lagrangian on Q, F is a force on Q, and C is a constraint
on Q. A curve c : [a, b] → Q is a solution to the constrained Lagrangian system
(L, F, C) if there exists a constraint force α so that together c and α satisfy

(i) c satisfies the constraint C and

(ii) c satisfies the Lagrange-d’Alembert principle for the force F + α. �

Thus, in coordinates (q1, . . . , qn) for Q, the constrained equations are simply

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= Fi + αi, i = 1, . . . , n,

plus the requirement that t 7→ (q1(t), . . . , qn(t)) satisfies the constraints. Note that the
constraint force α is an unknown in this equation. To make this more concrete, let us
represent the constraint equations in a slightly different manner. For q ∈ Q, define a subspace
of T ∗q Q by

ann(`(Cq)) =
{
αq ∈ T ∗q Q

∣∣ 〈αq; vq〉 = 0 for every vq ∈ `(Cq)
}
.

We also choose a vector field η on Q so that

Cq = {η(q) + uq | uq ∈ `(Cq)} . (2.23)

Thus η(q) provides a vector to “shift” the subspace `(Cq) to get the affine subspace Cq. The
condition that a curve c : I → Q satisfy the constraint, i.e., that c′(t) ∈ Cc(t), may be written
as c′(t)− η(c(t)) ∈ `(Cc(t)) which is in turn the same as requiring that

〈α; c′(t)− η(c(t))〉 = 0, ∀ α ∈ ann)`(Cq)).

To represent this in a set of coordinates we choose n − r one-forms α1, . . . , αn−r on a
coordinate neighbourhood so as to be a basis for ann(`(C)). A coordinate representation,
t 7→ (q1(t), . . . , qn(t)), of a curve satisfies the constraint if and only if

αa
i q̇

i = αa
i η

i, a = 1, . . . , n− r.

Thus we arrive at the following coordinate characterisation of the solutions for a constrained
Lagrangian system.

2.6.9 Proposition Let (L,F,C) be a constrained Lagrangian system on Q. A curve c : [a, b] →
Q is a solution to the constrained Lagrangian system (L,F,C) if and only if for every chart
(U, φ) for which U intersects the image of c, the coordinate representation, t 7→ q(t), of c
satisfies the equations

d

dt

( ∂L

∂vi

)
− ∂L

∂qi
= Fi + λaα

a
i , i = 1, . . . , n,

αa
i q̇

i = αa
i η

i, a = 1, . . . , n− r,

where
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(i) α1, . . . , αn−r are one-forms on U forming a basis for ann(`(C)),

(ii) η is a vector field satisfying (2.23), and

(iii) where λ1, . . . , λn−r are functions of t to be determined, and are called Lagrange mul-
tipliers.

Proof The only thing we have not already shown is that the unknown constraint force should
be expressible as α = λaα

a. However, this is clear since by our definition of constraint forces,
and since α1, . . . , αn−r form a basis for ann(`(C)). �

2.6.10 Remark The 2n − r equations of Proposition 2.6.9 have both a differential and an
algebraic component. Indeed, equations of this type are often called DAE’s, for “d ifferential
algebraic equations.” As such, methods for solution, including numerical methods, exist. �

Let us see how this works out for our rolling disk example. It is really quite simple, as
we shall see.

2.6.11 Example (Example 2.6.1 cont’d) We work with the coordinates (x, y, θ, ψ) as given in
Example 2.6.1. Let us first determine one forms α1, α2 which form a basis for ann(`(C)). We
have practically done this already. Recall that admissible velocities were specified to satisfy
the relations

vx − r cos θvφ = 0, vy − r sin θvφ = 0.

From this, we can immediately “read off” the one-forms as

α1 = dx− r cos θdφ, α2 = dy − r sin θdφ.

Using the system Lagrangian L = 1
2
m(v2

x+v2
y)+

1
2
Iv2

θ+
1
2
Jv2

φ, we then determine the equations
of Proposition 2.6.9 to be

mẍ = λ1

mÿ = λ2

Iθ̈ = 0

Jφ̈ = −λ1r cos θ − λ2r sin θ

ẋ− r cos θφ̇ = 0

ẋ− r sin θφ̇ = 0.

(2.24)

Let us not deal right now with the matter of solving these equations, but leave this until
Chapter 3.

2.6.12 Remark In our above discussion we have presented a method for computing equations
of motion for Lagrangian systems with constraints. There are other methods available for
determining equations of motion. Some of these are now listed.

1. The Poincaré equations: This method is one which eliminates the need for La-
grange multipliers, by incorporating the equations of constraint into the equations
of motion by introducing “quasi-velocities.” This method receives a quite coherent
treatment in the recent book of Talman [2000].

2. The Gibbs-Appell equations: These equations use not only “quasi-velocities,” but
“quasi-accelerations.” In the original formulation of Appell [1900b, 1900a] and Gibbs
[1879] (yes, the free energy guy), the treatment is for particles and rigid bodies. A
generalisation to arbitrary Lagrangian systems is provided by Lewis [1996].
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3. Gauss’s principle of least constraint: This method is of a variational nature,
although Gauss [1829] was able to cast the problem so that the variational methods are
finite dimensional. That this method bears a strong resemblance to the Gibbs-Appell
equations is flushed out in a general setting by Lewis [1996].

4. The “vakonomic method”: Notice that the Lagrange-d’Alembert principle, unlike
the characterisation Theorem 2.3.2 of the Euler-Lagrange equations, is not given in the
form of a variational problem. That is, the Lagrange-d’Alembert principle does not
produce equations which are necessary conditions for the minimisation of a functional
on a class of curves. Since Definition 2.6.8 gives the definition of the solution of a
constrained Lagrangian system in terms of the Lagrange-d’Alembert principle in which
the external force is a constraint force, it follows that one may expect that the solutions
to a constrained system, even without external forces which are not constrained forces,
are not curves which minimise a functional on a class of curves. This is indeed the case,
and is seen by some as a weakness of Definition 2.6.8. In an attempt to circumvent
this difficulty, Kozlov [1983] gives a variational formulation of constrained motion,
calling the resulting equations of “variational axiomatic k ind,” leading to the name
“vakonomic.” The problem is that these equations are genuinely different from the
equations of Definition 2.6.8, as is shown in a simple example in [Lewis and Murray
1995]. There has been a heated debate over which of the methods, the vakonomic
method or any of the methods equivalent to Definition 2.6.8, are correct [e.g., Kozlov
1992, Kharlomov 1992]. In Section 2.7 we shall show that the equations derived from
Definition 2.6.8 can be derived from Newtonian mechanics. Therefore, if the vakonomic
method is correct, it is so in violation of Newtonian mechanics. This constitutes, one
should think, the death knell for the vakonomic method, at least as concerns its validity
for modelling “normal” mechanical systems.

This is an incomplete list, and some people who read it will be offended in the extreme
at the omission of their favourite method. However, with the exception of the “vakonomic
method,” all methods are equivalent. Depending on the problem one is looking at, and what
one wishes to do, one or the other of the available methods may be the most suitable. �

2.6.4 Simple mechanical systems with constraints Let us briefly specialise our
discussion of constraints to simple mechanical systems with Lagrangians of the form
L(vq) = 1

2
g(vq, vq) − V (q). To present our main result, we need the notion of orthogo-

nal projection. We let (Q, g, V ) be a simple mechanical system and we let C be a constraint
on Q. We let `(C)⊥ be the g-orthogonal complement to `(C). Thus for each q ∈ Q we have
a subspace of TqQ defined by

`(Cq)
⊥ = {vq ∈ TqQ | g(vq, uq) = 0 for all uq ∈ `(Cq)} .

Now any vector v ∈ TQ can be written as v = v1 + v2 with v1 ∈ `(C) and v2 ∈ `(C)⊥. We
then define a map PC : TQ→ TQ which sends a vector v to its component v2 ∈ `(C)⊥.

Let us see how to compute all of these objects in our rolling disk example.

2.6.13 Example (Example 2.6.1 cont’d) For the rolling disk we have Q = R2 × T2 and we
were using coordinates (x, y, θ, φ). The Riemannian metric in these coordinates is

g = m(dx⊗ dx+ dy ⊗ dy) + Idθ ⊗ dθ + Jdφ⊗ dφ,
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and the one-forms which form a basis for ann(`(C)) are

α1 = dx− r cos θdφ, α2 = dy − r sin θdφ.

Referring to Exercise E2.35, we see that the vector fields g](α1) and g](α2) form a basis for
`(C)⊥. To compute the components of these vector fields, we may use matrix notation. The
components of g](α1) are then

m 0 0 0
0 m 0 0
0 0 I 0
0 0 0 J


−1 

1
0
0

−r cos θ

 =


1
m

0
0

− r
J

cos θ

 ,
so that

g](α1) =
1

m

∂

∂x
− r

J
cos θ

∂

∂φ
.

We similarly compute

g](α1) =
1

m

∂

∂y
− r

J
sin θ

∂

∂φ
.

This then gives a basis for `(C)⊥, so effectively describing it.
Let us now turn to the computation of the orthogonal projection PC. This is actually a

not entirely trivial thing to compute, but let us go through the steps. From Example 2.6.1
we have the vector fields

X1 = r cos θ
∂

∂x
+ r sin θ

∂

∂y
+

∂

∂φ
, X2 =

∂

∂θ

as a basis for `(C). We also have the vector fields

X3 =
1

m

∂

∂x
− r

J
cos θ

∂

∂φ
, X4 =

1

m

∂

∂y
− r

J
sin θ

∂

∂φ

as a basis for `(C)⊥. Therefore, any tangent vector v can be written as

v = v1X1 + v2X2 + v3X3 + v4X4

for some suitable coefficients (v1, v2, v3, v4). The orthogonal projection of v onto `(C)⊥ will
then be simply

PC(v) = v3X3 + v4X4. (2.25)

But it remains to do the computations. To determine (v1, v2, v3, v4) we must use the change
of basis formula. Thus we write

X1

X2

X3

X4

 =


r cos θ r sin θ 0 1

0 0 1 0
1
m

0 0 − r
J

cos θ
0 1

m
0 − r

J
sin θ


︸ ︷︷ ︸

q
P


∂
∂x
∂
∂y
∂
∂θ
∂
∂φ

 .

With the 4× 4 matrix P as defined above, if we write

v = vx
∂

∂x
+ vy

∂

∂y
+ vθ

∂

∂θ
+ vφ

∂

∂φ
= v1X1 + v2X2 + v3X3 + v4X4,



120 2 Lagrangian mechanics 03/04/2003

then we may determine (v1, v2, v3, v4) in terms of (vx, vy, vθ, vφ) using the change of basis
formula:

v1

v2

v3

v4

 = P−t


vx

vy

vθ

vφ



=
1

mr2 + J


mr(cos θvx + sin θvy) + Jvφ

(mr2 + J)vθ

(mJ + 1
2
m2r2(1− cos 2θ))vx − 1

2
m2r2 sin 2θ −mrJ cos θvφ

−1
2
m2r2 sin 2θvx + (mJ + 1

2
m2r2(1 + cos 2θ))vy −mrJ sin θvφ

 .
Using (2.25) we may now compute the components of PC(v) relative to the basis
{ ∂

∂x
, ∂

∂y
, ∂

∂θ
, ∂

∂φ
} as

1

mr2 + J


J +mr2 sin2 θ −mr2 sin θ cos θ 0 −rJ cos θ
−mr2 sin θ cos θ J +mr2 cos2 θ 0 −rJ sin θ

0 0 0 0
−mr cos θ −mr sin θ 0 mr2


︸ ︷︷ ︸


vx

vy

vθ

vφ

 .
Thus the object with the brace under it is the matrix representation of PC at the point
q = (x, y, θ, φ) relative to the basis { ∂

∂x
, ∂

∂y
, ∂

∂θ
, ∂

∂φ
} for TqQ. �

The example illustrates that unless we have to, we really do not want to participate in
computing the projection PC, and certainly we would wish to have at hand a computer to
do the algebra. But, it is in principle computable.

The tedium of the previous example notwithstanding, let us see what our notation using
`(C)⊥ and PC gives us. The following result is useful because it gives us a way of writing the
equations for constrained systems in a coordinate independent manner without resorting to
a variational statement.

2.6.14 Proposition Let (Q, g,V) be a simple mechanical control system with Lagrangian L,
let F be a force on Q, and let C be a constraint on Q. Let η be the unique vector field with
the properties that η(q) ∈ `(Cq)

⊥ and that

Cq = {η(q) + vq | vq ∈ `(Cq)} .

Then a curve c : [a, b] → Q is a solution for the constrained system (L,F,C) if and only
for each t ∈ [a, b] there exists λ(t) ∈ `(Cc(t))

⊥ so that

g

∇c′(t)c
′(t) = − grad V(c(t)) + g](F(t, c′(t))) + λ(t)

PC(c′(t)) = η(c(t)).

Proof The result will follow from Propositions 2.5.10 and 2.6.9 provided we can show that
the constraint force α in Definition 2.6.8 has the property that g](α(c(t))) ∈ `(C)⊥. However,
this follows since g] : T ∗Q→ TQ maps ann(`(C)) exactly onto `(C)⊥. This fact follows from
Exercise E2.35. �
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The essential content of the result is that for simple mechanical systems, when we apply
g] to a constraint force, the resulting vector field is g-orthogonal to the linear part of the con-
straint distribution. This will be helpful for us when we look at establishing a correspondence
between Newtonian and Lagrangian mechanics in Section 2.7.

Let us verify Proposition 2.6.14 for our rolling disk example.

2.6.15 Example (Example 2.6.1 cont’d) We have yet to compute the Christoffel symbols for
the rolling disk, but this is easy since the coefficients of the Riemannian metric in the
coordinates (x, y, θ, φ) are constant, implying that all Christoffel symbols are zero. In Ex-
ample 2.6.13 we determined that the vector fields

X3 =
1

m

∂

∂x
− r

J
cos θ

∂

∂φ
, X4 =

1

m

∂

∂y
− r

J
sin θ

∂

∂φ

were a basis for `(C)⊥. Therefore, the vector field λ(t) of Proposition 2.6.14 must be of the
form λ(t) = λ1(t)X3(c(t)) + λ4(t)X4(c(t)) for some functions λ3, λ4 : [a, b] → R. Therefore,
we may write the differential equation of Proposition 2.6.14 as

ẍ =
1

m
λ3

ÿ =
1

m
λ4

θ̈ = 0

φ̈ = − r
J

cos θλ3 − r

J
sin θλ3.

These equations are obviously equivalent to the first four of the equations (2.24). To these
differential equations, we must append the constraint equations, which, in Proposition 2.6.14
are the equations PC(c′(t)). Since we have computed PC in Example 2.6.13, we can in
principle write down these equations, but let us not do this, as it is ugly, and at this stage
pointless. �

2.6.16 Remark The computations in this section with our disk example make one wonder
about the actual utility of Proposition 2.6.14. While the equations in abstract form look
nice, in practice to compute PC is burdensome. It is true that if one’s only objective is to
write equations of motion, then computing PC is not recommended. However, it turns out
that the formulation of the equations of motion in Proposition 2.6.14 has some interesting
benefits, particularly in the study of control theory for these systems. It turns out that using
the equations of Proposition 2.6.14 as background, one may put the equations of motion for
a constrained simple mechanical control system into affine connection form, but using an
affine connection which is not the Levi-Civita connection associated with the kinetic energy
Riemannian metric. The control theory is explained in the paper [Lewis 2000b], while the
affine connection background is explained in [Lewis 1998], motivated by earlier papers [e.g.,
Synge 1928, Bloch and Crouch 1998]. We shall deal with this briefly in Section 3.8.3. �

2.6.5 The Euler-Lagrange equations for holonomic constraints As a final element
of our discussion of constrained systems, let us demonstrate that for holonomic constraints
defined by their constraint surface Mq0 , one may genuinely restrict attention to Mq0 , forget-
ting that Mq0 sits inside some larger configuration space.
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2.6.17 Theorem Let (L,F,C) be a constrained Lagrangian system and let C be holonomic.
Let q0 ∈ Q and define Q̃ = Mq0 to be the set of points accessible from q0 by curves satisfying
the constraint and let TQ̃ by the subset of TQ consisting of vectors tangent to Q̃. Denote
by L̃ the restriction of L to TQ̃.

For a curve c : [a, b] → Q with the property that image(c) ⊂ Q̃, the following statements
are equivalent:

(i) a curve c : [a, b] → Q is a solution to the constrained Lagrangian system (L,C,F) with
c(a) ∈ Q̃;

(ii) there exists a force F̃ on Q̃ so that c : [a, b] → Q̃ satisfies the Lagrange-d’Alembert
principle for F̃ on Q̃.

Proof Let c(t) be a point on image(c) and let (q1, . . . , qn) be coordinates around c(t). Let
us choose the coordinates so that (q1, . . . , qr) are coordinates for Q̃ and so that qn−r+1 =
· · · = qn = 0 on Q̃. (That this can be done is true, but is not obvious from anything we have
said here.) The curve c in these coordinates then looks like t 7→ (q1(t), . . . , qr(t), 0, . . . , 0).
Since the vector fields ∂

∂qi , i = 1, . . . , r are tangent to Q̃, we can use (q1, . . . , qr, v1, . . . , vr)

as coordinates for TQ̃. We then have

L̃(t, q1, . . . , qr, v1, . . . , vr) = L(t, q1, . . . , qr, 0, . . . , 0, v1, . . . , vr, 0, . . . , 0).

We also note that α1 = dqn−r+1, . . . , αn−r = dqn form a basis for ann(`(C)). We may now use
the equations of Proposition 2.6.9 to represent in coordinates the solution of the constrained
system:

d

dt

( ∂L
∂va

)
− ∂L

∂qa
= Fa, a = 1, . . . , r

d

dt

( ∂L
∂vb

)
− ∂L

∂qb
= Fb + λb, b = n− r + 1, . . . , n

q̇b = 0, b = n− r + 1, . . . , n.

Since qn−r+1(t) = · · · = qn(t) = 0 we have

d

dt

( ∂L
∂vb

)
=

∂L

∂t
(t, q1(t), . . . , qr(t), 0, . . . , 0, q̇1(t), . . . , q̇r(t), 0, . . . , 0), b = 1, . . . , n− r + 1, . . . , n.

For similar reasons we have

d

dt

( ∂L
∂va

)
=
∂L

∂t
+

∂2L

∂va∂vi
q̈i +

∂2L

∂va∂qi
q̇i

=
∂L

∂t
+

∂2L

∂va∂vc
q̈c +

∂2L

∂va∂qc
q̇c, a = 1, . . . , r.

where the index i runs from 1 to n, and the index c runs from 1 to r, and where all
partial derivatives are evaluated at (t, q1(t), . . . , qr(t), 0, . . . , 0, q̇1(t), . . . , q̇r(t), 0, . . . , 0). One
therefore sees that, in fact

d

dt

( ∂L
∂va

)
=

d

dt

( ∂L̃
∂va

)
.
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Similarly,
∂L

∂qa
=
∂L̃

∂qa

when the left-hand side has the argument (t, q1(t), . . . , qr(t), 0, . . . , 0, q̇1(t), . . . , q̇r(t), 0, . . . , 0).
Therefore, if we define a force on Q̃ by

F̃ (t, q1, . . . , qr, v1, . . . , vr) = F (t, q1, . . . , qr, 0, . . . , 0, v1, . . . , vr, 0, . . . , 0),

the result follows. �

This seems perhaps a bit intimidating, but it is very simple. The idea is that when
the constraint is holonomic, then we may we well restrict to the subset Q̃ specified by the
constraint. Once we do this, we can also restrict the Lagrangian, and in doing so, we can
then write the unconstrained Euler-Lagrange equations on Q̃. The question then is, are the
equations we get the same as the equations we get if we apply the definition of a constrained
solution? The above theorem answers this question in the affirmative.

This is easily illustrated with an example.

2.6.18 Example (Examples 2.1.5 and 2.6.2 cont’d) We look again at the pendulum example
of Example 2.6.3. Thus we work with Q = R2 \ {0} and the holonomic constraint C which
gives rise to the subset

Q̃ =
{
(x, y) ∈ Q

∣∣ √x2 + y2 = `
}

as in Example 2.6.3. By the nature of Q̃, obviously polar coordinates are the better coordi-
nates for the job. Indeed, in polar coordinates we simply have

Q̃ = {(r, θ) | r = `} .

Therefore, since r is fixed by restricting to Q̃, we can simply use θ as a coordinate. We then
have

TQ̃ = {(r, θ, vr, vθ) | r = `, vr = 0}
as the description of the tangent bundle TQ̃ in polar coordinates. Thus we may use (θ, vθ) as
coordinates for TQ̃. The restricted kinetic energy will then be 1

2
m`2v2

θ , simply the restriction

of the kinetic energy to TQ̃. Since the pendulum also needs potential energy, we also need to
restrict the gravitational potential function. But from Example 2.4.3 we can easily see that
the restriction of the potential function to Q̃ is mag(` sin θ − r0 sin θ0). Thus the restricted
Lagrangian, as a function of (θ, vθ), is

L(θ, vθ) =
1

2
m`2v2

θ −mag(` sin θ − r0 sin θ0).

The Euler-Lagrange equations for this Lagrangian are

m`2θ̈ +mag` cos θ = 0. (2.26)

Let us now compare this with what happens when we write the equations using Lagrange
multipliers. First we need to find a basis for ann(`(C)). But this is simple since in polar
coordinates, the vector field ∂

∂θ
is a basis for C. Therefore dr will be a basis for ann(C).

Thus we take α1 = dr. The equations of Proposition 2.6.9 then read

mr̈ − rθ̇2 = λ1

mr2θ̈ + 2mrṙθ̇ +mag` cos θ = 0

ṙ = 0.
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From the first equation, using the fact that r(t) = `, we read off λ1 = −`θ̇2 which determines
the constraint force. From the second equation, we directly see that it is equivalent to (2.26),
using again the fact that r(t) = `. �

2.7 Newton’s equations and the Euler-Lagrange equations

By now, we have presented a rather general setting for Lagrangian mechanics, and al-
though we have seen that things appear to be reasonable in a couple of examples, the dis-
cerning reader will question the very idea of Lagrangian mechanics as modelling the physical
world, and will be crying out once more for Newton’s mechanics. This is hardly surprising
since the contents of the chapter to this point have been a compression of about 250 years
of intense work by many of the best mathematicians and mechanicians during that time.
To attempt to quell some of these anxieties, in this section we shall prove that Lagrangian
mechanics and Newtonian mechanics agree, at least when both can be applied. Clearly,
Lagrangian mechanics is more general, deriving as it does from an abstract variational prin-
ciple on a general configuration space. Thus we will provide a fairly general Newtonian
setting for mechanics, and then show that the laws of motion of Newton are the same as the
Euler-Lagrange equations.

2.7.1 Lagrangian mechanics for a single particle We shall start with something
very simple. We consider a single particle of mass m moving in R3 and subject to a force
and a constraint. Thus we have fixed a coordinate system φ for some Galilean spacetime
G = (E , V, g, τ), and so the R3 we are considering is the first component of the canonical
Galilean spacetime R3×R. Let us first deal with the Newtonian mechanics for our particle.
We shall consider the particle to have a force F acting on it. Thus, in the Newtonian setting,
F is a map from R×R3×R3 to R3 which sends a triple (t,x,v) of time, position, and velocity
to a force. We also consider a constraint on the particle. Thus we constrain the velocities of
the particle to satisfy equations of the form

ca(x) · v = fa(x), a = 1, . . . , 3− r.

for maps ca : R3 → R3 and fa : R3 → R, a = 1, . . . , 3− r. Here r ∈ {0, 1, 2, 3}, depending on
how many constraints we place on the particle. Note that this form of writing the constraints
follows along lines like the constraint equations of Proposition 2.6.9. This type of constraint
will take into account any of the various ways in which the motion of a particle may be
constrained; for example

1. the particle may be constrained to move on a surface in R3,

2. the particle may be constrained to follow a prescribed path,

3. the particle may be constrained to slide on the surface of a rigid body, or

4. the particle may have its velocity constrained by some external source.

One may wish to consider generalisations where the maps c1, . . . , c3−r are time-dependent.
This, however, is easily done—one simply sticks a t in the argument of ca, a = 1, . . . , 3− r,
at each stage. We shall not worry about whether constraints are holonomic or nonholo-
nomic—of the examples of constraints listed above, many are holonomic. As we have seen,
we may think of an holonomic constraint as being nonholonomic. Therefore we will keep
all constraints in the general nonholonomic form which allows holonomic constraints as a
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special case. In Newtonian mechanics, experimental observation leads one to the conclusion
that forces of constraint are always orthogonal to the direction of the linear part of the con-
straint, with orthogonality being with respect to the standard inner product on R3. That is
to say, if you, for example, looked at any of the four constraint situations enumerated above,
you would measure that they behaved as if they were subjected to a force orthogonal to the
linear part of the constraint. Thus a constraint force will have the form

R = λ1c
1(x) + · · ·+ λ3−rc

3−r(x),

for some λ1, . . . , λ3−r. Newton’s equations are now written as

mẍ = F (t,x, ẋ) + λ1c
1(x) + · · ·+ λ3−rc

3−r(x)

ca(x) · q̇ = fa(x), a = 1, . . . , 3− r,
(2.27)

where the functions of t, λ1, . . . , λ3−r, are to be determined.
This completes the Newtonian description of the dynamics of a single forced and con-

strained particle. For the Lagrangian description, let us fix upon using the canonical Carte-
sian coordinates (x, y, z) for Q = R3 which give (x, y, z, vx, vy, vz) as the natural coordinates
for TQ. The kinetic energy of the particle is then

K =
1

2
m(v2

x + v2
y + v2

z),

giving the Riemannian metric

g = m(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz)

on Q. We can subtract from this a potential function to get the classical Lagrangian, but
since the result is simply an external force, but one of a specific type, we shall omit the
potential function from the Lagrangian, and consider its appearance as part of the external
force. Indeed, now is a good time to describe a force in our Lagrangian setup. By our
definition, a force is to be a T ∗Q-valued function with coefficients which may depend on
time, position, and velocity. Thus we write a force as

F = Fxdx+ Fydy + Fzdz,

where F , as well as the coefficients Fx, Fy, and Fz, have the argument (t, x, y, z, vx, vy, vz).
A constraint is then specifiable, as in Proposition 2.6.9, by a set of equations of the form

αa
i (x, y, z)v

i = βa(x, y, z), a = 1, . . . , 3− r,

for functions αa
i , a = 1, . . . , 3 − r, i = 1, 2, 3, and βa, a = 1, . . . , 3 − r, on Q = R3. By

Proposition 2.6.9, the solution to the constrained system then satisfies the equations

mẍ = Fx + λaα
a
x

mÿ = Fy + λaα
a
y

mz̈ = Fz + λaα
a
z

αa
i q̇

i = βa, a = 1, . . . , 3− r.

(2.28)

However, if we define

x = (x, y, z), v = (vx, vy, vz)

F (t,x,v)) =
(
Fx(t, x, y, z, vx, vy, vz), Fy(t, x, y, z, vx, vy, vz), Fz(t, x, y, z, vx, vy, vz)

)
ca(x) =

(
αa

x(x, y, z), α
a
x(x, y, z), α

a
z(x, y, z)

)
,
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then clearly the equations (2.27) and (2.28) are equivalent; indeed they are identical!
Thus we have shown the following:

For a single particle moving in R3 subjected to a general constraint4 and a general
force, the equations of Newtonian mechanics and Lagrangian mechanics agree.

2.7.2 Lagrangian mechanics for multi-particle and multi-rigid body systems Of
course, the simplification of the previous section is too simple to be really all that useful.
Most mechanical systems one encounters are formed of various interconnections of particles
and rigid bodies. For example, a look through the exercises at the end of the chapter
will yield several mechanical systems which are built up of particles and rigid bodies. For
each of these, one could apply Newtonian methods, with appropriate constraints to model
the interconnectedness, and arrive a set of governing equations. One could then choose
coordinates for the systems, possibly taking into account any holonomic constraints, and then
derive the Euler-Lagrange equations. The resulting set of equations would be equivalent to
those derived using Newtonian mechanics. In this section we shall prove that this is generally
the case. The first thing we need to do is simplify things by considering only particles and not
rigid bodies. We do this by resorting to Example 2.6.6 which shows that a rigid body with
nondegenerate inertia tensor can be regarded as six particles with an holonomic constraint
keeping them in a certain configuration. Using this fact, we can model any collection of
interconnected particles and rigid bodies by a collection of particles which are appropriately
constrained.

Let us proceed then by modelling a set of particles subject to arbitrary forces and con-
straints in a Newtonian setting. We shall suppose that we have N particles with masses
m1, . . . ,mN . To describe the system we use (x1, . . . ,xN) ∈ (R3)N to provide the posi-
tions of the N masses. Each mass is subject to a force which may depend on time, and
on the position and velocity of the other N masses. Thus the force on mass i is written
F i(t,x1, . . . ,xN ,v1, . . . ,vN). The collection of masses is also subject to constraints. Note
that we do not constrain each mass independently since one can expect a constraint to relate
two or more of the masses. Thus we have constraint equations of the form

ca
1(x1, . . . ,xN)v1+· · ·+ca

N(x1, . . . ,xN)vN = fa(x1, . . . ,xN), a = 1, . . . , 3N−r, (2.29)

for maps ca
i : (R3)N → R3, i = 1, . . . , N , a = 1, . . . , 3N − r, and fa : (R3)N → R, a =

1, . . . , 3N − r. Here r ∈ {0, . . . , 3N − r} depends on the number of constraints which we
apply to the system of particles. As with the single particle, we can readily make the
constraints time-dependent, but let us agree not to do this. The constraints place a force on
each mass. Again, we simply assert that the force of constraint on the ith mass is given by
a force of the form

Ri = λ1c
1
i (x1, . . . ,xN) + · · ·+ λ3N−rc

3N−r
i (x1, . . . ,xN)

for some λ1, . . . , λ3N−r. This is one of those facts that is empirically verified.
With the nature of the forces of constraint at hand, we can now immediately write down

4Some, including the author, may disagree that the constraint we consider is the most general. However,
it is quite general, particularly if one does the business of formally sticking in a t in various place to make
the constraints possibly time-dependent.
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Newton’s equations. These are

ẍ1 = F 1(t,x1, . . . ,xN , ẋ1, . . . , ẋN) +
3N−r∑
a=1

λac
a
1(x1, . . . ,xN)

...

ẍN = F N(t,x1, . . . ,xN , ẋ1, . . . , ẋN) +
3N−r∑
a=1

λac
a
N(x1, . . . ,xN)

c1
1(x1, . . . ,xN)ẋ1 + · · ·+ c1

N(x1, . . . ,xN)ẋN = f 1(x1, . . . ,xN), a = 1, . . . , 3N − r.
(2.30)

As usual, the functions of time, λ1, . . . , λ3N−r are to be determined.
For the Lagrangian description, we take Q = (R3)N and use coordinates

(x1, y1, z1, . . . , xN , yN , zN). We shall write the corresponding natural coordinates for TQ
as (x1, y1, z1, . . . , xN , yN , zN , vx1 , vy1 , vz1 , . . . , vxN

, vyN
, vzN

). The kinetic energy of the system
is

K =
1

2
m1(v

2
x1

+ v2
y1

+ v2
z1

) + · · ·+ 1

2
mN(v2

xN
+ v2

yN
+ v2

zN
).

This gives the Riemannian metric

g = m1(dx1 ⊗ dx1 + dy1 ⊗ dy1 + dz1 ⊗ dz1) + · · ·+
mN(dxN ⊗ dxN + dyN ⊗ dyN + dzN ⊗ dzN).

A general force is written as

F = Fx1dx1 + Fy1dy1 + Fz1dz1 + · · ·+ FxN
dxN + FyN

dyN + FzN
dzN ,

where the coefficients are functions of time, as well as functions of all the coordinates and
their velocities. A general constraint, in the Lagrangian formalism, can be written using
Proposition 2.6.9 as

αa
i (q)v

i = βa(q),

where q denotes a point in Q = (R3)N . One now directly applies Proposition 2.6.9 to get
the equations of motion in the Lagrangian setting as

m1ẍ1 = Fx1 +
3N−r∑
a=1

λ1α
a
1, m1ÿ1 = Fy1 +

3N−r∑
a=1

λ1α
a
2, m1z̈1 = Fz1 +

3N−r∑
a=1

λ1α
a
3

...

mN ẍN = FxN
+

3N−r∑
a=1

λ1α
a
3N−2, mN ÿN = FyN

+
3N−r∑
a=1

λ1α
a
3N−1, mN z̈N = FzN

+
3N−r∑
a=1

λ1α
a
3N

αa
i (q)q̇

i = βa(q), a = 1, . . . , 3N − r.
(2.31)

Now we define

xi = (xi, yi, zi), i = 1, . . . , N, vi = (vxi
, vyi

, vzi
), i = 1, . . . , N

F i = (Fxi
, Fyi

, Fzi
), i = 1, . . . , N

ca
i = (αa

3i−2, α
a
3i−1, α

a
3i), i = 1, . . . , N, a = 1, . . . , 3N − r,
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where we have omitted arguments for convenience. As with the single particle, one readily
sees that the equations (2.30) and (2.31) are identical. Thus we have demonstrated the
following:

For an arbitrary number of particles and rigid bodies moving in R3 subjected to
a general constraint and a general force, the equations of Newtonian mechanics
and Lagrangian mechanics agree.

2.7.1 Remark The above calculations are harder to write down than they are to understand.
This is in contrast to the usual situation where much work is made of demonstrating the
equivalence of the Newtonian and Lagrangian formalism. Part of the reason for this is that
most authors deal explicitly with holonomic constraints and introduce a set of coordinates to
parameterise the set Mq0 . However, as we have demonstrated in Theorem 2.6.17, it matters
not whether one restricts to the subset of Q defined by the holonomic constraints as far as the
Lagrangian formalism is concerned. It therefore suffices to consider holonomic constraints
as nonholonomic constraints, and if all one is after is a demonstration of the equivalence of
the Newtonian and Lagrangian formalisms, then this is sufficient. �

2.8 Euler’s equations and the Euler-Lagrange equations

In our above discussion of the equivalence of the Newtonian and the Lagrangian formula-
tions for mechanics, we cheated somewhat when considering rigid bodies in that we modelled
a rigid body as a collection of particles subject to constraints. While this is correct, it de-
prives us of any insight in understanding how Euler’s equations for rigid body motion are
related to the Euler-Lagrange equations. Let us address this point by demonstrating explic-
itly the equivalence between the two sets of equations for a single rigid body in the absence
of constraints and forces.

Thus in this section we consider a rigid body (B, µ) moving in a Galilean spacetime
G = (E , V, g, τ) via the rigid motion Σ = (Ψ, ν). We consider a centre of mass observer
O ∈ Ob(Σ). By choosing a coordinate system φ ∈ Coor(O), the equations which govern the
rigid body are, by Proposition 1.6.12,

Ṙ(t) = R(t)Ω̂(t)

ṙ(t) = R(t)V (t)

Ic(Ω̇(t)) =
(
Ic(Ω(t))

)
×Ω(t)

µ(B) V̇ (t) = µ(B) V (t)×Ω(t),

where t 7→ (R(t), r(t)) are coordinate representations of the rigid motion, and where Ω, V ,
and Ic are coordinate representations of the body angular velocity, the body linear velocity,
and the inertia tensor. While these equations do indeed describe the motion of the rigid
body, the problem is that it is not so easy to compare them to the Euler-Lagrange equations
of the rigid body since the body velocities Ω and V are not expressible as derivatives of
coordinates. Actually, you will recall that with our choice of a centre of mass observer and a
coordinate system adapted to this observer, the linear body velocity V (t) is in fact ṙ(t), and
so is a legitimate Lagrangian velocity. However, the body angular velocity, being defined
by Ω(t) = R−1(t)Ṙ(t) is not actually a legitimate Lagrangian velocity. This is not entirely
obvious, but is true (Exercise E2.37). This then raises the question about what is the best
way to do Lagrangian mechanics for a rigid body. Let us now turn to this very issue.
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2.8.1 Lagrangian mechanics for a rigid body We retain the setup in the introduction
to the section, and we try to fit this setup into our Lagrangian scheme. The configuration
space for the rigid body is clearly Q = SE(3). We shall represent a point in SE(3) by
(R, r) ∈ SO(3) × R3. We need to assign a Lagrangian to the system. The rigid body has
kinetic energy. To define the kinetic energy, we integrate the kinetic energy of each point in
the rigid body via its mass distribution. The following result records the answer.

2.8.1 Lemma Let (B, µ) be a rigid body in a Galilean spacetime G = (E ,V, g, τ) which
undergoes a rigid motion Σ = (Ψ, ν). Let O ∈ Ob(Σ) and suppose that φ is a coordinate
system adapted to O. If t 7→ (R(t), r(t)) are the coordinate representations of the rigid
motion, t 7→ Ω(t) and t 7→ V(t) are the coordinate representations of the body angular and
linear velocity, and Ic is the coordinate representation of the inertia tensor about the centre
of mass, then the kinetic energy of the rigid body along the rigid motion is

t 7→ 1

2
µ(B) ‖V(t)‖2 +

1

2
gcan(Ic(Ω(t)),Ω(t)).

Proof Suppose that B ⊂ E (s0). If TΣ is the motion associated with the rigid motion Σ,
then the kinetic energy is by definition

1

2

∫
‖T ′Σ(s, x)‖ dµ.

However, with the notation we have introduced for our coordinate representation of the rigid
motion, the coordinate form of TΣ is

T Σ(t,x) = R(t)x + r(t),

since the observer at each instant is at the origin in the coordinate system φ. Here x is a
point in the rigid body φs0(B). Therefore the kinetic energy at time t is

K(t) =
1

2

∫ ∥∥Ṙ(t)x + ṙ(t)
∥∥2

dµ.

We have Ṙ(t) = R(t)Ω̂(t) and ṙ(t) = R(t)V (t) using the definitions of body velocity. Thus
we compute

K(t) =
1

2

∫
‖R(t)V (t)‖2 dµ+

1

2

∫
‖R(t)(Ω(t)× x)‖2 dµ+∫

gcan

(
R(t)V (t),R(t)(Ω(t)× x

)
dµ

=
1

2
µ(B) ‖V (t)‖2 +

1

2

∫
gcan

(
x× (Ω(t)× x),Ω(t)

)
dµ

=
1

2
µ(B) ‖V (t)‖2 +

1

2
gcan(Ic(Ω(t)),Ω(t)).

Here we have used Lemma 1.5.2(ii), the vector identity (1.19), and the definition of the
inertia tensor. �

As an immediate corollary to the lemma, we have the following description of the Rie-
mannian metric describing the rigid body kinetic energy. Note that in the statement of the
corollary, we are writing a point in TSO(3) as (R,A). Thus A is a matrix representing a
tangent vector in the tangent space TRSO(3); one may wish to think of A as being Ṙ. We
also write A∨ for the image of a 3 × 3 skew-symmetric matrix A under the inverse of the
map ·̂.
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2.8.2 Corollary The Riemannian metric on Q = SE(3) describing the kinetic energy of
Lemma 2.8.1 is given by

gB(r,R)((v1,A1), (v2,A2)) = µ(B)gcan(v1,v2) + gcan

(
Ic((R

−1A1)
∨), (R−1A2)

∨).
Proof From the expression of Lemma 2.8.1 for the rigid body kinetic energy, the only thing
we need to show is that any tangent vector A ∈ TRSO(3) can be written as RΩ̂ for some
Ω ∈ R3. But this follows from the proof of Proposition 1.4.5 where we showed that if
t 7→ R(t) is a curve in SO(3), then the tangent vector Ṙ(t) in the tangent space TR(t)SO(3)

always has the form R(t)Ω̂(t) for some Ω(t) ∈ R3. Since this is true for any curve t 7→ R(t),
it must be true for any tangent vector at any point. �

Lemma 2.8.1 provides us, then, with a description of the kinetic energy of a rigid body
in terms of the body velocities. What one would like to do is use this expression as the
Lagrangian for the rigid body since we are assuming there are no external forces or con-
straints. However, as we have seen, the body angular velocity is not a normal Lagrangian
velocity, so we cannot use it as we use “v” in the Euler-Lagrange equations. This leaves
us with having to use coordinates for SE(3) to describe the motion of a rigid body in the
Lagrangian setting. Since SE(3) = SO(3)×R3 this amounts really to choose coordinates for
SO(3). For this, one could use the Euler angles (α, β, γ) of Example 2.1.3–3. One would then
have to express the velocities (vα, vβ, vγ) in terms of the body angular velocity to get the
kinetic energy expressed in a form where one could apply the Euler-Lagrange equations. To
do this, one could differentiate the expression (2.3) with respect to t (suppose that (α, β, γ)
were functions of t) and then use the relation Ṙ(t) = R(t)Ω̂(t). One would then have a
Lagrangian given in terms of coordinates for TSO(3), and it would then be possible to com-
pute the Euler-Lagrange equations. While this is possible, it is not very pleasant, and is not
a very agreeable way to prove that the Euler equations are equivalent to the Euler-Lagrange
equations.

In the next section we illustrate a rather more slick way to show the equivalence we are
after.

2.8.2 A modified variational principle The idea we give here is due to Marsden and
Scheurle [1993] and is also explained in the book [Marsden and Ratiu 1999]. What we shall
do is, rather than compute the Euler-Lagrange equations for a rigid body, we will employ
the variational principle of Section 2.3 to deduce the equivalence of the Euler equations
for a rigid body with the Euler-Lagrange equations. The result is the following important
theorem.

2.8.3 Theorem On Q = SE(3) consider the Riemannian metric gB given by Corollary 2.8.2
and let L be the corresponding Lagrangian function on TSO(3). Define a function ` on
R3 × R3 by

`(v,ω) =
1

2
µ(B) ‖v‖2 +

1

2
gcan(Ic(ω),ω).

The following statements are equivalent:

(i) t 7→ (R(t), r(t)) is a solution of the Euler-Lagrange equations with Lagrangian L;

(ii) t 7→ (R−1(t)ṙ(t),R−1(t)Ṙ(t)) satisfies the Euler equations.

Furthermore, the above two statements are implied by the following:
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(iii) t 7→ (R−1(t)ṙ(t),R−1(t)Ṙ(t)) minimises the functional

(v(t),ω(t)) 7→
∫ b

a

`(v(t),ω(t)) dt

over curves t 7→ (ω(t),v(t)) ∈ R3 × R3 where the variations have the property that
their infinitesimal variations satisfy

d

ds

∣∣∣
s=0

ω(s, t) = η(t) + ω(t)× η(t)

d

ds

∣∣∣
s=0

v(s, t) = u̇(t) + ω(t)× u(t)− η(t)× v(t),

where u and η vanish at the endpoints.

