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Preface

This book provides a survey of the mathematics needed for chemistry courses at the
undergraduate level. In four decades of teaching general chemistry and physical
chemistry, | have found that some students have not been introduced to all the
mathematical topics needed in these courses and that most need some practice in
applying their mathematical knowledge to chemical problems. The emphasis is on
the mathematics that is useful in a physical chemistry course, but the first several
chapters provide a survey of mathematics that is useful in a general chemistry
course.

| have tried to write all parts of this book so that they can be used for self-
study by someone not familiar with the material, although any book such as this
cannot be a substitute for the traditional training offered in mathematics courses.
Exercises and solved example are interspersed throughout the chapters, and these
form an important part of the presentations. As you study any topic in the book,
you should follow the solution to each example and work each exercise as you
come to it.

The first ten chapters of the book are constructed around a sequence of mathe-
matical topics, with a gradual progression into more advanced material. Chapter 11
is a discussion of mathematical topics needed in the analysis of experimental data.
Most of the material in at least the first five chapters should be a review for nearly
all readers of the book. | have tried to write all of the chapters so that they can be
studied in any sequence, or piecemeal as the need arises.

This edition is a revision of a second edition published by Academic Press in
1999. | have reviewed every paragraph and have made those changes that were
necessary to improve the clarity and correctness of the presentations. Chapter 9
of the second edition discussed the solution of algebraic equations. It has been
divided into two chapters: a new Chapter 3, which contains the parts of the old
chapter that apply to general chemistry, and a new Chapter 10, which deals with
sets of three or more simultaneous equations. Chapter 5 of the second edition in-
troduced functions of several independent variables, and Chapter 6 of the second
edition discussed mathematical series and transforms. These two chapters have
been interchanged, since the discussion of series and transforms involves only a
single independent variable. Chapter 11 of the second edition involved computer
usage. It contained material on word processors, spreadsheets, programming in
the BASIC language, graphics packages, and the use of the Mathematica program.
The material on word processors, graphics packages, and BASIC programming has
been omitted, since most students are now familiar with word processors and tend
to use spreadsheets and packaged programs instead of writing their own programs.
The material on the use of spreadsheets and the use of Mathematica has been di-
vided up and distributed among various chapters so that the topics are placed with

Xi



Xii Preface

the discussion of the mathematics that is involved. | have continued the use of
chapter summaries, chapter previews, lists of important facts and ideas at the be-
ginning of each chapter, and chapter objectives.

This book serves three functions:

1. A review of topics already studied and an introduction to new topics for those
preparing for a course in physical chemistry

2. A supplementary text to be used during a physical chemistry course

3. Areference book for graduate students and practicing chemists

| am pleased to acknowledge the cooperation and help of Jeremy Hayhurst and
his collaborators at Academic Press. It is also a pleasure to acknowledge the assis-
tance of all those who helped with the first and second editions of this book, and
especially to thank my wife, Ann, for her patience, love, and forbearance.



Numbers,
Measurements,
and Numerical
Mathematics

Preview

The first application of mathematics to chemistry deals with various physical quan-
tities that have numerical values. In this chapter, we introduce the correct use of
numerical values to represent measured physical quantities and the use of numer-
ical mathematics to calculate values of other quantities. Such values generally
consist of a number and a unit of measurement, and both parts of the value must
be manipulated correctly. We introduce the use of significant digits to communi-
cate the probable accuracy of the measured value. We also review the factor-label
method, which is a routine method of expressing a measured quantity in terms of
a different unit of measurement.

Principal Facts and Ideas

1. Specification of a measured quantity consists of a number and a unit.

2. A unit of measurement is an arbitrarily defined quantity that people have
agreed to use.

3. The Sl units have been officially adopted by international organizations of
physicists and chemists.

4. Consistent units must be used in any calculation.

5. The factor-label method can be used to convert from one unit of measurement
to another.

6. Reported values of all qguantities should be rounded so that insignificant digits
are not reported.
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Objectives
After you have studied the chapter, you should be able to:

1. use numbers and units correctly to express measured quantities;

2. understand the relationship of uncertainties in measurements to the use of sig-
nificant digits;

3. use consistent units, especially the Sl units, in equations and formulas; and

4, use the factor-label method to convert from one unit of measurement to an-
other.

Numbers and Measurements

The most common use that chemists make of numbers is to report values for mea-
sured quantities. Specification of a measured quantity generally includes a number
and a unit of measurement. For example, a length might be given.@8 itzhes
(12.00in) or 3048 centimeters (3@8 cm), or 03048 meters (3048 m), and so

on. Specification of the quantity is not complete until the unit of measurement is
specified. For example, 3B cm is definitely not the same as.88in. We dis-

cuss numbers in this section of the chapter, and will use some common units of
measurement. We discuss units in the next section.

Numbers

There are several sets into which we can classify numbers. The numbers that can
represent physical quantities are calied numbers. These are the numbers with
which we ordinarily deal, and they consist of a magnitude and a sign, which can be
positive or negative. Real numbers can range from positive numbers of indefinitely
large magnitude to negative numbers of indefinitely large magnitude. Among the
real numbers are thimtegers 0, +1, £2, 43, and so on, which are part of the
rational numbers. Other rational numbers are quotients of two integers, such as
2, &, 2. Fractions can be represented as decimal numbers. For exajgiie,

the same as.0625 Some fractions cannot be represented exactly by a decimal
number with a finite number of nonzero digits. For examélés represented by
0.333333 ... The three dots (an ellipsis) that follow the given digits indicate that
more digits follow. In this case, infinitely many digits are required for an exact
representation. However, the decimal representation of a rational number either
has a finite number of nonzero digits or contains a repeating pattern of digits.

[ExERCISELL »|  Take a few simple fractions, such 4s¢, or 3 and ex-
press them as decimal numbers, finding either all of the nonzero digits or the
repeating pattern of digits. <]

The numbers that are not rational numbers are catietional numbers. Al-
gebraic irrational number include square roots of rational numbers, cube roots of
rational numbers, and so on, which are not themselves rational numbers. All of
the rest of the real numbers are calkednscendental irrational numbers. Two
commonly encountered transcendental irrational numbers are the ratio of the cir-
cumference of a circle to its diameter, calleé@nd given by 3141592653 - -, and
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the base of natural logarithms, callede and given by 2718281828 -. Irrational
numbers have the property that if you have some means of finding what the correct
digits are, you will never reach a point beyond which all of the remaining digits are
zero, or beyond which the digits form some other repeating pattern.

In addition to real numbers, mathematicians have defimedinary numbers
into existence. Thémaginary unit, i, is defined to equal/—1. An imaginary
number is equal to a real number timeés and acomplex number is equal to a
real number plus an imaginary number. xlfand y are real numbers, then the
qguantityz = x + iy is a complex numberx is called thereal part of z, and the
real numbery is called themaginary part of z. Imaginary and complex numbers
cannot represent physically measurable quantities, but turn out to have important
applications in quantum mechanics. We will discuss complex numbers in the next
chapter.

The numbers that we have been discussing are catigdrs, to distinguish
them fromvectors. A scalar number has magnitude and sign, and a vector has both
magnitude and direction. We will discuss vectors later, and will see that a vector
can be represented by several scalars.

Measurements, Accuracy, and Significant Digits

A measured quantity can almost never be known with complete exactness. It is
therefore a good idea to communicate the probable accuracy of a reported mea-
surement. For example, assume that you measured the length of a piece of glass
tubing with a meter stick and that your measured value was838iillimeters

(387.8 mm). You decide that your experimental error was probably no greater than
0.6 mm. The best way to specify the length of the glass tubing is

length = 387.8 mm+0.6 mm

If for some reason you cannot include a statement of the probable error, you should
at least avoid including digits that are probably wrong. In this case, your estimated
error is somewhat less than 1 mm, so the correct number is probably closer to
388 mm than to either 387 mm or 389 mm. If we do not want to report the expected
experimental error, we report the length as 388 mm and assert that the three digits
given aresignificant digits. This means that the given digits are correctly stated.

If we had reported the length as 38™m, the last digit isnsignificant. That is,

if we knew the exact length, the digit 8 after the decimal point is probably not the
correct digit, since we believe that the correct length lies betweer2 8&n and

3884 mm.

You should always avoid reporting digits that are not significant. When you
carry out calculations involving measured quantities, you should always determine
how many significant digits your answer can have and round off your result to
that number of digits. When values of physical quantities are given in a physical
chemistry textbook or in this book, you can assume that all digits specified are
significant. If you are given a number that you believe to be correctly stated, you
can count the number of significant digits. If there are no zeros in the number, the
number of significant digits is just the number of digits. If the number contains
one or more zeros, any zero that occurs between nonzero digits does count as a

11t has been said that early in the twentieth century the legislature of the state of Indiana, in an effort to simplify
things, passed a resolution that henceforth in that staskould be exactly equal to 3.



4 Chapter 1 Numbers, Measurements, and Numerical Mathematics

significant digit. Any zeros that are present only to specify the location of a deci-
mal point do not represent significant digits. For example, the numBen0345
contains three significant digits, and the numb€08045 contains four signifi-

cant digits. The number 76,000 contains only two significant digits. However,
the number 00034500 contains five significant digits. The zeros at the left are
present only to locate the decimal point, but the final two zeros are not needed to
locate a decimal point, and therefore must have been included because the number
is known with sufficient accuracy that these digits are significant.

A problem arises when zeros that appear to occur only to locate the decimal
point are actually significant. For example, if a mass is known to be closer to 3500
grams (3500 g) than to 3499 g or to 3501 g, there are four significant digits. If one
simply wrote 3500 g, persons with training in significant digits would assume that
the zeros are not significant and that there are two significant digits. Some people
communicate the fact that there are four significant digits by writing 3§4ms.

The explicit decimal point communicates the fact that the zeros are significant
digits. Others put a bar over any zeros that are significant, writifd 85indicate
that there are four significant digits.

Scientific Notation

The communication difficulty involving significant zeros can be avoided by the use
of scientific notation, in which a number is expressed as the product of two factors,
one of which is a number lying between 1 and 10 and the other is 10 raised to some
integer power. The mass mentioned above would thus be writte/5@8:3 10° g.
There are clearly four significant digits indicated, since the trailing zeros are not
required to locate a decimal point. If the mass were known to only two significant
digits, it would be written as.8 x 10%g.

Scientific notation is also convenient for extremely small or extremely large
numbers. For exampleivogadro’s constant, the number of molecules or other
formula units per mole, is easier to write a®214 x 10?2 mol~! than as
602214,000,000,000,000,000,000 mol1, and the charge on an electron is eas-
ier to write and read as.80217x 10~1° coulomb (160217 x 10~19C) than as
0.000000000000000000160217 C.

|EXERCISE 1.2 b | Convert the following numbers to scientific notation, us-
ing the correct number of significant digits:
(a) 0000598 (b) 67342 000
(c) 0.000002 (d) 643250
[«]
Rounding

The process of rounding is straightforward in most cases. The calculated num-
ber is simply replaced by that number containing the proper number of digits that
is closer to the calculated value than any other number containing this many dig-
its. Thus, if there are three significant digits5@7 is rounded to 47, and 4564

is rounded to 6£6. However, if your only insignificant digit is a 5, your cal-
culated number is midway between two rounded numbers, and you must decide
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whether to round up or to round down. It is best to have a rule that will round
down half of the time and round up half of the time. One widely used rule is to
round to the even digit, since there is a 50% chance that any digit will be even.
For example, 5 would be rounded to 2, and3would be rounded to 4. An
equally valid procedure that is apparently not generally used would be to toss a
coin and round up if the coin comes up “heads” and to round down if it comes up
“tails.”

|EXERCISE 1.3 b | Round the following numbers to four significant digits
(a) 02468985 (b) 78955
(c) 123456789 (d) 48535

[«

Numerical Mathematical Operations

We are frequently required to carry out numerical operations on numbers. The first
such operations involve pairs of numbers.

Elementary Arithmetic Operations

The elementary mathematical operations are addition, subtraction, multiplication,
and division. Some rules for operating on numbers with sign can be simply stated:

1. The product of two factors of the same sign is positive, and the product of two
factors of different signs is negative.

2. The quotient of two factors of the same sign is positive, and the quotient of two
factors of different signs is negative.

3. The difference of two numbers is the same as the sum of the first number and
the negative of the second.

4. Multiplication is commutative, which means thatif « andb stand for numbers

axb=>xa. (1.2)

5. Multiplication is associative, which means that

ax (bxc)=(axb)xec. (1.2)

6. Multiplication and addition areistributive, which means that

ax(b+c)=axb+axec. (1.3)

2We enclose equations that you will likely use frequently in a box.



6 Chapter 1 Numbers, Measurements, and Numerical Mathematics

Additional Mathematical Operations

In addition to the four elementary arithmetic operations, there are some other im-
portant mathematical operations, many of which involve only one number. The
magnitude, or absolute value, of a scalar quantity is a number that gives the size
of the number irrespective of its sign. It is denoted by placing vertical bars before
and after the symbol for the quantity. This operation means

x ifx>0

1.4
—x ifx<O (1.4)

x| =

For example,

45| = 45
-3 = 3

The magnitude of a number is always nonnegative (positive or zero).
Another important set of numerical operations is the takingpfers and roots.

If x represents some number that is multiplied by itgael 1 times so that there

aren factors, we represent this by the symh6| representing to thenth power.

For example,

¥l=xxx, x¥=xxxxx, X" =XXXXXX- XX (n factors. (1.5)
The numbem in the expression” is called theexponent of x. If the exponent

is not an integer, we can still defind. We will discuss this when we discuss
logarithms. An exponent that is a negative number indicates the reciprocal of the
guantity with a positive exponent:

x 1= % x 3= X—lg (1.6)

There are some important facts about exponents. The first is

xxb = xatb 1.7)

wherex, a, andb represent numbers. We call such an equatiordentity, which
means that it is correct for all values of the variables in the equation. The next
identity is

(x4 = xab (1.8)

Roots of real numbers are defined in an inverse way from powers. For example,
the square root of x is denoted by/x and is defined as the number that yields
when squared:

(VX2 =x (1.9)

Thecuberoot of x is denoted by¥/x, and is defined as the number that when cubed
(raised to the third power) yields

(¥x)°=x (1.10)
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Fourth roots, fifth roots, and so on, are defined in similar ways. The operation of
taking a root is the same as raising a number to a fractional exponent. For example,

Ix = xY3 (1.11)

This equation means that
(3x)% = V33 = x = (HVB = Va3,

This equation illustrates the fact that the order of taking a root and raising to a
power can be reversed without changing the result. We say that these operations
commute with each other.

There are two numbers that when squared will yield a given positive real num-
ber. For example,2= 4 and(—2)? = 4. When the symbol/4 is used, only the
positive square root, 2, is meant. To specify the negative square roptvefwrite
—./x. If we confine ourselves to real numbers, there is no square root, fourth root,
sixth root, and so on, of a negative number. In Section 2.6, we define imaginary
numbers, which are defined be square roots of negative quantities. Both positive
and negative numbers can have real cube roots, fifth roots, and so on, since an odd
number of negative factors yields a negative product.

The square roots, cube roots, and so forth, of integers and other rational num-
bers are either rational numbersabgebraic irrational numbers. The square root
of 2 is an example of aalgebraic irrational number. An algebraic irrational num-
ber produces a rational number when raised to the proper integral power. When
written as a decimal number, an algebraic irrational number does not have a finite
number of nonzero digits or exhibit any pattern of repeating digits. An irrational
number that does not produce a rational number when raised to any integral power
is atranscendental irrational number. Examples are, the base of natural loga-
rithms, andr, the ratio of a circle’s circumference to its diameter.

Logarithms

We have discussed the operation of raising a number to an integral power. The
expressiom? meansu x a, a2 means 1a?, a® meansu x a x a, and so on. In
addition, you can have exponents that are not integers. If we write

y=a" (1.12)
the exponent is called thdogarithm of y to the base a and is denoted by

x = log, (7) (1.13)

If a is positive, only positive numbers possess real logarithms.

Common Logarithms

If the base of logarithms equals 10, the logarithms are catheanon logarithms:
If 100 = y, thenx is the common logarithm of, denoted by logy(y). The
subscript 10 is sometimes omitted, but this can cause confusion.
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For integral values af, it is easy to generate the following short table of com-
mon logarithms:

y x=logpo | ¥y x=l0g;()

1 0 0.1 -1

10 1 0.01 -2

100 2 0.001 -3
1000 3 etc.

In order to understand logarithms that are not integers, we need to understand
exponents that are not integers.

EXAMPLE 1.1 Find the common logarithm o§/10.

SOLUTION » The square root of 10 is the number that yields 10 when multiplied by itself:

2
(vio)" =10
We use the fact about exponents
(a*)* = a**. (1.14)
Since 10 is the same thing as!10
V10=10%2. (1.15)

Therefore 1
logso (JF)) = 10g1(3.162277..) = 5 = 0.5000

<

Equation (1.14) and some other relations governing exponents can be used to
generate other logarithms, as in the following problem.

|EXERCISE 1.4 b | Use Eg. (1.14) and the fact that?0= 1/(10") to gen-
erate the negative logarithms in the short table of logarithms. (<]

We will not discuss further how the logarithms of various numbers are com-
puted. Extensive tables of logarithms with up to seven or eight significant digits
were once in common use. Most electronic calculators provide values of loga-
rithms with as many as 10 or 11 significant digits. Before the invention of elec-
tronic calculators, tables of logarithms were used when a calculation required more
significant digits than a slide rule could provide. For example, to multiply two
numbers together, one would look up the logarithms of the two numbers, add the
logarithms and then look up thamtilogarithm of the sum (the number possessing
the sum as its logarithm).

Natural Logarithms

Besides 10, there is another commonly used base of logarithms. This is a transcen-
dental irrational number calledand equal to 2182818 ..

If ¥ =x theny =log,(x) = In(x). (1.16)
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Logarithms to this base are calledtural logarithms. The definition ofe is®

1 n
e = lim (1+—) —2.7182818... (1.17)
n

n—oo

The “lim” notation means that larger and larger values afe taken.

|EXERCISE 1.5 b | Evaluate the quantityl + %)" for several integral values
of n ranging from 1 to 1000 000. Notice how the value approaches the value
of e asn increases. [«

The notation Iix) is more common thalvg, (x). Natural logarithms are also
occasionally calledNapierian logarithms.* Unfortunately, some mathematicians
use the symbol log) without a subscript for natural logarithms. Chemists fre-
guently use the symbol Igg) without a subscript for common logarithms and the
symbol In(y) for natural logarithms. Chemists use both common and natural log-
arithms, so the best practice is to use;ig) for the common logarithm of and
In(x) for the natural logarithm of.

If the common logarithm of a number is known, its natural logarithm can be
computed as

o = 1000 = (oh10) 0 Jna0tegn (1.18)

The natural logarithm of 10 is equal to3D2585.. ., so we can write

In (y) = In(10) log;o(y) = (2.302585 - - ) logo(y) | (2.19)

In order to remember Eq. (1.19) correctly, keep the fact in mind that sirise
smaller than 10, the natural logarithm is larger than the common logarithm.

|EXERCISE 1.6 b | Without using a calculator or a table of logarithms, find
the following:
(@) In(100.000) (b) In(0.0010000

(c) logio(e)

Logarithm Identities

There are a number of identities involving logarithms, some of which come from

the exponent identities in Egs. (1.6)—(1.8). Table 1.1 lists some identities involv-
ing exponents and logarithms. These identities hold for common logarithms and
natural logarithms as well for logarithms to any other base.

3The base of natural logarithms, is named after Leonhard Euler, 1707—-1783, a great Swiss mathematician.
4Naperian logarithms are named after John Napier, 1550-1617, a Scottish landowner, theologian, and mathe-
matician, who was one of the inventors of logarithms.
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TABLE 1.1 » Properties of Exponents and Logarithms
Exponent fact Logarithm fact

a®=1 log, (1) =0
al’? = Ja log, (ﬁ) = %
al=a log, (@) =1
a*la*2 = a*1™2 log, (y1y2) = log, (y1) + log, (y2)
ar =21 log, (%) = —log, ()
45 =a"t™2  log, (%) = log, (y1) —log, (y2)
(a*)* =a* log, (y*) = zlog, ()
a® =00 log, (c0) = 00
a~® =0 log, (0) = —o0

=

(=1

3

]

x@a

gl
X —

Figure 1.1 » The exponential function.

The Exponential

The exponential is the same as raising(the base of natural logarithms, equal to
2.7182818284- -) to a given power and is denoted either by the usual notation for
a power, or by the notation ekp - ).

y = aehx = aexp(bx), (1.20)

Figure 1.1 shows a graph of this function for- O.

The graph in Fig. 1.1 exhibits an important behavior of the exponesitiaFor
b > 0, it doubles each time the independent variable increases by a fixed amount
whose value depends on the valuebof For large values ob the exponential
function becomes large very rapidly. #f < 0, the function decreases to half its
value each time the independent variable increases by a fixed amount. For large
negative values df the exponential function becomes small very rapidly.

|EXERCISE 1.7 b | For a positive value df find an expression for the change
in x required for the functiom”*to double in size. [«
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An example of the exponential function is in the decay of radioactive isotopes.
If Ngis the number of atoms of the isotope at time 0, the number at any other
time, ¢, is given by
N (1) = Noe™'/7, (1.21)

wherer is called therelaxation time. It is the time for the number of atoms of the
isotope to drop to le = 0.367879 of its original value. The time that is required
for the number of atoms to drop to half its original value is calledh#iétime or
half-life, denoted by >.

EXAMPLE 1.2 Show thatr» is equal tor In(2).

SOLUTION » If 112 is the half-life, then

e 11/2/T _ }

Thus
t
W2 _ (%> —h@®. (1.22)
T 2
<
|EXERCISE 1.8 b | A certain population is growing exponentially and dou-

bles in size each 30 years.

(a) If the population includes.@0x 1P individuals atr = 0, write the formula
giving the population after a number of years equal to

(b) Find the size of the population at= 150 years. [«

|EXERCISE 1.9 b | Areactant in a first-order chemical reaction without back
reaction has a concentration governed by the same formula as radioactive de-
cay,

[Al, = [Aloe™,

where[A]g is the concentration at time= 0, [A]; is the concentration at time
t, andk is a function of temperature called the rate constarit.2f0.123s 1,
find the time required for the concentration to drop tc024 of its initial value.

[«]

Units of Measurement

The measurement of a length or other variable would be impossible without a stan-

dard definition of the unit of measurement. For many years science and com-

merce were hampered by the lack of accurately defined units of measurement.
This problem has been largely overcome by precise measurements and interna-
tional agreements. The internationally accepted system of units of measurements
is called theSystéme International d’' Unités, abbreviated. This is anMKS sys-

tem, which means that length is measured in meters, mass in kilograms, and time

in seconds. In 1960 the international chemical community agreed to use Sl units,
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TABLE 1.2 » Sl Units
Sl base units (unitswith independent definitions)

Physical Name of
quantity unit Symbol Definition
Length meter m Length such that the speed of light is exactly
299792458ms 1.
Mass kilogram kg The mass of a platinum-iridium cylinder kept
at the International Bureau of Weights and
Measures in France.
Time second S The duration 00,192 631, 770cycles of the
radiation of a certain emission of the cesium atom.
Electric current ampere A The magnitude of current which, when flowing
in each of two long parallel wiret m apart in
free space, results in a force Bfx 10°N
per meter of length.
Temperature kelvin K Absolute zero i K; triple point of water 273 16K.
Luminous intensity candela cd The luminous intensity, in the perpendicular

intensity direction, of a surface df/600, 000m?

of a black body at temperature of freezing

platinum at a pressure 401, 325N m—2.
Amount of substance mole. mol  Amount of substance that contains as

many elementary units as there are carbon

atoms in exactlyd.012kg of the carborit2 (12C)

isotope.
Other Sl units (derived units)

Physical Nameof Physical
quantity unit dimensions Symbol Definition
Force newton  kgmg¥ N IN=1kgms?
Energy joule kgris2 J 1J=1kgnfs2
Electrical charge coulomb As C 1€1As
Pressure pascal NTA Pa 1Pa= 1Nm2
Magnetic field  tesla kg€AL T 1T=1kgs?A?

=1Wbm2
Luminous flux lumen cdsr Im 1llre= 1cdsr

(sr = steradian)

which had been in use by physicists for some tihe seven base units given in
Table 1.2 form the heart of the system. The table also includes some derived units,
which owe their definitions to the definitions of the seven base units.

Multiples and submultiples of Sl units are commonly uSeeixamples are the
millimeter and kilometer. These multiples and submultiples are denoted by stan-
dard prefixes attached to the name of the unit, as listed in Table 1.3. The abbrevi-
ation for a multiple or submultiple is obtained by attaching the prefix abbreviation

5See “Policy for NBS Usage of Sl UnitsJ: Chem. Educ. 48, 569 (1971).

6There is a possibly apocryphal story about Robert A. Millikan, a Nobel-prize-winning physicist who was
not noted for false modesty. A rival is supposed to have told Millikan that he had defined a new unit for the
guantitative measure of conceit and had named the new unit the kan. However, 1 kan was an exceedingly large
amount of conceit so for most purposes the practical unit was to be the millikan.
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TABLE 1.3 » Prefixes for Multiple and Submultiple Units
Multiple Prefix Abbreviation | Multiple Prefix Abbreviation

1012 tera- T 103 milli- m
10° giga- G 1076 micro- m
100 mega- M 10°° nano- n
108 kilo- k 1012 pico- p

1 — — 10715 femto- f
101 deci- d 1018 atto- a
102 centi- c

to the unit abbreviation, as in Gm (gigameter) or ns (nanosecond). Note that since
the base unit of length is the kilogram, the table would imply the use of things
such as the mega kilogram. Double prefixes are not used. We use gigagram instead
of megakilogram. The use of the prefixes for #Gand 1072 is discouraged, but
centimeters will probably not be abandoned for many years to come. The Celsius
temperature scale also remains in common use among chemists.

Some non-Sl units continue to be used, such astimesphere (atm), which
is a pressure defined to equal 1825N nT2 (101 325 Pa), thditer (I), which
is exactly 0001 n?, and thetorr, which is a pressure such that exactly 760 torr
equals exactly 1 atm. Theelsiustemperature scale is defined such that the degree
Celsius fC) is the same size as the kelvin, anttlis equivalent to 2735 K.

In the United States of America, English units of measurement are still in com-
mon use. Thench (in) has been redefined to equal exact§2b4 m. Thefoot (ft)
is 12 inches and the mile (mi) is 5280 feet. Timund (Ib) is equal to 04536 kg
(not an exact definition; good to four significant digits).

Any measured quantity is not completely specified until its units are given. If
is a length equal to 1845 m, one must write

a = 10.345m (1.23)

not just
a = 10.345 (not correct)

It is permissible to write
a/m=10.345

which means that the lengthdivided by 1 m is 145, a dimensionless number.
When constructing a table of values, it is convenient to label the columns or rows
with such dimensionless quantities.

When you make numerical calculations, you should make certain that you use
consistent units for all quantities. Otherwise, you will likely get the wrong answer.
This means that (1) you must convert all multiple and submultiple units to the base
unit, and (2) you cannot mix different systems of units. For example, you cannot
correctly substitute a length in inches into a formula in which the other quantities
are in Sl units without converting. It is a good idea to write the unit as well as the
number, as in Eq. (1.23), even for scratch calculations. This will help you avoid
some kinds of mistakes by inspecting any equation and making sure that both sides
are measured in the same units. In 1999 a U.S. space vehicle optimistically named
the Mars Climate Orbiter crashed into the surface of Mars instead of orbiting the
planet. The problem turned out to be that engineers working on the project had
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used English units such as feet and pounds, whereas physicists had used metric
units such as meters and kilograms. A failure to convert units properly cost U.S.
taxpayers several millions of dollars and the loss of a possibly useful mission. In
another instance, when a Canadian airline switched from English units to metric
units, a ground crew miscalculated the mass of fuel needed for a flight. The jet
airplane ran out of fuel, but was able to glide to an unused military airfield and
make a “deadstick” landing. Some people were having a pichic on the unused
runway, but were able to get out of the way. There was even a movie made about
the incident.

Numerical Calculations

The most common type of numerical calculation in a chemistry course is the cal-
culation of one quantity from the numerical values of other quantities, guided by
some formula. There can be familiar formulas that are used in everyday life and
there can be formulas that are specific to chemistry. Some formulas require only
the four basic arithmetic operations: addition, subtraction, multiplication, and di-
vision. Other formulas require the use of the exponential, logarithms, or trigono-
metric functions. The formula is a recipe for carrying out the specified numerical
operations. Each quantity is represented by a symbol (a letter) and the operations
are specified by symbols suchsas/, +, —, In, and so on. A simple example is the
familiar formula for calculating the volume of a rectangular object as the product
of its height ¢), width (w), and length {):

V=hxwxl

The symbol for multiplication is often omitted so that the formula would be written
v = hwl. Iftwo symbols are written side by side, it is understood that the quanti-
ties represented by the symbols are to be multiplied together. Another example is

theideal gasequation

RT
p=" (1.24)
%

where P represents the pressure of the gas the amount of gas in moleg, is
the absolute temperaturg,is the volume, ana is a constant known as théeal
gas constant.

Significant Digits in a Calculated Quantity

When you calculate a numerical value that depends on a set of numerical values
substituted into a formula, the accuracy of the result depends on the accuracy of
the first set of values. The number of significant digits in the result depends on
the numbers of significant digits in the first set of values. Any result containing
insignificant digits must be rounded to the proper number of digits.

Multiplication and Division

There are several useful rules of thumb that allow you to determine the proper
number of significant digits in the result of a calculation. For multiplication of
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two or more factors, the rule is that the product will have the same number of
significant digits as the factor with the fewest significant digits. The same rule
holds for division. In the following example we use the fact that the volume of a
rectangular object is the product of its length times its width times its height.

EXAMPLE 1.3 What is the volume of a rectangular object whose length is given
as 778 m, whose width is given as486 m, and whose height is367 m?

SOLUTION » We denote the volume by and obtain the volume by multiplication, using a
calculator.
V = (7.78m)(3.486 m)(1.367 m = 37.07451636 M = 37.1m°.

The calculator delivered 10 digits, but we round the volume td 8%, since the factor with the
fewest significant digits has three significant digits. <

EXAMPLE 1.4 Compute the smallest and largest values that the volume in| Ex-
ample 1.1 might have and determine whether the answer given in Example 1.1
is correctly stated.

SOLUTION » The smallest value that the length might have, assuming the given value to have
only significant digits, is 7775 m, and the largest value that it might have.i&8b m. The smallest
possible value for the width is.8855 m, and the largest value i1865 m. The smallest possible
value for the height is . B665m, and the largest value i3675m. The minimum value for the
volume is

Vinin = (7.775m)(3.4855 m) (1.3665 m) = 37.0318254562 1.

The maximum value is
Vimax = (7.785 M) (3.4865 M) (1.3675 m = 37.1172354188 1.
Obviously, all of the digits beyond the first three are insignificant. The rounded resultiof37
in Example 1.1 contains all of the digits that can justifiably be given. However, in this case there

is some chance that I¥m> might be closer to the actual volume than isB3TS. We will still
consider a digit to be significant if it might be incorrect .. <

Addition and Subtraction

The rule of thumb for significant digits in addition or subtraction is that for a digit
to be significant, it must arise from a significant digit in every term of the sum or
difference. You cannot simply count the number of significant digits in every term.

EXAMPLE 1.5 Determine the combined length of two objects, one of length
0.783 m and one of length 13184 m.

SOLUTION » We make the addition:
0.783m
17.3184m
181014m ~18101m

The fourth digit after the decimal point in the sum could be significant only if that digit were
significant in every term of the sum. The first number has only three significant digits after the
decimal point. We must round the answer tolI8 m. Even after this rounding, we have obtained

a number with five significant digits, while one of our terms has only three significant digie.
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In a calculation with several steps, it is not a good idea to round off the insignif-
icant digits at each step. This procedure can lead to accumulatiocouiad-off
error. A reasonable policy is to carry along at least one insignificant digit during
the calculation, and then to round off the insignificant digits at the final answer.
When using an electronic calculator, it is easy to use all of the digits carried by the
calculator and then to round off at the end of the calculation.

Significant Digits in Trigonometric Functions, Logarithms, and
Exponentials

If you are carrying out operations other than additions, subtractions, multiplica-
tions, and divisions, determining which digits are significant is not so easy. In
many cases the number of significant digits in the result is roughly the same as
the number of significant digits in the argument of the function, but more accurate
rules of thumb can be founfdif you need an accurate determination of the number
of significant digits when applying these functions, it might be necessary to do the
operation with the smallest and the largest values that the number on which you
must operate can have (incrementing and decrementing the number).

EXAMPLE 1.6 Calculate the following. Determine the correct number of sig-
nificant digits by incrementing or decrementing.

(a) sin37215°) (b) In(567.812
(C) 6—9.813_

SOLUTION » (a) Using a calculator, we obtain

sin(372155%) 0.210557
sin(372145°) = 0.210386

Therefore,
sin(37215°) = 0.2105

The value could be as small a2@04, but we write 2105, since we routinely declare a digit
to be significant if it might be wrong by just1l. Even though the argument of the sine had five
significant digits, the sine has only four significant digits.

(b) By use of a calculator, we obtain

In(567.8125 = 6.341791259
In(567.8115 = 6.341789497

Therefore,
In(567.812 = 6.34179

In this case, the logarithm has the same number of significant digits as its argument. If the argument
of a logarithm is very large, the logarithm can have many more significant digits than its argument,
since the logarithm of a large number is a slowly varying function of its argument.

"Donald E. Jones, “Significant Digits in Logarithm Antilogarithm InterconversiohsGhem. Educ. 49, 753
(1972).
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(c) Using a calculator, we obtain

98135 _ 000005470803
e~ 98125 _ 000005476277

Therefore, when we round off the insignificant digits,
e98125_ 0,000547

Although the argument of the exponential had four significant digits, the exponential has only three
significant digits. The exponential function of fairly large arguments is a rapidly varying function,

so fewer significant digits can be expected for large arguments. <
|EXERCISE 1.10 b | Calculate the following to the proper numbers of signif-
icant digits.

(a) (37.815+ 0.00435(17.01+ 3.713

(b) 629121 + sin(60.0°)]

(c) 65718 x 12.3

(d) 1713+ 14.6751+ 3.123+ 7.654— 8.123. <

The Factor-Label Method

This is an elementary method for the routine conversion of a quantity measured in
one unit to the same quantity measured in another unit. The method consists of
multiplying the quantity by @onversion factor, which is a fraction that is equal to

unity in a physical sense, with the numerator and denominator equal to the same
quantity expressed in different units. This does not change the quantity physically,
but numerically expresses it in another unit, and so changes the number expressing
the value of the quantity. For example, to expre€9&m in terms of meters, one

writes

1
000M\ _ 400 m=3.00x 16°m. (1.25)
1km

You can check the units by considering a given unit to “cancel” if it occurs in
both the numerator and denominator. Thus, both sides of Eq. (1.25) have units of
meters, because the km on the top cancels the km on the bottom of the left-hand
side. In applying the method, you should write out the factors explicitly, including
the units. You should carefully check that the unwanted units cancel. Only then
should you proceed to the numerical calculation.

(3.00 km) (

EXAMPLE 1.7 Express the speed of light,®79 x 108 ms™1, in miles per
hour. Use the definition of the inch, 11 0.0254 m (exactly).

SOLUTION »

lin 1ft 1mi 60s 60 min
2.9979x 1 ) (——— ) (=
(29979x 1P ms ><0.0254m)(12in> (5280ft> <1min>< ih )

—6.7061x 108 mih~1.

The conversion factors that correspond to exact definitions do not limit the number of significant
digits. In this example, all of the conversion factors are exact definitions, so our answer has five
significant digits because the stated speed has five significant digits. <
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|[EXERCISE 1.11 b | Express the following in terms of Sl base units. The
electron volt (eV), a unit of energy, equal$022x 10-1°J.
(@) 2417 mi (b) 75mih?t
(c) 7.5nmps? (d) 136eV
(<]
SUMMARY

In this chapter, we introduced the use of numerical values and operations in chem-
istry. In order to use such values correctly, one must handle the units of mea-

surement in which they are expressed. Techniques for doing this, including the

factor-label method, were introduced. One must also recognize the uncertainties in
experimentally measured quantities. In order to avoid implying a greater accuracy

than actually exists, one must express calculated quantities with the proper number
of significant digits. Basic rules for significant digits were presented.

PROBLEMS

1

Find the number of inches in a meter. How many significant digits could be
given?

Find the number of meters in 1 mile and the number of miles in 1 kilometer,
using the definition of the inch. How many significant digits could be given?

A furlong is one-eighth of a mile and a fortnight is 2 weeks. Find the speed of
light in furlongs per fortnight, using the correct number of significant digits.

The distance by road from Memphis, Tennessee, to Nashville, Tennessee, is
206 miles. Express this distance in meters and in kilometers.

A U.S. gallon is defined as 231.00 cubic inches.

a) Find the number of liters in one gallon.

b) The volume of a mole of an ideal gas a0°C (27315 K) and 1000 atm
is 22414 liters. Express this volume in gallons and in cubic feet.

In the USA, footraces were once measured in yards and at one time, a time
of 10.00 seconds for this distance was thought to be unattainable. The best
runners now run 100 m in 10 seconds. Express 100 m in yards, assuming three
significant digits. If a runner runs 100 m in .00 s, find his time for 100 yards,
assuming a constant speed.

Find the average length of a century in seconds and in minutes, finding all
possible significant digits. Use the fact that a year ending in 00 is not a leap
year unless the year is divisible by 400, in which case itis a leap year. Find the
number of minutes in a microcentury.
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8.

10.

11.

12.

13.

14.

A light year is the distance traveled by light in one year.

a) Express this distance in meters and in kilometers. Use the average length
of a year as described in the previous problem. How many significant
digits can be given?

b) Express a light year in miles.

The Rankine temperature scale is defined so that the Rankine degree is the
same size as the Fahrenheit degree, &Hli8 the same as OK.

a) Find the Rankine temperature ab0°C.
b) Find the Rankine temperature ab0°F.

Calculate the mass of AgCl that can be precipitated fror@@@nl of a solution
of NaCl containing B45 mol 1. Report your answer to the correct number
of digits.

The volume of a sphere is given by

4
V=—mrd
3 r
whereV is the volume and is the radius. If a certain sphere has a radius given
as 0005250 m, find its volume, specifying it with the correct number of digits.
Calculate the smallest and largest volumes that the sphere might have with the
given information and check your first answer for the volume.

(1.26)

The volume of a right circular cylinder is given by
V =nrh,

whereV is the volumey is the radius, and is the height. If a certain right
circular cylinder has a radius given ad84 m and a height given as318 m,

find its volume, specifying it with the correct number of digits. Calculate the
smallest and largest volumes that the cylinder might have with the given infor-
mation and check your first answer for the volume.

The value of a certain angle is given as°31Find the measure of the angle

in radians. Using a table of trigonometric functions or a calculator, find the
smallest and largest values that its sine and cosine might have and specify the
sine and cosine to the appropriate number of digits.

a) Some elementary chemistry textbooks give the value R)f the
ideal gas constant, as.0B21latmKmol~l. Using the SI value,
8.3145JK 1 mol~%, obtain the value in latmK! mol~? to five signifi-
cant digits.

b) Calculate the pressure in atmospheres and iR (Ra) of a sample of an
ideal gas withh = 0.13678 mol,V = 1.000 | andT" = 29815 K, using the
value of the ideal gas constant in Sl units.

¢) Calculate the pressure in part b in atmospheres and im(®a) using
the value of the ideal gas constant in | atminol~1.
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The van der Waals equation of state gives better accuracy than the ideal gas
equation of state. Itis

a
(P—I—V—n%) (Viu —b) = RT
where ¢ and b are parameters that have different values for different
gases and wher&,, = V/n, the molar volume. For carbon dioxide, =
0.3640 Parfimol2, b = 4.267 x 10°°m3mol~L. Calculate the pressure of
carbon dioxide in pascals, assuming that 0.13678 mol,V = 1.0001, and

T = 29815K. Convert your answer to atmospheres and torr.

The specific heat capacity (specific heat) of a substance is crudely defined
as the amount of heat required to raise the temperature of unit mass of the
substance by 1 degree CelsiusC). The specific heat capacity of water is
4.183°C 1 g~1. Find the rise in temperature if 1@J of heat is transferred to
1.000 kg of water.



Symbolic
Mathematics

and Mathematical
Functions

Preview

In this chapter, we discuss symbolic mathematical operations, including algebraic

operations on real scalar variables, algebraic operations on real vector variables,
and algebraic operations on complex scalar variables. We introduce the concept of
a mathematical function and discuss trigopnometric functions, logarithms and the

exponential function.

Principal Facts and Ideas

1. Algebra is a branch of mathematics in which operations are performed sym-
bolically instead of numerically, according to a well-defined set of rules.

2. Trigonometric functions are examples of mathematical functions: To a given
value of an angle there corresponds a value of the sine function, and so on.

3. There is a set of useful trigopnometric identities.

4. A vector is a quantity with magnitude and direction.

5. Vector algebra is an extension of ordinary algebra with its own rules and de-
fined operations.

6. A complex number has a real part and an imaginary part that is proportional to
i, defined to equal/—1.

7. The algebra of complex numbers is an extension of ordinary algebra with its
own rules and defined operations.

8. Problem solving in chemistry involves organizing the given information, un-
derstanding the objective, planning the approach, carrying out the procedures,
and checking the answer.

21
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Objectives

After you have studied the chapter, you should be able to:

1. manipulate variables algebraically to simplify complicated algebraic expres-
sions;

2. manipulate trigonometric functions correctly;
3. work correctly with logarithms and exponentials;

4. calculate correctly the sum, difference, scalar product, and vector product of
any two vectors, whether constant or variable;

5. perform elementary algebraic operations on complex numbers; form the com-
plex conjugate of any complex number and separate the real and imaginary
parts of any complex expression; and

6. plan and carry out the solution of typical chemistry problems.

Algebraic Operations on Real Scalar Variables

Algebra is a branch of mathematics that was invented by Greek mathematicians
and developed by Hindu, Arab, and European mathematicians. It was apparently
the first branch ofymbolic mathematics. Its great utility comes from the fact

that letters are used to represent constants and variables and that operations are
indicated by symbols such as, —, x, /, ./, and so on. Operations can be car-

ried out symbolically instead of numerically so that formulas and equations can be
modified and simplified before numerical calculations are carried out. This ability
allows calculations to be carried out that arithmetic cannot handle.