Proof Let us first show that (iii) is equivalent to the variational principle of Theorem 2.3.2.
Thus, we let g : [a, b] 3 t 7→ (R(t), r(t)) be a curve on SE(3) and define a curve on R3 × R3

by
ξ(t) = (Ω(t),V (t)) =

(
R−1(t)ṙ(t), (R−1(t)Ṙ(t))∨

)
.

Let σ : (s, t) 7→ (r(s, t),R(s, t)) be a variation of a curve c. We shall first show that the
infinitesimal variation corresponding to σ gives rise to an infinitesimal variation of ξ which

satisfies the conditions of (iii). Define η(t) = R−1(t) d
ds

∣∣∣
s=0

R(s, t). Using the fact that

d
dt

R−1(t) = −R−1(t)Ṙ(t)R−1(t), we then have

η̇(t) = −R−1(t)Ṙ(t)R−1(t)
d

ds

∣∣∣
s=0

R(s, t) + R−1(t)
d

ds

∣∣∣
s=0

Ṙ(s, t)

We then compute

d

ds

∣∣∣
s=0

Ω(s, t) = −R−1(t)
d

ds

∣∣∣
s=0

R(s, t)R−1(t)Ṙ(t) + R−1(t)
d

ds

∣∣∣
s=0

Ṙ(s, t)

= η̇ + (R−1(t)Ṙ(t))
(
R−1(t)

d

ds

∣∣∣
s=0

R(s, t)
)
−(

R−1(t)
d

ds

∣∣∣
s=0

R(s, t)
)
(R−1(t)Ṙ(t))

= η̇(t) + Ω̂(t)η̂(t)− η̂(t)Ω̂(t)

= η̇(t) + Ω(t)× η(t).

In the last step we have used Exercise E1.11. We also need to show that variations of V (t)

have the specified form. If we let u(t) = R−1(t) d
ds

∣∣∣
s=0

r(s, t) we compute

u̇(t) = −R−1(t)Ṙ(t)R−1(t)
d

ds

∣∣∣
s=0

r(s, t) + R−1(t)
d

ds

∣∣∣
s=0

ṙ(s, t).

Therefore

d

ds

∣∣∣
s=0

V (s, t) = −R−1(t)
d

ds

∣∣∣
s=0

R(s, t)R−1(t)ṙ(t) + R−1(t)
d

ds

∣∣∣
s=0

ṙ(s, t)

= u̇(t) + R−1(t)Ṙ(t)
(
R−1(t)

d

ds

∣∣∣
s=0

r(s, t)
)
−(

R−1(t)
d

ds

∣∣∣
s=0

R(s, t)
)
R−1(t)ṙ(t)

= Ω̂(t)u(t)− η̂(t)V (t)

= u̇(t) + Ω(t)× u(t)− η(t)× V (t).
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Now, since we have∫ b

a

`(V (s, t),Ω(s, t)) dt =

∫ b

a

L(R(s, t), Ṙ(s, t)) dt,

it follows that
d

ds

∣∣∣
s=0

∫ b

a

L(R(s, t), Ṙ(s, t)) dt

will vanish for arbitrary variations if and only if

d

ds

∣∣∣
s=0

∫ b

a

`(V (s, t),Ω(s, t)) dt

vanishes for all variations of the form specified in part (iii) of the theorem.
By Theorem 2.3.2, the above calculations also show that (i) is implied by (iii).
Let us show that (iii) implies (ii). Suppose that we have a variation of t 7→ (V (t),Ω(t))

satisfying the conditions of part (iii) of the theorem. We then compute

d

ds

∣∣∣
s=0

∫ b

a

`
(
V (s, t),Ω(s, t)

)
dt =

∫ b

a

( ∂`
∂ω

d

ds

∣∣∣
s=0

Ω(s, t) +
∂`

∂v

d

ds

∣∣∣
s=0

V (s, t)
)

dt

=

∫ b

a

( ∂`
∂ω

(
η̇(t) + Ω(t)× η(t)

)
+

∂`

∂v

(
u̇(t) + Ω(t)× u(t)− η(t)× V (t)

))
dt

=

∫ b

a

(
− d

dt

∂`

∂ω
η(t) +

∂`

∂ω

(
Ω(t)× η(t)

)
−

d

dt

∂`

∂v
u(t) +

∂`

∂v

(
Ω(t)× u(t)− η(t)× V (t)

))
dt

=

∫ b

a

(
− d

dt

∂`

∂ω
+
∂`

∂ω
×Ω(t) +

∂`

∂v
× V (t)

)
η(t) dt+∫ b

a

(
− d

dt

∂`

∂v
+
∂`

∂v
×Ω(t)

)
u(t) dt,

where all partial derivatives are evaluated at (Ω(t),V (t)). Using the given expression for `
we have

∂`

∂v
(Ω(t),V (t)) = µ(B)V (t),

∂`

∂ω
(Ω(t),V (t)) = Ic(Ω(t)).

Therefore, using the fact that

d

ds

∣∣∣
s=0

∫ b

a

`
(
V (s, t),Ω(s, t)

)
dt = 0

for arbitrary variations gives

Ic(Ω̇(t)) =
(
Ic(Ω(t))

)
×Ω(t)

µ(B) V̇ (t) = µ(B) V (t)×Ω(t).

However, these are exactly the Euler equations, and thus this completes the proof. �

This result provides a useful application of variational methods, although Theorem 2.8.3
strictly follows from the results of Section 2.7.
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2.9 Hamilton’s equations

The Hamiltonian formalism (named for Sir William Rowan Hamilton (1805–1865)) pro-
vides another setting in which to study the problems of mechanics. Some like to quibble over
which is the “best” setting. We shall adopt the position that each provides advantages which
can be exploited, and circumstances often dictate which, if any, approach is best. However,
since the topic under discussion is Lagrangian mechanics, we will marginalise Hamiltonian
mechanics only for this reason. There are many excellent texts which give a modern overview
of Hamiltonian mechanics and dynamics [Abraham and Marsden 1978, Arnol’d 1989, Liber-
mann and Marle 1987, Talman 2000].

Let L : R× TQ→ R be a Lagrangian on Q. Recall that in Section 2.5.3 we had defined
the Legendre transformation as a map FL : R×TQ→ R×T ∗Q which in a set of coordinates
is given by

(t, q1, . . . , qn, v1, . . . , vn) 7→
(
t, q1, . . . , qn,

∂L

∂v1
, . . . ,

∂L

∂vn

)
.

We wish to think of the Legendre transformation as a change of coordinates, and compute the
form of the Euler-Lagrange equations in these coordinates. This can only be done for certain
Lagrangians. To wit, a Lagrangian L is hyperregular 5 when FL is a diffeomorphism; that
is, when FL is invertible and it and its inverse are smooth. The following result ensures
that a large number of important Lagrangians are hyperregular.

2.9.1 Proposition If (Q, g,V) is a simple mechanical system with associated Lagrangian L,
the Legendre transformation FL is hyperregular.

Proof This is easily seen in coordinates where

FL(t, q1, . . . , qn, v1, . . . , vn) = (t, q1, . . . , qn, g1jv
j, . . . , gnjv

j).

From the coordinate expression (2.7) for the map g[ : TQ → T ∗Q, we see that FL = g[.
Since g[ is invertible with inverse g] : T ∗Q→ TQ, the result follows. �

Corresponding to a hyperregular Lagrangian L : R × TQ → R on Q define the corre-
sponding Hamiltonian HL : R× T ∗Q→ R by

HL(t, αq) = EL(t,FL−1(αq)) = 〈αq; FL
−1(αq)〉 − L(t,FL−1(αq)).

The following result gives the form of “Hamilton’s equations,” and how they are related to
the Euler-Lagrange equations.

2.9.2 Theorem Let L be a hyperregular Lagrangian on a configuration space Q with HL the
corresponding Hamiltonian. Let c be a curve on Q and let (U, φ) be a coordinate chart for
Q which intersects image(c). Denote natural coordinates for TQ in this coordinate chart by
(q1, . . . , qn, v1, . . . , vn) and denote natural coordinates for T∗Q by (q1, . . . , qn, p1, . . . , pn).

The following statements concerning c are equivalent:

(i) c satisfies the Euler-Lagrange equations

d

dt

( ∂L

∂vi

)
− ∂L

∂qi
= 0, i = 1, . . . , n;

5We have bypassed the notion of merely being regular . Regularity occurs when for each vq ∈ TQ there
exists a neighbourhood U of vq so that FL|U is a diffeomorphism onto its image. Regularity may be easily
shown to be equivalent to the n× n matrix with components ∂2L

∂vi∂vj , i, j = 1, . . . , n, being invertible.
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(ii) the curve t 7→ FL(c′(t)) satisfies Hamilton’s equations

q̇i =
∂HL

∂pi

ṗi = −∂HL

∂qi
,

i = 1, . . . , n.

Proof In coordinates we have

HL(t, q,p) = piv
i − L(t, q,v),

where we think of v as being expressed in terms of p using the inverse of the Legendre
transformation. We thus compute

dHL =
∂HL

∂qi
dqi +

∂HL

∂pi

dpi +
∂HL

∂t
dt

= vidpi + pj
∂vj

∂qi
dqi + pj

∂vj

∂pi

dpi −
∂L

∂qi
dqi − ∂L

∂vj

∂vj

∂pi

dpi −
∂L

∂t
dt.

Now we use the fact that vj is independent of qi and the fact that pj = ∂L
∂vj , j = 1, . . . , n, to

simplify the above expression to

∂HL

∂qi
dqi +

∂HL

∂pi

dpi +
∂HL

∂t
dt = vidpi −

∂L

∂qi
dqi − ∂L

∂t
dt,

where again v is to be thought of as a function of p via the inverse of the Legendre trans-
formation. This gives us the equalities

∂HL

∂qi
= −∂L

∂qi
,

∂HL

∂pi

= vi.

Now suppose that the curve c satisfies the Euler-Lagrange equations. In this case, vi = q̇i,
i = 1, . . . , n, so the first n of Hamilton’s equations hold. Also, since pi = ∂L

∂vi , i = 1, . . . , n,
and since the Euler-Lagrange equations hold, we have

∂HL

∂qi
= −∂L

∂qi
= − d

dt

( ∂L
∂vi

)
= −ṗi, i = 1, . . . , n.

Thus the second n of Hamilton’s equations also hold.
Now suppose that Hamilton’s equations hold. One then easily sees that

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= 0, i = 1, . . . , n.

This completes the proof. �

The coordinates pi, i = 1, . . . , n, are called conjugate momenta in the Hamiltonian
formalism.

Let us see what Hamilton’s equations look like for our planar particle example.

2.9.3 Example (Example 2.1.5 cont’d) We first deal with Cartesian coordinates where the
Lagrangian is, from Examples 2.4.1 and 2.4.3,

L(t, x, y, vx, vy) =
1

2
m(v2

x + v2
y)−mag(y − y0).
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The Legendre transformation is

FL(t, x, y, vx, vy) = (t, x, y,mvx,mvy)

=⇒ FL−1(t, x, y, px, py) =
(
t, x, y, 1

m
px,

1
m
py

)
.

From Proposition 2.5.6 we have

EL(t, x, y, vx, vy) =
1

2
m(v2

x + v2
y) +mag(y − y0)

which then, by the definition of the Hamiltonian, gives

HL(t, x, y, px, py) =
1

2m
(p2

x + p2
y) +mag(y − y0).

We thus readily compute Hamilton’s equations in Cartesian coordinates to be

ẋ =
∂HL

∂px

=
px

m

ẏ =
∂HL

∂py

=
py

m

ṗx = −∂HL

∂x
= 0

ṗy = −∂HL

∂y
= −mag.

One may readily verify that these equations have the same solution as their Lagrangian
counterpart of Example 2.4.6.

Now let us do the same thing in polar coordinates where the Lagrangian is

L(t, r, θ, vr, vθ) =
1

2
m(v2

r + r2v2
θ)−mag(r sin θ − r0 sin θ0).

The Legendre transformation is then readily derived to be

FL(t, r, θ, vr, vθ) = (t, r, θ,mvr,mr
2vθ)

=⇒ FL−1(t, r, θ, pr, pθ) =
(
t, r, θ, 1

m
pr,

1
mr2pθ

)
.

The energy is easily seen to be given by

EL(t, r, θ, vr, vθ) =
1

2
m(v2

r + r2v2
θ) +mag(r sin θ − r0 sin θ0).

One then determines that in polar coordinates we have

HL(t, r, θ, vr, vθ) =
1

2m

(
p2

r + 1
r2p

2
θ

)
+mag(r sin θ − r0 sin θ0).

Hamilton’s equations in polar coordinates are then

ṙ =
∂HL

∂pr

=
pr

m

θ̇ =
∂HL

∂pθ

=
pθ

mr2

ṗr = −∂HL

∂r
= mag sin θ − p2

θ

mr3
.
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Theorem 2.9.2 tells us that these equations must be the same as the Euler-Lagrange equa-
tions we derived in polar coordinates in Example 2.4.6. While the correspondence is easily
established above in Cartesian coordinates, it is less transparent in polar coordinates. In-
deed, although the moving between the Euler-Lagrange and the Hamiltonian equations are
affected merely by a change of coordinates, there is something not completely transparent
happening. �

2.9.4 Remarks 1. For simple mechanical systems (Q, g, V ), as is the example we just worked
out, it is possible to describe the Hamiltonian quite explicitly. For each q ∈ Q we may
defined an inner product g−1(q) on the cotangent space T ∗q Q by

g−1(q)(αq, βq) = g(g](αq), g
](βq)).

One readily verifies that the matrix for this inner product with respect to a coordinate
basis {dq1|q, . . . , dqn|q} for T ∗q Q is simply the matrix with components gij, i, j = 1, . . . , n
(recall that the matrix with components gij, i, j = 1, . . . , n, is defined to be the inverse
of the matrix with components gij, i, j = 1, . . . , n). With this inner product on each
cotangent space, the Hamiltonian corresponding to the Lagrangian L(vq) = 1

2
g(vq, vq)−

V (q) is given by HL(αq) = g−1(αq, αq) + V (q).

An important distinction to make between the Lagrangian and the Hamiltonian for-
malisms comes up when describing the equations of motion associated with each. In the
Lagrangian setting, Proposition 2.4.5 provides a convenient equivalent expression for the
Euler-Lagrange equations involving the Levi-Civita affine connection associated with the
Riemannian metric g. For Hamilton’s equations, there is no such convenient expression.

2. It is possible to include forces and constraints in an Hamiltonian setting, although we do
not pursue this here [see Weber 1986]

3. As a final comment on the Hamiltonian approach, let us say that there is an enormous
amount of literature available which expounds upon its many virtues. A good review is
in the book [Libermann and Marle 1987]. An account of control theory for Hamiltonian
control systems can be found in Chapter 12 of the book [Nijmeijer and van der Schaft
1990]. �

2.10 Conservation laws

In our discussion of rigid body dynamics in Section 1.6, we used the fact that spatial
and angular momentum are conserved for a free rigid body to derive the Galilean Euler
equations for rigid bodies. The idea of quantities being conserved by the motion of a system
is an important one, and in the Lagrangian setting has it most basic formulation in Noether’s
theorem, (Emmy Amalie Noether (1882–1935)) which we address in this section.

The formulation of Noether’s theorem requires the notion that a Lagrangian be “invari-
ant” with respect to a vector field. Let us try to be clear about what that means. Let Q be
a configuration space and let L : TQ → R be a time-independent Lagrangian on Q. For a
vector field X on Q, recall that the integral curve of X through q0 ∈ Q is the unique curve
t 7→ c(t) with the property that c(0) = q0 and that c′(t) = X(c(t)). (Also recall that c′(t)
denotes the tangent vector field of c. Thus c′(t) ∈ Tc(t)Q gives the “velocity” of the curve at
time t.) The Lagrangian L is invariant under the vector field X if for each integral curve
t 7→ c(t), the function t 7→ L(c′(t)) is independent of t. The following result gives an easy
way to determine when a Lagrangian is invariant under a vector field. The proof, although
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readable with the tools we have developed thus far, perhaps relies on concepts just out of
range of what we are doing.

2.10.1 Lemma Let L: TQ → R be time-independent Lagrangian on a configuration space Q,
and let X be a vector field on Q. Let (U, φ) be a coordinate chart for Q with coordinates
(q1, . . . , qn). L is invariant under X if and only if

∂L

∂qi
Xi +

∂L

∂vi

∂Xi

∂qj
vj = 0. (2.32 )

Proof Note that the curve c′(t) is the solution to the differential equation given in coordi-
nates by

q̇i = X i

v̇i =
∂X i

∂qj
vj,

i = 1, . . . , n. (2.33)

To verify this, one need only differentiate the first n of these equations using the chain rule to
get the second n equations. Therefore, the equation (2.32) merely states that the directional
derivative of L in the direction

(
X1, . . . , Xn, ∂X1

∂qj v
j, . . . , ∂Xn

∂qj v
j
)

is zero. But this means that

L is constant along solutions of the differential equations (2.33), which is exactly what is
meant by L being invariant under X, by definition. �

Let us see how this works out in an example.

2.10.2 Example (Example 2.1.5 cont’d) We take Q = R2 with the Lagrangian given in Carte-
sian coordinates by

L(x, y, vx, vy) =
1

2
m(v2

x + v2
y)−mag(y − y0).

Note here the Lagrangian is time-independent. Let us show that this Lagrangian is invariant
under the vector field X = ∂

∂x
. One readily sees that the integral curve of X through the

point (x̃, ỹ) ∈ Q is given by c : t 7→ (x̃ + t, ỹ) ∈ Q. To arrive at this, one simply solves the
initial value problem

ẋ = 1, ẏ = 0, x(0) = x̃, y(0) = ỹ.

Therefore, the corresponding curve t 7→ c′(t) is given by t 7→ (x̃ + t, ỹ, 1, 0) ∈ TQ. We then
see that the function

t 7→ L(c′(t)) =
1

2
m−mag(ỹ − y0)

is indeed independent of t, thus verifying that L is indeed invariant under X, by directly
employing the definition.

We may arrive at the same conclusion using Lemma 2.10.1. Indeed, this is merely a simple
calculation. We note that the components of X are X1 = 1 and X2 = 0. Therefore the
terms in the expression (2.33) which involve the derivatives of the components of X vanish.
In this case, the expression (2.33) reduces to ∂L

∂x
X1 which is zero since L is independent of x.

In this way, and somewhat more straightforwardly, we again show that L is invariant under
X. �

The computations in the above example illustrate a commonly encountered situation. If
(U, φ) is a coordinate chart, and a Lagrangian L in this set of coordinates is independent
of one of the coordinates, say q1, then we say q1 is a cyclic coordinate for L. As in the
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previous example, one may show that if q1 is a cyclic coordinate, then L is invariant under
the vector field X = ∂

∂q1 .
Now let us turn to investigating the implications of L being invariant under some vector

field. The following result shows that if L admits a vector field X under which it is invariant,
then this implies the existence of a “constant of motion.”

2.10.3 Theorem (Noether’s Theorem) Let L be a time-independent Lagrangian on Q and let
X be a vector field on Q. Define a function PL,X : TQ → R by PL,X(vq) = 〈FL(vq); X(q)〉.
If L is invariant under X, then the function t 7→ PL,X(c′(t)) is independent of t for each
solution t 7→ c(t) of the Euler-Lagrange equations.

Proof Fix a solution t 7→ c(t) of the Euler-Lagrange equations. For simplicity, suppose
that c(t) is defined for all t ∈ R and that all integral curves of X can be infinitely extended.
Define a map Φ: R×R → Q by asking that Φ(s, t) = FX(s, c(t)) where FX is the flow of X.
Thus Φ(s, t) is the point on Q where c(t) gets mapped to after time s under the flow of X.

1 Lemma For each s ∈ R, the curve t 7→ Φ(s, t) is a solution of the Euler-Lagrange equations.

Proof We use the variational characterisation of the Euler-Lagrange equations of Theo-
rem 2.3.2. Since c is a solution of the Euler-Lagrange equations, for a < b we know that c is
an extremal of the functional

c̃ 7→
∫ b

a

L(c̃′(t)) dt

over curves c̃ ∈ C2(c(a), c(b), [a, b]). Let us denote by cs the curve t 7→ Φ(s, t). Since the
Lagrangian is invariant under X, the function L(c′s(t)) is independent of s. Therefore, cs is
an extremal of the functional

c̃ 7→
∫ b

a

L(c̃′(t)) dt

over curves c̃ ∈ C2(cs(a), cs(b), [a, b]), which means that cs is a solution of the Euler-Lagrange
equations. H

For the remainder of the proof, we work in a coordinate chart for Q with coordinates
(q1, . . . , qn). In this case, Φ becomes a map from R × R into Rn. By the lemma, for each
fixed s we have

d

dt

( ∂L
∂vi

(
Φ(s, t), Φ̇(s, t)

))
− ∂L

∂qi

(
Φ(s, t), Φ̇(s, t)

)
= 0, i = 1, . . . , n, (2.34)

where Φ̇ denotes the derivative of Φ with respect to t. Since L(Φ(s, t), Φ̇(s, t)) is independent
of s we have

dΦi(s, t)

ds

∂L

∂qi

(
Φ(s, t), Φ̇(s, t)

)
+

dΦ̇i(s, t)

ds

∂L

∂vi

(
Φ(s, t), Φ̇(s, t)

)
= 0. (2.35)

Substituting (2.34) into (2.35) gives

dΦi(s, t)

ds

d

dt

( ∂L
∂vi

(
Φ(s, t), Φ̇(s, t)

))
+

dΦ̇i(s, t)

ds

∂L

∂vi

(
Φ(s, t), Φ̇(s, t)

)
= 0.
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However, using the chain rule we write

dΦi(s, t)

ds

d

dt

( ∂L
∂vi

(
Φ(s, t), Φ̇(s, t)

))
+

dΦ̇i(s, t)

ds

∂L

∂vi

(
Φ(s, t), Φ̇(s, t)

)
=

d

dt

(dΦi(s, t)

ds

∂L

∂vi

(
Φ(s, t), Φ̇(s, t)

))
,

which gives the result after evaluation at s = 0 since d
ds

∣∣∣
s=0

Φ(s, t) = X(c(t)). �

Noether’s theorem is often quite easy to apply. Let us do so for our simple example.

2.10.4 Example (Example 2.10.2 cont’d) We resume with the situation when the Lagrangian
on Q = R2 given in Cartesian coordinates by

L(x, y, vx, vy) =
1

2
m(v2

x + v2
y)−mag(y − y0)

is invariant under the vector field X = ∂
∂x

. Theorem 2.10.3 tells us that the function on TQ
given by

〈FL(vq);X(q)〉 =
∂L

∂vx

= mvx

is conserved. We recognise this simply as the linear momentum of the particle in the x-
direction. Note that if we choose X = ∂

∂y
, then the Lagrangian is no longer left invariant

under X (check this!)
We could proceed to work through the above case in polar coordinates, but this is actually

not very pleasant. Let us instead simplify the Lagrangian and look at another type of
conservation law. We remove the potential energy from the Lagrangian so that in Cartesian
coordinates we have

L(x, y, vx, vy) =
1

2
m(v2

x + v2
y).

This Lagrangian will still be invariant under the vector field used above, but it is now
invariant under other vector fields. Let us take the vector field X = −y ∂

∂x
+ x ∂

∂y
and show

that L is invariant under X. Since L is independent of x and y, and since X1 is independent
of x and X2 is independent of y, one readily computes that the expression (2.33) is given by

∂L

∂vx

∂X1

∂y
vy +

∂L

∂vy

∂X2

∂x
vx = mvx(−1)vy +mvy(1)vx = 0.

This verifies that L is indeed invariant under X. Noether’s theorem tells us that the corre-
sponding conserved quantity is

∂L

∂vx

(−y) +
∂L

∂vy

(x) = m(xvy − yvx).

If you are in the know, you recognise this as the angular momentum of the particle about
the origin.

Let us now look at the situation in polar coordinates where

L(r, θ, vr, vθ) =
1

2
m(v2

r + r2v2
θ).
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As we saw in Example 2.2.3, the vector field X is given by ∂
∂θ

. Also note that θ is a cyclic
coordinate! Therefore, had we been working in polar coordinates in the first place, the task
of verifying that L is invariant under X would have followed immediately. In any case, the
conserved quantity in polar coordinates is, by Theorem 2.10.3,

∂L

∂vθ

(1) = mr2vθ.

Perhaps this is more readily identified as the angular momentum of the particle about the
origin. Indeed, the angular inertia of the particle is mr2, and its angular velocity is vθ, so
the angular momentum is angular inertia times angular velocity.

Note that only when we used polar coordinates did we see that the situation was one
where a cyclic coordinate was involved. Typically, one cannot expect to be in the cyclic
situation, although it does come up often. �

2.10.5 Remark If in some set of coordinates q1 is cyclic for the Lagrangian L, then we see
that the conserved quantity is ∂L

∂v1 . But this is trivial, actually. If L is independent of q1,
then the Euler-Lagrange equations directly give

d

dt

( ∂L
∂v1

)
= 0,

which is exactly the conservation law of Theorem 2.10.3. Thus one can view Noether’s
theorem as a generalisation of cyclic coordinates. �
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Exercises

E2.1 Suppose a mass is constrained to move in a three-dimensional Galilean sub-spacetime
F of a Galilean spacetime G = (E , V, g, τ).

(a) What is the configuration space for the system?

(b) How would one choose “Cartesian coordinates” for the system? Over which
portions of the configuration space are these coordinates valid? What is the
range of validity of these coordinates?

(c) How would one choose “polar coordinates” for the system? Over which portions
of the configuration space are these coordinates valid? What is the range of
validity of these coordinates?

(d) If the particle has mass m, what is its kinetic energy in Cartesian coordinates?

(e) What is the kinetic energy of the particle in polar coordinates?

E2.2 Consider a particle constrained to move on the surface of a cylinder.

(a) What is the configuration space for the system?

(b) Find a set of coordinates for the configuration space, making sure you state exactly
how they coordinatise the space, and their range of validity.

(c) Is it possible to find a single set of coordinates that are valid on the entire con-
figuration space?

(d) Is it possible to find vector fields that form a basis each point of the configuration
space?

(e) If the particle has mass m, what is the kinetic energy for the system in the
coordinates you specified?

E2.3 Let B be a rigid body whose mass distribution has its support contained in a line (see
Example 1.5.1–2).

(a) What is the configuration space for the system?

(b) Find a set of coordinates for the configuration space, making sure you state exactly
how they coordinatise the space, and their range of validity.

(c) Is it possible to find a single set of coordinates that are valid on the entire con-
figuration space?

(d) Is it possible to find two vector fields that are linearly independent at each point
of the configuration space?

(e) Show that a single number I describes the inertia tensor of the system.

(f) With the coordinates you have chosen, provide an expression for the kinetic energy
of the system.

E2.4 Consider a pendulum swinging atop a cart constrained to move in a line (Figure E2.1).

(a) What is the configuration space of the system?

(b) Define a coordinate system for the configuration space.

E2.5 Consider a pendulum attached to a radial arm by a universal joint. The base of the
radial arm is constrained to move in a line. See Figure E2.2.

(a) What is the configuration space of the system?

(b) Define a coordinate system for the configuration space.

E2.6 Consider the two-axis gyroscope of Figure E2.3.

(a) Determine the configuration space for the system.
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Figure E2.1 Pendulum on cart

Figure E2.2 Pendulum on arm on linear track

(b) Define a coordinate system for the configuration space.

E2.7 Consider a point mass on the end of a massless leg, rotating on a rigid body fixed at
a point in space (see Figure E2.4).

(a) Determine the configuration space for the system.

(b) Define a coordinate system for the configuration space.

E2.8 Consider the planar rigid body depicted in Figure E2.5.

(a) Determine the configuration space for the system.

(b) Define a coordinate system for the configuration space.

E2.9 Denote points on S1 ⊂ R2 by (cos θ, sin θ) where θ takes values in [0, 2π). Let f : S1 →
R be the function defined by f(cos θ, sin θ) = θ. Is f a continuous function on S1?

E2.10 Consider the map c : R → S1 defined by c(t) = (cos t, sin t). Is c continuous? differen-
tiable?

E2.11 Define a vector field, any vector field, on S1.

E2.12 Let Q = R with (x) the coordinate in the standard coordinate chart. Define a vector
field on Q by X = x2 ∂

∂x
.

(a) Determine the flow of X.
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Figure E2.3 A two-axis gyroscope

Figure E2.4 A “robotic leg”

Figure E2.5 A planar rigid body
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Now consider another coordinate chart (V, ψ) for Q defined V = Q and ψ(x) = ex.

(b) Express X in this new coordinate chart.

(c) Determine the flow of X in this new coordinate chart.

E2.13 Is it possible to define two vector fields X1 and X2 on S2 with the property that
{X1(q), X2(q)} are linearly independent for every q ∈ Q?

E2.14 Let Q = R2 with (x, y) the coordinates in the standard coordinate chart. Define a
vector field on Q by X = x ∂

∂x
+ y ∂

∂y
.

(a) Determine the flow of X.

(b) Determine the components of X in the polar coordinate chart.

(c) Determine the flow of X in the polar coordinate chart.

E2.15 Let Q be a configuration space with (U, φ) a coordinate chart. For vector fields X
and Y with components (X1, . . . , Xn) and Y 1, . . . , Y n) in the given chart, we propose
the following two expressions,

∂Y i

∂qj
Xj +

∂X i

∂qj
Y j, i = 1, . . . , n,

∂Y i

∂qj
Xj − ∂X i

∂qj
Y j, i = 1, . . . , n,

as being the components of a vector field on Q. Which, if either, are actually the
components of a vector field?

E2.16 When we allow arbitrary coordinate charts, the notion of a linear ordinary differential
equation looses its distinctness. Let Q = R2 and consider on Q with the standard
coordinate system (U1, φ1) defined in the usual manner by U1 = R2 and φ1(x, y) =
(x, y). In these coordinates define a vector field

X = x
∂

∂x
− y

∂

∂x
.

(a) Determine the flow of X.

Now consider the coordinate chart (U2, φ2) where U2 = R2 and φ2(x, y) = ().Finish this

(b) Write the vector field X in this coordinate chart.

(c) Obtain the flow in these coordinates. Do you think you could have solved the dif-
ferential equations were you given them without knowing how they came about?

E2.17 Let Q be a configuration space with g a Riemannian metric on Q. Show that for a
coordinate chart (U, φ) with coordinates (q1, . . . , qn) and for a fixed q ∈ U , the linear
map g[(q) : TqQ→ T ∗q Q has components gij, i, j = 1, . . . , n, with respect to the bases

{ ∂
∂q1

∣∣
q
, . . . , ∂

∂q1

∣∣
q
} and {dq1|q, . . . , dqn|q} for TqQ and T ∗q Q, respectively. Also show

that the components of g](q) : T ∗q Q → TqQ with respect to these same bases are gij,
i, j = 1, . . . , n.

E2.18 Let c ∈ C2([a, b], qa, qb) and let [t1, t2] ⊂ [a, b]. Let c̃ ∈ C2([t1, t2], c(t1), c(t2)) and
define a curve c1 : [a, b] → Q by

c1(t) =


c(t), t ∈ [a, t1]

c̃1(t), t ∈ [t1, t2]

c(t), ∈ [t2, b].



Exercises for Chapter 2 145

Show that for any ε > 0 there exists a curve c̃1 ∈ C2([a, b], qa, qb) so that
|JL(c̃1)− JL(c1)| ≤ ε.
Hint: You may find it helpful to use a function like

f(x) =

{
exp(−1/(1− x2)), −1 < x < 1

0, otherwise.

E2.19 For the system of Exercise E2.4 do the following.

(a) Determine the kinetic energy Riemannian metric for the system in your set of
coordinates.

(b) Determine the Christoffel symbols for the Riemannian metric.

(c) Determine the potential function.

(d) Using this data, write the Euler-Lagrange equations for the system.

E2.20 For the system of Exercise E2.5 do the following.

(a) Determine the kinetic energy Riemannian metric for the system in your set of
coordinates.

(b) Determine the Christoffel symbols for the Riemannian metric.

(c) Determine the potential function.

(d) Using this data, write the Euler-Lagrange equations for the system.

E2.21 For the system of Exercise E2.6 do the following.

(a) Determine the kinetic energy Riemannian metric for the system in your set of
coordinates.

(b) Determine the Christoffel symbols for the Riemannian metric.

(c) Determine the potential function.

(d) Using this data, write the Euler-Lagrange equations for the system.

E2.22 For the system of Exercise E2.7 do the following.

(a) Determine the kinetic energy Riemannian metric for the system in your set of
coordinates.

(b) Determine the Christoffel symbols for the Riemannian metric.

(c) Determine the potential function.

(d) Using this data, write the Euler-Lagrange equations for the system.

E2.23 For the system of Exercise E2.8 do the following.

(a) Determine the kinetic energy Riemannian metric for the system in your set of
coordinates.

(b) Determine the Christoffel symbols for the Riemannian metric.

(c) Determine the potential function.

(d) Using this data, write the Euler-Lagrange equations for the system.

E2.24 Exercise on how the Newtonian potential gives the linear approximation.

E2.25 Let Q = R and let F : R × TQ → T ∗Q be a force which is independent of time and
velocity. Show that F is a potential force. Show that this is not true when Q = R2.

E2.26 Let ∇ be an affine connection on a configuration space Q and let (U1, φ1) and (U2, φ2)
be overlapping coordinate charts with coordinates (q1, . . . , qn) and (q̃1, . . . , q̃n). If Γi

jk,
i, j, k = 1, . . . , n are the Christoffel symbols for ∇ in the coordinate chart (U1, φ1)
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and Γ̃i
jk, i, j, k = 1, . . . , n, are the Christoffel symbols for ∇ in the coordinate chart

(U2, φ2), show that

Γ̃i
jk =

∂q̃i

∂q`

∂qr

∂q̃j

∂qs

∂q̃k
Γ`

rs +
∂q̃i

∂q`

∂2q`

∂q̃j∂q̃k
.

Show that as a result of this, the geodesic equations

q̈i + Γi
jkq̇

j q̇k = 0, i = 1, . . . , n,

are independent of coordinates. What can you say about the coordinate independence
of each of the separate terms “q̈i” and “Γi

jkq̇
j q̇k” in the geodesic equation?

E2.27 Argue that the quantity defined in equation (2.14) generalises the usual freshman
notion of “work.”

E2.28 Let Q = R2 \ {(0, 0)} and define a force on Q by

F (t, x, y, vx, vy) = − y

x2 + y2
dx+

x

x2 + y2
dy.

(a) Is F a potential force? Why or why not?

(b) If Q̃ = {(x, y) ∈ Q | x > 0}, if F a potential force on Q̃? Why or why not?

E2.29 This is a continuation of Exercise E2.4. Suppose that a torque is applied to the base
of the pendulum. What is this force, written as a one-form on Q?

E2.30 This is a continuation of Exercise E2.5. Suppose that two forces are applied to the
system, one a torque at the base of the arm to rotate the arm, and the other a linear
force moving the base down the track. What are these forces, written as a one-forms
on Q?

E2.31 This is a continuation of Exercise E2.6. Suppose that a torque is applied which rotates
the gyro in its frame. What is this force, written as a one-form on Q?

E2.32 This is a continuation of Exercise E2.7. Suppose that we actuate the system with two
inputs as follows. We may apply a linear force to the mass, so extending its distance
from the pivot, and we have a motor atop the rigid body which we can use to actuate
the angle of the arm relative to the body. What are these forces, written as one-forms
on Q?

E2.33 This is a continuation of Exercise E2.8. Suppose a force F is applied to the body at
a point a distance h form the centre of mass. Write this force as a one-form on Q.

E2.34 Show using Frobenius’s theorem that if C is a linear constraint with the property that
rank(C) = 1, then C is holonomic.

E2.35 Let C be a constraint on Q and let the one-forms α1, . . . , αn−r be a basis for ann(`(C)).
Show that the vector fields g](α1), . . . , g](αn−r) form a basis for `(C)⊥.

E2.36 Consider a ball rolling on a flat horizontal table rotating with uniform angular velocity
Ω with respect to some inertial frame (see Figure E2.6).

(a) What is the configuration space for the system?

Suppose that the ball has radius r, mass m, and isotropic inertia tensor so that all
principal inertias are equal to I.

(b) Use the spatial angular velocity ω of the ball to express the constraints of the
system.
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Ω

(x, y)

Figure E2.6 Ball rolling on rotating table

(c) Using the definition of the spatial angular velocity, turn the constraints from the
previous part of the problem into a constraint of the type we discuss. Is the
constraint linear? Why or why not?

(d) Write the Lagrangian for the system in terms of the spatial angular velocities.

(e) Use the previous part of the problem, give an expression for the Lagrangian as a
function on the tangent bundle of the configuration space. Use Exercise E1.11(e)
to make for a nicer expression of the rotational kinetic energy.

You will observe that this Lagrangian is not altogether a pleasant one, and that writing
the Euler-Lagrange equations is not a pleasing prospect.

(f) However, use the fact that the Euler-Lagrange equations are equivalent to New-
ton’s equations to obtain the equations of motion in terms of the spatial angular
velocities and the position of contact of the ball with the table.

E2.37 Show that the body angular velocity of a rigid body is not a vector in the tangent
space to the configuration space Q = SO(3).

E2.38 Let Q be a configuration space and consider a function H : R × T ∗Q → R. In a
coordinate chart, define a map FH : R× T ∗Q→ R× TQ by

FH(t, q,p) =
(
q,
∂H

∂p

)
.

(a) Show that FH is well-defined, i.e., that the above definition is independent of
coordinates, and that FH(t, αq) ∈ TqQ.

Call the function H hyperregular if FH is a diffeomorphism. For a hyperregular
H, define a function LH : R× TQ→ R by

LH(t, vq) = 〈FH−1(vq); vq〉 −H(t,FH−1(vq)).

(b) State and prove the natural result corresponding to Theorem 2.9.2.

(c) Show that for a hyperregular Lagrangian, HL is a hyperregular Hamiltonian and
that FL−1 = FHL.

(d) Show that for a hyperregular Hamiltonian, LH is a hyperregular Lagrangian and
that FH−1 = FLH .
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Chapter 3

Lagrangian dynamics

Essentially, the previous two chapters dealt with writing the equations of motion, and
had very little to say about the behaviour of the solutions of the resulting equations. Gen-
erally, one can say very little about the nature of solutions to the Euler-Lagrange equations.
Therefore, in this section we look at special cases, and introduce qualitative methods. The
study of the dynamics of mechanical systems fills an enormous number of pages, but despite
this, very little is known about the behaviour of such systems. Thus we start our discussion
in this section with some rather general ideas. Only when we get to Section 3.4 are we able to
apply the general ideas to specific, and very simple, systems. It is only in these very special
cases that one is able approach anything like a complete understanding to the dynamics of
a class of systems. For these systems, the general ideas of the earlier sections of the chapter
become more tangible, so it is hoped that the reader will have some patience in waiting for
the application of these ideas.

3.1 The Euler-Lagrange equations and differential equations

We begin our investigation of Lagrangian dynamics with a discussion of how one obtains
differential equations from the Euler-Lagrange equations. For those who think that the
Euler-Lagrange equations are differential equations, we bring you the following example.

3.1.1 Example Consider the Lagrangian on Q = R defined by L(t, x, v) = v − x. The Euler-
Lagrange equation (there is only one) is then

d

dt

(∂L
∂v

)
− ∂L

∂x
= 1 = 0.

Clearly this is nonsense, and in this case there can be no solution for the Euler-Lagrange
equations. �

You will say that the preceding example is contrived, as surely it is. However, it nonethe-
less points out the need for there to be some consideration given to the matter of when the
Euler-Lagrange equations have solutions. The following result is perhaps not surprising
given Theorem 2.9.2.

3.1.2 Proposition If L is a hyperregular Lagrangian on Q, then for each q0 ∈ Q and for
each v0 ∈ Tq0Q there exists T > 0 and a solution c : [t0, t0 + T] → Q to the Euler-Lagrange
equations for L with the property that c′(t0) = v0. Furthermore, if we have T̃ > 0 and
a curve c̃ : [t0, t0 + T̃] → Q with the properties that c̃ is a solution to the Euler-Lagrange
equations and that c̃′(t0) = v0, then c(t) = c̃(t) for all t ∈ [t0, t0 + T] ∩ [t0, t0 + T̃].
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Proof We fix a coordinate chart (U, φ) around q. Since L is hyperregular, the map FL,
given in coordinates by,

(q1, . . . , qn, v1, . . . , vn) 7→
(
q1, . . . , qn,

∂L

∂v1
, . . . ,

∂L

∂vn

)
is invertible. By the inverse function theorem, this means that the Jacobian of the map must
also be invertible. The Jacobian will be a matrix of the form[

In 0n×n

A1 A2

]
,

where A1 is the matrix with components ∂2L
∂vi∂qj , i, j = 1, . . . , n, and where A2 is the matrix

with components ∂2L
∂vi∂vj , i, j = 1, . . . , n. In order that this Jacobian be invertible, it is

necessary and sufficient that A2 be invertible when evaluated at any (q,v) ∈ Rn × Rn.
Now let us look at the Euler-Lagrange equations. We expand them to arrive at

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
=

∂2L

∂vi∂vj
v̇j +

∂2L

∂vi∂qj
q̇j +

∂2L

∂vi∂t
− ∂L

∂qi
, i = 1, . . . , n.

Therefore, the Euler-Lagrange equations, when L is hyperregular, are equivalent to

q̈k =
(
A−1

2

)ki
(∂L
∂qi

− ∂2L

∂vi∂qj
q̇j − ∂2L

∂vi∂t

)
, k = 1, . . . , n.

Here
(
A−1

2

)ki
, k, i = 1, . . . , n, are the components of the inverse of A2. Thus we have shown

that the Euler-Lagrange equations are equivalent to a second-order differential equation
when the Lagrangian is hyperregular, and thus the result follows by the standard existence
and uniqueness theory for ordinary differential equations. �

The above result has the following corollary which gets us out of the woods as concerns
worrying about existence and uniqueness of solutions for simple mechanical systems.

3.1.3 Corollary If (Q, g,V) is a simple mechanical system with Lagrangian L, then for each
q0 ∈ Q and for each v0 ∈ Tq0Q there exists T > 0 and a solution c : [t0, t0 + T] → Q to the
Euler-Lagrange equations for L with the property that c′(t0) = v0. Furthermore, if we have
T̃ > 0 and a curve c̃ : [t0, t0 + T̃] → Q with the properties that c̃ is a solution to the Euler-
Lagrange equations and that c̃′(t0) = v0, then c(t) = c̃(t) for all t ∈ [t0, t0 + T]∩ [t0, t0 + T̃].