The numbers and variables on which we operate in this section are oedled
numbers andreal variables, They do not include imaginary numbers such as the
square root of-1, which we discuss later. They are also cakeaars, to distin-
guish them fromvectors, which have direction as well as magnitude. Real scalar
numbers havenagnitude, a specification of the size of the number, aiggh, which
can be positive or negative.

Algebraic Manipulations

Algebrainvolves symbolic operations. You manipulate symbols instead of carrying
out numerical operations. For example, you can symbolically divide an expression
by some quantity by writing its symbol in a denominator. You can then cancel the
symbol in the denominator against the same symbol in the numerator of the same
fraction or carry out other operations. You can factor a polynomial expression and
possibly cancel one or more of the factors against the same factors in a denomina-
tor. You can solve an equation by symbolically carrying out some set of operations
on both sides of an equation, eventually isolating one of the symbols on one side of
the equation. Remember that if one side of an equation is operated on by anything
that changes its value, the same operation must be applied to the other side of the
equation to keep a valid equation. Operations that do not change the value of an
expression, such as factoring an expression, multiplying out factors, multiplying
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the numerator and denominator of a fraction by the same factor, and so on, can be
done to one side of an equation without destroying its validity.

EXAMPLE 2.1 Write the following expression in a simpler form:

(& +d9)(x+3) —x(x+5—14

A
x24+2x+1

SOLUTION » We multiply out the factors in the numerator and combine terms, factor the
denominator, and cancel a common factor:

Lo 2P 41522 1014 x4+l 1
B @+D@E+D @+ +D a1l
<
EXERCISE 2.1 b | Write the following expression in a simpler form:

_ (x2 4+ 2x)2 — x%(x — 2)2 + 124

B
6x3 + 12x4

[«

The van der Waals equation of state provides a more nearly exact description
of real gases than does the ideal gas equation. Itis

n2a
P+W (V—nb):nRT

whereP is the pressuréy is the volumen is the amount of gas in moleg, is the
absolute temperature, amtlis the ideal gas constant (the same constant as in the
ideal gas equation, equal t3345 J K1 mol~! or 0.08206 | atm KX mol~1). The
symbolsa andb represenparameters, which means that they are constants for a
particular gas, but have different values for different gases.

|EXERCISE 2.2 b | (a) Manipulate the van der Waals equation so that
defined ag//n, occurs instead of andn occurring separately.

(b) Manipulate the equation into an expressionfon terms of7 andV,,.

(c) Manipulate the equation into a cubic equationVip. That is, make an
expression with terms proportional to powersigf up to V,f. [«

|EXERCISE 2.3 b | Find the value of the expression

32+42—6(7+|-17)3 + (vV37—T-1))°
(1+2)" — (1-71+ 69> + VIZF+ 4]
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Trigonometric Functions

The ordinarytrigonometric functions include the sine, the cosine, the tangent, the
cotangent, the secant, and the cosecant. These are sometimes callieduthe
lar trigonometric functions to distinguish them from the hyperbolic trigopnometric
functions discussed briefly in the next section of this chapter.

The trigonometric functions can be defined geometrically as in Fig. 2.1, which
shows two anglesy; and«2. Along the horizontal reference line drawn from
the pointE to the pointD, the pointsC1 andC2 are chosen so that the triangles
are right triangles (triangles with one right angle). In the right trianghka C4, the
radiusr is called thenypotenuse, the vertical side of lengthy is called theopposite
side, and the horizontal side of lengih is called theadjacent side. We define the
trigonometric functions sine, cosine, and tangentpés follows:

sin(aq) = % (opposite side over hypotenuse (2.1)
cos(a1) = % (adjacent side over hypotenuse) (2.2)
tan(ay) = )yc—i (opposite side over adjacent sige) (2.3)
cot(ay) = % (adjacent side over opposite sige) (2.4)
sec(a) = xLl (hypotenuse over adjacent sidg) (2.5)
csc(ag) = i (hypotenuse over opposite sidg) (2.6)
B,
8,
2

Figure 2.1 » The figure used in defining trigonometric functions.
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The trigonometric functions of the angle are defined in the same way, except
that as drawn in Fig. 2.1, the distancemust be counted as negative, because the
point Bz is to the left ofA. If the point B, were belowA, theny, would also be
counted as negative.

There are three common ways to specify the size of an atigge fneasure’
of an angle). Degrees are defined so that a right angle corresponds t& @D
degrees), and a full circle contains 36(rhegrad is defined so that 100 grad cor-
responds to a right angle and a full circle contains 400 grad. For most mathematical
purposes, the best way to specify the size of an angle isnadllans. The measure
of an angle in radians is defined to be the length of the arc subtending the angle
divided by the radius of the circle. In Fig. 2.1, the @®&4 subtends the angle;,
so that in radians

d
ap ==, (2.7)
r

whered; is the length of the ar® B1. The full circle contains 2 radians (z rad),

and 1 radian corresponds to 3g(@x) = 57.2957795 - - °. The right angle, 99,

is /2 radians = 15707963 - - radians. We can express the anglen terms of
radians, degrees, or grad, but must understand which measure is being used. For
example, we could write

sin(90°) = sin(r/2) (2.8)

This does not look like a correct equation until we understand that on the left-
hand side the angle is measured in degrees and on the right-hand side the angle is
measured in radians. If you use degrees, you should always include the degree sign
).

The trigonometric functions are examplesnadthematical functions. A math-
ematical function is a rule that provides a unique connection between the value of
one variable, called thimdependent variable or theargument of the function, and
another variable, which we call tigependent variable. When we choose a value
for the independent variable, the function provides a corresponding value for the
dependent variable. For example, if we write

f(x) = sin(x), (2.9)

thenf is the dependent variable andhe independent variable. The trigonometric
functions illustrate a general property of the functions that we deal with. They are
single-valued: for each value of the angle, there is one and only one value of

the sine, one and only one value of the cosine, and so on. Mathematicians usually
use the name “function” to apply only to single-valued functions. We will discuss
mathematical functions in more detail in Chapter 4.

Trigonometric Identities

There are a number of relations between trigonometric functions that are valid for
all values of the given angles. Such relations are said fialdsically true, or to
beidentities. We first present some identities involving an angle and its negative.
A negative angle is measured in the clockwise direction while positive angles are
measured in the counter-clockwise direction. A figure analogous to Fig. 2.1 with
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a negative angle can be used to show that

sin(a) = —sin(—a) (2.10)
cos(x) = cos(—w) (2.11)
tan(a) = —tan(—a) (2.12)

Equations (2.10) and (2.12) express the fact that the sine and the tangent are
odd functions, and Eq. (2.11) expresses the fact that the cosine égemrfunction.
If f(x)is an odd function, then
f(—x) = —f(x) (odd function) (2.13)
If f(x)is an even function, then

f(—=x) = f(x) (even function) (2.14)

From Egs. (2.1) through (2.6), we can deduce the additional identities:

1

cot(a) = an@) (2.15)
1

sec(w) = cos@) (2.16)
1

csc(a) = sSin(@) (2.17)

Figure 2.1 also shows a third anglg, which is counted as negative. This
angle has the same triangle, and therefore the same trigopnometric functions as the
positive anglexs. Sinceas is equal to—(2r — a2) if the angles are measured in
radians, we can write an identity

sin(az) = sin[— (27 — a2)] = sin(a2 — 21) = sin(a?) (2.18)

with similar equations for the other trigonometric functions. This equation is re-
lated to the periodic behavior of trigonometric functions. If an angle is increased
by 27 radians (360), the new angle corresponds to the same triangle as does the
old angle, and we can write

sin(a) = sin(a + 27) = sinfa +47) = - - - (2.19)

coja) =coSu + 2r) =coS(a +4r) = --- (2.20)

with similar equations for the other trigopnometric functions. The trigonometric
functions areoeriodic functions with period 2r. That is, if any integral multiple of
2m is added to the argument, the value of the function is unchanged.
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|[EXERCISE 2.4 & | Using a calculator, find the value of the cosine ofSl5

and the value of the cosine of 3B5. Display as many digits as your calcu-
lator is able to display. Check to see if there is any round-off error in the last
digit. Choose another pair of angles that differ by 3@Md repeat the calcula-
tion. Set your calculator to use angles measured in radians. Find the value of
sin(0.3000. Find the value of si(0.3000+ 27). See if there is any round-off
error in the last digit. [«

A useful trigopnometric identity corresponds to the famdtheorem of Pytha-
goras. Pythagoras drew a figure with three squares such that one side of each
square formed a side of the same right triangle. He then proved by geometry that
the area of the square on the hypotenuse was equal to the sum of the areas of the
squares on the other two sides. In terms of the quantities in Fig. 2.1

x2 4 y2 =2 (2.22)

We divide both sides of this equation by and use Egs. (2.1) and (2.2) to obtain
the identity:

[sin(a)]? + [cos(@)]? = sir? (a) + co (o) = 1. (2.22)

Notice the common notation for a power of a trigonometric function: the exponent
is written after the symbol for the trigonometric function and before the parentheses
enclosing the argument.

|EXERCISE 2.5 P | Using a calculator, find the values of the sine and cosine
of 49.5°. Square the two values and add the results. See if there is any round-
off error in your calculator. Choose another angle and repeat the calculation.

[«]

Mathematical Limits and a Useful Approximation

Comparison of Egs. (2.1) and (2.7) shows that for a fairly small angle, the sine of
an angle and the measure of the angle in radians are approximately equal, since the
sine differs from the measure of the angle only by having the opposite side in place
of the arc length, which is approximately the same size. In fact,

. Sin(a
lim @)
a—0 o

=1 (a mustbe measured in radigns (2.23)

The symbol on the left stands fomaathematical limit. In this case, the equation
means that if we let the value af become smaller and smaller until it becomes
more and more nearly equal to zero, the ratio of(ginto « becomes more and
more nearly equal to unity. In some cases (but not in this case), there is a distinc-
tion between letting the variable draw closer in value to a constant value from the
positive side or from the negative side. To indicate thapproaches zero from the
positive side (takes on positive values closer and closer to zero), we would write

im sin(a) _

a—0t o

1 (2.24)
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To indicate thatr approaches zero from the negative side, we would write

. sin(a
lim (@) =
a—0~ o

1 (2.25)

In the present case, the limits in EqQ. (2.24) and (2.25) are the same, and there is no
need to specify which one is meant.
For fairly small angles, we write as an approximation

o ~ sin(a) (o must be measured in radigns (2.26)

where the angle must be measured in radians. Since the adjacent side of a right
triangle is nearly equal to the hypotenuse for small angles, we can also write

a ~ tan(a) ~ sin(a) (o must be measured in radigris (2.27)

Equations (2.26) and (2.27) are valid for both positive and negative valueslf
you are satisfied with an accuracy of about 1%, you can use Eq. (2.27) for angles
with magnitude up to about® radians (approximately F).

|EXERCISE 2.6 b | For an angle that is nearly as largera&, find an ap-
proximate equality similar to Eq. (2.27) involvingr/2) — «, cos(x), and
cot (). Kl

General Properties of Trigonometric Functions

To use trigonometric functions easily, you must have a clear mental picture of the
way in which the sine, cosine, and tangent depend on their arguments. Figures 2.2,
2.3, and 2.4 show these functions.

The tangent has a complicated behavior, becoming larger without bound as
its argument approaches2 from the left, and becoming more negative without
bound as its argument approaches the same value from the right. We can write

lim [tan(a)] = —o0
a—>%+
lim [tan(a)] = oo.
a5

-1

sinfa) — o

]
—27 o \/2« \/‘Aﬂr S
4+ =1

Figure 2.2 » The sine of an angle.
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ANVANANYAS
2 \/ “1\/ 27 \/ an

Figure 2.3 » The cosine of an angle.

tan{o) —=

—2x - m 2T 3w 4n o

Figure 2.4 » The tangent of an angte.

In these equations, the superscrpbdn ther /2 in the limit means that the value
of o approacheg /2 from the right. That is¢ is greater thamr/2 as it becomes
more and more nearly equal /2. The— superscript in the limit means that
approaches /2 from the left. The symbaobo stands forinfinity, which is larger
than any number that you or anyone else can name. This quantity is sometimes
called “‘undefined.”

Inverse Trigonometric Functions

It is possible to think of trigonometric functions as defining a mathematical func-
tion in an inverse way. For example, if

y = sin(x) (2.28)
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we can define a function to give a value foas a function ofy. We write
x = arcsiny). (2.29)

This can be read asc“is the angle whose sine is” The arcsine function is also
called theinverse sine function, and another notation is also common:

x = sini(y). (2.30)

The—1 superscript indicates an inverse function. Itis not an exponent, even though
exponents are written in the same position. If you need to write the reciprocal of
sin(y), you should writgsin(y)]~1 to avoid confusion. It is probably better to use
the notation of Eq. (2.29) rather than that of Eq. (2.30) to avoid confusion.

From Fig. 2.2, you can see that there are many angles that have the same value
of the sine function. In order to make the arcsine in Eq. (2.29) or Eqg. (2.30) into
a single-valued function, we must restrict the values t¢fiat we consider. With
the arcsine function, these values are taken fram2 to + /2 and are called the
principal values of the arcsine function. The other inverse trigonometric functions
such as the inverse cosine and inverse tangent are defined in the same way as the
arcsine function, and must also have principal values defined. The principal values
of the arctangent and arccosecant functions range franf2 to+ /2, the same as
with the arcsine. The principal values of the arccosine, arccotangent, and arcsecant
are taken from O tar.

|EXERCISE 2.7 b | Sketch graphs of the arcsine function, the arccosine func-
tion, and the arctangent function. Include only the principal values. [«

Hyperbolic Trigonometric Functions

These functions are closely related to the exponential function. hyperbolic
sine of x is denoted by sintx), and defined by

1
sinh(x) = é(ex —e ). (2.31)
Thehyperbolic cosineis denoted by cogh), and defined by
1
coshx) = = (ef +e7¥). (2.32)

The other hyperbolic trigonometric functions are tiyperbolic tangent, denoted
by tanh(x); the hyperbolic cotangent, denoted by cotfx); the hyperbolic secant,
denoted by sech{; and the hyperbolic cosecant, denoted by cshlhese func-
tions are given by the equations

tanh(x) = z'(;‘shég (2.33)
1

coth(x) = fanhoo (2.34)
1

sechix) = cosheo) (2.35)

csch(x) = 1 (2.36)

sinh(x)
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sinh{x) or cosh(x}
v

——sinh(x)
—8— cosh{x)
.

A
—=
P S el o1

Q 05 1 15 2 25 3

Figure 2.5 » The hyperbolic sine and cosine.

Figure 2.5 shows the hyperbolic sine and hyperbolic cosine for valuet o
0 to 3. Note that the values of the hyperbolic sin and the hyperbolic cosine do not
necessarily lie betweenl and 1 as do the values of the circular sine and cosine
functions and that both functions approa€h2 for large values of.

|EXERCISE 2.8 » | Make a graph of tanfx) and cotlix) on the same graph
for values ofx ranging from 0 to 3. [«
|EXERCISE 2.9 b | Find the value of each of the hyperbolic trigonometric

functions forx = 0 andx = x/2. Compare these values with the values
of the ordinary (circular) trigonometric functions for the same values of the
independent variable. [«

Vectors and Coordinate Systems

Quantities that have both magnitude and direction are cabeibrs. For exam-

ple, the position of an object can be represented by a vector, since the position
can be specified by giving the distance and the direction from a reference point
(an origin). A force is also a vector, since it is not completely specified until its
magnitude and direction are both given. Some other vectors that are important
in physical chemistry are the dipole moments of molecules, magnetic and electric
fields, angular momenta, and magnetic dipoles.

We will use a boldface letter to represent a vector. For example, the force on
an object is denoted by. When you are writing by hand, there is no easy way to
write boldface letters, so you can use a letter with an arrow over it (I_é)g)r you
can use a wavy underscore (eg), which is the typesetter's symbol for boldface

type.
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}i

Figure 2.6 » A position vector,o, in a plane, with plane polar coordinates and Cartesian coordi-
nates.

¥

Vectors in Two Dimensions

Two-dimensional vectors include position vectors of objects that remain on a flat
surface. We represent this physical surface by a mathematical plane, which is a
map of the surface so that each location in the physical surface corresponds to a
point of the mathematical plane. We choose some point as an origin and pick some
line passing through the origin as ouaxis. One end of this axis is designated as
the positive end. The line passing through the origin perpendicular to éixes is

our y axis, and the end that is counterclockwise $m the positive end of the

axis is its positive end. These axes are shown in Fig. 2.6. In this figure, the origin
is labeled as poin®, and the location of some object is labeled as p#int

The directed line segment beginning@tnd ending aP is theposition vector
of the object. We denote the position vector in two dimensions by the boldface
Greek letterp. In the figure, we draw an arrowhead on the directed line segment to
make its direction clear.

The negative of a given vector is a vector of the same length directed in the
opposite direction. A vector and its negative have the same magnitude, as do all
the vectors of the same length pointing in any other directions.ngaitude of p
is denotedp| or by p. It is a nonnegative quantity equal to the length of the vector
0. One way to specify the location of the poiftis to give the magnitude ¢f and
the value of the angleé between the positive end of theaxis andp, measured
counterclockwise from the axis. The variabjesnd¢ are called thelane polar
coordinates of the pointP. If we allow p to range from zero tec and allowg to
range from 0 to 2 radians, we can specify the location of any point in the plane.

There is another common way to specify the locatioPofWe draw two line
segments fromP perpendicular to the axes, as shown in Fig. 2.6. The distance
from the origin to the intersection on theaxis is calledy and is considered to
be positive if the intersection is on the positive half of the axis, and negative if
the intersection is on the negative half of the axis. The distance from the origin to
the intersection on the axis is calledy, and its sign is assigned in a similar way.
The variablest andy are theCartesian coordinates of P.> The pointP can be
designated by its Cartesian coordinates within parenthesés, ag The values
of x andy are also called theartesian components of the position vector.

1cartesian coordinates are named for Rene DuPerron Descarte, 1596—1650, French mathematician, philoso-
pher, and natural scientist, who is famous (in part) for his statement, “I think, therefore | am.”
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Changing from plane polar coordinates to Cartesian coordinates is an example
of transformation of coordinates, and can be done by using the equations

X = pcos(¢) (2.37)
y = psin(¢) (2.38)

| EXERCISE 2.10 | Show that Egs. (2.37) and (2.38) are correct. [«

The coordinate transformation in the other direction is also possible. From the
theorem of Pythagorus, Eq. (2.21),

P =/x2 4+ y2 (2.39)

From the definition of the tangent function, Eq. (2.3),
o= arctan(X) . (2.40)
X

However, since we wanp to range from 0 to 2 radians, we must specify this
range for the inverse tangent function, instead of using the principal value. If we
are using a calculator that is programmed to deliver the principal value, we must
decide in advance which quadramties in and be prepared to aedor 27 to the
calculator result if it lies in the wrong quadrant.

|EXERCISE 2.11 B | (@ Findx andy if p = 6 and¢ = x/6 radians.
(b) Findp and¢ if x =5 andy = 10. [«]

A position vector is only one example of a vector. Anything, such as a force, a
velocity, or an acceleration, which has magnitude and direction, is a vector. Figure
2.6 is a map of physical space, and a distance in such a diagram is measured in
units of length, such as meters. Other kinds of vectors can also be represented
on vector diagrams by directed line segments. However, such a diagram is not a
map of physical space, and the length of a line segment representing a vector will
represent the magnitude of a force, or the magnitude of a velocity, or something
else. Position vectors ordinarily remain with their tails at the origin, but since other
vector diagrams do not necessarily represent a physical (geographical) space, we
will consider a vector to be unchanged if it is moved from one place in a vector
diagram to another, as long as its length and its direction do not change.

Vector Algebra in Two Dimensions

Figure 2.7 is a vector diagram in which two vectgksandB, are shown. The sum

of the two vectors is obtained as follows: (1) Move the second vector so that its
tail coincides with the head of the first. (2) Draw the sum vector from the tail of
the first vector to the head of the second. The addition of vectors is commutative:
A + B is the same aB + A.
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~
>
™ |

Figure 2.7 » Two vectors and their sum.

The components ok andB are defined in the same way as the components of
the position vector in Fig. 2.6. Thecomponents are calledl, and B,, and they
components are calletl, andB,. We can denote the vectarby its component in
x, y order inside parentheses, as;( A,) Vector addition can be performed using
the components of the vectors. If the sumfo&ndB is calledC,

C=A+B (2.41)
Cy = A+ By (2.42)
Cy = Ay + By. (2.43)

EXAMPLE 2.2 Find the sum of the two vector.5, 3) and(3.1, 4).

SOLUTION » A+B=(5,6,7) <

The difference of two vectors is the sum of the first vector and the negative of
the second. The negative Bfis denoted by-B and is the vector with components
—B, and—B,. If the vectorA — B is calledD,

D=A-B (2.44)
D, = A, — B, (2.45)
D, = A, — B,. (2.46)

If the tail of the vector—B is placed at the head of the vecir the vectorD =
A — B has its tail at the tail oA and its head at the head eB. The difference
D = A — B can also be represented by placing the tails of BotindB at the
same place and drawing the vecmwith its tail at the head oB and its head at
the head oA\.

|EXERCISE 2.12 b | Draw vector diagrams and convince yourself that the
two schemes presented for the constructioD ef A — B give the same result.

[«
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If A is a vector and: is a scalar, thg@roduct of the scalar and the vector aA
has the components

(aA)y, = aAy (2.47)
(aA), = aA, (2.48)

If a is a positive scalar, the vectaA points in the same direction &s and ifa is
a negative scalar, the veci@A points in the opposite direction. The magnitude of
aA is equal toa| |A| = |alA.

The magnitude of a vectdk in two dimensions is denoted by or by |A|. Itis
obtained in the same manner as the magnitude of a position vector:

A=I|A|=,/A2 + A2 (2.49)

|EXERCISE 2.13 | The vectorA has the components, = 2, A, = 3. The
vectorB has the component®, = 3, B, = 4. (a) Find|A| and|B|. (b) Find
the components and the magnitudedot B. (c) Find the components and the
magnitude ofA — B. (d) Find the components and the magnitude Af-2B.

[«]

We next define thacalar product of two vectors, which is also called tluet
product because of the use of a dot to represent the operatighatlidB are two
vectors, andr is the angle between them, their scalar product is denote¥ -t
and given by

A -B = |A||B|cos(x). (2.50)
The result is a scalar, as the name implies.

[EXERCISE 2.14 |

(a) Let|A| = 4.5, |B] = 6.0, and let the angle between them equal30
FindA - B.

(b) Let|A| = 4.0, |IB] = 2.0, and let the angle between them equal45
FindA - B. [«

The following are properties of the scalar product:

1. If A andB are parallelA - B is the product of the magnitudes AfandB.

2. The scalar product ok with itself is the square of the magnitude/f
A-A= )A2| = )Az‘ = A® = A% + A%,

3. If A andB are perpendicular to each othar; B = 0. Such vectors are said to
beorthogonal to each other.

4. If A andB point in opposite directions (are antiparalléd); B is the negative
of the product of the magnitudes AfandB.

A convenient way to represent vectors is by usimg vectors. We definei to
be a vector of unit length pointing in the direction of the positive end ofthgis,
andj to be a vector of unit length pointing in the direction of the positive end of
the y axis. These are shown in Fig. 2.8.
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Figure 2.8 » A vector in terms of the unit vectoisand;.

A vectorA is represented as
A=iA,+]A,. (2.51)

The first term on the right-hand side of this equation is a product of the component
A, and a vector, so it is a vector of lengti, pointing along ther axis, as shown

in Fig. 2.8. The other term is similarly a vector of length pointing along they

axis. The vectoA is the vector sum shown in Fig. 2.8. A similar equation can be
written for another vectoB:

B=iB, +]B,. (2.52)
The scalar produd - B can be written

— - iAgBy +i-JABy+]-iABy ] JABy.

From the definitions off andj and the definition of the scalar product,

i-i=j-j=1 (2.53)
i-j=j-i=0 (2.54)

so that
A-B=A.B,+ AyB, (2.55)

EXAMPLE 2.3 Consider the following vector\ = 2.5i 4+ 4j andB = 3i — 5.

(a) FindA - B. (b) Find|A| and |B| and use them to
find the angle betweefh andB.

SOLUTION » A B = (25)(3)+ (4)(-5) =7.5—-20= —125.
IA| (6.25+ 16)Y2 = (222512 — 4.717. ..
Bl = (9+ 2512 = (3491/2 = 5.83009...
A-B ~125
= = —0.4545
IA|1B| ~ (4.717)(5.83))
arccog—0.4545 = 2.043rad= 117.0°

cos(a) =

o
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[EXERCISE 2.15 | Consider two vectoré& = (3.00)i — (4.00)j andB =
(1.00)i + (2.00)j.

(a) Draw a vector diagram of the two vectors.

(b) FindA - B and(2A) - (3B).

(c) Find the magnitude oA - B.

(d) Find the angle betweeh andB. Use the principal value of the arccosine,
so that an angle of less thanradians (1860) results. [«

Vectors and Coordinate Systems in Three Dimensions

Figure 2.9 depicts the three-dimensional versioQaftesian coordinates. We de-
fine thex andy axes as before, and erect thaxis through the origin and perpen-
dicular to thex andy axes.

The axes are viewed from thHigst octant, lying between the positive ends of
the x, y, andz axes. The octants are numbered from 1 to 8, beginning with the
first octant in the upper front right part of the coordinate system and moving coun-
terclockwise around the upper part, and then moving to the lower front right part
(octant 5) and moving counterclockwise around the bottom part. A coordinate sys-
tem such as that shown is calledight-handed coordinate system. For such a
system, the thumb, index finger, and middle finger of the right hand can be aligned
with the positive ends of the, y, andz axes, respectively. If the left hand must be
used for such an alignment, the coordinate system is calleit-banded coordi-
nate system.

The location of the poinP is specified by, y, andz, which are theCartesian
coordinates of the point. These are the distances from the origin to the points on the
axes reached by moving perpendicularly fréhio each axis. These coordinates
can be positive or negative. In the first octanty,andz are all positive. In the
second octanty is negative, buy andz are positive. The poinP can be denoted
by its coordinates, as:(y, z). The directed line segment from the origin fois

Figure 2.9 » Cartesian coordinates in three dimensions.
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Figure 2.10 » A position vector in terms of the unit vectarg, andk.

the position vector of P, and is denoted by. The Cartesian coordinates y, and
z are also called th€artesian components of r. A vector can be represented by
the list of its components inside parentheses so that the position vector is denoted
by (x, y, z) and the vectoA can be denoted b§A,, Ay, A;).

We can represent a three-dimensional vector by the use of unit vectors as we did
in two dimensions. In addition to the unit vectorand]j in thex andy directions,
we definek, a vector of unit length pointing in the direction of the positive end of
thez axis. Figure 2.10 shows these unit vectors and the position vector written as

r=ix+jy+kz (2.56)

The magnitude of- of the vectorr can be obtained from the theorem of
Pythagoras. In Fig. 2.10 you can see thas the hypotenuse of a right trian-

gle with sidesp andz, wherep = /x2 + y2 so that the square of the magnitude
of r is given by a three-dimensional version of the theorem of Pythagoras:

or
r=Irl=+x24+y24+22| (2.58)

The magnitude of any vector is analogous to the magnitude of the position vector.
If A is a vector with Cartesian components, A, andA_, the magnitude oA is
given by

1/2
Al=a=(a2+a2+42) " = [a2+ 42422 (259)

EXAMPLE 2.4 Find the magnitude of the vectér = (3.00, 4.00, 5.00).
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Figure 2.11 » Spherical polar coordinates.

SOLUTION » A = +/3.002 + 4.002 + 5.002 = 4/50.00 = 7.07 <

Figure 2.11 shows the way in whidpherical polar coordinates are used to
specify the location of the poinP and the vector from the origin toP. The
vector p in the x-y plane is also shown. The vectpris called theprojection
of r into the x-y plane. Its head is reached from the head diy moving to
the x-y plane in a direction perpendicular to the plane. The three spherical polar
coordinates are, ¢, and¢. The coordinate is the magnitude of the vectoras in
Eqg. (2.58)¢ is the angle between the positiva@xis and the position vector and
¢ is the angle between the positiveaxis and the vectgp, as in two-dimensional
polar coordinates. The angleis allowed to range from 0 te and the angle is
allowed to range from 0 tos2 The distance is allowed to range from 0 too,
and these ranges allow the location of every point in the three-dimensional space
to be given.

The following equations and Eq. (2.58) can be used to transform from Cartesian
coordinates to spherical polar coordinates:

0= arccos(é) (2.60)

r

and

¢ = arctan(%) . (2.61)

Equation (2.61) is the same as Eg. (2.40).
The following equations can be used to transform from spherical polar coordi-
nates to Cartesian coordinates:
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x = r sin(9) cos(¢) (2.62)
y =rsin(f) sin(¢) (2.63)
z = rcos(6) (2.64)

EXAMPLE 2.5 Find the spherical polar coordinates of the point whose Carte-
sian coordinates ard.000, 1.000, 1.000).

SOLUTION »

ro= \/ (1.0002 — (1.0002 — (1.0002 = +/3.000= 1.732

1.000\ = .
¢ = arCtan(l.OOO) = Zrad = 45
1.000
- =0 = 54.7°
0 arccos( 1.732> 0.955 rad= 5
<«
|EXERCISE 2.16 b | Find the spherical polar coordinates of the point whose
Cartesian coordinates a2, 3, 4). [«

Thecylindrical polar coordinate system is another three-dimensional coordi-
nate system. It uses the variables ¢, andz, already defined and shown in
Fig. 2.11. The equations needed to transform from Cartesian coordinates to cylin-
drical polar coordinates are Egs. (2.39) and (2.40). The third coordinatethe
same in both Cartesian and cylindrical polar coordinates. Equations (2.37) and
(2.38) are used for the reverse transformation.

EXAMPLE 2.6 Find the cylindrical polar coordinates of the point whose Carte-
sian coordinates ard.000, —4.000, —2.000).

SOLUTION »
p = \/ (1.0002 + (4.0002 = +/17.000= 4.123
—4.000 .
¢ = arctan( 1000 ) = 4.957 radians= 284°
z = —2.000
<
|EXERCISE 2.17 b | (a) Find the Cartesian coordinates of the point whose

cylindrical polar coordinates aype= 25.00, ¢ = 60.0°, z = 17.50
(b) Find the cylindrical polar coordinates of the point whose Cartesian coordi-
nates aré—2.000, —2.000, 3.000). [«
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The magnitude of the position vector in cylindrical polar coordinates is given
by

r= (p2 + Z2>1/2 (2.65)

EXAMPLE 2.7 Find the spherical polar coordinates of the points whose cyllin-
drical polar coordinates af@ = 10.00, ¢ = 45.00°, z = 15.00)

SOLUTION » r = /1000?+15002 = /32500 = 1803, 0 = arccosizdyd) =
arcco$0.83205 = 3369°, ¢ = 45.00° <

Vector Algebrain Three Dimensions

The sum of two vectors are similar to the sum in two dimensionsALandB be
two vectors, represented in terms of their components and the unit vegtoaiad
k by

A=iA,+]A, +KA, (2.66a)

B=iBy +]By + KB.. (2.66b)

The sum is still obtained by placing the tail of the second vector at the head of the
first and drawing the sum vector from the tail of the first to the head of the second.
If Cis the sum ofA andB, then

C=A+8B

Co = Av + By (2.67)
Cy=A,+ B,

C.=A;+B;

There are three kinds of products involving vectors. The product of a vaciod
a scalaw is

C=aA =iaA; +jaA, +KaA.. (2.68)

The scalar product of two vectors is still given by

A-B = |A||B|cos(a) | (2.69)

whereq is the angle between the vectors.
Analogous to Eq. (2.55), we have

A-B=A,B,+A,B,+AB,| (2.70)

EXAMPLE 2.8 Let A = 2i + 3] + 7k andB = 7i + 2] + 3k. FindA - B and the
angle betwee andB. Find (3A) - B.
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SOLUTION »
A-B=14+6+21=41

The magnitude oA is
Al=A=22+3%2+7%)12 =62 (2.71)

The magnitude oB happens to be the same. lebe the angle between the vectdrandB.

arCCOS( A-B )
ATIB]

o

41
= arccoy ———— | = arccog0.6613 = 0.848 rad= 48.6°
{7av)
(BA)-B = 3x144+3x6+3x21l=A-B=4x41=123
Notice that(3A) - B = 3(A - B). <«
| EXERCISE 2.18 b | Find the cartesian components of the position vector of

the point whose spherical polar coordinatesrate 2,6 = 90°, ¢ = 0°. Call
this vectorA.

(a) Find the scalar product of the vectdifrom part a and the vect® whose
cartesian components aig 2, 3).

(b) Find the angle between these two vectors. [«

We now introduce another kind of a product between two vectors, called the
vector product or cross product, and denoted by x B. If

C=AxB

thenC is defined to be perpendicular to the plane contaidirendB and to have
the magnitude

C = |C| = |A| Bl sin(a), (2.72)

whereq is the angle betweefs andB, measured so that it lies between 0 and°180
The direction of the cross produét x B is defined as follows: If the first vector
listed is rotated through the angleso that its direction coincides with that Bf
thenC points in the direction that an ordinary (right-handed) screw thread would
move with this rotation. Another rule to obtain the direction rsgit-hand rule. If

the thumb of the right hand points in the direction of the first vector and the index
finger points in the direction of the second vector, the middle finger can point in
the direction of their cross product.

|EXERCISE 2.19 b | From the geometrical definition just given, show that
[AxB=—-BxA] (2.73)
(<]

In this exercise you have shown that the vector product of two vectors is not
commutative, which means that you get a different result if you switch the order of
the two factors.

From Eq. (2.72),

AxA=0]| (2.74)

where0 is thenull vector. The null vector has zero magnitude and no particular
direction. To express the cross product in terms of components, we can use the
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definition of the vector product to write

ixi=jxj=kxk=0 (2.75a)
and
ixj =Kk (2.75b)
jxi = -k (2.75¢)
ixk = —j (2.75d)
Kxi =] (2.75e)
jxk =i (2.75f)
kxj = —i. (2.759)

By use of these relations, we obtain

C=AxB

C = iC,+jCy +KC,

: . (2.76)
i(AyB, — A;B,) +(A.B, — A, B.) + K(A By — A, B,)

EXERCISE 2.20 b | Show that Eq. (2.76) follows from Eq. (2.75). [«]

EXAMPLE 2.9 Find the cross produd x B, whereA = (1,2, 3) andB =
1,1, 1).

SOLUTION » LetC =A x B.
C=i2-3+jB-1D+k(1-2 =—i+2 -k

EXAMPLE 2.10 Show that the vecto€ obtained in the previous example is
perpendicular ta\.

SOLUTION » We do this by showing tha - C = 0.

A-C = AyCx + AyCy + AC;
= —1+4+3=0.

|EXERCISE 2.21 | Show that the vecto€ is perpendicular t@, and that
Eq. (2.72) is satisfied. Do this by finding the angle betwaesmdB through
calculation ofA - B. [«
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An example of a vector product is the force on a moving charged particle due
to a magnetic field. 1§ is the charge on the particle measured in coulombsyC),
is the velocity of the particle in meters per second, Bnsl themagnetic induction
(often called the “magnetic field”) measuredtesia (T),2 the force in newtons is
given by
F=qvxB. (2.77)

Since this force is perpendicular to the velocity, it causes the trajectory of the par-
ticle to curve, rather than changing the speed of the patrticle.

EXAMPLE 2.11 Find the force on an electron in a magnetic fieldvif =
i(1.000x 10°ms1) andB = j(1.000 x 1074 T).

SOLUTION » The value ofj is —1.602 x 10~19C (note the negative sign).
F = (xj (—1.602 x 10719 c) (1.000 x 10°m s—l) (1.000x 1074T)
- —k (1,602>< 108 Asms kg s_2A_1>

= —k(1602x 1071® kgms?) = —k(1.602x 10-°N).

The force on a charged particle due toehectric field is
F = qE, (2.78)

whereE is the electric field ang is the charge on the particle. If the charge is
measured in coulombs and the field in volts per meter, the force is in newtons.

| EXERCISE 2.22 b | Find the direction and the magnitude of the electric field
necessary to provide a force on the electron in the previous example that is
equal in magnitude to the force due to the magnetic field but opposite in direc-
tion. If both these forces act on the particle, what will be their effect? [«

Imaginary and Complex Numbers

Imaginary numbers have been defined into existence by mathematicians. They
cannot be used to represent any physically measured quantity, but turn out to be
useful in quantum mechanics. Theaginary unit is calledi (not to be confused

with the unit vectoii) and is defined to be the square rootf:

i=+-1 (2.79)

If b is a real number, the quantity is said to begpure imaginary, and ifa is also
real, the quantity

c=a+ib (2.80)

2The tesla is named for Nikola Tesla, 1856—1943, the electrical engineer who invented the rotating-field elec-
tric motor and other electrical devices.
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is said to be a@omplex number. The real numbed is called thereal part of ¢ and
is denoted by

a = R(c). (2.81)
The real numbeb is called themaginary part of ¢ and is denoted by

b=1I(c). (2.82)

All of the rules of ordinary arithmetic apply with complex numbers. The sum of
two complex numbers is obtained by adding the two real parts together and adding
the two imaginary parts together. df = a; + ibrjandcs = a2 + iba, then

c1tc2=a1+az+i(b1+b2)

The product of two complex numbers is obtained by the same procedure as multi-
plying two real binomials.

c1c2 = aiap +1i(ai1by + biay) + <i 2) bibs
= aiap +i (a1b2 + biap) — b1by

Addition and multiplication ar@associative. That is, if A, B, andC are complex
numbers,

A+(B+C) = (A+B)+C (2.83)
A(BC) = (AB)C. (2.84)

Addition and multiplication arelistributive. That is,
AB+C)=AB + AC. (2.85)

Addition and multiplication areommutative. That is, addition or multiplication
of two complex numbers yields the same result in either order:

A+B = B+A (2.86)
AB = BA. (2.87)

Subtraction is the addition of a number whose real and imaginary parts are the

negatives of the number to be subtracted, and division is multiplication by the
reciprocal of a number. If

z=x+1iy (2.88)

then thereciprocal of z, calledz 1, is given by

-1 X .y
7= 212 — lx2 )2 (2.89)

EXAMPLE 2.12 Show that;(z 1) = 1.
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SOLUTION »
-1, _ . X .Y
z2(z77) = (x+1iy) <x2+y2 lx2+y2>
1
= m <x2 +ixy —ixy — i2y2)
1 2_.22
= 212 (x —i“y ):1.
<
EXERCISE 2.23 b | Show that
(a+ib)(c+1id) =ac —bd +i(bc + ad). (2.90)
Kl
EXERCISE 2.24 b | Show that
a+ib (ac+bd —iad+ibc)
= 2.91
c+id c2 +d? ( )
[«
EXERCISE 2.25 b | Find the value of
14
(44 60)(3+20) +4i — — L. (2.92)
3—2i
Kl

Specifying a complex number is equivalent to specifying two real numbers,
one for the real part and one for the imaginary part. A complex number is there-
fore similar to a vector in two dimensions. We can therefore represent a complex
number by the location of a point in a plane, as shown in Fig. 2.12.

This kind of a figure is called afirgand diagram, and the plane of the figure is
called theArgand plane or thecomplex plane. The horizontal coordinate represents
the real part of the number and the vertical coordinate represents the imaginary
part. The horizontal axis, labele®], is called thereal axis, and the vertical axis,
labeled!, is called themaginary axis.

z=x+iy

u
|
|
|

¥

R=S
s samesmapesnese

|

*

Figure 2.12 » Representation of the complex numhet x + iy in the Argand diagram.
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The location of the point in the Argand plane can be given by polar coordinates.
We use the symbal for the distance from the origin to the point, and the symbol
for the angle in radians between the positive real axis and the line segment joining
the origin and the point. The quantityis the magnitude of the complex number.
It is also called theabsolute value or the modulus of the complex number. The
angle¢ is called theargument or phase of the complex number. From Eq. (2.37)
and (2.38),

z=x+1iy =rcos(¢) +irsin(¢).

There is a theorem, known &siller’s formula, that allows a complex number to be
written as an exponential with an imaginary exponent,

z=re'? =rcos(¢) +irsin(g) =x+iyl, (2.93)

wheree is the base of natural logarithms,= 2.7182818. ., and where- and¢
are the magnitude and phase of the complex number. This form is calledltne
representation of the complex number. In this formula, must be measured in
radians.

In the polar representation, the product of two complex numberszsay
r1e'®t andzp = rpe'?2, is given in a convenient form:

2122 = rirge! #1192 | (2.94)

The quotient1z2 is given by

a_ (E) ol @1-¢2) | (2.95)
<22 r2

DeMoivre's formula gives the result of raising a complex number to a given
power:

(rei¢>)” = " = r"[cogne) + i sin(ng)] |

EXAMPLE 2.13 Evaluate the following.
(a) (4ei71) (362i”) (b) (SeZin) (zein/Z)
(C) (864i)2

SOLUTION »
@ (4€iﬂ> (3ezi”) — 1237 _ 19,7
(b) (8e2i”) (261';1/2) — 4,5i7/2

© (864i)2 — 6468,
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In part (a) of the preceding example we have used the fact that an angte of 2
radians gives the same point in the complex plane as an angle of 0, so that

el =1 (2.96)

Similarly,

e = —1 (2.97)

Since an angle is unchanged if any multiple af & added or subtracted from it,
we can write

/@I — oi0 (2.98)
wheren is an integer. If a number is given in the fogm= x + iy, we can find the

magnitude and the phase as
ro= 4/x24y2 (2.99)

10} arctan(z) (2.100)

X

Just as with a transformation from cartesian coordinates to polar coordinates, we do
not necessarily use the principal value of the arctangent function, but must obtain
an angle in the proper quadrant, witiranging from O to 2.

|[EXERCISE 2.26 > | Express the following complex numbers in the form
re'®:
(@) 4+ 4i (b) —1
©1 (d) 1—i.
(<]
|[EXERCISE 2.27 b | Express the following complex numbers in the forms
iy:
(a) el (b) 3eni/2
(C) e3rri/2
(<]

The complex conjugate of a number is defined as the number that has the same
real part and an imaginary part that is the negative of that of the original number.
We will denote the complex conjugate by an asterisk (*). It is also denoted by a
bar over the letter for the number.

If z=x+1iy,then

P=gt=(x+iy) =x—iy| (2.101)

Figure 2.13 shows the location of a complex number and of its complex conju-
gate in the Argand plane.

The phase of the complex conjugate-ig if the phase of the original number
is ¢. The magnitude is the same, so

(rei¢)* =re”i? | (2.102)
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Figure 2.13 » A complex number; = x + iy, and its complex conjugatef = x — iy, in the
Argand plane.

Although we do not prove it, the following fact is useful in obtaining the com-
plex conjugate of a complex quantityhe complex conjugate of any expression is
obtained by changing the sign in front of every i that occursin the expression.

EXAMPLE 2.14 Find the complex conjugates of the following, whereb, c,
andd are real quantities:

(@) A = (14 2)%2 — exp(3 + 4i)

(b) B = a(b + ci)® +4(c —id)~ L.

SOLUTION » (a)A* = (1—2)%2 —expB—4i) (b) B* =a(b —ci)2 +4(c+id)" L. =

|EXERCISE 2.28 | Find the complex conjugates of
(@) A= (x +iy)? — 4™ (b) B =(3+7)° - (7)%

[«

Once we have an expression for the complex conjugate of a quantity, we can
use it to express the real and imaginary parts separately:

R(z) = ZJFZZ* (2.103)
10 = 2% (2.104)
2i

EXERCISE 2.29 b | Use Eq. (2.101) to show that Egs. (2.103) and (2.104)
are correct. [«
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| EXERCISE 2.30 b | Obtain the famous formulas
i —i¢ )
cos(¢) = % = R (') (2.105)
Kl
. el — 79 .
Sin@) = ————=1 (?) (2.106)
l

The magnitude of an expression can also be obtained by using the complex
conjugate. We find that

77 = (reid’) (re_i¢) =r? (2.107)

so that

r=/zz*|, (2.108)

where the positive square root is to be taken. The product of any complex number
and its complex conjugate is always real and nonnegative.

| EXERCISE 2.31 b | Write a complex number in the formm + iy and
show that the product of the number with its complex conjugate is real and
nonnegative. [«

EXAMPLE 2.15 If z = 4¢% + 6i, find R(z), I (2), r, andé.

SOLUTION »
RG) = i+ _ 4¢3 4 6 + e —6i
2 2
= 2% 4+ ¢73) = 4cos(3) = —3.960
1@ = ° —‘z* _ 4¢3 + 6 —.4e_3i +6i
2i 21
4(€3i _ 6_3i)

= ————+6=4sin(3)+6
2i

= 4sin(1718%°) + 6 = 6.5645
- (zz*)l/z — (x2+y2)1/2
= [(~3.9607 + (6.5645°]'/% = 7.666

1 —6.5645
¢ = arctan = = arctan

3.960
= arctan(—1.6577

The principal value of this arctangentis58.90°. However, sinceR(z) is negative and (z) is
positive, we require an angle in the second quadrant.

¢ = 180° — 58.90° = 12110° = 2.114 rad.

3+ 2i
4+ 5i

2
) ,find R(2), 1(2), r, and¢. Kl

EXERCISE 2.32 P> | If z = (
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Thesquareroot of a complex number is a number that will yield the first number
when multiplied by itself. Just as with real numbers, there are two square roots of
a complex number. If = re’?, one of the square roots is given by

Vreit = Jre'?/?. (2.109)

The other square root is obtained by realizing thatig increased by, the same
point in the Argand plane is represented. Therefore, the square rogtdr?) is
the same as the other square rootdf.

Vreit = \/rei@+9) = \frei(T+#/2), (2.110)

EXAMPLE 2.16 Find the square roots o&3/2.

SOLUTION » One square root is, from Eq. (2.109),

V3eim/2 = /34,

The other square root is, from Eq. (2.110),
ﬁei(n+n/4) — \/§ei57r/4.

If a complex number is representedsag- iy, it is usually best to transform to polar coordinates

before taking the square root of the number. <
|EXERCISE 2.33 p> | Find the square roots of-4 4i. Sketch an Argand dia-
gram and locate the roots on it. [«

There are threeube roots of a complex number. These can be found by look-
ing for the numbers that when cubed yield?, re!?*+t9) andre!®+9). These
numbers are

Vreit = Yrel9/3, Yrel@TH9)/3 &y oi(n+e)/3

Higher roots are obtained similarly.

EXAMPLE 2.17 Find the three cube roots efl.

SOLUTION » Inthe polar representatior,1 = ¢/ . The three cube roots are

\3/ei_”=ei”/3, AT SiT/3 (2.111)

<

Higher roots are defined similarly.

| EXERCISE 2.34 | Find the four fourth roots of-1. [«
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Problem Solving and Symbolic Mathematics

We have already seen a number of relatively simple exercises, examples, and prob-
lems in this and the previous chapter. In most cases, these involved carrying out
operations that we either specified or that were fairly obvious. We now make some
general comments on solving chemistry problems, which are usually a little more
complicated. A typical chemistry problem is similar to what was once called a
story problem or aword problem in elementary school. You are given some fac-
tual information (or asked to find some), together with a verbal statement of what
answer is required, but you must find your own method of obtaining the answer
from the given information. In a simple problem, this may consist only of sub-
stituting numerical values into a formula, but in a more complicated problem you
might have to derive your own mathematical formula or carry out other procedures.
The method, oalgorithm, must be developed for each problem. Sometimes the
algorithm is the use of a single formula. The principal tool for obtaining a useful
formula from another formula ialgebra, In algebra we manipulate the symbols
standing for variables without actually carrying out numerical operations. An alge-
braic equation has a set of symbols for variables and operations on each side of the
equation, with the assertion that if we replace the variable symbols by their numer-
ical values and carry out the indicated operations, we obtain the same numerical
value for each side of the equation. If we have a valid algebraic equation, we can
symbolically carry out the same operation on both sides of the equation and obtain
a valid new equation. For example, we can symbolically divide both sides of the
equation by some variable by writing the symbol for the variable as a denominator
in a fraction and canceling symbols on both the top and bottom of the fraction.

EXAMPLE 2.18 Under ordinary conditions, ordinary gases nearly obey the
ideal gas equation is
PV =nRT (2.112)

whereV is the volumer is the amount of gas in mol€eg,is the temperature?
is the pressure, anklis theideal gas constant, equal to 83145JK 1 mol~! =
0.08206 | atm K mol~1. Calculate the volume occupied by2Z8 mol of an
ideal gas if the pressure is321 atm and the temperature is 2BBK.

SOLUTION » Since there are four variables, we can calculate the value of one of them if the
values of the other three are given. We solve the ideal gas equatidndpisymbolically dividing

both sides of the equation B, obtaining
RT
vy =10 (2.113)
P

We substitute the numerical values into Eq. (2.113), convert the pressure from atmospheres to
pascals by use of the factor label method, and carry out the numerical operations:
(1.278 mo)(8.3145IK 1 mol~1)(29815K) / latm

2.314atm 101325P

1.351x 102 JPal

1p 1N
1.351x 1072 Jpal(—2 ) (=T
INm—2 1J

1.351x 1072m3.
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We give the answer to four significant digits, because both the pressure and the amount of gas
are specified to four significant digits. We can now make an additional conversion to express the
volume in liters:

(1.351>< 102 m3) ( 1 ) — 13511

10-3m3
We know that this solution is in the correct range of values, since a mole of gas at room temperature
and one atmosphere pressure occupies about 25 liters. <

The preceding example was a simple one, but it illustrates some of the princi-
ples of problem solving. Let's summarize the procedure that was used. We first
determined that the ideal gas equation of state was sufficient to work the problem
and that enough information was given. This equation was solved algebraically
for the volume to give a working formula. The given values of quantities were
substituted into the formula, and the necessary unit conversion was made. After
all factors were written out and the units checked, the multiplications and divisions
were carried out and it was determined that the answer was about the right size.

The general problem-solving procedure can be summarized as follows:

1. Analyze the given information and the desired answer.

2. Decide what kind of a procedure is needed to process the given information and
obtain the desired answer. Determine whether enough information is contained
in the given information. If one or more formulas are needed, find the formulas.
In working a complicated problem, it might be useful to map out on a piece
of pap'egr how you are going to get from the given information to the desired
answer:

3. Find any addition information that is needed.

4. Carry our any necessary symbolic manipulations to obtain a working formula
from the formula or formulas that you found. In some problems you might be
asked to obtain a formula, and if so this is the end of the procedure.

5. Carry out any numerical operations to obtain the desired answer.

6. Look at your answer to see it if is reasonable. Simple numerical mistakes
will usually cause your answer to be much too large or too small, and you
can usually see if this is the case. For example, if your answer is a molecular
diameter and you obtain a value of roughly 1000 m, you know that there is a
mistake somewhere. You should also check your answer by substituting it into
the original formula.

In order to judge whether an answer is reasonable, it is useful to be able to
estimate approximate sizes of things. You need to start with reasonable estimates
and work out an estimate of the desired quantity. For example, a professor asked
a class to estimate the number of piano tuners in New York City. One would start
with an estimate of the population—say, 10 million people—which might amount
to 5 million households. Perhaps one household in 10 might have a piano, for
500,000 pianos. A professional pianist might have a piano tuned every month, but
most people might let it go for several years. We assume that on the average, each
piano is tuned once in two years, for 250,000 tunings per year. A professional

3Some unkind soul has defined a mathematician as a person capable of designing a mathematically precise
path from an unwarranted assumption to a foregone conclusion.
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piano tuner might be able to tune 6 pianos in a day, or about 1200 pianos in a year.
The result is that there might be about 200 full-time piano tuners in New York City.
This number is surely wrong, but must be in the right order of magnitude.

|EXERCISE 2.35 b | Estimate the number of house painters in Chica{«]

In the remaining chapters of this book, you will see a number of examples
worked out, and you will see a humber of exercises and problems that you can
solve. In most of these, a method must be found and applied that will lead from the
given information to the desired answer. In some problems there will be a choice of
methods. Perhaps you must choose between a graphical procedure and a numerical
procedure, or between an approximate formula and an exact formula. In some of
these cases, it would be foolish to carry out a more difficult solution, because an
approximate solution will give you an answer that will be sufficient for the purpose
at hand. In other cases, you will need to carry out a more nearly exact solution.
You will need to learn how to distinguish between these two cases.

SUMMARY

In this chapter we have introduced symbolic mathematics, which involves the ma-
nipulation of symbols instead of performing numerical operations. We have pre-
sented the algebraic tools needed to manipulate expressions containing real scalar
variables, real vector variables, and complex scalar variables. We have also in-
troduced ordinary and hyperbolic trigonometric functions, exponentials, and loga-
rithms. A brief introduction to the techniques of problem solving was included.

PROBLEMS

1. A Boy Scout finds a tall tree while hiking and wants to estimate its height. He
walks away from the tree and finds that when he is 98 m from the tree, he must
look upward at an angle of 350 look at the top of the tree. His eye iSO m
from the ground, which is perfectly level. How tall is the tree?

2. The equationc? + y? + z2 = ¢2, wherec is a constant, represents a surface in
three dimensions. Express the equation in spherical polar coordinates. What is
the shape of the surface?

3. Express the equation= b, whereb is a constant, in plane polar coordinates.

4. Express the equation= mx + b, wherem andb are constants, in plane polar
coordinates.

5. Find the values of the plane polar coordinates that correspane+@, y = 4.

6. Find the values of the cartesian coordinates that correspond=al0, § =
45°, ¢ = 135°.

7. Find the values of the spherical polar coordinates that correspond 0
2, y=2,z=4.
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8.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.

A surface is represented in cylindrical polar coordinates by the equation
z = p2. Describe the shape of the surface.

FindA —Bif A=2i+3jandB =i+ 3 — k.

FindA -Bif A= (0, 2) andB = (2, 0).

Find |A|if A = 3i + 4] — k.

FindA-Bif A=i+]j+kandB =i+ 3 — 2k.

FindA-Bif A=(1,1,1) andB = (2, 2, 2).

FindA x Bif A = (0,1,2) andB = (2, 1, 0).

FindA x Bif A= (1,1,1) andB = (2, 2, 2).

Find the angle betweelh andBif A =i+ 2 + kandB =i+ + k.
Find the angle betweelh andB if A = 3i + 2j + k andB =i + 2j + 3k.

A spherical object falling in a fluid has three forces acting upon it: (1) The
gravitational force, whose magnitude £ = mg, wherem is the mass of
the object andg is the acceleration due to gravity, equal t8 B1s2; (2)

The buoyant force, whose magnitudefis = msg, wherem is the mass

of the displaced fluid, and whose direction is upward; (3) The frictional force,
which is given byF; = —6mnrv, wherer is the radius of the object; its
velocity, andn the coefficient of viscosity of the fluid. This formula for the
frictional forces applies only if the flow around the object is laminar (flow in
layers). The object is falling at a constant speed in glycerol, which has a vis-
cosity of 1490kg m's~1. The object has a mass 000381 kg, has a radius

of 0.00432m, a mass of.00381 kg, and displaces a mass of fluid equal to
0.000337 kg. Find the speed of the object.

The solutions to the Schrédinger equation for the electron in a hydrogen atom
have three quantum numbers associated with them, callédandm, and
these solutions are often denotedigy,,. One of the solutions is

1 (1\¥%r | .
=—\|— —e %0 5in(g) /¢

V211 8 /r <a0) aoe 0) e,

whereqg is a distance equal taB29 x 10-19m, called theBohr radius.

a) Write this function in terms of cartesian coordinates.
b) Write an expression for the magnitude of this complex function.

c) This function is sometimes callegl;,1. Write expressions for the real
and imaginary parts of the function, which are proportional to the related
functions called)z,, andyrz,,,.

Find the sum of 4% and %?%.
Find the difference &' — 2¢% .
Find the three cube roots of-32i.
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23.
24,

25.

26.

27.

28.

29.

30.

Chapter 2 Symbolic Mathematics and Mathematical Functions

Find the four fourth roots ofi3

a) Find the real and imaginary parts of
V3+i+(6+5i)?

Obtain a separate answer for each of the two square roots of the first term.
b) Write the complex conjugate of each answer.

An object has a force on it given lig.75 N)i + (7.00 N)j + (3.50 N)k.

a) Find the magnitude of the force.

b) Find the projection of the force in they plane. That is, find the vector in
thex-y plane whose head is reached from the head of the force vector by
moving in a direction perpendicular to tkey plane.

An object of mass 1P00 kg is moving in the direction. It has a gravitational
force acting on it equal te-mgk, wherem is the mass of the object andis

the acceleration due to gravity, equal t8@®m s 1. There is a frictional force
equal to(0.240 N)i. What is the magnitude and direction of the resultant force
(the vector sum of the forces on the object)?

The potential energy of a magnetic dipole in a magnetic field is given by the
scalar product
V=—u-B,

whereB is the magnetic induction (magnetic field) ands the magnetic di-
pole. Make a graph of/ (Ju||B|) as a function of the angle betwegnand
B.

Estimate the number of grains of sand on the beaches of the major continents
of the earth. Exclude islands and inland bodies of water. You should come up
with a number somewhere near Avogadro’s number.

Assume that a gas has a molar volume of 20 liters. Estimate the average dis-
tance between nearest-neighbor molecules.

Estimate the number of blades of grass in a lawn with an area of 1000 square
meters.



The Solution of
Algebraic
Equations

Preview

If an equation is written in the fornf (x) = 0, wheref is some function and is

a variable, solving the equation means to find those constant valuesuzh that

the equation is satisfied. These values are called solutions or roots of the equation.
We discuss both algebraic and numerical methods for finding roots to algebraic
equations. If there are two variables in the equation, sucki(asy) = 0, then

the equation can be solved foras a function ofc or x as a function ofy, but

in order to solve for constant values of both variables, a second equation, such as
G(x,y) = 0, is required, and the two equations must be solved simultaneously.
In general, if there are variables,n independent and consistent equations are
required.

Principal Facts and Ideas

1. The solution to an algebraic equation is generally a value or a set of values of
the independent variable such that substitution of such a value into the equation
produces an numerically correct equation such as@®

2. For a single independent variable, one equation is required.

3. An algebraic equation in one variable can be solved algebraically, graphically,
or numerically.

4. Polynomial equations through the fourth degree can be solved algebraically,
but some equations of fifth and higher degree cannot be solved algebraically.

5. Forn variablesy equations are required, but these equations must be indepen-
dent and consistent.

6. Linear homogeneous simultaneous equations have a nontrivial solution only
when a certain dependence condition is met.

57
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Objectives

After studying this chapter, you should be able to:

1. solve any quadratic equation and determine which root is physically mean-
ingful,

2. obtain an accurate numerical approximation to the roots of any single equation
in one unknown, using graphical and numerical techniques;

3. solve any fairly simple set of two simultaneous linear equations.

Algebraic Methods for Solving One Equation with
One Unknown

If you have one algebraic equation containing one variable, there will generally be
a set of one or more constant values of that variable which make the equation valid.
They are said to satisfy the equation, and the values in the set are calledtshe

or solutions of the equation. Other values of the variable do not produce a valid
equation and are said not to satisfy the equation.

Polynomial Equations

A polynomial equation in the variablex is written in the form
f(x) =ao+ ax + azx® + - -+ ax" =0, (3.1)

wheren, the largest exponent in the equation, is some positive integer. The integer
n is called thedegree of the equation. I = 1, the equation is near equation.

If n = 2, the equation is guadratic equation. If n = 3, the equation is aubic
equation. If n = 4, it is aquartic equation, and so on.

Generally, there are roots to ammth-degree polynomial equation, but two or
more of the roots can be equal to each other. It is also possible for some of the
roots to be imaginary or complex numbers. If complex roots occur, there is always
an even number of them. For most equations arising from physical and chemical
problems, there will be only one root that is physically reasonable, and the oth-
ers must be disregarded. For example, a concentration cannot be negative, and
if a quadratic equation for a concentration produces a positive root and a nega-
tive root, the negative root disregarded. Complex roots cannot represent physically
measurable quantities and must be disregarded if we are solving for a physically
meaningful quantity.

Linear Equations

If an equation is of the form

ap+ax =0 (3.2)
then the single root of the equation is
x=-2 (3.3)

ai
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Quadratic Equations

A quadratic equation is written in a standard form as
ax?+bx +c¢ =0, (3.4)

Some quadratic expressions can be factored, which means that the equation can be
written

a(x —x1)(x —x2) =0, (3.5)
wherex; andx; are constants. In this case, andx, are the two roots of the

equation. If a quadratic equation cannot easily be factored, you can apply the
guadratic formula

_ Jh2 _
x= bizl; fac | (3.6)

This equation provides two roots, one when the positive sign in front of the square
root is chosen and one when the negative sign is chosen. There are three cases: (1)
if the discriminant b2 — 4ac is positive, the roots will be real and unequal; (2) if

the discriminant is equal to zero, the two roots will be real and equal to each other;
(3) if the discriminant is negative, the roots will be unequal and complex, since the
square root of a negative quantity is imaginary. Each imaginary root will be the
complex conjugate of the other root.

[EXERCISE 3.1 B | Show by substituting Eq. (3.6) into Eq. (3.4) that the
guadratic formula provides the roots to a quadratic equation. [«

A common application of a quadratic equation in elementary chemistry is the
calculation of the hydrogen ion concentration in a solution of a weak acid. If
activity coefficients are assumed to equal unity, the equilibrium expression in terms
of molar concentrations is

_ (H*1/e9)(AT)/c°)
¢ ([HAl/c®)

(3.7)

where[H™] is the hydrogen-ion concentration expressed in moles per [l&er]

the acid-anion concentration, [HA] is the concentration of the undissociated acid,
c® is defined to equal 1 molt, and K, is the acid ionization constant. The
expression in terms of molalities can also be used and has the same appearance. It
is true that the hydrogen ions are nearly all attached to water molecules or water
molecule dimers, and so forth, so that we could wifleO™] instead of H™], but

this makes no difference in the calculation.

EXAMPLE 3.1 For acetic acidk, = 1.754 x 10~° at 25°C. Find [HT] if

0.1000 mol of acetic acid is dissolved in enough water to maB@edl. We say
that thestoi chiometric concentration (the concentration that would occur if np
ionization occurred) is equal taIDO mol 1.
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SOLUTION » Assuming that no other sources of hydrogen ions or acetate ions are present,
[Ht]/c° = [A~]/c®, which we denote by,

%2

Kj=———
4™ 0.1000— x

or
x2 + Kgx — 0.1000K, = O.

From Eq. (3.6), our solution is

Ky + /K2~ 04000k,

2
= 1316x 103 or —1333x10°°3
[HH] = [A7]=1316x 10 3 mol I"1.

We have disregarded the negative root because a concentration cannot be negative. <«

|EXERCISE 3.2 b | Express the answer to the previous example in terms of
pH, defined for our present purposes as
pH = —log;o([H'1/c°) (3.8)
[«]
|EXERCISE 3.3 b | Find the pH of a solution formed from@75mol of NH;

and enough water to make0D | of solution. The ionization that occurs is
NH3 + H0 <= NHJ + OH™
The equilibrium expression in terms of molar concentrations is

_ (INHZ1/c)(IOH]/c°)

(INHs]/c®)
where the water concentration is replaced by its mole fraction, which is very
nearly equal to unityK;, equals 180 x 10~° for NHs. (<]

Approximate Solutions to Equations

It is usually necessary to seek approximate roots to equations other than linear
or quadratic equations, especially with equations containing sines, cosines, loga-
rithms, exponentials, and so on. These equations are dedlestendental equa-

tions. Cubic and quartic polynomial equations can be solved algebraically, but it
is probably best to apply approximation techniques rather than attempting an al-
gebraic solutiot. There are two approaches: one is to modify the equation by
making simplifying assumptions, and the other is to seek a numerical approxima-
tion that can be made to approximate the correct solution to any desired degree of
accuracy.

10lder editions offhe Handbook of Chemistry and Physics give methods for cubic equations. See, for exam-
ple, the 33rd edition, pp. 272-273, Chem. Rubber Co., Cleveland, 1951-1952.
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Approximation by Use of Simplifying Assumptions

The first method for finding approximate roots to an equation is to modify the

equation by making simplifying assumptions. As an example, let us consider an
equation for the hydrogen-ion concentration in a solution of a weak acid in which

the hydrogen ions from the ionization of water cannot be ignored. We must solve
simultaneous equations for the ionization of the weak acid and ionization of water.
Later in this chapter, we will derive the equation

x(x — Ky/x)

c/c®—x+ Ky/x’ (3.9)

a =

wherec is the stoichiometric concentration of the acid, whetés defined to equal
1 mol =%, wherek,, is the ionization constant of water, equal t0@x 1014 near
25°C, and wherer = [HT]/c°. If we multiply this equation out, we obtain the
cubic equation

[e]

K
3 Kax?— (c a Kw) X — KyKy = 0. (3.10)
C

This equation can be solved numerically for any specific case, but in some cases,
it is possible to simplify this equation by making approximations.

|EXERCISE 3.4 b | Carry out the algebraic manipulations to obtain the cubic
equation version of Eqg. (3.9). [«

EXAMPLE 3.2 For the case of acetic acid with a stoichiometric concentration
of 0.100 mol I"1, convert Eq. (3.9) to a simpler approximate equation by dis-
carding any negligibly small terms.

SOLUTION » Equation (3.9) contains two terms in the numerator and three in the denomi-
nator. If one term in a polynomial is much smaller than the other terms, it might be possible to
neglect this term. In the numerator, we know that [H1]/c° will lie somewhere between.D

and 1077, the value for pure water. In fact, we know from our approximate solution in the previous
example thafH™] is near 103 mol I=1. Sincek,, equals 100 x 1014, the second term must

be near 1611 mol 11, which is smaller than the first term by a factor of1@Ve therefore drop

the termkK,, /x. We also drop the same term in the denominator, and obtain the equation

2

(3.11)

Kjg=——7—
@7 ¢/c° —x

which is the same as Eq. (3.7), which was obtained with the assumptidititha= [A~]. <

It is possible in some cases to make a further approximation on Eq. (3.11). If
only a small fraction of the weak acid ioniz¢bi*] will be small compared with,
so thatx can be neglected in the denominator. In the case of acetic acid and a gross
acid concentration of. 200 mol I, [H*] is approximately equal to 1§ mol 172,
only about 1% as large as If we can tolerate an error of about 1%, we can neglect
x compared withc/c °. We obtain

x2

K, = C/CO (312)
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TABLE 3.1 » Results for the Hydrogen-lon Concentration in Acetic Acid
Solutions at 25°C from Different Equations at Different Concentrations

[H*] (mol liter 1)

¢ (mol liter~1) by Eqg. (3.10) by Eqg. (3.11) by Eqg. (3.13)
0.1000 131565% 103 1.31565x 10~3 1.324x 1073
1.000x 103 1.23959x 104 1.23959x 104 1.324x 10°4
1.000x 10~ 0.711545x 107° 0.711436x 10~ 1.324x 1073
1.000x 107 0.161145x 106 0.099435x 106 1.324x 106

which has the solution
x =4/(c/c®) K,. (3.13)

However, asc is made smaller, Eq. (3.13) quickly becomes a poor approxima-
tion, and for very small acid concentrations, Eq. (3.11) also becomes inaccurate.
Table 3.1 shows the results from the three equations at different acid concentra-
tions. Equation (3.11), the quadratic equation, remains fairly accurate down to
¢ =10"°mol I1, but Eq. (3.13) is wrong by about 7% atomol -1, and much
worse than that at lower concentrations.

In the case that approximations such as that of Eq. (3.13) are inaccurate, we
can apply the method aficcessive approximations. In this method, one begins by
solving an equation such as Eq. (3.13). The result of this approximation is used
to approximate the term which was neglected in the first approximation and the
solution is repeated. If needed, the result of this second approximation is used to
replace the term that was originally neglected and the solution is repeated. This
procedure is repeated (iterated) as many times as is necessary.

EXAMPLE 3.3 Solve the problem of Example 3.1 by successive approximation.

SOLUTION » We write the equilibrium expression in the form
x% = K,(0.1000— x)
Sincex is presumably much smaller tharl000, we neglect it compared with1®00. We obtain
x2 ~ (L754x 107°) (0.1000 = (1.754 x 10~5)
x ~ 0.00132

This is the result that would be obtained from Eq. (3.13). The next approximation is obtained by
replacing thex in the right-hand side of the first equation by this value,

x2 ~ (1.754x 107°)(0.1000— 0.00132 = 1.731x 106
x ~ v/1.731x 10-6 = 0.001316~ 0.00132

This result shows that the first approximation is acceptable. Further iterations would make even

smaller changes, so we stop at this point. <
|EXERCISE 3.5 b | Solve for the hydrogen ion concentration in solutions of
acetic acid with gross molarities equal to

(@) 000100 mol 1 (b) 0.0000100 mol 2.

Use the method of successive ap-
proximations on Eq. (3.9) and on

Eqg. (3.11). -
(<
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Approximation by linearization

In the next example, we see another way in which an equation can be made into a
tractable approximate equation, by linearizing a function. We illustrate this tech-
nique in the following example:

EXAMPLE 3.4 The Dieterici equation of state is
Pe/VnRT (v _ by = RT, (3.14)

where P is the pressureT is the temperaturey,, is the molar volume, and
R is the ideal gas constant. The constant parametensd b have different
values for different gases. For carbon dioxides 0.468 Pa rfi mol=2, b =
4.63 x 10-°m® mol~!. Find the molar volume of carbon dioxide i =
29815K andP = 10.000 atm= 1.01325x 10° Pa.

SOLUTION » The exponential function can be represented by the power series

1 1 1
=14 x4 —x?+ x4

1! 2! 3!
wheren! stands fon factorial, defined aga(n — 1)(n — 2)(n — 3) - - - (3)(2)(1). We write
1
¢/ VnRT =1+a/vaT+5(a/vaT)2+m. (3.15)

Rough calculation shows that/V,, RT ~ 0.09 so that(a/ VinRT)2 =~ 0.008. We therefore
discard all of the terms past thg V,,, RT term and write to a fairly good approximation:

e/ VmRT 1 4 a/VimRT.
We say that we have linearized the exponential function. We substitute this approximation into the
original equation of state, obtaining
P(1+4a/ViuRT)(Vy, —b) = RT
which can be written in the standard form for a quadratic equation:

P Pab
PV,E—}—(R—;—Pb—RT)Vm—R—aT:O.

We divide by P and substitute the numerical values. We temporarilylet V,, /(1 m3 mol~1)
and obtain after some manipulation

x2 — (2.304x 10 3)x +8.741x 1072 = 0.
Applying the quadratic formula,
2.304x 1073 £ ,/(0.0023042 — 4(8.741x 10-9) { 23x10°3
X = —

2 ~ ] 4.000x 1076,

We disregard the second value as too small to correspond to the physical situation, and obtain
Vin = 2.30 x 1073m® mol~1.

The ideal gas equation of state giviés = 2.447 x 10~3 m3 mol~1, for a difference of about 6%.
<

|EXERCISE 3.6 b | (a) Verify the prediction of the ideal gas equation of state
given in the previous example.

(b) Substitute the value of the molar volume obtained in the previous exam-
ple and the given temperature into the Dieterici equation of state to calculate
the pressure. Compare the calculated pressure wittD18tm, to check the
validity of the linearization approximation used in the example. [«
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Graphical Solution of Equations

Instead of approximating an equation and then solving the approximate equation

algebraically, we can apply tlgeaphical method to obtain a numerical approxima-

tion to the correct root. This method is sometimes very useful because you can see
what you are doing and you can usually be sure that you do not obtain a different

root than the one you want to find. The equation to be solved is written in the form

fx)=0

where we denote the independent variablexbyif a graph of the functionf is
drawn, any real roots to the equation correspond to the places where the curve
crosses the axis.

EXAMPLE 3.5 By graphing, find a root of the equation
2sin(x) —x = 0.

in the interval 18 < x < 2.0.

SOLUTION » A graph of the function for the interval8 < x < 2.0 is shown in Fig. 3.1.

From the graph, it appears that the root is near 1.895. <
|EXERCISE 3.7 b | Find approximately the smallest positive root of the
equation
tan(x) —x = 0.
[«

Graphing with a Spreadsheet

Drawing a graph by hand is tedious, and almost no one actually makes graphs by
hand, since it is possible to make graphs more easily with a spreadsheet program

0.15 —
0.10 -

0.05 -

1
1.80 1.90 2.00

—0.05 -
—0.10

—0.15 |-

-020L
Figure 3.1 » Graph of Example 3.5.
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on a computer. Aspreadsheet can perform various mathematical and other oper-
ations on sets of items that are entered by the user and displayed in the form of a
table. A common spreadsheet is Microsoft EXceAnother spreadsheet is Lotus
1-2-3°. Microsoft Work$® contains a spreadsheet that is a simplified version of
Excel, and Claris Workd contains a similar spreadsheet program. At the time
of this writing, the latest version of Excel is called Excel 2003. Previous versions
were called Excel 2000, 1998, 4.0, 3.0, and so on. We describe briefly how to make
a graph on the Excel spreadsheet. The instructions are written for a computer us-
ing the Windows operating system, but the procedure is similar on a Macintosh
computer.

Creating and Editing a Worksheet in Excel

When one first opens Excel a window is displayed on the screen with a number
of rectangular areas called cells arranged in rows and columns. This window is
called a worksheet. The rows are labeled by numbers and the columns are la-
beled by letters. Any cell can be specified by giving its column and its row (its
address). For example, the address of the cell in the third row of the second col-
umn is B3. A list of menu headings appears across the top of the screen and
a double strip of small icons called a “toolbar” appears under the menu head-
ings.

Any cell can be selected by using the arrow buttons on the keyboard or by
moving the mouse until its cursor is in the desired cell and clicking the left mouse
button. One can then type one of three kinds of information into the cell: a number,
some text, or a formula. For example, one might want to use the top cell in each
column for a label for that column. One would first select the cell and then type the
label. As the label is typed, it appears in a line above the cells. It is then entered
into the cell by moving the cursor away from that cell or by pressing the “Return”
key. A number is entered into another cell in the same way. To enter a number but
treat it as text, precede the number with a single quotation mark ().

The use of formulas in cells is a useful features of Excel. A formula is entered
by typing an equal sign followed by the formula, using the symbol * (asterisk)
for multiplication, / (slash) for division, + (plus) for addition, and — (minus) for
subtraction. The caret symbol * is used for powers. For exam63 would
be represented by.36"15. Don’t use 36°3/2 to represent .26%2, since the
computer carries out operations in a predetermined sequence. Powers are carried
out before multiplications and divisions, so the computer would interpret this entry
as 326%/2. Since the formula must be typed on a single line, parentheses are used
as necessary to make sure that the operations are carried out correctly, using the
rule that all operations inside a pair of parentheses are carried out before being
combined with anything else. Other operations are carried out from left to right,
with multiplications and divisions carried out before additions and subtractions. If
there is any doubt about which operations are carried out first, use parentheses to
make the formula unambiguous. If a number or a variable stored in another cell
is needed in a formula, one types the address of that cell into the formula in place
of the number. A number of common functions can be included in formulas. The
following abbreviations must be used. The argument of a function is enclosed in
parentheses in place of the ellipsis-(), as indicated:
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Abbreviation Function
SIN(---) sine
COS(--) cosine

EXP(--) exponential ¢ raised to the argument)
LOG(---) common logarithm (base 10)
LN(--+) natural logarithm (base)

For example, if you want the cell to contain the natural logarithm of the number
presently contained in cell B2, you would type =LN(B2) in the cell. Lowercase let-
ters can also be used and LOG1.0( can also be used for the common logarithm.
The argument of the sine and cosine must be expressed in radians. An arithmetic
expression can be used as the argument and will automatically be evaluated when
the function is evaluated. These rules are similar to those used in the BASIC and
FORTRAN programming languages and in Mathematica, a comprehensive math-
ematical computer package. After the formula is typed one enters it into a cell by
pressing the “return” key. When a formula is entered into a cell, the computer will
automatically calculate the appropriate number from whatever constants and cell
contents are specified and will display the numerical result in the cell. If the value
of the number in a cell is changed, any formulas in other cells containing the first
cell’s address will automatically recalculate the numbers in those cells.

EXAMPLE 3.6 Enter aformulainto cell C1 to compute the sum of the number in
cell A1 and the number in cell B2, divide by 2, and take the common logarithm
of the result.

SOLUTION » With the cursor in cell C1 we type the following:
=LOG((Al+ B2)/2)

We then press the “return” key to enter the formula into that cell. If numbers are stored in cells Al

and B2, the numerical answer will appear in cell C1. <
|EXERCISE 3.8 P | Enter a formula into cell D2 that will compute the mean
of the numbers in cells A2, B2, and C2. [«]

If you move a formula from one cell to another, any addresses entered as in
the above example will change. Such addresses are calkdd/e addresses or
relative references. For example, say that the address Al and the address B2 were
typed into a formula placed in cell C1. If this formula is copied and placed into
another cell, the address Al is replaced by the address of whatever cell is two
columns to the left of the new location of the formula. The address B2 is replaced
by the address of whatever cell is one column to the left and one row below the
new location of the formula. This feature is very useful, but you must get used to
it. If you want to move a formula to a new cell but still want to refer to the contents
of a particular cell, put a dollar sign ($) in front of the column letter and another
dollar sign in front of the row number. For example, $A$1 would refer to cell A1
no matter what cell the formula is placed in. Such an address is cadlbsbaite
address or anabsolute reference.

There is a convenient way to put the same formula or the same number in an
entire column or an entire row of a table. Type a formula with the cursor in the
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topmost cell of a given portion of a column, and then press the “return” key to
enter the formula in the first cell. Then select a portion of the column by dragging
the cursor down the column (while holding down the mouse button) from the cell
containing the formula as far as desired. Then choose the “Fill” command in the
“Edit” menu and choose “Down” from a small window that appears. You can also
hold down the “Ctrl” key and then type a “d.” When you do this, the cells are all
“filled” with the formula. The formulas in different cells will refer to different
cells according to the relative addressing explained above. Selecting a given cell
will show the formula for that cell, with the addresses that will actually be used.
A similar procedure is used to fill a portion of a row by entering the formula in the
leftmost cell of a portion of a row, selecting the portion of the row, and using the
“Fill” command in the “Edit” menu and choosing “Right” in the next window. The
same procedures can be used to fill a column or a row with the same number in
every cell.

A block of cells can be selected by moving the cursor to the upper left cell
of the block and then moving it to the opposite corner of the block while holding
down the mouse button (“dragging” the cursor). You can also drag the cursor in
the opposite direction. The contents of the cell or block of cells can then be cut or
copied into the clipboard, using the “Cut” command or the “Copy” command in
the “Edit” menu. The contents of the clipboard can be pasted into a new location.
One selects the upper left cell of the new block of cells and then uses the “Paste”
command in the “Edit” menu to paste the clipboard contents into the workbook. If
you put something into a set of cells and want to change it, you can select the cells
and then choose “Clear” in the “Edit” menu. To clear the cells completely, choose
“All” in the window that appears.

Excel has the capability of using routines called “Macros” that can be called
inside the spreadsheet. These routines can be programs written in a version of
the BASIC programming language called “Visual Basic for Applications.” Macros
can be obtained from other sources, such as internet websites, and placed in any
spreadsheet.

Creating Graphs with Excel

Excel can be used to produce graphs of various kinds (Excel refers to graphs as
“charts”). We present a procedure to construct a two-dimensional graph using the
“Chart Wizard.” The graph is constructed from values of an independent variable
in one column values of a dependent variable in another column. These values
must first be loaded into the columns. After the values have been loaded into the
spreadsheet, you follow the procedure:

1. Save the spreadsheet, and if you want a printed copy of it without the graph,
print it now by using the “Print” command in the “File” menu.

2. Select the two columns by dragging the mouse cursor over them. If the two
columns are not adjacent, drag the cursor over the first column, and then hold
down the “Ctrl” key while dragging the cursor over the second column. The
values of the independent variable must be in the column to the left of the other
column. Copy and paste a column of values if necessary.
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3. Click on the icon for the Chart Wizard in the toolbar at the top of the spread-
sheet. It looks like a small bar graph with three bars.

4. A window labeled “Step 1" appears showing different types of graphs to
choose from. Most of the graph types plot categories, not values of a vari-
able, on the horizontal axis. That is, the row number is used as the variable on
this axis. To put values of a variable on the horizontal axis, choose the type
of graph called “XY(Scatter)” by putting the cursor on this icon and clicking.
Several types of graphs can now be chosen by clicking on one of five areas on
the screen. The topmost area produces a graph with only the data points show-
ing. The one below that produces a graph with the data points and a smooth
curve passing nearly through the data points. The one to its right produces
a graph with the smooth curve but no data points. The bottom two produce
graphs with line segments connecting the data points. Make your choice and
click on the “Next” button.

5. Another window labeled “step 2" appears. The range of data is exhibited. You
can verify or change the range of cells from which the graph will be made.
Click on the “Next” button.

6. A window labeled “step 3" appears. There are several areas on which you can
click. These are self-explanatory. For example, you can click on the “Titles”
area and then type in a title for the graph and labels for the axes. You can click
on the “Axes” area and choose whether you want numeric labels on the axes.
You can click on the “Grid lines” area and choose whether you want horizontal
and vertical grid lines. You can click on the “Legend” area and decide whether
you want a labeled symbol to the right of the graph (the “legend”). For a graph
with a single curve, this is superfluous. Click on the “Next” button.

7. A window labeled “Step 4” appears that allows you to choose whether to place
the graph in your worksheet or on a separate sheet. If you want to print the
graph, choose a separate sheet. After you do this, click on the “Finish” button
and the finished graph appears.

Printing a graph in Excel is done by using the “Print” command in the “File”
menu in the usual way. You can use the “Print Preview” command in the “File”
menu to see on the screen how the printed version will be arranged. You can change
this by choosing “Page Setup.”

We illustrate this procedure in the following example

EXAMPLE 3.7 Find the positive root of the cubic equation

x3-0.6000c =0

This cubic equation has three real roots, one of which is obviousiy=a0.

SOLUTION » We open a blank spreadsheet in Excel. We start by making a table of values of
the function
f(x) = x3 — 0.6000¢

inthe range-2 < x < 2. We first type the value-2 in the cell Al. In cell A2 we type= A1+0.2
and press “enter.” or “return.” We then select 20 cells in the first column by dragging the cursor
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Figure 3.2 » Graph of Example 3.7.

over the cells, starting with the A2 cell and ending with the A21 cell. We press the “d” key while
holding down the “Ctrl” key. This fills the first column with 21 valuesxofanging from—2to 2 in
increments of @. We then type the formula in cell B1 that will evaluate the polynomial. We type

= A1"3—- 0.6 % A1 and press the “enter” key or the “return” key. This inserts the formula into cell
B1 and the places the value of the functiert(8) in that cell. We then drag the cursor down the B
column to B21, and then fill the cells with the formula by pressing the “d” key while holding down
the “Ctrl” key. The values of the function appear in column B. Inspection of the values shows
that the function changes sign three times in the interval, so all three of the roots lie in this region.
We now construct a graph of the function, following the above procedure. Inspection of the graph
indicates that there are roots neae= —0.77, atx = 0, and neax = 0.77. To locate the positive

root more accurately, we construct a graph with a smaller range @fe enter 077 in cell C1 and

enter the formula= C1 + 0.0005 in cell C2. We then fill the formula down to cell C11. We then
copy the formula in cell B1 and paste it into cell D1 and then fill the formula down to cell D21.
We select columns C and D and make a second graph. This graph is shown in Figure 3.2. The root
appears to lie near = 0.7745.

EXERCISE 3.9 » Using a graphical procedure, find the most positive real root of the quar-
tic equation:
x% — 4500¢ — 3.800v2 — 17.100x + 20.000= 0

You will note that the curve in the graph crosses thexis in only two places. This indicates
that two of the four roots are imaginary or complex numbers. Chemists are not usually interested
in complex roots to equations. [«

<

A spreadsheet such as Excel is a large and powerful program, and can perform
many different tasks, most of which are not needed by a physical chemistry student.
You can consult the manual provided by the software manufacturer to learn more
about Excel. There are also several textbooks listed at the end of the book that are
more easily used than the manufacturer’s manual.

| EXERCISE 3.10 | Using a graphical method, find the two positive roots of
the following equation.

e* —3x=0.
[«
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Numerical Solution of Algebraic Equations

Strictly speaking, one does not solve an equation numerically. One obtains an
approximation to a root. However, with a computer or with a hand calculator, it is
easy to obtain enough significant digits for almost any purpose.