Proof This follows directly from Proposition 2.9.1. �

Also note that the differential equations derived in Proposition 2.4.5 for simple mechanical
systems also serve as proof of the previous result. In any case, the bottom line is that the
equations describing the behaviour of simple mechanical systems, at least in the absence
of forces and constraints, satisfy the usual existence and uniqueness properties of ordinary
differential equations.

Let us explore this just a little bit further in order that we ensure ourselves that we have
left some stones unturned. Indeed, the immediate question raised by Proposition 3.1.2 is
whether hyperregularity of L is equivalent to there being a unique solution to the Euler-
Lagrange equations through each point vq ∈ TQ. The answer is that while hyperregularity
is, as we have seen, sufficient for existence and uniqueness, it is not necessary. Some contrived
examples illustrate this.
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3.1.4 Examples 1. On Q = R consider the Lagrangian L(t, x, v) = ev. This Lagrangian is
not hyperregular since the Legendre transformation

(x, v) 7→ (x, ev)

is not surjective; points of the form (x, a) are not in the image of the Legendre transfor-
mation when a < 0. However, the Euler-Lagrange equation is determined to be eẋẍ = 0,
which is clearly equivalent to ẍ = 0. Thus the Euler-Lagrange equations possess unique
solutions for any initial condition, despite the Lagrangian not being hyperregular.

2. On Q = R consider the Lagrangian L(t, x, v) = xv. One determines that the Euler-
Lagrange equations are then simply 0 = 0. In this case, any function of t will be a
solution! Thus, the Euler-Lagrange equations possess solutions, but they are not unique.

3. � Example where

injective

The above examples suggest that if we are unwilling to place restrictions on our La-
grangians, we can expect the Euler-Lagrange equations to be generally weird. However,
Corollary 3.1.3 assures us that if we are dealing with typical Lagrangians from physics, then
things are as they are in the standard theory of differential equations.

3.2 Linearisations of Lagrangian systems

The first thing one does with pretty much any general ordinary differential equation is
seek fixed points, and linearise about them. This is a good idea for Lagrangian systems
as well, and as we shall see, linearisation of Lagrangian systems yields a structure which is
quite special.

3.2.1 Linear Lagrangian systems When we linearise a general differential equation,
the linearisation of the system is, by construction, a linear differential equation. Similarly,
when we linearise Euler-Lagrange equations, we end up with “linear Euler-Lagrange equa-
tions.” Therefore, it is helpful to know what these are.

In order to define the equations governing the behaviour of a linear Lagrangian system,
it is helpful to have at hand some notation. Let V be a R-vector space (let us agree not
to confuse V in this discussion with the potential function V ). A map A : V × V → R is
bilinear if

A(u1 + u2, v1 + v2) = A(u1, v1) + A(u1, v2) + A(u2, v1) + A(u2, v2)

for all u1, u2, v1, v2 ∈ V and if
A(au, bv) = abA(u, v)

for all a, b ∈ R and u, v ∈ V . A bilinear map A is symmetric (resp. skew-symmetric)
if A(u, v) = A(v, u) (resp. A(u, v) = −A(v, u)) for all u, v ∈ V . We all know of an example
of a symmetric bilinear map, and that is an inner product which further has the property
that A(u, u) > 0 for u 6= 0. Using our notation for inner products as motivation, for a
symmetric bilinear map A : V × V → R define a map A[ : V → V ∗ by asking that A(u)
satisfy

〈
A[(u); v

〉
= A(u, v). If {e1, . . . , en} is a basis for V with dual basis {e1, . . . , en}

for V ∗, then the matrix of A in the given basis is defined to be the n × n matrix with
components

Aij = A(ei, ej), i, j = 1, . . . , n.
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Note, of course, that Aij = Aji, i, j = 1, . . . , n. One then readily verifies (see, for example,
Exercise E2.17) that

A(viei) = Aijv
iej,

thus giving a component expression for A[. If A is skew-symmetric, then one may define
A[ : V → V ∗ in exactly the same way, except that the matrix with components Aij, i, j =
1, . . . , n, will now be skew-symmetric.

Now we may make our definition concerning linear Lagrangian systems.

3.2.1 Definition Let V be an n-dimensional R-vector space. A linear Lagrangian system
on V is a triple (M,C,K) where M,C,K : V × V → R are bilinear maps with M and K
being symmetric and C being skew-symmetric. The Lagrangian associated with a linear
Lagrangian system (M,C,K) is the function L : V × V → R defined by

L(u, v) =
1

2
M(v, v) +

1

2
C(u, v)− 1

2
K(u, u).

A curve t 7→ c(t) ∈ V is a solution of the linear Lagrangian system (M,C,K) if c satisfies
the differential equation

M [(c̈(t)) + C[(ċ(t)) +K[(c(t)) = 0. �

Note that our notion of a solution for a linear Lagrangian system seems disjointed from
the usual notion of solutions for Euler-Lagrange equations. Let us state a result to make
the connection. In stating the result, it is helpful to note that for a R-vector space V we
have TV ' V × V . We shall simply state this as a fact, and not prove it, although this
is easily done in an appropriate setting. Using this fact, a point vq in TV is written as
(q, v) ∈ V × V .

3.2.2 Proposition Let V be a R-vector space and let (M,C,K) be a linear Lagrangian system
on V with Lagrangian L defined on V × V ' TQ. A curve t 7→ c(t) ∈ V is a solution to
the linear Lagrangian system (M,C,K) if and only if it is a solution to the Euler-Lagrange
equations for L.

Proof We have

L(q, v) =
1

2
M(v, v) +

1

2
C(q, v)− 1

2
K(q, q).

Let {e1, . . . , en} be a basis for V with Mij, Cij, and Kij, i, j = 1, . . . , n, the matrices for M ,
C, and K in this basis. We compute

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= Mjiq̈

j +
1

2
Cjiq̇

j − 1

2
Cij q̇

j +Kjiq
j, i = 1, . . . , n.

The result now follows since Cji = −Cij, i, j = 1, . . . , n. �

In the case when M is invertible then its inverse is denoted M ] : V ∗ → V . Also, in this
case we may write the equations which are satisfied by a linear Lagrangian system as the
following set of 2n first-order differential equations:(

q̇
v̇

)
=

[
0 idV

−M ] ◦K[ −M ] ◦C[

](
q
v

)
,
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where idV is the identity map on V . Note that M ] ◦K[ and M ] ◦C[ are simply linear
transformations of V . Recall that the behaviour of the linear system is determined in large
part by the eigenvalues of the linear transformation A(M,C,K) : V × V → V × V which is
represented by

A(M,C,K) =

[
0 idV

−M ] ◦K[ −M ] ◦C[

]
.

The following result characterises these eigenvalues.

3.2.3 Proposition Let (M,C,K) be a linear Lagrangian system on a vector space V, and
suppose that M[ is invertible. If λ ∈ C is an eigenvalue of A(M,C,K) then

(i) −λ is an eigenvalue of A(M,C,K);

(ii) λ̄ is an eigenvalue of A(M,C,K);

(iii) −λ̄ is an eigenvalue of A(M,C,K);

Furthermore, the multiplicity of the eigenvalues λ, −λ, λ̄, and −λ̄ are equal.

Proof On the vector space V 2 = V × V define a bilinear map JM,C : V 2 × V 2 → R by

JM,C((u1, u2), (v1, v2)) = M(u1, v2)−M(u2, v1) + C(v1, u1).

Clearly J is skew-symmetric. If M [ is invertible then JM,C is nondegenerate in the sense
that if JM,C((u1, u2), (v1, v2)) = 0 for all (v1, v2) ∈ V 2, then (u1, u2) = (0, 0). Indeed, if
JM,C((u1, u2), (v1, v2)) = 0 for all (v1, v2) ∈ V 2 then

M(u1, v2)−M(u2, v1) = 0

for all (v1, v2) ∈ V 2. Taking v1 = 0, this means that M(u1, v2) =
〈
M [(u1); v2

〉
= 0 for all

v2 ∈ V . This implies that M [(u1) = 0 and since M [ is invertible, this means that u1 = 0.
Taking v2 = 0 we see that we must have M(u2, v1)− C(v1, u1) = 0 for every v1 ∈ V . Since
u1 has already been demonstrated to be zero, it follows that M(u2, v1) =

〈
M [(u2); v1

〉
= 0

for every v1 ∈ V , from which we deduce that u2 = 0.
Next we compute

JM,C(A(M,C,K)(u1, u2), (v1, v2))

= JM,C((u2,−M ] ◦K[(u1)−M ] ◦C[(u2)), (v1, v2)) + C(v1, u2)

= M(u2, v2) +M(M ] ◦K[(u1) +M ] ◦C[(u2), v1) + C(v1, u2)

= M(u2, v2) +K(u1, v1) + C(u2, v1) + C(v1, u2)

= M(v2, u2) +K(v1, u1) + C(v2, u1)− C(v2, u1)

= M(M ] ◦K[(v1) +M ] ◦C[(v2), u1) +M(v2, u2)− C(v2, u1)

= −M(u1,−M ] ◦K[(v1)−M ] ◦C[(v2)) +M(v2, u2)− C(v2, u1)

= − JM,C((u1, u2), (v2,−M ] ◦K[(v1)−M ] ◦C[(v2))

= − JM,C((u1, u2), A(M,C,K)(v1, v2)).

Let us now use this fact to prove the result.
Suppose that λ ∈ C is an eigenvalue as stated. Then there exists a vector v = (v1, v2) ∈

V 2 so that A(M,C,K)(v) = λv. This means that for every ṽ ∈ V 2 we have

JM,C(ṽ, A(M,C,K)(v)− λv) = 0

=⇒ − JM,C(A(M,C,K)(ṽ), v)− λJM,C(ṽ, v) = 0

=⇒ JM,C((A(M,C,K) + λ idV 2)ṽ, v) = 0.

(3.1)
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This proves that is v is an eigenvector for A(M,C,K) with eigenvalue λ then v is orthogonal
to image(A(M,C,K) +λ idV 2) with orthogonality taken with respect to JM,C . This renders the
following lemma helpful.

1 Lemma Let U be a finite-dimensional R-vector space with J: U×U → R a nondegenerate
skew-symmetric bilinear map. For a linear map B: U → U define B̂ : U → U by

J(B̂(u1), u2) = J(u1,B(u2)).

Then the following facts hold:

(i) a vector u ∈ U satisfies J(B(ũ), u) = 0 for every ũ ∈ U if and only if u ∈ ker(B̂)—that
is, the J-orthogonal complement to image(B) is equal to ker(B̂);

(ii) dim(ker(B)) = dim(ker(B̂)).

Proof (i) We have{
u ∈ U

∣∣ J(B(ũ), u) = 0 for every ũ ∈ U
}

=
{
u ∈ U

∣∣ J(ũ, B̂(u)) = 0 for every ũ ∈ U
}

=
{
u ∈ U

∣∣ B̂(u) = 0
}

= ker(B̂).

(ii) Choose a basis {u1, . . . , um} for V . Let Jij, i, j = 1, . . . ,m, be the matrix for J in this

basis, let Bi
j, i, j = 1, . . . ,m, be the matrix for B in this basis, and let B̂i

j, i, j = 1, . . . ,m,

be the matrix for B̂ in this basis. We then have, by the definition of B̂,

JkiB̂
k
j = JjkB

j
i , i, j = 1, . . . ,m.

Letting J ij, i, j = 1, . . . ,m, be the components of the inverse of the matrix with components
Jij, i, j = 1, . . . ,m, we then have

B̂i
j = JkiB`

kJj`, i = 1, . . . , n.

Writing this in matrix form, it reads B̂ = J−tBJ t. Now since J is nondegenerate, J is
invertible, which implies that B and B̂ have the same rank. H

Using the lemma with U = V 2, J = JM,C , and B = A(M,C,K) + λ idV 2 , we see that if v is an
eigenvector for A(M,C,K) with eigenvalue λ then v ∈ ker((A(M,C,K) + λ idV 2)∧). Also by the
lemma, this implies that there exists a nonzero vector v′ ∈ ker(A(M,C,K) + λ idV 2), and thus
v′ is an eigenvector with eigenvalue −λ. That λ̄ and −λ̄ are eigenvalues follows from the
fact that V is a real vector space.

For the final assertion of the proposition, note that the reasoning of (3.1), along with
part (i) of the above lemma, demonstrates that

dim(ker(A(M,C,K) − λ idV 2)) = dim(ker((A(M,C,K) − λ idV 2)∧)),

and so the assertion about the multiplicities then follows from part (ii) of the above lemma. �

3.2.4 Remark The above proof, although straightforward in nature, relies on the introduction
of the mysterious bilinear map JM,C . This may seem like something of a rabbit pulled from
a hat, and indeed it is without some extra context. On the R-vector space V × V ∗ consider
the skew-symmetric bilinear map J : (V × V ∗)2 → R defined by

J((v1, α
1), (v2, α

2)) = α2(v1)− α1(v2).
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Note that this map is defined without the assistance of additional structure. Now consider a
linear Lagrangian system (M,C,K) on V . The Legendre transformation for the correspond-
ing Lagrangian L is the map

FL(q, v) = (q,M [(v) + 1
2
C[(q)).

The map JM,C defined in the proof of Proposition 3.2.3 is readily determined to be exactly

JM,C((u1, u2), (v1, v2)) = J(FL(u1, u2),FL(v1, v2)).

Thus JM,C is “the same” as J . The object J is well studied, and is called a symplectic
structure on the vector space V × V ∗. The mapping A(M,C,K) is then an example of an
infinitesimally symplectic mapping . These are well studied, and here we only give a
glimpse of their properties. Williamson [1937] gives a classification of the Jordan normal
forms for such linear mappings. �

The position of the eigenvalues for various situations is shown in Figure 3.1. Let us

λ

λ̄

−λ λ

−λ̄ λ

−λ λ̄

Figure 3.1 Imaginary eigenvalues (left), real eigenvalues (middle),
and general complex eigenvalues (right) for a linear Lagrangian
system

illustrate the conclusions of Proposition 3.2.3 in the simplest possible case.

3.2.5 Example We take V = R and define a linear mechanical system on V by M = m,
C = 0, K = k, for m, k ∈ R. Note that skew-symmetric linear mappings on a 1-dimensional
vector space are necessarily zero. We then have, provided that m 6= 0,

A(M,C,K) =

[
0 1
− k

m
0

]
.

We have three cases.

1. If k
m

is positive, then we write k
m

= ω2
0. The eigenvalues of A(M,C,K) are readily computed

to be λ1 = iω0 and λ2 = −iω0. Thus, in this case, both eigenvalues are purely imaginary,
and they obviously have the property of being complex conjugates of one another.

2. If k
m

is negative, that we write k
m

= −ω2
0 and we determine that the eigenvalues of

A(M,C,K) are λ1 = ω0 and λ2 = −ω0. Thus we see that when we have a real eigenvalue,
we also have its negative, as predicted by Proposition 3.2.3.

3. The final case is when k
m

= 0 when the eigenvalues are both zero. These also obviously
satisfy the conditions of Proposition 3.2.3. �
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Let us finally address the question of what are the implications of Proposition 3.2.3 for
the dynamics of linear Lagrangian systems, at least when M [ is invertible.

The reader will at this point wish to recall some of the basic ideas assembled in Section C.2
concerning fixed points of general ordinary differential equations. In particular, we will at
this point make reference to the notions of stability and asymptotic stability of a fixed point.

Recall that the algebraic multiplicity of an eigenvalue is the multiplicity of the eigen-
value as a root of the characteristic polynomial, and that the geometric multiplicity of an
eigenvalue is the dimension of the eigenspace for that eigenvalue. The algebraic multiplicity
always bounds the geometric multiplicity from above. The following result gives the stability
properties of a linear Lagrangian system. The proof relies on some elementary facts from
the theory of linear differential equations with constant coefficients. A rapid review of this
material may be found in Section C.1. The notions of stability we use are to be found in
Section C.2.

3.2.6 Proposition Let (M,C,K) be a linear Lagrangian system on a vector space V and sup-
pose that M[ is invertible. Consider the differential equation(

q̇
v̇

)
=

[
0 idV

−M] ◦K[ −M] ◦C[

](
q
v

)
. (3.2 )

A point (q0, v0) ∈ V2 is a fixed point of (3.2) if and only if v0 = 0 and q0 ∈ ker(K]).
Let (q0, v0) be a fixed point of (3.2). The following statements hold:

(i) (q0, v0) is not asymptotically stable;

(ii) (q0, v0) is stable if and only if all eigenvalues of A(M,C,K) lie on the imaginary axis and
have equal algebraic and geometric multiplicities.

Proof That (q0, v0) ∈ V 2 is a fixed point of (3.2) if and only if v0 = 0 and q0 ∈ ker(K])
follows directly from the form of A(M,C,K).

(i) This follows since a linear system is asymptotically stable if and only if all eigenvalues
have negative real part. For a linear Lagrangian system, if an eigenvalue has negative real
part, then Proposition 3.2.3 guarantees that there will also be an eigenvalue with positive
real part.

(ii) From part (i) we see that for a fixed point to be stable, all eigenvalues of A(M,C,K)

should lie on the imaginary axis. Recall from the Jordan canonical form theorem that if the
geometric multiplicity is less than the algebraic multiplicity, then for some initial conditions
the solution will have the form of a linear combination of terms like

tk cosωt, tk sinωt,

for some ω ≥ 0 and k ≥ 1. This precludes stability as such solutions are not bounded as
t→∞. �

Our previous simple example is enough to illustrate the consequences of the previous
result.

3.2.7 Example (Example 3.2.5 cont’d) We again take V = R and take the linear Lagrangian
system with M = m, C = 0, and K = k. We had

A(M,C,K) =

[
0 1
− k

m
0

]
.
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Recall that the solution to (3.2) is(
q(t)
v(t)

)
= eA(M,C,K)t

(
q(0)
v(0)

)
.

Again, we consider three cases.

1. We first take k
m
> 0 and write k

m
= ω2

0. In this case, the only fixed point is (0, 0) since
K] is invertible. A straightforward computation gives

eA(M,C,K)t =

[
cos(ω0t)

sin(ω0t)
ω0

−ω0 sin(ω0t) cos(ω0t)

]
.

Clearly, by choosing the initial condition small enough, one can ensure that solutions
remain inside a ball of any specified radius. Thus (0, 0) is a stable fixed point. However,
it is not asymptotically stable.

2. Next take k
m
< 0 and write k

m
= −ω2

0. Again the only fixed point is (0, 0). One also
computes

eA(M,C,K)t =

[
cosh(ω0t)

sinh(ω0t)
ω0

−ω0 sinh(ω0t) cosh(ω0t)

]
.

Note that now there will be initial conditions which result in unbounded solutions. There-
fore, the system is not stable.

3. Finally we take k = 0. In this case any point (q0, 0) will be a fixed point since K = 0.
One computes

eA(M,C,K)t =

[
1 t
0 1

]
.

Therefore any initial condition with v(0) 6= 0 will result in unbounded solutions. This
precludes any of the infinite number of fixed points from being stable. Note here that
the eigenvalues lie on the imaginary axis—they are both zero—but since the geometric
multiplicity is only one, Proposition 3.2.6 implies that fixed points will be unstable. �

3.2.8 Remark We have studiously avoided talking about the case when M ] is not invertible.
In such cases, the differential equations

Mq̈ + Cq̇ +Kq = 0

are “implicit” in that one cannot solve explicitly for the derivative and stick it on the left-
hand side as one likes to do with differential equations. In this situation, the concerns of
Section 3.1 come into play. That is to say, matters of existence and uniqueness become of
concern. Rather than getting involved in such matters, we will concentrate on describing the
dynamics in those cases when the Euler-Lagrange equations give well-behaved differential
equations. �

3.2.2 Equilibria for Lagrangian systems In order to linearise, we need something to
linearise about, and such things are titled “equilibria.” To be specific, let L be a Lagrangian
on a configuration space Q. A point q0 ∈ Q is an equilibrium point for L if the trivial
curve t 7→ q0 is a solution of the Euler-Lagrange equations for L. The following result gives
a useful characterisation of equilibrium points for time-independent Lagrangians. For the
statement of this result, we use the notation 0q to denote the zero vector in the tangent
space TqQ.
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3.2.9 Proposition A point q0 is an equilibrium point for a time-independent Lagrangian L on
a configuration space Q if and only if dEL(0q0) = 0.

Proof We work in a set of coordinates (q1, . . . , qn) and denote by q0 the image of q0 in this
set of coordinates. Recall that in coordinates we have

EL =
∂L

∂vi
vi − L

so that

dEL =
∂2L

∂qj∂vi
vidqj +

∂2L

∂vj∂vi
vidvj +

∂L

∂vi
dvi − ∂L

∂qi
dqi − ∂L

∂vi
dvi

=
∂2L

∂qj∂vi
vidqj +

∂2L

∂vj∂vi
vidvj − ∂L

∂qi
dqi.

Thus dEL(0q0) = 0 if and only if

∂L

∂qi
(q0,0) = 0, i = 1, . . . , n. (3.3)

However, this Euler-Lagrange equations are

∂2L

∂vj∂vi
q̈j +

∂2L

∂qj∂vi
q̇j − ∂L

∂qi
= 0, i = 1, . . . , n.

Thus q0 is an equilibrium point if and only if (3.3) holds, and thus follows the proposition. �

This fact relating the energy to equilibrium points will be important when we talk about
dynamics near equilibrium points later in this section.

We shall now in show that when the Lagrangian is time-independent, one may define a
linear Lagrangian system on the vector space Tq0Q. Suppose that L is a time-independent
Lagrangian on a configuration space Q and let q0 ∈ Q be an equilibrium point for L. Let
us choose a coordinate chart (U, φ) around q0 with coordinates (q1, . . . , qn), and suppose
that φ(q0) = q0. Let us try to obtain an approximate expression for solutions of the Euler-
Lagrange equations which start near q0. Let t 7→ q(t) be a coordinate representation of such
a solution. We therefore have the Euler-Lagrange equations:

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= 0, i = 1, . . . , n.

Let us Taylor expand everything about (q,v) = (q0,0). We have

d

dt

( ∂2L

∂qj∂vi
(qj(t)− qj

0) +
∂2L

∂vj∂vi
(q̇j(t)− q̇j

0) + · · ·
)
−

∂2L

∂qj∂qj
(qj(t)− qj

0)−
∂2L

∂vj∂qi
(q̇j(t)− q̇j

0) + · · · = 0

=⇒ ∂2L

∂vj∂vi
ξ̈j(t) +

( ∂2L

∂qj∂vi
− ∂2L

∂vj∂qi

)
ξ̇j(t)− ∂2L

∂qj∂qi
ξj(t) + · · · = 0,

where ξi(t) = qi(t)−qi
0, i = 1, . . . , n. Here all partial derivatives have been evaluated at each

step at (q0,0), and we have used the fact that t 7→ q0 is a solution of the Euler-Lagrange
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equations. From this expression we may define a linear Lagrangian system (ML,CL,KL)
on Rn by asking that the matrix representations of these bilinear maps satisfy

(ML)ij =
∂2L

∂vi∂vj
(q0,0), i, j = 1, . . . , n

(CL)ij =
∂2L

∂qi∂vj
(q0,0)− ∂2L

∂vi∂qj
(q0,0), i, j = 1, . . . , n

(KL)ij = − ∂2L

∂qi∂qj
(q0,0), i, j = 1, . . . , n.

(3.4)

This is, of course, not very satisfying because it only works in a fixed coordinate chart. The
following result indicates how that can be made to be coordinate independent.

3.2.10 Proposition Let L be a time-independent Lagrangian on Q and let q0 be an equilibrium
point for L. There exists bilinear maps ML(q0),CL(q0),KL(q0) : Tq0Q × Tq0Q → R with
ML(q0) and KL(q0) symmetric, and with CL(q0) skew-symmetric, and having the property
that with respect to any set of coordinates (q1, . . . , qn) they are represented as in (3.4).

Proof Let (q1, . . . , qn) and (q̃1, . . . , q̃n) be two sets of coordinates around q0. Suppose that
q0 is mapped to q0 and q̃0 in the two sets of coordinates. Using the chain rule and evaluating
at (q0,0) we compute

∂2L

∂ṽi∂ṽj
(q̃0,0) =

( ∂2L

∂vk∂v`

∂qk

∂q̃i

∂q`

∂q̃j

)
(q0,0)

∂2L

∂q̃i∂ṽj
(q̃0,0) =

( ∂2L

∂q`∂vk

∂q`

∂q̃i

∂qk

∂q̃j

)
(q0,0) +

( ∂L
∂vk

∂2qk

∂q̃i∂q̃j

)
(q0,0)

∂2L

∂q̃i∂q̃j
(q̃0,0) =

( ∂2L

∂qk∂q`

∂qk

∂q̃i

∂q`

∂q̃j

)
(q0,0) +

( ∂L
∂qk

∂2qk

∂q̃i∂q̃j

)
(q0,0).

We therefore have

∂2L

∂q̃i∂ṽj
(q̃0,0)− ∂2L

∂ṽi∂q̃j
(q̃0,0) =

[( ∂2L

∂q`∂vk
− ∂2L

∂v`∂qk

)∂q`

∂q̃i

∂qk

∂q̃j

]
(q0,0), i, j = 1, . . . , n.

Furthermore, one see directly from the Euler-Lagrange equations (cf. equation (3.3)) that is
q0 is an equilibrium point then

∂L

∂qk
(q0,0) = 0, k = 1, . . . , n.

This implies that

∂2L

∂q̃i∂q̃j
(q̃0,0) =

( ∂2L

∂qk∂q`

∂qk

∂q̃i

∂q`

∂q̃j

)
(q0,0), i = 1, . . . , n.

Now suppose that v1, v2 ∈ Tq0Q are two tangent vectors which we write as

ua = ui
a

∂

∂qi
= ũi

a

∂

∂q̃i
, a, b = 1, 2.
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Using Lemma 2.2.2 we directly compute

∂2L

∂vi∂vj
ui

1u
j
2 =

∂2L

∂ṽi∂ṽj
ũi

1ũ
j
2( ∂2L

∂qi∂vj
− ∂2L

∂vi∂qj

)
ui

1u
j
2 =

( ∂2L

∂q̃i∂ṽj
− ∂2L

∂ṽi∂q̃j

)
ũi

1ũ
j
2

∂2L

∂qi∂qj
ui

1u
j
2 =

∂2L

∂q̃i∂q̃j
ũi

1ũ
j
2.

This shows that the representation of ML(q0), CL(q0), and KL(q0) in coordinates by the
expressions (3.4) is indeed independent of coordinates. �

With the above result at hand, we define the linearisation of a Lagrangian L at an equi-
librium point q0 to be the linear Lagrangian system (ML(q0), CL(q0), KL(q0)) on the vector
space Tq0Q. For brevity, if M [

L(q0) is invertible, let us denote AL(q0) = A(ML(q0),CL(q0),KL(q0)).
The question now becomes, “What is the relationship between the dynamics of the linear
Lagrangian system (ML(q0), CL(q0), KL(q0)) and the dynamics of the Euler-Lagrange equa-
tions for L near q0?” In Section C.2 we provide some results which address this question
in the case of a general ordinary differential equation (the Hartman-Grobman Theorem and
the Stable and Unstable Manifold Theorem). Let us summarise these results in the context
of Lagrangian systems. For precise statements, we refer to Section C.2.

3.2.11 Summary Let L be a hyperregular, time-independent Lagrangian on a configuration
space Q and let q0 ∈ Q be an equilibrium point for L. Let Es(q0) be the subspace of TqQ⊕
TqQ consisting of the generalised eigenvectors of AL(q0) for eigenvalues with negative real
part, and let Eu(q0) be the subspace of TqQ⊕TqQ consisting of the generalised eigenvectors
of AL(q0) for eigenvalues with positive real part.

(i) If AL(q0) has no eigenvalues on the imaginary axis, then the dynamics of the Euler-
Lagrange equations near q0 “look like” the dynamics of the linear Lagrangian system
(ML(q0),CL(q0),KL(q0)).

(ii) There exists subsets Ws(q0) and Wu(q0) of TQ which are invariant under the dynamics
of the Euler-Lagrange equations, and solutions starting on Ws(q0) tend to q0 as t →∞
and solutions on Wu(q0) tend to q0 as t → −∞. Furthermore, the tangent space to
Ws(q0) at 0q0 is Es(q0) and the tangent space of Wu(q0) at 0q0 is Eu(q0).

We shall encounter various applications of these ideas as we proceed. In particular, in
Section 3.3 we see how these results give some, although not much, insight into the stability
of equilibrium points. We shall also see in Section 3.4 that the ideas of Summary 3.2.11
allow a great deal of insight into the dynamics of very simple systems.

3.3 Stability of Lagrangian equilibria

First the reader should recall the definitions of stability and asymptotic stability in Sec-
tion C.2. Of course, these notions are applicable to Lagrangian systems only when the
Euler-Lagrange equations can be put into ordinary differential equation form, e.g., when the
Lagrangian is hyperregular. In this case, if q0 ∈ Q is an equilibrium point, then 0q0 is a fixed
point for the corresponding differential equations on TQ. In this case, we thus say that q0
is a stable (resp. asymptotically stable , resp. spectrally stable , resp. linearly stable ,
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resp. linearly asymptotically stable) equilibrium point if 0q0 is a stable (resp. asymptoti-
cally stable, resp. spectrally stable, resp. linearly stable, resp. linearly asymptotically stable)
fixed point of the corresponding differential equations.1

The following result is the only easy general result one can get for Lagrangian systems,
and even it relies on some nontrivial ideas. For example, we refer to Appendix B for the
notion of the Hessian of a critical point of a function.

3.3.1 Theorem Let L be an hyperregular, time-independent Lagrangian on a configuration
space Q. If q0 is an equilibrium point for L then

(i) q0 is not asymptotically stable,

(ii) if AL(q0) has an eigenvalue with nonzero real part, then q0 is unstable, and

(iii) q0 is stable if 0q0 is either a strict local maximum or a strict local minimum of EL,

(iv) q0 is stable if Hess(EL)(0q0) is either positive or negative-definite.

Idea of Proof (i) The proof here is not quite within our reach. It relies on the fact that the
flow of the Euler-Lagrange equations preserves a natural volume on TQ. The idea is that if
an equilibrium point is to be stable, then a ball around 0q0 would have to be shrunk under
the flow, and this is not possible if the flow is volume preserving.

(ii) If AL(q0) has an eigenvalue with nonzero real part, then by Proposition 3.2.3 it must
have an eigenvalue with positive real part. By the Unstable Manifold Theorem, there exists
a subset W u(q0) on TQ on which all solutions of the Euler-Lagrange equations tend to 0q0

as t → −∞. But this implies that the solutions must move away from 0q0 as t increases,
and so will leave any sufficiently small neighbourhood of 0q0 in finite time. This means that
q0 is unstable.

(iii) We fix a coordinate chart (U, φ) for Q with coordinates (q1, . . . , qn). If we suppose
that φ(q0) = 0, then we may as well suppose that Q is an open subset U in Rn containing a
neighbourhood of 0. In this case we have TQ = U × Rn. Define

Br = {(q,v) ∈ TQ | ‖q‖+ ‖v‖ ≤ r}
∂Br = {(q,v) ∈ TQ | ‖q‖+ ‖v‖ ≤ r} .

Now let ε > 0 and r ∈ (0, ε] and let

α = min {EL(q,v) | (q,v) ∈ ∂Br} .

For β ∈ (0, α) let
Ωβ = {(q,v) ∈ TQ | EL(q,v) ≤ β} .

We claim that Ωβ lies in the interior of Br. Indeed, suppose that (q,v) ∈ ∩∂Br. Then, by Check this

definition of α, EL(q,v) ≥ α, and since β < α, we cannot have (q,v) ∈ Ωβ. Since Br is
bounded, since Ωβ ⊂ Br, and since Ωβ is closed, we have EL−1(β) ⊂ Ωβ as a compact subset
of U . Thus we have shown that in a neighbourhood of a strict local minimum of EL, the
level sets of EL are compact. Since EL is constant along solutions of the Euler-Lagrange
equations (see Corollary 2.5.8), this implies that solutions which start near 0q0 remain near
0q0 , implying stability. The same argument, with a change of inequalities from “less than”

1To make sense of these definitions, at least as they are related to the definitions of Section C.2, one must
choose a particular coordinate chart on Q. However, it is easy to show that if a stability property holds in
one coordinate chart, it will hold in any coordinate chart.
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to “greater than” shows that the same argument works if 0q0 is a strict local maximum of
EL.

(iv) This follows from part (iii) and the fact that definiteness of Hess(EL)(0q0) implies
that 0q0 is a strict local minimum (positive-definiteness) or a strict local maximum (negative-
definiteness). �

Part (iii) is essentially due to Aleksandr Mikhailovich Liapunov (1857–1918). Part (iv) of
the theorem is due in part to Dirichlet [1846] (Johann Peter Gustav Lejeune Dirichlet (1805–
1859)).

Since asymptotic stability is not possible, we are left with deciding whether an equilibrium
point is stable. Although part (iv) gives a sufficient condition, it is not necessary. The
following example provides a system for which Hess(EL)(0q0) is not definite, but for which
the system is nonetheless stable.

3.3.2 Example We take Q = R2 and define a Lagrangian by

L(x, y, vx, vy) =
1

2
(v2

x − v2
y)−

1

2
(x2 − y2).

Note that this is a Lagrangian for a linear Lagrangian system, so we can explicitly determine
the stability of the system from the eigenvalues, and if need be, the eigenvectors using
Proposition 3.2.6. However, for the moment let us ignore the fact that the system is linear,
and proceed as if it were not.

The energy is readily determined to be

EL(x, y, vx, vy) =
1

2
(v2

x − v2
y) +

1

2
(x2 − y2).

We compute
dEL = vxdvx − vydvy + xdx− ydy.

Therefore there is only one equilibrium point, and it is q0 = (x0, y0) = (0, 0). The linearisa-
tion of L about q0 is given by

ML(q0) =

[
1 0
0 −1

]
, CL(q0) = 0, KL(q0) =

[
1 0
0 −1

]
.

We thus compute

AL(q0) =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .
The eigenvalues of AL(q0) are readily computed to be {i, i,−i,−i}. Thus the eigenvalues are
on the imaginary axis, and so it is possible that the equilibrium point be stable. However,
we cannot conclude this from part (iv) of Theorem 3.3.1 since we compute that the matrix
for Hess(EL)(0q0) is given by 

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .
Thus Hess(EL)(0q0) is neither positive nor negative-definite.
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However, one can verify that the equilibrium point is stable. Here we take advantage
of the fact that the system is linear. We have computed its eigenvalues, and from these we
cannot yet conclude stability since they have algebraic multiplicity 2. By Proposition 3.2.6
we need to show that the geometric multiplicity is also 2, but this is something which we can
readily check. Thus this example is one which violates the sufficient condition of part (iv) of
Theorem 3.3.1, but which is still stable. �

From the previous example, one may be compelled to conjecture that a sufficient condi-
tion for stability would be that the eigenvalues for the linearised system should lie on the
imaginary axis. After some thought, and a reference to Proposition 3.2.6, one may wish
to alter this conjecture to say that the eigenvalues should also have equal geometric and
algebraic multiplicities. That is, one would be led to the following.

3.3.3 False Conjecture An equilibrium point q0 for a hyperregular Lagrangian is stable if and
only if its linearised system (ML(q0),CL(q0),KL(q0)) is stable.

This conjecture is false in both directions. Let us first give a nontrivial example which
indicates that the “if” assertion in the conjecture is false. The following example, apparently
due to Cherry [1928], indicates that an equilibrium point with a stable linearisation can be
unstable.

3.3.4 Example We take Q ⊂ R2 (we will say exactly what Q is shortly) and use the La-
grangian

L(x, y, vx, vy) =
1

4(4 + 2
√

2x+ y2)2

(
−32x4 − 8

√
2x3(8 + 3y2)−

4x2(16 + 12y2 + 3y4 − 2v2
x) + 2(4 + y2)

(
4y2 + y4 + 2v2

x − 2
√

2yvxvy − 4v2
y

)
+

x
(
−
√

2y6 + 2
√

2y2(8 + v2
x)− 16yvxvy + 16

√
2(v2

x − v2
y)
))
.

Clearly this is no ordinary Lagrangian! One can readily ascertain that q0 = (0, 0) is an
equilibrium point, and that the above Lagrangian is well-defined on a neighbourhood of q0.
Thus we take Q = Br(0) for some sufficiently small r. A computation with a computer gives

ML(q0) =

[
1
2

0
0 −1

]
, CL(q0) = 02, KL(q0) =

[
2 0
0 −1

]
.

The eigenvalues of AL(q0) are readily computed to be {i,−i, 2i,−2i}. Therefore the lin-
earised system is stable by Proposition 3.2.6.

However, Cabral and Meyer [1999] provide a general result which demonstrates that the
equilibrium point q0 is unstable. This result is a long way beyond our grasp. However, in
Figure 3.2 we show some plots of solutions projected from TQ to Q. Note that the linear
solution starts and remains close to the equilibrium point. Indeed, we can compute this
solution in closed form to verify this. However, the nonlinear solution, starting at the same
initial condition, zips around the equilibrium point, and then shoots away. If you believe
numerics, this means something, but one really needs to resort to Cabral and Meyer for the
“truth.” �

As a final example to illustrate the complex relationship between the dynamics of a
linearised system and the full dynamics of the system, we give an example where the lineari-
sation is unstable, but the full system is stable. Thus the “only if” assertion in the above
false conjecture is also wrong.
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Figure 3.2 Solutions near an unstable equilibrium point with sta-
ble linearisation. On the left is the nonlinear solution for the
initial condition x(0) = 1

10 , y(0) = 1
10 , ẋ(0) = 0, and ẏ(0) = 0.

On the right is the linear solution for the same initial condition.

3.3.5 Example We consider Q = R and on Q take the Lagrangian L(q, v) = 1
2
v2 − 1

4
q4. This

system has energy EL = 1
2
v2 + 1

4
q4. We compute

dEL = vdv + q3dq

Therefore, by Proposition 3.2.9, the system has one equilibrium point at q0 = 0. We compute

ML(q0) =
∂2L

∂v2
(q, 0) = 1, CL(q0) =

∂2L

∂q∂v
(q, 0)− ∂2L

∂v∂q
(q, 0) = 0,

KL(q0) =
∂2L

∂q2
(q, 0) = 0.

Thus we have

AL(q0) =

[
0 1
0 0

]
.

This matrix has two zero eigenvalues, so does not satisfy the hypotheses of the Hartman-
Grobman Theorem. Let us compare the linear and the nonlinear dynamics. It is possible,
of course, to explicitly solve the linear differential equation(

q̇
v̇

)
=

[
0 1
0 0

](
q
v

)
using the matrix exponential:(

q(t)
v(t)

)
= eAL(q0)t

(
q(0)
v(0)

)
=

[
1 t
0 1

](
q(0)
v(0)

)
=

(
v(0)t+ q(0)

v(0)

)
.

To allow a comparison with the solutions of the nonlinear system, let us represent this
solution by plotting the curves t 7→ (q(t), v(t)) for various initial conditions. The result is
shown in Figure 3.3.
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Figure 3.3 For the Lagrangian L = 1
2v2 − 1

4q4, on the left is the
linearised dynamics for the equilibrium q0 = 0 and on the right
is the actual dynamics

Now let us look at the actual dynamics. In this case the differential equations are

q̈ + q3 = 0.

While it actually is possible to obtain a closed form expression for the solution of this
differential equation, to do so is rather pointless, at least as concerns trying to understand
what the system is doing. In Section 3.4 we shall present a way of looking at systems of this
type. For now, let us merely say that the flow is represented in Figure 3.3. The key thing
to observer here is that the linearised system and the actual system behave nothing like one
another. In particular, the origin is an unstable fixed point for the linearised system, but is
stable, although not asymptotically stable, for the nonlinear system. �

These examples illustrate the difficulty one has in even doing something apparently simple
like determining the stability of equilibrium points for Euler-Lagrange equations. Matters
such as these are currently active areas of research. Indeed, the reason why Example 3.3.4
is so contrived is that for systems with model physical systems, the matter of stability of
equilibria is unknown.

3.3.1 Equilibria for simple mechanical systems Let us see how the above devel-
opment specialises to the case when the Lagrangian is derived from a simple mechanical
system (Q, g, V ). In this case, the general discussion above concerning the relation of energy
to equilibrium points and their stability boils down to looking only at the potential function.
As we shall see, things are not as depressingly complicated for simple mechanical systems
as they are for general systems.

First of all, let us look at how to find equilibrium points for a simple mechanical system.

3.3.6 Proposition Let (Q, g,V) be a simple mechanical system with Lagrangian L. A point
q0 ∈ Q is an equilibrium point for L if and only if dV(q0) = 0.
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Proof This is easily verified in coordinates where

EL(q,v) =
1

2
gijv

ivj + V (q).

We then have

dEL(q,v) = gijv
jdvi +

1

2

∂gij

∂qk
vivjdqk +

∂V

∂qi
dqi,

where all partial derivatives are evaluated at (q,v). Thus we obtain

dEL(q,0) =
∂V

∂qi
(q)dqi,

and from this the proposition easily follows. �

Thus when one defines the linear Lagrangian system for a simple mechanical system
at an equilibrium point q0, one knows that q0 is a critical point of the potential function.
Therefore, at q0 the Hessian of V , Hess(V )(q0), is well-defined. With this in mind, we state
the following result, telling us the nature of the linearisation for simple mechanical systems.

3.3.7 Proposition Let (Q, g,V) be a simple mechanical system with Lagrangian L, and let
q0 ∈ Q be an equilibrium point for L. The linearised Lagrangian system at q0 is then

ML(q0) = g(q0), CL(q0) = 0, KL(q0) = Hess(V)(q0).

Proof This is straightforward in coordinates. We have

L =
1

2
gk`v

kv` − V,

and so we compute

∂2L

∂vi∂vj
= gij

∂2L

∂qi∂vj
=
∂gj`

∂qi
v`

∂2L

∂vi∂qj
=
∂gi`

∂qj
v`

∂2L

∂qi∂qj
=

1

2

∂2gk`

∂qi∂qj
vkv` − ∂2V

∂qi∂qj
.

The result follows after taking v = 0. �

Now let us see how this rather specific form of the linearised system leads to corresponding
simplifications in the computation of eigenvalues. You will wish to refer to Appendix A for
the notion of the index and the rank of a symmetric bilinear mapping.