Trial and Error

If the equation is written in the form

fx)=0

one repeatedly evaluates the functignchoosing different values of, until f

nearly vanishes. When using this method with a hand calculator or a spreadsheet,
it is usually possible to adopt a strategy of finding two values sfich thatf has
different signs for the two values af and then to choose values.ofwithin this
interval until f ~ 0. If the equation has more than one root, you must either find
all of the roots, or must make sure that you have found the one that you want. If
the equation has complex roots and if you care about them, you must vary both the
real and imaginary parts af which can be done by using a computer program that
will carry out arithmetic with complex quantities.

EXAMPLE 3.8 Use the method of trial and error to find the positive root of the
equation
2sin(x) —x =0

SOLUTION » We let f(x) = 2sin(x) — x, which vanishes at the root. It is convenient to
use a spreadsheet to carry out the evaluation of the fungtion We put the formula in the B
column, filling it down to enough rows for the number of times we think we will have to evaluate
the function. We then put trial values into column A and inspect the value of the function in column
B. We find quickly thatf (1) = 0.68294, and thaf' (2) = —0.1814, so that there must be a root
betweent = 1 andx = 2. We find thatf (1.5) = 0.49499, so the root lies betweerbland 2. We

find that f (1.75) = 0.21798, so the root is larger thatvh. However,f (1.9) = —0.00740, so the

root is smaller than .. We find thatf(1.89) = 0.00897, so the root is betweer8® and 190.

We find thatf(1.895 = 0.000809 and thaf (1.896) = —0.000829. To five significant digits, the
root isx = 1.8955. <

|EXERCISE 3.11 b | Use the method of trial and error to find the two positive
roots of the equation

er—3x=0

to five significant digits. Make a graph of the function to find the approximate
locations of the roots. (<]

The Method of Bisection

This is a systematic variation of the method of trial and error. You start with two
values ofx for which the functionf (x) has opposite signs, and then evaluate the
function for the midpoint of the interval and determine which half of the interval
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contains the root. If the function has the same sign at the midpoint as at the left
end of the interval, the root is in the right half of the interval. The midpoint of the
half of the original interval containing the root is taken, and it is determined which
half of this new interval contains the root. The method is continued, repeating the
process until the interval known to contain the root is as small as twice the error
you are willing to tolerate. The middle of the last interval is then taken as the
approximation to the root.

Solution of Equations Using Mathematica

Mathematica is a complete mathematics package that can carry out both numeri-
cal and symbolic mathematics. Before we discuss the solution of equations using
Mathematica, we provide an elementary introduction to the program. When you
open Mathematica, a blank “untitled” window appears on the video screen. This
window is called anotebook. Mathematica is now ready to accept instructions.

Numerical Calculations with Mathematica

You can use Mathematica to make numerical calculations much as you would a cal-
culator. In an open notebook, you can type in numbers and symbols for arithmetic
operations:

addition: +

subtraction: —

negation: —

division: /

multiplication: blank space or asterisk)(

exponentiation: *

factorial: !

Parentheses are used in the same way as in writing ordinary formulas.

Numbers in scientific notation are entered in a fairly obvious way. To enter
1.234 x 10%, you would type 1.234 1074 with the space standing for multiplica-
tion, or 1.234*107M. In the output lines, Mathematica always uses the space for
multiplication.

Most of the Mathematica symbols are the same as those used in Excel or various
computer programming languages such as BASIC except for the use of a blank
space for multiplication. Excel and BASIC use only the asterisk for multiplication.
In ordinary formulas, placing two symbols together without a space between them
can stand for multiplication. In Mathematica, if you write, the software will
think you mean a variable calledy, and not the product of andy. However,
you can write either 2 or 2 x for 2 timesx, but notx2. It is probably best to use
the asterisk £) for multiplication rather than a space in input statements. Watch
for the use of the blank space in output statements. Complex arithmetic is done
automatically, using the capital letter | fgf—1 . Several constants are available
by using symbols: Pi, E, |, Infinity, and Degree stand#k, i = +/—1 , oo, and
/180 (conversion from degrees to radians). The first letter of each symbol must
be capitalized.

For example, to obtaif.67841+ 3.58731)°63, you type in an open notebook
the following expression:

(4.678414 3.58731)"56.3
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using the caret () to stand for exponentiation. Parentheses are used to determine
the sequence of operations. The rule is that all operations inside a pair of paren-
theses will be carried out before the result is combined with anything else. After
finishing your input statement you then press the “Enter” key (the “Enter” key at
the far right of the keyboard in the number keypad, not the “Return” key in the main
part of the keyboard, which is also labeled “Enter” on some keyboards). Instead
of pressing the “Enter” key, you can press the “Return” key in the main part of the
keyboard while holding down the “Shift” key (a “Shift-Return”). If you press the
“Return” key without the “Shift” key, you are signaling Mathematica that you are
continuing one statement onto a second line. When you press the “Enter” key, you
are ending a unit called a “cell.”

Mathematica labels each input cell by a number. If you are at the beginning of
a notebook, after you press the “Enter” key you will see

In[1]: =(4.67841+3.58731)"56.3
Mathematica prints input in boldface type. When you press the “Enter” key, it will
immediately print out the result, labeling it as output number 1:

Out[1]=4.39443 10!

In this expression, the space before the 10 stands for multiplication, which is stan-
dard notation in Mathematica.

On the screen there is now a square bracket at the right of your input and an-
other at the right of the output, as well as a larger square bracket to the right of both
of these brackets and encompassing them. The smaller brackets identify the cells.
Mathematica assumes that any new cell is an input cell. When you press the “En-
ter” key, you notify Mathematica that you are ending the input cell, and that you
want any expression in the input cell to be evaluated. When Mathematica prints
your output, it creates an output cell for the output, and also prints a larger bracket
linking the input cell with its output cell. Any Mathematica notebook consists of a
sequence of cells, which are numbered sequentially.

Pressing the “Return” key on the main part of a keyboard does not end a cell. If
a piece of input requires more than one line, you can press the “Return” key at the
end of each line, and then press the “Enter” key or the “Shift-Return” at the end of
the cell. You can put several executable statements in the same cell. It is best to
separate them by pressing the “Return” key after each statement.

Many functions are available in Mathematica. The names of the functions must
be entered with the first letter capitalized and sometimes a letter in the middle
capitalized. The other letters must be in lower case and the argument of the function
must be enclosed in square brackets, not parentheses. You will have to get used
to this. No deviation from the capitalization rule is allowed, and Mathematica will
not recognize parentheses instead of brackets. Some common functions are given
in Table 3.2. Other functions are described in the book by Wolfram listed at the
end of the chapter.

|EXERCISE 3.12 b | Write Mathematica expressions for the following:
(a) The complex conjugate (0)e2657

(b) In(100) — (1001In(100) — 100)

(c) The complex conjugate ¢f + 2i)2° <

Mathematica will print out numerical values with any specified number of dig-
its. You enter the letter N followed by the expression, then a comma, and then
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TABLE 3.2 » Mathematical Functions in Mathematica

| symbol | Function | Result

Abs[X] absolute value (magnitude) of x nonzero constant ‘

Arg[z] argumentp of complex expressiofx|e’? | nonzero constant

ArcCos[x] inverse cosine in radians constant, < ¢ <
| ArcSin[x] | inverse sine in radians | constant—% <c <% |
| ArcTan[x] | inverse tangent in radians | constant~% <c <% |
| Conjugate[z]| complex conjugate of = x + iy | x—iy |
| Cos[x] | cosine of an angle in radians | constant-1<c<1 |
| Explx] | exponential functiong* | positive constant |
| Im[z] | imaginary part of complex expressien | constant |
| Loglx] | natural logarithm (base) | constant |
| Loglb.x] | logarithm to the base b | constant |
| n! | n factorial | constant |
| Random[] | random number generator | constant, 0< c <1 |
| Re[z] | real part of complex expression | constant |
| Round[x] | closest integer to x | constant |
| sin[x] | sine of an angle in radians | constant-1<c <1 |
| sart[x] | square root of | constant |
| Tan[x] | tangent of an angle in radians | constant |

the number of digits desired. For example, if you want to have the value of
(3.58731)°63 to 15 digits, you use the input statement

N[3.58731"563, 15]
and press the “Enter” key. Mathematica will print

In[1]:=N[3.58731"56.3,15]
Out{1] = 1.71194390461979 £

The entire expression and the number of digits are enclosed in the square brack-
ets following the N. If you do not specify the number of digits, Mathematica will
give you a standard number of digits (usually six) for an expression that contains
a decimal point. It will give all of the digits if possible for an expression that does
not contain a decimal point. If you enter 30!, it will give you the entire value, with
33 digits. If you enter 30.!, it will give you a value with six digits. However, if
you enter Sqrt[3], it will not give you a value, since an exact value of 3 cannot be
written with a finite number of digits. It will print Sgrt[3] as output. If you enter
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Sqrt[3.], it will give you a value with six digits, and you can also get a six-digit
answer by entering N[Sqgrt[3]] or Sqrt[3]//N. If you want 20 digits, you can enter
N[Sqrt[3],20].

You can refer to the last output cell with a percent sign (%) or to any other
output cell by its number following a percent sign. If you want to refer to output
cell number 3, you would type %3. If you had entered Sqrt[3] and had obtained
Sqrt[3] as your output, you could type N[%] and press the enter key to obtain a
numerical value with six digits, or could type N[%,15] to obtain a numerical value
with 15 digits.

Mathematica statements can contain symbols for stuaeidbles as well as
constants. A variable stands for a location in the computer memory in which a
numerical value can be stored. Variable names can contain any number of letters
and/or digits. However, they cannot begin with a digit. Begin your variable names
with a lowercase letter to avoid confusion with Mathematica functions and other
Mathematica objects, which always begin with a capital letter. Also remember that
Xy would represent a variable called xy while x y (with a space between the letters)
stands for the product of the two variables x and y.

Values are assigned to variables by using an ordinary equal sign, which stands
for anassignment operator. For example, a value of 78 would be assigned to
the variable x by entering the statement:

X = 75.68

and pressing the “Enter” key. The variable x will be replaced by the valug875
whenever it occurs in a Mathematica expression until a new value is assigned. To
remove a value from the variable x, type the statement

Cleafx].

If you are not sure whether a given variable already has a value, usédhe
statement before using the variable.

You can also define one variable in terms of other variables. Assuming that
already has a value, the statement

y = x"3

will assign the cube of the value of x to the variable y. The variable y will keep
that numerical value until it is explicitly assigned a new value, even if the value of
x is changed. You can also define y as a function of x such that the valueritif
change if a new value of x is assigned. To do this, you use the second type of equal
sign that is used in Mathematica, denoted by the symbol := (a colon followed by
an equal sign). The statement

y:=X"3

will causey to be evaluated as the cube of whatever value x has at the time of
execution. You can see what the value of any variable is at the moment by typing
the name of the variable and pressing the Enter key. If you type a question mark
followed by the name of the variable and press the Enter key, you can see whether
it is defined as a function of other variables.

You can also define a function. For example, if you want to define the function

f = abce™/? (3.16)
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you can type
Clear[a,b,c,f,x,y]
fx_]:=a b ¢ Exp[-x/y]
where we have used the space to stand for multiplication. You can also type
Clear[a,b,c,f,x,y]
f[x_]:=a*b*c*Exp[-x/y]

The underscore following the symbol for the independent variable in the func-
tion expression on the left-hand side of the statement is part of the function defin-
ition and must be typed in. Mathematica’s second type of equal sign, := (a colon
followed by an equal sign), must be used. After defining a function, you can use it
in a Mathematica expression, as in the statement

g=x*f[x]*Cos[x/y]

The underline is used only in the definition of the function. It is not used after
the symbol for the function’s argument in an expression. Note that Mathematica
uses square brackets for the argument of a function, not parentheses. The rules
of Mathematica must be followed exactly. There is no provision for alternative
symbols.

A cell can also be designated as a text cell, allowing Mathematica to be used
like a word processor. You can convert any cell to a text cell as follows: first
“select” the cell by placing the mouse cursor on the bracket to the right of the cell
and pressing on the mouse button (clicking on the bracket). Then type the numeral
7 while depressing the “Alt” key. Mathematica will store text in a text cell, but will
not perform any mathematical operations on anything in a text cell. You can delete
the contents of any cell by selecting the cell and then choosing “Clear” from the
“Edit” menu or typing the letter x while depressing the “Ctrl” key.

Symbolic Algebra with Mathematica

Mathematica has a powerful capability to carry out symbolic mathematics on al-
gebraic expressions and can solve equations symbolically. In addition to the arith-
metic operations, the principal Mathematica statements for manipulating algebraic
expressions are Expand| ], Factor[ ], Simplify[ ], Together[ ], and Apart[]. The
Expand statement multiplies factors and powers out to give an expanded form of
the expression. The following input and output illustrate this action:

In[1]:=Clear[aX]

Expand[(a+x)" 3]

Out[1] =a+3 & x+3 a X¥+x3

The Clear statement is included in case a and x had been previously defined as
variables with specific values, which would cause Mathematica to return a numer-
ical result instead of a symbolic result.

The Factor statement manipulates the expression into a product of factors. The
following input and output illustrate this action:

In[2]:=Clear[y]

Factor[1+5 y+6 y* 2]

Out[2] =(1+2y) (1+3Yy)

Note the use of the blank space for multiplication. Note also that the Factor
statement does not have its own input line number, because the “Return” key was
pressed after the Clear statement, not the “Enter” key. Sihmplify statement
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manipulates an expression into the form that is considered by the rules built into
Mathematica to be the simplest form (with the fewest parts). This form might be
the factored form or the expanded form, depending on the expression.

TheTogether statement collects all terms of an expression together over a com-
mon denominator, while th&part statement breaks the expression apart into terms
with simple denominators, as in the methodpaftial fractions. The theorem of
partial fractions states that{ (x) can be factored in the form

Q(x) = (a1x + b1)(azx + bp)(azx + b3) - - - (apx + by), (3.17)

where all thex’s andb’s are constants and #(x) is of lower degree tha (x),
then

P (x) Ar A A,
Ox) ax+br axx+bo ayx + b,

, (3.18)

whereAq, Ao, ..., A,, are all constants.

EXAMPLE 3.9 Write a Mathematica entry that will carry out the decomposition
into partial fractions of the expression

6x — 30
X2 43x+2

SOLUTION » The input and output lines are:
In[1]: =Clear[X]
Apart[(6 x-30)/(x"2+3 x+2)]

out[1] =—£% + 2 <

|EXERCISE 3.13 | In the study of the rate of the chemical reaction of sub-
stances A and B:

aA + bB — products

the gquotient occurs.
1

([Alo — ax) ([Blo — bx)
where[A]g and[B]p are the initial concentrations of A and B,andb are the
stoichiometric coefficients of these reactants, aigla variable specifying the
extent to which the reaction has occurred. Write a Mathematica statement to
decompose the denominator into partial fractions. [«]

Solving Equations with Mathematica

Mathematica can carry out both symbolic and numerical solutions of equations,
including single algebraic equations, simultaneous algebraic equations, and differ-
ential equations, which we discuss later. Mathematica contains the rules needed
for the symbolic solution of polynomial equations up to the fourth degree, and can
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solve some fifth-degree equations. The principal statements used to solve equations
are Solve, FindRoot, Eliminate, and Reduce.

The Solve statement returns symbolic formulas for solutions, if they exist. For
example, the input line to solve the equatiotrf + bx + ¢ =0 is

In[1]: =Solve[a* x™ 2+b* x+c==0,X]

The name of the variable to be solved for must be included at the end of the
equation and separated from it by a comma. Mathematica’s third kind of equal
sign, a double equal sign, must be used in equations to be solved. Another use of
this equal sign is in asking Mathematica to test whether an equality if true or false.
The resulting output is the standard quadratic formula:

- —b—Sqr{b®>—4ac —b+Sqri{b®>—4ac
Outf1] ={{x — —2=SaEr=Aecly, gx — —Safh ducl yy
Note the use of the arrow symbel().

If no formula can be found for a solution, you can use FHRoot statement
to obtain a numerical value for the root. You must provide a first estimate of the

root (a). For example, to find a root for the equation
e —05x=0

with a trial root ofx = 1, you type the input statement:

In[1]:=FindRoot[ Exp[—X] - 0.5%x == 0,{X,1}]
and get the output

Out[1] ={x — 0.852606}

The trial value of the root is here represented by the 1 following timebraces
(curly parentheses;, {-}). If your equation is a polynomial equation, tiNSolve
statement can be used instead of FindRoot. The NSolve statement does not require
a trial root, and will find all roots, while the FindRoot statement will generally
cause Mathematica to converge to one root and then stop. If your equation has
more than one root, you need to determine whether you have found the desired
root and not one of the others.

EXAMPLE 3.10 Using the NSolve statement find the roots of the equation

xP =B344 — 3 +2=0 (3.19)

SOLUTION » We enter the input statement

NSolve[x*4-5 x"3+4 x"2-3 x+2==0,X]

We press the “Enter” key and receive the output

Out[1]={{x — 0.00442308 - 0.771419ii,

{x — 0.00442308 + 0.771419ii,

{x — 0.802307}, {x— 4.18885}}

where Mathematica uses the a symbol that looks like double i (ii with a single dot) to represent the
imaginary unit in its output statement. Use a capital | in an input statement containing the square
root of —1. <

|EXERCISE 3.14 b | Verify the real solutions in the preceding example by
substituting them into the equation. [«
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|EXERCISE 3.15 b | (a) Use the NSolve statement in Mathematica to find the
numerical values of the roots of the equation

x34+5x—42=0

(b) Use the FindRoot statement to find the real root of the same equg«jn.

Graphing with Mathematica

Mathematica can produce sophisticated graphs, including two-dimensional graphs
and perspective views of three-dimensional graphs. Graphing a function is easier
than with Excel, since you do not have to fill columns with values of the variable.

EXAMPLE 3.11 Make a graph of sifx) fromx = 0 tox = 2r,

SOLUTION » One enters the input
Plot[Sin[x],{x,0,2Pi}]
and presses the “Enter” key. The graph appears on the computer screen in an output staéement.

The graphic capabilities of Mathematica are very extensive. For example, it
makes perspective views of three-dimensional graphs. You can read more about
this in the book by Wolfram and in the manual that is supplied with Mathematica.

Solving Equations Numerically with Excel

Excel is a large and versatile program, and we do not have the space to discuss
all of its capabilities. It has the capability to solve equations numerically, using

a command calledoal Seek. This command causes the software to change a
variable until a defined function of that variable attains a specified value. It uses
a method called the Newton-Raphson method, which we will discuss in a later
chapter. To find a root of an equation, one must begin with a trial root that is not
too far from the desired root. You must find this by graphing or by looking for
places where a table of value of the function changes sign, as we did earlier. You
type in a trial root in one cell and type in the function of that variable that needs to
equal zero (or some other numerical value).

EXAMPLE 3.12 Find the real roots of the equation

x =B34 4% —3x+2=0 (3.20)

SOLUTION » Thisis the same equation that we solved with Mathematica in a previous exam-
ple, so we know where the real roots are. We pretend that we know only that there is a real root
near 1 and a real root near 4. We type in the value 1 in cell Al and the value 4 in cell A2. We type
the following formula in cell B1: =A174-5*A173+4*A172-3*A1+2 and press the “Return” key.

We then drag the cursor over cells B1 and B2 and “fill down” by holding down the “Ctrl” key and
typing a letter d. We could also select the two cells and choose “Fill Down” in the “Edit” menu.
We then select the B1 cell and choose “Goal Seek” from the “Tools” menu. A window appears
with three blanks. The first says “Set cell:” and should have B1 in the blank. The second blank
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says “To value:” and we type in a zero, since we want the function to attain the value zero. The
third blank says “By changing cell:” We type in A1, since that is the cell containing our trial root.
We click on “OK” and the software quickly finds the root and places it in cell A1. We then select
cell B2 and repeat the process, specifying that we want to vary the contents of cell A2. «

|EXERCISE 3.16 B | Use Excel to find the real root of the equation

x34+5x—42=0 (3.21)
[«

Simultaneous Equations: Two Equations with
Two Unknowns

The simplest type of simultaneous equations is the set of two equations:

a;1x +aizy = c1 (3.22)
az1x +azy = c2, (3.23)

where thea’s and thec’s are constants. This set of equations is caliedar be-

cause the unknowns and y enter only to the first power, and is callathomo-
geneous, because there are constant terms that do not comtainy. If certain
conditions are met, such a set of equations can be solved for a solution set consist-
ing of a single value of and a single value of.

The Method of Substitution

The first step of this method is to manipulate one equation to give one variable as
a function of the other. This function then is substituted into the other equation

to give an equation in one unknown which can be solved. The result is then sub-
stituted into either of the original equations, which is then solved for the second

variable.

EXAMPLE 3.13 Use the method of substitution on Egs. (3.22) and (3.23).

SOLUTION » We solve the first equation forin terms ofx:

- a _anr (3.24)
aizz a2
We substitute this into the second equation to obtain the linear equation in
C allx
az1x + a2 (—1 -4l ) = ¢ (3.25)
aizp a2
ajix ‘1
as1x —agp—— = cp —axpp——. (3.26)
ai2 ai2
This contains only and noty, so it can be solved for to give the root
_ _CG1a22 — c2a12 (3.27)

aj1az2 — aipazy
This expression can be substituted into one of our original equations and solvetbfpield
coa —Cc1a
_ Cem1—cid (3.28)
ai1azp — aizazl
<
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|EXERCISE 3.17 b | Do the algebraic manipulations to obtain the expression
for y. [«
The method of substitution is not limited to two equations and is not limited
to linear equations. In the following example, we treat a nonlinear system of two
equations:

EXAMPLE 3.14 In the study of the equilibrium of a weak acid in water, the
ionization of the water is generally neglected. If we cannot do this, we have
the equilibrium equation for the autoionization of water

B m [OH™]

w = o o
& C
where[ H*] is the molar concentration of hydrogen ions, whpéeH ~ | is
the molar concentration of hydroxide ions and whé&rg is the equilibrium

constant, equal to.Q0x 1014 at 25°C. We also have the equilibrium relation
for the weak acid
o — /e AT] /e)
“ [HA] /c°

where[HA] is the molar concentration of the unionized acid §Ad | is the
molar concentration of the acid anion. We degqual thestoichiometric molar
concentration of the acid (the concentration that would occur if no ionizatipn
occurred). Use the method substitution to obtain a single equatidtrif

SOLUTION » We letx = [HT]/c® andy = [OH™]/c°. We have the relations

x = y+[AT]/c®
[HAl/c® = c/c®=[AT]/c® =c/c®—x+y

so that we have the simultaneous equations

Ky = xy
x(x—y)
Ko = ———,
c/c®—x+Yy

Solving the first equation for y in terms of x and substituting the result into the second equation

yields the equation:
Ky = x(x——Kw/x)’ (3.29)
c/c®—x+ Ky/x

This equation can be multiplied out to yield the cubic equation that we discussed earlier in the

chapter. <
|[EXERCISE 3.18 P> | Solve the pair of simultaneous equations by the method
of substitution:
x>—2xy—x =0 (3.30)
1 1
-—+- =2 (3.31)
x oy

Hint. Multiply the second equation byy before proceeding. [«
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In the preceding exercise there are two solution sets, since the first equation
is quadratic inx. When it is solved after substituting to eliminatetwo values
of x are found to satisfy the equation, and there is a root for each of these.
Nonlinear equations are more complicated than linear equations, so we consider
only linear equations for the rest of this section.

The Method of Elimination

This method is used with linear equations. It applies the process of subtracting one
equation from another to obtain a simpler equation. That is, the left-hand side of
the first equation is subtracted from the left-hand side of the second equation and
the right-hand side of the first equation is subtracted from the right-hand side of
the second to yield a new equation that is simpler.

EXAMPLE 3.15 Solve the following pair of equations:

x+y =3
2x+y = 0.

SOLUTION » We subtract the first equation from the second to obtain
x=-3
This is substituted into either of the original equations to obtain
y =6.
<

If necessary to get a simpler equation, you can multiply one or both of the
equations by constants before taking the difference, and it is possible to add the
equations instead of subtracting.

|[EXERCISE 3.19 b | Solve the set of equations
3x+2y = 40
2x —y = 10

[«]

Consistency and Independence in Simultaneous Equations

There are two common difficulties that can arise with pairs of simultaneous equa-
tions. These are (1) that the equations might be inconsistent, and (2) that the
equations might not be independent. If two equationsimeensistent, there is

no solution that can satisfy both of them, and if the equations arendegendent,

they express the same information, so that there is really only one equation, which
can be solved for one variable in terms of the other but cannot be solved to give
numerical values for both variables.
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EXAMPLE 3.16 Show that the pair of equations is inconsistent:

2x+3y = 15
4x + 6y = 45

SOLUTION » We attempt a solution by elimination. We multiply the first equation by 2 and
subtract the second from the first, obtaining

0=-15

which is obviously not correct. The equations are inconsistent. <

EXAMPLE 3.17 Show that the equations are not independent:

x+4y =7
6x +8y = 14

SOLUTION » We attempt a solution by elimination, multiplying the first equation by 2. How-
ever, this makes the two equations identical, so that if we subtract one from the other, we obtain
0=0

which is correct but not useful. We have just one independent equation instead of two, so that we
could solve forx in terms ofy or for y in terms ofx, but not for numerical values of eitheror

y. If one equation becomes identical to the other when it is multiplied by any constant or function,
the two equations are not independent. <

We can understand consistency and independence in simultaneous equations by
looking at the graphs of the equations. Each of the equations represensfunc-
tion of x. With linear equations, these functions are represented by straight lines.
Figure 3.3 shows the two lines representing the two equations of Example 3.15.
The two equations are consistent and independent, and the lines cross at the point

Figure 3.3 » Graphical representation of the two consistent and linearly independent equations of
Example 3.15.
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Figure 3.4 » Graphical representation of two inconsistent equations of Example 3.16.

whose coordinates represent the solution set, consisting of a valuanaf a value

of y. Figure 3.4 shows the lines representing the two equations of Example 3.16.
Since the lines do not cross, there is no solution to this pair of inconsistent equa-
tions. A single line represents both of the equations of Example 3.17. Any point
on the line satisfies both equations, which lanearly dependent. Consistency and
independence are more complicated when we have more than two equations, and
we discuss this in a later chapter.

Homogeneous Linear Equations

The concept of linear dependence is important in the study of homogeneous lin-
ear equations. A pair diomogeneous linear equations is similar to those of Eq.
(3.22) except that botly andc, vanish. Consider the set of homogeneous linear
equations:

airx +apy = 0 (3.328.)
azx +azy = 0 (3.32b)

We solve both of these equations fom terms ofx:

—aix

y = (3.32¢)
ai?

y = 22X (3.32d)
a2

Both of these functions are represented by straight lines with zero intercept. There
are two possibilities: Either the lines cross at the origin or they coincide every-
where. In other words, either = 0, y = 0 is the solution, or else the equations
are linearly dependent (are the same equation). The solutien0, y = 0 is

called atrivial solution. The two equations must be linearly dependent in order
for a nontrivial solution to exist. A nontrivial solution consists of specifyings a
function ofx, not in finding constant values for bothandy, since there is really

only one independent equation.
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|EXERCISE 3.20 b | Determine whether the set of equations has a nontrivial
solution, and find the solution if it exists:

7x+15y = 0
10Ix + 195 = 0

[«

We will return to the discussion of simultaneous equations in Chapter 10.

Using Mathematica to Solve Simultaneous Equations

The Solve statement can also be used to solve simultaneous equations as well as
single equations. The equations are typed inside curly brackets with commas be-
tween them, and the variables are listed inside curly brackets. To solve the equa-
tions

ax +by = ¢ (3.33)
gx+hy =k (3.34)

we type the input entry
In[1]:=Solve[{axx + bxy == ¢, gxX + hxy == k} {x,y}]

Blank spaces could be used instead of the asterisks to denote multiplication.
Notice the use of braces to notify Mathematica that we have a list of two equations
to be solved. The two variables to be solved for must be included inside curly
brackets (braces). The output is

—ch + bk —cg +ak
7’))%_4
—bg+ah bg —ah

which is the expression obtained from Cramer’s rule. If numerical values for the
coefficients are specified, Mathematica will give the numerical solution set.

oull] = {{x - — 1

|EXERCISE 3.21 b | Use Mathematica to solve the simultaneous equations
2x+3y = 13
x—4y = =10 (3.35)
Kl

The Eliminate statement is used to eliminate one or more of the variables in a
set of simultaneous equations. For example, to obtain a single equation in x from
the set of equations above, you would type the input entry (note the double equal
signs):

Eliminate[{ax+by==c,gx+hy==k}y]

and would receive the output:
Out[l]=bk—bgx+ahx==ch

we solve this equation for x by typing
Solve[%,X]

and receive the output
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outf2]={{ x — =25

SUMMARY

This chapter has dealt with solving algebraic equations. For a single equation in a
single unknowny, this means finding a value efor a set of values of that makes

the equation into a correct numerical equation. We have discussed algebraic pro-
cedures for finding a solution, as well schemes for finding approximate solutions.
If an equation cannot easily be solved, the equation itself can be approximated
by neglecting terms that are small compared with other terms or by linearization.
Graphical methods and numerical methods can be used to find numerical approx-
imations to solutions. Simultaneous equations in two variables were discussed. If
two equations in two unknowns are consistent and are independent, they can be
solved for numerical values of the two unknowns. Linear dependence and incon-
sistency were discussed. The use of Excel and Mathematica to solve equations was
introduced.

PROBLEMS

1. Solve the quadratic equations:

a) x2—-3x+2=0
b) x2—-1=0
0) x24+2x+2=0
2. Solve the following equations by factoring:
a) % —4x2—x—-1=0
b) x3+x2—-x—-1=0
) x*—1=0
3. Find the real roots of the following equations by graphing:
a) x3—x?4+x-1=0
b) e —05x =0
c) sin(x)/x —0.75=0

a) Using Excel, make a properly labeled graph of the function = In(x)+
cogx) for values ofx from 0 to 2r, at intervals ofr/100.

b) Repeat part a using Mathematica.

4. When expressed in terms of “reduced variables” the van der Waals equation of

state is
3 1 8T,
P. Vi— =)= — 3.36
( * v2> ( 3> 3 (3:39)
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a) Using Excel, construct a graph containing three curveB.@s a function
of V,.: one forT, = 0.8, one forT, = 1, and one foff, = 1.2. Specify the
range 4 < V, < 2.

b) Repeat part a using Mathematica.

5. The following data were taken for the thermal decomposition gD

t/s 0 184 426 867 1877
[N2Os]/moll=t 233 208 167 136 072

Using Excel, make three graphs: one with In{{D$]) as a function oft, one

with 1/[N,Oz] as a function of, and one with 1[N,Oz3]? as a function of.
Determine which graph is most nearly linear. If the first graph is most nearly
linear, the reaction is first order; if the second graph is most nearly linear, the
reaction is second order, and if the third graph is most nearly linear, the reaction
is third order.

Write an Excel worksheet that will convert a list of distance measurements in
meters to miles, feet, and inches. If the length in meters is typed into a cell
in column A, let the corresponding length in miles appear on the same line in
column B, the length in feet in column C, and the length in inches in column
C.

The van der Waals equation of state is
n2a

wherea and b are temperature-independent parameters that have different
values for each gas. For carbon dioxide, = 0.3640Parfimol~? and
b =4.267x 10°m3mol~L.

a) Write this equation as a cubic equationVin

b) Use the Solve statement in Mathematica to obtain a symbolic solution to
the cubic equation. How would you decide which root is the one you want?

¢) Use the NSolve statement in Mathematica to find the volumeQgfilmol
of carbon dioxide aP = 1.000 bar(100000 PaandT = 29815K. No-
tice that two of the three roots are complex, and must be ignored. Compare
your result with the prediction of the ideal gas equation of state.

d) Use the FindRoot statement in Mathematica to find the real root in part c.

€) Repeat part ¢ foP = 10.000 bar(1.0000x 10° Pa andT = 29815K.
Compare your result with the prediction of the ideal gas equation of state.

f) Repeat part ¢ foP = 100000 bar(1.0000x 10’ Pg and7 = 29815K.
Compare your result with the prediction of the ideal gas equation of state.
0) Make graphs showing the pressure dd@0 mol of carbon dioxide as a
function of the volume for several different temperatures. You can use the
statement
PlotRange>{ymin,ymax}
as part of your Plot statement (separate it by commas) to adjust the vertical
axis. Note that the symbob- is typed with two strokes, with - ang
separately typed.
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h) Change variables to measure volumes in liters and pressures in atmos-
pheres. Repeat parts a—e. Remember to change the valR®etof
0.08206 | atm KX mol~2.

8. An approximate equation for the ionization of a weak acid, including consid-
eration of the hydrogen ions from watef is

[H1/¢° = /Kac/c® + Ky,

wherec is stoichiometric acid concentration. This equation is based on the

assumption that the concentration of unionized acid is approximately equal to
stoichiometric acid concentration. Consider a solution of HCN (hydrocyanic

acid) with stoichiometric acid concentration equal t6Qx 10~>mol |I-1.

K, =4 x 10710 for HC)N.

a) CalculatefH™] using this equation.
b) CalculatelH"] using Eq. (3.9) and the method of bisection.
c) CalculatelH™] using Eqg. (3.11). Comment on your answers.

9. Find the smallest positive root of the equation.

sinh(x) — x> —x = 0.

10. Solve the cubic equation by trial and error, factoring, or by using Mathematica
or Excel:
x4+ x2—4x—4=0 (3.38)

11. Find the real root of the equation
x2=e* (3.39)
12. Find the root of the equation
x = 2sin(x) (3.40)

13. Find two positive roots of the equation

In(x) — 0.200r = 0 (3.41)

14. Find the real roots of the equation

10x? — 2 = tan(x) (3.42)

15. In the theory of blackbody radiation, the following equation
x=51—-¢e") (3.43)

needs to be solved to find the wavelength of maximum spectral radiant emit-

tance. The variable is
he

X=—
)MmakaT

2Henry F. Holtzclaw, Jr, William R. Robinson, and Jerone D. Od@eneral Chemistry, 9th ed., p. 545,
Heath, Lexington, MA, 1991.

(3.44)
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where Amax is the wavelength of maximum spectral radiant emittarces
Planck’s constant; is the speed of lightig is Boltzmann’s constant, antl

is the absolute temperature. Solve the equation numerically for a value of
Find the value oflimax for T = 6600 K. In what region of the electromagnetic
spectrum does this value lie?

16. Solve the simultaneous equations by hand, using the method of substitution:

X’ +x+ 3y = 15 (3.45)
3x+4y = 18 (3.46)

Use Mathematica to check your result. Since the first equation is a quadratic
equation, there will be two solution sets.

17. Stirling’s approximation for ION!) is

1
IN(N!) ~ 5 IN(27N) + NIn(N) —= N (3.47)
a) Determine the validity of this approximation and of the less accurate ver-
sion
IN(N!) =~ NIn(N) — N (3.48)
for several values oV up to N = 100. Use a calculator, Excel, or Mathe-
matica.

b) Use Mathematica for values &f up to 2000.
18. The Dieterici equation of state is
Pt/ VnRT (v by = RT, (3.49)

where P is the pressurel is the temperaturey,, is the molar volume, and
R is the ideal gas constant. The constant parametensd » have different
values for different gases. For carbon dioxide= 0.468 Pa fimol 2, b =
4.63 x 10~5m3 mol~1. Without linearization, find the molar volume of carbon
dioxide if T = 29815K andP = 10.000 atm= 1.01325x 10° Pa. Use the
FindRoot statement in Mathematica, Excel, or trial and error.

19. Determine which, if any, of the following sets of equations are inconsistent
or linearly dependent. Draw a graph for each set of equations, showing both
equations. Find the solution for any set that has a unique solution.

a) x+3y =4
2x+6y = 8

b) 2x +4y =24
x+2y=8

9 3x1+4x2 = 10
4x1 —2x2 = 6

20. Solve the set of equations using Mathematica or by hand with the method of
substitution:

|
o

x2—2xy +y? =
2x+3y =5



Mathematical
Functions and
Differential
Calculus

Preview

In this chapter we discuss the concept of a mathematical function and its relation-
ship to the behavior of physical variables. We define the derivative of a function of
one independent variable and discuss its geometric interpretation. We discuss the
use of derivatives in approximate calculations of changes in dependent variables
and describe their use in finding minimum and maximum values of functions.

Principal Facts and Ideas

1. A mathematical function of one variable is a rule for obtaining a value of a
dependent variable that corresponds to any value of an independent variable.

2. The derivative of a function is a measure of how rapidly the dependent variable
changes with changes in the value of the independent variablgy I the
change in the dependent variable produced by a chAanga the independent
variable, then the derivatiwy /dx is defined by

d . A
y_“m_y

dx o Ax—0 Ax '

3. The derivatives of many simple functions can be obtained by applying a few
simple rules, either separately or in combination.

4. A finite increment in a dependent variabley, can sometimes be calculated
approximately by use of the formula

dy
Ay ~ —Ax.
dx

89
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5. Differential calculus can be used to find maximum and minimum values of
a function. A relative minimum or maximum value of a variablevhich
depends on is found at a point wheréy /dx = 0.

Objectives

After studying this chapter, you should:
1. understand the concept of a mathematical function;

2. be able to obtain a formula for the derivative of any fairly simple function
without consulting a table;

3. be able to draw a rough graph of any fairly simple function and locate impor-
tant features on the graph;

4, be able to find maximum and minimum values of a function of one variable.

Mathematical Functions

In Chapter 2 we introduced trigonometric functions, the logarithm function and
the exponential function. We now revisit the concept of a function. Mathematical
functions are useful in thermodynamics because thermodynamic variables behave
exactly like mathematical functions, with some variables acting as independent
variables and others as dependent variables. They are useful in quantum mechanics
because all information about the state of a system is contained in a mathematical
function called a wave function or state function.

One definition of a mathematical function of one variable is that it is a rule for
generating a set afrdered pairs of numbers. This means, for example, that if you
have a table with two columns of numbers in it, each number in the first column
is associated with the number on the same line the other column. The choice of a
number in the first column delivers a unique value from the second column. For
example, thermodynamics implies that the temperature is a function of the pres-
sure or that the pressure is a function of the temperature in a system with a single
substance and two phases. A physical chemistry student might measure the vapor
pressure of liquid ethanol (the pressure of a system containing only liquid ethanol
and gaseous ethanol) at ten different temperatures. The student could present the
results in a table. In the first column, the student puts the values of the tempera-
ture, and on the same line in the second column he or she puts the observed vapor
pressure for that temperature.

Let us choose the temperature to beittidEependent variable. The vapor pres-
sure is then thelependent variable. This means that if we choose a value of the
temperature, the function provides the corresponding value of the vapor pressure.
This is the important property of a function. It is as though the function says, “You
give me a value for the independent variable, and I'll give you the corresponding
value of the dependent variable.” In this case, we could have chosen the tempera-
ture as the dependent variable and the pressure as the independent variable. There
are also functions with more than one independent variable. In this case, a value
must be specified for each of the independent variables in order for the function
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to deliver a value of the dependent variable. We discuss this kind of function in
Chapter 7.

A two-column table of numerical values is of course not the only way to rep-
resent a mathematical function of a single independent variable. Any rule that
delivers a value of a dependent variable when a value of an independent variable is
specified is a representation of a mathematical function. Two common representa-
tions of functions are mathematical formulas and graphs.

Properties of Functions Representing Physical Variables

We make the following assumptions about the behavior of physical systems:

1. Of the macroscopic variables such as temperature, pressure, volume, density,
entropy, energy, and so on, only a certain number (depending on circum-
stances) can be independent variables. The others are dependent variables,
governed by mathematical functions.

2. These mathematical functions are single-valued, except possibly at isolated
points. This means that only one value of the dependent variable occurs for a
given value of the independent variable.

3. These mathematical functions are continuous and differentiable, except possi-
bly at isolated points. We will discuss later what this statement means.

Although a list of several temperatures and the corresponding several values
of the vapor pressure qualifies as a mathematical function, such a function is not
useful for other temperatures. We need a representation of the function that will
provide a value of the vapor pressure for other temperatures. Although mathemati-
cians frequently have exact representations of their functions, approximate repre-
sentations of a function must generally be used in physical chemistry. These rep-
resentations include interpolation between values in a table, use of an approximate
curve in a graph, and approximate mathematical formulas. In all these approximate
representations of a function we hope to make our rule for generating new values
give nearly the same values as the correct function.

We assume that the exact representation of a function describing a property of a
physical system is nearly alwagsgle-valued. A single-valued function delivers
one and only one value of the dependent variable for any given value of the depen-
dent variable. In discussing real functions of real variables, mathematicians will
usually not call something a function unless it is single-valued. We also assume
that a function describing a property of a physical system is nearly alecays-
uous. If a function is continuous, the dependent variable does not change abruptly
if the independent variable changes gradually. If you are drawing a graph of a con-
tinuous function, you will not have to draw a vertical step in your curve or take
your pencil away from the paper. We define continuity in terms of mathematical
limits. We say that a functiorf (x) is continuous at = a if

im f(x)= Iim f&)=f(a). (4.2)
x—a™t x—a~

If the function is continuous at = a, asx draws close ta from either direction,

f(x) smoothly draws close tg (a), the value that the function has at= a. If

f(x) approaches a different valuesxifapproacheg from the positive side than it
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does if it approaches from the negative side, the function is discontinuaus at

If f(x)approaches one finite value wheapproaches from the positive side and

a different finite value whem approaches from the negative side, we say that the
function has dinite jump discontinuity. Finite jump discontinuities are sometimes
calledordinary discontinuities. In some cases, a function that is discontinuous at
x = a becomes larger and larger in magnitude without bound (diverges)yas
proaches. For example, consider the tangent function, which becomes larger and
larger in the positive direction if its argument (measured in radians) approaches
/2 from the negative side. It becomes larger and larger in magnitude in the neg-
ative direction if its argument approacheg2 from the positive direction. Some
other functions can diverge in the same direction when the argument of the func-
tion approaches some value from either direction. For example, the fungtidn 1
diverges in the positive direction asapproaches zero from either direction.