3.3.8 Proposition Let (Q, g,V) be a simple mechanical system with associated Lagrangian L
and let q0 ∈ Q be an equilibrium point for L. Let (ML(q0) = g(q0),CL(q0) = 0V,KL(q0) =
Hess(V)(q0)) be the linearisation of L at q0. A complex number λ is an eigenvalue of AL(q0)
if and only if λ =

√
−` where ` is an eigenvalue of M]

L
◦K[

L. Furthermore, the eigenvalues
of M]

L
◦K[

L are real, and
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(i) the number of zero eigenvalues is n− rank(KL(q0)),

(ii) the number of negative eigenvalues is ind(KL(q0)), and

(iii) the number of positive eigenvalues is rank(KL(q0))− ind(KL(q0)),

where n = dim(Q).

Proof For brevity, denote V = Tq0Q, M = ML(q0), and K = KL(q0). Then λ ∈ C is an
eigenvalue of AL(q0) if and only if

det

[
−λ idV idV

−M ] ◦K[ −λ idV

]
= det(λ2 idV +M ] ◦K[) = 0.

This shows that λ is an eigenvalue for AL(q0) if and only if −λ2 is an eigenvalue for M ] ◦K[.
Next we claim that the eigenvalues of M ] ◦K[ are real. This will follow if we can show that
M ] ◦K[ is symmetric with respect to an inner product on V . However, we compute

M(M ] ◦K[(v1), v2) = 〈K[(v1); v2〉
= K(v1, v2) = K(v2, v1) = 〈K[(v2); v1〉 = M(M ] ◦K[(v2), v1).

This shows that M ] ◦K[ is symmetric with respect to the inner product M . This means
that −λ2 must be real.

Finally, it remains to prove that the stated relationship between the eigenvalues ofM ] ◦K[

and the index of K. First of all, note that if we choose a basis {e1, . . . , en} for V which is
M -orthonormal, then the matrix of M ] ◦K[ in this basis is δikKkj, i, j = 1, . . . , n. Let us
denote this matrix by K. Therefore, the eigenvalues of M ] ◦K[ are the eigenvalues of K.
Let `1, . . . , `n be the eigenvalues of K ordered so that `1, . . . , `k are positive, `k+1, . . . , `k+m

are negative, and `k+m+1, . . . , `n are zero. For i ∈ {1, . . . , k + m} let vi be the eigenvector
corresponding to `i, and having the property that vt

iKvi = 1. For i ∈ {k+m+1, . . . , n} let
vi be any collection of orthogonal eigenvectors for the eigenvalue 0. In the basis {v1, . . . ,vn}
the matrix for K is then Ik 0 0

0 −Im 0
0 0 0

 ,
since the basis {v1, . . . ,vn} is orthogonal with respect to the standard inner product. There-
fore the index of K is k and the rank of K is n− k −m, and thus our claim follows. �

Note that all eigenvalues for the linearisation of a simple mechanical system lie on either
the real or imaginary axis. There can be no eigenvalue configurations as illustrated on the
right in Figure 3.1.

The following result turns the above statement about eigenvalues into a statement about
stability of the linearised system.

3.3.9 Proposition Let (Q, g,V) be a simple mechanical system with Lagrangian L, and let q0

be an equilibrium point for L. Let (ML(q0) = g(q0),CL(q0) = 0V,KL(q0) = Hess(V)(q0)) be
the linearisation of L about q0. The following statements hold:

(i) q0 is spectrally stable if and only if ind(KL(q0)) = 0;

(ii) q0 is linearly stable if and only if rank(KL(q0))− ind(KL(q0)) = n;

(iii) q0 is stable if q0 is a strict local minimum of V;

(iv) q0 is stable if rank(KL(q0)))− ind(KL(q0)) = n;
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(v) q0 is unstable if ind(KL(q0)) > 0.

Proof Throughout the proof, for brevity denote M = ML(q0), KL(q0) = K, and V = Tq0Q.
(i) This follows since there are no eigenvalues of AL(q0) in C+ if and only if M ] ◦K has

no negative eigenvalues. From part (iii) of Proposition 3.3.8 the result then follows.
(ii) For linear stability we must first of all have all eigenvalues of AL(q0) on the imaginary

axis. This means all eigenvalues of M ] ◦K[ must be nonnegative. We shall show that they
must further be strictly positive, and that this is in fact sufficient for stability. So first
suppose that all eigenvalues of M ] ◦K[ are strictly positive. The only problem which can
arise is when we have eigenvalues whose algebraic and geometric multiplicities are not equal.
To resolve this, let {e1, . . . , en} be a basis in which the matrix of M ] ◦K[ is diagonal, with
the diagonal entries therefore being the eigenvalues. Let ` ∈ R be an eigenvalue of M ] ◦K[

and suppose that the basis {e1, . . . , en} is arranged so that the matrix for M ] ◦K[ has the
form [

`Ik 0
0 D

]
where D is a diagonal matrix with diagonal entries di, i = 1, . . . , n−k, none of whose entries
are `. Corresponding to the eigenvalue ` of M ] ◦K[ are the eigenvalues ±

√
−` for AL(q0).

Let us look at the eigenvalue λ =
√
−`. In the basis we have for V , the matrix for

AL(q0)− λidV 2 has the form
−λIk 0 Ik 0

0 −λIn−k 0 In−k

−`Ik 0 −λIk 0
0 −D 0 −λIn−k

 .
First suppose that ` 6= 0. By performing the row operations Rn+i +

√
−`Ri, i = 1, . . . , k, we

obtain the matrix 
−λIk 0 Ik 0

0 −λIn−k 0 In−k

0 0 0 0
0 −D 0 −λIn−k

 .
Now, performing the row operations Rn+k+i − di√

−`
Rk+i, i = 1, . . . , n − k, we obtain the

matrix 
−λIk 0 Ik 0

0 −λIn−k 0 In−k

0 0 0 0
0 0 0 −λIn−k − 1√

−`
D

 .
Thus we see that dim(ker(AL(q0)− λ idV 2)) = k.

Now we take the case where λ = −
√
`. Here we have the matrix for AL(q0)−λ idV 2 again

as 
−λIk 0 Ik 0

0 −λIn−k 0 In−k

−`Ik 0 −λIk 0
0 −D 0 −λIn−k

 .
By performing the row operations Rn+i+

√
−`Ri, i = 1, . . . , k, followed by the row operations
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Rn+k+i + di√
−`
Rk+i, i = 1, . . . , n− k, we get the matrix

−λIk 0 Ik 0
0 −λIn−k 0 In−k

0 0 0 0
0 0 0 −λIn−k + 1√

−`
D

 ,
which again has rank 2n−k. Thus we have shown that nonzero eigenvalues for M ] ◦K[ give
rise to eigenvalues for AL(q0) whose geometric and algebraic multiplicities are equal. By
Proposition 3.2.6, this proves that q0 is linearly stable if all eigenvalues of V are positive.

Finally, suppose that ` is a zero eigenvalue for M ] ◦K[ of algebraic multiplicity k. By
Proposition 3.2.3, this gives rise to a zero eigenvalue of AL(q0) of multiplicity 2k. We choose
a basis {e1, . . . , en} for V as above so that the matrix for AL(q0) has the form

0 0 Ik 0
0 0 0 In−k

0 0 0 0
0 D 0 0

 .
The rank of this matrix k, which shows that zero eigenvalues of the linearisation of a simple
mechanical system never have equal algebraic and geometric multiplicities. Therefore, by
Proposition 3.2.6, if M ] ◦K[ has a zero eigenvalue, q0 is linearly unstable. This part of the
proposition now follows from Proposition 3.3.8(i).

(iii) From Theorem 3.3.1(iii), we need only show that if q0 is a strict local minimum of
V , then 0q0 is a strict local minimum of EL. Suppose that 0q0 is not a strict local minimum
of EL. This means that there exists a vq nearby 0q0 with the property that

EL(vq) =
1

2
g(vq, vq) + V (q) ≤ V (q0).

Since g is positive-definite, this would imply that there exists a q nearby q0 with the property
that V (q0)− V (q) ≥ 0. This means that q0 is not a strict local minimum for V .

(iv) If rank(K) − ind(K) = n then Hess(V )(q0) is positive-definite. However, since
EL(vq) = 1

2
g(vq, vq) + V (q), we compute in coordinates

Hess(EL)(0q0) = gijdv
i ⊗ dvj + (Hess(V )(q0))ijdq

i ⊗ dqj.

Therefore Hess(EL)(0q0) is definite if and only if Hess(V )(q0) is positive-definite. From this
we determine, from Theorem 3.3.1(iv) that q0 is stable if Hess(V )(q0) is positive-definite,
from which follows our result.

(v) Recall from Proposition 3.3.8(iii) that AL(q0) has a nonzero real eigenvalue if and
only if ind(KL(q0)) > 0. The result now follows from Theorem 3.3.1(ii). �

Thus our False Conjecture 3.3.3 is partially true for simple mechanical systems, as is
borne out by the following important result.

3.3.10 Corollary An equilibrium point for a simple mechanical system is stable if it is linearly
stable.

The converse assertion is still false, and Example 3.3.5 is a counterexample where an
equilibrium point is stable, but not linearly stable. However, it is true that if one disallows
equilibrium points where Hess(V )(q0) is degenerate, then linear stability is necessary and
sufficient for stability of simple mechanical systems. Let us record this as another corollary.
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3.3.11 Corollary Let S be the class of simple mechanical systems, all of whose equilibrium
points q0 have the property that Hess(V)(q0) is nondegenerate. Then an equilibrium point
q0 for a simple mechanical system (Q, g,V) ∈ S is stable if and only if it is linearly stable.

In nonlinear analysis, functions all of whose critical points are nondegenerate are called
Morse functions.

Note that our above discussion of stability of equilibrium points for simple mechanical
systems has a simple interpretation as follows.

3.3.12 Corollary Let (Q, g,V) be a simple mechanical system with q0 an equilibrium point for
the associated Lagrangian. The following statements hold:

(i) q0 is stable if q0 is a strict local minimum of the potential function V;

(ii) if Hess(V)(q0) is nondegenerate, then q0 is unstable if and only if q0 is a local maxi-
mum or a saddle point for the potential function V.

Proof The first statement is simply a restatement of Proposition 3.3.9(iii). The second
assertion follows from the classical results (see Appendix B) stating that if Hess(V )(q0) is
nondegenerate, then q0 is a local maximum of V if and only if ind(Hess(V )(q0)) = 0, i.e., if
and only if V is positive-definite. �

The picture one might have in mind here is shown in Figure 3.4. If one wished, one

Figure 3.4 Stability and local minimima/maxima of the potential

could turn this into some meta-principle where a physical system will seek to minimise its
energy. But such a principle might not be that helpful in really understanding what is going
on. . . The question of what happens when q0 is not a strict local minimum of the potential
function is explored by Laloy and Peiffer [1982]. I am not aware of any result stating that
if q0 is degenerate then one may still conclude that q0 being a strict local maximum implies
instability of q0.

3.4 The dynamics of one degree of freedom systems

The previous section was very general in nature, and the examples we gave were for
the most part “cooked” to show how some of our results are the best one can generally
expect, without a lot of work. We have deliberately set aside any detailed discussion of
specific physical systems, because there are really very few of these we can handle. The
vast majority of systems we have any sort of complete understanding of are examples with
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a one-dimensional configuration space, and in this section we will see that the behaviour of
these are, in principal, simple.

3.4.1 General one degree of freedom systems It is a fact that essentially2 the only
one-dimensional configuration spaces are Q = R and Q = S1. If Q = S1 one may suppose
without loss of generality that Q = R by simply assuming that everything is 2π-periodic in
the configuration coordinate. Thus throughout this section we suppose that Q = R. We
shall also denote by q the standard coordinate on Q = R and use (q, v) as the induced
standard coordinates for TQ.

The key simplification comes from the fact that for time-independent Lagrangians, energy
is conserved (Corollary 2.5.8). Therefore, for a given initial condition (q(0), q̇(0)) ∈ TQ, each
point (q(t), q̇(t)) along the solution to the Euler-Lagrange equations will satisfy (q(t), v(t)) ∈
EL−1(e) where e = EL(q(0), q̇(0)) and where

EL−1(e) = {(q, v) ∈ TQ | EL(q, v) = e}

(note that EL−1(e) is not the inverse of e under EL!) An important question is then, “What
do the level sets EL−1(e) of the energy look like?” For one degree of freedom systems, it is the
answer to this question which leads to our being able to give these systems a rather thorough
treatment. The following result contains some key features of the level sets EL−1(e). The
statement of this result requires that we know what a real analytic function is, and the proof
requires some techniques which would take us slightly far afield. However, the reader will,
I hope, be satisfied by our saying that the vast majority of Lagrangians which are smooth
and associated with physical systems are actually real analytic.

3.4.1 Theorem Let L: TQ → R be a real analytic Lagrangian with Q = R. For e ∈
image(EL), the following statements hold:

(i) if dEL(q, v) 6= 0 for each (q, v) ∈ EL−1(e) then EL−1(e) is a smooth, nonintersecting
one-dimensional surface in TQ;

(ii) if dEL(q, v) = 0 for some (q, v) ∈ EL−1(e) then EL−1(e) is a union of smooth one-
dimensional surfaces and points in TQ;

(iii) if EL−1(e) contains an open subset of TQ then EL is the constant function given by
EL(q, v) = e.

The first assertion in the theorem is true even when L is not real analytic, but the other
two statements require real analyticity.

3.4.2 Examples Let us look at some simple examples of Lagrangians to verify that we under-
stand what the above statements mean.

1. First we take L(q, v) = 1
2
v2− 1

2
q2. We then have EL(q, v) = 1

2
v2+ 1

2
q2. Clearly EL−1(0) =

{(0, 0)}. If e < 0 then EL−1(e) = ∅. If e > 0 then EL−1(e) is the circle of radius
√

2e.
The level sets are depicted in Figure 3.5.

Let us see how this lines up against Theorem 3.4.1. We compute

dEL(q, v) = vdv + qdq.

Therefore dEL(q, v) = 0 if and only if (q, v) = (0, 0). Therefore, by Theorem 3.4.1,
EL−1 should be a smooth one-dimensional surface for e > 0, and indeed it is. For e = 0,

2By “essentially,” we mean “up to diffeomorphism.”



172 3 Lagrangian dynamics 03/04/2003

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

PSfrag replacements

q(t)

q

q(t)
v(t)
v(t)

v

x(t)
y(t)

V (q)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

PSfrag replacements

q(t)

q

q(t)
v(t)
v(t)

v

x(t)
y(t)

V (q)

Figure 3.5 Level sets for EL for L(q, v) = 1
2v2 − 1

2q2 (left) and
L = 1

2v2 + 1
2q2 (right).

Theorem 3.4.1 says that EL−1(0) should be the union of one-dimensional surfaces and
points. Since EL−1(0) = {(0, 0)}, it is a single point in this case.

2. Next we take L(q, v) = 1
2
v2 + 1

2
q2. We have EL = 1

2
v2− 1

2
q2. Note that image(EL) = R,

so EL−1(e) is nonempty for each e ∈ R. The level sets are things you plotted as a child,
and there you noticed that they were hyperbolae, except when e = 0. If e > 0 then the
hyperbolae are “up and down” mirror images of one another, and when e < 0 they are
“left and right” mirror images of one another. When e = 0 the points (q, v) in EL−1(0)
satisfy q2 = v2. Therefore the level set EL−1(0) consists of the two lines with slopes ±1
passing through the origin. This is shown in Figure 3.5.

Let us make sure we understand that this is the same as what is predicted by Theo-
rem 3.4.1. For e 6= 0 the level set is comprised of two nice one-dimensional surfaces. For
e = 0 the level set if comprised of the four lines

`1 = {(a, a) | a > 0}
`2 = {(a, a) | a < 0}
`3 = {(a,−a) | a > 0}
`4 = {(a,−a) | a < 0} ,

along with the point {(0, 0)}. For various reasons which are perhaps not transparent,
we do not wish to allow our one-dimensional surfaces to intersect, and for this reason we
make four nonintersecting lines out of the two intersecting lines, and then throw in the
point of intersection as something extra. �

In the next section we shall see many not quite so trivial illustrations of Theorem 3.4.1.
Let us now turn to the investigation of equilibrium points for single degree of freedom

systems. Whereas in the general setting of Section 3.2 we were primarily concerned with
stability, which is a qualitative notion, for single degree of freedom systems, one can be a bit
more ambitious and try to get a somewhat more quantitative understanding of the system
behaviour near an equilibrium point q0. Thus we let q0 be an equilibrium point for a time-
independent Lagrangian on Q = R. By Proposition 3.2.9 it follows that dEL(q0, 0) = 0.
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This puts us in the situation of part (ii) of Theorem 3.4.1. Thus the level set through (q0, 0)
may not be a smooth one-dimensional surface. We also note that the linearisation at q0 is
simply defined

m = ML(q0) =
∂2L

∂v∂v
(q0, 0) ∈ R, k = KL(q0) =

∂2L

∂q∂q
(q0, 0) ∈ R,

since CL(q0) = 0. Thus the linearisation is defined by two numbers m and k. The following
result gives some key properties of an equilibrium configuration in terms of the numbers m
and k.

3.4.3 Proposition Let L be a time-independent Lagrangian on Q = R and let q0 be an equi-
librium point for L. If m = ML(q0) and k = KL(q0), then the following statements hold:

(i) if L is hyperregular then m = ML(q0) 6= 0;

(ii) Hess(EL)(q0, 0) is nondegenerate if and only if both m and k are nonzero.

Proof (i) This follows from the fact that if L is hyperregular, then the derivative of FL
must be invertible. Indeed, the Jacobian for the mapping FL has the matrix representation[

1 0
∂2L
∂q∂v

∂2L
∂v2

]
.

Thus we see that hyperregularity implies that ∂2L
∂v2 6= 0, which in particular implies that

m = ML(q0) 6= 0.
(ii) As

EL(q, v) =
∂L

∂v
v − L,

we directly compute (skipping the calculation) that

Hess(EL)(q0, 0) =
∂2L

∂v2
(q0, 0)dv ⊗ dv − ∂2L

∂q2
(q0, 0)dq ⊗ dq.

Therefore the Hessian is nondegenerate if and only if both m and k are nonzero, as stated. �

Now let us look at the nature of the dynamics near an equilibrium point q0 where
EL(q0, 0) is nondegenerate. First let us look at the exact dynamics of the linearised system.
We have obtained the closed form solution to the linearised system already (cf. Exam-
ple 3.2.7). Here we are after a more descriptive characterisation of the solutions.

3.4.4 Proposition Let L be a time-independent Lagrangian on Q = R and suppose that q0

is an equilibrium point where Hess(EL)(q0, 0) is nondegenerate. Denote m = ML(q0) and
k = KL(q0). We have the following two cases.

(i) k
m
> 0: Nonequilibrium solutions t 7→ q(t) have the property that (q(t), q̇(t)) lies on

the ellipses defined by v2 + k
m

q2 = 2e
m

.

(ii) k
m
< 0: Nonequilibrium solutions come in three forms:

(a) solutions t 7→ q(t) with the property that (q(t), q̇(t)) lies on the line of slope√
−k/m through the origin and which satisfy limt→−∞ q(t) = 0;

(b) solutions t 7→ q(t) with the property that (q(t), q̇(t)) lies on the line of slope
−
√
−k/m through the origin and which satisfy limt→∞ q(t) = 0;
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(c) solutions t 7→ q(t) for which (q(t), q̇(t)) lies on one of the hyperbolae defined by
v2 + k

m
q2 = 2e

m
.

Proof In each case, the result simply follows by conservation of energy; solutions must lie
on the level sets EL−1(e), e ∈ R. Since the energy for the linearised Lagrangian is given by
m
2
v2 + k

2
q2, when k

m
> 0 these level sets are ellipses, and when k

m
< 0, these level sets are

hyberbolae. In part (ii), the statements about the limiting values of q(t) follow if we note
that if q̇(t) > 0 then q(t) must be increasing at time t, and if q̇(t) < 0 then q(t) must be
decreasing at time t. �

The situation of Proposition 3.4.4 is illustrated in Figure 3.6. Note, of course, that the
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Figure 3.6 Solutions to one degree of freedom linear Lagrangian
systems. On the left, k

m > 0 and on the right, k
m < 0. In each

case
∣∣ k
m

∣∣ = 1
2 .

solutions follow curves which look a lot like the level sets we plotted in Example 3.4.2. All
we have done is added arrows to indicate that these are curves which are parameterised by
time.

Now one can ask whether the dynamics of the nonlinear system “look like” the dynamics
of the linearised system. We still restrict our discussion to the case where Hess(EL)(q0, 0)
in nondegenerate. We consider the two cases.

1. When k
m
< 0, the answer is given to us by the Hartman-Grobman Theorem since in

this case the eigenvalues of AL(q0) all have nonzero real part; indeed they are real and
nonzero. By the Hartman-Grobman Theorem we may assert that the solutions nearby
the equilibrium point behave like those of the linearised system. Furthermore, we can
appeal to the Stable and Unstable Manifold Theorem to assert the existence of stable
and unstable manifolds which emit from the point (q0, 0) ∈ TQ and which are tangent
to the lines of slope ±

√
−k/m.

2. When k
m
> 0 then we can appeal to neither the Hartman-Grobman Theorem nor the

Stable and Unstable Manifold Theorem to help us in understanding the nature of the so-
lutions. However, we can appeal to Morse’s Lemma which tells us, since Hess(EL)(q0, 0)
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is nondegenerate, that the solutions must lie on one-dimensional subsets of TQ which
are like circles. So, even in the case when AL(q0) has imaginary eigenvalues, in the sin-
gle degree of freedom case we can understand the nature of solutions near nondegenerate
equilibrium points by looking at the linearisation. But this only works for single degree of
freedom systems! This is evident from Example 3.3.4 which has two degrees of freedom.

Let us see how to apply this in an example. We choose an example which is not a simple
mechanical system, since we shall specifically deal with such systems in the next section.

3.4.5 Example We take L = 1
2
v2 + 1

4
v4 − 1

2
q2 + 1

3
q3. We then compute

EL =
∂L

∂v
v − L =

1

2
v2 +

3

4
v4 +

1

2
q2 − 1

3
q3

=⇒ EL = (q − q2)dq + (v + 3v3)dv.

Therefore, equilibrium points occur when q(1 − q) = 0. Thus there are two equilibrium
points q1 = 0 and q2 = 1. We compute

m1 =
∂L

∂v2
(q1, 0) = 1, k1 =

∂L

∂q2
(q1, 0) = 1

m2 =
∂L

∂v2
(q2, 0) = 1, k2 =

∂L

∂q2
(q2, 0) = −1.

Referring to Proposition 3.4.4, we see that for the linearised system at q1 the solutions lie
on ellipses (in fact circles in this case), and for the linearised system at q2 the solutions lie
on hyperbolae. This then tells us the local nature of the solutions near these equilibria since
Hess(EL) is nondegenerate at each of the equilibrium points.

While this describes solutions near the equilibria, it does not provide a complete de-
scription of the solutions. To provide such a description, one would need to understand the
structure of all level sets of EL. For general Lagrangians, even single degree of freedom
Lagrangians, this can be problematic. Thus we simply give the numerically plotted set of
solution curves in Figure 3.7. Note that in this problem the stable and unstable manifolds of
the equilibrium point q2, while they look locally like their linear counterparts, behave quite
differently when we move away from the equilibrium point. Indeed, the stable and unstable
manifolds of this equilibrium point intersect! This is something which cannot happen in a
linear system. �

3.4.6 Remarks 1. It is interesting to observe that our approach to describing the solutions in
this section has been done without explicit reference to the differential equations! This
perhaps seems very strange indeed. However, it serves to illustrate the important point
that when dealing with Lagrangian mechanics, and indeed with many other complicated
systems, often it is beneficial to concentrate on the other aspects of the problem rather
than concentrating on the differential equations themselves. This is because it is not of
much value to obtain actual solutions to these differential equations since such solutions,
when obtainable, involve complicated functions. It is often more useful to have at hand
the qualitative information our described methods yield. However, some diehards may
prefer elliptic functions, or approximations of elliptic functions, in lieu of a nice picture
like Figure 3.7.

2. A picture such as Figure 3.7 is called a phase portrait for the system. It is possible to
draw these effectively only for single degree of freedom systems. However, for systems



176 3 Lagrangian dynamics 03/04/2003

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 

PSfrag replacements

q(t)

q
q(t)
v(t)

v
(t

)

v
x(t)
y(t)

V (q)

Figure 3.7 Solution curves for the Lagrangian L(q, v) = 1
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with multiple degrees of freedom, it is still an effective way to think of solutions, rather
than thinking of them as functions of time. �

3.4.2 Simple mechanical systems with one degree of freedom Now let us specialise
the somewhat general discussion of the previous section to the case of a simple mechanical
system with a single degree of freedom. Let us begin by demonstrating that in this case we
may make some fairly extreme simplifications.

First note that the most general simple mechanical system on Q = R has the Lagrangian

L(q, v) =
1

2
g(q)v2 − V (q)

for functions g : Q→ R+ and V : R → R. The Euler-Lagrange equations for this Lagrangian
are

d

dt

(∂L
∂v

)
− ∂L

∂q
= g(q)q̈ +

1

2
g′(q)q̇2 + V ′(q) = 0.

If we introduce a new coordinate q̃ for R defined by

q̃(q) =

∫ q

0

√
g(s) ds,

then we determine that the equality√
g(q)q̈ +

g′(q)

2
√
g(q)

q̇2 +
V ′(q)√
g(q)

= ¨̃q + Ṽ ′(q̃)
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holds, where Ṽ (q̃) = V (q(q̃)). The equations on the right are exactly the Euler-Lagrange
equations for the Lagrangian L̃(q̃, ṽ) = 1

2
ṽ2 − Ṽ (q̃). Thus we have proved the following

result.

3.4.7 Lemma If (Q, g,V) is a simple mechanical system with Q = R, then we may choose a
coordinate q̃ for Q so that in this coordinate system the Lagrangian is 1

2
ṽ2 − V(q̃).

Therefore, without loss of generality, in the remainder of this section we shall assume
that we are working with a simple mechanical system on Q = R with Lagrangian L(q, v) =
1
2
v2 − V (q).

Most of what is interesting about such systems can be gleaned from the potential function
V . Indeed, from what we have done in general, we may make the following statements:

1. from Proposition 3.3.6, a point q0 ∈ Q is an equilibrium point if and only if V ′(q0) = 0;

2. Hess(EL)(q0, 0) is nondegenerate if and only if V ′′(q0) 6= 0;

3. from Proposition 3.4.4(i), if q0 is an equilibrium point and if V ′′(q0) > 0 then solutions
near the equilibrium point lie on ellipses in TQ;

4. from Proposition 3.4.4(ii), if q0 is an equilibrium point and if V ′′(q0) < 0 then solutions
near the equilibrium point lie on either (1) hyperbolae in TQ or on (2) curves which
approach the point (q0, 0) ∈ TQ as t goes to either +∞ or −∞.

There is, in fact, a very simple intuitive rule which takes into account all of the above,
and makes it very easy to draw the phase portraits for single degree of freedom simple
mechanical systems. The rule is this.

3.4.8 Phase portraits for single degree of freedom simple mechanical systems Do the following:

(i) Draw the graph of the potential function V.

Imagine a ball rolling without friction in a well with the shape of the potential function you
have drawn (see Figure 3.8). To get the essential features of the phase portrait, imagine

z = V (x)

Figure 3.8 Ball rolling in a potential well

placing the ball at various spots in the potential well and watching its motion as follows.

(ii) Locate the points where the ball will remain if placed there with zero velocity. These
are exactly at the critical points of V.

(iii) If a critical point is a strict local minimum of V, then the ball will roll around in the
potential well as long as it is not given too much energy (i.e., too much initial velocity).
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(iv) If the critical point is a strict local maximum of V, then there will be trajectories which
either

(a) have just the right energy so that as t →∞ the ball will end up sitting at the local
maximum, or

(b) have just the right energy so that as t → −∞ the ball will end up sitting at the
local maximum.

In all of the preceding, remember that the ball will display conservation of energy. Therefore,
if it at rest at height h, if it is as rest at any other time, then it must still be at height h.

Note that the above rules are an analogy, and are useful for generating qualitative phase
portraits. It is not quite true that the phase portraits are exactly the same for a simple
mechanical system with potential V and a ball rolling well of shape V . However, they do
share the same qualitative features, and this is all we are after.

Let us see how this works for some examples. Let us begin with the linear examples.

3.4.9 Examples 1. We first take L(q, v) = 1
2
v2 − 1

2
q2. The potential function is V = 1

2
q2,

and the graph is given in Figure 3.9, along with the corresponding phase portrait. One
should verify that all the artifacts alluded to in the recipe above do indeed hold in this
simple example.

2. Next we take L(q, v) = 1
2
v2 + 1

2
q2, so that V (q) = −1

2
q2. This potential function and the

corresponding phase portrait are shown in Figure 3.9. If you can understand this simple
problem using the rolling ball analogy, then you should be able to pretty much do any
problem, provided you can plot the potential function. �

The above two examples are simple, and we already knew what their phase portraits
should look like. All we have done is provide an interpretation for them using an analogy of
a ball rolling in a potential well. Let us look at some examples for which we do not already
know the answer.

3.4.10 Examples 1. First we take the Lagrangian L(q, v) = 1
2
v2 + 1

2
q2 − 1

4
q4, with potential

function V (q) = −1
2
q2 + 1

4
q4. This potential function is plotted in Figure 3.10. Let us

point out the most interesting features, and see that we understand their relationship
with the rolling ball analogy.

(a) There are three equilibrium points, one corresponding to the local maximum of the
potential at q1 = 0, and two at the two local minima q2 = −1 and q3 = 1. At these
points, the ball will sit at rest in the potential well.

(b) Since the equilibrium point at q1 = 0 is at a maximum of the potential well, this
will be an unstable point. Any small perturbation of the ball from this rest point
will result in it zipping off away from the equilibrium point.

(c) There are two curves coming into the equilibrium point at q1 = 0 which correspond
to giving the ball just the right amount of energy that it will make it to the lo-
cal maximum of the potential in infinite time. This is the stable manifold of the
equilibrium point.

(d) There are also two curves leaving the equilibrium point at q1 = 0 which correspond
to solutions where the ball was at the equilibrium point at time −∞. This is the
unstable manifold of the equilibrium point.
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Figure 3.9 Potential wells and phase portraits for the Lagrangians
L(q, v) = 1

2v2 − 1
2q2 (left) and L(q, v) = 1

2v2 + 1
2q2 (right)

(e) The branches of the stable and unstable manifolds join with one another on the left
and right sides of the equilibrium point at q1 = 0. This corresponds to the fact
that if you nudge the ball infinitesimally (whatever that means) from its unstable
equilibrium point, it will rush away, then get trapped by the potential again, and
wind up coming back to where it started.

(f) All other solutions are periodic, and there are essentially three types of these. There
are the periodic solutions whose energy is insufficient to get them out of the two
small wells in the potential. This accounts for two types: one type on the left and
one on the right of the equilibrium point at q1 = 0. The other type consists of those
solutions whose energy is enough that they do not remain in the two small potential
wells, but zip right through both of these.

2. Example 2.6.3 cont’d: We look now at the simple pendulum. In Example 2.6.18 we
showed that this system has configuration space Q = S1 and in the standard coordinate
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Figure 3.10 Potential wells and phase portraits for the La-
grangians L(q, v) = 1

2v2 − 1
2q2 − 1

4q4 (left) and L(q, v) =
1
2v2 − 1

3q3 (right)

θ for S1 the Lagrangian is

1

2
m`2v2

θ −mag(` sin θ − r0 sin θ0).

For simplicity, let us work in units where g
`

= 1. Also, since the equations of motion only
depend on the derivative of the potential, we can eliminate the constant term from the
potential. Thus we end up with the simplified Lagrangian 1

2
v2

θ − sin θ. As we mentioned
at the beginning of this section, we can think of this not as a Lagrangian on S1, but as
a Lagrangian on R which is 2π periodic. To make for a more attractive phase portrait
(thank you, hindsight), we use the coordinate q = θ + π

2
. In this case we have our

Lagrangian in the form we like:

L(q, v) =
1

2
v2 + cos q.
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The potential function is therefore V (q) = − cos q. The potential and the phase portrait
are plotted in Figure 3.10. We plot for q ∈ (−π, π]. Let us point out the interesting
features, here pointing out the correspondence to pendulum motions, although the rolling
ball analogy still works.

(a) There are two equilibrium points, one at q1 = 0 and another at q2 = π. One may
wish to say that there is also one at −π, but for the pendulum, this is the same as
the one at π: both correspond to the pendulum being in the upright equilibrium
configuration.

(b) The equilibrium point at q2 = π is unstable. There are two solutions which go into
the unstable equilibrium point, corresponding to the pendulum having just the right
amount of energy that it will end up at rest at the upright configuration. These
form the stable manifold of the equilibrium point at q2 = π.

(c) There are also two curves which come out of the unstable equilibrium. These corre-
spond to solutions which were at the upright configuration at t = −∞. These form
the unstable manifold of the equilibrium point at q2 = π.

(d) If we think in terms of the configuration space as being S1, then the stable and
unstable manifolds intersect. This corresponds to the pendulum starting in its
unstable configuration at t = −∞, then swinging up to its unstable configuration
from the other side at t = +∞.

(e) The other solutions fall into two categories. Solutions with not enough energy to
swing past the upright configuration are the periodic solutions in the potential well.
Other solutions are periodic if we think of S1 being the configuration space, and
correspond to motions of the pendulum where it just keeps swinging around, and
around, and around. �

3.5 Lagrangian systems with dissipative forces

In the above analysis on Lagrangian dynamics, we have made no reference to either forces
or constraints. That is, we have thus far only talked about “pure” Lagrangian dynamics.
It is simply not possible to engage in a systematic study of Lagrangian dynamics in the
presence of arbitrary forces. This is simply too general a situation to allow a significant
discussion. However, we can say something useful when the forces are dissipative, so let us
address this situation.

Before we begin, we need to make a few remarks about solutions of Euler-Lagrange
equations in the presence of external forces. It is readily shown (see Exercise E3.1) that as
long as the Lagrangian is hyperregular, the curves which satisfy the Lagrange-d’Alembert
principle for a Lagrangian L and a force F satisfy an ordinary differential equation. There-
fore, for hyperregular Lagrangians, one has existence and uniqueness of curves satisfying the
Lagrange-d’Alembert principle. One also has the same notion of an equilibrium point as
being a point q0 ∈ Q for the curve t 7→ q0 satisfies the Lagrange-d’Alembert principle. One
may also immediately transfer the notions of stability , and asymptotic stability to the
forced case. In the discussion below, we take all this for granted.

3.5.1 The LaSalle Invariance Principle for dissipative systems In the study of
mechanical systems with dissipation, there is a natural notion of what is generally called a
Liapunov function. This is a concept which exists in general, however, we will only see it in
our mechanical context. Throughout this section we will make the assumption that for each
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point vq ∈ TQ, the solution to the Euler-Lagrange equations with initial condition c′(0) = vq

exists for all forward and backward time. This will very often be the case, but it needs to
be an hypothesis.

From Proposition 2.5.7 we know that energy will decrease (or at least not increase)
along the solutions of the Euler-Lagrange equations in the presence of dissipative forces.
Intuitively, one would expect that this would mean that one should eventually end up at
a minimum of the energy. To make this precise and have a respectable level of generality
requires a few moments effort.

The first thing we need to do is precisely characterise the set of points to which a solution
of the Euler-Lagrange equations tends.

3.5.1 Definition Let L be a hyperregular Lagrangian on a configuration space Q and let F
be a force on Q. For vq ∈ TQ let ω(L, F, vq) be the set of points uq̃ ∈ TQ with the property
that there exists a sequence {tk}k∈Z+ ⊂ R with the properties

(i) 0 < t1 < · · · < tk < · · · ,
(ii) limk→∞ tk = ∞, and

(iii) limk→∞ c′(tk) = uq̃,

where c satisfies the Lagrange-d’Alembert principle and c′(0) = vq. We shall call ω(vq, L, F )
the positive limit set of vq. �

The idea of this definition is simply that the set ω(L, F, vq) is the set of points to which
the solution tends as t → ∞. Some examples using problems we have already worked out
illustrate the idea.

3.5.2 Examples All the systems we consider for now are unforced, single degree of freedom
systems.

1. Example 3.4.9–1 cont’d: We take L(q, v) = 1
2
v2 − 1

2
q2. There are two cases to consider.

(a) First we take vq = (0, 0). In this case, ω(vq, L, 0) = {(0, 0)} trivially, since this point
is an equilibrium point.

(b) Next we take an arbitrary point vq = (q, v) ∈ TQ. In this case we have

ω(vq, L, 0) =
{

(q̃, ṽ) ∈ TQ | q̃2 + ṽ2 = q2 + v2
}
.

That is, the positive limit set is the circle containing (q, v). Since the solution to
the Euler-Lagrange equations in this case lies on this circle, ω(vq, L, 0) must be
contained in the circle, and it is easy to see from the definition that every point on
the circle is also a point in ω(vq, L, 0). In fact, it will always be the case that the
positive limit set for points along periodic solutions will be the entire periodic orbit.
If you do not see why this is so, then think on it.

2. Example 3.4.9–2 cont’d: Next we take L(q, v) = 1
2
v2 + 1

2
q2. Here we have a few cases to

look at.

(a) For vq = (0, 0) we have ω(vq, L, 0) = {(0, 0} since (0, 0) is an equilibrium point.

(b) If vq lies on the line which flows into the origin, i.e., if vq = (a,−a) for some a 6= 0,
then ω(vq, L, 0) = {(0, 0)}. This is because the solution curve passing through these
points approaches (0, 0) as t→∞, It therefore stands to reason that {(0, 0)} should
be the only point in the positive limit set.
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(c) For all other points vq than covered in the previous two cases, ω(vq, L, 0) = ∅. This is
because the solution curves through all other points become unbounded as t→∞.

3. Example 3.4.10–1 cont’d: The next case we look at is nonlinear, and we take L(q, v) =
1
2
v2 + 1

2
q2 − 1

4
q4. Again, we have a few cases.

(a) For the three equilibrium points, vq ∈ {(−1, 0), (0, 0), (1, 0)}, we have as usual
ω(vq, L, 0) = {vq}.

(b) For a point vq on the stable (and therefore also the unstable) manifold for (0, 0), we
have ω(vq, L, 0) = {(0, 0)} since all such points tend to (0, 0) as t→∞.

(c) The solution through all other points are periodic, and so for a point vq on such a
periodic orbit, the positive limit set is equal to the set of points along the periodic
orbit.

4. Example 3.4.10–2 cont’d: Finally, we look at the pendulum whose Lagrangian we re-
worked to look like L(q, v) = 1

2
v2 + cos q. In the following discussion, we are thinking of

Q as being S1.

(a) As usual, if vq is one of the two equilibrium points (0, 0) or (0, π), then ω(vq, L, 0) =
{vq}.

(b) If vq is a point on the stable (and therefore the unstable) manifold through (π, 0),
then ω(vq, L, 0) = {(π, 0)}. This is for the reason, as we have seen, that the solution
curve through such points tends to the point (π, 0).

(c) The remaining points lie on periodic orbits, so for such points vq we have the positive
limit set as the collection of points along the periodic orbit. �

3.5.3 Remark The above examples all exhibit simple limiting behaviour in that the sets
ω(vq, L, F ) are quite benign for these systems: when defined, they are either points or
periodic orbits. This is an artifact of these systems being time-independent systems in the
plane. There is a general result, known as the Poincaré-Bendixson Theorem , which
classifies all possibilities for ω(vq, L, F ), provided that L and F are time-independent and
defined on a one-dimensional configuration space (actually, the theorem is stated in the
more general setting of differential equations in the plane). Things are not so rosy in higher
dimensions where the limiting sets can have rather exotic behaviour. �

We need some other notions, but these may be easier to come to grips with than the
positive limit set. Let L be a Lagrangian on Q and let F be a force on Q. A subset Ω ⊂ TQ
is invariant for L and F if for every vq ∈ Ω and for every T > 0 we have c(T ) ∈ Ω and
c(−T ) ∈ Ω where t 7→ c(t) satisfies the Lagrange-d’Alembert principle for L and F with
c′(0) = vq. The idea here is simply that all solutions with initial condition in Ω remain in Ω
in both forward and backward time.

The following technical result is not of intrinsic importance, so can be bypassed by readers
only interested in using the results of this section. The proof of the lemma in our general
context is not within our reach. We refer to [Muñoz-Lecanda and Yaniz-Fernández 2000] for
the general result, and to [Khalil 1996] for a proof when Q = Rn.

3.5.4 Lemma Let L be a time-independent hyperregular Lagrangian on a configuration space
Q and let F be a time-independent force on Q. For vq ∈ TQ let c be the curve satisfying
the Lagrange-d’Alembert principle for L and F and for which c′(0) = vq. If there exists
a compact subset of TQ containing the image of the map t 7→ c′(t) then ω(vq,L,F) is a
compact set, invariant for L and F.
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The following result shows that for a class of dissipative systems, the sets ω(vq, L, F )
have a structure which can be characterised in terms of the force and the energy of the
Lagrangian.

3.5.5 Theorem Let L be a hyperregular time-independent Lagrangian on a configuration space
Q and let F be a time-independent dissipative force. For vq ∈ TQ let c be the curve satisfying
the Lagrange-d’Alembert principle for L and F and for which c′(0) = vq. If there exists a
compact subset of TQ containing the image of the map t 7→ c′(t) then

ω(vq,L,F) ⊂ {uq̃ ∈ TQ | 〈F(uq̃); uq̃〉 = 0} .

Proof By Proposition 2.5.7, d
dt

EL(c′(t)) ≤ 0. Since c′(t) is contained in a compact
set, this means that the limit limt→∞ EL(c′(t)) exists. Denote this limit by e. Now let
uq̃ ∈ ω(vq, L, F ). There exists a sequence {tk} with the property that limk→∞ tk = ∞ and
limk→∞ c′(tk) = uq̃. As EL is continuous, this implies that EL(uq̃) = limk→∞ EL(c′(tk)).
This shows that EL takes the value e on every point of ω(vq, L, F ). Since ω(vq, L, F ) is in-
variant for L and F by Lemma 3.5.4, if c̃(t) is the curve satisfying the Lagrange-d’Alembert
principle for L and F and satisfying c̃′(0) = uq̃, then

d

dt

∣∣∣
t=0

EL(c̃(t)) = lim
t→0

EL(c̃(t))−EL(uq̃)

t
= lim

t→0

e− e

t
= 0.

However, in the proof of Proposition 2.5.7 we showed that

d

dt
EL(c̃(t)) = 〈F (c̃′(t)); c′(t)〉.

Thus we have shown that for points in ω(vq, L, F ) we have 〈F (c̃′(t)); c′(t)〉 = 0, as claimed. �

This theorem is a specialisation to Euler-Lagrange equations of a more general result
called the LaSalle Invariance Principle [LaSalle 1968]. As we shall see in Section 4.3, it
is the basis of an entire branch of control theory for mechanical systems. The above theorem
also leads immediately to some useful corollaries which we now list.

First we adopt the same hypotheses as Theorem 3.5.5 and let Ω be the largest subset of
TQ which is invariant under L and F and for which

Ω ⊂ {uq̃ ∈ TQ | 〈F (uq̃);uq̃〉 = 0} .

A curve t 7→ c(t) on Q approaches Ω if for every open subset U of Q containing Ω there
exists a T > 0 so that c′(t) ∈ U for every t > T . The following corollary is sometimes what
is given as the LaSalle Invariance Principle.

3.5.6 Corollary Under the same hypotheses as Theorem 3.5.5 and with Ω as just defined, c
approaches Ω.

Proof Suppose that c does not approach Ω. Then there exists an open subset U of Q
containing Ω and T > 0 so that c′(t) 6∈ U for every t > T . In particular for uq̃ ∈ ω(vq, L, F )
there exists a neighbourhood Ũ of uq̃ so that c′(t) 6∈ Ũ for each t > T . But this contradicts
the definition of ω(vq, L, F ). �

The next corollary is the basic result which the LaSalle Invariance Principle may be
thought of as generalising. For this result, call a force strictly dissipative if it is dissipative
and if 〈F (t, vq); vq〉 = 0 only if vq = 0q.
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3.5.7 Corollary Let L be a time-independent hyperregular Lagrangian on Q and F a time-
independent strictly dissipative force on Q with the property that F(0q) = 0 for each q ∈ Q.
Suppose that D ⊂ TQ is a compact set, invariant for L and F. Let q0 ∈ D have the property
that 0q0 is a strict global minimum for EL|D. If q0 is the only equilibrium point for L in
D then q0 is asymptotically stable.

Proof First of all, since q0 is a strict global minimum for EL, it must be the case that
dEL(0q0) = 0. Since F (0q0) = 0 is follows that q0 is an equilibrium point for the forced
system. Thus {0q0} is an invariant set. Furthermore, since q0 is the only equilibrium point
in D and since F is strictly dissipative, {0q0} must be the largest invariant set contained in
the set

{vq ∈ D | 〈F (vq); vq〉 = 0} .

It now follows from Corollary 3.5.6 that ω(vq, L, F ) = {0q0} for every vq ∈ D. �

Before we look at some examples of the LaSalle Invariance Principle, let us quickly
specialise the previous result to simple mechanical systems. As expected, the result become
expressible in terms of the potential function.

3.5.8 Corollary Let (Q, g,V) be a simple mechanical system with Lagrangian L and let F be
a strictly dissipative force on Q with the property that F(0q) = 0 for each q ∈ Q. Suppose
that D ⊂ TQ is a compact set, invariant for L and F. Let q0 ∈ D have the property that
0q0 is a strict global minimum for V|D. If q0 is the only equilibrium point for L in D then
q0 is asymptotically stable.

The following remark addresses the matter of some of the more questionably verifiable
of the hypotheses of the above results.

3.5.9 Important remark In our statement of Theorem 3.5.5 and its corollaries, hypotheses are
required which ensure that the solution(s) to the forced Euler-Lagrange equations are bounded.
These hypotheses become unnecessary in the not infrequently encountered situation when the
level sets of EL are compact. That is to say, if one replaces

1. in Theorem 3.5.5 the hypothesis that c′(t) remain in a compact set, and

2. in Corollary 3.5.7 the hypothesis that we restrict to a compact set D,

with the hypothesis that EL have compact level sets, then the results still hold. �

3.5.2 Single degree of freedom case studies In this section we present some simple
examples which illustrate the general development of the previous section.

3.5.10 Examples Each of the examples is a single degree of freedom simple mechanical system,
and we take the dissipative force in each case to be F (q, v) = −1

5
v, which is a strictly

dissipative force. In each case, we shall produce a numerically generated phase plot, and make
sure we understand how it agrees with the LaSalle Invariance Principle and it corollaries.

1. Example 3.4.9–1 cont’d: The first example we take is that with Lagrangian L(q, v) =
1
2
v2 − 1

2
q2. The phase portrait for the system is shown in Figure 3.11. Note that EL =

1
2
v2 + 1

2
q2 so the level sets of EL are compact (they are circles). Thus, by Remark 3.5.9,

we may dispense with the hypotheses of boundedness of trajectories and compactness
of domains, and directly apply the results. Indeed, Corollary 3.5.8 applies in this case.
Since q0 = 0 is the only equilibrium point for L, and since q0 is a strict global minimum
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Figure 3.11 Phase portraits for dissipative systems with La-
grangians L(q, v) = 1

2v2− 1
2q2 (top left), L(q, v) = 1

2v2 + 1
2q2−

1
4q4 (top right), and L(q, v) = 1

2v2 + cos q (bottom). In each
case the dissipative force is F (q, v) = −1

5v.

for V , Corollary 3.5.8 implies that q0 is an asymptotically stable equilibrium point. This
is clearly seen from the phase portrait as well.

2. Example 3.4.10–1 cont’d: Next we take the Lagrangian L(q, v) = 1
2
v2 + 1

2
q2 − 1

4
q4. The

phase portrait is shown in Figure 3.11. Note that the level sets of the energy are again
compact, so we need no special hypotheses concerning bounded trajectories or com-
pact domains. Note that there are three equilibrium points, so we cannot apply Corol-
lary 3.5.8. Let us apply Corollary 3.5.6. We have

{vq ∈ TQ | 〈F (vq); vq〉 = 0} = {(q, 0) | q ∈ R} .

The maximal invariant set Ω contained in this set is then comprised of the three fixed
points. Thus, in the notation of Corollary 3.5.6, Ω = {(−1, 0)} ∪ {(0, 0} ∪ {(1, 0)}. It
then follows from Corollary 3.5.6 that for each (q, v) ∈ TQ, the positive limit set must be
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one of these three points. And indeed from Figure 3.11 we see that all initial conditions
end up in one of the fixed points. In fact, almost all trajectories end up in one of the two
stable fixed points at (−1, 0) and (1, 0). The only initial conditions which end up at the
unstable fixed point at (0, 0) are those which lie on the stable manifold for this point.

3. Example 3.4.10–2 cont’d: As our final example, we take L(q, v) = 1
2
v2 + cos q. The

phase portrait is shown in Figure 3.11, and the discussion goes much as in the previous
example. �

The mantra of the examples in this section seems to be that dissipation will make a
stable equilibrium point into an asymptotically stable equilibrium point. This is true for
the kinds of systems we have been looking at, but care must be taken when extending this
as a general principle. In [Lewis and Murray 1995] a mechanical system is investigated for
which the introduction of dissipation causes instability of previously stable motions. This
phenomenon is examined in a general setting by Bloch, Krishnaprasad, Marsden and Ratiu
[1993]. See also Exercise E3.13.

3.6 Rigid body dynamics

While we spent a significant portion of Chapter 1 talking about rigid bodies, and how
they move in space, and in Section 2.8 we demonstrated that Euler’s equations for a rigid
body are equivalent to the Euler-Lagrange equations, we have yet to say anything about the
actual solutions to the rigid body equations. Thus in this section we tackle this problem,
describing these solutions in the absence of external forces.

The differential equations we concentrate on then are those for the body velocities about
the centre of mass. We make the assumption that the rigid motion undergone by the rigid
body is observed by a compatible observer. Thus, you will recall, the equations we look at
are

Ṙ(t) = R(t)Ω̂(t)

ṙ(t) = R(t)V (t)

Ic(Ω̇(t)) =
(
Ic(Ω(t))

)
×Ω(t)

µ(B) V̇ (t) = µ(B) V (t)×Ω(t),

(3.5)

where (R, r,Ω,V ) ∈ SO(3)× (R3)3. The meat of these equations is in the third equation

Ic(Ω̇(t)) =
(
Ic(Ω(t))

)
×Ω(t). (3.6)

Indeed, once one has the solution t 7→ Ω(t) to this equation, the equation for the body
velocity V is then a time-dependent linear differential equation, as is the differential equation
for R. Finally, once one has t 7→ V (t) and t 7→ R(t), one may directly integrate to get r(t).
However, the equation for Ω is nonlinear, and its solutions are quite interesting, so that is
where we shall focus our attention.

3.6.1 Conservation laws and their implications It turns out that everything we need
to know about equations (3.5) may be derived from the conservations laws these equations
possess. This is true even of the more difficult equation (3.6). The following result classifies
all the conserved quantities.

3.6.1 Theorem Let (B, µ) be a rigid body. For the equations (3.5), the following quantities
are constant along solutions:
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(i) the spatial linear momentum m(t) = µ(B)R(t)V(t);

(ii) the translational kinetic energy ET(t) = 1
2
µ(B) ‖ṙ(t)‖;

(iii) the rotational kinetic energy ER(t) = 1
2
gcan(Ic(Ω(t)),Ω(t));

(iv) the length of the body angular momentum vector LR(t) = ‖Ic(Ω(t))‖.

Proof (i) We compute

ṁ(t) = µ(B) Ṙ(t)V (t) + µ(B) R(t)V̇ (t)

= µ(B) R(t)Ω̂(t)V (t) + µ(B) R(t)V (t)×Ω(t)

= 0.

(ii) Here we use the fact that m(t) = µ(B)ṙ(t). From (i) we thus conclude that ṙ(t) is
constant. From this the conclusion that ET (t) is constant immediately follows.

(iii) We compute

ĖR(t) =
1

2
gcan(Ic(Ω̇(t)),Ω(t)) +

1

2
gcan(Ic(Ω(t)), Ω̇(t))

= gcan(Ic(Ω̇(t)),Ω(t)),

using the fact that Ic is symmetric with respect to gcan. Now we use (3.6) to give

ĖR(t) = gcan

(
(Ic(Ω(t)))×Ω(t),Ω(t)

)
= gcan

(
Ic(Ω(t)),Ω(t)×Ω(t)

)
= 0,

where we have used the vector identity (1.19).
(iv) From (iii) we know that if LR(0) = 0 then LR(t) = 0 for all t. Thus we may suppose

that LR(0) 6= 0. We compute

dL2
R

dt
= 2gcan

(
(Ic(Ω̇(t)), Ic(Ω(t))

)
= 2gcan

(
(Ic(Ω(t)))×Ω(t), Ic(Ω(t))

)
= − 2gcan

(
Ω(t), (Ic(Ω(t)))× (Ic(Ω(t)))

)
= 0.

But we also have
dL2

R

dt
= 2LR(t)L̇R(t). Since we are assuming that LR(0) 6= 0 it follows that

L̇R(0) = 0, and from this that LR(t) = LR(0) for all t, as desired. �

Some of the statements of this theorem are unsurprising, but some are perhaps not
obvious.

3.6.2 Remarks 1. That the spatial linear momentum is conserved should be in no way sur-
prising. After all, in Section 1.6 we used this very fact to derive the equations (3.5)! A
consequence of this conservation law is that the centre of mass of a rigid body in the
absence of forces moves at a uniform velocity.

2. That the total kinetic energy should be preserved is, of course, a consequence of conser-
vation of energy for general Euler-Lagrange equations (cf. Proposition 2.5.7). It is not
quite so obvious, perhaps, that the translational and rotational components should be
individually preserved.
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3. The most interesting conservation law is that for LR, the length of the body angular
momentum vector. It is this conservation law which will allow us to describe the solutions
of the equation (3.6). Its presence is an artifact of the conservation of spatial angular
momentum, and is reflective of similar statements in a more general setting, as presented
in Section 4.4 of [Abraham and Marsden 1978]. Interestingly, this phenomenon appears
in a different manner for a wide variety of physical problems. For example, Arnol’d [1966]
uses a setting like this to provide an interpretation of “helicity” as a conservation law in
the flow of an inviscid incompressible fluid. � Check

The statement 1 is of sufficient interest to merit its separate statement.

3.6.3 Corollary The centre of mass of a rigid moves at a constant velocity with respect to an
observer which is compatible with the rigid motion.

Let us now use the fact that ER and LR are constants of motion to obtain a description
of the solutions to (3.6).

3.6.4 Proposition Let (B, µ) be a rigid body and let {I1, I2, I3} be the principal inertias with
{v1,v2,v3} the corresponding principal axes. We have the following four case, which classify
all possibilities up to permutation of the principal inertias.

(i) The principal inertias are strictly positive and not all equal: The solutions to (3.6) lie
on the intersection of an ellipsoid{

Ω ∈ R3
∣∣ ‖I(Ω)‖ = C1

}
and an ellipsoid {

Ω ∈ R3
∣∣ gcan(Ic(Ω),Ω) = C2

}
for some C1,C2 > 0.

(ii) 0 = I1 < I2 = I3: The solutions to (3.6) are all of the form t 7→ Ω0 + ω(t)v1 where
Ω0 ∈ spanR {v2,v3} and where t 7→ ω(t) ∈ R is arbitrary.

(iii) 0 = I1 = I2 = I3: Any curve t 7→ Ω(t) is a solution to (3.6).

Proof (i) This follows directly from parts (iii) and (iv) of Theorem 3.6.1. In this case since
Ic is invertible, the set {

Ω ∈ R3
∣∣ ‖Ic(Ω)‖ = C1

}
and the set {

Ω ∈ R3
∣∣ gcan(Ic(Ω),Ω) = C2

}
are indeed ellipsoids.

(ii) Recall from Proposition 1.5.6(ii) that a single zero principal inertia implies that the
other two principal inertias must be equal. If (x1, x2, x3) denotes coordinates for R3 with
respect to the principal axes, then the condition (iii) of Theorem 3.6.1 reads

I
(
(x2)2 + (x3)2

)
= constant,

and the condition (iv) reads

I2
(
(x2)2 + (x3)2

)
= constant,

where I = I2 = I3. Thus one cannot make a conclusive statement regarding the solu-
tions of (3.6) from the conservation laws alone. However, substituting the inertias directly



190 3 Lagrangian dynamics 03/04/2003

into (3.6) gives the equations ẋ1 = 0, ẋ2 = 0, and 0 = 0. Thus x1 and x2 are constant, and
x3 is arbitrary, just as stated in the proposition.

(iii) In this case we note that (3.6) is simply the identity 0 = 0. Thus any curve in R3

will indeed be a solution. �

The only really interesting case is part (i) of the proposition. We shall give this more
attention shortly, but for now let us make some general remarks about the other cases.

3.6.5 Remarks 1. The case (i) covers the most interesting cases, and we shall investigate this
in detail in the next section.

2. The case (ii) corresponds, as shown in the proof of Proposition 1.5.6(ii), to the case where
the support of µ is contained in a line. The motion described in part (ii) of the above
proposition simply says that the angular velocity about this line is irrelevant since the
body has no inertia to resist this angular velocity. The equations are degenerate because
three angular velocities are one too many in this case. One should properly describe the
system with a two-dimensional set of angular velocities.

3. The most degenerate case, case (iii), corresponds to a rigid body which is a point mass.
In this case, the remarks from the previous case apply to all angular velocities since the
body has no angular inertia. Therefore the three angular velocities have no meaning for
the motion of the body in this case. �

3.6.2 The evolution of body angular momentum Let us now proceed to discuss in
more detail the case (i) of Proposition 3.6.4. Since the length of the body angular momentum
is constant along solutions of (3.6), it is convenient to change coordinates from body angular
velocity to body angular momentum, since in momentum space, all solutions lie on spheres
of constant radius. The differential equation describing body angular momentum when Ic is
invertible is

Ṁ(t) = M(t)×
(
I−1
c (M(t))

)
. (3.7)

It is this equation we proceed to analyse. First we note that the conservation laws for ER

and LR in Theorem 3.6.1 when expressed in terms of body angular momentum imply that
ER(t) = 1

2
gcan(Ic(M(t)),M(t)) and LR(t) = ‖M(t)‖ are constant along solutions of (3.7).

The sets of constant value for LR are, of course, spheres, and the sets of constant value for
ER are ellipsoids. The solutions must therefore lie on the intersection of some such sphere
and some such ellipsoid.

Let us proceed to formally analyse (3.7). First let us find its fixed points.

3.6.6 Proposition Let (B, µ) be a rigid body with principal inertias {I1, I2, I3} arranged so that
0 < I1 ≤ I2 ≤ I3, and let {v1,v2,v3} be the corresponding principal axes. If F (B, µ) ⊂ R3

denotes the fixed points of equation (3.7) which occur on the sphere of radius R, then

(i) when I1 < I2 < I3 we have

F (B, µ) = {±Rv1} ∪ {±Rv2} ∪ {±Rv3};

(ii) when I1 = I2 < I3 we have

F (B, µ) =
{

a1v1 + a2v2 | a2
1 + a2

2 = R2
}
∪ {±Rv3};
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(iii) when I1 < I2 = I3 we have

F (B, µ) = {±Rv1} ∪
{

a2v2 + a3v3 | a2
2 + a2

3 = R2
}

;

(iv) when I1 = I2 = I3 we have

F (B, µ) =
{

a1v1 + a2v2 + a3v3 | a2
1 + a2

2 + a2
3 = R2

}
.

Proof From (3.7) we see that M ∈ R3 is a fixed point if and only if M and I−1
c (M) are

collinear. Thus M is a fixed point if and only if it is an eigenvector of I−1
c if and only if it is

an eigenvector of Ic. The result now follows by our discussion in the course of the proof of
Proposition 1.5.8 about the eigenvectors of Ic when it has equal eigenvalues. �

Now let us determine the stability of the various fixed points by linearising, and com-
puting the eigenvalues of the linearised system. Suppose that M 0 is a fixed point for (3.7).
Then, as we saw in the proof of Proposition 3.6.6, M 0 must be an eigenvector for I−1

c , so we
must have Ic(M 0) = I−1

a M 0 for some principal inertia Ia, a ∈ {1, 2, 3} (here we use the fact
that the eigenvalues of an invertible matrix are the inverse of the eigenvalues of the matrix).
Linearising (3.7) about such a fixed point gives the linearised equations

ξ̇(t) = ξ(t)×
(
I−1
c (M 0)

)
+ M 0 ×

(
I−1
c (ξ(t))

)
= M 0 ×

(
I−1
c (ξ(t))− I−1

a ξ(t)
)
.

Now let us write ξ(t) in a principal basis we

ξ(t) = ξ1(t)v1 + ξ2(t)v2 + ξ3(t)v3,

and let us suppose that we have permuted the principal inertias so that a = 3. Then we
have suppose that M 0 = M0v3 for some M0 ∈ R. Since I−1

c (v3) = I−1
3 v3, we have ξ̇3(t) = 0.

We then compute

ξ̇1(t) = M0(I
−1
2 − I−1

3 )ξ2(t)

ξ̇2(t) = M0(I
−1
3 − I−1

1 )ξ1(t).

Thus the eigenvalues for the linearised system are 0 (which is an eigenvalue with eigenvector
v3) and the eigenvalues of the matrix

M0

[
0 I−1

2 − I−1
3

I−1
3 − I−1

1 0

]
. (3.8)

These latter eigenvalues are the roots of the polynomial

λ2 +M2
0 (I−1

2 − I−1
3 )(I−1

1 − I−1
3 ). (3.9)

Note that the automatic zero eigenvalue is not a surprise since its eigenvector is orthogonal
to the sphere of constant length for body angular momentum. It is the very preservation
of this sphere which makes this eigenvalue zero. The other two eigenvalues are, therefore,
the ones which interest us as they are in directions tangent to the body momentum sphere.
From (3.9) we may immediately deduce the following result.
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3.6.7 Proposition Let (B, µ) be a rigid body with principal inertias {I1, I2, I3}, and suppose
without loss of generality that I1 ≤ I2. Let M0 be a fixed point of (3.7) corresponding to
the principal inertia I3 (i.e., M0 is an eigenvalue of I−1

c with eigenvalue I−1
3 ). Then 0 is an

eigenvalue for the linearisation of (3.7) about M0, and the other eigenvalues are given as
follows:

(i) I1 < I3 < I2: eigenvalues are ±M0

√
(I−1

3 − I−1
2 )(I−1

1 − I−1
3 );

(ii) I3 < I1 < I2: eigenvalues are ±iM0

√
(I−1

3 − I−1
2 )(I−1

3 − I−1
1 );

(iii) I1 < I2 < I3: eigenvalues are ±iM0

√
(I−1

2 − I−1
3 )(I−1

1 − I−1
3 );

(iv) I1 = I2 < I3: eigenvalues are ±iM0

√
(I−1

2 − I−1
3 )(I−1

1 − I−1
3 );

(v) I3 < I1 = I2: eigenvalues are ±iM0

√
(I−1

3 − I−1
2 )(I−1

3 − I−1
1 );

(vi) I1 < I2 = I3: all eigenvalues are zero;

(vii) I1 = I3 < I2: all eigenvalues are zero;

(viii) I1 = I2 = I3: all eigenvalues are zero.

It is now easy to turn this into the following result concerning stability of the linearisation
of (3.7) about fixed points.

3.6.8 Corollary Let (B, µ) be a rigid body. We have the following cases.

(i) If the principal inertias of B are distinct, then

(a) the linearisation for rotations about the intermediate principal axis are unstable
and

(b) the linearisation for rotations about the largest and the smallest principal axes are
stable.

(ii) If there are two equal principal inertias, then the linearisation about any of the fixed
points is unstable.

(iii) If all principal inertias are equal, then the linearisation is stable.

Proof The only thing that is in doubt are the cases where all the eigenvalues are zero.
For these cases, we need to ensure that there are 2 linearly independent eigenvectors for
the matrix (3.8). However, in all such cases, one verifies that the matrix (3.8) has rank 1
when only two eigenvalues are equal; this means that the linearisation is unstable. When all
eigenvalues are equal, then the matrix (3.8) is identically zero, so it indeed has two linearly
independent eigenvectors. �

This then completes the linear stability analysis of the fixed points for (3.7). When the
linearisation is unstable, this it is so by virtue of there being a positive real eigenvalue, so
the Unstable Manifold Theorem ensures instability of the full equations at such fixed points.
However, in all of the cases when the linearisation is stable, it is stable with all eigenvalues on
the imaginary axis, so one cannot conclude stability of the full equations from the linearised
equations (as seems to be the way with mechanical systems). However, since the solutions
restricted to the spheres on must also lie on the ellipsoids of constant energy, one may use this
to help determine the character of the full nonlinear equations. Indeed, if you are good at
imagining such things, imagine fixing a sphere of some radius, and starting with an ellipsoid
which sits in the interior of the sphere. Now gradually grow the ellipsoid. Eventually it
will touch the sphere, and as the ellipsoid grows further, the points or lines of intersection
will determine the solutions of (3.7). By growing the ellipsoid in this manner one obtains
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Figure 3.12 Solutions for equation (3.7) when I1 = I2 < I3 (top
left), when I1 < I2 = I3 (top right), and when I1 < I2 < I3

(bottom)

all solutions as each point on the sphere will intersect some ellipsoid. In Figure 3.12 is
depicted a numerically generated set of solution curves for (3.7) in the various cases. Note
that in these pictures we always assume I1 ≤ I2 ≤ I3, in order to reduce the number of
cases we need to plot. This is in contrast with Proposition 3.6.7 and Corollary 3.6.8 where
the principal inertias were considered arranged so that we are interested in the fixed points
corresponding to the third principal inertia. Also, in Figure 3.12 we do not include the case
where I1 = I2 = I3. In this case, all points are fixed points, and so stable.

Let us summarise the conclusions one may derive from Figure 3.12.

3.6.9 Proposition Let (B, µ) be a rigid body with principal inertias {I1, I2, I3}, and suppose
without loss of generality that I1 ≤ I2. Let M0 be a fixed point of (3.7) corresponding to the
principal inertia I3 (i.e., M0 is an eigenvalue of I−1

c with eigenvalue I−1
3 ). The stability of

M0 is given as follows:

(i) I1 < I3 < I2: unstable;

(ii) I3 < I1 < I2: stable;

(iii) I1 < I2 < I3: stable;

(iv) I1 = I2 < I3: stable;

(v) I3 < I1 = I2: stable;
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(vi) I1 < I2 = I3: unstable;

(vii) I1 = I3 < I2: unstable;

(viii) I1 = I2 = I3: stable.

Fixed points are never asymptotically stable.

3.6.3 Poinsot’s description of a rigid body motion Louis Poinsot (1777–1859) de-
vised a clever way to visualise the solutions to (3.7). Poinsot’s description tells us how the
body itself moves in space, as opposed to Euler’s equation which tells us how the angular
momentum vector looks in a frame moving with the body. In this section, as in our previous
discussion of rigid body dynamics, we fix a centre of mass observer adapted to the rigid
motion, and a coordinate system adapted to this observer. The description of Poinsot relies
on the inertial ellipsoid discussed in Section 1.5.3. With our conventions for the observer
and the coordinate system, the inertial ellipsoid becomes the subset of R3 given by

E(B) =
{
Ω ∈ R3

∣∣ gcan(Ic(Ω),Ω) = 1
}
.

We think of the inertial ellipsoid as being attached to the body so that the axes of the
ellipsoid align with the corresponding principal axes of the body. As the body moves in
space, so too will the inertial ellipsoid move in space. It is this motion of the inertial
ellipsoid which Poinsot describes. For simplicity, we assume that the centre of mass of the
body is stationary, i.e., that the spatial linear momentum, which is conserved, is zero.

The following result gives Poinsot’s description. You will recall that spatial angular
momentum is constant along natural motions of a rigid body; indeed, we used this very
property to derive the governing equations.

3.6.10 Theorem (Poinsot’s description of rigid body motion) Let (B, µ) be a rigid body and
let the equations

Ṙ(t) = R−1(t)Ω(t)

Ic(Ω̇(t)) =
(
Ic(Ω(t))

)
×Ω(t)

describe the angular motion of the body, and suppose that the centre of mass of the body is
stationary. Also suppose that none of the principal inertias of the body are zero. The solution
t 7→ R(t) has the property that the family of ellipsoids t 7→ R(t)(E(B)) rolls without slipping
on a stationary plane P orthogonal to the (constant) spatial angular momentum vector `.
The plane P is called the invariable plane.

Proof Suppose that the rigid motion has rotational kinetic energy e so that all motion takes
place on the body angular momentum sphere of radius

√
2e. We work first in a body frame

where the inertial ellipsoid is stationary. We define a plane Pt which is tangent to E(B) at
the point Ω(t). At the point Ω(t) ∈ E(B) we determine the that the normal to E(B) is
given by

grad
(
gcan(Ic(Ω),Ω)

)
|Ω=Ω(t) = 2Ic(Ω(t)) = 2L(t).

A translated plane Pt orthogonal to this normal vector should satisfy

Pt =
{

x ∈ R3
∣∣ gcan

(
x, 2Ic(Ω(t))

)
= C

}
(3.10)

for some C ∈ R. However, since the point Ω(t) must satisfy the constraint of conservation
of rotational energy, we must have

gcan

(
Ω(t), 2Ic(Ω(t))

)
= 2e.
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Therefore, by the definition of the inertial ellipsoid, the point Ω(t)/
√

2e must lie in E(B).
Indeed we have

gcan

(
I(Ω(t)/

√
2e),Ω(t)/

√
2e
)

=
1

2e
gcan

(
I(Ω(t)),Ω(t)

)
= 1.

Therefore (3.10) defines a plane Pt tangent to the inertial ellipsoid at time t provided that
we take C =

√
2e. Thus we have

Pt =
{
x ∈ R3

∣∣ gcan(x,L(t)) =
√

2e
}
.

We now move to a spatial frame. Fix the same time t and define the ellipsoid Et(B) =
R(t)(E(B)). The body velocity Ω(t) gets mapped to the spatial velocity ω(t) = R(t)(Ω(t)).
The plane Pt is mapped to the plane P = R(t)(Pt) which is therefore tangent to Et(B) at
the point ω(t). Therefore P satisfies

P =
{
y ∈ R3

∣∣ gcan(L(t),R−1(t)(y)) =
√

2e
}

=
{
y ∈ R3

∣∣ gcan(R(t)L(t), (y)) =
√

2e
}

=
{
y ∈ R3

∣∣ gcan(`(t), (y)) =
√

2e
}
.

Now since `(t) is constant, this shows that the plane P is independent of t. Thus we have
shown that the ellipsoids Et(B) do indeed roll along the plane P . It remains to be shown
that they roll without slipping.

This latter fact will follow if we note that the point of contact of Et(B) with the plane
P lies at a point ω(t)/

√
2e which is on the line of instantaneous rotation of the body. Since

all points along this line have zero instantaneous spatial velocity, our result follows. �

A picture corresponding to Poinsot’s description is given in Figure 3.13. We refer
to [Arnol’d 1989] for a few applications of Poinsot’s description of rigid body motion to
determining the character of this motion. Also see Exercise E3.7.

3.7 Geodesic motion

In our analysis of the stability of equilibrium points Section 3.2—and particularly in our
analysis of simple mechanical systems in Section 3.3.1—we paid little attention to the case
where KL(q0) and CL(q0) are both zero. However, for the class of simple mechanical systems
with no potential force, this will always be the case, cf. Proposition 3.3.7. Therefore, none
of our preceding stability analysis has much relevance for this important class of systems.
In this section we will study such systems and say what little we can about them; they are
a very complicated class of system, interestingly made more complicated in some ways by
the absence of a potential function.

3.7.1 Basic facts about geodesic motion In Section 2.4.4 we showed how the equa-
tions of motion for a simple mechanical system (Q, g, 0) with a zero potential function are
geodesics of a particular affine connection—the Levi-Civita connection—which is associated
with the Riemannian metric g. However, it is of no particular advantage to specialise to
the case of the Levi-Civita connection, so in this section we consider a general affine con-
nection ∇ on Q. Recall that in a coordinate chart one defines the Christoffel symbols Γi

jk,
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Figure 3.13 Poinsot’s description of the motion of a rigid body

i, j, k = 1, . . . , n, as in (2.11). Geodesics are then curves on Q which in coordinates satisfy
the second-order differential equation

q̈i + Γi
jkq̇

j q̇k = 0, i = 1, . . . , n.

From this equation, we immediately have the following result. The result uses facts
about geodesic normal coordinates which we do not know about (see [Kobayashi and Nomizu
1963]).

3.7.1 Proposition For a simple mechanical system (Q, g, 0) with zero potential function, all
points in Q are equilibrium points, none are linearly stable, and none are stable for the
nonlinear system.

Proof That all points in Q are equilibrium points follows from Proposition 3.3.6. From
Proposition 3.3.7 we see that at every equilibrium point, i.e., every point q0 ∈ Q, we have

AL(q0) =

[
0 idTq0Q

0 0

]
.

Thus all eigenvalues of AL(q0) are zero, but dim(ker(AL(q0))) = n so the fixed points are
linearly unstable since the geometric and algebraic multiplicities of the eigenvalues on the
imaginary axis are not the same. Finally, let us show that the equilibria are not stable for
the full system. This follows from the fact that about each point q0 ∈ Q we may find a
“normal” set of coordinates (q1, . . . , qn) with the property that any geodesic t 7→ c(t) with
initial condition c′(0) = vq0 ∈ Tq0Q has the form t 7→ vt for some v ∈ Rn. Such a curve
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will leave any sufficiently small neighbourhood of q0 in finite time, implying the equilibrium
point is unstable. �

Clearly such systems must be of interest for things other than their equilibria, since
equilibria are abundant and all unstable. The following result gives a distinctive property
for solutions of the geodesic equations. Note that the result is not generally true for solutions
of the Euler-Lagrange equations for arbitrary Lagrangians.

3.7.2 Proposition Let ∇ be an affine connection on a configuration space Q. Let c : [0,T] →
Q be a curve and for λ > 0 define a new curve cλ : [0, T

λ
] → Q by cλ(t) = c(λt). Then, if c

is a geodesic, so is cλ.

Proof In coordinates represent c by t 7→ (q1(t), . . . , qn(t)) so that we have

d2qi

dt2
+ Γi

jk

dqj

dt

dqk

dt
= 0, i = 1, . . . , n.

Now define τ = λt and compute

d2qi

dτ 2
+ Γi

jk

dqj

dτ

dqk

dτ
= λ2

(d2qi

dt2
+ Γi

jk

dqj

dt

dqk

dt

)
, i = 1, . . . , n,

which gives the result. �

Note that with the notation of the preceding result we have c′λ(0) = λc′(0). The idea of
the result is therefore that if one scales the initial velocity of a given geodesic, the resulting
geodesic will follow the same path as the original, but will simply do so more quickly or
more slowly, depending on whether λ > 1 or λ < 1.

3.7.2 The Jacobi metric It turns out that even when the potential function is
nonzero, one may still describe the motion of a simple mechanical system as geodesic motion.
That this is possible is a discovery of Carl Gustav Jacob Jacobi (1804–1851). The principal
observation is that since kinetic energy is always nonnegative, if a solution t 7→ c(t) has total
energy e, then the potential energy should satisfy V (c(t)) ≤ e. For this reason, solutions of
total energy e will evolve in the subset

Q̄e = {q ∈ Q | V (q) ≤ e} .

Let us also denote
Qe = {q ∈ Q | V (q) < e} .

Note that on Qe the function q 7→ e−V (q) is strictly positive. Therefore, given a Riemannian
metric g on Q, at points q ∈ Qe, ge(q) = (e − V (q))g(q) defines an inner product on TqQ.
Therefore, this defines a Riemannian metric ge on Qe called the Jacobi metric.

We now state the relationship between the Riemannian metric ge on Qe and solutions of
the Euler-Lagrange equations.

3.7.3 Theorem Let (Q, g,V) be a simple mechanical system with Lagrangian L and let e ∈ R
have the property that Qe 6= ∅. If vq ∈ EL−1(e), then the solution to the Euler-Lagrange
equations with initial condition vq agrees up to reparameterisation with the geodesic of the
Jacobi metric with initial velocity vq.
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Proof Let
e

∇ be the Levi-Civita connection associated with the Riemannian metric ge. We
begin with a computational lemma.

1 Lemma Let e2ρ = (e− V), so defining ρ. Then we have

e

∇XY =
g

∇XY + 〈dρ; X〉Y + 〈dρ; Y〉X− g(X,Y) grad ρ.

Proof In coordinates we have

(
e

∇XY )i =
∂Y i

∂qj
Xj +

e

Γi
jkX

jY k, i = 1, . . . , n,

where
e

Γ are the Christoffel symbols for
e

∇. The result will then follow if we can show that

e

Γi
jk =

g

Γi
jk +

∂ρ

∂q`
X`Y i +

∂ρ

∂q`
Y `X i − g`mX

`Y mgir ∂ρ

∂qr
, i, j, k = 1, . . . , n. (3.11)

By definition of the Levi-Civita Christoffel symbols we have

e

Γi
jk =

1

2
(ge)

i`
(∂(ge)`j

∂qk
+
∂(ge)`k

∂qj
− ∂(ge)jk

∂q`

)
, i, j, k = 1, . . . , n. (3.12)

However, since (ge)ij = e2ρgij, i, j = 1, . . . , n, we directly compute

∂(ge)ij

∂qk
= 2e2ρ ∂ρ

∂qk
g`j + e2ρ∂gij

∂qk
, i, j, k = 1, . . . , n. (3.13)

Plugging (3.13) into (3.12) gives (3.11) after some manipulation. H

Now let us proceed with the remainder of the proof. Fix a solution c to the Euler-
Lagrange equations for L. We compute

d(e2ρ) = −dV =⇒ 2e2ρdρ = −dV =⇒ 2(e− V )dρ = −dV. (3.14)

By conservation of energy we also have

g(c′(t), c′(t)) = 2(e− V ), (3.15)

which using (3.14) gives
g(c′(t), c′(t)) grad ρ = − gradV. (3.16)

Since c is a solution to the Euler-Lagrange equations we have

g

∇c′(t)c
′(t) = − gradV (c(t)).

Using Lemma 1 and (3.16) we obtain

e

∇c′(t)c
′(t) =

g

∇c′(t)c
′(t) + 2 〈dρ; c′(t)〉 c′(t) + g(c′(t), c′(t)) grad ρ

= − gradV (c(t)) + 2 〈dρ; c′(t)〉 c′(t) + g(c′(t), c′(t)) grad ρ

= 2 〈dρ; c′(t)〉 c′(t).
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Now reparameterise c with the time parameter τ defined so that dτ
dt

= (e − V ). We then
have

dc

dτ
=

dt

dτ
c′(t) =

1

e− V
c′(t) = e−2ρc′(t).

We then compute

e

∇ dc
dτ

dc

dτ
=

e

∇e−2ρc′(t)(e
−2ρc′(t))

= e−2ρ
e

∇c′(t)(e
−2ρc′(t))

= e−4ρ
e

∇c′(t)c
′(t) + e−2ρ(L c′(t)e

−2ρ)c′(t)

= e−4ρ
( e

∇c′(t)c
′(t)− 〈dρ; c′(t)〉 c′(t)

)
= 0.

In deriving this formula, we have used the defining properties of an affine connection given in

Definition 2.4.7. Note that we have shown that c is a geodesic of
e

∇ provided we parameterise
it with the time parameter τ . �

Ong [1975] provides a nice discussion of various aspects of dynamics of simple mechanical
systems using the Jacobi metric. The substance of the above proof comes from Ong. One
could, I suppose, give an application of Theorem 3.7.3, but it would not be an exercise which
would shed any more light on the subject. We should really think of Theorem 3.7.3 as an
interesting theoretical tidbit, although it may have some useful dynamical consequences in
some examples.

3.8 The dynamics of constrained systems

Let us complete our incomplete discussion of Lagrangian dynamics with a few words
about the dynamics of constrained systems. Owing to the fact that the body of work
concerning the dynamics of constrained systems is minimal, our discussion only touches
upon a few basic questions. Some issues are dealt with more thoroughly by Něımark and
Fufaev [1972], but even there the authors remark on the lack of a consistent approach to the
subject of dynamics for systems with constraints.

3.8.1 Existence of solutions for constrained systems In Section 3.1 we saw that
hyperregularity of L was sufficient to guarantee that the solutions to the Euler-Lagrange
equations are determined by an ordinary differential equation, and so subject to the existence
and uniqueness theory of ordinary differential equations. For constrained systems, matters
are not so simple, as is illustrated by a simple example.

3.8.1 Example We consider Q = R2 with the time-independent hyperregular Lagrangian
L(x, y, vx, vy) = 1

2
(v2

x − v2
y). As a constraint we take the linear constraint

C(x,y) = {(vx, vy) | vx + vy = 0} .

The constraints are annihilated by the single one-form α = dx−dy. Thus we have a perfectly
well-behaved Lagrangian and a perfectly well-behaved constraint. However, when we put
them together, we get the constrained equations of motion

ẍ = 1, −ÿ = −1.
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Therefore we must have ẍ = ÿ. But the constraint equations give us ẍ = −ÿ, so we must
have ẍ = ÿ = 0. This, however, is an immediate contradiction of the equations of motion. �

It is not immediately obvious what is the problem with the previous example. However,
after some thought, one sees that the difficulty lies in the fact that the quadratic form with
matrix ∂2L

∂vi∂vj is degenerate on the subspace of virtual displacements. More specifically, the
quadratic form represented by the matrix[

1 0
0 −1

]
is identically zero when evaluated on vectors in spanR {(1,−1)}. Let us convince ourselves
that this is indeed a source of problems by looking at the same constraint, but with a
Lagrangian for which the quadratic form with matrix ∂2L

∂vi∂vj is nondegenerate on the subspace
of virtual displacements.

3.8.2 Example (Example 3.8.1 cont’d) We maintain the constraint from Example 3.8.1 but
consider a different Lagrangian. We take L(x, y, vx, vy) = 1

2
(v2

x + v2
y). In this case the

equations of motion read
ẍ = 1, ÿ = −1,

from which we derive ẍ = −ÿ. These equations are now compatible with the constraints,
and one can verify directly that any curve of the form

x(t) = x(0) + vt, y(t) = y(0)− vt

will satisfy the constraints for any v ∈ R. Note that this version of our example simply
models a particle of unit mass constrained (by an holonomic constraint) to move along lines
in R2 with slope −1. �

Let us now reveal that the above example generalises in a natural manner.

3.8.3 Theorem Let L be a hyperregular Lagrangian on Q with C a constraint and F a force. If
for each vq ∈ TQ the quadratic form with components ∂2L

∂vi∂vj , i, j = 1, . . . , n, is nondegenerate
on the subspace `(Cq) ⊂ TqQ, then the solutions to the constrained Lagrangian system
(L,F,C) satisfy a second-order differential equation.

Proof We work in a set of coordinates (q1, . . . , qn). Let α1, . . . , αn−r be a basis for ann(`(C))
in these coordinates, and let η be a vector field on Q with the property that Cq = `(Cq)+η(q).
The constrained equations of motion are then

∂2L

∂vi∂vj
q̈j +

∂2L

∂vi∂qj
q̇j +

∂2L

∂vi∂t
− ∂L

∂qi
= Fi + λaα

a
i , i = 1, . . . , n

αa
i q̇

i = αa
i η

i, a = 1, . . . , n− r.

Differentiating the second equation with respect to time gives

αa
i q̈

i +
∂αa

i

∂qj
q̇iq̇j =

∂αa
i

∂qj
ηiq̇j + αa

i

∂ηi

∂qj
q̇j, a = 1, . . . , n− r. (3.17)

Since L is hyperregular we may solve the first of the equations of motion for q̈i:

q̈i = Ai`
( ∂L
∂q`

− ∂2L

∂v`∂qj
q̇j − ∂2L

∂v`∂t
+ F` + λaα

a
`

)
, i = 1, . . . , n, (3.18)
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where Ai`, i, ` = 1, . . . , n, are defined by

Ai` ∂2L

∂v`∂vj
= δi

j, i, j = 1, . . . , n.

Substituting (3.18) into (3.17) and simplifying gives

αa
iA

i`αb
`λb =

∂αa
i

∂qj
ηiq̇j + αa

i

∂ηi

∂qj
q̇j − ∂αa

i

∂qj
q̇iq̇j−

αa
iA

i`
( ∂L
∂q`

− ∂2L

∂v`∂qj
q̇j − ∂2L

∂v`∂t
+ F`

)
, a = 1, . . . , n− r. (3.19)

Now we use a lemma to complete the final step.

1 Lemma The (n − r) × (n − r) matrix with components αa
i A

i`αb
` , a, b = 1, . . . , n − r, is

invertible.

Proof Suppose that we have β1, . . . , βn−r so that

αa
iA

i`αb
`βb = 0, a = 1, . . . , n− r.

This would imply that Ai`αb
`βb, i = 1, . . . , n, are the components of the zero vector field in

`(C) since α1, . . . , αn−r form a basis for ann(`(C)). Since the quadratic form with matrix
∂2L

∂vi∂vj , i, j = 1, . . . , n, is nondegenerate on `(C), we have

Ai`αb
`βb = 0, i = 1, . . . , n

⇐⇒ ∂2L

∂vi∂vj
Ai`αb

`βb = αb
jβb = 0, i = j, . . . , n.