Some functions that represent physical variables are continuous over the entire
range of values of the independent variable. In other cases, thqyeasise
continuous. That is, they are continuous except at a number of isolated points, at
which discontinuities in the function occur. Figure 4.1 shows schematically the
density of a pure substance as a function of temperature at fixed pressure. The
density is piecewise continuous. There is a large finite step discontinuity in the
density at the boiling temperaturé,, and a smaller finite step discontinuity at
the freezing temperatur@y. If T is made to approacfis from the positive side
the density smoothly approaches the density of the liquiti-atlf T is made to
approach’’s from the negative side the density smoothly approaches the density of
the solid at this temperature. The system can exist either as a solid or as a liquid at
the freezing temperatur®, or the two phases can coexist, each having a different
value of the density. The function representing the density is not single-valued at
the freezing temperature. A similar situation occurs at the boiling temperBjure
At this temperature the liquid and gas phases can coexist.

If a mathematician wants to discuss a function of a variablee or she would
write

y=f), (4.2)

Density (o)

L T\—'-

T Ty  Temperature(T) —=

Figure 4.1 » The density of a pure substance as a function of temperature (schematic).
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using the lettely to represent the dependent variable and the Igiter represent
the function that provides values of We will follow a different policy, writing
for example for the density as a function of temperature

p=p(T), (4.3)

where the lettep stands both for the density and for the function that provides
values of the density. The main reason for this policy is that we have a lot of
variables to discuss and only a limited supply of letters.

Graphical Representations of Functions

One way to communicate quickly the general behavior of a function is with a graph.

A rough graph can quickly show the general behavior of a dependent variable. An
accurate graph can be read to provide good approximate values of the dependent
variable for specific values of the independent variable. A graph containing data
points and a curve drawn through or near the points can also reveal the presence of
an inaccurate data point.

|EXERCISE 4.1 b | The following is a set of data for the vapor pressure of
ethanol. Plot these points by hand on graph paper, with the temperature on
the horizontal axis (thabscissa) and the vapor pressure on the vertical axis
(theordinate). Decide if there are any bad data points. Draw a smooth curve
nearly through the points, disregarding any bad points. Use Excel to construct
another graph and notice how much work the spreadsheet saves you.

Temperature/°C | Vapor pressuref/torr

25.00 55.9
30.00 70.0
35.00 97.0
40.00 1175
45.00 1541
50.00 1907
55.00 2419

Important Families of Functions

There are a number of important families of functions that occur frequently in
physical chemistry. Aamily of functionsis a set of related functions. A family of
functions is frequently represented by a single formula that contains other symbols
besides the one for the independent variable. These quantities are sometimes called
parameters. The choice of a set of values for these quantities specifies which
member of the family of functions is meant.
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Linear Functions

The following formula represents the family of linear functions:
y=mx+b (4.4)

This is a family oflinear functions or first-degree polynomials. In this family, we
have a different function for each set of values of the parameiessdb. The
graph of each such function is a straight line, so Eq. (4.4) represents a family of
different straight lines. The constaints called thentercept. It equals the value of
the function forx = 0. The constani: is called theslope. It gives the steepness
of the line, or the relative rate at which the dependent variable changes as the
independent variable varies.

Figure 4.2 shows two particular valuesxafcalledx, andx,, and their corre-
sponding values of, calledy; andy,. A line is drawn through the two points.
If m > 0, theny> > y; and the line slopes upward to the right.nif < 0, then
y2 < y1 and the line slopes downward to the right.

EXAMPLE 4.1 For a linear function ley; be the value ofy corresponding to
x1andy> be the value ofy corresponding ta,. Show that the slope is given
by
— A
m=22"1_ =) (4.5)
X2 — X1 Ax
where we introduce the common notation for a difference:
Ax =x2 — x1 (4.6)
Ay =y2—y1 (4.7)
SOLUTION »
y2 —y1=mx2+b— (mx1+b) =m(xz —x1)
or
y2— )0
m=—-:
X2 — X1
<«

Figure 4.2 » The graph of the linear function = mx + b.
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W

N[

yix)
=

Figure 4.3 » Graph of the quadratic function= x2—3x — 4.

Another important property of the slope is that the slope is the tangent of the
angle between the horizontal axis and the straight line representing the function

m = tan(a). (4.8)

The anglex is taken to lie betweer-90° and 90 and the slope can range from
—00 10 c0.

Quadratic Functions

Another important family of functions is thguadratic function or second-degree
polynomial:
y =ax’+ bx +c. (4.9)

The graph of a function from this family is parabola. Figure 4.3 depicts the
parabola representing the function

y(x)=x>—3x—4 (4.10)

Notice that the parabola rapidly rises on both sides of the minimum.

Trigonometric Functions

There are several families of trigonometric functions. We have already discussed
them in Chapter 2. You should be familiar with the graphs of the trigonometric
functions that are shown in Figs. 2.2 through 2.4.

Exponential and Logarithmic Functions

We have also discussed these two families of functions in Chapter 2. You should
be familiar with their properties. An important property of the exponential function
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is that it increases very rapidly for large values of its independent variable. An
important property of the logarithm function is that is increases only very slowly
for large values of its independent variable.

Gaussian Functions

Another important family of functions is the family @aussian functions, named
for Karl Friedrich Gauss (1777—-1855), a great German mathematician. A Gaussian
function is represented by the formula

y = ce~ /207 (4.11)

The constant can be given a specific value to achievamalization, which we
discuss later. The constantis called themean, and the constant is called the
standard deviation and is a measure of the width of the “hump” in the curve. The
graph of this function shown in Fig. 4.4 correspondg:ite= 0. The curve in this
graph is sometimes calledball-curve.

This function is proportional to the probability that a valuexokill occur in a
number of statistical applications and is discussed in Chapter 11.

Generating Approximate Graphs

A graph that represents a function is useful in helping us to visualize the behavior
of the function, even if it is only a rough graph. Sketching a rough graph of a
function is often useful in understanding the function. The families of functions
that we have listed form a repertoire of functions that you can use to generate
approximate graphs of functions that are products of other functions. To do this,
you need to recognize the factors as members of the families that we have studied
and to figure out what a graph of the product of the factors will be like from graphs
of the factors. The two most important facts are that if any of the factors vanishes,
the product vanishes and that if either factor diverges (becomes infinite) the product
diverges.

x?."Za?
_—

=od

—20 —a 0 g 20 X—

Figure 4.4 » The graph of the Gaussian function.
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EXAMPLE 4.2 Sketch a rough graph of the function

y = x cogrx)

SOLUTION » This function is a product of the function, which is shown in Fig. 4.5a, and

the function coérx), which is shown in Fig. 4.5b. The desired rough graph can be constructed
by inspection of the graphs of the two factors. The first thing to do is to find where the function
vanishes, using that fact that if either factor vanishes, the product vanishes. Therfaatashes

at the origin and the factor cos vanishes when = % 37” and so on. Since the cosine oscillates
between—1 and+1, the product oscillates betweerand+x. A rough graph of the product is

shown in Fig. 4.4c. <
a
0 X’
b
} ' t i t }
. —2 —1 0 1 2 g
C

Figure 4.5 » (a) The first factor in the function of Example 4.2. (b) The second factor in the
function of Example 4.2. (c) The function of Example 4.2.
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|EXERCISE 4.2 »| Sketch rough graphs of the following functions. Verify
your graphs using Excel or Mathematica if possible.
(@) e sin(x) (b) sirf(x) = sin(x)?2
(c) x2e~*/2 (d) 1/x?
€) (1—x)e* (f) xe
(<]

The Tangent Line and the Derivative of a Function

A function other than a linear function has a graph with a curve other than a straight

line. Such a curve has a different direction (different steepness) at different points
on the curve.

The Line Tangent to a Curve

Consider the graph of some nonlinear functioncpfs is shown in Fig. 4.6. The
figure also shows the line that is tangent to the curve representing the function at
x = x1. At most points on such a curve, the tangent to the curve at that point is the
line that has the point in common with the curve but does not cross it at that point,
as shown in Fig. 4.6. There are points called inflection points at which the tangent
line does cross the curve, and we will discuss them later. We can say that the curve
atx = x; has the same direction as the tangent line at that point.

If the tangent line is represented by the formula

y =mx + b,
then the slope of the tangent line is equaklio In the figure, we have labeled

another point att = x». In addition to the tangent line, the figure includes a
horizontal line intersecting the curve at= x1. At x = x», the vertical distance

N

tangent line

of slope m
4]

v + max

¥1

Figure 4.6 » The curve representing the function= y(x) and its tangent line.
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from the horizontal line to the tangent line is givendyx, — x1) = mAx, where
Ax = x2 — x1

The distancen Ax is not necessarily equal to the distance from the horizontal line
to the curve, which is given by

y(x2) —y(x1) = y2 — y1 = Ay.

|[EXERCISE 4.3 & | Using graph paper plot the curve representing sin(x)

for values ofx lying between 0 ane /2 radians. Using a ruler, draw the tan-
gentline atx = /4. By drawing a right triangle on your graph and measuring
its sides, find the slope of the tangent line. [«]

There is a case in which the definition of the tangent line to a curve at a point
x1 is more complicated than in the case shown in Fig. 4.6. In this case, the point
x1 lies between a region in which the curve is concave downward and a region in
which the curve is concave upward. Such a point is calledhfection point. For
such a point, we must consider tangent lines at points that are taken closer and
closer tox;. As we approach closer and closerxtpfrom either direction, the
tangent line will approach more and more closely to a line that is the tangent line
atx1. This line does cross the curve at the point that it shares with the curve.

The Derivative of a Function

The derivative of a function is a quantity that represents the rate of change of

a function and the steepness of the curve in a graph representing the function.
Consider a nonlinear functiopn = y(x). We have already asserted thay is

not necessarily equal t@ Ax, wherem is the slope of the tangent to the curve.
However, if Ax is not too large, we can write as an approximation

Ay ~m Ax. (4.12)
We divide both sides of Eq. (4.12) kyx and write

Ay _y2) —y(1) _y2—n
Ax X2 — X1 X2 —x1

~
~

(4.13)

If the curve is smooth, this equation becomes a better and better approximation as
Ax becomes smaller, and if we take the mathematical limitas— 0, it becomes
exact:

m= lim 2=y | (4.14)

X2—>X1 X2—X1

DEFINITION ¢ Ifthe limitin Eq. (4.14) exists and has the same value when
x2 approaches from either side, it is called thderivative of the function at

x = x1. If the derivative exists, it is equal to the slope of the tangent line at
the given point. The derivative is denoted by the symholdx. The symbol

y’ is also used. ¢
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y = ylx}

Figure 4.7 » A function that is not differentiable at = « and aty = b.

The symboly’ has the advantage that the valuexolt which the derivative
is evaluated can easily be specified. If the derivative is to be evaluatad ae
would write y'(x1). The value ofx at whichdy/dx is to be evaluated can be
denoted by a subscript, as(ty /dx),,. The symboldy/dx) resembles a fraction,
but you should remember that a derivativen a fraction. It is a limit that a
fraction approaches. It is not permissible to cancel what looks like a numerator or
a denominator against another factor.

If the limit in Eq. 4.14 does not exist, the function is rubfferentiable and its
derivative does not exist at = x3. If y(x) has a discontinuity at = x1, the
limit does not exist at that point and a function is not differentiable at that point.
A function is also not differentiable at @sp, which corresponds to a “corner”
or abrupt change in direction of a curve representing a function. At a cusp the
function is continuous, but the tangent to the curve has different values on the two
sides of the cusp. If the function has a cusp at x1, the limit has a different
value ifxo > x1 than it does ifxo < x1.

Figure 4.7 shows the graph of a function that is discontinuows-a¥ and has
acusp akt = « and is not differentiable at these points, although it is differentiable
elsewhere in the region shown in the graph.

EXAMPLE 4.3 Decide where the following functions are differentiable and
where they are not differentiable:

@) y = Ix| (b) y = Vx.

SOLUTION » (a) Differentiable everywhere exceptat= 0,
where there is a cusp. The limit has differ-
ent values wher = 0 is approached from
the two different directions.

(b) This function has real values fer> 0. It
is differentiable for all positive values af
but the limit does not exist at = 0, so it
is not differentiable at = 0. The tangent
to the curve ak = 0 is vertical.

<«
|EXERCISE 4.4 b | Decide where the following functions are differentiable.
@y=1= () y = x +2J/x
(c) y =tan(x)

[«
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Derivatives of Specific Functions

Now that we have defined the derivative, we can see how derivatives of particular
functions are found by using the definition of the derivative.

EXAMPLE 4.4 Find the derivative of the function

2
y=yk) =ax".
SOLUTION »
— _ _ 2 2 _ 2 2
Ay = y(x2) —y(x1) = y2 —y1 =ax; —axf =a(x1+ Ax)® —ax]
= a I:x% + 2x1Ax + (Ax)z] - ax%
= 2ax1Ax + (Ax)2
A
A_i = 2ax1 + Ax.

We now take the limit ago — x1 (Ax — 0). The first term, 2x; is not affected. The second
term, Ax, vanishes. Thus, if we use the symbdhstead ofxq

d (ax?
A
Q — lim 2 = 2ax. (4.15)
dx Ax—0 Ax
<

Figure 4.8 shows a graph of the functionr= ax? and a graph of its derivative,
dy/dx = 2ax.
This graph exhibits some important general characteristics of derivatives:

1. Where the function has a horizontal tangent line, the derivative is equal to zero.

2. The derivative is positive in regions where the function increases s
creases.

3. A positive derivative is larger when the tangent line is steeper.

4. The derivative is negative where the function decreasesiasreases, as it
does in this example for negative valuescof

ax?
2ax

¥
dy _
dx

X — 0 X et

Figure 4.8 » A graph of a function and its derivative.
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5. A negative derivative is more negative (has a larger magnitude) when the tan-
gent line is steeper.

The derivative of any differentiable function can be obtained by using the defi-
nition of the derivative.

|EXERCISE 4.5 b | Show that the derivative aiy(x) is equal toady/dx
wherey(x) is a differentiable function of and wherez is a constant. [«

|EXERCISE 4.6 & | The exponential function can be represented by the fol-
lowing power series

1 1 1
P = 1+ bx + —b%x%+ b33+ ..+ Zb""..,
2! 3! n!

where the ellipsis-( - ) indicates that additional terms follow. The notatidn
stands fom factorial, which is defined to equad (n — 1) (n — 2) ...(3)(2) (D).
Use this representation to derive the expression for the derivati/ of [«]

Table 4.1 gives the derivatives of some simple functions, derived in much the
same way as Eq. (4.15). Additional derivatives are given in Appendix D.

TABLE 4.1 » Some Elementary Functions and Their Derivatives.*
Function, y = y(x) Derivative, dy/dx = y'(x)

ax” nax"~1
aeb™ abe?
a 0
a sin(bx) ab cos(x)
a cos(bx) —ab sin(bx)
aln(x) a/x

*In these formulasg, b, andn are constants. not necessarily integers.

The derivative of a function is the rate of change of the dependent variable with
respect to the independent variable. Because it is the slope of the tangent line, it

has a large magnitude when the curve is steep and a small magnitude when the
curve is nearly horizontal.

|EXERCISE 4.7 b | Make rough graphs of several functions from Table 4.1.
Below each graph, on the same sheet of paper, make a rough graph of the
derivative of the same function. (<]

Differentials
In Section 4.2, we talked about a change in a dependent variable produced by a
change in an independent variableylis a function ofx, we wrote in Eq. (4.12)
Ay ~ m Ax, (4.16)

whereAx = y(x2) — y(x1), Ax = x2 — x1, andm was the slope of the tangent
line atx = x1. Using Eq. (4.14) this becomes

Ay ~ (fl_y) Ax. (4.17)

X
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This approximate equality will generally be more nearly correct whens made
smaller.

EXAMPLE 4.5 Using Eg. (4.17), estimate the change in the pressure of
1.000 mol of an ideal gas at®@ when its volume is changed from 224 |
to 21.4141.

SOLUTION » Anideal gas obeys the equation
nRT

P (4.18)
\%4
so that ifn andT are kept fixed, we can differentiate with respecvto
dp —nRT
= 4.19
av V2 (4.19)
_ —(1.000 Mo)(0.08206 | atm mot 1 K=1)(27315K)
B (2241412
= —0.0446atmT!.
We can approximate an incrementfn
dP
AP ~ (—) AV = (—0.0446 atmT1> (~1.000))
dv
~ 0.0446 atm.
<

EXAMPLE 4.6 Determine the accuracy of the result of Example 4.5.

SOLUTION »
AP

P(21414)) — P(224141) = 1.0468 atm-1.0000 atm
= 0.0468 atm

Our estimate in Example 4.5 was wrong by about 5%. If the change in volume had .ideth®
error would have been about596. <

Since Eq. (4.17) becomes more nearly exackass made smaller, we make it
into an exact equation by makimgx become smaller than any finite quantity that
anyone can name. We do not make strictly vanish, but we say that we make it
becomenfinitesimal. That is, we make it smaller in magnitude than any nonzero
guantity one might specify. In this limitAx is called thedifferential dx and we
write

dy = (j—y) dx (4.20)

The infinitesimal quantity'y is thedifferential of the dependent variable Itis the
change iny that results from the infinitesimal incremeht in x. It is proportional

to dx and to the slope of the tangent line, which is equalt@dx. Sincex is an
independent variable,x is arbitrary, or subject to our control. Singds a depen-
dent variable, its differentialy is determined byix, as specified by Eq. (4.20) and

is not under our control once we have chosen a valud foNote that Eq. (4.20)

has the appearance of an equation in whichdthén the denominator is canceled

by thedx in the numerator. This cancellation cannot occur, although the equation
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is valid. The symboliy/dx is not a fraction or a ratio. It is the limit that a ratio
approaches, which is not the same thing.

In numerical calculations, differentials are not of direct use, since they are
smaller than any finite quantities that you can specify. Their use lies in the con-
struction of formulas, especially through the process of integration, in which infi-
nitely many infinitesimal quantities are added up to produce something finite. We
discuss integration in the next chapter.

|EXERCISE 4.8 b | The number of atoms of a radioactive substance at time
t is given by

N (1) = N,e /7,

whereN, is the initial number of atoms andis the relaxation time. Fo¥*C,
T = 8320y. Calculate the fraction of an initial sample!8€ that remains
after 100 years, using Eq. (4.17). Calculate the correct fraction and compare

it with your first answer. [«
[EXERCISE4.9 »|  Assume thab = 3x2—4x+10.If x = 4 andAx = 0.5,
Find the value ofAy using Eq. (4.17). Find the correct valuea§. [«

Some Useful Facts About Derivatives

In this section we present some useful identities involving derivatives, which, to-
gether with the formulas for the derivatives of simple functions presented in Table
4.1, will enable you to obtain the derivative of almost any function that you will
encounter in physical chemistry.

The Derivative of a Product of Two Functions

If y andz are both functions af,

d (yz2) dz dy
=y— — . 4.21
dx ydx + de ( )
The Derivative of the Sum of Two Functions
If y andz are both functions of,
diy+z) dy dz
22 4,22
dx dx + dx ( )
The Derivative of the Difference of Two Functions
If y andz are both functions af,
do-2 _dy dz| (4.23)
dx dx dx
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The Derivative of the Quotient of Two Functions

If y andz are both functions af, andz is not zero.

diy/ _* (%) -y(%) |

dx 72

(4.24)

An equivalent result can be obtained by considesipgto be a product of Az and
y and using Eq. (4.21),

ax \"z) T zax  Y2ax

d ([ 1\ 1d 1d
(y—)— A el | (4.25)

Many people think that Eqg. (4.25) is more convenient to use than Eq. (4.24).

The Derivative of a Constant

If ¢ is a constant,

dc
— =0 4.26
T (4.26)

From this follows the simple but important fact:

d d
ot _dv| (4.27)
dx dx
If we add any constant to a function, we do not change its derivative.
The Derivative of a Function Times a Constant
If y is a function ofx andc is a constant,
d(cy) dy
=c— | 4.28
dx Cdx ( )

This can be deduced by substituting into the definition of the derivative, or by using
Egs. (4.21) and (4.26).

The Derivative of a Function of a Function (the Chain Rule)

If u is a differentiable function af, and f is a differentiable function af,

df df du
— == 4.2
dx du dx (4.29)

The functionf is sometimes referred to asa@mposite function. It is a function
of x, because is a function ofu. Specifying a value of specifies a value af,
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which specifies a value of. This can be communicated by the notation

fx) = flu@)]. (4.30)

Here we have used the same letter for the funcfiomhether it is expressed as a
function ofu or of x.

We now illustrate how these facts about derivatives can be used to obtain for-
mulas for the derivatives of various functions.

EXAMPLE 4.7 Find the derivative of tafux) by using the formulas for the
derivatives of the sine and cosine.

SOLUTION »
d d [ sin(ax)
—tan(ax) = —
dx dx | cos(ax)
_ cos(ax) a cos(ax) + sin(ax) a sin(ax)
N cod (ax)
cog (ax) + sir? (ax) a
= a =
co (ax) co< (ax)
= ased (ax)
We have used several trigonometric identities in the solution. <

EXAMPLE 4.8 FinddP/dT if P(T) = ke~ /T,

SOLUTION » Letu =—Q/T. From the chain rule,
dP_ dP du QO

dT ~ du dT ~ " T2

= ke~ /T <g) .
T

| EXERCISE 4.10 b | Find the following derivatives. All letters stand for con-
stants except for the dependent and independent variables indicated.

@) %, wherey = (ax?+bx+¢)~32 (b) %, whereP = ke—2/T

(©) %, wherey = acogbx®)

[«

Newton’s Method

This method, which is also called thdewton—Raphson method, is aniterative
procedure for obtaining a numerical solution to an algebraic equation. An iterative
procedure is one that is repeated until the desired degree of accuracy is attained.
The procedure is illustrated in Fig. 4.9. We assume that we have an equation written
in the form

fx)=0
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f

actual root
of flx) =0

Figure 4.9 » Graph to illustrate Newton’s method.

The process is as follows:

Step 1. Guess at a valugy, which is “not too far” from the actual root. A rough
graph of the functiory (x) can help you to choose a good value fgr

Step 2. Find the value of (x) and the value ofif/dx atx = xo.

Step 3. Using the value ¢f(x) andd f/dx, find the value ok at which the tangent
line to the curve at = xg crosses the axis. This value afwhich we callx1,
is our next approximation to the root. It is given by

f(xo0)
=Xx0 — 4.31
X1 = XQ F0) (4.31)
where we use the notation
d
f(x0) = 4
dx x=x0

for the derivative evaluated at= xg.

Step 4. Repeat the process until you are satisfied with the accuracy obtained. The
nth approximation is given by

S (xn-1) (432)

Xn = Xn-1— [ (en—1)

|[EXERCISE 4.11 » | Using the definition of the derivative, show that Egs.
(4.31) and (4.32) are correct. [«

You must decide when to stop your iteration. If the graph of the funcfion
crosses the axis at the root, you can probably stop when the difference between
andx,1 is smaller than the error you can tolerate. However, if the curve becomes
tangent to ther axis at the root, the method may converge very slowly near the
root. It may be necessary to pick another trial root on the other side of the root and
to compare the results from the two iterations. Another possibility is to take the




108 Chapter 4 Mathematical Functions and Differential Calculus

derivative of the function, set that equal to zero, and solve for that root, since the
first derivative changes sign if the function is tangent toxtlaxis.

You should not demand too much of Newton’s method. A poor choice) of
can make the method converge to the wrong root, especially if the function is os-
cillatory. If your choice ofxg is near a local maximum or a local minimum, the
first application of the procedure might give a valuecpthat is nowhere near the
desired root. These kinds of problems can be especially troublesome when you are
using a computer to do the iterations, because you might not see the values of
x2, and so on, until the program has finished execution. Remembérdimaxim
of computing: “Garbage in, garbage out.” Carrying out an approximate graphical
solution before you start is a good idea so that you can make a good choice for your
first approximation to the root and so that you can know if you found the desired
root instead of some other root.

| EXERCISE 4.12 b | Carry out the Newton—Raphson method to find the
smallest positive root of the equation

5x —e* =0 (4.33)

Do the calculation by hand or use a spreadsheet. The Goal Seek command in
Excel carries out the Newton-Raphson method automatically. See Chapter 3.

El

Higher-Order Derivatives

Since the derivative of a function is itself a function, a derivative of a differentiable
function is usually differentiable. The derivative of a derivative is callesdcand
derivative, and the derivative of a second derivative is callékial derivative, and

so on. We use the notation

d?y d (dy
3= <E) (4.34)
and s )
d>y d (d°y
- (3) (4.39)
and so on. Thath-order derivative is
d"y d dn—ly
on = g (dx"—1> . (4.36)

The notationy”(x) is sometimes used for the second derivative. The third and
higher order derivatives are sometimes denoted by a lowercase roman numeral
superscript in parentheses,d&"”, y@¥), and so on.

EXAMPLE 4.9 Findd?y/dx?if y = a sin(bx).

SOLUTION » )
d y d 2
W = E [ab COS(bx)] = —ab Sln(bx).
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The result of this example is sometimes useful: the sine is proportional to the
negative of its second derivative. The cosine has the same behavior. The exponen-
tial function is proportional to all of its derivatives.

|EXERCISE 4.13 » | Find the second and third derivatives of the following
functions. All letters stand for constants except for the indicated dependent and
independent variables. Treat all symbols except for the specified independent
variable as constants.

@y=ykx =ax" b)y=yx) = aeb”
(©) vims = vims(T) = / 31‘% dP=P((V)= (‘ﬁﬂ_ezb) - "V—”ZZ

2h‘2
(e) n=n(k)=m-

The Curvature of a Function

Figure 4.10 shows a rough graph of a function in the intetval x < g.

A rough graph of the first derivative of the function and a rough graph of the
second derivative of the function in the interval are also included. Where the func-
tion is concave downward, the second derivative is negative, and where the func-
tion is concave upward, the second derivative is positive. Where the graph of the
function is more sharply curved, the magnitude of the second derivative is larger.
The second derivative therefore provides a measure of the curvature of the function
curve.

yY—

dy/dx —=

[=]
W
o
(2]
Q
<
o,
o
>
|

ol dyldxi—

Figure 4.10 » A function and its first and second derivative.
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For any function that possesses a second derivativeptivature K is defined

by
d?y/dx?
K = y/dx (4.37)

513/2°
[1 + () ]

The curvature is positive if the curve representing the function is concave upward,

and is negative if the curve is concave downward. The magnitude of the curvature

is equal to the reciprocal of the radius of the circle that fits the curve at that point.

If the curvature is larger the circle is smaller. At a point where the first derivative

is zero, the curvature is equal to the second derivative. Since the denominator

in Eq. (4.37) is always positive, the curvature has the same sign as the second
derivative.

EXAMPLE 4.10 Find the curvature of the function = x2 atx = 0 and at
x = 2.

SOLUTION »
d2
dx

d

<

N

2 2 atx =0

K= —°= = .
(1+42)%2 ~ | 00285 atr =2

EXERCISE 4.14 b | (a) Find the curvature of the function
cogx) atx = 0 and atx = /2.
(b) Find a formula for the curvature of
the function

nRT an®

PV =y~ Ve

wheren, R, a, b, andT are treated
as constants.

Maximum-Minimum Problems

Sometimes you want to find the largest or smallest value that a function attains or
approaches in a certain interval, or to find the value of the independent variable
at which this happens. Thainimum value of a function means the most negative
value of the function, not necessarily the smallest magnitude mexemum value

means the most positive value of the function, not necessarily the largest magni-
tude. Both a maximum and a minimum are calledezimemum. If a function
happens to be negative in all parts of some interval, the maximum value in that
interval will correspond to the smallest magnitude and the minimum value will
correspond to the largest magnitude. We now state the fact that enables us to find
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maximum and minimum values of a differentiable function in a given inteiMag:
minimum or maximum value of a differentiable function in an interval will either
occur at an end of theinterval or at a point where thefirst derivative of the function
vanishes.

We illustrate the process of finding the maximum and minimum values of a
function in an interval in Fig. 4.10. In the interval shown there are three points at
which the curve has a horizontal tangent, labéled, and /. The first derivative
vanishes at these points. The points at which we might have the maximum value of
the function include these three points and the ends of the interval, labeled
g. At x = f we have aelative minimum, also called docal minimum. At such
a point the function has a smaller value than at any other point in the immediate
vicinity. At point d we have arelative maximum or alocal maximum, at which
the function has a larger value than at any other point in the immediate vicinity.
The first derivative also vanishes at pointbut this is aninflection point with a
horizontal tangent line.

To find the maximum value we must compare the value of the function at point
d and at the ends of the interval. Inspection of the graph indicates that the function
has a greater value at poidtthan at the ends of the interval, and this point is
the absolute maximum of the function in the interval shown. The possible points
for the minimum value of the function are the ends of the interval and pfint
Inspection of the graph indicates that the left end of the interval (poiig the
absolute minimum.

In our discussion of Fig. 4.10, we were guided by inspection of the graph.
If you don’t have a graph, you can distinguish relative minima, relative maxima,
and inflection points from each other by finding the sign of the curvature, which
is equal to the second derivative at a point with zero first derivative. At a relative
minimum, the second derivative is positive. At a relative maximum, the second
derivative is negative. At an inflection point with horizontal tangent line, the second
derivative vanishes. To find the absolute maximum of a function in an interval, you
evaluate the function at each relative maximum and at the ends of the interval and
then choose the point with the largest value of the function. To find the absolute
minimum of a function in an interval, you evaluate the function at each relative
minimum and at the ends of the interval and then choose the point with the smallest
(most negative) value.

If you don’t want to go to the trouble of evaluating the second derivatives, you
can use the following procedure for a differentiable function:

1. Find all the points in the interval at which the first derivative vanishes.

2. Evaluate the function at all of these points and at the ends of the interval. The
largest value in the list is the maximum value and the smallest value is the
minimum.

If a function is not differentiable at all points in an interval, you must add all
points at which the function is not differentiable to your list of possible maxima
or minima. For example, there might be a discontinuity or a cusp at which the
function has a larger value than at any other point in the interval.
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EXAMPLE 4.11 Find the maximum and minimum values of the function
_ 2
y=x“"—4x+6

in the interval O< x < 5.

SOLUTION » The derivative is
d
Y o4
dx

There is only one point at whicdly /dx = 0. Call it x,.

2 —4=0 or Xm = 2.

We evaluate the function at the ends of the interval and=atx,,,:

y(0) = 6
yxm) = y@2) =2
y(5) = 11
The maximum value of the function is at= 5, the end of the interval. The minimum value is at
x =2. <
EXERCISE 4.15 b | For the interval 10< x < 10, find the maximum and

minimum values of
y=—x3+3x?—-3x+8

[«

|EXERCISE 4.16 b | The probability that a molecule in a gas will have a
speedv is proportional to the function

= 4 ex
fv (v) n(ZJTkBT> v p(kaBT)’

wherem is the mass of the moleculég is Boltzmann’s constant, antl is

the temperature on the Kelvin scale. The most probable speed is the speed for
which this function is at a maximum. Find the expression for the most probable
speed and find its value for nitrogen moleculeg'at 298 K. Remember to

use the mass of a molecule, not the mass of a mole. [«]

|EXERCISE 4.17 b | According to the Planck theory of black-body radiation,
theradiant spectral emittance is given by the formula

_ . 2 he?
n=n) =3 (ehe/ T — 1)’

where#h is Planck’s constantp is Boltzmann’s constant; is the speed of
light, andT is the temperature on the Kelvin scale. Tr&aas a constant and
find an equation that will give the wavelength of maximum emittance.[«]
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EXERCISE 4.18 b | Find the maximum and minimum values of the function

y = x3+4x% — 10x + 25|x3|

in the interval—-5 < x < 5. Note the cusp at = 0. [«

Limiting Values of Functions: L'Hdpital’s Rule

We have already defined mathematical limits. The limiyafsx approaches is
denoted by
fim [ 0]

and is defined as the value thatapproaches ever more closely.aspproaches
ever more closely ta, if such a number exists. The valuds not required to be
finite, and a limit such as

im o)

exists ify(x) approaches more closely to some value asmade larger and larger
without bound. In some cases it matters whether the limit is approached from the
right or from the left. This occurs when there is a discontinuity or a cusp at the
limiting point. An example of a limit that does not exist is

Iim( 1 ) (4.38)
x—a\x —a

As x approaches closer 1@, 1/(x — a) becomes larger without bound Af ap-
proaches from the right (from values larger thar) and 1/ (x — a) becomes more
negative without bound if approaches from the left.

Another limit that does not exist is

Ii_)moo[sin(x)]. (4.39)

The sine function continues to oscillate betweehand 1 as becomes larger and
larger. An example of a limit that does existxaapproaches infinity is

lim (1-¢7) =1 (4.40)
X—>0Q0
|EXERCISE 4.19 » | Decide which of the following limits exist and find the
values of those that do exist.
@) lim, o (1—e™) (b) lim,_ <e—x2)
(C) Iimx—>7'r/2 [)C tan(x)] (d) lim, 0 [In (x)] :

[«]

Sometimes a limit exists but cannot be evaluated in a straightforward way by
substituting into the expression the limiting value of the independent variable. For
example, if we try to determine the limit

lim [Si”(x)} (4.41)

x—0 X
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we find that forx = 0 both the numerator and denominator of the expression

vanish. If an expression appears to approad® @ might approach 0, it might

approach a finite constant of either sign, or it might diverge in either direction

(approach-oo or +o00). The same is true if it appears to approacho or 0x oco.
Therule of I'Hopital provides a way to determine the limit in such cases. This

rule can be statedf the numerator and denominator of a quotient both approach

zero or both approach infinity in some limit, the limit of the quotient is equal to

the limit of the quotient of the derivatives of the numerator and denominator if this

limit exists. That is, if the limits exist, then

lim [f<x>]=|im [df/dx]zlim [f“x)] (4.42)

x—a L 8X) | xDqlde/dx | xq[8'()

[72)

EXAMPLE 4.12 Find the value of the limit in Eq. (4.41) by use of I'H6pital’
rule.

SOLUTION »

lim [Si”(x)} = lim [M] = lim [Cos(x)] -1 (4.43)
x—0 X x—0 dx/dx x—0 1

<

I"Hopital’s rule does not necessarily give the correct limit if it is applied to a
case in which the limit does not appear to approach 0/0 or co/oco or 0 x co. One
author put it: “ As a rule of thumb, I"Hopital’s rule applies when you need it, and
not when you do not need it”’

If the expression appears to approack @o, it can be put into a form that
appears to approach@or co/oco by using the expression for the reciprocal of one
factor. In the following example, we use this technique, as well as illustrating the
fact that sometimes the rule must be applied more than once in order to find the
value of the limit.

EXAMPLE 4.13 Find the limit

lim <xse_x) .
X—> 00

SOLUTION »
3 3 2
lim <x3e_x) = lim (x—): lim (i)
X—> 00 X—> 00 eX X—00 eX

= lim (6—x>= lim (3>:o. (4.44)
x—00 \ e¥ x—>00 \ ¥

By applying I'H6pital’s rulen times, we can show

My 0o (x"e_x) =0 (4.45)

for any finite value of:. The exponential functioa™ approaches zero so rapidly
that it overwhelms any finite power afin the limit thatx becomes large.
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EXERCISE 4.20 b | Investigate the limit
H —n _Xx
im0
for any finite value ofi. [«

Another interesting limit is that of the next example.

EXAMPLE 4.14 Find the limit

lim <'n (x)) .
X—00 X

SOLUTION »
. Inx)\ 1/x\
xl|_>moo (T) = xl|_>moo (T) =0. (4.46)
<
EXERCISE 4.21 b | Find the limit
. In
lim [ (x)] .
X—>00 ﬁ
Kl
|EXERCISE 4.22 | A collection of N harmonic oscillators at thermal equi-

librium at absolute temperatufeis shown by statistical mechanics to have the
thermodynamic energy

Nhv

U= gwmr—1 (4.47)

wherekp is Boltzmann’s constant; is Planck’s constantT is the absolute
temperature, and is the vibrational frequency.
(a) Find the limit ofU asv — O. (b) Find the limit ofU asT — 0.

[«]

There are a number of applications of limits in physical chemistry, and
I'Hépital’s rule is useful in some of therh.

|EXERCISE 4.23 | Draw a rough graph of the function
tan(x)
y =
X

in the interval-7 < x < w. Use I'HOpital’s rule to evaluate the function at

x=0. [«]

IMissen, Ronald W., "Applications of the I'Hopital-Bernoulli Rule in Chemical SystedsChem. Educ.
54, 448 (1977).
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SUMMARY

A function is a rule that provides a value for a dependent variable for any given
value of a dependent variable. The derivative of a function is another function of
the same independent variable, which specifies the rate of change of the first func-
tion with respect to the independent variable. The first derivative of the function
y(x) is defined by

dy o y@x2) -y

— =y = lim —/——M—=—

dx xX2—>X1 X2 — X1
if this limit exists. The derivative is equal to the slope of the tangent line to a curve
representing the function. The first derivative vanishes at a relative maximum or
minimum and can be used to locate these points. The second derivative is the

derivative of the first derivative

d’y d (dy

dx?2  dx \dx
The second derivative determines the curvature of a function. Higher derivatives
were defined. Derivatives are useful in applying the rule of I'Hépital:

lim [f(x)} = lim [df/dx] = lim [f/(x)]
x—a| g(x) x—a dg/dx x—a g’(x)

PROBLEMS
1. The sine and cosine functions are represented by the two series
. _ x3 XS x7
sin(x) = x—§+a—ﬁ+"' .
2 4 6
X X 4
COix)Zl—E-FE—E-F”'. (4.48)
Differentiate each series to show that
dsin
™) _ costx)
dx
and J
co .
) _ _sinx)
dx

2. The natural logarithm of % x is represented by the series

x2  x3 x4 2
In(l—}—x):x—?—f—?—z---(x < landx =1).
Use the identity
din(x) 1
dx  x’

to find a series to represent(d + x).
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3. Use the definition of the derivative to derive the formula
d(yz) dz dy
=y— 71—
dx dx dx
wherey andz are both functions af.

4. Find the first and second derivatives of the following functions

a P = P(Vy) = RT(1/V,, + B/V2 + C/V3) whereR, B, andC are
constants

b) G=Gx)=G°+RTxIn(x)+ RT(1—x)In(1—x), whereG°, R, and
T are constants

¢) y = y(x) = aIn(x/3), whereq is a constant

a) y=yx) =3x%In(x)
b) vy = y(x) = 1/(c — x?), wherec is a constant
C) y = y(x) = ce ") 'whereq, b, andc are constants

5. Find the first and second derivatives of the following functions.

a) y = In[tan(2x)]
b) y=(1/x)(1/(1+x))
Q) f = f(v) = ce /@D wherem, ¢, k, andT are constants

6. Find the first and second derivatives of the following functions.

a) y = 3sir?(2x) = 3sin(2x)?

b) y=a0+a1x + asx? + azx3 + asx® + asx®, whereag, a1, and so on, are
constants

¢) y = acoge ?*), wherea andb are constants
7. Find the following derivatives and evaluate them at the points indicated.

a) (dy/dx)y—oif y = sin(bx), whereb is a constant
b) (df/dt),—oif f = Ae ¥, whereA andk are constants

8. Find the following derivatives and evaluate them at the points indicated.

a) (dy/dx)y=1, if y = (ax®+bx%+cx + 1)_1/2, wherea, b, andc are
constants

b) (d?y/dx?) _,. if y = ae™"*, wherea andb are constants
9. Find the following derivatives

a) 492 wherey = ax2, z = sin(bx)

dx
2
b) 47, wherep = R — a1
dn 2nhc?
) 7, Wheren = AS(ehf/me_l)
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10. The volume of a cube is given by
V=V =d,

wherea is the length of a side. Estimate the percent error in the volume if a
1% error is made in measuring the length, using the formula

AV av A
~|— a.
da

Check the accuracy of this estimate by compafiiig) andV (1.01a).

11. Draw a rough graph of the function

x|

y=yx)=e"

Is the function differentiable at = 0? Draw a rough graph of the derivative
of the function.

12. Draw a rough graph of the function
y = y(x) = sin(|x|)

Is the function differentiable at = 0? Draw a rough graph of the derivative
of the function.

13. Draw a rough graph of the function
y = y(x) = cog|x|)

Is the function differentiable at = 0? Draw a rough graph of the derivative
of the function.

14. Show that the functiony = ¢ (x) = A sin(kx) satisfies the equation

d%y )
- — _k
dx? v

if A andk are constants.

15. Show that the functior = v (x) = cos(kx) satisfies the equation

d%y )
— T — Kk
dx? v

if A andk are constants.

16. Draw rough graphs of the third and fourth derivatives of the function whose
graph is given in Fig. 4.10.

17. The Gibbs energy of a mixture of twamantiomor phs (optical isomers of the
same substance) is given by

G=G(x)=G°+RTxIn(x)+ RT (x0 — x) In(xg — x)

wherex is the sum of the concentrations of the enantiomorphsxaisdthe
concentration of one of themG ° is a constantR is the gas constant, and

T is the temperature. If the temperature is maintained constant, what is the
concentration of each enantiomorph wh@ras its minimum value? What is

the maximum value of; in the interval O< x < xg?
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18.

19.

20.

21.

22.

23.

24,

a) A rancher wants to enclose a rectangular part of a large pasture so that
1.000 kn? is enclosed with the minimum amount of fence. Find the di-
mensions of the rectangle that he should choose. The area is

A=xy

but A is fixed at 1000 kn?, so thaty = A/x.

b) The rancher now decides that the fenced area must lie along a road and
finds that the fence costs $20 per meter along the road and $10 per meter
along the other edges. Find the dimensions of the rectangle that would
minimize the cost of the fence.

Using
Ay~ (2 A
~|—|Ax
Y dx
show that
A — 1~ Ax if Ax < 1
The sum of two nonnegative numbers is 100. Find their values if their product

plus twice the square of the first is to be a maximum.

A cylindrical tank in a chemical factory is to contairOR0 n? of a corrosive
liquid. Because of the cost of the material, it is desirable to minimize the area
of the tank. Find the optimum radius and height and find the resulting area.

Find the following limits.

a) lim,_ oolIn(x)/x?]

b) lim,—3[(x® - 27)/(x* — 9)]
©) lim—oclx IN(g3)]

Find the following limits.

a) lim, o+ [ |

b) lim,_ g+[sin(x) In(x)]

Find the following limits

a) lim,_ (e_xz/e_x)

b) lim,_o[x?/ (1 — cos(2x))]
c) lim,_» [sin(x) /sin(3x/2)].