Since the one-forms α1, . . . , αn−r are linearly independent, the result now follows. H

Using the lemma we may use (3.19) to solve for the Lagrange multipliers. Now we plug
these Lagrange multipliers back into (3.18), and the result is a set of second-order differential
equations, as desired. �

3.8.4 Remarks 1. Of course, the value of the theorem is that it gives an existence and unique-
ness result for constrained systems. Constrained systems are capable of a great deal of
exotic behaviour, so it is consoling to have some not unreasonable conditions which
guarantee that solutions exist and are unique.

2. We make use of “the quadratic form whose matrix is ∂2L
∂vi∂vj , i, j = 1, . . . , n.” Well,

this is an actual quadratic form, and we actually demonstrated this in the proof of
Proposition 3.2.10. If you look through the proof, you will see that when we demonstrated
that ML(q0) was independent of choice of coordinates, we never used the fact that we
evaluated the quantities ∂2L

∂vi∂vj , i, j = 1, . . . , n, at zero velocity. This quadratic form is
actually a quite useful object. Of course, for simple mechanical systems, it is simply the
Riemannian metric.

3. Speaking of Riemannian metrics, note that the hypotheses of the theorem are satisfied
automatically if L is the Lagrangian for a simple mechanical system (see Corollary 3.8.5
below). �

The upshot of Remark 3 is worth recording on its own.
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3.8.5 Corollary If (Q, g,V) is a simple mechanical system with Lagrangian L, C is a con-
straint on Q, and F is a force on Q, then whenever vq ∈ C is an initial condition satisfying
the constraints, there exists a solution to the constrained system (L,F,C) with initial condi-
tion vq. Furthermore, any two such solutions will agree on the intersection of their domains.

3.8.2 Some general observations In this section let us give answers to a few questions
of the form, “What aspects of dynamics for unconstrained Lagrangian systems carry over
to constrained systems?” In particular, we concentrate on two questions, one concerning
conservation of energy, and the other concerning the nature of the stability of equilibrium
points.

Let us first consider the situation concerning conservation of energy.

3.8.6 Proposition Let L be a time-dependent Lagrangian on Q and C a constraint on Q.
Suppose that t 7→ c(t) is a solution to the constrained Lagrangian system (L, 0,C) with
t 7→ α(t) ∈ ann(`(Cc(t))) the corresponding constraint force. If EL denotes the energy of the
system then we have

d

dt
EL(t, c′(t)) = 〈α(t); c′(t)〉 .

In particular, if the constraint C is linear, then energy is conserved.

Proof We work in coordinates (q1, . . . , qn) with α1, . . . , αn−r a local basis for ann(`(C)).
We also define a vector field η on Q so that Cq = `(Cq) + η(q). Recall that the equations of
motion are then

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= λaα

a
i , i = 1, . . . , n

αa
i q̇

i = αa
i η

i, a = 1, . . . , n− r.

Following the computations of Proposition 2.5.7 we determine from the first of these equa-
tions that

d

dt
EL(t, c′(t)) = 〈α(t); c′(t)〉 ,

which is the first assertion of the proposition. The second assertion follows from the second
of the equations of motion since if C is linear we may take η = 0. �

Now let us consider the matter of stability of equilibrium points. We have seen in
Section 3.2 that it is not possible for an equilibrium point of an unconstrained system to
be asymptotically stable. However, this is not the case for systems with constraints, and so
let us give an example of a constrained system with an asymptotically stable equilibrium
point.

3.8.7 Example �Finish this

3.8.3 Constrained simple mechanical systems In this section we address the nature
of the equations which govern the dynamics of simple mechanical systems with constraints.
The observation we make in this section seems to have originated with Synge [1928].

We consider a simple mechanical system (Q, g, 0) with no potential energy, and a linear
constraint C. The constructions we make are readily modified to include the potential
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function and to include constraints which are not necessarily linear. However, the clutter of
this extra generality serves only to obscure the basic idea we illustrate.

Recall that in Section 2.6.4 we had introduced the g-orthogonal projection PC : TQ→ TQ
onto the orthogonal complement of the constraint distribution. Using this projection, in
Proposition 2.6.14 we had shown that solutions to the constrained system satisfy

g

∇c′(t)c
′(t) = λ(t)

PC(c′(t)) = 0
(3.20)

for some vector field t 7→ λ(t) ∈ C⊥
c(t) along c taking its values in the subspaces orthogonal to

C. We wish to examine these equations, and eliminate the Lagrange multipliers in a clever
way.

Our construction requires that we be able to differentiate the projection PC in the correct

fashion. To this end, for a vector field X on Q, let us define a map
g

∇XPC : TQ → TQ as

follows: for any vector field Y on Q we require
g

∇XPC to satisfy

(
g

∇XPC)(Y ) =
g

∇X(PC(Y ))− PC(
g

∇XY ).

In this manner we are able to define
g

∇XPC using our knowledge of how to define
g

∇ on vector

fields. Using this definition of
g

∇XPC we may show that in coordinates we have

(
g

∇XPC)i
j =

∂P i
j

∂qk
Xk +

g

Γi
klP

l
jX

k −
g

Γl
kjP

i
lX

k, i, j = 1, . . . , n, (3.21)

where P i
j , i, j = 1, . . . , n, are the components of PC, and so are defined by

PC

( ∂

∂qj

)
= P i

j

∂

∂qi
, j = 1, . . . , n.

The expression (3.21) can be troublesome to compute in practice, much as PC can be a
bother to calculate. However, the utility of what we do in this section lies in its theoretical
content.

Let us see how to compute
g

∇XPC in an example for which we have already computed
PC.

3.8.8 Example (Example 2.6.1 cont’d) We carry on looking at the rolling disk example where
Q = R2 × T2, and we use coordinates (x, y, θ, φ). The constraints are defined by

ẋ = r cos θφ̇, ẏ = r sin θφ̇.

In Example 2.6.13 we determined that the components P i
j , i, j = 1, . . . , 4, for the projection

PC are given by

1

mr2 + J


J +mr2 sin2 θ −mr2 sin θ cos θ 0 −rJ cos θ
−mr2 sin θ cos θ J +mr2 cos2 θ 0 −rJ sin θ

0 0 0 0
−mr cos θ −mr sin θ 0 mr2

 .
In Example 2.6.11 we saw that the Christoffel symbols are all identically zero for the Rie-

mannian metric g for this problem. Therefore we may compute the components of
g

∇XPC
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using (3.21). This is a tedious, unpleasant task, obviously best handled by a computer. By
delegating the labour in this fashion, we determine that if

X = Xx
∂

∂x
+Xy

∂

∂y
+Xθ

∂

∂θ
+Xφ

∂

∂φ
,

then the components of
g

∇XP are given by

1

mr2 + J


mr2 sin 2θXθ −mr2 cos 2θXθ 0 rJ sin θXθ

−mr2 cos 2θXθ −mr2 sin 2θXθ 0 −rJ cos θXθ

0 0 0 0
mr sin θXθ −mr cos θXθ 0 0

 .
While this final expression is bearable, the intervening calculations are less so. �

Now we believe that at least in principle we may compute this quantity
g

∇XPC. Let us
see why it is useful for us.

3.8.9 Theorem Let (Q, g, 0) be a simple mechanical system with zero potential, and let C be
a linear constraint on Q. A curve t 7→ c(t) on Q is a solution of the equations (3.20) if and

only if c′(0) ∈ Cc(0) and if c is a geodesic of the affine connection
C

∇ on Q defined by

C

∇XY =
g

∇XY + (
g

∇XPC)(Y).

Proof Take the covariant derivative of the second of equations (3.20) with respect to c′(t)
to get

g

∇c′(t)

(
PC(c′(t))

)
=
( g

∇c′(t)PC

)
(c′(t)) + PC(

g

∇c′(t)c
′(t)) = 0. (3.22)

Now apply PC to the first of equations (3.20) to get

PC(
g

∇c′(t)c
′(t)) = PC(λ(t)) = λ(t),

since λ is orthogonal to C. By (3.22) we now have

λ(t) = −
( g

∇c′(t)PC

)
(c′(t)).

Substituting this back into the first of equations (3.20) we see that if c satisfies both of
equations (3.20) then c′(0) ∈ Cc(0) and c satisfies the equation

g

∇c′(t)c
′(t) +

( g

∇c′(t)PC

)
(c′(t)) =

C

∇c′(t)c
′(t) = 0.

To show the reverse implication is a matter of simply reversing the above steps. �

Note that the geodesic equations for
C

∇ will read in coordinates as

q̈i +
g

Γi
jkq̇

j q̇k +
∂P i

j

∂qk
Xk +

g

Γi
klP

l
jX

k −
g

Γl
kjP

i
lX

k, i = 1, . . . , n. (3.23)

Thus one can in principle compute the geodesic equations for a given system. Certainly, one
can ask a computer to do it for you.
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3.8.10 Remarks 1. The essential statement of the above result is this: The solutions for a
potentialless simple mechanical system subject to a linear constraint are geodesics of an
appropriately defined affine connection. This justifies any of our previous constructions
using general affine connections, rather than restricting to Levi-Civita connections.

2. A somewhat thorough exploration of the matters surrounding Theorem 3.8.9 are provided
by Lewis [1998]. Implications to control theory may be found in [Lewis 2000b].

3. Bullo and Žefran [2002] give a way to simplify the computations involved in computing

the geodesics for the affine connection
C

∇. �

As a final demonstration of what we are doing in this section, let us use Theorem 3.8.9
to provide equations which govern the motion of the rolling disk.

3.8.11 Example (Example 2.6.1 cont’d) Let us write the equations of motion for the rolling
disk as geodesic equations as commanded by Theorem 3.8.9. In the coordinates (x, y, θ, φ)
the equations (3.23) are computed as

ẍ+
1

mr2 + J

(
mr2 sin 2θẋθ̇ −mr2 cos 2θẏθ̇ + Jr sin θθ̇φ̇

)
= 0

ÿ +
1

mr2 + J

(
mr2 cos 2θẋθ̇ +mr2 sin 2θẏθ̇ + Jr cos θθ̇φ̇

)
= 0

θ̈ = 0

φ̈+
1

mr2 + J

(
mr sin θẋθ̇ −mr cos θẏθ̇

)
= 0.

Of course, the solutions to these equations are only physical solutions when the initial ve-
locities satisfy the constraints. Although one can certainly choose other initial conditions,
they will have no relation to the problem of the rolling disk.

The equations can be simplified significantly by substituting the constraint equations,
which we know must be satisfied. Thus we use the relations

ẋ = r cos θφ̇, ẏ = r sin θφ̇

and after some straightforward manipulations we arrive at

ẍ+ r sin θθ̇φ̇ = 0

ÿ − r sin θθ̇φ̇ = 0

θ̈ = 0

φ̈ = 0.

These equations are now straightforwardly solved (see Exercise E3.12). �
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Exercises

E3.1 Show that if L is a hyperregular Lagrangian on a configuration space Q and F is a
force on Q, then existence and uniqueness if guaranteed for curves which satisfy the
Lagrange-d’Alembert principle for L and F . State a precise result which captures this
phenomenon.

E3.2 This exercise is a continuation of Exercise E2.4. In Figure E3.1 are shown the coordi-

x

θ

Figure E3.1 Coordinates for Exercise E2.4

nates for this example which will be used from now on.
Note that the system is a simple mechanical system. For this system, do the fol-

lowing.

(a) Determine all equilibrium points for the system.

(b) For each equilibrium configuration q0, compute ML(q0), CL(q0), and KL(q0).

(c) For each equilibrium point q0, determine whether it is linearly stable.

(d) For each equilibrium point q0, determine whether it is stable.

E3.3 This exercise is a continuation of Exercise E2.5. In Figure E3.2 are shown the coordi-

x

θ

φ

ψ

Figure E3.2 Coordinates for Exercise E2.5
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nates for this example which will be used from now on. Choose θ = 0 so that the arm
points “straight ahead,” and choose φ = ψ = 0 so that the pendulum is straight up.

Note that the system is a simple mechanical system. For this system, do the fol-
lowing.

(a) Determine all equilibrium points for the system.

(b) For each equilibrium configuration q0, compute ML(q0), CL(q0), and KL(q0).

(c) For each equilibrium point q0, determine whether it is linearly stable.

(d) For each equilibrium point q0, determine whether it is stable.

E3.4 This exercise is a continuation of Exercise E2.6. In Figure E3.3 are the coordinates

ψ

θ

φ

Figure E3.3 Coordinates for Exercise E3.4

for this example which will be used from now on.
Note that the system is a simple mechanical system. For this system, do the fol-

lowing.

(a) Determine all equilibrium points for the system.

(b) For each equilibrium configuration q0, compute ML(q0), CL(q0), and KL(q0).

(c) For each equilibrium point q0, determine whether it is linearly stable.

(d) For each equilibrium point q0, determine whether it is stable.

E3.5 Let Q = R2. Since Q is a vector space, it makes sense to ask whether a Lagrangian on
L is linear. For each of the following hyperregular Lagrangians, answer the following
questions:

1. Is the Lagrangian a Lagrangian for a linear system?

2. Is the Lagrangian a Lagrangian for a simple mechanical system? If so, write the
Riemannian metric and the potential function.

3. Find all equilibrium points for the Lagrangian.

4. Find the linearisation about each of the equilibrium points.
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5. Is the linearisation stable? State which of the results from this chapter you
applied to obtain your answer.

6. Is it possible, using the results given in this chapter, to determine whether the
equilibrium is stable under the actual dynamics of the system? If it is possible,
state the result which is applicable. If it is not possible,

(a) state why none of the results in this chapter apply, and

(b) see if you can figure out using your ingenuity whether the equilibrium point
is stable (you can play with the equations, or try numerical simulation).

(a) L(x, y, vx, vy) = 1
2
(v2

x + (1 + x2 + y2)v2
y)− 1

2
(x2 − y2).

(b) L(x, y, vx, vy) = 1
2
(v2

x − v2
y)− 1

2
(x2 + 4y2).

(c) L(x, y, vx, vy) = 1
2
(v2

x + v2
y)− 1

2
(xvy − yvx) + 1

2
(x2 + y2).

(d) L(x, y, vx, vy) = 1
2
(v2

x + v2
y) + 1

2
(xvx + yvy)− 1

2
(x2 + y2).

(e) L(x, y, vx, vy) = 1
2
(v2

x + 2v2
y)− 1

2
(x2 + 1

2
x4 + y2).

(f) L(x, y, vx, vy) = 1
2
(−v2

x + v2
y)− 1

2
(y2 − x2 − 1

2
x4).

(g) L(x, y, vx, vy) = 1
2
(2v2

x − v2
y)− 1

2
(2x2 + xy + 3y2 − xy2).

(h) L(x, y, vx, vy) = 1
2
(v2

x + 1
2
v4

x + 2v2
y)− 1

2
xy.

(i) L(x, y, vx, vy) = 1
2
(v2

x + v2
y)− 1

2
(x+ y2).

E3.6 For the following single degree of freedom Lagrangians, draw the corresponding phase
portraits.

(a) L(q, v) = 1
2
v2.

(b) L(q, v) = 1
2
v2 − q.

(c) L(q, v) = 1
2
v2 − 1

2
q2 + 1

3
q3.

(d) L(q, v) = 1
2
v2 + 1

2
q2 − 1

3
q3.

(e) L(q, v) = 1
2
v2 − 1

3
q3.

E3.7 Take a typical hardcover book (by typical, it is meant that it has three quite distinct
principal inertias, as most books do—avoid square books). You may wish to wrap
an elastic band around it to keep it closed. Now flip the book once around the axis
corresponding to its intermediate principal inertia.

(a) Does the book return to its initial configuration?

We shall now endeavour to explain the phenomenon you observed by using the equa-
tions (3.7) which describe the evolution of angular momentum of the body.

Finish this

(b)

E3.8 A car sits at rest with its passenger door open at an angle of 90◦. At time t = 0 the
driver accelerates with constant acceleration a.

(a) Write down the Lagrangian associated to the door.

(b) Without writing down the Euler-Lagrange equations , write an expression in terms
of an integral for the time taken for the door to close.
Hint: Is energy conserved for the Lagrangian you wrote down?

E3.9 For each of the systems of Exercise E3.6, give a sketch of the phase portrait which
would result from the addition of a dissipative force of the form F (q, v) = −δv for some
smallish δ. Interpret these phase portraits in light of the discussion of Section 3.5.1.

E3.10 This exercise is a continuation of Exercise E2.2. Suppose a particle of mass m is
constrained to move on a cylinder of radius r in the absence of external forces.
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(a) In the coordinates used in Exercise E2.2, provide an expression for the kinetic
energy Riemannian metric.

(b) In these same coordinates, write the Euler-Lagrange equations.

(c) In these same coordinates, determine the Christoffel symbols and write the
geodesic equations for the kinetic energy Riemannian metric.

(d) What do the geodesics look like from the previous part of the question.

E3.11 Let Q = R+×R (here R+ is the set of positive real numbers). Use standard Cartesian
coordinates (x, y) for Q. On Q consider the Riemannian metric g specified in the given
coordinates by

g =
1

y2
(dx⊗ dx+ dy ⊗ dy).

(a) Determine the Christoffel symbols and write the geodesic equations for this Rie-
mannian metric.

(b) Show that geodesics fall into two classes:

1. vertical lines;

2. arcs of circles lying in Q with their centres on the x-axis.

Make sure that you demonstrate that these are the only possibilities.
Hint: For the second type of geodesic, try to substitute the parameterised equation
for a circle into the geodesic equations, and see what comes out.

(c) Using the discussion of Section 3.7.2, comment on the geodesics you have found
as they relate to a simple mechanical system with a nonzero potential function.
That is, relate the geodesics to a physical system with a nonzero potential.

E3.12 This problem refers to Example 3.8.11 for the rolling disk. Do the following.

(a) Obtain explicit solutions to the rolling disk equations using the final form of the
geodesic equations derived in Example 3.8.11.

(b) Describe the resulting motions of the disk.

(c) Verify that the energy of the system is constant along solutions. Should you have
been able to predict this?

(d) Are there any other functions of the configurations and their velocities which you
can see are conserved?

E3.13 This exercise refers to Exercise E2.36. In part (f) of that exercise you obtained equa-
tions which govern the motion of the ball in terms of the ball’s spatial angular velocity
and the position of contact of the ball with the table.

(a) Eliminate the spatial angular velocity from these equations to get equations only
in the point of contact of the ball with the table.

(b) Solve the equations from the previous part of the problem (this should be easy; if
it is not, you have made an error), and plot a typical path for the point of contact
as seen by an inertial observer.

(c) Show explicitly that the energy of the ball is not constant along solutions. Should
you have been able to guess that this was the case?

Now we add some dissipation to the problem. We consider the forces which might
arise from air resistance as the surface of the ball rotates. A simple model for such an
effect would be the addition of a force of the form F = −δω where ω is the spatial
angular velocity.
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(d) Derive the equations of motion in terms of the spatial angular velocity and point
of contact of the ball with the surface of the table, with the addition of the air
resistance force.

(e) As is part (a), eliminate the spatial angular velocity from your equations to get
equations only in the position of the point of contact.

(f) Observe that the equations you have are linear. Obtain the characteristic equa-
tion. Plug in some numbers, and numerically find the roots of this equation.
What is the effect of the dissipative force on the motion of the ball?
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Chapter 4

An introduction to control theory for Lagrangian
systems

In this chapter we undertake rather a hodgepodge of control theoretic topics. The sys-
tematic investigation of control theory for mechanical systems is in its infancy, so one cannot
expect much in the way of unity here. What’s more, what is known is often beyond the scope
of our presentation. What we try to do is indicate how the special structure of Lagrangian
systems plays out when one employs some of the standard control theoretic techniques.

The most pleasure is apt to be derived from the material in this section by those who have
some background in control. However, much of the material is self-contained. An excellent
introduction to the mathematical foundations of control is the book by Sontag [1998]. We
refer to [Spong and Vidyasagar 1989] for more detail on the material in Section 4.2 on robot
control. In Section 4.4 it would be helpful if the reader had some background in linear
systems theory, and a good source for this is [Brockett 1970]. The subject of nonlinear
control is one with which an average reader may not be familiar. A good text is [Nijmeijer
and van der Schaft 1990]. The subject of passivity methods is dealt with in the book [Ortega,
Loria, Nicklasson and Sira-Ramirez 1998]. We should blatantly state that the reader who
forms an opinion about the subject matter in control theory based upon the material in this
chapter will have a rather non-conventional view of the subject.

4.1 The notion of a Lagrangian control system

In this section we shall simply describe a general control problem in Lagrangian mechan-
ics. Our setting here will be far too general for us to be able to say much about it, but it
forms the basis for the specialising as we do in subsequent sections.

Let L be a Lagrangian on a configuration space Q. We consider a collection F =
{F 1, . . . , Fm} of forces on Q. The idea is that each one of these forces represents a direction
in which we have control over our system. The total force which we command is then a linear
combination of the forces F 1, . . . , Fm. Following the convention in control theory, we denote
the coefficients in this linear combination by u1, . . . , um. Thus the governing differential
equations in a set of coordinates are

d

dt

( ∂L
∂vi

)
− ∂L

∂qi
= uaF

a
i , i = 1, . . . , n. (4.1)

We shall call a pair (L,F ) as above a Lagrangian control system . Let us for simplic-
ity make the assumption that the subspace of TqQ spanned by F 1(t, vq), . . . , F

m(t, vq) is
independent of q. If for each (t, vq) ∈ R× TQ we have

spanR
{
F 1(t, vq), . . . , F

m(t, vq)
}

= TqQ,
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we say that the system is fully actuated . Otherwise we say that it is underactuated .
Generally, the issues surrounding the control of fully actuated systems are comparatively
straightforward. Underactuated systems are quite challenging, on the other hand.

When one looks at equation (4.1) as a control system, the types of questions one is
interested in differ from those one considers when one is interested in dynamics. One wishes,
in control, to design the coefficients u1, . . . , um so that the system behaves in a desired
manner. If one designs the controls to be functions only of time, u1(t), . . . , um(t), one says
the controls are open loop. The idea with open loop control is that you have analysed
your problem and determined that the specified controls, when substituted into (4.1) will
accomplish the desired objective. The problem is that this procedure is often not robust. It
will suffer in the presence of model inaccuracies, uncertainty in initial conditions, etc. Thus
one often wishes to have the controls somehow keep track of the current state using feedback,
as well as perhaps the time, say, u1(t, vq), . . . , um(t, vq), so that if one is not quite doing what
is expected, then the control can compensate. This is called a closed loop control.

Some examples of control problems are as follows.

1. The reconfiguration problem: Here one wishes to start the system at time t = 0 at
a state vq1 ∈ TQ and design the controls u1, . . . , um so that at time t = T > 0 the
system, upon solving the equation (4.1), will arrive at the state vq2 .

2. The trajectory tracking problem: For this problem, one has a prescribed curve t 7→
cdes(t) ∈ Q one wishes to follow. The objective is to design the controls so that one
follows this curve, or follows it as closely as possible.

3. The point stabilisation problem: Here one has a point q0 ∈ Q and one wishes to design
the controls u1, . . . , um, probably closed loop, so that q0 is an asymptotically stable
equilibrium point for the equations (4.1).

Sometimes one will also have outputs for the system. These will be in the form of
functions hα : R×TQ→ R, α = 1, . . . , s. In such cases, one becomes not so much interested
in the states in TQ as in the value of the outputs. Thus to the above problems, one may
wish to add the following.

4. The output tracking problem: The problem here is something like the trajectory track-
ing problem, except that one is interested in making the outputs follow a desired path.
Thus one has s desired functions of time, h1

des, . . . , h
s
des, and one wishes to design the

controls u1, . . . , um so that the output follows these desired outputs, or at least does
so as nearly as possible.

5. The output stabilisation problem: Here one has a fixed operating point for the output,
say h0 ∈ Rs, and one wishes to design controls in such a manner that outputs which
start near h0 end up at h0 as t→∞. Thus h0 becomes an asymptotically stable fixed
point, in some sense.

4.2 “Robot control”

We place the title of this section in inverted commas because the subject of robot control
is large, and there are many issues involved. We will only address the most basic ones. For a
more thorough overview, see Chapter 4 of [Murray, Li and Sastry 1994], or the book [Spong
and Vidyasagar 1989].

Before we begin with the control theory proper, let us state what we mean by a system
to which we may apply “robot control.” This is a rather limited class of problems. To be
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precise, a Lagrangian control system (L,F ) on Q is a robotic control system when

1. Q = Rn, and the canonical coordinate chart has preference over all others,

2. L is time-independent and hyperregular,

3. (L,F ) is fully actuated, and

4. unlimited force to the actuators is available.

Of course, the statement that the canonical coordinate chart is “preferred” is rather nebulous.
Its presence as an assumption is to justify certain coordinate-dependent constructions made
during the ensuing discussion.

It is perhaps useful to give some examples of robotic control systems, to ensure that
our assumptions include what one might certainly wish to include in this class. First of all,
consider an open chain planar robot with n links as depicted in Figure 4.1. By measuring

θ1

θn

Figure 4.1 An open chain robot

the angle of each of link in some manner, the configuration space of such a robot is Q = Tn.
Note that Tn 6= Rn, so we seem to violate our first assumption of what a robotic control
system should be. However, one typically closes one’s eyes to this, and pretends that S1

is actually R1. That is, one allows angles to continually grow, rather than resetting them
at 2π. This may not be a problem, but one should be aware that, in fact, most robots
do not quite satisfy the assumption 1 for robotic control systems. As for assumption 2, it
is not a problem since the Lagrangians for the vast majority of, if not all, robotic control
systems have Lagrangians which are derived from a simple mechanical system. The final
assumption 3 is simply an assumption which may or may not hold in a given application.
Most robots as would be found on a plant floor doing tasks such as welding or painting
are typically fully actuated. More sophisticated “mobile” robots typically will not be fully
actuated. Fully actuated systems, with the addition of the assumption 4, have the capacity
to follow arbitrary paths in configuration space, making control somewhat simpler.

4.2.1 The equations of motion for a robotic control system Let us use the assump-
tions we give above to write down the form of the equations we will use for these systems.
We let x = (x1, . . . , xn) denote standard coordinates for Q = Rn. Since the system is fully
actuated, we may as well suppose that the input forces {F 1, . . . , F n} are simply F i = dxi,
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i = 1, . . . , n. Let us denote this set of forces by Fcan. The Euler-Lagrange equations are
then

∂2L

∂vi∂vj
ẍj +

∂2L

∂vi∂xj
ẋj − ∂L

∂xi
= ui, i = 1, . . . , n.

If we define a symmetric invertible matrix function M : Rn×Rn → Rn×n to have components
∂2L

∂vi∂vj , i, j = 1, . . . , n, and if we define a map N : Rn × Rn → Rn by

N (x,v)i =
∂2L

∂vi∂xj
ẋj − ∂L

∂xi
, i = 1, . . . , n,

then the equations of motion can be written

M(x, ẋ)ẍ + N (x, ẋ) = u. (4.2)

Let us specialise the notation further to the situation when the Lagrangian L is derived
from a simple mechanical system (Q, g, V ), which will most often be the case. In this case
one readily sees, first of all, that M is independent of v, and indeed is simply the matrix of
components for the Riemannian metric g in the standard coordinates for Rn. The term N
can also be effectively broken down. We define a map C : Rn → L(Rn × Rn; Rn) by

C(x)(v1,v2)i =
1

2

(∂M ij

∂xk
+
∂M ik

∂xj
− ∂M jk

∂xi

)
vj

1v
k
2 .

Thus C is related in a simple way to the Christoffel symbols for the Riemannian metric g in
the standard coordinates. If dV is the vector of partial derivatives of the potential function
V , then the equations (4.2) specialise to the equations

M(x)ẍ + C(x)(ẋ, ẋ) + dV = u. (4.3)

The term C(x)(ẋ, ẋ) is often given the name “Coriolis forces.” Note that we violate our code
of coordinate invariance in writing these equations. Indeed, in Remark 2.4.12 we explicitly
advised against writing equations in the form (4.3)! However, we justify what we have
done by saying that we have used our assumption 1 for a robotic control system where the
standard coordinates for Q are preferred. Also, since we are supposed to be talking about
robot control, we may as well do as most robot control folks do, and write the equations
as (4.2) or (4.3).

Before we move on, let us give a useful property of the notation used in (4.3).

4.2.1 Lemma With M and C as used in (4.3) we have ẋtṀẋ− 2ẋt
(
C(x)(ẋ, ẋ)

)
= 0.

Proof We compute

Ṁ ij =
∂M ij

∂xk
ẋk.

It is then a straightforward computation using the definition of C to verify that

ẋtṀẋ− 2ẋt
(
C(x)(ẋ, ẋ)

)
=
(∂M jk

∂xi
ẋk − ∂M ik

∂xj
ẋk
)
ẋiẋj.

Since the expression in the brackets is skew-symmetric with respect to the indices i and j,
the result follows. �

Lewis [1997] gives an interpretation of this result in terms of conservation of energy.
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4.2.2 Feedback linearisation for robotic systems The title of this section is a bit
pretentious. What we talk about in this section is sometimes referred to as the “computed
torque” control law. It is, however, an example of a more general technique known as
feedback linearisation, and this is why the title is as it is.

The setup for the computed torque control law, like that for the PD control law in the
next section, is that one has a robotic control system (L,Fcan) on Q, and a desired trajectory
t 7→ xdes(t) for the configuration of the system. If the actual robot is evolving according to
a curve t 7→ x(t) in configuration space, the error , t 7→ e(t), is then the difference between
where one is and where one wants to be:

e(t) = x(t)− xdes(t).

The idea is that one wishes to design a control law u for (4.2) so that the error goes to zero
as t→∞. The computed torque control law is defined by

uCT = M(x, ẋ)ẍdes + N (x, ẋ)−M(x, ẋ)
(
Kvė + Kpe

)
,

where Kv,Kp ∈ Rn×n are matrices, designed so as to accomplish a stated objective. Let us
first get the form of the error dynamics using the computed torque control law.

4.2.2 Proposition Let t 7→ xdes(t) be a curve in Rn. With u(t) = uCT(t) in (4.2), the error
e(t) = x(t)− xdes(t) satisfies the differential equation

ë(t) + Kvė(t) + Kpe(t) = 0.

Proof Substituting uCT into (4.2), some straightforward manipulation yields

M(x, ẋ)
(
ë(t) + Kvė(t) + Kpe(t)

)
= 0.

The result follows since M(x,v) is invertible for all v and v. �

Now it is a simple matter to give a general form for Kv and Kp so that the error dynamics
go to zero at t→∞.

4.2.3 Proposition If Kv and Kp are symmetric and positive-definite, then the error dynamics
in Proposition 4.2.2 satisfy limt→∞ e(t) = 0.

Proof Writing the differential equation for the error in first-order form gives(
ė

ḟ

)
=

[
0 In

−Kp Kv

](
e
f

)
,

where f = ė. The result will follow if we can show that all eigenvalues of the matrix

A =

[
0 In

−Kp Kv

]
have negative real part. Let λ ∈ C be an eigenvalue with eigenvector (v1,v2) ∈ Cn × Cn.
We must then have (

v2

−Kpv1 −Kvv2

)
=

(
λv1

λv2

)
.
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Let 〈·, ·〉 be the standard inner product on Cn: 〈z1, z2〉 = z̄t
1z2, where ·̄ means complex

conjugation. We then have〈
λ̄z1, λv1

〉
=
〈
λ̄z1,v2

〉
= 〈v1, λv2〉
= 〈v1,−Kpv1 −Kvv2〉
= − 〈v1,Kpv1〉 − λ 〈v1,Kvv1〉 .

We also have
〈
λ̄z1, λv1

〉
= λ2 〈v1,v1〉, thus giving us

〈v1,v1〉λ2 + 〈v1,Kvv1〉λ+ 〈v1,Kpv1〉 = 0.

Now note that if v1 = 0 then we also have v2 = 0. Since eigenvectors are necessarily
nonzero, this implies that v1 6= 0. Thus λ satisfies the equation

aλ2 + bλ+ c = 0,

where a > 0 since v1 6= 0, and where b, c > 0 since Kp and Kv are symmetric and positive-
definite. We therefore conclude that λ has strictly negative real part, as desired. �

The computed torque control law has the advantage, therefore, of being able to track
accurately any desired reference trajectory. To do so, however, may require significant
actuator forces. Nevertheless, it is an effective control strategy.

4.2.3 PD control It is possible to use some simple ideas from classical control for
robotic systems, and perhaps the simplest controller which might be effective is PD control,
or Proportional-Derivative control. Here one simply defines the control to be the sum of
two terms, one proportional to the error, and one proportional to the derivative of the error.
That is, for a given desired trajectory t 7→ xdes(t) in Q, we define

uPD(t) = −Kpe(t)−Kvė(t),

for symmetric positive-definite matrices Kp,Kv ∈ Rn×n, and where e(t) = x(t) − xdes(t),
as before. The PD control law is not as effective as the computed torque controller for
following arbitrary reference trajectories. This is a general failing of PD controllers, often
alleviated by implementing integral control. However, the following result indicates that
a PD controller will stabilise a robotic control system to a desired configuration when the
Lagrangian is derived from a simple mechanical system. Since almost all robotic systems
are in practice of this form, this is not at all a significant restriction.

4.2.4 Proposition Let (L,Fcan) be a robotic control system with L the Lagrangian for the
simple mechanical system (Q, g, 0) with zero potential energy. If t 7→ xdes(t) = x0 is a
constant desired trajectory, then taking u(t) = uPD(t) in (4.3) gives limt→∞ e(t) = 0.

Proof We will use the LaSalle Invariance Principle to show that x0 is an asymptotically
stable equilibrium point for (4.3) if we take u = uPD. First note that the equations (4.3)
with u = uPD are

M(x)ẍ + C(x)(ẋ, ẋ) + Kvẋ + Kp(x− x0) = 0. (4.4)
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Now define a Liapunov function on Q by

G(x,v) =
1

2
vtM(x)v +

1

2
(xt − xt

0)Kp(x− x0).

We compute

Ġ(x, ẋ) = ẋM (x)ẍ +
1

2
ẋṀ(x)ẋ + ẋKp(x− x0)

= − ẋ
(
C(x)(ẋ, ẋ)

)
+

1

2
ẋṀ(x)ẋ− ẋtKvẋ

= − ẋtKvẋ.

Here we have used Lemma 4.2.1. Note that the closed-loop equations (4.4) are forced Euler-
Lagrange equations with Lagrangian

L̃(x,v) = L(x,v)− 1

2
(xt − xt

0)Kp(x− x0).

and with external force F (x,v) = Kvv. This force is strictly dissipative so we apply the
LaSalle Invariance Principle. The LaSalle Invariance Principle states that the system will
tend towards the set where F (x,v) · v = 0. However, this set is comprised of those points
in TQ where v = 0. Now we note, again with the LaSalle Invariance Principle in mind, that
the largest invariant set for L for which v = 0 is the set of critical points for L̃ of the form
(x̄,0). However, for such critical points x̄ must be a critical point for the potential function

Ṽ (x) =
1

2
(xt − xt

0)Kp(x− x0).

Since x0 is the only critical point for Ṽ , the result follows from Corollary 3.5.7. �

Murray, Li and Sastry [1994] provide an extension of the PD control we have defined
here which allows one to asymptotically track general reference trajectories. Also, the ideas
behind what we suggest here can be extended in a geometric framework which alleviates
some of the inherent restrictions of the PD control we suggest in this section. We refer the
reader to [Koditschek 1989, Bullo and Murray 1999] for ideas along these lines.

4.3 Passivity methods

Sorry, not this year. See [Ortega, Loria, Nicklasson and Sira-Ramirez 1998].

4.4 Linearisation of Lagrangian control systems

The material in the previous section was geared towards fully actuated systems, and
a special class of these, even. When confronted with a system with fewer controls than
degrees of freedom, things become more difficult. For certain control problems, notably the
point stabilisation problem, a good thing to try first is linearisation, just as when studying
dynamics.

4.4.1 The linearised system When linearising (4.1), one wishes to linearise both with
respect to control and state. In Section 3.2 we already linearised the left hand side of (4.1),
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so it only remains to linearise the terms with the control. This, however, is trivial since this
term is already linear in the control. Therefore, when linearising, one need only substitute
the value of the equilibrium point into the forces. With this as motivation, we make the
following definition.

4.4.1 Definition Let (L,F ) be a Lagrangian control system on Q and let q0 be an equilibrium
point for L. The linearisation of (L,F ) is the quadruple (ML(q0), CL(q0), KL(q0),F (q0))
where ML(q0), CL(q0), and KL(q0) are as defined in Proposition 3.2.10, and where F (q0) =
{F 1(0q0), . . . , F

m(0q0)} ⊂ T ∗q0
Q. �

Corresponding to the linearisation is the following linear control system on Tq0Q:

ML(q0)q̈(t) + CL(q0)q̇(t) +KL(q0)q(t) = uaF
a(0q0),

where t 7→ q(t) is a curve on Tq0Q. (We make a nasty abuse of notation here, so beware:
we let q denote both points in Q and points in Tq0Q.) In the same way as we did when
linearising near equilibria in studying dynamics, let us suppose that L is hyperregular so
that M ]

L(q0) is invertible. In this case, let us define a linear map BL(q0) : Rm → Tq0Q by

BL(q0)(u1, . . . , um) = u1M
]
L(q0)

(
F 1(0q0)

)
+ · · ·+ umM

]
L(q0)

(
Fm(0q0)

)
.

We then arrive at the linear control system on Tq0Q⊕ Tq0Q given by(
q̇
v̇

)
=

[
0 idV

−M ]
L(q0) ◦K

[
L(q0) −M ]

L(q0) ◦C
[
L(q0)

](
q
v

)
+

(
0

BL(q0)

)
u.

This is a linear control system in the best tradition. That is to say, it is a time-invariant
system of the form

ẋ = Ax+Bu

where

x =

(
q
v

)
A = AL(q0) =

[
0 idV

−M ]
L(q0) ◦K

[
L(q0) −M ]

L(q0) ◦C
[
L(q0)

]
B = BF (q0) ,

(
0

BL(q0)

)
.

There is an exorbitant amount of literature on such systems [e.g., Brockett 1970], and we
only address a few of the more basic notions for such systems. Our emphasis, like it was
when we were dealing with dynamics, is on deciding the relationship between the linearised
system and the actual system near the equilibrium point in question.

4.4.2 Controllability of the linearised system A first basic question deals with con-
trollability. The reader will recall that a linear control system

ẋ = Ax+Bu,

where t 7→ x(t) is a curve in a vector space V , is controllable if for any x1, x2 ∈ V there
exists a control u : [0, T ] → Rm so that if the initial condition is x(0) = x1, then x(T ) = x1.
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In brief, the system is controllable if it can be steered from any state to any other state. The
Kalman rank condition says that the system is controllable if and only if the matrix[

B AB · · · AN−1B
]

has rank equal to N = dim(V ), where A ∈ RN×N and B ∈ RN×m are the matrix represen-
tations of A and B in some basis for V .

Let us see how this transfers to our Lagrangian setting. The first result we state is the
most general, and to state it requires some notation. Let I be the collection of multi-
indices in {1, 2}. Thus an element I ∈ I has the form I = (i1, . . . , ik) where ia ∈ {1, 2} for
a = 1, . . . , k. For a multi-index I, we write |I| for its length. Thus |(i1, . . . , ik)| = k. For a
multi-index I ∈ I we denote by |I|1 the number of 1’s in I, and by |I|2 the number of 2’s
in I. Note that |I|1 + |I|2 = |I|. Now suppose that we choose a basis for Tq0Q and denote

by A1(q0),A2(q0) ∈ Rn×n the matrices of M ]
L(q0) ◦K

[
L(q0) and M ](q0) ◦C

[
L(q0), respectively,

with respect to this basis. Now for k ∈ Z+ define

Rn×n 3 M (k)(q0) =



k∑
j=k/2

∑
|I|=j

|I|1=k−j

Ai1(q0) · · ·Aij(q0), k even

k∑
j=(k+1)/2

∑
|I|=j

|I|1=k−j

Ai1(q0) · · ·Aij(q0), k odd.

Let us give the first few of the matrices M (k)(q0) so that the reader might begin to understand
the cumbersome notation. We determine that

M (1)(q0) = A2(q0)

M (2)(q0) = A1(q0) + A2(q0)
2

M (3)(q0) = A1(q0)A2(q0) + A2(q0)A1(q0) + A2(q0)
3

M (4)(q0) = A1(q0)
2 + A1(q0)A2(q0)

2 + A2(q0)A1(q0)A2(q0) + A2(q0)
2A1 + A2(q0)

4.

Hopefully this is enough to enable the reader to see how one proceeds, using the definitions
for M (k)(q0). k > 0.

With this notation in hand, we may state our main result concerning controllability of
linearisations.

4.4.2 Theorem Let (L,F ) be a Lagrangian control system on Q with L a hyperregular La-
grangian. Let q0 be an equilibrium point for L and let (ML(q0),CL(q0),KL(q0),F (q0)) be
the linearisation of (L,F ) at q0. The linearised system

ẋ = AL(q0)x + BF (q0)u

is controllable if and only if the matrix[
B(q0) M(1)(q0)B(q0) · · · M(2n−2)(q0)B(q0)

]
has rank 2n, where M(k)(q0), k = 1, . . . , 2n − 2 are as defined above with respect to some
basis for Tq0Q, and where B(q0) is the matrix of BL(q0) with respect to the same basis.



220 4 An introduction to control theory for Lagrangian systems 03/04/2003

Proof The following lemma contains the bulk of the idea of the tedious proof.

1 Lemma Let A ∈ R2n×2n and B ∈ R2n×m be given by

A =

[
0 In

A1 A2

]
, B =

[
0
B2

]
,

for A1,A2 ∈ Rn×n and B2 ∈ Rn×m. Let M(0) = In and for k ∈ Z+ define

M(k) =



k∑
j=k/2

∑
|I|=j

|I|1=k−j

Ai1 · · ·Aij , k even

k∑
j=(k+1)/2

∑
|I|=j

|I|1=k−j

Ai1 · · ·Aij , k odd.

Then, for k ∈ Z+ we have

AkB =

[
M(k−1)B2

M(k)B2

]
.

Proof For k = 1 we have M (1) = A2 so that(
M (0)B2

M (1)B2

)
=

(
B2

A2B2

)
.

One readily verifies now that the lemma holds for k = 1. Suppose it true for k > 1. We
then have

Ak+1B =

(
M (k)B2

A1M
(k−1)B2 + A2M

(k)B2

)
.

First let us suppose that k is even. In this case we have

A1M
(k−1) + A2M

(k) =
k−1∑

j=k/2

∑
|I|=j

|I|1=k−j−1

A1Ai1 · · ·Aij +
k∑

j=k/2

∑
|I|=j

|I|1=k−j

A2Ai1 · · ·Aij

=
k−1∑

j=k/2

∑
|I|=j

|I|1=k−j−1

A1Ai1 · · ·Aij +
k−1∑

j=k/2

∑
|I|=j

|I|1=k−j

A2Ai1 · · ·Aij + Ak+1
2

=
k∑

j=(k+2)/2

∑
|I|=j

|I|1=k−j+1

Ai1 · · ·Aij + Ak+1
2

=
k∑

j=(k+2)/2

∑
|I|=j

|I|1=k−j+1

Ai1 · · ·Aij

= M (k+1).

A similarly styled computation also shows that A1M
(k−1) + A2M

(k) = M (k+1) when k is
odd. This now gives the result. H
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To proceed with the proof of the theorem, note that the situation dealt with in the
theorem is just as in the lemma with A1 = −A1(q0), A2 = −A2(q0), and B2 = B(q0).
Furthermore, by the lemma we have

[
B AB A2B · · · A2n−1B

]
=

[
0 B2 M (1)B2 · · · M (2n−2)B2

B2 M (1)B2 M (2)B2 · · · M (2n−1)B2

]
.

Let us define M 1,M 2 ∈ R2n×2nm by

M 1 =
[

0 B2 M (1)B2 · · · M (2n−2)B2

]
M 2 =

[
B2 M (1)B2 M (2)B2 · · · M (2n−1)B2

]
.

Note image(M 1) ⊂ image(M 2). Therefore the rank of[
M 1

M 2

]
will equal 2n if and only if rank(M 1) = n, as stated. �

Let us now specialise the above theorem to the important case when CL(q0) = 0. In this
case, with our above notation with respect to a basis for Tq0Q, we have A2(q0) = 0. We now
show, using Theorem 4.4.2, that the following condition for controllability of the linearised
system holds.

4.4.3 Corollary Let (L,F ) be a Lagrangian control system on Q with L a hyperregular La-
grangian. Let q0 be an equilibrium point for L and let (ML(q0),CL(q0),KL(q0),F (q0)) be
the linearisation of (L,F ) at q0, supposing that CL(q0) = 0. The linearised system

ẋ = AL(q0)x + BF (q0)u

is controllable if and only if the matrix[
B(q0) A1(q0)B(q0) · · · An−1

1 (q0)B(q0)
]

has rank n, where A2(q0) is the matrix of M]
L(q0) ◦K

[
L(q0) with respect to some basis for

Tq0Q, and where B(q0) is the matrix of BL(q0) with respect to the same basis.

Proof One verifies using the definition of M (k)(q0) above, with A2(q0) = 0, that

M (k)(q0) =

{
0, k odd

A1(q0)
k/2, k even.

The result now follows directly from Theorem 4.4.2. �

4.4.4 Remark Corollary 4.4.3 holds in the important case where q0 is an equilibrium point for
a simple mechanical system since, by Proposition 3.3.7, CL(q0) = 0 at equilibrium points for
simple mechanical systems. Also note that the condition for controllability of the linearised
system simplifies significantly in this case since the matrix whose rank needs to be checked
is essentially half the size. �

Let us look at a simple example on the basis of the previous remark.
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4.4.5 Example (Example 2.6.3 cont’d) We consider the pendulum of Example 2.6.3, and now
apply a torque at the base of the pendulum. One might intuitively expect the system to be
controllable, but let us perform the linearisation analysis, just so we know how it goes.

The Lagrangian for the system we take to be L(q, v) = m`2 1
2
v2 +m`ag cos q. Note that

we reinsert units into the problem to make it a little more interesting. The Euler-Lagrange
equations, with the torque at the base of the pendulum denoted by u, read

m`2q̈ +m`ag sin θ = u.

There are two equilibrium points, q1 = 0 and q2 = π. We compute the linearisations of L at
these points to be

ML(q1) = m`2, KL(q1) = m`ag

ML(q2) = m`2, KL(q2) = −m`ag,

with CL(q1) = CL(q2) = 0 by virtue of the system being a simple mechanical system. We
then determine that

M ]
L(q1) ◦K

[
L(q1) =

ag

`
, M ]

L(q2) ◦K
[
L(q2) = −ag

`
.

We also have BL(q1) = BL(q2) = 1
m`2

. Now, adopting the notation of Corollary 4.4.3, we
find that [

B(q1) A1(q1)B(q1)
]

=
[

1
m`2

ag

m`

][
B(q2) A1(q2)B(q2)

]
=
[

1
m`2

− ag

m`

]
.

In each case, of course the rank of the matrix has maximal rank 1. This example is perhaps
too trivial to illustrate much, and the reader is encourage to try out the results on the more
interesting examples in the exercises. �

An important corollary is the following which deals with simple mechanical systems with
no potential. Recall that for such systems, every point q0 ∈ Q is an equilibrium point.

4.4.6 Corollary Let (L,F ) be a Lagrangian control system with L the Lagrangian for a sim-
ple mechanical system (Q, g, 0) with zero potential. For any q0 ∈ Q, the linearisation
(ML(q0),CL(q0),KL(q0),F (q0)) is controllable if and only if (L,F ) is fully actuated.

Proof In the notation of Theorem 4.4.2, A1(q0) = A2(q0) = 0. Therefore, using Corol-
lary 4.4.3 the system is controllable if and only if the matrix B(q0) has rank n. But this will
happen if and only if

spanR
{
F 1(0q0), . . . , F

m(0q0)
}

= Tq0Q.

By our assumption of the independence of the dimension of the span of the forces
F 1(vq), . . . , F

m(vq) on vq ∈ TQ, the result follows. �

This result has important implications. It says that one cannot expect anything helpful
to occur when linearising a simple mechanical system with a kinetic energy Lagrangian,
except in the trivial case when we have full authority available to us with the controls. In
these cases, we may resort to the methods of Section 4.2. In other cases, when the system
is underactuated, things become rather complicated, and we mention a few “simple” ideas
in Section 4.5.



03/04/2003 4.4 Linearisation of Lagrangian control systems 223

Let us give another important application of Theorem 4.4.2. Let us suppose that we
have a system which is subjected to a dissipative force which is linear in velocity, as is the
case with viscous friction. The force we consider is thus of the form

F (vq) = −R[
q(vq)

where Rq is a positive semi-definite quadratic form on TqQ. Note that this is simply a
generalisation of the viscous force given in a simple example in Example 2.5.9–1. With a
dissipative force of this type, an equilibrium point for L will still be an equilibrium point with
the addition of the dissipative force since this force vanishes when velocity is zero. Therefore,
we may still linearise about equilibria for L, even in the presence of this dissipative force. To
determine the controllability of the linearisation, we need a comparatively straightforward
modification of the notation used in Theorem 4.4.2. Let Ã1(q0) = A1(q0) be as used in
that theorem, and let Ã2(q0) be the matrix for the linear map M ]

L(q0) ◦ (C
[
L(q0) +R[

q0
). Now

define

Rn×n 3 M̃ (k)(q0) =



k∑
j=k/2

∑
|I|=j

|I|1=k−j

Ãi1(q0) · · · Ãij(q0), k even

k∑
j=(k+1)/2

∑
|I|=j

|I|1=k−j

Ãi1(q0) · · · Ãij(q0), k odd.

The following result tells us when the resulting linearisation of a system with viscous
dissipation is controllable.

4.4.7 Proposition Let (L,F ) be a Lagrangian control system on Q with L a hyperreg-
ular Lagrangian, and let F be a dissipative force on Q of the form F(vq) = R[

q(vq),
with Rq positive semi-definite, as above. If q0 is an equilibrium point for L, let
(ML(q0),CL(q0),KL(q0),F (q0)) be the linearisation of (L,F ). The linearisation of the
system with the addition of the dissipative force F is controllable if and only if the matrix[

B(q0) M̃(1)(q0)B(q0) · · · M̃(2n−2)(q0)B(q0)
]

has rank 2n, where M̃(k)(q0), k = 1, . . . , 2n − 2 are as defined above with respect to some
basis for Tq0Q, and where B(q0) is the matrix of BL(q0) with respect to the same basis.

Proof We shall compute the linearisation of the system at the equilibrium point q0. We do
this by working in coordinates (q1, . . . , qn). Following the computations preceding Proposi-
tion 3.2.10, we Taylor expand about (q0,0). The resulting expression is

∂2L

∂vj∂vi
ξ̈j(t) +

( ∂2L

∂qj∂vi
− ∂2L

∂vj∂qi

)
ξ̇j(t)− ∂2L

∂qj∂qi
ξj(t) + · · · =

−Rij(q0)ξ̇
j(t) + uaF

a
i (q0,0), i = 1, . . . , n,

where ξi(t) = qi(t)− qi
0, i = 1, . . . , n. Thus the linearised equations look like

ML(q0)q̈ + CL(q0)q̇ +KL(q0)q = −R[
q0

(q) + uaF
a(0q0).

Here again we make the horrific abuse of notation of writing points in the tangent space
Tq0Q as q. Using the fact that L is hyperregular, we write these as first-order equations:(

q̇
v̇

)
=

[
0 idV

−M ]
L(q0) ◦K

[
L(q0) −M ]

L(q0) ◦ (C
[
L(q0) +R[

q0
)

](
q
v

)
+

(
0

BL(q0)

)
u.

The result now follows directly from Lemma 1 of the proof of Theorem 4.4.2. �
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4.4.3 On the validity of the linearised system The previous section dealt with the
linearisation of a Lagrangian system. However, given our discussion of Section 3.2 on lineari-
sation as it relates to dynamics near equilibrium points, one would be well-justified in being
suspicious about cavalierly making conclusions about Lagrangian control systems based upon
properties of their linearised systems.

Things, however, are not as grim as they might be. The following result is Proposition 3.3
of [Nijmeijer and van der Schaft 1990], but translated into our context.

4.4.8 Theorem Let (L,F ) be a Lagrangian control system with hyperregular Lagrangian L, let
q0 be an equilibrium point for L, and let (ML(q0),CL(q0),KL(q0),F (q0)) be the linearisation
of (L,F ) at q0. If the linearised system is controllable, then for every T, ε > 0 the set of
points in TQ reachable from 0q0 in time T using controls satisfying ‖u(t)‖ < ε, t ∈ [0,T],
contains a neighbourhood of 0q0.

In other words, if the linearisation at q0 is controllable, then the system is controllable for
small times, and for small controls, near q0. This result is important, because it suggests that
it may be valid to use the linear approximation, as long as we remain near the equilibrium
point. Indeed, this is a very common technique for controlling systems near equilibrium
points.

The converse of the question dealt with by Theorem 4.4.8, however, is not so straight-
forward. That is, it is certainly not true that if a system is controllable near q0 then its
linearisation is also controllable. To determine the controllability properties of such systems,
one must resort to nonlinear methods. It is towards this that we now turn our attention.

4.5 Control when linearisation does not work

In this section we give a crude flavour to the problem of how to attack the control problem
for a mechanical system when one has found that the linearisation is not controllable. It is
beyond the scope of what we are doing to deal in any depth with the problems here, and
therefore we give only a brief sketch of some of the existing technology, and point the reader
to the appropriate literature.

4.5.1 Driftless nonlinear control systems As a preparation to the techniques we
will use to control mechanical systems, we look at a class of nonlinear system which is not
mechanical. A driftless control system is a pair Σ = (Q,X ) where X = {X1, . . . , Xs}
is a collection of vector fields on Q. The control system we consider is given by

c′(t) = uα(t)Xα(c(t)). (4.5)

The controls we consider are, say, piecewise differentiable, although we may use more general
controls. A controlled trajectory for a driftless system Σ = (Q,X ) is a pair (c, u) where
u : [0, T ] → Rs is piecewise differentiable, and where c : [0, T ] → Q is such that the differential
equation (4.5) is satisfied. We shall make the assumption that the dimension of the subspace
Xq defined by

Xq = spanR {X1(q), . . . , Xs(q)}

is independent of q.
It is possible to give a complete description of controllability for such systems. First

let us describe the type of controllability we consider. The driftless system {X1, . . . , Xs} is
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controllable if for q1, q2 ∈ Q there exists a controlled trajectory (c, u) defined on the interval
[0, T ] with the property that c(0) = q1 and c(T ) = q2. To determine the controllability
conditions we let L(X ) be the smallest subset of vector fields on Q with the property that
X ⊂ L(X ) and with the property that [X, Y ] ∈ L(X ) for all vector fields X, Y ∈ L(X ).
Now, for each q ∈ Q, define a subspace Lie(X )q by

Lie(X )q = {X(q) | X ∈ L(X )} .

To compute L(X ) in practice, it often suffices to iterative take Lie brackets of the vector
fields X1, . . . , Xs until one stops generating new directions. Thus one computes the vector
fields [Xa, Xb], a, b = 1, . . . , s, [Xa, [Xb, Xc]], a, b, c = 1, . . . , s, and so on. Typically this
process will “terminate” in the sense that Lie(X )q will stop growing.

The following important result gives conditions on when a driftless system is controllable.

4.5.1 Theorem (Chow [1939]) A driftless control system Σ = (Q,X ) is controllable if
Lie(X )q = TqQ for each q ∈ Q. If the vector fields X are real analytic, then this condition
is also necessary.

Let us make some general comments concerning driftless systems.

4.5.2 Remarks 1. We name driftless systems as we do because they are a specific case of
control systems of the type

c′(t) = X0(c(t)) + uα(t)Xα(c(t)),

where we now have no control over the vector field X0, which is called the drift vector
field . For driftless systems, of course, the drift vector field is zero. Systems with nonzero
drift vector fields are significantly harder to deal with. In particular, there are no known
necessary and sufficient conditions for controllability of the type given in Theorem 4.5.1
for systems with drift.

2. Note that equation (4.5) essentially describes the set of curves t 7→ c(t) whose tangent
vectors lie in c′(t) lie in the subspace spanR {X1(c(t)), . . . , Xs(c(t))} for each t. In this
way, one can think of (4.5) as describing a linear constraint on Q, exactly as we did
in Section 2.6. With this interpretation, Theorem 4.5.1 gives conditions on when it is
possible to connect any two points in Q with a curve satisfying the constraint.

3. If one linearises (4.5) about a point q0, the resulting linear control system on Tq0Q is
simply

q̇(t) = B(q0)u,

where B(q0) : Rs → Tq0Q is defined by B(q0)u = uαXα(q0). The Kalman rank condition
(the “A” matrix is zero) tells us that this linearisation is stable if and only if B(q0) is
surjective, i.e., if the tangent vectors X1(q0), . . . , Xs(q0) generate Tq0Q. Thus the system
is controllable only in the trivial case where the inputs allow us to access all directions
in Q. �

Now that we have dealt with the controllability question for driftless systems, let us
look at how to handle some common control problems. First let us look at the problem of
designing a control law which will stabilise the system to a desired point q0. The following
result states that the upshot of the observation Remark 4.5.2–3 is fatal as far as using
feedback to stabilise a driftless system.
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4.5.3 Theorem (Brockett [1983]) Let q0 ∈ Q. It is not possible to define a continuous func-
tion u: Q → Rs with the property that the closed-loop system for (4.5),

c′(t) = uα(c(t))Xα(c(t)),

has q0 as an asymptotically stable fixed point.

The theorem states that if we wish to use a closed-loop controller to stabilise the sys-
tem (4.5), then the feedback must either be discontinuous, or time-dependent. Both ap-
proaches have been tried in the literature with some success. The papers [Sontag 1999, Bac-
ciotti and Ceragioli 1999] provide a review of the use of discontinuous feedback to stabilise
an equilibrium point. One of the problems surrounding the use of discontinuous feedback
is that it becomes an issue to decide in what sense solutions are to be defined. The most
common notion is “the sense of Fillipov” [Filippov 1984], but ideas of Clarke, [Clarke 1983]
and [Clarke, Ledyaev, Stern and Wolenski 1998], are also important.

When talking about stabilisation of driftless systems, the notion of “homogeneity” is im-
portant. A recent paper with an excellent survey of such issues in the introduction is [Morin,
Pomet and Samson 1999]. In that paper will also be found an algorithm for providing a sta-
bilising control law based on the method of homogeneous approximation. Coron and Rosier
[1994] show, roughly, that if a system can be stabilised by discontinuous feedback, then it
can be stabilised by time-varying feedback.

Now let us turn to reviewing the literature concerning the question of constructing a
control law which steers the system from one point to another. Of course, before attempting
such a thing, one must ensure that the system is controllable. The state of knowledge
here is not as advanced as it is for the stabilisation problem, and a review of what is
known is presented in Chapter 8 of [Murray, Li and Sastry 1994]. The paper [Murray and
Sastry 1993] gives a methodology of using sinusoids to steer a class of systems. The class
of systems are somewhat restricted, but it is sometimes possible to put a given system into
the required form. Lafferriere and Sussmann [1991] provide another methodology based on
“nilpotent approximations.” The methods here may be useful in the context of kinematically
controllable systems which we discuss in Section 4.5.4.

4.5.2 Affine connection control systems The mechanical systems we consider are an
important subclass of Lagrangian control systems whose Lagrangians are those for a simple
mechanical system (Q, g, 0) with zero potential. We also make the assumption that the input
forces are independent of time and velocity. Thus the input forces F = {F 1, . . . , Fm} are
simply one-forms on Q. As we saw in Proposition 2.5.10, the equations which govern the
motion of this control system are then

g

∇c′(t)c
′(t) = ua(t)g

](F a(c(t))),

where
g

∇ is the Levi-Civita connection associated with g. It turns out that we loose nothing
by generalising to the situation where the connection is arbitrary, and the inputs are arbitrary
vector fields. To this end, we say that an affine connection control system is a triple
Σaff = (Q,∇,Y ) where ∇ is an affine connection on Q, and Y = {Y1, . . . , Ym} are vector
fields on Q. The control equations are then, of course,

∇c′(t)c
′(t) = ua(t)Ya(c(t)). (4.6)
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A controlled trajectory for an affine connection control system is a pair (c, u) where
u : [0, T ] → Rm is piecewise differentiable, and where c : [0, T ] → Q has the property that
the differential equation (4.6) is satisfied. The act of even defining appropriate notions of
controllability for (4.6) requires some ideas we do not wish to deal with in full generality [see
Lewis and Murray 1997]. Let us agree to deal only with the simplified notion of controllability
called equilibrium controllability where the system possesses this property if for each
q1, q2 ∈ Q, there exists a controlled trajectory (c, u) defined on the interval [0, T ] with the
property that c′(0) = 0q1 and c′(T ) = 0q2 . Roughly, the system is equilibrium controllable
when it can be steered from any point at rest to any other point at rest. As we have been
doing all along, we shall assume that the dimension of the subspace

Yq = spanR {Y1(q), . . . , Ym(q)}

is independent of q.
Note that (4.6) has a form somewhat similar to the equation (4.5) for driftless systems.

However, the two types of systems are in no way the same! For example, the equations (4.6)
are second-order, whereas the equations (4.5) are first-order. Despite the fact that the two
types of equations are not equivalent, in some examples they are related in some way, and
it is this fact which we will exploit in the remainder of the section.

4.5.3 Mechanical systems which are “reducible” to driftless systems It turns out
that some, but certainly not all (in some sense very few indeed), mechanical systems can, in
a limited sense, be thought of as driftless systems. Fortunately, these systems are ones for
which linearisation is ineffective, so the connection with driftless systems provides an “in”
to being able to do some control tasks for these systems.

The following definition establishes the type of correspondence we are after in this sec-
tion.

4.5.4 Definition Let Σaff = (Q,∇,Y ) be an affine connection control system and let Σ =
(Q,X ) be a driftless system. Σaff is reducible to Σ if the following two conditions hold:

(i) for each controlled trajectory (c, ũ) for Σ defined on [0, T ] with ũ differentiable and
piecewise C2, there exists a piecewise differentiable map u : [0, T ] → Rm so that (c, u)
is a controlled trajectory for Σaff;

(ii) for each controlled trajectory (c, u) for Σaff defined on [0, T ] and with c′(0) ∈ Xq, there
exists a differentiable and piecewise C2 map ũ : [0, T ] → Rs so that (c, ũ) is a controlled
trajectory for Σ. �

The idea of the definition is quite simple. It establishes that there is a correspondence
between controlled trajectories for the driftless system and the affine connection control
system. In making the correspondence, one has to be careful of two things.

1. The same types of controls cannot be used for both Σaff and Σ. For the driftless
system, if the input is discontinuous, this will imply that there will be instantaneous
velocity jumps. Such phenomenon are not physically realisable for affine connection
control systems since this would require infinite forces. This is because at points of an
instantaneous velocity jump, acceleration will be infinite. This explains why in part (i)
we need to add extra differentiability to the input for Σ.

2. It will not be possible to assign to every controlled trajectory of Σaff a controlled
trajectory of Σ. This is clear since initial conditions for Σaff allow that c′(0) can be
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arbitrary, whereas all controlled trajectories for Σ will have c′(0) ∈ Xc(0). This explains
the subsidiary condition on controlled trajectories for Σaff is part (ii) of Definition 4.5.4.

The following result gives the surprisingly simple answer to the question of when an affine
connection control system is reducible to some driftless system.

4.5.5 Theorem (Lewis [1999]) An affine connection control system Σaff = (Q,∇,Y ) is re-
ducible to a driftless system Σ = (Q,X ) if and only if the following two conditions hold:

(i) Xq = Yq for each q ∈ Q;

(ii) ∇XX(q) ∈ Yq for every vector field X having the property that X(q) ∈ Yq for every
q ∈ Q.

The first condition is perhaps not surprising, but neither is it obvious. It states that
when establishing whether Σaff = (Q,∇,Y ) is reducible to Σ = (Q,X ) we may as well
assume that X = Y . The meat of the theorem is the second condition, however. This
condition is one which is readily checked. It is also true that there will be very few systems
which satisfy this condition. Nevertheless, there appears to be an unnaturally large class of
physical systems which meet the criterion of Theorem 4.5.5, so it is an interesting one as
concerns applications.

Not only does Theorem 4.5.5 provide conditions for when a system is reducible to a
driftless system, but it turns out that when the conditions of the theorem are met, it is
comparatively easy to derive the controls for the affine connection control system from those
for the driftless system. To state the result, we need to introduce the symmetric product
which takes two vector fields X and Y on Q and returns another vector field 〈X : Y 〉 defined
by

〈X : Y 〉 = ∇XY +∇YX.

It is easy to show (see Exercise E4.4) that condition (ii) of Theorem 4.5.5 is equivalent to the
statement that 〈X : Y 〉 (q) ∈ Yq for every pair of vector fields X and Y with the property
that X(q), Y (q) ∈ Yq. With this, we state the following result.

4.5.6 Proposition Let Σaff = (Q,∇,Y ) be an affine connection control system which is re-
ducible to the driftless system (Q,Y ). Suppose that the vector fields Y = {Y1, . . . ,Ym} are
linearly independent and define γd

ab : Q → R, a, b, d = 1, . . . ,m, by

〈Ya : Yb〉 = γd
abYd,

which is possible by condition (ii) of Theorem 4.5.5. If (c, ũ) is a controlled trajectory for
the driftless system Σ then, if we define the control u by

ud(t) = ũa(t)ũb(t)
(
˙̃ud(t) + 1

2
γd

ab(c(t))
)
, d = 1, . . . ,m,

(c, u) is a controlled trajectory for the affine connection control system Σaff.

Proof By definition (c, ũ) satisfy

c′(t) = ũa(t)Ya(c(t)).
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Therefore

∇c′(t)c
′(t) = ∇c′(t)

(
ũb(t)Yb(c(t))

)
= ũb(t)∇c′(t)Yb(c(t)) + ˙̃ub(t)Yb(c(t))

= ũb(t)∇ũa(t)Ya(c(t))Yb(c(t)) + ˙̃ub(t)Yb(c(t))

= ũa(t)ũb(t)∇Ya(c(t))Yb(c(t)) + ˙̃ub(t)Yb(c(t))

= ũa(t)ũb(t)
1

2

(
∇YaYb +∇Yb

Ya

)
+ ˙̃ub(t)Yb(c(t))

= ũa(t)ũb(t)
(
˙̃ud(t) + 1

2
γd

ab(c(t))
)
Yd(t).

Now, if we define u as in the statement of the proposition, we have

∇c′(t)c
′(t) = ud(t)Yd(c(t)),

as desired. �

Let us summarise the point of the development in this section.

4.5.7 Affine connection control systems reducible to a driftless system Suppose that an affine
connection control system Σaff = (Q,∇,Y ) is reducible to a driftless system Σ = (Q,Y ).
(Note that without loss of generality we may suppose the input vector fields are the same
for Σaff and Σ.) First examine the control problem to see if it is one for which the design
may be done for the driftless system Σ. Examples of control problems of this type are

1. steering from rest at a given configuration to another and

2. stabilising to a point, provided that all initial conditions have velocities in Y.

One then does the design for the problem, if possible, using the driftless system, making use
of the literature given in Section 4.5.1. Once the controls are found for the driftless system,
then one uses Proposition 4.5.6 to translate controls for the driftless system to controls for
the affine connection control system. �

An example of an affine connection control system which can be reduced to a driftless
system is given in Exercise E4.5.

4.5.4 Kinematically controllable systems Bullo and Lynch [2001] provide a notion
which is weaker that the notion of equivalence to a driftless system we looked at in the last
section. The notion they provide is applicable to a larger class of systems, and so is worth
looking at as another means of approaching control for systems where linearisation methods
are not applicable.

The idea of Bullo and Lynch is somewhat like the idea of reducibility presented in the
previous section. There is a subtle difference, however, and this difference broadens the class
of problems to which the methods can be applied, although the method of applicability is
somewhat more restricted. The idea is that one starts with an affine connection control
system Σaff = (Q,∇,Y ) (one not necessarily reducible to a driftless system) and asks if
there are any vector fields on Q whose integral curves can be followed up to arbitrary pa-
rameterisation. Let us be precise about this. A vector field X on Q is a decoupling vector
field for Σaff if for every integral curve t 7→ c(t) for X and for every reparameterisation
t 7→ τ(t) for c, there exists a control t 7→ u(t) with the property that (c ◦τ, u) is a controlled
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trajectory. Σaff is kinematically controllable if there exists a collection of decoupling
vector fields for Σaff, X = {X1, . . . , Xs}, so that Lie(X )q = TqQ for each q ∈ Q.

Before we provide the conditions for determining when a vector field is a decoupling
vector field, let us say a few words about the implications of a system being kinematically
controllable, and contrast it with the notion of reducibility introduced in the previous section.
It is true that if a collection of vector fields X = {X1, . . . , Xs} has the property that
Lie(X )q = TqQ for each q ∈ Q, then one is able to connect any two points in Q with a curve
which is a concatenation of integral curves of the vector fields from X . Note that this is
not quite what is implied by Chow’s theorem. Chow’s theorem gives conditions so that one
can connect points with a curve whose tangent vector field lies in the subspace Xq at each
point. The distinction here is an admittedly subtle one, but is one worth understanding.
For example, it may be harder to construct a control law connecting two points if one is
only allowed to follow integral curves of the given vector fields from X . Also, the problem
of stabilisation is one which is better adapted to the situation where one can use arbitrary
curves with tangent vector fields in X. Therefore, in some ways the notion of possessing
decoupling vector fields is not as useful as being reducible to a driftless system. In the
latter case, one has greater freedom in determining the control laws available. However, the
notion of decoupling vector fields is important because they can sometimes be applied in
cases where the system is not reducible to a driftless system (see Exercise E4.6).

As a further note, we remark that if one wishes to avoid instantaneous velocity jumps,
then one must switch between vector fields in X at zero velocity. Therefore, if one wishes
to use a control law designed for the system

c′(t) = ũα(t)Xα(c(t)),

then one must alter the parameterisation of the curves so that one always starts and ends
with zero velocity when flowing along the segment of an integral curve for one of the vector
fields from X .

Now let us look at conditions which determine when a given vector field is a decoupling
vector field.

4.5.8 Proposition (Bullo and Lynch [2001]) A vector field X is a decoupling vector field for
an affine connection control system Σaff = (Q,∇,Y ) if and only if

(i) X(q) ∈ Yq for each q ∈ Q and

(ii) ∇XX(q) ∈ Yq for each q ∈ Q.

Proof First suppose that (i) and (ii) hold. To show that a vector field X is a decoupling
vector field, it suffices to show that for any function f : Q→ R and any integral curve c for
fX, there exists a control u so that (c, u) is a controlled trajectory for Σaff. Letting f and
c be so chosen, we have

∇c′(t)c
′(t) = ∇fXfX(c(t))

= f 2(c(t))∇XX(c(t)) + f(c(t))
(
L Xf(c(t))

)
X(c(t)).

Now using (i) and (ii) we have

X(c(t)),∇XX(c(t)) ∈ Yc(t).

Therefore, there exists t 7→ u(t) so that

f 2(c(t))∇XX(c(t)) + f(c(t))
(
L Xf(c(t))

)
X(c(t)) = ua(t)Ya(c(t)),
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and this shows that X is a decoupling vector field.
Now suppose that X is a decoupling vector field and let q ∈ Q. Let t 7→ c(t) be the

integral curve of X through q and suppose that c(0) = q. Define two reparameterisations,
τ1 and τ2, of c with the following properties:

1. τ1(0) = 0, τ ′1(0) = 1, and τ ′′1 (0) = 0;

2. τ2(0) = 0, τ ′2(0) = 1, and τ ′′2 (0) = 1.

Let c1 = c ◦τ1 and c2 = c ◦τ2. We then have

∇c′1(t)c
′
1(t) = ∇c′(τ1(t))τ ′1(t)c

′(τ1(t))τ
′
1(t)

= (τ ′1(t))
2∇c′(τ1(t))c

′(τ1(t)) + τ ′′1 (t)c′(τ1(t)).

Evaluating this at t = 0 gives

∇c′1(t)c
′
1(t)
∣∣
t=0

= ∇XX(q).

Similarly for c2 we have
∇c′2(t)c

′
2(t)
∣∣
t=0

= ∇XX(q) +X(q).

Since we are assuming that X is a decoupling vector field for Σaff we then have

∇XX(q) = ua
1Ya(q), ∇XX(q) +X(q) = ua

2Ya(q)

for some u1, u2 ∈ Rm. This then clearly implies that ∇XX(q), X(q) ∈ Yq, as in the statement
of the proposition. �

As with systems reducible to a driftless system, it is possible to relate the control laws used
to move the system along a decoupling vector field to control laws for the affine connection
control system.

4.5.9 Proposition Let X be a decoupling vector field for the affine connection control system
Σaff = (Q,∇,Y ), let t 7→ c(t) be an integral curve for X and let t 7→ τ(t) be a reparameter-
isation for c. If t 7→ u(t) ∈ Rm is defined by

ua(t)Ya(c ◦τ(t)) = (τ ′(t))2∇XX(c ◦τ(t)) + τ ′′(t)X(c ◦τ(t)),

then (c ◦τ, u) is a controlled trajectory for Σaff.

Proof Since c is an integral curve for X, c′(t) = X(c(t)). We therefore have

∇(c ◦ τ)′(t)(c ◦τ)
′(t) = (τ ′(t))2∇c′(τ(t))c

′(τ(t)) + τ ′′(t)c′(τ(t))

= (τ ′(t))2∇XX(c ◦τ(t)) + τ ′′(t)X(c ◦τ(t)).

The result now follows since X is a decoupling vector field so that

(τ ′(t))2∇XX(c ◦τ(t)) + τ ′′(t)X(c ◦τ(t)) ∈ Yc ◦ τ(t). �

Let us summarise how to deal with affine connection control systems which are kinemat-
ically controllable.
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4.5.10 Strategy for affine connection control systems which are kinematically controllable First
one must find a collection of decoupling vector fields. Tips on how to do this are given
by Bullo and Lynch [2001]. One then must decide whether the control problem is one
which can be dealt with using the decoupling vector fields one has found. Here one must
face the fact that for a system which is kinematically controllable, one can only move as
one wishes exactly along the decoupling vector fields, and not along curves whose tangent
vector field lies in their span. Typical problems which can be dealt with in this framework
are path-planning problems. One then designs the control laws for the driftless system.
In order to prevent instantaneous velocity changes, each segment of the control law for
the driftless system must be reparameterised to stop and start at zero velocity. Then one
uses Proposition 4.5.9 to design the corresponding controls for the affine connection control
system. �
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Exercises

E4.1 This exercise is a continuation of Exercises E2.4, E2.29, and E3.2. For the equilibria
you determined for this example, determine the linearised control system, and check
whether it is controllable.

E4.2 This exercise is a continuation of Exercises E2.5, E2.30, and E3.3. For the equilibria
you determined for this example, determine the linearised control system, and check
whether it is controllable.

E4.3 This exercise is a continuation of Exercises E2.6, E2.31, and E3.4. For the equilibria
you determined for this example, determine the linearised control system, and check
whether it is controllable.

E4.4 Show that condition (ii) of Theorem 4.5.5 is equivalent to the statement that
〈Ya : Yb〉 (q) ∈ Yq for every pair of vector fields Ya, Yb ∈ Y .

E4.5 This exercise is a continuation of Exercises E2.7, E2.22, and E2.32. Let us use the
coordinates (r, ψ, θ) as indicated in Figure E4.1. The system is a simple mechanical

θ

ψ

r

Figure E4.1 A “robotic leg”

system with zero potential energy, and so can be represented as an affine connection
control system.

(a) In the stated set of coordinates, write the vector fields Y and from Exercise E2.22,
write the Christoffel symbols.

(b) Use the results of your previous answer to write the control equations in affine
connection control system form.

(c) Verify that the system is reducible to a kinematic system.

(d) If (t 7→ (r(t), ψ(t), θ(t)), t 7→ ũ(t)) is a controlled trajectory for the driftless system
(Q, {Y1, Y2}), find the control t 7→ u(t) which makes (t 7→ (r(t), ψ(t), θ(t)), t 7→
u(t)) is a controlled trajectory for the affine connection control system.

E4.6 This exercise is a continuation of Exercises E2.8 E2.23, and E2.33. Consider the planar
rigid body depicted in Figure E4.2. Let {e1, e2} be an orthonormal frame fixed in an
inertial coordinate system, and let {f 1,f 2} be an orthonormal frame fixed to the
body at the centre of mass. Denote by (x, y) the location of the origin of the frame
{f 1,f 2} (i.e., of the centre of mass) and let θ be the orientation of {f 1,f 2} with
respect to {e1, e2}. Thus (x, y, θ) are coordinates for the rigid body. Suppose a force
F is applied to the body at a point a distance h form the centre of mass along the body
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e2

e1

f
1

f
2

h

F

Figure E4.2 A controlled planar rigid body

f 1 direction as shown in the figure. Let F 1 denote the component of F along the body
f 1-direction and let F 2 denote the component of F along the body f 2-direction.

(a) What are the two input forces for the system written as one-forms on Q?

The system is a simple mechanical system with zero potential energy, and so can be
represented as an affine connection control system.

(b) Write the vector fields Y in the same coordinates, and from Exercise E2.23, write
the Christoffel symbols.

(c) Use the results of your previous answer to write the control equations in affine
connection control system form.

(d) Verify that the system is not reducible to a kinematic system.

(e) Show that the two vector fields

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y

X2 = − sin θ
∂

∂x
+ cos θ

∂

∂y
− mh

J

∂

∂θ

are decoupling vector fields for the system.

(f) Show that the system is kinematically controllable.

Define points (x1, y1, θ1), (x2, y2, θ2) ∈ Q by letting (xi, yi, θi) be the point on the
integral curve t 7→ (x(t), y(t), θ(t)) for Xi which satisfies (x(0), y(0), θ(0)) = (0, 0, 0)
and (x(1), y(1), θ(1)) = (xi, yi, θi), i = 1, 2. That is to say, solve the differential
equation for the vector field Xi, i = 1, 2, with initial configuration (0, 0, 0), and let
(xi, yi, θi), i = 1, 2, be the solution evaluated at t = 1.

(g) Construct control laws which start at (x(0), y(0), θ(0)) at rest, and steer the
system to the point (xi, yi, θi), i = 1, 2, also at rest. (That is, construct two
control laws, each steering to one of the desired points.)
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Appendix A

Linear algebra

The study of the geometry of Lagrangian mechanics requires that one be familiar with
basic concepts in abstract linear algebra. The reader is expected to have encountered these
concepts before, so this appendix serves as a refresher. We also use our discussion of linear
algebra as our “in” to talking about the summation convention is a systematic manner.
Since this gets used a lot, the reader may wish to take the opportunity to become familiar
with it.

A.1 Vector spaces

We shall suppose the reader to be familiar with the notion of a vector space V over a field
K, particularly the field R of real numbers, or the field C of complex numbers. On such a
vector space, one has defined the notions of vector addition , v1+v2 ∈ V , between elements
v1, v2 ∈ V , and the notion of scalar multiplication , av ∈ V , for a scalar a ∈ K and v ∈ V .
There is a distinguished zero vector 0 ∈ V with the property that 0 + v = v + 0 = v for
each v ∈ V . For the remainder of the section we take K ∈ {R,C}.

A subset U ⊂ V of a vector space is a subspace if U is closed under the operations of
vector addition and scalar multiplication. If V1 and V2 are vector spaces, the direct sum of
V1 and V2 is the vector space whose set is V1 × V2 (the Cartesian product), and with vector
addition defined by (u1, u2) + (v1, v2) = (u1 + v1, u2 + v2) and scalar multiplication defined
by a(v1, v2) = (av1, av2). If U1 and U2 are subspaces of V we shall also write V = U1 ⊕ U2

if U1 ∩ U2 = {0} and if every vector v ∈ V can be written as v = u1 + u2 for some u1 ∈ U1

and u2 ∈ U2.
A collection {v1, . . . , vk} of vectors is linearly independent if the equality

c1v1 + · · ·+ ckvk = 0

holds only when c1 = · · · = ck = 0. A set of vectors {v1, . . . , vk} generates a vector space
V if every vector v ∈ V can be written as

v = c1v1 + · · ·+ ckvk

for some choice of constants c1, . . . , ck ∈ K. A basis for a vector space V is a collection of
vectors which is linearly independent and which generates V . The number of vectors in a
basis we call the dimension of V , and this is readily shown to be independent of choice of
basis. A vector space is finite-dimensional if it possesses a basis with a finite number of
elements. If {e1, . . . , en} is a basis for V , we can write

v = v1e1 + · · ·+ vnen
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for some unique choice of v1, . . . , vn ∈ K, called the components of v relative to the basis.
Here we begin to adopt the convention that components of vectors be written with index
up. Let us use this chance to introduce the summation convention we shall employ.

A.1.1 Basic premise of summation convention Whenever one sees a repeated index, one as a
subscript and the other as a superscript, summation is implied.

Thus, for example, we have

viei =
n∑

i=1

viei,

as summation over i is implied.
A map A : U → V between is k-linear if A(au) = aA(u) and if A(u1 + u2) = A(u1) +

A(u2) for each a ∈ k and u, u1, u2 ∈ U . The linear map idV : V → V defined by idV (v) = v,
v ∈ V , is called the identity map for V . If {f1, . . . , fm} is a basis for U and {e1, . . . , en}
is a basis for V , for each i ∈ {1, . . . ,m} we may write

A(fa) = A1
ae1 + · · ·+ An

aen

for some unique choice of constants A1
a, . . . , A

n
a ∈ K. By letting a run from 1 to m we thus

define nm constants Ai
a ∈ K, i = 1, . . . , n, a = 1, . . . ,m, which we call the matrix of A

relative to the two bases. If u ∈ U is written as

u = u1f1 + · · ·+ umfm,

one readily ascertains that

A(u) =
n∑

i=1

m∑
a=1

Ai
au

aei.

Thus the components of A(u) are written using the summation convention as A1
au

a, . . . , An
au

a.
Let us say a few more things about our summation convention.

A.1.2 More properties of the summation convention Therefore, in our usual notion of ma-
trix/vector multiplication, this renders the up index for A the row index, and the down
index the column index. Note that we can also compactly write

n∑
i=1

m∑
a=1

Ai
au

aei = Ai
au

aei.

The set of linear maps from a vector space U to a vector space V is itself a vector space
which we denote L(U ;V ). Vector addition in L(U ;V ) is given by

(A+B)(u) = A(u) +B(u),

and scalar multiplication is defined by

(aA)(u) = a(A(u)).

Note that what is being defined in these two equations is A+B ∈ L(U ;V ) in the first case,
and aA ∈ L(U ;V ) in the second case. One verifies that dim(L(U ;V )) = dim(U) dim(V ).
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Given a linear map A : U → V , the kernel of A is the subspace

ker(A) = {u ∈ U | A(u) = 0}

of U , and the image of A is the subspace

image(A) = {A(u) | u ∈ U}

of V . The rank of A is defined to be rank(A) = dim(image(A)). The rank-nullity
formula says that dim(ker(A)) + rank(A) = dim(U).

Of special interest are linear maps from a vector space V to itself: A : V → V . In this
case, an eigenvalue for A is an element λ ∈ K with the property that A(v) = λv for
some nonzero vector v, called an eigenvector for λ. To compute eigenvalues, one finds
the roots of the characteristic polynomial det(λ idV −A) which has degree equal to the
dimension of V . If K = C this polynomial is guaranteed to have dim(V ) solutions, but
it is possible that some of these will be repeated roots of characteristic polynomial. If
det(λ idV −A) = (λ− λ0)

kP (λ) for a polynomial P (λ) having the property that P (λ0) 6= 0,
then the eigenvalue λ0 has algebraic multiplicity k. The eigenvectors for an eigenvalue
λ0 are nonzero vectors from the subspace

Wλ0 = {v ∈ V | (A− λ0 idV )(v) = 0} .

The geometric multiplicity of an eigenvalue λ0 is dim(Wλ0). We let ma(λ0) denote the
algebraic multiplicity and mg(λ0) denote the geometric multiplicity of λ0. It is always the
case that ma(λ0) ≥ mg(λ0), and both equality and strict inequality can occur.

A.2 Dual spaces

The notion of a dual space to a vector space V is extremely important for us. It is also
a potential point of confusion, as it seems, for whatever reason, to be a slippery concept.

Given a finite-dimensional vector space V (let us agree to now restrict to vector spaces
over R), the dual space to V is the set V ∗ of linear maps from V to R. If α ∈ V ∗, we shall
alternately write α(v), α · v, or 〈α; v〉 to denote the image in R of v ∈ V under α. Note that
since dim(R) = 1, V ∗ is a vector space having dimension equal to that of V . We shall often
call elements on V ∗ one-forms .