If a hydrogen atom is in as2state, the probability of finding the electron at
a distance- from the nucleus is proportional tcm#zwi, whereyr represents
the orbital (wave function):

1 1\%7?
s ()
427 \ao ag

whereqg is a constant known as the Bohr radius, equal 529 x 10 10m,
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a) Locate the maxima and minima ¢b;.
b) Draw a rough graph ofry;.
c) Locate the maxima and minima g¢fs..
d) Draw a rough graph of3..
e) Locate the maxima and minima ofr42y3..
f) Draw a rough graph of#r2y3 .
25. The thermodynamic energy of a collectionfharmonic oscillators (approx-
imate representations of molecular vibrations) is given by
. Nhv
ehv/ksT _ 1
a) Draw a rough sketch of the thermodynamic energy as a functi@n of
b) The heat capacity of this system is given by
c-U
dT
¢) Show that the heat capacity is given by
ho \2  ohv/ksT
kBT> (ehu/kBT _ 1)2'

U (4.49)

C:NkB(

d) Find the limit of the heat capacity & — 0 and as' — oo. Note that
the limit asT — oo is the same as the limit — 0.

€) Draw a graph of” as a function off".

26. Find the relative maxima and minima of the functigix) = x3 + 3x2 — 2x
for all real values of:.

27. The van der Waals equation of state is
n2a
P‘f’W (V—I’lb) =nRT

When the temperature of a given gas is equal to its critical temperature, the gas
has a state at which the pressure as a functidn aff constanf” andn exhibits

an inflection point at whickl P/dV = 0 andd?P/dV? = 0. This inflection

point corresponds to the critical point of the gas. Wiite&s a function off,

V, andn and write expressions fatP/dV andd?P/dV?, treatingT andn as
constants. Set these two expressions equal to zero and solve the simultaneous
equations to find an expression for the pressure at the critical point.

28. Solve the following equations by hand, using the Newton-Raphson method.
Verify your results using Excel or Mathematica:

a) x3—x24+x—-1=0
b) e —05x =0
¢) sin(x)/x —0.75=0

29. Use the Newton-Raphson method to calculate the pH of a 0.01 molar solution
of lactic acid, GHgOs3 at 25 C. The acid dissociation constaiki,, is equal to
1.38x 10~4 at this temperature. Use Egs. (3.10) and (3.11) to calculate the pH
and comment on the accuracy of these two approximations.



Integral Calculus

Preview

In this chapter we first discuss the antiderivative, a function that possesses a given
derivative. We then define integration as the limit of a summation process and
discuss the process of constructing a finite increment in a function from knowledge
of its derivative. We discuss the role of the antiderivative as an indefinite integral
and the use of tables of indefinite and definite integrals. We discuss several methods
of working out integrals without the use of a table. Finally, we discuss the use of
integration to find mean values with a probability distribution.

Principal Facts and Ideas

1. The antiderivativeF' (x) of a function f (x) is the function such thatF /dx =
f(x).

2. An indefinite integral is the same thing as the antiderivative function.

3. A definite integral is the limit of a sum of termg&(x) Ax in the limit that Ax
approaches zero, wheygx) is the integrand function.

4. A definite integral equals the indefinite integral evaluated at the upper limit
minus the indefinite integral evaluated at the lower limit:

b
/ f(x)dx = F(b) — F(a).

5. Animproper integral has at least one infinite limit or has an integrand function
that is infinite somewhere in the interval of integration. If an improper integral
has a finite value it is said to converge. Otherwise it is said to diverge.

6. Analytical methods can be used to transform an integral into a more easily
computed form.

7. Numerical methods exist to compute accurate approximations to integrals that
cannot be analytically performed.

8. A mean value of a continuously distributed variable can be computed as an
integral using a probability distribution.

121
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Objectives

After studying this chapter, you should be able to:
1. obtain the indefinite integral of an integrand function using a table;

2. calculate a definite integral using the indefinite integral and understand its role
as an increment in the antiderivative function;

3. understand the relationship of a definite integral to an area in a graph of the
integrand function;

4. obtain an approximate value for a definite integral using numerical analysis;

5. manipulate integrals into tractable forms by use of partial integration, the
method of substitution, and the method of partial fractions;

6. calculate mean values of quantities using a probability distribution with one
random variable.

The Antiderivative of a Function

In Chapter 4, we discussed the derivative of a function. We consider the inverse
problem, finding a function that possesses a specific function as its derivative. We
begin with a particular example.

Position, Velocity, and Acceleration

The position of a particle is represented bypibsition vector, which we denote by
r. If a particle moves only in the vertical direction, we can express its position as a
function of time by thez component of this vector, which is a function of time.

z=2z(), (5.1)

The velocity is the derivative of the position vector with respect to time. The ve-
locity is a vector which we denote wy Thez component of the velocity is

dz
V, = V() = — 52
c= ) = (52)
Theacceleration is the derivative of the velocity with respect to time, or the second
derivative of the position vector. Thecomponent of the acceleration is

dv, d*

— = — 53
dt dt? (5-3)

a; =

Thex andy components are defined in the same way if the particle moves in three
dimensions.
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EXAMPLE 5.1 According toclassical mechanics (Newtonian mechanics) parti-
cle falling vertically in a vacuum near the surface of the earth has a position
given by
gt®
>
wherez(0) is the position at = 0, v,(0) is the velocity at = 0, andg is
theacceleration due to gravity,2 equal to 980 m s 2. Find the velocity and the
acceleration.

z =z(t) = z(0) + v, (0O)r —

aThe acceleration due to gravity varies slightly with latitude. This value holds for the latitude of Wash-
ington, DC, or San Francisco.

SOLUTION »
d
V(1) = d—f=vz<0>—gt (5.4)
d2z
1) = — = — 5.5
aZ ( ) dt2 g ( )
|

The Antiderivative Function

Now consider the reverse problem from that of the previous example. If we are
given the acceleration as a function of time, how do we find the velocity? If we are
given the velocity as a function of time, how do we find the position? In the follow-
ing example, we see that the answer to these questions involvastttierivative
function, which is a function that possesses a particular derivative.

EXAMPLE 5.2 Given that a particle moves in thedirection and that its accel;
eration isa, = —g, find its velocity and position.

SOLUTION » We know that—gt is a function that possesseg as its derivative, so that one
possibility for the velocity is

v (1) = —gf.
However, the derivative of any constant is zero, so the most general possibility is
vz (1) = vz(0) — gt, (5.6)

whereuv, (0) is a constant. Equation (5.6) represents a family of functions, one for each value of
this constant. Every function in this family is an antiderivative of the given acceleration. To find
the position, we seek a function that hag0) — gr as its derivative. We know that

d / 5 d
I (ax ) = 2ax and . (ax) =a (5.7)
so that the second family of antiderivative functions that we need is
gt?
z=12z(t) =z(0) 4+ v (0)r — > (5.8)

wherez(0) is again a constant. We have arrived at the beginning point of the previous example.
Equation (5.8) represents a family of functions that includes all of the functions that give the
positionz as a function of time such thatg is the acceleration in thedirection. Since we went
through two stages of antiderivatives, there are two arbitrary consta@tsandv, (0), that would

be assigned values to correspond to any particular case, as in the following example. <«
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EXAMPLE 5.3 Find the expression for the velocity of a particle falling near the
surface of the earth in a vacuum, given that the velocity at 1.000s is
1000ms.

SOLUTION » The necessary family of functions is given by Eq. (5.6), with0) =
1980msL:
v.(f) = 19.80ms 1 —(9.80ms ?)r. (5.9)

In order to find the position as a function of time, we would need to know the initial positien.

EXAMPLE 5.4 Find the antiderivative of
f(x) =asin(bx),

wherea andb are constants.

SOLUTION » The antiderivative function is, from Table 4.1,

F(x) = —% cos(bx) + c, (5.10)
wherec is an arbitrary constant. You can differentiate to verify that
dF
o =T, (5.11)
X
|
|EXERCISE 5.1 b | Find the family of functions whose derivativedg®™ . [«]
|EXERCISE 5.2 b | Find the function whose derivative is-10¢=>* and
whose value at = 0 is 10. [«

The Process of Integration

In the previous examples we have identified an antiderivative function by inspec-
tion of the well-known formulas for derivatives. We now consider the general
problem of constructing a function that possesses a certain derivative. Say that we
have a functionf = f(x), and we want to find its antiderivative function, which

we call F(x). That s,

dF
i fx). (5.12)
x

We first describe a process of finding the valugFgk1) — F (xg) wherexg andxy

are two values af and where the value df atx = xgis known. In Section 4.4, we
discussed the approximate calculation of an increment in a function, using the slope
of the tangent line, which is equal to the derivative of the function. Equation (4.17)

IS
dF
AF = F(x1) — F(xg) = (—) Ax, (5.13)
dx J
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F

f{x;l Ax

—=— > Fix') = Flxo!

1p!"{_)«',hﬁx"w
e }

}flxo}.clx 1 —— )

Figure 5.1 » Figure to illustrate Eq. (5.14).

whereAx = x1 — xg. This approximation becomes more and more nearly exact as
Ax is made smaller.

If we want the value ofr at some point that is not close to= xg, we can get
a better approximation by using Eq. (5.13) several times for smaller values.of
Say that we want the value @f atx = x’. We divide the intervalxg, x’) into n
equal subintervals. This is shown in Fig. 5.1, witkequal to 3. We now write

dx

+(dF) A +(‘“”) Ax+
R x —_— x PR
dx x=x1 dx P

T (dF ) A
R X,
dx X=Xp—1

whereAx is the length of each subinterval:

F (x') = F (xo) ~ (d—F) Ax (5.14)
X=XQ

AX =X] —X0=X2—X] =X3—X2="--- =X — Xp_1. (5.15)

This approximation ta@¥ (x’) — F(xg) is generally a better approximation than
the one obtained by multiplying the slope at the beginning of the interval by the
length of the whole interval, as you can see in Fig. 5.1. In fact, if we mdkély
large, we can make the approximation nearly exact.

Let us now rewrite Eq. (5.14), using the symbfol= f(x) instead ot/ F/dx,

F(x') = F(xo) & f(x0)Ax + f(x)Ax + f(x2)Ax

+ o+ f(xp—1)Ax (5.16)
n—1

~ Y f (ki) Ax. (5.17)
k=0

In Eq. (5.17), we have introduced the standard notation for a sum, a capital Greek
sigma ). The letterk is called thesummation index. Its initial value is given
under the capital sigma and its final value is given above it. Unless otherwise
statedf is incremented by unity for each term. There aterms indicated in this
sum.
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We can use Eq. (5.15) to write

X = x0+ kAx (5.18)
and use this in Eqg. (5.17):
n—1
F(x') = F(xo) ~ Y _ f (x0 + kAx) Ax. (5.19)
k=0

We now make Eg. (5.19) into an exact equation by taking the limit Becomes
larger and larger without bound, meanwhile makixgsmaller and smaller so that
n Ax remains fixed and equal 16 — xo.

n—1
F(x — = i . .
(x") — F(xq) AH'BT%O, [Z f (xo+ kAx) Axi| (5.20)

nAx=x"—xg k=0

The limiting value of the right-hand side of Eq. (5.20) is calledefinite in-
tegral. The functionf(x) is called theintegrand function. The notation in this
eguation is cumbersome, so another symbol is used:

n—1 %
lim |:Zf(xo+kAx) Ax:| =/ f(x) dx. (5.21)
X0

Ax—0,n—o00,
nAx=x"—xg k=0

The integral sign on the right-hand side of Eq. (5.21) is a stretched-out let-
ter “S,” for sum. However, an integral is not just a sum. It is the limit that a
sum approaches as the number of terms in the sum becomes infinite in a particu-
lar way. The valuexg at the bottom of the integral sign is called thosver limit
of integration, and the valuex at the top is called thepper limit of integration.
Equation (5.20) is now

F(x') — F(xg) = fx f(x)dx | (5.22)
x0

The finite incremenf (x") — F (xp) is equal to the sum of infinitely many infin-
itesimal increments, each given by the differentldl = (dF/dx)dx = f(x)dx
evaluated at the appropriate valuexof The integral on the right-hand side of
Eq. (5.22) is called definite integral, because the limits of integration are definite
values. Equation (5.22) is often called ttuadamental theorem of integral calcu-
lus. It is equivalent to saying that a finite incrementAns constructed by adding
up infinitely many infinitesimal increments. The antiderivative functois called
theindefinite integral of the integrand functiorf .

Equation (5.22) is an important equation. In many applications of calculus to
physical chemistry, we will be faced with an integral equivalent to the right-hand
side of this equation. If we can by inspection or by use of a table find the funktion
that possesses the functigras its derivative, we can evaluate the functfoat the
two limits of integration and take the difference to obtain the value of the integral.
In other cases, we might not be able to identify the antiderivative function, but can
numerically construct a change in its value using this equation.
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EXAMPLE 5.5 Find the value of the definite integral
b
f sin(x) dx.
0

SOLUTION » From our table of derivatives we find that the antiderivative of sins

—cos(x)+C =F (x),

whereC is an arbitrary constant. The integral is the difference between the value of the antideriv-
ative function at the upper limit and at the lower limit:

I = F(r)— F(0) =—cos(r)+ C —[—cos(0) + C]
= —cos(r)+cos(0)=—-(-1)+1=2

The constan€ cancels because it occurs with the same value in both occurrences of the antideriv-
ative function. <

This example illustrates an important fact: A definite integral is not a function
of its integration variable, called in this case. Its value depends only on what
values are chosen for the limits and on what function occurs under the integral
sign. Itis called dunctional, or a function of a function, because its value depends
on what function is chosen for the integrand function.

|EXERCISE 5.3 P> | Find the numerical value of the definite integral

1
/ e’ dx.
0

4]

The Definite Integral as an Area

We will now show that a definite integral is equal in value to an area between the
x axis and the curve representing the integrand function in a graph. We return to
Eq. (5.17), which gives an approximation to a definite integral. Figure 5.2 shows
the situation withw = 3.

The curve in the figure is the curve representing the integrand fungtion
Each term in the sum is equal to the area of a rectangle with hgighi and width
Ax, so that the sum is equal to the shaded area under the bar graph in the figure.
As the limit of Eq. (5.20) is taken, the number of bars betweea xp andx = x’
becomes larger and larger, while the widtkhk becomes smaller and smaller. The
roughly triangular areas between the bar graph and the curve become smaller and
smaller, and although there are more and more of them their total area shrinks to
zero as the limit is taken. The integral thus becomes equal to the area bounded by
the x axis, the curve of the integrand function, and the vertical lines at the limits
x = xpandx = x’.

Figure 5.2 shows a case in which all values of the integrand function are pos-
itive. If xg < x/, the incrementAx is always taken as positive. If the integrand
function is negative in some region, we must take the area in that region as negative.
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] f="flx)

N \
l

.

Xg Xq X2 X X —

Figure 5.2 » The area under a bar graph and the area under a curve.

N .
MIIM»E

Figure 5.3 » A graph of f = sin(x) for Example 5.6

o

EXAMPLE 5.6 Find the area bounded by tkeaxis and the curve representing
fx) =sin(x),

(a) betweenx = 0 andx = 27. (b) betweerx = 0andx =7

SOLUTION » The graph of the function is shown in Fig. 5.3.
(a)
T
area = / sin(x) dx = —cos(xr) — [— cos(0)]
0
= 2
(b)
27
area = f sin(x) dx = —cos(2r) — [— cos(0)]
0
= - —-[-(D] =0

<

When we found the value of the integral from the antiderivative function, we
omitted the constant term that generally must be present in the antiderivative func-
tion. This constant would have canceled out, so we left it out from the beginning.
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[EXERCISE 5.4 b | Find the following areas by computing the values of def-
inite integrals:

(a) The area bounded by the curgb) The area bounded by the straight
representingg = x3, the positive line y = 2x 4+ 3, thex axis, the
x axis, and the line = 3. line x = 1, and the linex = 4.
(c) The area bounded by the parabola
y = 4 — x2 and thex axis. You
will have to find the limits of inte-
gration.

[«]

Before the advent of programmable computers and electronic calculators, nu-
merical approximations to integrals were sometimes made by drawing an accurate
graph of the integrand function and directly measuring the appropriate area in the
graph. There were three practical ways to do this. One was by simply counting
squares on the graph paper. Another was by cutting out the area to be determined
and weighing this piece of graph paper and also weighing another piece of known
area from the same sheet. A third was by using a mechanical device called a
planimeter, which registers an area on a dial after a stylus is moved around the
boundary of the area.

Such procedures are now seldom used, since numerical approximations can be
done quickly and easily with computer software.

|EXERCISE 5.5 b | Find the approximate value of the integral

1
2
/ e X dx
0

by making a graph of the integrand function and measuring an area. [«

Rules about Integrals

The following rules can be understood by considering the relation between inte-
grals and areas in graphs of integrand functions:

1. A definite integral over the intervak, c) is the sum of the definite integrals
over the intervalsa, b) and(b, ¢):

c b c
/ f(x)dx =/ f(x)dx —I—/ f(x)dx. (5.23)
a a b

This fact is illustrated in Fig. 5.4. The integral on the left-hand side of
Eqg. (5.23) is equal to the entire area shown, and each of the two terms on the
right-hand side is equal to one of the two differently shaded areas that combine
to make the entire area.

2. If the two limits of integration are interchanged, the resulting integral is the
negative of the original integral. In Eq. (5.22), we assumed that x’, so
that Ax would be positive. If the lower limikg is larger than the upper limit
of integrationx’, Ax must be taken as negative, reversing the sign of the area
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f -

\

0 a b e P

Figure 5.4 » Figure to illustrate Eq. (5.23).

b _——\
0 a b c X ——

Figure 5.5 » Anintegrand function that is discontinuousxat b.

in the graph. Therefore,

b a
f f(x)dx = —/ f(x)dx. (5.24)
a b

Use of this fact makes Eq. (5.23) usable for any real values bfandc. It is
not necessary far to lie betweer: andc.

3. The presence of a finite step discontinuity in an integrand function does not
prevent us from carrying out the process of integration. In this regard, inte-
gration differs from differentiation. Figure 5.5 illustrates the situation. If the
discontinuity is att = b, we simply apply Eqg. (5.23) and find that the integral
is given by the integral up to = b plus the integral fromx = b to the end of
the interval.

4. If an integrand function consists of a constant times some other function, the
constant can be factored out of the integral:

b b
/ cf (x)dx :c/ f(x)dx. (5.25)
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5. An odd function is one that obeys the relation

f(=x) =—=f). (5.26)

The integral of an odd function fromc to ¢ vanishes, where is a constant.
In this case, the area above the axis exactly cancels the area below the axis, so
that .
fx)dx =0 (f(x)odd, (5.27)
—C
The sine function and the tangent function are examples of odd functions, as
defined in Egs. (2.10) and (2.12).

|EXERCISE 5.6 P> | Draw a rough graph of (x) = xe=** and satisfy your-
self that this is an odd function. Identify the area in this graph that is equal to
the following integral and satisfy yourself that the integral vanishes:

2 2
/ xe ™ dx =0.
-2

6. An even function is one that obeys the relation

f(=x) = fx). (5.28)

The integral of an even function fromc to ¢ is twice the integral from O to.
In this case the area betweemnd 0 is equal to the area between 0 ando
that

[«

’ fx)dx = Z/Cf(x)dx (f(x) even, (5.29)
—c 0

wherec is any real constant. The cosine function is an example of an even
function.

|EXERCISE 5.7 b | Draw a rough graph of (x) = e’ Satisfy yourself
that this is an even function. Identify the area in the graph that is equal to the

definite integral
1
11=/ e dx
-1

and satisfy yourself that this integral is equal to twice the integral
1
L = / eﬂ‘2 dx.
0
[«

If you have an integrand that is a product of several factors, you can use the
following facts:

a. The product of two even functions is an even function.
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b. The product of two odd functions is an even function.
c. The product of an odd function and an even function is an odd function.

The rules about odd and even functions are valid if the function is either even
or odd about the center of the integration interval, even if the center of the interval
is not at the origin.

|EXERCISE 5.8 b | The quantum-mechanical wave functions of a particle in
a box of lengtha are either even or odd functions. For example, if the box
extends fromx = 0 tox = qa, the two lowest-energy wave functions are

i = [ 2sin(2)

2 . <2nx)
Yo = /=sin| —=
a a

(a) By drawing rough graphs, satisfib) Draw a rough graph of the product
yourself thaty1 is even about 1y and satisfy yourself that the
the center of the box—that is, integral of this product fromx =
Y1(x) = Y1(a — x). Satisfy your- 0tox = a vanishes.
self thaty, is odd about the center
of box.

[«

If the upper limit of a definite integral is considered to be a variable, we can
write

d b
= [ / £ dx] Y (5.30)

wherea is considered to be a constant. If the lower limit is considered to be a
variable, we can write

d b
" [ / £ () dx] — f@. (5.31)

whereb is considered to be a constantalandb are functions of some variabte
(not the variable of integratiomn,), then

d b db da
%[/af<x)dx}=f(b)%—f<a>%. (5.32)

These equations follow from Eq. (5.22). Equation (5.32) also comes from the chain
rule, Eq. (4.29), p. 105.

Indefinite Integrals: Tables of Integrals

Let us consider the upper limit in Eq. (5.22) to be variable and the lower limit to
be fixed and equal te:

/X f(x)dx = F(x')+C.
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The quantityC is a constant that is equal tef (a). It is called theconstant of
integration. Its value is arbitrary it: is arbitrary. We omit mention af and write

/x f(x)dx = F(x') + C. (5.33)

This integral is called amdefinite integral, since the lower limit is unspecified and
the upper limit is variable. The indefinite integral is the same as the antiderivative
function. Large tables of indefinite integrals have been compiled. Appendix E is a
brief version of such a table. In most such tables, the notation of Eq. (5.33) is not
maintained. The entries are written in the form

[ rwax=ro. (5.39)

This equation is an abbreviation for Eq. (5.33). The upper limit and the constant of
integration are usually omitted from table entries, and the same symbol is usually
used for the variable of integration and for the argument of the integral funktion
However, you should remember that an arbitrary consfanan be added to the
right-hand side of Eq. (5.34).

The same information is contained in a table of indefinite integrals as is con-
tained in a table of derivatives. However, we can get by with a fairly short table
of derivatives, since we have the chain rule and other facts listed in Section 4.4.
Antiderivatives are harder to find, so it is good to have a separate table of indefinite
integrals, arranged so that similar integrand functions occur together.

EXAMPLE 5.7 Using a table, find the indefinite integrals:
dx .
(@ /m (b) /xsmz(x) dx

(©) /xe“x dx

SOLUTION » From Appendix E or any published table of indefinite integrals,

x’ ’ X/ 2 /i ’
(a)/ = =3arctan("—)+c (b) / XS (x) dx = x'sin(2x')
ac+x a

a
cos(2x’)
-8

X
4 4

+C

x/ /
(c) / xe® dx = & (ax'—1)+C.

a2

<

|EXERCISE 5.9 P> | Show by differentiation that the functions on the right-
hand sides of the equations in Example 5.7 yield the integrand functions when
differentiated. [«

Since the indefinite integral is the antiderivative function, it is used to find a
definite integral in the same way as in Section 5.2 l&ndx» are the limits of the
definite integral,

fxzf(x)dx = af(x)dx—i—/xzf(x)dx=/X2f(x)dx—/nf(x)dx
X1 a a a

X1

= F(x2) = C —[F(x1) = C] = F(x2) — F(x1). (5.35)
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Equation (5.35) is the same as Eq. (5.22).

EXAMPLE 5.8 Using a table of indefinite integrals, find the definite integral

/2
/ sin(x) cos(x) dx.
0

SOLUTION » From Appendix C we find that the indefinite integral is%sim) /2,

/2 st [ 11, .
/0 sin(x) cos(x) dx = 5 =3 [sm2 (E) — sir? (O)]
1 1
We have used the common notation
Fx)|L = F(b) — F(a). (5.36)
<
|EXERCISE 5.10 b | Using a table of indefinite integrals, find the definite in-
tegrals.
s 2In@3
@) / cosh(2x) dx (b) / B9 iy
0 10X
5
(© / 4 dx.
0
£l

In addition to tables of indefinite integrals, there are tables of definite integrals.
Some tables are listed at the end of the book, and Appendix F is a short version of
such a table. Some of the entries in these tables are integrals that could be worked
out by using a table of indefinite integrals, but others are integrals that cannot be
obtained as indefinite integrals, but by some particular method can be worked out
for one set of limits. An example of such an integral is worked out in Appendix G.
Tables of definite integrals usually include only sets of limits suat®ad), (0, x),

(0, %), and (0, 00). The last set of limits corresponds to an improper integral,
which is discussed in the next section.

Improper Integrals

So far we have assumed that both limits of a definite integral are finite and that the
integrand function does not become infinite inside the interval of integration. If
either of these conditions is not met, an integral is said to benproper integral.

For example,

I = /(;OO fx)dx (5.37)

is an improper integral because its upper limit is infinite. We must decide what is
meant by the infinite upper limit in Eq. (5.37), because Eq. (5.20) cannot always
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be modified by insertingo into the equation instead af. We define

00 b
f f(x)dx = lim / f(x)dx. (5.38)
0 b—o0 Jo

In this mathematical limit, the upper limit of integration becomes larger and larger
without bound. Notice that the word “limit” has several definitions, and two of
them unfortunately occur here in the same sentence.

If the integral approaches more and more closely to some finite value as the
upper limit is made larger and larger, we say that the limit exists and that the
improper integral is equal to this finite value. The improper integral is said to
convergeto the value that is approached. Some improper integrals do not converge.
The magnitude of the integral can become larger and larger without bound as the
limit of integration is made larger and larger. In other cases, the integral oscillates
repeatedly in value as the limit of integration is made larger and larger. We say in
both of these cases that the integtiaterges.

In addition to the type of improper integral shown in Eq. (5.37), some improper
integrals have a lower limit of integration that is made to approach, while
the upper limit is finite. Other improper integrals have a lower limit that is made
to approach-oo, while the upper limit is made to approagho. Just as in the
case of Eq. (5.38), if the integral approaches a finite value more and more closely
as the limit or limits approach infinite magnitude, the improper integral is said to
converge to that value.

Another kind of improper integral has an integrand function that becomes infi-
nite somewhere in the interval of integration. For example,

11
sz —zdx (5.39)
0o X

is an improper integral because the integrand function becomes infinite-ad.
This improper integral is defined by

1
—dx = lim f — dx. (5.40)
0 a—0t

Just as in the other cases, if the integral grows larger and larger in magnitude as the
limit is taken, we say that it diverges. If the limit exists, we say that the improper
integral converges to that limit. The situation is similar if the point at which the
integrand becomes infinite is at the upper limit of integration. If it is within the
interval of integration, break the interval into two subintervals so that the point at
which the integrand function diverges is at the lower limit of one subinterval and
at the upper end of the other subinterval.

The two principal questions that we need to ask about an improper integral are:

1. Does it converge?

2. If so, what is its value?

EXAMPLE 5.9 Determine whether the following improper integral converges,
and if so, find its value:
(0.8]
/ e dx.
0
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SOLUTION »
o0 b b
/ e *dx = lim e “dx = lim [—efx]
0 b—00 J0 b— o0 0
— m —(.=b_1) — _
= lim_ (e 1)_o+1_1.
The integral converges to the value 1. <
|EXERCISE 5.11 b | Determine whether each of the following improper in-
tegrals converges, and if so, determine its value:
1 .

@ /3 (%) dx (b) [°sin(x) dx
00 1 oo 1

(C) fO (1+_x) dx (d) fO 3 dx

(e) f?oo e* dx

Methods of Integration

In this section, we discuss three methods that can be used to transform an integral
that is not exactly like any integral you can find in a table into one that is.

The Method of Substitution

In this method achange of variables is performed in order to obtain a simpler

integral. The integrand function is expressed in terms of the new independent
variable, which then becomes the variable of integration.

EXAMPLE 5.10 Find the integral

e 2
/ xe ¥ dx
0

without using a table of integrals.

SOLUTION » We havex? in the exponent, which suggests using- x2 as a new variable. If
y= xz, thendy = 2x dx, orx dx = %dy,

o 2 1 X=0Q ) 1 o0
f xe ¥ dx = —/ e Vdy = —/ e Vdy

1™ 1
= —ze -.
2 0 2
To review the solution of this example: First a new variable was chosen that looked as though
it would give a simpler integrand function. Next, the integrand function was expressed in terms
of this variable. The differential of the integration variable was also reexpressed. The limits of
integration were then expressed in terms of the new variable, making the limits equal to the values

of the new variable that correspond to the values of the old variable at the old limits. The final step
was to compute the new integral, which is equal to the old integral. <

1
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EXAMPLE 5.11 Find the integral

1/2 dx
I =

without using a table of integrals.

SOLUTION » Welety = 2—2x, in order to get a simple denominator. With this,= —2dx,
ordx = —dy/2. Whenx =0, y = 2, and whenx = % y=1,

21 111 121
/(; 2_2xdx=—§/; ;dy:i-/l ;dy
1 2 1
=3 In(y)'1 =5 [In2 —In(D)]
= %In 2.
|
EXERCISE 5.12 b | Find the integral
.7[ .
/ ¢S cos(9) do
0
without using a table of integrals. [«

Integration by Parts

This method, which is also callgg@rtial integration, consists of application of the

formula

dv du

— = — — 41
/udxdx uv /de+c (5.41)

or the corresponding formula for definite integrals

bg b g
f u—”dx=u(x)u(x)|g—/ v (5.42)
o dx a dx

In these formulas; andv must be functions of that are differentiable everywhere
in the interval of integration.

We can derive Eq. (5.41) by use of Eq. (4.21), which gives the derivative of the
product of two functions:

The antiderivative of either side of this equation is just+ C, whereC is an
arbitrary constant. We can write the indefinite integral

d d d
/ (uv)dx=/u—vdx+/v—udx=u(x)v(x)+C.
dx dx dx
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This is the same as Eq. (5.41).

EXAMPLE 5.12 Find the indefinite integral

/ x sin(x) dx

without using a table.

SOLUTION » There are two choices. We could letx) = x and sin(x) = dv/dx, or we

could letu(x) = sin(x) andx = dv/dx. We make the first choice because the antiderivative of

is x2/2, which will lead to a more complicated integral than the one containirith this choice
du

dx
/xsin(x) dx = —x cos(x)—i—/cos(x) dx
= —xcos(x) +sin(x) + C.

=1 and v = —cos(x)

EXERCISE 5.13 b | Find the integral

b4
/ x?sin(x) dx
0

without using a table. You will have to apply partial integration twice. [«

The fundamental equation of partial integration, Eq. (5.41), is sometimes writ-
ten with differentials instead of derivatives:

/udv:uv—/vdu—l—C (5.43)

The Method of Partial Fractions

This method uses an algebraic procedure for turning a difficult integrand into a sum
of two or more easier functions. It works with an integral of the type

P (x)
Q (x)

where P (x) andQ(x) are polynomials inc. The highest power of in P must be
lower than the highest power efin Q. However, if this is not the case, you can
proceed by performing a long division, obtaining a polynomial plus a remainder,
which will be a quotient of polynomials that does obey the condition. The polyno-
mial can be integrated easily, and the remainder quotient can be handled with the
method of partial fractions.

The first step in the procedure is to factor the denomingér,), into a product
of polynomials of degree 1 and 2. A polynomial of degree 1 is an expression of the
form ax + b, and a polynomial of degree 2ds? + bx + ¢. We first assume that
all of the factors are of degree 1, so that

Q(x) = (a1x + b1)(azx + b2)(azx + b3) - - - (anx + by), (5.45)

I =

dx, (5.44)
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where all thez’s andb’s are constants.

The fundamental formula of the method of partial fractions is a theorem of
algebra that says that @ (x) is given by Eq. (5.45) an®(x) is of lower degree
thanQ(x), then

P (x) Ay A2 An
Ox) aix+br axx+b2 apx + by,

, (5.46)

whereAq, Ay, ..., A,, are all constants.

Equation (5.46) is applicable only if all the factors @h(x) are distinct from
each other. If the same factor occurs more than once, Eq. (5.46) must be modified.
If the factoraix + b1 occursm times in the denominator, we write

P (x) A1 A2 Am
— = + 3 +o
(a1x + b1) aix +b1  (ayx + by) (a1x + b1)
If other factors occur in the denominator, we must add other terms as in Eq. (5.46).

Sometimes a factor of degree 2 occurs that cannot easily be factoreéd=If
aix? + bix + c1, we must write

P(x)  Awx+B
0(x) awx?+bix+c
If Q contains other factors we must add other terms as in Egs. (5.46) and (5.47).

(5.47)

+ other terms as in Egs. (5.46) and (5.47) (5.48)

EXAMPLE 5.13 Apply Eqg. (5.46) to
6x — 30
—————dx.
f xX243x+2 *

SOLUTION » The denominator can be factored, so we write
6x—-30 A Ao
X243 +2 x+2 x+1
We need to solve for1 and A, so that this equation will be satisfied for all valuesxof We
multiply both sides of the equation gy + 2)(x — 1):

6x —30= A1(x + 1) + A2(x + 2).

Since this equation must be valid for all valuestpfve can get a different equation for each value
of x. If we letx = 0, we get

—30= A1 + 245. (5.49)
If we let x become very large, so that the constant terms can be neglected, we obtain

6x = A1x + Axx

or

6=A1+ Ap. (5.50)

Equations (5.49) and (5.50) can be solved simultaneously to obtain
A1 =42, Ay=-36 (5.51)

Our result is 6 — 30 42 36
/ Gl / dx — f dx. (5.52)
x24+3x+2 x+2 x+1
«
|EXERCISE 5.14 P> | Solve Eg. (5.49) and (5.50) simultaneously to obtain

Eq. (5.51). <
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|EXERCISE 5.15 b | Find the indefinite integrals on the right-hand side of
Eq. (5.52). [«]
The Apart statement in Mathematica carries out the decomposition into partial
fractions automatically. See Chapter 3.

|EXERCISE 5.16 P> | Use Mathematica to verify the partial fractions in the
above example. [«

The following example shows a case in the study of chemical reaction rates that
requires the use of partial fractions.

EXAMPLE 5.14 Consider a chemical reaction
aA+bB —cC,

where the capital letters are abbreviations for some chemical formulas and
the lowercase letters are abbreviations for the stoichiometric coefficients that
balance the equation. Assume that the rate of the reaction is given bgtéh¢
law

1d[A]

—=S 2 =k [AI[B].

wherek ¢ is a function of temperature called thate constant and whergA|
represents the molar concentration of A aBd represents the molar concen
tration of B. This rate law is said to lsecond order overall, first order in A,
andfirst order in B. Carry out the integration of this rate law using the method
of partial fractions.

3%

SOLUTION » In order to proceed, we expregs] and[B] in terms of a single variable:

[A] =[A]o —ax
and
[B] = [B]o — bx,
where the initial values of the concentrations are labeled with a subscript 0. We have
1d[A] dx
T4 dt dt

In the case that the reactants are not mixed in the stoichiometric ratio, we manipulate the rate
expression into the form, where we have multiplieddoyand recognized thatix /dt) dt = dx,
1

d
([Alo — ax) ([B]o — bx)

X = kf dt.
We write
1 __ G  _H
([Alo —ax) ([Blo—bx) [Alp—ax [Blo—bx’
The constant&; and H are found to be

1
G=—7F7—"—7— H= — —.
[Blo —b[Alo /a [Alo—a[Blo/b
When these expressions are substituted into the rate expression, a definite integration gives

1 B, [Alo)
aTBlo—b[Alp " ([A], [B]o> =kt

and

|EXERCISE 5.17 b | Show that the expressions f6rand H are correct. Ver-
ify your result using Mathematica if it is available. [«
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The methods presented thus far in this chapter provide an adequate set of tools
for the calculation of most integrals that will be found in a physical chemistry
course. In applying these methods, it is probably best to proceed as follows:

1. If the limits are 0 ando or 0 andr, or something else quite simple, look first
in a table of definite integrals.

2. If this does not work, or if the limits were not suitable, look in a table of
indefinite integrals.

3. If you do not find the integral in a table, try the method of substitution.

4. If you still have not obtained the integral, see if the method of partial fractions
is applicable and use it if you can.

5. If this did not work, manipulate the integrand into a product of two factors and
try the method of partial integration.

6. If all these things have failed, or if they could not be attempted, do a numerical
approximation to the integral. This is discussed in the next section.

Integration with Mathematica

Mathematica can carry out indefinite integrals symbolically. For example, the input
and output statements for the indefinite integral of sin(x) are
In[1]: =Clear[x]
Integrate[Sin[x],x]
Out[1] =—Cos[X]

Mathematica appears to contain just about every indefinite integral that exists
in tables. However, if you specify an integrand for which no indefinite integral
exists or one that is not in Mathematica'’s tables, Mathematica will print out what
you gave it.

Mathematica can also carry out definite integrals. Definite integrals are ob-
tained by adding the limits to the input entry. To obtain the definite integral of
sin(x) fromx = 0 tox = =, the input and output statements are

In[1]: =Clear[x]
Integrate[ Sin[x],{x,0,Pi}]
Out[1] =2

Numerical Integration

There are two cases for which a numerical approximation to a definite integral
must be used. In one case the integrand function does not possess an antiderivative
function that you can find in a table or can work out. For example, one integrand
function for which no antiderivative functions existsds* (see Appendix G).

In the other case the integrand function is represented approximately by a set of
data points instead of by a formula. In ether case, there are several approximation
methods that we can use to obtain a definite integral.
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The Bar-Graph Approximation

We begin with Eq. (5.21):

b
/ feoydx = lim Zf(a+ij) Ax. (5.53)

—>0n—>oo
(nAx=x' xo)k =0

If we do not take the limit but allow: to be some convenient finite number, the
resulting equation will be approximately correct. Let us consider an example the

integral ofe* fromx = 1tox = 2. We apply an approximate version of
Eq. (5.53) withn = 10. The result is

2 9
f edx Yy exp[— 1+ 0.1j)2] (0.1) = 015329  (5.54)
1 —0

This result is represented by the area under a bar graph with bars of unit width such
as in Fig. 5.2. We call this approximation thar-graph approximation. The inte-

gral is equal to the area under the graph of the integrand function, so the bar-graph
approximation is in error by the area of the roughly triangular areas between the bar
graph and the curve representing the integrand function. The error in Eq. (5.54) is
about 15%, since the correct value of this integral 18625726 to eight significant
digits.

Each bar in Fig. 5.2 is called panel. The bar-graph approximation can be
made more nearly accurate by increasing the number of panels and decreasing
their width, but the rate of improvement can be quite slow. For example, if we take
n = 20 andAx = 0.05, we get QL4413 for the bar-graph approximation to the
integral in Eq. (5.54), which is still in error by about 6%. If we take= 100 and
Ax = 0.01, we get QL3701, which is still wrong by about 1%.

The Trapezoidal Approximation

One way to improve on the bar-graph approximation is to take the height of the
rectangles as equal to the value of the integrand function near the middle of the
panel. In theérapezoidal approximation the height of the bar is taken as the average

of the values of the function at the two sides of the panel. This gives an area for
the panel that is the same as that of a trapezoid whose upper corners match the
integrand function at the sides of the panel, as shown in Fig. 5.6.

/f(x)dx f@a x—l—Zf(a—i—kAx)A +f(b) ay

5 (5.55)

As expected, the trapezoidal approximation gives more nearly correct values
than does the bar-graph approximation, for the same number of panels. For 10
panels, the trapezoidal approximation gives a result.b88810 for the integral
in Eg. (5.54). For 100 panels, the trapezoidal approximation is correct to five
significant digits.
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rectangle for bar-graph
approximation

rectangle for
trapezoidal
approximation

NE top of
integrand -~ e

trapezoid
curve \

X; Xisn X —

Figure 5.6 » Figure toillustrate the trapezoidal approximation (enlarged view of one panel shown).

|EXERCISE 5.18 P> | Using the trapezoidal approximation with five panels,
calculate the value of the integral

20
2x2 dx.
10

Calculate the exact value of the integral for comparison. [«

Simpson’s Rule

In the bar-graph approximation, we used only one value of the integrand for each
panel. In the trapezoidal approximation, we used two values for each panel, cor-
responding to a line segment fitting the integrand curve at the edges of the panel.
If three points in a plane are given, there is one and only one parabola that can
be drawn through all three. I&mpson’s rule, we take the panels two at a time,
construct a parabola through the three points, find the area under the parabola, and
sum these areas to approximate the integral. A parabolic curve is likely to fall
closer to the integrand curve than a straight line, so we expect this to give a better
approximation than the trapezoidal approximation, and it usually does. We must
have an even number of panels to use this method.

We let fo = f(a), f1 = f(a+ Ax), f> = f(a+ 2Ax), and so on, and use the
formula for the area under a parabola to obtain as our final result

fb _(fo+Afi+2f+A4fz+ - +Afu_1+ f) Ax
fx)dx ~ 3 .

(5.56)

Notice the pattern, with alternating coefficients of 2 and 4, except for the first and
last values of the integrand.

This version of Simpson’s rule is sometimes calfaapson’s one-third rule be-
cause of the 3 in the denominator. There is another version, cttguson’s five-
eighths rule, which corresponds to fitting third-degree polynomials to four points
at atime.

|EXERCISE 5.19 B> | Apply Simpson’s rule to the integral of Exercise 5.18,
using two panels. Since the integrand curve is a parabola, your result should
be exactly correct. [«
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There is another widely used way to obtain a numerical approximation to a def-
inite integral, known a$auss quadrature. In this method, the integrand function
must be evaluated at particular unequally spaced points on the interval of inte-
gration. We will not discuss this method, but you can read about it in books on
numerical analysis.

So far, we have assumed that the integrand function was known so that it could
be evaluated at the required points. Most of the applications of numerical inte-
gration in physical chemistry are to integrals where the integrand function is not
known exactly, but is known only approximately from experimental measurements
at a few points on the interval of integration. If there are an odd number of data
points that are equally spaced, we can apply Simpson'’s rule.

|EXERCISE 5.20 P | In thermodynamics, it is shown that the entropy change
of a system that is heated at constant pressure from tempefattoéemper-
atureT> is given by

T2 C
AS = S(Tr) — S(Th) = f —Lar, (5.57)
T1 T
whereC, is the constant-pressure heat capacity &nd the temperature on
the Kelvin scale. Calculata S for the heating of D0 mol of solid zinc from
20.0K to 1000 K, using the following data:

T/K Cp/IKImol™t | T/K  Cp/IK Imol™?