Let us see how to represent elements in V ∗ using a basis for V . Given a basis {e1, . . . , en}
for V , we define n elements of V ∗, denoted e1, . . . , en, by ei(ej) = δi

j, i, j = 1, . . . , n, where
δi
j denotes the Kronecker delta

δi
j =

{
1, i = j

0, otherwise.

The following result is important, albeit simple.

A.2.1 Proposition If {e1, . . . , en} is a basis for V then {e1, . . . , en} is a basis for V∗, called
the dual basis.

Proof First let us show that the dual vectors {e1, . . . , en} are linearly independent. Let
c1, . . . , cn ∈ R have the property that

cie
i = c1e

1 + · · ·+ cne
n = 0.
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For each j = 1, . . . , n we must therefore have cie
i(ej) = ciδ

i
j = cj = 0. This implies linear

independence. Now let us show that each dual vector α ∈ V ∗ can be expressed as a linear
combination of {e1, . . . , en}. For α ∈ V ∗ define α1, . . . , αn ∈ R by αi = α(ei), i = 1, . . . , n.
We claim that α = αie

i. To check this, it suffices to check that the two one-forms α and αie
i

agree when applied to any of the basis vectors {e1, . . . , en}. However, this is obvious since
for j = 1, . . . , n we have α(ej) = αj and αie

i(ej) = αiδ
i
j = αj. �

If {e1, . . . , en} is a basis for V with dual basis {e1, . . . , en} then we may write α ∈ V ∗ as
α = αie

i for some uniquely determined α1, . . . , αn ∈ R. If v ∈ V is expressed as v = viei

then we have
α(v) = αie

i(vjej) = αiv
jei(ej) = αiv

jδi
j = αiv

i.

Note that this makes the operation of feeding a vector to a one-form look an awful lot like
taking the “dot product,” but it is in your best interests to refrain from thinking this way.
One cannot take the dot product of objects in different spaces, and this is the case with
α(v) since α ∈ V ∗ and v ∈ V . The proper generalisation of the dot product is given in
Section A.3.

A.2.2 More properties of the summation convention When we write a collection of elements
of a vector space, we use subscripts to enumerate them, e.g., v1, . . . , vk. For collections of
elements of the dual space, we use superscripts to enumerate them, e.g., α1, . . . , αk. The
components of a vector with respect to a basis are written with indices as superscripts. The
components of a dual vector with respect to a basis for the dual space are written with indices
as subscripts.

A.3 Bilinear forms

We have multiple opportunities to define mechanical objects that are “quadratic.” Thus
the notion of a bilinear form is a useful one in mechanics, although it is unfortunately not
normally part of the background of those who study mechanics. However, the ideas are
straightforward enough.

We let V be finite-dimensional R-vector space. A bilinear form on V is a map B : V ×
V → R with the property that for each v0 ∈ V the maps v 7→ B(v, v0) and v 7→ B(v0, v) are
linear. Thus B is “linear in each entry.” A bilinear form B is symmetric if B(v1, v2) =
B(v2, v1) for all v1, v2 ∈ V , and skew-symmetric if B(v1, v2) = −B(v2, v1) for all v1, v2 ∈ V .
If {e1, . . . , en} is a basis for V , the matrix for a bilinear for B in this basis is the collection
of n2 number Bij = B(ei, ej), i, j = 1, . . . , n. B is symmetric if and only if Bij = Bji,
i, j = 1, . . . , n, and skew-symmetric if and only if Bij = −Bji, i, j = 1, . . . , n.

A.3.1 More properties of the summation convention Note that the indices for the matrix of a
bilinear form are both subscripts. This should help distinguish bilinear forms from linear
maps, since in the latter there is one index up and one index down. If B is a bilinear form
with matrix Bij, and if u and v are vectors with components ui, vi, i = 1, . . . , n, then

B(u, v) = Biju
ivj.

An important notion attached to a symmetric or skew-symmetric bilinear form is a map
from V to V ∗. If B is a bilinear form which is either symmetric or skew-symmetric, we define
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a map B[ : V → V ∗ by indicating how B[(v) ∈ V ∗ acts on vector in V . That is, for v ∈ V
we define B[(v) ∈ V ∗ to be defined by

〈B[v;u〉 = B(u, v), u ∈ V.

The rank of B is defined to be rank(B) = dim(image(B[)). B is nondegenerate if
rank(B) = dim(V ). In this case B[ is an isomorphism since dim(V ) = dim(V ∗), and we
denote the inverse by B] : V ∗ → V .

A.3.2 More properties of the summation convention If {e1, . . . , en} is a basis for V with dual
basis {e1, . . . , en}, then B[(v) = Bijv

jei. If B is nondegenerate then B](α) = Bijαjei, where
Bij, i, j = 1, . . . , n, are defined by BijBjk = δi

k.

This statement is the content of Exercise E2.17.
For symmetric bilinear forms, there are additional concepts which will be useful for us.

In particular, the following theorem serves as the definition for the index, and this is a useful
notion.

A.3.3 Theorem If B is a symmetric bilinear form on a vector space V, then there exists a
basis {e1, . . . , en} for V so that the matrix for B in this basis is given by

1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 −1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · −1 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 0


.

The number of nonzero elements on the diagonal of this matrix is the rank of B. The number
of −1’s along the diagonal is called the index of B.

This theorem is proved by the Gram-Schmidt argument. Note that the number of +1’s on
the diagonal of the matrix in the theorem is given by rank(B)− ind(B).

A.4 Inner products

An important special case is when all elements on the diagonal in Theorem A.3.3 have
the same sign. If all diagonal elements are +1 then we say B is positive-definite and if
all diagonal elements are −1 then we say B is negative-definite . Clearly, B is positive-
definite if and only if B(v, v) > 0 whenever v 6= 0, and B is negative-definite if and only if
B(v, v) < 0 whenever v 6= 0. A symmetric, positive-definite bilinear form is something with
which you are doubtless familiar: it is an inner product .

The most familiar example of an inner product is the standard inner product on Rn.
We denote this inner product by gcan and recall that it is defined by

gcan(x,y) =
n∑

i=1

xiyi,
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if x = (x1, . . . , xn) and y = (y1, . . . , yn). If {e1, . . . , en} is the standard basis for Rn, i.e., ei

consists of all zeros, with the exception of a +1 in the ith entry, then one verifies that the
matrix for gcan in this basis is the n× n identity matrix, denoted In.

On a vector space V with an inner product g, it is possible to define the notions of
symmetry and skew-symmetry for linear transformations A : V → V . To wit, a linear
transformation A is g-symmetric if g(Av1, v2) = g(v1, Av2) for every v1, v2 ∈ V , and is
g-skew-symmetric if g(Av1, v2) = −g(v1, Av2) for every v1, v2 ∈ V . Often, when the inner
product is understood, we shall just say “symmetric” or “skew-symmetric.” However, one
should be sure to understand that an inner product is necessary to make sense of these
notions.Add oriented

normal vector

A.5 Changes of basis

In our presentation of Lagrangian mechanics, often objects are characterised by how they
alter under changes of coordinate. This is reflected on the linear level by changes of basis.
Let us characterise how components of the objects discussed above behave when bases are
changed.

We let V be a finite-dimensional R-vector space with E = {e1, . . . , en} and F =
{f1, . . . , fn} bases for V . Since both E and F are bases, we may write

fi = P j
i ej, i = 1, . . . , n

and
ei = Qj

ifj, i = 1, . . . , n,

for 2n2 constants P i
j and Qi

j, i, j = 1, . . . , n. Furthermore we have

ei = Qj
ifj = Qj

iP
k
j ek.

Since E is linearly independent, this implies that

Qj
iP

k
j = δi

k, i, k = 1, . . . , n.

Thus P i
j and Qi

j, i, j = 1, . . . , n, are the components of matrices which are inverses of one
another.

We may also find relations between the dual bases E∗ = {e1, . . . , en} and F∗ =
{f 1, . . . , fn} for V ∗. We may certainly write

f i = Ai
je

j, i = 1, . . . , n,

for some constants Ai
j, i, j = 1, . . . , n. We then have

δi
j = f i(fj) = Ai

ke
k(P `

j e`) = Ai
kP

k
j , i, j = 1, . . . , n.

Therefore, we conclude that Ai
j = Qi

j, i, j = 1, . . . , n, so that we have

f i = Qi
je

j, i = 1, . . . , n.

In like manner we have
ei = P i

jf
j, i = 1, . . . , n.
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Let v ∈ V and write
v = viei = ṽifi.

Using the relation between the basis vectors we have

viei = viQj
ifj = ṽjfj.

Since F is linearly independent, this allows us to conclude that the components vi, i =
1, . . . , n, and ṽi, i = 1, . . . , n, are related by

ṽj = viQj
i , j = 1, . . . , n.

Similarly, if α ∈ V ∗, then we write

α = αie
i = α̃if

i.

Proceeding as we did for vectors in V , we compute

αie
i = αiP

i
jf

j = α̃jf
j.

Since F∗ is linearly independent we conclude that the components αi, i = 1, . . . , n, and α̃i,
i = 1, . . . , n, are related by

α̃j = αiP
i
j , j = 1, . . . , n.

Now let A : V → V be a linear map. The matrix of A in the basis E, Ai
j, i, j = 1, . . . , n,

are defined by
Aei = Aj

iej, i = 1, . . . , n.

Similarly, the matrix of A in the basis F, Ãi
j, i, j = 1, . . . , n, are defined by

Afi = Ãj
ifj, i = 1, . . . , n.

We write
Ã`

if` = Afi = P j
i Aej = P j

i A
k
j ek = P j

i A
k
jQ

`
kf`, i = 1, . . . , n.

Therefore, since F is linearly independent, we have

Ã`
i = P j

i A
k
jQ

`
k, i, ` = 1, . . . , n.

Note that this is the usual similarity transformation.
Finally, let us look at a bilinear map B : V ×V → R. We let the matrix of B in the basis

E be defined by
Bij = B(ei, ej), i, j = 1, . . . , n,

and the matrix of B in the basis F be defined by

B̃ij = B(fi, fj), i, j = 1, . . . , n.

Note that we have

B̃ij = B(fi, fj) = B(P k
i ek, P

`
j e`) = P k

i P
`
jBk`, i, j = 1, . . . , n.

This relates for us the matrices of B in the two bases.
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Appendix B

Differential calculus

Our approach to Lagrangian mechanics is to use a basic differential geometric formula-
tion. In order to carry this out, the reader must be supposed familiar with some basic topic
in real analysis. In this section we quickly review the prerequisite results.

B.1 The topology of Euclidean space

We let Rn be the collection of ordered n-tuples of real numbers. This is a vector space,
of course, but in this section, and indeed throughout this appendix, we are not so interested
in the algebraic structure as much as the analytic properties of Rn.

A subset U ⊂ Rn is open if for each x ∈ U there exists ε > 0 so that the open ball of
radius ε centred at x,

Bε(x) = {y ∈ Rn | ‖y − x‖ < ε} ,
is contained in U . Here ‖·‖ : Rn → R is defined by ‖x‖ =

√
gcan(x,x). A subset A ⊂ Rn is

closed if its complement Rn \ A is open. Here

Rn \ A = {x ∈ Rn | x 6∈ A} .

A limit point of a subset S ⊂∈ Rn is a point x ∈ Rn with the property that for each ε > 0
the sets

S ∩Bε(x), (Rn \ S) ∩Bε(x)

are nonempty. One verifies that a set is closed if and only if it contains all of its limit points.
If S ⊂ Rn is any subset and if A ⊂ S, we say A is open relative to S if for every x ∈ A

and for every ε > 0 the set Bε(x) ∩ S is contained in A. The set A ⊂ S is closed relative
to S if S \ A is open.

A subset C ⊂ Rn is compact if it is closed and bounded. One can show that this
definition of compactness is equivalent to saying that for every collection of open sets {Uα}α∈A

indexed by an arbitrary index set A with the property that C ⊂ ∪α∈AUα, there exists a
finite subset {Uαi

}i∈{1,...,N} of these open set with the property that C ⊂ ∪i∈{1,...,N}Uαi
. This

is often abbreviated suggestively by the words, “every open cover of C possesses a finite
subcover.” This equivalent notion of compactness has the advantage that it can be applied
to more general situations where one has a notion of open sets, but no notion of boundedness.

The above terminology expresses the fact that Rn is a “topological space.” Generally, a
topological space is a pair (S,O) where S is a set and O is a collection of subsets of S
satisfying

1. ∪i∈IUi ∈ O for an arbitrary collection {Ui}i∈I of subsets from O,

2. ∩k
i=1Ui ∈ O for every finite collection {U1, . . . , Uk} of subsets from O, and

3. ∅ ∈ O and S ∈ O.
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B.2 Mappings between Euclidean spaces

Let U ⊂ Rn and V ⊂ Rm be open sets and let f : U → V be a map. The map f is
continuous at x0 ∈ U if for every ε > 0 there exists δ > 0 so that ‖x− x0‖ < δ implies
that ‖f(x)− f(x0)‖ < ε. One can verify that this definition of continuity at x0 is equivalent
to asking that for every neighbourhood Ṽ of x0, the subset f−1(Ṽ ) is an open subset of U . In
this way one can define continuity only using the properties of open sets, without recourse to
the notion of a norm. This allows one to talk about continuous functions in a more general
setting. The map f is continuous if it is continuous at every x ∈ U .

More stringent than mere continuity is differentiability. A map f : U → V as above is
differentiable at x0 ∈ U if there exists a linear map L ∈ L(Rn; Rm) so that the limit

lim
x→x0

f(x)− f(x0)− L(x− x0)

x− x0

exists. If the limit does exist, we shall denote the linear map L by Df(x0). If f
is differentiable at each x ∈ U then f is differentiable , and we have defined a map
Df : U → L(Rn; Rm). If this map is continuous, then f is continuously differentiable
on U . Let us write

f(x) = (f 1(x), . . . , fm(x))

for m functions fa : U → R. If f is differentiable, then the partial derivative of fa with
respect to xi exists for each a = 1, . . . ,m and i = 1, . . . , n. One then sees that the matrix of
the linear map Df(x0) with respect to the standard bases for Rn and Rm is

∂f1

∂x1
∂f1

∂x2 · · · ∂f1

∂xn

∂f2

∂x1
∂f2

∂x2 · · · ∂f2

∂xn

...
...

. . .
...

∂fm

∂x1
∂fm

∂x2 · · · ∂fm

∂xn

 ,
where all partial derivatives are evaluated at x0. This matrix and the linear map Df(x0)
will interchangeably be referred to as the Jacobian of f .

Let f : U → V be a continuously differentiable map between open sets U ⊂ Rn and
V ⊂ Rm. A point x0 ∈ U is a critical point for f if Df(x0) does not have maximal rank.
A point y0 ∈ V is a regular value for f if there are no critical points in the set f−1(y0).
If y0 ∈ V is not a regular value, it is a critical value for f .

B.3 Critical points of R-valued functions

The general notions at the end of the previous section will be most interesting for us in
the particular case where f takes its values in R. In this case, we adopt the convention of
writing Df(x0) as df(x0). Therefore, x0 is a critical point if and only if df(x0) = 0. Note
that since df(x0) ∈ L(Rn; R) we may say that df(x0) ∈ (Rn)∗.

Since f is R-valued, it makes sense to ask if a point x0 ∈ U is a local maximum or
minimum for f . A necessary condition for a local maximum or minimum to occur at x0 is,
as you will recall, is that x0 be a critical point. To assess further whether a critical point is
a local maximum or minimum, one looks at the second derivative. The second derivative is
to be thought of as the derivative of the map df : Rn → (Rn)∗. If {e1, . . . , en} is the basis
for (Rn)∗ dual to the standard basis, then we may write the map df as

df(x) =
∂f

∂x1
(x)e1 + · · ·+ ∂f

∂xn
(x)en.
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To differentiate the map df we simply differentiate the components of df with respect to
x1, . . . , xn. The resulting Jacobian is then represented by the square matrix of second partial
derivatives 

∂2f
∂x1∂x1

∂2f
∂x1∂x2 · · · ∂2f

∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2 · · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2 · · · ∂2f

∂xn∂xn

 . (B.1)

When this is evaluated at a critical point x0 for f , we call it the Hessian of f at x0, and
denote it by Hess(f)(x0). Note that we only define the Hessian at critical points for f . For
reasons we do not get into here, we do not evaluate the matrix (B.1) at general points in U ,
although there is nothing in principal stopping us from doing this. Note that we adopt with
our summation convention the convention that the superscripts in the denominator in the
Hessian comprise subscripts. Thus the components of the Hessian have index down, and this
leads us to believe that the Hessian should be a bilinear form, symmetric by virtue of equality
of mixed partial derivatives. It is indeed the case that Hess(f)(x0) is a symmetric bilinear
form,1 and so we can speak of its rank and index. The critical point x0 is nondegenerate
if rank(Hess(f)(x0)) = n, and degenerate otherwise.

The following important result tells us what a function must “look like” near a nonde-
generate critical point.

B.3.1 Theorem (Morse’s Lemma) If x0 ∈ Rn is a nondegenerate critical point of a function
f : Rn → R, then there exists a neighbourhood U of x0 ∈ Rn, a neighbourhood V of 0 ∈ Rn,
and a diffeomorphism φ : U → V with the property that

f ◦φ−1(y) = (y1)2 + · · ·+ (yk)2 − (yk+1)2 − · · · − (yn)2.

From this result, we can conclude the following for a nondegenerate critical point x0:

1. if ind(Hess(f)(x0)) = n then x0 is a strict local maximum for f ;

2. if ind(Hess(f)(x0)) = 0 then x0 is a strict local minimum for f ;

3. if 0 < ind(Hess(f)(x0)) < n then x0 is a saddle point for f ; in particular, x0 is neither
a local maximum nor a local minimum for f .

1This is at the root of our refusal to evaluate the matrix (B.1) at non-critical points for f . When at
general points, there is a certain sense in which the matrix (B.1) is not the matrix for a bilinear form.
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Appendix C

Ordinary differential equations

Although the subject of these notes is not dynamical systems, in order to say some
elementary but useful things about the behaviour of Lagrangian systems, it is essential to
have on hand a collection of standard tools for handling differential equations. We assume
that the reader knows what a differential equation is , and is aware of the existence and
uniqueness theory for such.

C.1 Linear ordinary differential equations

Although linear equations themselves are not necessarily interesting for us—few La-
grangian systems are actually linear—when linearising differential equations, one naturally
obtains linear equations (of course). Thus we record some basic facts about linear differential
equations.

Let V be an n-dimensional R-vector space. A linear ordinary differential equation
with constant coefficients on V is a differential equation of the form

ẋ = Ax, x(0) = x0 (C.1)

for a curve t 7→ x(t) ∈ V and where A : V → V is a linear transformation. Given a linear
transformation A we define a linear transformation eA by

eA =
∞∑

k=0

Ak

k!
.

This series may be shown to converge using the fact that the series for the usual exponential
of a real variable converges. We next claim that the solution to (C.1) is x(t) = eAtx0. To
see this we simply substitute this proposed solution into the differential equation:

ẋ(t) =
d

dt

∞∑
k=1

Aktk

k!

=
∞∑

k=1

kAktk−1

k!

= A

∞∑
k=1

Ak−1tk−1

(k − 1)!

= A

∞∑
`=0

A`t`

`!
= Ax(t).
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Thus x(t) satisfies the differential equation. It is also evident that x(t) satisfies the initial
conditions, and so by uniqueness of solutions, we are justified in saying that the solution of
the initial value problem (C.1) is indeed x(t) = eAtx0.

Let us turn to the matter of computing eAt. First note that if P is an invertible linear
transformation on V then one readily shows that eP (At)P−1

= PeAtP−1. Thus eAt is inde-
pendent of similarity transformations, and so we may simplify things by choosing a basis
{e1, . . . , en} for V so that the initial value problem (C.1) becomes the ordinary differential
equation

ẋ(t) = Ax(t), x(0) = x0 (C.2)

in Rn. To compute eAt one proceeds as follows. First one computes the eigenvalues for
A. There will be n of these in total, counting algebraic multiplicities and complex conju-
gate pairs. One treats each eigenvalue separately. For a real eigenvalue λ0 with algebraic
multiplicity k = ma(λ0), one must compute k linearly independent solutions. For a com-
plex eigenvalue λ0 with algebraic multiplicity ` = ma(λ0), one must compute 2` linearly
independent solutions, since λ̄0 is also necessarily an eigenvalue with algebraic multiplicity
`.

We first look at how to deal with real eigenvalues. Let λ0 be one such object with
algebraic multiplicity k. It is a fact that the matrix (A− λ0In)k will have rank n− k, and
so will have a kernel of dimension k by the Rank-Nullity Theorem. Let u1, . . . ,uk be a basis
for ker((A − λ0In)k). We call each of these vectors a generalised eigenvector . If the
geometric multiplicity of λ0 is also k, then the generalised eigenvectors will simply be the
usual eigenvectors. If mg(λ0) < ma(λ0) then a generalised eigenvector may or may not be an
eigenvector. Corresponding to each generalised eigenvector ui, i = 1, . . . , k, we will define a
solution to (C.2) by

xi(t) = eλ0t exp((A− λ0In)t)ui.

Note that because ui is a generalised eigenvector, the infinite series exp((A−λ0In)t)ui will
have only a finite number of terms—at most k in fact. Indeed we have

exp((A−λ0In)t)ui =
(
In + t(A−λ0In)+

t2

2!
(A−λ0In)2 + · · ·+ tk−1

(k − 1)!
(A−λ0In)k−1

)
ui,

since the remaining terms in the series will be zero. In any case, it turns out that the k vector
functions x1(t), . . . ,xk(t) so constructed will be linearly independent solutions of (C.2). This
tells us how to manage the real case.

Now let us look at the complex case. Thus let λ0 be a complex eigenvalue (with nonzero
imaginary part) of algebraic multiplicity `. This means that λ̄0 will also be an eigenvalue of
algebraic multiplicity ` since A, and hence PA(λ), is real. Thus we need to find 2` linearly
independent solutions. We do this by following the exact same idea as in the real case,
except that we think of A as being a complex matrix for the moment. In this case it is still
true that the matrix (A−λ0In)` will have an `-dimensional kernel, and we can take vectors
u1, . . . ,u` as a basis for this kernel. Note, however, that since (A−λ0In)` is complex, these
vectors will also be complex. But the procedure is otherwise identical to the real case. One
then constructs ` complex vector functions

zj(t) = eλ0t exp((A− λ0In)t)uj.

Each such complex vector function will be a sum of its real and imaginary parts: zj(t) =
xj(t) + iyj(t). It turns out that the 2` real vector functions x1(t), . . . ,x`(t),y1(t), . . . ,y`(t)
are linearly independent solutions to (C.2).
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We still haven’t gotten to the matrix exponential yet, but all the hard work is done.
Using the above methodology we may in principle compute for any n × n matrix A, n
linearly independent solutions x1, . . . ,xn(t).1 If we assemble the resulting solutions into the
columns of a matrix X(t):

X(t) =
[

x1(t) · · · xn(t)
]
,

the resulting matrix is an example of a fundamental matrix. Generally, a fundamental
matrix is any n×nmatrix function of t whose columns form n linearly independent solutions
to (C.2). What we have done above is give a recipe for computing a fundamental matrix
(there are an infinite number of these). The following result connects the construction of a
fundamental matrix with the matrix exponential.

C.1.1 Theorem Given any fundamental matrix X(t) we have eAt = X(t)X−1(0).

Thus, once we have a fundamental matrix, the computation of the matrix exponential is
just algebra, although computing inverses of matrices of any size is a task best left to the
computer.

One of the essential observations from the above discussion is that the behaviour of the
solutions to the differential equation (C.1) are largely governed by the eigenvalues of A.

C.2 Fixed points for ordinary differential equations

In this section we consider the differential equation

ẋ(t) = f(x(t)) (C.3)

for x(t) ∈ Rn and with f : Rn → Rn a smooth map. A fixed point for (C.3) is a point x0

for which f(x0) = 0. Thus if x0 is a fixed point, the trivial curve t 7→ x0 is a solution to the
differential equation. A fixed point x0 is stable if for each ε > 0 there exists δ > 0 so that if
‖x(0)− x0‖ < δ, then ‖x(t)− x0‖ < ε for all t > 0. The fixed point x0 is asymptotically
stable if there exists δ > 0 so that if ‖x(0)− x0‖ < δ then limt→∞ x(t) = x0. These notions
of stability are often said to be “in the sense of Liapunov,” to distinguish them from other
definitions of stability. In Figure C.1 we give some intuition concerning our definitions.

As a first pass at trying to determine when a fixed point is stable or asymptotically stable,
one linearises the differential equation (C.3) about x0. Thus one has a solution x(t) of the
differential equation, and uses the Taylor expansion to obtain an approximate expression for
the solution:

d

dt
(x(t)− x0) = f(x0) + Df(x0) · (x(t)− x0) + · · ·

=⇒ ξ̇(t) = Df(x0) · ξ(t) + · · ·

where ξ(t) = x(t)− x0. Thus linearisation leads us to think of the differential equation

ξ̇(t) = Df(x0) · ξ(t) (C.4)

1Note that the solutions x1, . . . ,xn are those obtained from both real and complex eigenvalues. Therefore,
the solutions denoted above as “yi(t)” for complex eigenvalues will be included in the n linearly independent
solutions, except now I am calling everything xj(t).
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x0

ε

δ

x(0)

x0

δ
x(0)

Figure C.1 A stable fixed point (left) and an asymptotically stable
fixed point (right)

as somehow approximating the actual differential equation near the fixed point x0. Let us
define notions of stability of x0 which are related only to the linearisation. We say that x0

is spectrally stable if Df(x0) has no eigenvalues in the positive complex plane, and that
x0 is linearly stable (resp. linearly asymptotically stable) if the linear system (C.4)
is stable (resp. asymptotically stable). Let us introduce the notation

C+ = {z ∈ C | Re(z) > 0}
C̄+ = {z ∈ C | Re(z) ≥ 0}
C− = {z ∈ C | Re(z) < 0}
C̄− = {z ∈ C | Re(z) ≤ 0} .

From our discussion of linear ordinary differential equations in Section C.1 we have the
following result.

C.2.1 Proposition A fixed point x0 is linearly stable if and only if the following two conditions
hold:

(i) Df(x0) has no eigenvalues in C+, and

(ii) all eigenvalues of Df(x0) with zero real part have equal geometric and algebraic mul-
tiplicities.

The point x0 is linearly asymptotically stable if and only if all eigenvalues of Df(x0) lie in
C−.

A question one can ask is how much stability of the linearisation has to do with stability
of the actual fixed point. More generally, one can speculate on how the solutions of the
linearisation are related to the actual solutions. The following important theorem due to
Hartman and Grobman tells us when we can expect the solutions to (C.3) near x0 to “look
like” those of the linear system. The statement of the result uses the notion of a flow which
we define in Section 2.2.

C.2.2 Theorem (Hartman-Grobman Theorem) Let x0 be a fixed point for the differential
equation (C.3) and suppose that the n×n matrix Df(x0) has no eigenvalues on the imaginary
axis. Let Ff denote the flow associated with the differential equation (C.3). Then there exists
a neighbourhood V of 0 ∈ Rn and a neighbourhood U of x0 ∈ Rn, and a homeomorphism
(i.e., a continuous bijection) φ : V → U with the property that φ(eDf(x0)tx) = Ff (t, φ(x0)).
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The idea is that when the eigenvalue all have nonzero real part, then one can say that
the flow for the nonlinear system (C.3) looks like the flow of the linear system (C.4) in a
neighbourhood of x0. When Df(x0) has eigenvalues on the imaginary axis, one cannot make
any statements about relating the flow of the nonlinear system with its linear counterpart.
In such cases, one really has to look at the nonlinear dynamics, and this becomes difficult.
A proof of the Hartman-Grobman theorem can be found in [Palis, Jr. and de Melo 1982].

Let us be more specific about the relationships which can be made about the behaviour
of the nonlinear system (C.3) and its linear counterpart (C.4). Let Es(x0) be the subspace of
Rn containing all generalised eigenvectors for eigenvalues of Df(x0) in C−, and let Eu(x0) be
the subspace of Rn containing all generalised eigenvectors for eigenvalues of Df(x0) in C+.
Es(x0) is called the linear stable subspace at x0 and Eu(x0) is called the linear unstable
subspace at x0. For the linearised system (C.4), the subspaces Es(x0) and Eu(x0) will be
invariant sets (i.e., if one starts with an initial condition in one of these subspaces, the
solution of the differential equation will remain on that same subspace). Indeed, initial
conditions in Es(x0) will tend to 0 as t→∞, and initial conditions in Eu(x0) will explode
as t→∞. The following result says that analogues of Es(x0) and Eu(x0) exist.

C.2.3 Theorem (Stable and Unstable Manifold Theorem) Let x0 be a fixed point for the dif-
ferential equation (C.3).

(i) There exists a subset Ws(x0) of Rn with the following properties:

(a) Ws(x0) is invariant under the flow Ff ;

(b) Es(x0) forms the tangent space to Ws(x0) at x0;

(c) limt→∞ Ff (t,x) = x0 for all x ∈ Ws(x0).

(ii) There exists a subset Wu(x0) of Rn with the following properties:

(a) Wu(x0) is invariant under the flow Ff ;

(b) Eu(x0) forms the tangent space to Wu(x0) at x0;

(c) limt→−∞ Ff (t,x) = x0 for all x ∈ Wu(x0).

Ws(x0) is called the stable manifold for the fixed point x0, and Wu(x0) is called the
unstable manifold for the fixed point x0.

Again, we refer to [Palis, Jr. and de Melo 1982] for a proof. Some simple examples of stable
and unstable manifolds can be found in Section 3.4. A picture of what is stated in this
result is provided in Figure C.2. The idea is that the invariant sets Es(x0) and Eu(x0) for
the linear system do have counterparts in the nonlinear case. Near x0 they follow the linear
subspaces, but when we go away from x0, we cannot expect things to look at all like the
linear case, and this is exhibited even in the simple examples of Section 3.4.
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Figure C.2 Stable and unstable manifolds of a fixed point
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Appendix D

Some measure theory

We refer the reader to [Cohn 1980] for more details on measure theory than we provide
here.

In measure theory, it is helpful to have on hand the extended real numbers. Let us denote
by [−∞,∞] the union of the real numbers R with the two point sets with one element {−∞}
and {∞}. This set is ordered in the following way. Points in (−∞,∞) adopt the usual order
on R, and we declare that −∞ < x and x <∞ for every x ∈ (−∞,∞). We also declare that
x+∞ = ∞ and x+(−∞) = −∞ for every x ∈ [−∞,∞), and that∞+∞ = ∞, thus defining
addition in [−∞,∞] (we ask that addition be commutative and we decree that (−∞) +∞
makes no sense). Multiplication on [−∞,∞] is defined by x · ∞ = ∞ and x · (−∞) = −∞
for x > 0, x · ∞ = −∞ and x · (−∞) = ∞ for x < 0, ∞ · ∞ = (−∞) · (−∞) = ∞,
(−∞) · ∞ = −∞, and 0 · ∞ = 0 · (−∞) = 0. We declare multiplication to be commutative.
Note that [−∞,∞] is not a field!

A measure is applied to a certain class of subsets. Precisely, if S is a set, a σ-algebra
is a collection A of subsets of S with the properties

SA1. S ∈ A ,

SA2. if A ∈ A then S \ A ∈ A ,

SA3. for each sequence {Ai}i∈Z+ in A , ∪i∈Z+Ai ∈ A , and

SA4. for each sequence {Ai}i∈Z+ in A , ∩i∈Z+Ai ∈ A .

D.0.4 Examples 1. If S is a set, the the collection 2S of all subsets of S is a σ-algebra.

2. Given an arbitrary collection F of subsets of S, we may construct “the smallest σ-algebra
containing F .” We do this as follows. Let CF be the collection of σ-algebras containing
F . Note that 2S is a σ-algebra containing F so CF is not empty. One then ascertains
that ⋂

A

{A ∈ CF}

is itself a σ-algebra. Obviously it is the smallest σ-algebra containing F by the very
manner in which it was constructed. We call this σ-algebra that generated by F .

3. We shall be interested in measures on Rn. There is a natural σ-algebra on Rn which we
call the Borel subsets. This is the σ-algebra generated by the following collection of
subsets:

(a) the closed subsets of Rn;

(b) the closed half-spaces
{(x1, . . . , xi, . . . , xn) | xi ≤ b for some i = 1, . . . , n and b ∈ R};

(c) the cubes {(x1, . . . , xn) | ai < xi ≤ bi, i = 1, . . . , n}.
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As usual, we consider the standard topology on Rn when making these definitions. In
the sequel, unless we state otherwise, when we need a σ-algebra on Rn we shall suppose
it to be the collection of Borel subsets. �

If S is a set with A a σ-algebra on S, then a countably additive measure (resp. a
finitely additive measure) on S is a function µ : A → [0,∞] with the property that for
every sequence {Ai}i∈Z+ (resp. for every finite collection {A1, . . . , An} ⊂ A ) we have

µ

(⋃
i∈Z+

Ai

)
=

∞∑
i=1

µ(Ai) (resp. µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai)),

and such that µ(∅) = 0.
Now suppose that S has a topology O. Let Z denote the union of all open sets in S

which have zero measure. This union exists, and is an open set. Thus its complement is
closed, and we call this complement the support of µ. Thus the support of a measure is
the smallest closed set whose complement has zero measure. A mass distribution on S is
a measure µ which has compact support and which has the property that µ(S) <∞. Note
that by the Heine-Borel theorem a mass distribution on Rn (with its usual topology) has
bounded support.

Now let us turn to integrating functions with respect to measures. A function f : S → R
is simple if f(S) ⊂ R is finite. If A is a measure on S and µ : A → [0,∞] is a σ-algebra,
then a simple function f on S taking values a1, . . . , an is measurable if Ai , f−1(ai) ∈ A ,
i = 1, . . . , n. If ai > 0 for i = 1, . . . , n, then we define

∫
f dµ =

∑n
i=1 aiµ(Ai). If f is an

arbitrary function taking values in [0,∞] then we define∫
f dµ = sup

{∫
g dµ| g is a positive, measurable simple function

with g(x) ≤ f(x) for x ∈ S
}
.

For an arbitrary function f : S → [−∞,∞] we may define functions f+ and f− on S by

f+(x) = max{0, f(x)}, f−(x) = −min{0, f(x)}.

We then define ∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Of course,
∫
f dµ may not exist. However, we shall say that f is measurable if

f−1((−∞, x)) ∈ A for every x ∈ R, and one may show that if f is measurable then
∫
f+ dµ

and
∫
f− dµ exist in [−∞,∞]. If these integrals are both finite then

∫
f dµ is finite and f

is said to be integrable . Given this definition of the integral of a function, one may then
proceed to verify that it is linear:∫

(f + g) dµ =

∫
f dµ+

∫
g dµ,

∫
(a f) dµ = a

∫
f dµ (D.1)

for f, g : S → R and a ∈ R. If V is a finite-dimensional vector space, then one may extend
our definition of the integral to an V -valued function f : S → V by choosing a basis for V ,
and integrating f component-wise. By (D.1) such an operation will be independent of basis.
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Let us now consider how we might restrict a measure to a subset of S. Not just any
subset will do; we must consider subsets contained in the corresponding σ-algebra. We let
A be a σ-algebra on S with T ∈ A . We may define a σ-algebra AT on T by

AT = {A ∩ T | A ∈ A } .

If we further have a measure µ : A → [−∞,∞] then this restricts to a measure µT : AT →
[−∞,∞] defined by

µT (A ∩ T ) = µ(A ∩ T ).

This definition makes sense since T ∈ A . One may then define the integral for functions
restricted to T as above.
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— [1900b] Sur une forme générale des équations de la Dynamique, Journal für die Reine und
Angewandte Mathematik, 121, 310–319.
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Bullo, F. and Žefran, M. [2002] On mechanical systems with nonholonomic constraints and sym-
metries, Systems & Control Letters, 45(2), 133–143.

Cabral, H. E. and Meyer, K. R. [1999] Stability of equilibria and fixed points of conservative systems,
Nonlinearity, 12(5), 1351–1362.

Cherry, T. M. [1928] On periodic solutions of Hamiltonian systems of differential equations, Philo-
sophical Transactions of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 227, 137–221.

Chow, W.-L. [1939] Uber systemen von linearen partiellen Differentialgleichungen erster Ordnung,
Mathematische Annalen, 117, 98–105.

Clarke, F. H. [1983] Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series
of Monographs and Advanced Texts, John Wiley and Sons, New York, New York.

Clarke, F. H., Ledyaev, Y. S., Stern, R. J., and Wolenski, P. R. [1998] Nonsmooth Analysis and
Control Theory, number 178 in Graduate Texts in Mathematics, Springer-Verlag, New York-
Heidelberg-Berlin.
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A Journal of Theoretical and Mathematical Physics, 1(3), 569–605.

Lewis, A. D. and Murray, R. M. [1995] Variational principles for constrained systems: Theory and
experiment, International Journal of Non-Linear Mechanics, 30(6), 793–815.

— [1997] Controllability of simple mechanical control systems, SIAM Journal on Control and Op-
timization, 35(3), 766–790.

Libermann, P. and Marle, C.-M. [1987] Symplectic Geometry and Analytical Mechanics, num-
ber 35 in Mathematics and its Applications, D. Reidel Publishing Company, Dor-
drecht/Boston/Lancaster/Tokyo, ISBN 90-2772-438-5.

Marsden, J. E. and Ratiu, T. S. [1999] Introduction to Mechanics and Symmetry, 2nd edition,
number 17 in Texts in Applied Mathematics, Springer-Verlag, New York-Heidelberg-Berlin,
ISBN 0-387-98643-X.

Marsden, J. E. and Scheurle, J. [1993] Lagrangian reduction and the double spherical pendulum,
Zeitschrift für Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics
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Birkhäuser, Boston/Basel/Stuttgart.

Spong, M. W. and Vidyasagar, M. [1989] Dynamics and Control of Robotic Manipulators, John
Wiley and Sons, New York, New York.

Synge, J. L. [1928] Geodesics in nonholonomic geometry, Mathematische Annalen, 99, 738–751.

Talman, R. [2000] Geometric Mechanics, John Wiley and Sons, New York, New York, ISBN 0-471-
15738-4.

van der Schaft, A. J. and Maschke, B. M. [1994] On the Hamiltonian formulation of nonholonomic
mechanical systems, Reports on Mathematical Physics, 34(2), 225–233.

Weber, R. W. [1986] Hamiltonian systems with constraints and their meaning in mechanics, Archive
for Rational Mechanics and Analysis, 91(4), 309–335.

Williamson, J. [1937] On the normal forms of linear canonical transformations in dynamics, Amer-
ican Journal of Mathematics, 59, 599–617.



This version: 03/04/2003

Symbol Index


	Newtonian mechanics in Galilean spacetimes
	Galilean spacetime
	Affine spaces
	Time and distance
	Observers
	Planar and linear spacetimes

	Galilean mappings and the Galilean transformation group
	Galilean mappings
	The Galilean transformation group
	Subgroups of the Galilean transformation group
	Coordinate systems
	Coordinate systems and observers

	Particle mechanics
	World lines
	Interpretation of Newton's Laws for particle motion

	Rigid motions in Galilean spacetimes
	Isometries
	Rigid motions
	Rigid motions and relative motion
	Spatial velocities
	Body velocities
	Planar rigid motions

	Rigid bodies
	Definitions
	The inertia tensor
	Eigenvalues of the inertia tensor
	Examples of inertia tensors

	Dynamics of rigid bodies
	Spatial momenta
	Body momenta
	Conservation laws
	The Euler equations in Galilean spacetimes
	Solutions of the Galilean Euler equations

	Forces on rigid bodies
	The status of the Newtonian world view

	Lagrangian mechanics
	Configuration spaces and coordinates
	Configuration spaces
	Coordinates
	Functions and curves

	Vector fields, one-forms, and Riemannian metrics
	Tangent vectors, tangent spaces, and the tangent bundle
	Vector fields
	One-forms
	Riemannian metrics

	A variational principle
	Lagrangians
	Variations
	Statement of the variational problem and Euler's necessary condition
	The Euler-Lagrange equations and changes of coordinate

	Simple mechanical systems
	Kinetic energy
	Potential energy
	The Euler-Lagrange equations for simple mechanical systems
	Affine connections

	Forces in Lagrangian mechanics
	The Lagrange-d'Alembert principle
	Potential forces
	Dissipative forces
	Forces for simple mechanical systems

	Constraints in mechanics
	Definitions
	Holonomic and nonholonomic constraints
	The Euler-Lagrange equations in the presence of constraints
	Simple mechanical systems with constraints
	The Euler-Lagrange equations for holonomic constraints

	Newton's equations and the Euler-Lagrange equations
	Lagrangian mechanics for a single particle
	Lagrangian mechanics for multi-particle and multi-rigid body systems

	Euler's equations and the Euler-Lagrange equations
	Lagrangian mechanics for a rigid body
	A modified variational principle

	Hamilton's equations
	Conservation laws

	Lagrangian dynamics
	The Euler-Lagrange equations and differential equations
	Linearisations of Lagrangian systems
	Linear Lagrangian systems
	Equilibria for Lagrangian systems

	Stability of Lagrangian equilibria
	Equilibria for simple mechanical systems

	The dynamics of one degree of freedom systems
	General one degree of freedom systems
	Simple mechanical systems with one degree of freedom

	Lagrangian systems with dissipative forces
	The LaSalle Invariance Principle for dissipative systems
	Single degree of freedom case studies

	Rigid body dynamics
	Conservation laws and their implications
	The evolution of body angular momentum
	Poinsot's description of a rigid body motion

	Geodesic motion
	Basic facts about geodesic motion
	The Jacobi metric

	The dynamics of constrained systems
	Existence of solutions for constrained systems
	Some general observations
	Constrained simple mechanical systems


	An introduction to control theory for Lagrangian systems
	The notion of a Lagrangian control system
	``Robot control''
	The equations of motion for a robotic control system
	Feedback linearisation for robotic systems
	PD control

	Passivity methods
	Linearisation of Lagrangian control systems
	The linearised system
	Controllability of the linearised system
	On the validity of the linearised system

	Control when linearisation does not work
	Driftless nonlinear control systems
	Affine connection control systems
	Mechanical systems which are ``reducible'' to driftless systems
	Kinematically controllable systems


	Linear algebra
	Vector spaces
	Dual spaces
	Bilinear forms
	Inner products
	Changes of basis

	Differential calculus
	The topology of Euclidean space
	Mappings between Euclidean spaces
	Critical points of R-valued functions

	Ordinary differential equations
	Linear ordinary differential equations
	Fixed points for ordinary differential equations

	Some measure theory