20 170 70 1543
30 4966 80 1687
40 8171 90 1811
50 1118 100 1915
60 1360

Numerical Integration with Mathematica

If you give Mathematica a definite integral with an integrand that has no indefi-
nite integral in Mathematica’s tables, Mathematica will simply return your input
statement. To carry out a numerical approximation to the integral and obtain a
numerical value, use the Nintegrate statement, which has the form:
Nintegrate[integrand function, {x,lower limit,upper limit}].

EXAMPLE 5.15 Use Mathematica to obtain the integral

2 / Fy (5.58)
— e X .
v Jo

SOLUTION » We type the input statements:
Clear[x]
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NIntegrate[ (2/Sgrt[Pi])Exp[-x" 2] {x,0,1}]
and press the “Enter” key. We obtain the output
Out[1]=0.842701

which is the value of erfl). <
[EXERCISE 5.21 p> | Write Mathematica entries to obtain the following inte-
grals:

@  [coS(x)dx (b) 25 dx

(c) Jo sinfcos(x)]dx

(4]

Probability Distributions and Mean Values

In this section, we discuss how to obtain certain average values using integration.
There are several kinds of averages in common use. One typenedian, which

is the value such that half of the set of values is greater than the median and half
of the set is smaller than the median. Trhede is the value that occurs most fre-
guently in the set. We now discuss the calculation of a mean value by integration.
Themean of a set of N values is defined as

1
)z:ﬁ(xl+x2+x3+x4+“'+xN), (5.59)

wherex1, x2, x3, and so on, are the values to be averaged. The notatjde also
used for the mean value.

|EXERCISE 5.22 »>| Calculate the mean of the integers beginning with 10
and ending with 20. [«

There is another way to write the mean of a set of values if several of the
members of the list are equal to each other. Let us arrange the members of our
list so that the first members of the list are all different from each other, and
each of the othe — M members is equal to some member of the first subset. Let
N; be the total number of members of the entire list that are equal twwherex;
is one of the distinct values in the first subset. Equation (5.59) can be rewritten

1

X = N(N1x1+N2x2+N3XS+N4x4+"‘+NMxM) (5.60)
1Y z

X = — Z Nix; = Z PiXi. (5.61)
N i=1 i=1

We again use the standard notation of a capital Greek sigmddr a sum, intro-
duced in Eqg. (5.17). The quantipy; is equal toN;/N and is the fraction of the
members of the entire list that are equakio If we were to sample the entire list
by choosing a member at random, firebability that this member would equal
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is given byp;. The set of probabilities that we have defined adds up to unity:

Zpl:zﬁ’:NZNi:l. (5.62)
i=1 i=1 i=1

A set of probabilities that adds up to unity is said toroemalized.

EXAMPLE 5.16 A quiz was given in a class with 100 members. The scaores
were as follows:

Score #of students | Score # of students

100 8 70 23
90 11 60 14
80 35 50 9

Find the mean score.

SOLUTION »
5 = (0.08)(100 + (0.11)(90) + (0.35)(80) + (0.23) (70) + (0.14)(60) + (0.09)(50) = 74.9.

<

If you have a set of values with considerable duplication, Eq. (5.61) is quicker
and easier to use than Eq. (5.59).

It is also possible to take the mean of a function of the values in our set. For
example, to form the mean of the squares of the values, we have

— 1
x2 = N(xf+x§+x§+x§+---+x,2\,> (5.63)
1 M M
== Y NixP = pix?. (5.64)
i=1 i=1

Similarly, if g = g(x) is any function defined for all values afthat occur in our
list, the mean value of this function is given by

M
g =Y pigx) | (5.65)
i=1
|EXERCISE 5.23 P> | Find the mean of the squares of the scores given in Ex-

ample 5.16. Find also the square root of this mean, which is callecbtre
mean-square score. Theoot-mean-sgquare (rms) value is another type of aver-
age. <]

Probability Distributions

One of the important quantities in gas kinetic theory is the mean speed of molecules
in a gas. The calculation of such a mean is a little more complicated than the case
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of Eq. (5.61). The reasons for this are: (1) the speed of a molecule can take on any
real nonnegative value, and (2) there are many molecules in almost any sample of a
gas. Let’s develop formulas to handle cases like this. Consider a vatialvlach

can take on any real values betwees: ¢ andx = b. We divide the intervala, b)

into n subintervals. Look at the subinterv@al, x; 1), which is the same as saying

X;j < Xx < x;j+1. The interval can also be writte;, x; + Ax;), where

AX = xj11 — X;. (5.66)

Let the fraction of all members of our sample that have values lging be-
tweenx; andx; ;1 be calledp;. If Ax is quite smallp; will be very nearly propor-
tional to Ax. We write

pi = fiAx. (5.67)

The quantityf; will not depend strongly o\x. The mean value of is given by
Eq. (5.61):
n—1 n—1
X~ Zpixi = infiAx. (5.68)
i=0

i=0

This equation is only approximately true, because we have multiplied the probabil-
ity thatx is in the subintervalx;, x; + Ax) by x;, which is only one of the values of

x in the subinterval. However, Eq. (5.68) can be made more and more nearly exact
by makingn larger and larger and x smaller and smaller in such a way thatx

is constant. In this limit,f; becomes independent afx. We replace the symbol

fi by f(x;) and assume thaf(x;) is an integrable function of;. It must be at

least piecewise continuous. Our formula for the mean valueraiw becomes an
integral as defined in Eq. (5.21):

n—1 b
X = lim i f(xi) Ax = dx. 5.69
F= lim Y xifG)Ax f xf (x) dx (5.69)
nAx=b—a i—0

The functionf (x) is called theprobability density, or probability distribution, or
sometimes theistribution function.

If we desire the mean value of a functionxefsay,g (x)—the formula is anal-
ogous to Eq. (5.65),

b
g(x) = / g(x) f(x)dx | (5.70)

For example, the mean of is given by

b

x2 = /xzf(x)dx. (5.71)

a

As defined above, the probability densityniarmalized, which now means that

b
[ rwax=1 (5.72)
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It is possible to use a probability density that is not normalized, but if you do this,
you must modify Eq. (5.70). For an unnormalized probability distribution

b
/a 80 f(x) dx (unnormalized

probability distribution)
fx)dx
/a

g (x) (5.73)

For a normalized probability distribution, the probability thdtes in the infinites-
imal interval(x, x + dx) is f(x) dx, which is the probability per unit length times
the length of the infinitesimal interval. The fact thétx) is a probability per unit
length is the reason for using the name “probability density” for it. Since all con-
tinuously variable values of in some range are possible, a continuous probability
distribution must apply to a set of infinitely many members. Such a set is called
the population to which the distribution applies. The probabilif(x’) dx is the
fraction of the population that has its valuexolying in the region betweer and
x"+dx.

The most commonly used measure of the “spread” of a probability distribution
is thestandard deviation, o, defined by

oy = [F _ (5)2]1/2 . (5.74)

We label the standard deviation with a subscript to indicate what variable is be-
ing considered. Generally, about two-thirds of a population will have their val-
ues ofx within one standard deviation of the mean—that is, within the interval
(X —oy, x4+ 0y).

EXAMPLE 5.17 If all values ofx betweeru andb are equally probable, find the
mean value of, the root-mean-square valueafand the standard deviatio
of x.

A%

=)

SOLUTION » In order to be normalized, the probability density is

1
f(x)zm

so that

b1 1 1
X = dx=—"(b?’-d®)=Z b
* _/axb—a ! 2(b—a)( @) =50+a
= b 1 1 1
2 _ 2 _ 3_ .3\ _ (2 2
x¢ = /axb—adx_S(b—a)(b a) 3<b +ab+a).
The root-mean-square value.ofs

(x_z)l/z = [% (bz +ab+ az)]l/z.

The standard deviation is found as
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02 = x—z—)EZ:%<b2+ab+a2)—%<b2+2ab+a2)

=

1 2
1—2(a—b)

[Zo-
1—2(61— )

Ox

|EXERCISE 5.24 » | From the results of the preceding example, find the nu-

_ —\1/2
merical values ofc, (x2 , andoy, fora = 0 andb = 10. Comment on
your values. What fraction of the total probability is found betwéero, and

X +0,7? [«
[EXERCISE 5.25 P | If x ranges from 0 to 10 and if (x) = cx?, find the
value ofc so thatf (x) is normalized. Find the mean valueofind the root-
mean-square value of [«

The Gaussian Distribution

The most important probability distribution is ti&aussian distribution, which is
represented by the formula

_ 1 (x — w)?
fx) = Nz exp[—?} \ (5.75)

wherepu is the mean value of and wheres is the standard deviation. This distrib-
ution is also called theormal distribution. If o = 1, then the distribution is called
thestandard normal distribution. The Gaussian distribution is assumed to describe
populations of various kinds, including the 1Q scores of people and velocities of
molecules in a gak.

EXAMPLE 5.18 Show that the distribution in Eqg. (5.75) satisfies the normaliza-
tion condition of Eqg. (5.72) with the limits of integration equal t@o and
+00.

SOLUTION » We have the following integral, which we modify by the method of substitution,
and then look up in Appendix G:

o0 o0
/ = e~ G=w?/20% g i/ i =1
—00 \/ZU \/E —00

|EXERCISE 5.26 B | Calculate the mean and standard deviation of the
Gaussian distribution, showing thatis the mean and that is the standard
deviation. [«

1The Gaussian distribution is named after Carl Friedrich Gauss, 1777—1855, a great German mathematician
who made a number of important discoveries in addition to this one.
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x=p—190 x=p—¢ X=p x=p+ox=p+ 1960
Figure 5.7 » The Gaussian probability distribution.

Figure 5.7 shows a graph of the Gaussian distribution. Five valueshaive
been marked ontheaxis:x = 4 —1960,x =u—0,x = u,x = u + o, and
x=u+1960.

EXAMPLE 5.19 Assuming the Gaussian distribution, calculate the fraction of
the population withe lying betweenx = 4 — o andx = u +o.

SOLUTION » By integration of Eq. (5.75), we obtain

pto 1 2/9.2
(fraction betweem — o andu + o) = e~ W—/20° 4
n—o 2no
+
R CaPT
—o 270

2 [ dt
= — e .
7l

The last integral in this example is tlegror function with argument ¥v/2. The

integrand functiore—"* does not possess an indefinite integral that can be written
with a single formula, so the error function must be approximated numerically
unless the upper limit is infinite, in which case the error function is equal to 1.
The error function is described in Appendix G. From the table of values in that
appendix,

<

1
(fraction betweem — o andu + o) = erf (—)

V2
= erf(0.707...) = 0.683...

in agreement with our assertion that roughly two-thirds of the members of a popu-
lation lie within one standard deviation of the mean.

| EXERCISE 5.27 b | Show that the fraction of a population lying between
u—1.960 andu + 1.960 is equal to 5 if the population is described by the
Gaussian distribution. [«]
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You should remember the following facts: With a Gaussian distribution, 68%
of the population lies within one standard deviation of the mean, 95% of the popu-
lation lies within 196 standard deviations of the mean, and 99% of the population
lies within 267 standard deviations of the mean. For other intervals, we can write

(fraction betweenw — x; andu + x;) = erf( al ) . (5.76)
V2
There are a number of other common probability distributions in addition to the
Gaussian distribution, including the binomial distribution, the Poisson distribution,
and the Lorentzian distributioh.However, the Gaussian distribution is generally
used in discussing experimental errors, and we return to this topic in Chapter 11.

Probability Distributions in Gas Kinetic Theory

In gas kinetic theory, the probability density for a component of the molecular
velocity is a Gaussian distribution. The normalized probability distributiorvfor
thex component of the velocity, is given by

m 3/2 mv)%
f o = <2nkBT> eXp(_szT)’ (5.77)

wherem is the molecular masg; the temperature on the Kelvin scale, dngis
Boltzmann’s constant.

|EXERCISE 5.28 P | (a) Show that the mean value of is
equal to zero. Explain this fact in
physical terms.

—\1/2
(b) Find the expression fo(v§> ,
the root-mean-square value of.
(c) Find the expression for the stan-
dard deviation ob,.
[«

The speed is the magnitude of the velocity. Since velocities with the same
magnitude but different directions are included in the same speed, the distribution
of speeds is different from the velocity distribution of Eq. (5.77). We denote the
speed distribution by, (v). It is given by?

m 3/2 2 mv?
fo(v) =4n (thT> v eXp<—2kBT). (5.78)

A graph of this function is shown in Fig. 5.8. The speed is never negative,
so that the graph does not extend to the left of the origin. In ordinary gas kinetic
theory, the requirements of special relativity are ignored, and speeds approaching
infinity are included. The error due to this inclusion is insignificant at ordinary
temperatures, because of the low probability ascribed to high speeds.

23ee Philip R. Bevingtorata Reduction and Error Analysis for the Physical Sciences, Chap. 3, McGraw-
Hill, New York, 1969, or Hugh D. YoungSatistical Treatment of Experimental Data, McGraw-Hill, New York,
1962, for discussions of various distributions.

3Robert G. MortimerPhysical Chemistry, 2nd ed., Academic Press, San Diego, CA, 2000, p. 335.
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fy (v) ——

0 v ——

Figure 5.8 » A graph of the probability density for speeds of molecules in a gas.

The mean speed is given by

V= /OO v fy (v) dv. (5.79)
0

EXAMPLE 5.20 Obtain a formula for the mean speed of molecules in a gas

SOLUTION »
3/2 r0 2
- m 3 . muv
v =4 (27TkBT> /0 v exp( 2kBT> dv. (5.80)
This integral can be obtained from Eq. (A.6) of Appendix G:
3/2 2 1/2
5= dn (2 (ZkpT)" _ (BT \™" (5.81)
2nkgT 2m? Tm
<
| EXERCISE 5.29 b | Find the value ob for N2 gas at 298 K. [«]

EXAMPLE 5.21 Find a formula for the mean of the square of the speed of mole-
cules in a gas and for the root-mean-square speed.

SOLUTION »
_ 3/2 rc0 2
v2 = 4x m / v4exp _m dv
2kpT 0 2kgT
_ 3BkgT
- m
—\1/2 1/2
N (vz)/ =<3’ﬂ> _
m
<
| EXERCISE 5.30 b | For molecules in a gas, find the formula tgr and find

its value for N gas at 298 K. [«
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Time Averages

If ¢ = g(®), the time average of is defined as

— 2
= [ ewswar (5.82)

11
where we callf (r) the weighting function. It plays the same role as a probabil-
ity density, specifying the importance of different times. Most time averages are
unweighted, which means th#tz) is a constant equal to/lr; — 11):

_ 1 12
gt) = / g(t) dt. (5.83)
1 41

Equation (5.83) is a version of thmean value theorem of integral calculus, which
states that the mean value of a function is equal to the integral of the function
divided by the length of the interval over which the mean is taken.

EXAMPLE 5.22 A particle falls in a vacuum near the surface of the earth. Find
the average component of the velocity during the first.00 s of fall if the
initial speed is zero.

SOLUTION » From Eg. (5.6),
vy = —g&f,

where g is the acceleration due to gravitB®m s2,
10

B 1 rlo g 12
vzz—EO gtdt:_EEOZ_Sg
= -5 (9.80ms—2) = —490mst.
|
|EXERCISE 5.31 b | Find the time-average value of thecoordinate of the
particle in the previous example for the first@0 s of fall if the initial position
isz =0.00m. [«]

SUMMARY

Integration is one of the two fundamental processes of calculus. Itis essentially the
reverse of differentiation, the other important process. The first kind of an integral
is the indefinite integral, which is the antiderivative of the integrand function. The
second kind of an integral is the definite integral, which is constructed as the sum
of very many small increments of the antiderivative functionconstructed from

the integrand function f according to the formula from Chapter 4,

dF
dF = f(x)dx = — dx
dx

The definite integral has a lower limit of integration, at which the summation
process starts, and an upper limit, at which the process ends. The definite integral
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is therefore equal to the value of the antiderivative function (indefinite integral) at
the upper limit minus its value at the lower limit

b
/ f(x)dx = F(b) — F(a).

Extensive tables of indefinite integrals exist, as well as tables of definite in-
tegrals. Some integrals have infinite limits or have integrands that attain infinite
values, and such integrals are called improper integrals. Many such integrals di-
verge (have undefined values), but some improper integrals have finite values and
are said to converge.

There are several techniques for manipulating integrals into a form that you can
recognize or which you can look up in a table, and we presented a few of these.
Some integrals cannot be worked out mathematically, but must be approximated
numerically. We discussed some elementary techniques for carrying out this ap-
proximation, including Simpson’s rule, the most commonly used technique, and
finally presented a simple computer program for implementing Simpson’s rule.

Mean values of variables that take on all real values in a certain interval are
calculated as integrals of the form

b
g=/ g (x) f (x) dx,

whereg(x) is the function to be averaged aifdx) is the probability distribution,
or probability density, or distribution function.

PROBLEMS
1. Find the indefinite integrals without using a table:
a) [xIn(x) dx
b) [ xsir? (x) dx
C) fx(xil—a)dx
d) [x3In(x?) dx
2. Find the definite integrals:
a) fOZ” sin(x) dx
b) fZxIn(x)dx
c) fg/zsinz(x)cos(x) dx
3. Find the definite integrals:
a) [ sirf (x) dx
b) f,°xIn(x)dx
0 fg/zsin(x) co (x) dx
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4.

10.

Find the definite integrals:

a) fg/zx sin(x?) dx
b) fg/zx sin (xz) COS(xZ) dx
C) fOZH x co9x)dx

Determine whether the following improper integrals converge. Evaluate the
convergent integrals.

(1
a) fl <;)dx

b) [7/?tan(x) dx
11
) Jo oo 4%

Determine whether the following improper integrals converge. Evaluate the
convergent integrals.

o (1
a) fl <;> dx
b) [o tan(x)dx
C) fg/ztan(x)dx

Determine whether the following improper integrals converge. Evaluate the
convergent integrals.

a) fol (%) dx

b) fooo sin(x) dx

2
o [ T tancx) dx
At 298 K, what fraction of nitrogen molecules has speeds lying between 0
and the mean speed? Do a numerical approximation to the integral or use the
identity

4a3/? 2a

(0,0
2
f e ¥ dx
0

using Simpson’s rule. You will have to take a finite upper limit, choosing a
value large enough so that the error caused by using the wrong limit is negligi-
ble. The correct answer ig /2 = 0.886226926 - - .

o0
/ 2eor? gy — VX erf (vax) — —e ",
0

Approximate the integral

Using Simpson’s rule, evaluate €2§.

2 2
erf(2) = ﬁ/o e dt

Compare your answer with the correct value from the table in Appendix G.
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11.

12.

13.

Find the integrals.

a) [sin[x (x +1)](2x + 1) dx
b) [ sin[cos(x)] sin(x) dx

When a gas expands reversibly, the work that it does on its surroundings is
given by the integral
V2
Wsurr :/ PdV,
1%

1
where V1 is the initial volume, V> the final volume, andP the pressure of
the gas. Certain nonideal gases are described quite well by the van der Waals
equation of state,
n2a
(P - W) (V —nb) = nRT
whereV is the volumep is the amount of gas in moleg, is the temperature
on the Kelvin scale, and andb are constantsR is usually taken to be the
ideal gas constant, 8145 J K1mol1.

a) Obtain a formula for the work done if.@00 mol of such a gas expands
reversibly at constant temperature from a voluvhd¢o a volumeva.

b) If T = 298K, Vi = 1.00! (1.000 x 10-3md), and V» = 1000l
= 0.100 n¥, find the value of the work done for@00 mol of CQ, which
hasa = 0.3640 Parfimol~?, andb = 4.267 x 10~°> m3 mol~L. The ideal
gas constant® = 8.3145JK 1 mol.

¢) Calculate the work done in the process of part b if the gas is assumed to be
ideal.

The entropy change to bring a sample from 0K (absolute zero) to a given state
is called theabsolute entropy of the sample in that state. Using Simpson’s
rule, calculate the absolute entropy 06@0 mol of solid silver at 270 K. For

the region 0K to 30 K, use the approximate relation

Cp= aTS,

wherea is a constant that you can evaluate from the valu€ pfat 30 K. For
the region 30K to 270K, use the following dédta:

T/K Cp/IK Imol™ | T/K Cp/IK1mol™?t
30 477 170 2361
50 1165 190 2409
70 1633 210 2442
90 1913 230 2473
110 2096 250 2503
130 2213 270 2531
150 2297

4p.F. Meads, W.R. Forsythe, and W.F. Giagliédm. Chem. Soc. 63, 1902 (1941).
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14. Use Simpson’s rule with at least 10 panels to evaluate the following definite
integrals. Use Mathematica to check your results.

a) f02 3y

b) fla e dx



Mathematical
Series
and Transforms

Preview

A mathematical seriesis a sum of terms. A series can have a finite number of
terms or can have an infinite number of terms. If a series has an infinite number
of terms, an important question is whether it approaches a finite limit as more and
more terms of the series are included (in which case we say tbatniérges) or
whether it becomes infinite in magnitude or oscillates endlessly (in which case we
say that itdiverges). A constant serieshas terms that are constants, so that it equals

a constant if it converges. Ainctional series has terms that are functions of one

or more independent variables, so that the series is a function of the same indepen-
dent variables if it converges. Each term of a functional series contains a constant
coefficient that multiplies a function from a setlmdsis functions. The process of
constructing a functional series to represent a specific function is the process of
determining the coefficients. We discuss two common types of functional series,
power series and Fourier series.

An integral transformis similar to a functional series, except that it contains an
integration instead of a summation, which corresponds to an integration variable
instead of a summation index. The integrand contains two factors, as does a term
of a functional series. The first factor is the transform, which plays the same role
as the coefficients of a power series. The second factor is the basis function, which
plays the same role as the set of basis functions in a functional series. We discuss
two types of transforms, Fourier transforms and Laplace transforms.

Principal Facts and ldeas

1. A mathematical series is a sum of terms, either with a finite number of terms
or an infinite number of terms.

2. A constant series has terms that are constants, and a functional series has terms

that are functions.
158



Section 6.1 Constant Series 159

3. An infinite series converges if the sum approaches a finite limit ever more
closely as ever more terms are summed, or diverges if the series does not ap-
proach such a limit.

4. An infinite functional series represents a function if it converges.

5. A Taylor series is a sum of terms that consist of coefficients times powers
of x — h, wherex is a variable and: is a constant. The coefficients can be
determined to represent any analytic function within a region of convergence.

6. A Fourier series is an infinite series of terms that consist of coefficients times
sine and cosine functions. It can represent almost any periodic function.

7. A Fourier transform is a representation of a function as an integral instead of
a sum. Many modern instruments use Fourier transforms to produce spectra
from raw data in another form.

8. A Laplace transform is a representation of a function that is similar to a Fourier
transform.

Objectives
After studying this chapter, you should be able to:
1. determine whether an infinite constant series converges,

2. determine how large a partial sum must be taken to approximate a series to a
specified accuracy,

3. compute the coefficients for a power series to represent a given function,
4. determine the region of convergence of a power series,

5. determine the coefficients of a Fourier series to represent some elementary
functions,

6. determine the Fourier transform of some elementary functions,
7. determine the Laplace transform of some elementary functions,

8. manipulate Laplace transforms using various theorems.

Constant Series

A sequence is a set of numerical quantities with a rule for generating one member
of the set from the previous one. If the members of a sequence are added together,
the result is aseries. A finite series has a finite number of terms, and adfinite

series has a infinite number of terms. If a series has terms that are constants, it is a
constant series. Such a series can be written

s=ao+artax+az+as+---+a,+--- (6.1)
For an infinite series, we define theh partial sumas the sum of the first terms:

S, =ap+a1+ax+az+---+a,_1. (6.2)
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The entire infinite series is the limit

s = lim S,. (6.3)
n—oo
If this limit exists and is finite, we say that the ser@gesverges. If the magnitude of
S, becomes larger and larger without boundidsecomes large, or i§,, continues
to oscillate without approaching a fixed valueralsecomes large, we say that the
seriesdiverges.

The two questions that we generally ask about an infinite constant series are: (1)
Does the series converge? (2) What is the value of the series if it does converge?
Sometimes it is difficult to find the value of a convergent infinite series, and we
then might ask how well we can approximate the series with a partial sum.

Some Convergent Series

Let us consider a well-known convergent constant series:

1 1 1
=1 = 6.4
s=1+5+7+5+ 0+ + E 2n (6.4)

There is no general method that is capable of finding the value of every $eries.
However, the value of this series is calculated in the following example.

EXAMPLE 6.1 Find the value of the series in Eq. (6.4).

SOLUTION » We write the sum as the first term plus the other terms, with a factc}“ of
factored out of all the other terms:
1 1 1 1
=1+ (1+=-+-4+=-4+--).
s +2< t5tatg T )
The series in the parentheses is just the same as the original series. There is no problem due to the
apparent difference that the series in the parentheses seems to have one less term than the original
series, because both series have an infinite number of terms. We now write

s=1+ %s
which can be solved to give
s =2. (6.5)
|
|EXERCISE 6.1 b | Show that in the series of Eqg. (6.4) any term of the series

is equal to the sum of all the terms following itift: Factor a factor out of
all of the following terms so that they will equal this factor times the original
series, whose value is now known.) [«

The result of this exercise is of interest in seeing how a series can be approxi-
mated by a partial sum. For the series of Eq. (6.4), we can write
s =38, +a,_1. (6.6)

1see A. D. Wheelon, “On the Summation of Infinite SeridsAppl. Phys., 25, 113 (1954), for a method that
can be applied to a large number of series.
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In some cases it is necessary to approximate a series with a partial sum, and
sometimes Eq. (6.6) can be applied to other series as a rough measure of the error
in approximatings by S,,.

EXAMPLE 6.2 Determine which partial sum approximates the series of Eq.
(6.4) to (a) 1% and (b).001%.

SOLUTION » Since 1% of 2 is equal t0.02, we find the first term of the series that is equal
to or smaller than @2, and take the partial sum that ends with that term. We have
1 1
— = — =0.01562
26 64 ?
so that the partial sum required is the one ending \éghor S7. Its value is
S7 =1.984375

Since 0001% of 2 is 2x 1072, and 12" has the value 5259x 10~° whenn = 16, we need the
partial sumSy7, which has the valu§,7 = 1.999984741 |

|EXERCISE 6.2 B | Consider the series

1 1 1 1
S:l+?+?+4?+"'+ﬁ+"'

which is known to be convergent. Using Eq. (6.6) as an approximation, de-
termine which partial sum approximates the series to (a) 1% and@)1%.

[«

The Geometric Series

The series of Eq. (6.4) is an example afemmetric series, which is defined to be

s =a+ar+ar’+arP+art+ . 4ar" + ... (6.7a)
=ar<l+r+r2+r3+---+r"+'”>7 (6.7b)

wherea andr are constants. In order for the infinite series of Eq. (6.7a) to con-
verge, the magnitude efmust be less than unity. Otherwise, each term would be
equal to or larger than the previous term, causing the sum to grow without bound
(diverge) as more and more terms are added. Howewam be positive or nega-
tive. If r is negative, the sum has terms of alternating sign, but still converges only
if |r] < 1.

The value of a geometric series can be obtained in the same way as was the
value of the series in Eq. (6.4),

s = a+r<a+ar+ar2+ar3+--->

=a+rs

or

(rl <1). (6.8)
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The partial sums of the geometric series are given by

1—r"

Sn=a—|—ar+ar2+---+ar”_1=al
—r

(6.9)

Equation (6.9) is valid for any value of since a finite series always converges.
Instead of writing a series in the form used up to now, in which various terms are

exhibited, we can use a standard symbol for a sum, a capital Greek sigma, which

we introduced in Chapter 5. For example, the geometric series can be written as

o0
s = Za”
n=0

where the summation indexranges from O t@o. The nth partial sum is written

as
n—1

S, = Za”

n=0

EXAMPLE 6.3 The molecular partition function z is defined in the statistica
mechanics of noninteracting molecules as the sum over all the states of one

molecule
z=) expl—), 6.10
> =) (6.10)

wherei is an index specifying the stat&,; is the energy that the moleculg
has when in state numbeérk g is Boltzmann'’s constant, arifl is the absolute
temperature. If we consider only the vibration of a diatomic molecule, o a
good approximation
1

Ei=E,=hv <v + 5) , (6.11)
wherev is the vibrational frequencyy is the vibrational quantum number,
which can take on the integral valuesl?2, 3, etc.; and: is Planck’s constant.
Use Eg. (6.8) to find the value of the partition function for vibration.

SOLUTION »

Zvib

o —hv (v + %)
> exp —
v=0 B
“\ & hv \1"
(2,7 ) L [0(557)|

)
= /2 Z (e,x)v s
v=0

wherehv/kpT = x, a positive quantity. The sum is a geometric series, so
e—x/2

2vib = Fp—

(6.12)

The series is convergent, because€ is smaller than unity for all positive values .ofand is never
negative. <
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EXERCISE 6.3 P | Find the value of the infinite series
o
> N1
n=0
Determine how well this series is approximatedSay Ss,andSio. [«

A Divergent Series

Theharmonic seriesis defined to be

1 1 1 1
— 1+ 4+ 4+ 4.4 6.13
s totgrg bt (6.13)

Here are a few partial sums of this series:

S =1
S = 15
So00 = 6.87803
S1000 = 8.48547
S100000 = 13.0902

However, the harmonic series diverges.

s= lim S, = co.
n—o0
Many people are surprised when they first learn that this series diverges, because
the terms keep on getting smaller as you go further into the series. This is a nec-
essary condition for a series to converge, but it is not sufficient. We will show that
the harmonic series is divergent when we introduce tests for convergence.

[EXERCISE 6.4 | Use a spreadsheet or a computer program to evaluate par-
tial sums of the harmonic series and use it to verify the foregoing valy «}.

There are a number of constant series listed in Appendix C, and additional
series can be found in the references listed at the end of the chapter.

Tests for Convergence of a Series

There are several tests that will usually tell us whether an infinite series converges
or not.

1. The Comparison Test. If a series has terms that are each smaller in magnitude
than the corresponding term of a series known to converge, it is convergent.
If a series has terms that are each larger in magnitude than the corresponding
term of a series known to diverge, it is divergent.

2. The Alternating Series Test. If a series has terms that alternate in sign, it is
convergent if the terms approach zero as you go further and further into the
series and if each term is smaller in magnitude than the previous term.
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3. The nth-Term Test. If the terms of a series approach some limit other than
zero or do not approach any limit as you go further into the series, the series
diverges.

4. TheIntegral Test. If a formula can be written to deliver the terms of a series
a, = f(n), (6.14)
then the series will converge if the improper integral
o0
/ f(x) dx (6.15)
1

converges and will diverge if the improper integral diverges.

5. The Ratio Test. For a series of positive terms or a series of negative terms, we
define the limit

r= lim 2L (6.16)
n—>oo  qay,
If r < 1, the series converges. Af> 1, the series diverges. i = 1, the
test fails, and the series might either converge or diverge. If the ratio does not
approach any limit but does not increase without bound, the test also fails.

EXAMPLE 6.4 Apply the ratio test and the integral test to the harmonic serjes,
Eq. (6.13).

SOLUTION » Apply the ratio test:

1/n . on—1
r= lim |——— lim =1
n—>oo|1/(n—1)| n—oco n

The ratio test fails. Apply the integral test:
0 1 00

/ —dx =In(x)
1 X 1

The series diverges by the integral test. <

= blim [In(b) — In(D)] = o0

EXAMPLE 6.5 Determine whether the series converges:
)n 1

1 1 1 1 >
—1_- 4+ _Z4_
g 2737175 2_:

SOLUTION » This is an alternating series, so the alternating series test applies. Since every
term approaches more closely to zero than the previous term, the series is convergent. «

EXAMPLE 6.6 Determine whether the series converges:

_, 1,2 1.2 1.2 1 2
S S SN o593 "372"45"5
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SOLUTION » This is a tricky series, because it is an alternating series, anethhterm ap-
proaches zero asbecomes large. However, the series diverges. The alternating series test does
not apply, because it requires that each term be closer to zero than the previous term. Half the time
as you go from one term to the next in this series, the magnitude increases instead of decreasing.
Let us manipulate the series by subtracting each negative term from the following positive term to

obtain
—1+1+1+1+1+
R R T -,

This is the harmonic series, which we already found to diverge. |
|EXERCISE 6.5 b | Show that the geometric series converges ik 1. [«]
|EXERCISE 6.6 P> | Test the following series for convergence.

() 3320 (1/n?). (b) 25020 (A/n).

(€) Xnlo (=1 (2 — 1) /n?). (@) X0lo (D" n/nb.

<]

Note. n! (n factorial) is defined for positive integral values ofto be
nn—mn —2)...(2)(1), and is defined to equal 1iif= 0.

Functional Series

A functional series has terms that are constants times functions. If a single inde-
pendent variable is called,

s(x) = apgo(x) + a1g1(x) + azg2(x) + azga(x) + - - . (6.17)

We call the set of constant quantitieg a1, a2, and so on, theoefficients of the

series and the set of functiogs, g1, g2, g3, ... the basis functions. Just as with
constant series, a functional series such as that of Eq. (6.17) might converge or it
might diverge. However, it might converge for some values aind diverge for
others. If there is an interval of values ofsuch that the series converges for all
values ofx in that interval, we say that the series@vergent in that interval.

There is an important mathematical concept calladorm convergence. |If
a functional series converges in some interval, it is uniformly convergent in that
interval if it converges with at least a certain fixed rate of convergence in the entire
interval. We do not discuss the details of this coneff. a functional series
is uniformly convergent in some interval, it has been shown to have some useful
mathematical properties, which we discuss later.

There are two problems to be faced in constructing a series to represent a given
function. The first is finding the values of the coefficients so that the function will
be correctly represented. The second is finding the interval in which the series is
convergent and in which it represents the given function.

2David BressoudA Radical Approach to Real Analysis, pp. 191-194, Math. Assoc. of America, Washington,
DC, 1994.
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Power Series

A common type of functional series is tipewer series, in which the basis func-
tions are powers of — &, wherex is the independent variable ahds a constant
(it can equal zero).

s(x) =ag+ai1(x —h) +ax(x — h)2 + az(x — h)3 + -, (6.18)

whereag, a1, and so on, are constant coefficients. An infinite series of this form is
called aTaylor series, and ifh = Q it is called aMaclaurin series. If we represent

a function by a power series, we say that expand the function in terms of the
power series. Several methods of theoretical chemistry, such gerttuebation
method in quantum mechanics, use power series.

Maclaurin Series

A Maclaurin series to represent a functigix) is written
f(x) =ap+aix +amx®+--- =5 (x), (6.19)

where f (x) is the function and(x) is the series. We now show how to determine
thea coefficients. In order for the function and the series to be equal at all values
of x, they must be equal at= 0, which means that

f(0) =50 =ao| (6.20)

This determinegg.

We also require that all derivatives of the function and of the series be equal at
x = 0. This is sufficient for the series to represent the function in some interval
aroundx = 0. Only a function that possesses derivatives of all ordess &t0
can be represented by a Maclaurin series. Such a function is saichtmllytic at
x = 0. Thenth derivative of the series at= 0 is

dl’l
< S) = nla,, (6.21)
dx" x=0

wheren! (n factorial) is defined for. > 1 by

nl=nn—-—1n-2)---(2)Q).

This gives us a general formula for the coefficients in a Maclaurin series to repre-
sent the functiory (x):

a, =

1 (d"f

— n=1223..)| (6.22)
n! \dx" /]

A power series that is obtained by using Eqg. (6.22) to obtain the coefficients faith-
fully represents the appropriate function in the vicinityof 0 if it converges and

if infinitely many terms are taken. However, we must discuss how far fram0

we can go and still represent the function by the series.

|EXERCISE 6.7 P | Show that Eq. (6.22) is correct. [«
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EXAMPLE 6.7 Find all the coefficients for the Maclaurin series representing
sin(x).

SOLUTION » Since sin#) =0,

ag =

0
ag [i sin(x)} =cos(0) =1, (6.23)
dx x=0

where the subscript indicates that the derivative is evaluated=aD. The second partial sum of
the series is therefore

So=0+x=x

giving the same approximation as in Eq. (2.26). Figure 6.1 shows the function)simd the
approximation Sy = x. The derivatives of sifx) follow a repeating pattern:

f(x) = sinx)
% = cosx)
jo]; = —sin(x)
fTJ; = —cogx)
?TZ = sin(x),

When these are evaluatedaat= 0, all of the even-numbered derivatives vanish, and the odd-
numbered derivatives are alternately equal to 1-afd

1 1 1
; v _ -3, =.5_ =74 ..
sin(x) = x i +5!x TR + . (6.24)
<
-
//+
4
¥ =sin(x)
]
0 r N\ X —
2

Figure 6.1 » The function sinx) and the approximatiof; = x.
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|[EXERCISE 6.8 P | (a) Show that the Maclaurin series for
et is

1 1
=14 x4+ =x%+ =x34+ x| (6.25)

(b) Find the Maclaurin series for
coS(x).

[a]

Taylor Series

A Taylor series has the form
s(x) = ao+ a1(x — h) +ax(x —h)> +ag(x —h)3+--- ,

whereh is not equal to zero. We say that a Taylor seriesmnded aroundx = h.
There are a number of important functions that are not analyiicaD, and these
cannot be represented by a Maclaurin series, for whiehO. One such function is
In(x). The first derivative of this function is/X, which becomes infinite as— 0,
as do the other derivatives. Although there is no Maclaurin series {oy,Igou
can find a Taylor series for a positive valuehof

In order to find the coefficients for a Taylor series, we require the function and
the series to be equal at= & and to have the same derivatives of all orders at

x = h. This gives
1/d"
ao = f(h); anz—,( {:)
n!\dx" ) ._,

(6.26)

where f (x) is the function to be represented and the subsériptlicates that the
derivative is to be evaluated at= h.

EXAMPLE 6.8 Find the Taylor series for [tx), expanding about = 1.

SOLUTION » The first derivative of lix) is 1/x, which equals 1 at = 1. The second
derivative iS—l/xz, which equals 1 at = 1. The derivatives follow a regular pattern,

(dnf> ="t -1!
x=1

dx"
so that
N = (-1 =124 (= D3 (= DA (6.27)
2 3 4 ' ‘
<
|EXERCISE 6.9 b | Find the Maclaurin series for {th + x). You can save
some work by using the result of Example 6.8. <]
|EXERCISE 6.10 b | Find the Taylor series for cds), expanding about

x=m/2. (<]
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The Convergence of Power Series

If a series is to represent a functigitx) in some interval, it must be convergent

in the entire interval and must converge to the value of the function for every value
of x in the interval. For a fixed value of, the series(x) is no different from

a constant series, and all the tests for convergence of Section 6.1 can be applied.
We can then consider different fixed valuesxofind determine thénterval of
convergence, that interval in which the series is convergent.

EXAMPLE 6.9 Investigate the convergence of the series far)nin Eq. (6.27).

SOLUTION » Letus consider three cases= 1,x > 1, andx < 1. If x = 1, the entire series
vanishes, as does the function, so the series converges to the value of the functiea forFor
x > 1, the series is an alternating series, and we can apply the alternating series tesh t€ha
of the series is

(x -1 (=pt

n

th=ap (x — D" =
Look at the limit of this as becomes large:

. 0 flx—1<lor0<x<2
lim #, = .
n— 00 oo if lx—1>1orx > 2
The interval of convergence far > 1 extends up to and including= 2. Forx < 1, the series is
not alternating. We apply the ratio test.
(x=1"/n

="t/ -1
This will be less than unity ik lies between 0 and 1, butif = 0, the text fails. However, if = 0,

the series is the same as the harmonic series except for the sign, and thus diverges. The interval of
convergence is & x < 2. <

. tn .
r= lim = lim |-
n—00 t, 1 n—o00

]:—(X—l):l_x

We summarize the behavior of the Taylor series representation of the previous
example: There is a point at which the logarithm function is not analytic,-at0.
The function is analytic to the right of this point, and the series equals the function
for positive values arbitrarily close to = 0. Beyondx = 2, the series diverges.
The interval of convergence is centered on the point about which the function is
expanded, which is = 1 in this case. That is, the distance fram= 1 to the left
end of the interval of convergence is 1 unit, and the distance from 1 to the
right end of the interval of convergence is also 1 unit. This distance is called the
radius of convergence. Even though the function is defined for valuescdieyond
x = 2, the series does not converge and cannot represent the function for values
of x beyondx = 2. Another Taylor series expanded about a value lafrger than
x = 1 can represent the logarithm function beyang 2.

|EXERCISE 6.11 B> | Find the Taylor series for Itx), expanding about = 2,
and show that the radius of convergence for this series is equal to 2, so that the
series can represent the function up to and includirg4. [«

The behavior of the Taylor series representation of the logarithm function is
typical. In general, the interval of convergence is centered on the point about which
we are expanding. The radius of convergence is the distance from the point about
which we are expanding to the closest point at which the function is not analytic,
and the interval of convergence extends by this distance in either direction. If a
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function is defined on both sides of a point at which the function is not analytic, it
is represented on the two sides by different series.

EXAMPLE 6.10 Find the interval of convergence for the series representing the
exponential function in Eq. (6.25).

SOLUTION » We apply the ratio test,

. 4 . x"/n! X
p= dim - gim 2™ im E
n—oot, 1 n—ooxt=l/(m_1) n-ocon

This limit vanishes for any real finite value of so the series converges for any real finite value of

x, and the radius of convergence is infinite. <
|EXERCISE 6.12 b | Find the series for A1 — x), expanding about = 0.
What is the interval of convergence?

Kl
|EXERCISE 6.13 P> | Find the interval of convergence for the series for(sin
and for cogx). [«

Unfortunately, the situation is not always so simple as in the examples we have
been discussing. A power series can represent a function for complex values of
the independent variable, and points in the complex plane at which the function is
not analytic can determine the radius of convergence. A Taylor series converges
to the function in a circle in the complex plane with radius equal to the radius of
convergence. The radius of convergence is the distance from the point about which
we expand to the closest point in the complex plane at which the function is not

analytic.
For example, if we wanted to construct a Maclaurin series for the function
fo) = —
X) =
1+ x2

the radius of convergence would be determined by discontinuities=ati and

x = —i even though there are no discontinuities for real values. ofhe radius

of convergence equals unity, the distance from the origin 0 +i in the Argand
plane. We do not discuss the behavior of power series in the complex plane, but
you can read more about this topic in the book by Kreyszig listed at the end of the
book.

In physical chemistry there are a number of applications of power series, but
in most applications, a partial sum is actually used to approximate the series. For
example, the behavior of a nonideal gas is often described by useifitieseries
orvirial equation of state,

=14+ "+ S+—=+--, (6.28)

whereP is the pressurey,, is the molar volume of the gag, is the Kelvin tem-
perature, andr is the ideal gas constant. The coefficieBts B3, and so on, are
calledvirial coefficients and are functions of but not functions ofV,,. If all the
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virial coefficients were known for a particular gas, the virial series would represent
exactly the volumetric behavior of that gas at all values 6¥,1. However, only

the first few virial coefficients can be determined experimentally or theoretically,
so a partial sum must be used. For many purposes, the two-term truncated equation

is adequate:
PV, B
Smo14 22 (6.29)
RT Vin
There is another commonly used series equation of state, sometimes called the

pressure virial equation of state:
PV, = RT + AoP + A3P? + A4P3 + ... | (6.30)

This is a Maclaurin series iR. It is also truncated for practical use.

EXAMPLE 6.11 Show that the coefficiem in Eq. (6.30) is equal to the coef
ficient B2 in Eq. (6.28).

SOLUTION » We multiply Eq. (6.28) on both sides [®T/ V,,, to obtain
RT RTBHB RTB
Vin Vin Vi
This must be equal to

RT AP  AzP?
TV VeV
We convert the second series into a serieg/ivj,1 by substituting the first series into the right-hand
side wherever & occurs. When the entire series on the right-hand side of Eq. (6.31) is squared,
every term will have a Ieastti,ﬁ in the denominator [see Eqg. (11) of Appendix C for the square
of a series]. Therefore, Eq. (6.32) becomes

3

RT  Ap (RT RT B ) (1)

P=—+2(—+ +-J+0(—) . (6.33)
Vi Vi \ Vi 2 Vi

P

TR (6.32)

where the symbo0 (1/ V)3 stands for terms of degre¢ !K,ﬁ or higher (containing no powers of
1/V,, lower than the third power).
Equation (6.33) is thus

RT RTA, < 1 )3
P="+ +0(—=) . 6.34
Vin Vn% Vin ( )

We now use a fact about series [Eq. (9) of AppendixI€iwo power seriesin the same indepen-
dent variable are equal to each other for all values of the independent variable, then any coefficient
in one seriesis equal to the corresponding coefficient of the other series.

Comparison of Eq. (6.34) with Eq. (6.31) shows that

By = Aj.

<

Another application of a power series in physical chemistry is in the discussion
of colligative properties (freezing-point depression, boiling-point elevation, and
osmotic pressure). X1 is the mole fraction of solventy,,, H,, is the molar heat
of vaporization of the solvenfly is the pure solvent’s boiling temperature, ahd
is the solution’s boiling temperature, it is shown in physical chemistry textbooks

that A 1 1
—In(Xy =2 m (= — ), 6.35
n(Xy) R T (6.35)
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If there is only onesolute (component other than the solvent), then its mole frac-

tion, X, is given by
Xo=1-— X1. (6.36)

The logarithm on the left-hand side of Eq. (6.35) is represented by the power series
1
—In(X1) = —In(1— X2) = Xo + EX% + e (6.37)

If X, is nottoo large, we can truncate this series after one term and write

AvapHpy (11
Xom 222 (2 _ 2, (6.38)
R To T
|EXERCISE 6.14 b | Determine how largé&’, can be before the truncation of

Eq. (6.37) that was used in Eq. (6.38) is inaccurate by more than 1%[«

Fourier Series

If we want to produce a series that will converge rapidly, so that we can approx-
imate it fairly well with a partial sum containing only a few terms, it is good to
choose basis functions that have as much as possible in common with the function
to be represented. The basis function&aarier series® are sine and cosine func-
tions, which are periodic functions. Fourier series are used to represent periodic
functions. A Fourier series that represents a periodic function of peridd 2

f(x)=ao+ Zan cos( ) an sm( ) . (6.39)

| EXERCISE 6.15 b | Using trigonometric identities show that the basis func-
tions in the series in Eq. (6.39) are periodic with peridd Zhat is, show for

arbitraryn that
0 |:mr(x + 2L)] _ Sin(@)
L L

and or
OS[M] _ Cos(@) ,
L L

[«

Fourier series occur in various physical theories involving waves, because
waves often behave sinusoidally. For example, Fourier series can represent the
constructive and destructivaterference of standing waves in a vibrating strifg.

This fact provides a useful way of thinking about Fourier series. A periodic func-
tion of arbitrary shape is represented by adding up sine and cosine functions with

3The Fourier series is named for its inventor, Jean Baptiste Joseph Fourier, 1768—1730, famous French math-
ematician and physicist.
4Robert G. MortimerPhysical Chemistry, 2nd ed., pp. 338-340, Academic Press, San Diego, 2000.
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shorter and shorter wavelengths, having different amplitudes adjusted to represent
the function correctly. This is analogous to the constructive and destructive inter-
ference of waves resulting from the addition of their displacements.

There are some important mathematical questions about Fourier series, includ-
ing the convergence of a Fourier series and the completeness of the basis functions.
A set of basis functions is said to lsemplete for representation of a set of func-
tions if a series in these functions can accurately represent any function from the
set. We do not discuss the mathematics, but state the facts that were proved by
Fourier: (1) any Fourier series inis uniformly convergent for all real values of
x; (2) the set of sine and cosine basis functions in Eq. (6.39) is a complete set for
the representation of periodic functions of periad 2n many cases of functional
series, the completeness of the set of basis functions has not been proved, but most
people assume completeness and proceed.

Finding the Coefficients of a Fourier Series—Orthogonality

In a power series, we found the coefficients by demanding that the function and
the series have equal derivatives at the point about which we were expanding. In a
Fourier series, we use a different procedure, utilizing a property of the basis func-
tions that is calledrthogonality. This property is expressed by the three equations:

f_i cos(mzx) cos(me> dx = Léju, = { CL) ii:‘nm1 ; Z (6.40)
/_LL cos(mzx> sin(nzx) dx =0 (6.41)
/i sin (mzx) Sil’\(me) dx = Léyy. (6.42)

The quantitys,,,, is called theKronecker delta. It is equal to unity if its two indices

are equal and is equal to zero otherwise. Equations (6.40) and (6.42) do not apply
if m andn are both equal to zero. The integral in Eq. (6.40) is equalltaf2

m = n = 0, and the integral in Eq. (6.42) is equal to zermi=n = 0.

Two different functions that yield zero when multiplied together and integrated
are said to berthogonal to each other. Equations (6.40), (6.41), and (6.42) indi-
cate that all the basis functions for the Fourier series of periodr2 orthogonal
to each other. An integral of the product of two functions is sometimes called a
scalar product of the two functions. This terminology is analogous to that used
with vectors. If two vectors are at right angles to each other, they are said to be
orthogonal to each other, and their scalar product is zero (see Chapter 2). Since
each of the basis functions is orthogonal to the others, its scalar product with a
different basis function vanishes, just as the scalar product of any two of the unit
vectorsi, j, andk vanishes
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To finda,,, wherem # 0 we multiply both sides of Eq. (6.39) by d@srx/L)
and integrate from-L to L.

/ f(x)cos dx = Z“"/ cos m” cos( 7 )dx (6.43)
+be sm( nx)cos<mzx>dx(6.44)

We have incorporated theg term into the first sum, using the fact that ¢6s= 1.
We have also used the fact that the integral of a sum is equal to the sum of the
integrals of the terms if the series is uniformly convergent.

We now apply the orthogonality facts, Egs. (6.40)—(6.42), to find that all of the
integrals on the right-hand side of Eq. (6.43) vanish except for the term with two
cosines in whiclh = m. The result is

L mix
f_L £(x) cos(T) dx = apL. (6.45)

This is a formula for finding all of the a coefficients exceptdgr To find ag, we
use the fact that

L L
/ cog0) cos(0)dx = / dx = 2L (6.46)
-L -L
which leads to our working equations for theoefficients:
1 L

= — A7
wo=gp [ Fndx (6.47)
f S ) COS< )dx (6.48)

A similar procedure consisting of multiplication by gsinzx /L) and integra-
tion from —L to L yields

1 (L . (NTX
- Z/—L £(x)sin <T> dx | (6.49)

|EXERCISE 6.16 b | Show that Eq. (6.49) is correct. [«

A function does not have to be analytic, or even continuous, in order to be
represented by a Fourier series. It is only necessary that the function be integrable.
As mentioned in Chapter 5, an integrable function can have step discontinuities, as
long as the step in the function is finite. At a step discontinuity, a Fourier series will
converge to a value halfway between the value just to the right of the discontinuity
and the value just to the left of the discontinuity.

We can represent a function that is not necessarily periodic by a Fourier series
if we are only interested in representing the function in the intendal< x < L.

The Fourier series will be periodic with period.2and the series will be equal to
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the function inside the interval, but not necessarily equal to the function outside the
interval.

If the function f (x) is an even function, all of thg, coefficients will vanish,
and only the cosine terms will appear in the series. Such a series is clad &
cosine series. If f(x) is an odd function, only the sine terms will appear, and the
series is called &ourier sine series. If we want to represent a function only in
the interval 0< x < L we can regard it as the right half of an odd function or
the right half of an even function, and can therefore represent it either with a sine
series or a cosine series. These two series would have the same value in the interval
0 < x < L but would be the negatives of each other in the intervBl< x < 0.

EXAMPLE 6.12 Find the Fourier series to represent the functfam) = x for
the interval-L < x < L.

SOLUTION » The function is odd in the intervaHL, L), so the series will be a sine series.
Although our function is defined only for the intervat L, L), the series will be periodic, and will
be the “sawtooth” function that is shown in Fig. 6.2.

The coefficients are obtained from Eq. (6.49). Since the integrand is the product of two odd
functions, it is an even function and the integral is equal to twice the integral fronL.0 to

2 nwx 2/ L\2 [ 2L
bp = —xsin(— )dx = = [ — sin(y)dy = == (=1" 1.
n =X ( T ) x L(ﬂﬂ) /(; ysin(y)dy nﬂ( )

The series is
o0

fo=3% j—jLT(—l)"_lsin(MTx) .
n—1

EXERCISE 6.17 b | (a) Show that thes, coefficients for
the series representing the func-
tion in Example 6.12 all vanish.

(b) Show that the series equals zero at
x=—-L,x =L, x = 3L, etc.,
rather than equaling the function
at this point.

[a]

flx)—

|
W L
X
|
%]
~
|
1
o
rh.—
\
~
[
\ ~
3

Figure 6.2 » The sawtooth function of Example 6.12.
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s S, Sw

fa\Va

Figure 6.3 » The square wave function approximateddyy S», andS1g.

EXERCISE 6.18 b | Find the Fourier cosine series for the even function

f(x)=1|x] for—L <x<L.

Draw a graph of the periodic function represented by the series.

[«

It is a necessary condition for the convergence of Fourier series that the coef-
ficients become smaller and smaller and approach zerokesomes larger and
larger. If a Fourier series is convergent, it will be uniformly convergent for all
values ofx. If convergence is fairly rapid, it might be possible to approximate a
Fourier series by one of its partial sums. Figure 6.3 shows three different partial
sums of the series that represents the “square-wave” function

1 forO<x < L
"~ —1for—L<x<0O.

f )

Only the right half of one period is shown. The first partial sum only vaguely
resembles the function, bstg is a better approximation. Notice the little spike
or overshoot near the discontinuity. This is a typical behavior and is known as
the Gibbs phenomenon.® The partial suns1qo fits the function more closely away
from the discontinuity, but it has a spike near the discontinuity that is just as high
as that ofS1g, although much narrower.

5Named for Josiah Willard Gibbs, 1839-1903, a prominent American physicist who made important contri-
butions to mathematics and chemistry as well as to physics.
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Fourier Series with Complex Exponential Basis Functions

The sine and cosine basis functions are closely related to complex exponential
functions, as shown in Egs. (2.105) and (2.106). One can write

. /NTX nwx 1 ) inmx 1 i inmx
b, Sm<T> +a, COS(T) =3 (an — iby) "™/ 4 5 (an + iby) "L
(6.50)
It is therefore possible to rewrite Eq. (6.39) as an exponential Fourier series:
o.¢]
f(x) = Z Cneinnx/L.
n=—00 (6.51)

We have incorporated the terms with negative exponents into the same sum
with the other terms by allowing the summation index to take on negative as well
as positive values. The function being represented by a Fourier series does not have
to be a real function. If it is a real function, the coefficieatsandb,, will be real
and the coefficients, will be complex.

Other Functional Series with Orthogonal Basis Sets

Fourier series are just one example of series using orthogonal sets of basis func-
tions. For example, in quantum mechanics it is found that the eigenfunctions of
guantum mechanical operators form orthogonal sets of functions, and these can
be used as basis functions for series. It is generally assumed that such a set of
functions is complete for representation of functions that obey the same boundary
conditions as the basis functions. Boundary conditions are discussed in Chapter 8
in connection with differential equations.

Assume that we have a complete set of orthogonal functions, calledr,
Y3, and so on, and that these functions have ba#malized and that they are
orthogonal to each other. This means that the functions have been multiplied by
appropriate constants so that the scalar product of any one of the functions with
itself is unity and that the scalar product of two of the functions vanishes:

lifn=m
Umdx = 8y = _ 6.52

In case the basis functions are complex, the scalar product is defined as the integral
of the complex conjugate of the first function times the second function, as in Eq.
(6.52).

Since the set of functions is assumed to be complete, we can expand an arbitrary
function, f, in terms of theyr functions so long ag" obeys the same boundary
conditions as the functions.

f= catm (6.53)

The sum in this equation will include one term for each function in the complete
set and can have infinitely many terms.

In order to find the coefficients, c2, c3, and so on, we multiply by the complex
conjugate ofi,,, and integrate. With Eq. (6.52), our result is

f W;Zfdx = Zn Cn f W:ﬂﬁndx = Zn Cnbum = Cm (6-54)
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When the final sum ovet is carried, only the: = m term survives because of
the Kronecker delta. Equations (6.47), (6.48), and (6.49) are special cases of this
equation.

EXAMPLE 6.13 The normalized quantum-mechanical wave functions for the
particle in a one-dimensional box of lengtlare

o\ 1/2
Yy = (E) sin(nmx /a)

These functions are a complete set for expansion of functions that are defined
only in the region O< x < « and vanish ak = 0 and atx = 4. That is,
a linear combination of these functions can be an exact representation of the
function in the region O< x < a. Find the coefficienty if f = x2 — ax.

SOLUTION »
2 1/2 a
c1 = (E) ( X Sin(nx/a)dx+a/ xSin(nx/a)dx)
0
o\ 1/2 o\ 1/2
= <;> (= )/ y Sln(y)dy—a< ) (= )/ y sin(y)dy (6.55)
o\ 1/2
= <;> (592 12ysiny) - (2~ 2) costy)]|
5 1/2
—a(;) (;)2 [sin(y) — y cosgy)llg (6.56)
1/2 1/2
- (E) (5)3[(712—2)—2]—44(%) (£)2x?)
a b a v
5/2
- _4ﬁ“3 = —0.182442,5/2 (6.57)
b4
|
|EXERCISE 6.19 b | Using Excel, construct a graph of the functignfrom

the previous example in the region® x < a and another graph af; ;.
Compare the graphs and comment on how well the partial sum with one term
approximates the function. Let= 1 for your graphs. [«

|EXERCISE 6.20 b | Write the formula for finding the coefficients for an ex-
ponential Fourier series. Is there any difference in the formulas for odd func-
tions, even functions, or functions that are neither odd nor even? What con-
ditions must the function obey to be represented by an exponential Fourier
series? [«]

Mathematical Operations on Series

Carrying out mathematical operations such as integration or differentiation on a
functional series with a finite number of terms is straightforward, since no ques-
tions of convergence arise. However, carrying out such operations on an infinite
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series presents a few difficulties. The question arises whether differentiating each
term and then summing the result gives the same result as first summing the series
and then differentiating. Although we do not prove it, the principal fackfia:se-

riesis uniformly convergent the result of operating on the seriesis the same asthe

result of operating on the individual terms and then summing the resulting series.

For example, if

o0
fx) = Zangn(x) (658)
n=0
and if the series is uniformly convergent, then
df d | 2, dg,
- = = ) 6.59
| Do | - (659

This amounts to interchange of the operations of summing and differentiating.
Similarly, for a uniformly convergent series,

b b| o b
/ f(x)dx = / |:Z angn(x):| dx = Zan/ gn (X)dx. (6.60)
a a n=0 n=0 a

This amounts to interchange of the operations of summing and integrating.

We have already used Eq. (6.60) in the previous section in deriving the formula
for the coefficients in the Fourier series, without commenting on the fact that the
series must be uniformly convergent to justify this procedure.

EXAMPLE 6.14 Find the Maclaurin series for cos from the Maclaurin series
for sin(x), using the fact thad [sin(x)] /dx = coqx).

SOLUTION » The series happens to be uniformly convergent for all values dfrom Eq.
(6.29), we have

. . x3 x5 x7
Sln(x)—x—§+§—7+...
so that , , )
d[sin
[sinco] _ & x% a2
dx 20 4 6
<«
|EXERCISE 6.21 B | From the Taylor series for (v) expanded about = 1

given in Eq. (6.27), find the Taylor series fofxlaboutx = 1, using the fact
that
dlinx)] 1
dx  x
and the fact that the series is uniformly convergent foxal 0. Comment on
the range of values of for which your series is valid. [«
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Integral Transforms

Integral transforms are closely related to functional series. However, instead of
a sum with each term consisting of a coefficient multiplying a basis function, we
have an integral in which the summation index is replaced by an integration vari-
able. The basis functions are multiplied by a function of this integration variable,
and integration over this variable yields a representation of the function. This func-
tion of the integration variable is called theegral transformof the given function.

The transform is a function of the integration variable, in the same way as the coef-
ficients in a functional series depend on the value of the summation index. You can
think of a transform as encoding the same information as in the original represen-
tation of the function, but with a different independent variable. There are several
kinds of integral transforms, including Mellin transforms, Hankel transforms, and
so forth8 but the principal kinds of transforms encountered by physical chemists
are Fourier transforms and Laplace transforms.

Fourier Transforms (Fourier Integrals)

Although Fourier transforms were once important only to mathematicians and
some theoretical scientists, they are now widely used in spectroscopy, because in-
struments have been designed that produce a superposition of wave-like signals
such that the spectrum is the Fourier transform of the detected Sigrelus see
how Fourier transforms compare with Fourier series, which are designed to repre-
sent periodic functions with period 2 If we allow L to become larger and larger
without bound, the values afr x /L become closer and closer together. We let
ni

k= T (6.61)
As the limit L — oo is takenk becomes a continuously variable quantity. In this
limit, an exponential Fourier series becomes an integral, which is caFedréer
integral or aFourier transform,

fx) = F(k)e™*™dk, (6.62)

1 (0¢)
AN
where the coefficient, in Eq. (6.51) is replaced by a function bf denoted by
F (k).

The equation for determining (k) is analogous to Eq. (6.47), (6.48), and (6.49)

F(k) = \/% f:: Fx)e * gy, (6.63)

We have introduced a factor of 4/27 in front of the integral in Eq. (6.62) in order

to have the same factor in front of this integral and the integral in Eq. (6.63).
The functionF' (k) is called theFourier transform of f(x) and the function

f(x) is also called théourier transform of F'(k). The functionf (x) is no longer

7y Erdelyi Ed.,Tables of Integral Transforms, Vols. | and Il, McGraw—Hill, New York, 1954; A. G. Marshall.
Ed., Fourier, Hadamard, and Hilbert Transformsin Chemistry, Plenum, New York, 1982.

7L. Glasser,J. Chem. Educ. 64, A»28(1987);J. Chem. Educ. 64, A260(1987); and). Chem. Educ. 64,
A306(1987).
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required to be periodic, because the periddhas been allowed to become infi-
nite. Since we now have improper integrals, the functigiig) and F (k) must

have properties such that the integrals converge. For the integral of Eq. (6.63) to
converge, the following integral must converge:

o
| ireoiax,
—0o0

We say that the functiorf (x) must besquare integrable. The functionf (x)
must approach zero as— —oo and asx — oo to be square integrable. If the
Fourier transforn¥ (k) exists, it will also be square integrable.

EXAMPLE 6.15 Find the Fourier transform of the Gaussian function

2
fx)=e .
SOLUTION »
F(k) = 1 /OO o—ax% g —ikx g
V2r J- '

From Eq. (2.93),

Fk) = — / * a5 coghnd i f * =052 inknd
= — e X X — —— e X X.
V27T —00 VZJT —00

The second integral in this equation is equal to zero because its integrand is an odd function. The
first integral is twice the integral of Eq. (47) of Appendix F,

2 o0 2 2 1 /n 2
Flk) = — —ax° cogkx)dx = ———= | =~k /4a
(k) \/Z./(; e cogkx)dx N ae
_ L1 e
V2a

<

This example illustrates that interesting fact that the Fourier transform of a
Gaussian function of is another Gaussian function bof

In the previous example the transform integral was separated into one part con-
taining a cosine function and one containing a sine function. If the fungtian
is an even function, its Fourier transform i§@urier cosine transform:

F(k) = ,/% / - f(x) costkx)dx = \/g /O - f(x)coskx)dx (f even).

(6.64)
The second version of the transform is callesha-sided cosine transform.
If f(x)is an odd function, its Fourier transform ig-aurier sine transform:;

1 [ , 2 [ _
F(k):,/gf f(x)Sln(kx)dxz\/;/O f(x)sin(kx)dx (f odd).

(6.65)
There is a useful theorem for the Fourier transform of a product of two func-
tions, called theconvolution theorem or the Faltung theorem (Faltung is German
for “folding”). The convolution of two functionsf (x) andg(x) is defined as the
integral

l o0
— — y)dy. 6.66
m/_w fgx —y)dy (6.66)
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This integral is a function ok, and its Fourier transform is equal (k)G (k)
whereF (k) is the Fourier transform of (x) andG (k) is the Fourier transform of
2(x).8 Since the Fourier transform is nearly the same going in both directions, the
analogous convolution

1 o
—_— F(O)G(k —1Ddl 6.67
@/_w OG- 1) (6.67)

has as its Fourier transform the prodyft)g (x).

|EXERCISE 6.22 b | Take the two Gaussian functions

fx) = e~ ° and glx) = e b7,

Find the Fourier transform of the product of the functions using the convolution
theorem. Show that this transform is the same as that obtained by multiplying
the functions together and computing the transform in the usual way.[«]

The two principal applications of Fourier transformation for chemists are in in-
frared spectroscopy and nuclear magnetic resonance spectroscopy. In both cases,
the instrument takes raw data as a function of time and a spectrum as a function
of frequency is obtained. In a Fourier transform infrared instrumenipntanfer-
ometer varies the intensities of radiation of various frequencies as a function of
time, and a detector determines the intensity as a function of time, producing an
interferogram, which is the Fourier transform of the desired spectrum. The Fourier
transformation is carried out by a computer program for predetermined values of
the frequency, so that the spectrum is obtained only for a discrete set of frequen-
cies. Numerical Fourier transformation is usually a fairly slow process, demanding
a lot of computer time, but a Fast Fourier Transform (FFT) algorithm has been
developed that makes the process practical for routine Jséme. Fourier trans-
form NMR instrument, a signal called tieee induction decay signal is obtained
as a function of time, and the Fourier transform of this signal is the desired NMR
spectrum. The FFT algorithm is used to carry out the transformation.

Laplace Transforms
The Laplace transform F (s) of the functionf (¢) is defined by?

F(s) = / - Ft)e=s'dt | (6.68)
0

We use the same notation as with the Fourier transform, denoting a Laplace trans-
form by a capital letter and the function by a lowercase letter. You will have to
tell from the context whether we are discussing a Fourier transform or a Laplace
transform. We use the letterfor the independent variable of the function, since
Laplace transforms are commonly applied to functions of the time. The letter
could also have been used.

8philip M. Morse and Herman Feshbad¥igthods of Theoretical Physics, Part 1, pp. 464ff, McGraw-Hill,
New York, 1953.

93. W. Cooley and J. W. Tukeylath. Computation, 19, 297-301 (1965). See the book by James under
Additional Reading.

10The Laplace transform is named for Pierre Simon Laplace, Marquis de LaPlace, 1749-1827, French as-
tronomer and mathematician.
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TABLE 6.1 » Laplace Transforms

Fes) | £
1/s 1
1/s2 t
n!/s"tl "
l eat
s —a
S
s2+—k2 cos(kt)
k .
m S|n(kt)

The Laplace transform is similar to a one-sided Fourier transform, except that it
has a real exponential instead of the complex exponential of the Fourier transform.
If we consider complex values of the variables, the two transforms become differ-
ent versions of the same transform, and their properties are rélafiégte integral
that is carried out to invert the Laplace transform is carried out in the complex
plane, and we do not discuss it. Fortunately, it is often possible to apply Laplace
transforms without carrying out such an integral We will discuss the use of
Laplace transforms in solving differential equations in Chapter 8.

The Laplace transform and its inverse are often denoted in the following way:

F(s) = L{f®)} (6.69)
ft) = L7HF@)). (6.70)

Table 6.1 gives a few common Laplace transforms.

EXAMPLE 6.16 Find the Laplace transform of the functigh(r) = 2.

SOLUTION »

o0 ) 1 [ 2!
F(s) = / 251 dt = —3/ ule Udy = =
0 §<JO s

where we have used Eq. (1) of Appendix F to obtain the value of the definite integral. <«

|EXERCISE 6.23 | Find the Laplace transforifi(s) of the functionf (z) =
e“’ wherea is a constant. [«]
There are several theorems that are useful in obtaining Laplace transforms of
various functiong2 The first is theshifting theorem:

L{e"f)}=F(s—a)l (6.71)

EXAMPLE 6.17 Use the theorem of Eq. (6.71) to obtain the Laplace transform

of the function
f(t) = e cogkt).

11phjlip M. Morse and Herman Feshbach, op. cit., pp. 467ff.
12Erwin Kreyszig,Advanced Engineering Mathematics, 8th ed., Wiley, New York, 1999.

13)pid.



184 Chapter 6 Mathematical Series and Transforms

SOLUTION » We transcribe the entry for c@sr) from Table 6.1, replacing by s — a, ob-
taining
s —a

Fis) = (s —a)2 + k2.

EXERCISE 6.24 P> | Find the Laplace transform of the function

ft) =t"e".

[«

The next useful theorem is tluerivative theorem

L{f'}=sLAfY— f(O) (6.72)

where we use the notatiofi’ for the first derivative off. This theorem can be
applied to the solution of first-order differential equations and can be applied re-
peatedly to obtain the extended version,

L{fM)=s"L{f}=s"1f(O) —s"2f" Q) —---— f DO | (6.73)

where we use the notatigff” for thenth derivative off, and so on.

|EXERCISE 6.25 b | Derive the version of Eq. (6.73) far = 2. [«

The next theorem is for the Laplace transform of an integral of a given function

/s

c{fy rwdu) = e iron | (6.74)

These theorems can be used to construct the Laplace transforms of various func-
tions, and to find inverse transforms without carrying out an integral in the complex
plane.

EXAMPLE 6.18 Find the inverse Laplace transform of

1

s(s —a)’

SOLUTION » From Table 6.1, we recogniz¢ (s — a) as the Laplace transform ef’. From
the theorem of Eq. (6.74),

f 1 1 1
L{/ e“”du}:—ﬁ{em}z— .
0 s ss—a

Therefore, the inverse transform is

o 1 = /t eMdy = E(e‘” —1).
s(s —a) 0 a
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EXERCISE 6.26 b | Find the inverse Laplace transform of
1
s(s2+k?)’
[«]
SUMMARY

In this chapter we introduced mathematical series and mathematical transforms.
A finite series is a sum of a finite number of terms, and an infinite series is a sum
of infinitely many terms. A constant series has terms that are constants, and a
functional series has terms that are functions. The two important questions to ask
about a constant series are whether the series converges and, if so, what value it
converges to. We presented several tests that can be used to determine whether a
series converges. Unfortunately, there appears to be no general method for finding
the value to which a convergent series converges.

A functional series is one way of representing a function. Such a series con-
sists of terms, each one of which is a basis function times a coefficient. A power
series uses powers of the independent variable as basis functions and represents
a function as a sum of the appropriate linear function, quadratic function, cubic
function, etc. We discussed Taylor series, which contain powers-of, whereh
is a constant, and also Maclaurin series, which are Taylor seriegwitB. Taylor
series can represent a functionnobnly in a region of convergence centered/on
and reaching no further than the closest point at which the function is not analytic.
We found the general formula for determining the coefficients of a power series.

The other functional series that we discussed was the Fourier series, in which
the basis functions are sine and cosine functions. This type of series is best suited
for representing periodic functions and represents the function as a sum of the sine
and cosine functions with the appropriate coefficients. The method of determining
the coefficients to represent any particular function was given.

Integral transforms were discussed, including Fourier and Laplace transforms.
Fourier transforms are the result of allowing the period of the function to be repre-
sented by a Fourier series to become larger and larger, so that the series approaches
an integral in the limit. Fourier transforms are usually written with complex expo-
nential basis functions, but sine and cosine transforms also occur. Laplace trans-
forms are related to Fourier transforms, with real exponential basis functions. We
presented several theorems that allow the determination of some kinds of inverse
Laplace transforms and that allow later applications to the solution of differential
equations.

PROBLEMS

1. By use of the Maclaurin series already obtained in this chapter, prove the iden-
tity e'* = coqx) + i sin(x).
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a) Show that no Maclaurin series
f(x) = ao+ aix + ax®+ - -

can be formed to represent the functiptx) = /x. Why is this?
b) Find the first few coefficients for the Maclaurin series for the function

f(x) =1+ x.

3. Find the coefficients of the first few terms of the Taylor series

tan(x)=ao+a1<x—%)+a2(x_%>2+...’

wherex is measured in radians. What is the radius of convergence of the
series?

4. Find the coefficients of the first few terms of the Maclaurin series
coshx) = ag + a1x + apx’+ ...,
What is the radius of convergence of the series?

5. The sine ofr/4 radians (48) is v/2/2 = 0.70710678 - -. How many terms

in the series

x3 X% X!

Sln(x)=x—§+§—7!+...

must be taken to achieve 1% accuracy at 7 /4?

6. The cosine of 30 (/6 radians) is equal t¢/3/2 = 0.866025 - - . How many
terms in the series

x?  x* xS

must be taken to achieve 0.1% accuracy 7/6?

7. Estimate the largest value ofthat allowse* to be approximated to 1% accu-
racy by the following partial sum

e’ ~1+x.
8. Estimate the largest value afthat allowse* to be approximated t0.01%
accuracy by the following partial sum
2

X
X ~v
e ~1+x+—2!.

9. How many terms in the series
2 3
X T
T

must be taken to approxima¢é to 0.01% accuracy fox = 1? Forx = 2?
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10. Find two different Taylor series to represent the function

Fl) = &
X)=—
32
such that one series is
f(x) =ap+ai(x — 1) +ax(x — D>+
and the other is
) =bo+bi(x —2) +bg(x =22+

Show thatbh, = a,/2" for any value ofn. Find the interval of convergence
for each series (the ratio test may be used). Which series must you use in the
vicinity of x = 3? Why?

11. Find the Taylor series in powers of — 10) that represents the function(k).
12. Using the Maclaurin series fer*, show that the derivative @f is equal tae*.

13. Find the Maclaurin series that representgtanWhat is its radius of conver-
gence?

14. Find the Maclaurin series that represents cosh{Vhat is its radius of conver-
gence?

15. A certain electronic circuit produces the following sawtooth wave,
a(-T —1t), —T <t <-T/2

f@) = at, —T/2<t<T/2
a(T —t), -T/2<t<T,

wherea andT are constants andrepresents the time. Find the Fourier series
that represents this function. The definition of the function given is for only an
interval of length Z°, but the Fourier series will be periodic. Make a graph of
the function and of the first two partial sums.

16. Find the Fourier series that represents the square wave

0, —-T/2<t<0
A =
@) { Ao, O0<t <T/2,

whereAq is a constant and is the period.
17. Find the Fourier series to represent the function

e, O<t<m
A(t) = ’
) { 0, elsewhere

Your series will be periodic and will represent the function only in the region
O<t<m.

a) Use a sine series.
b) Use a cosine series.
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18. Find the Fourier transform of the functierexp(—(x — xo)2/b), wherea and
b are constants.

19. Find the Fourier transform of the functiam—"1*!.

20. Find the one-sided Fourier sine transform of the functien®*

21.

a) Find the Laplace transform of the functiari(b? + r2), wherea andb are
constants.

b) Find the Fourier transform of the same function.

22. Show thatZ {r cos(kr)} = (s2 — k?)/(s% + k?)2.



Calculus With
Several
Independent
Variables

Preview

In this chapter, we discuss functions of more than one independent variable. For
example, if you have a function of three independent variables, the function will
deliver a value of the dependent variable if three values are specified: one value
of each of the three independent variables. Differential calculus of such func-
tions begins with the differential of the function, which represents an infinitesimal
change in the dependent variable resulting from infinitesimal changes in the inde-
pendent variables and consists of a sum of terms. Each term consists of a partial
derivative with respect to an independent variable multiplied by the differential of
that variable (an infinitesimal change in that independent variable). Maximum and
minimum values of functions can be found using partial derivatives. There are
two principal kinds of integrals that have integrand functions depending on several
independent variables: line integrals and multiple integrals.

Principal Facts and Ideas

1. Functions of several independent variables occur frequently in physical chem-
istry, both in thermodynamics and in quantum mechanics.

2. A derivative of a function of several variables with respect to one independent
variable is a partial derivative. The other variables are treated as constants
during the differentiation.

3. There are some useful identities allowing manipulations of expressions con-
taining partial derivatives.

4. The differential of a function of several variables (an exact differential) has one
term for each variable, consisting of a partial derivative times the differential
of the independent variable. This differential form delivers the value of an

189
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infinitesimal change in the function produced by infinitesimal changes in the
independent variables.

5. Differential forms exist that are not the differentials of any function. Such a
differential form delivers the value of an infinitesimal quantity, but it is not
the differential of any function. Such a differential form is called an inexact
differential.

6. Anintegral of a differential with several independent variables is a line integral,
carried out on a specified path in the space of the independent variables.

7. The line integral of an exact differential depends only on the endpoints of the
path, but the line integral of an inexact differential depends on the path.

8. A multiple integral has as its integrand function a function of several variables,
all of which are integrated.

9. The gradient operator is a vector derivative operator that produces a vector
when applied to a scalar function.

10. The divergence operator is a vector derivative operator that produces a scalar
when applied to a vector function.

11. Relative maxima and minima of a function of several variables are found by
solving simultaneously the equations obtained by setting all partial derivatives
equal to zero.

12. Constrained maxima and minima of a function of several variables can be
found by the method of Lagrange multipliers.

Objectives

After studying this chapter, you should be able to:

1. write formulas for the partial derivatives and for the differential of a function
if given a formula for the function and use these in applications such as the
calculation of small changes in a dependent variable;

2. perform a change of independent variables and obtain formulas relating differ-
ent partial derivatives;

3. use identities involving partial derivatives to eliminate undesirable quantities
from thermodynamic formulas;

. identify an exact differential and an integrating factor;
. perform a line integral with two independent variables;
. perform a multiple integral,

. change independent variables in a multiple integral;

. use vector derivative operators;

. find constrained and unconstrained maximum and minimum values of func-
tions of several variables.

© 00 N O O b~

Functions of Several Independent Variables

A function of several independent variables is similar to a function of a single inde-
pendent variable except that you must specify a value for each of the independent
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variables in order for the function to provide a value for the dependent variable. For
example, the equilibrium thermodynamic properties of a fluid (gas or liquid) sys-
tem of one substance and one phase are functions of three independent variables.
If we choose a set of values for the temperatdre the volume,V, andn, the
amount of the substance in moles, then the other thermodynamic properties, such
as pressureR, and thermodynamic enerdy, are functions of these variables. We

can write

P = P(T,V,n) (7.1a)
U = U(T,V,n) (7.1b)

We can choose any three of the variables as independent variables so long as at
least of them is proportional to the size of the system. For example, we could also
write

V = V(T,P,n)
U = UP,V,n) (7.2)

and so on. We assume that the functions that represent the behavior of physical
systems argiecewise continuous with respect to each variable. That is, if we tem-
porarily keep all but one of the independent variables fixed, the function behaves as
a piecewise continuous function of that variable. We also assume that the function
is piecewise single-valued.

In physical chemistry, we sometimes work with mathematical formulas that
represent various functions. For example, if the temperature of a gas is fairly high
and its volume is large enough, the pressure of a gas is given to a good approxima-
tion by the ideal gas equation

nRT _ RT
vV oV,

P=P(T,V,n) = , (7.3)
whereT is the temperature on the Kelvin scalds the amount of gas in moleg,
is the volume, anak is the ideal gas constant. The molar volurig, is equal to
V/n.

In addition to formulas, functions can be represented by graphs, by tables of
values, or by infinite series. However, graphs, tables, and series become more
complicated when used for a function of several variables than for functions of a
single variable.

Figure 7.1 shows the dependence of the pressure of a nearly ideal gas as a
function of the molar volumeV,, . With only two axes on our graph, a curve can
show the dependence & on V,, only for a fixed value off'. The figure shows
curves for several members of a family of functionsVyf, each for a different
value ofT.

Figure 7.2 is a perspective view of a three-dimensional graph represéhtag
a function ofV,, andT. The value ofP is given by the height from the horizontal
plane to a surface, which plays the same role as the curve in a two-dimensional
graph. It is fairly easy to read quantitative information from the two-dimensional
graph in Figure 7.1, but the perspective view in Figure 7.2 is more difficult to read
numbers from. If you have more than two independent variables, a graph cannot
be constructed. Sometimes attempts are made to show roughly how functions of
three variables depend on their independent variables by drawing a perspective
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5 X 10°

P—— (Nm~2)

1% 10°

0 0.05 0.1
Vip— (m® mol™ ")
Figure 7.1 » The pressure of a nearly ideal gas as a function of the molar volgnat various
fixed temperatures.

Figure 7.2 » The pressure of a nearly ideal gas a functioivgfandT .
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view of three axes, one for each of the independent variables, and then trying to
communicate the approximate value of the dependent variable by a density of dots
placed in the diagram.

Tables of values are also cumbersome with two or more independent variables,
since a function is now not a set of ordered pairs of numbers but a set of ordered
sets of three numbers or four numbers, and so forth. For two independent variables,
we need a rectangular array, with values of one independent variable along the top
and values of the other along one side, and values of the dependent variable in the
body of the array. For a third independent variable, we would need a different sheet
of paper for each value of the third variable. The most common way to represent a
function of several variables is with a mathematical formula.

Changes in a Function of Several Variables

Many times in physical chemistry we do not have an accurate representation of a
function representing some physical variable. Generally we are more interested in
changes in a function than in the entire function, and in some cases we can find
changes in a function even if we do not know the entire function. We now discuss
changes in a function. Consider a gas contained in a cylinder with a movable piston
and a valve through which additional gas can be admitted or removed, and let the
entire system be immersed in a constant-temperature bath. For the present, we
keep the valve closed, so thais fixed (the system is now @osed system). Let

us now make an infinitesimal chand® in the volume of the gas, keepimgand

T fixed. If n andT are both fixed,P will behave just like a function of the one
variableV. The change irP is given in the same way as with a function of one
variable:

dP = (Z—‘};) dV (nandT fixed), (7.4)

whered P/dV is the derivative ofP with respect tov.

Partial Derivatives

We adopt a new notation, replacing tliesymbols by symbols that are slightly
distorted lowercase Greek deltas and adding subscripts to specify the variables that
are being held fixed.

9P
dp = <—) dV  (n andT fixed). (7.5)
v ), .

The quantity(d P/0V),. r is called thepartial derivative of P with respect toV

at constank andT. The partial derivative is obtained by the differentiation tech-
niques of Chapter 4, treatingandT like ordinary constants. There are as many
partial derivatives of a given function as there are independent variables on which
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it depends. For an ideal gaB,is a function ofT’, V, andn.

p RT RT

(), - (], -3 oo
n.T n, T

<g_;)) _ (aiT [ﬂiTD =$ (n andV fixed) (7.6b)
n,vV nV

(3_”) _ (i[”RTD _ BT (7 andvfixed).  (7.60)

Each of these partial derivatives is obtained by the usual differentiation technique,
treating the other variables as constants.

Differentials

If we make an infinitesimal chang&V in the volume and a changéT in the
temperature of the gas while keepindixed, the change iP is the sum of two
expressions like that in Eq. (7.5).

P P
dP = (a_) dv + (8—) dT  (n fixed). (7.7)
A% n,T T n,V

Each term of this equation is the change due to the change in one independent vari-
able, and each patrtial derivative thus is taken with the other independent variables
treated as constants. If we make the chanjésn V, dT in T, anddn in n these
changes affecP separately, and we can write for the total infinitesimal change in

P,
P 9P 9P
dP = (—) dv + (—) dT + (—) dn. (7.8)
aV n,T aT n’v 8I’l T,V

The infinitesimal changé P given by this expression is called tddferential of
P, or sometimes théotal differential of P. It is a sum of terms, one for each
independent variable. Each term gives the effect of one variable with the other
treated as constants.

If we have a functiory that depends omindependent variablesy, x2, x3, . . .,
Xy, its differential is

dy = Z (8_y> ,dxi (7.9)

ox;
i=1 !

where the subscript’ stands for keeping all of the variables exceptifpfixed in
the differentiation. This equation is sometimes calledftimelamental equation of
differential calculus.

The expression fad P for an ideal gas is

RT R RT
R av a2 an (7.10)

dP =
V2 Vv Vv
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For small but finite changes, an approximate version of this can be written

ap~ R Ny (1R p BT, (7.11)
A — — An. :
V2 v v

EXAMPLE 7.1 Use Eq. (7.11) to calculate approximately the change in pressure
of an ideal gas if the volume is changed from@@D | to 198001, the temper-
ature is changed from 29 K to 29900 K, and the amount of gas in moles |s
changed from D000 mol to 10015 mol.

SOLUTION »
Ap ~ _ (10000mob(8:3145] K™ mol1)(29815K) (_0 200x 10-3 m3>
(0.020000m3)° ’
1.0000mol)(8.3145J K~ mol*
+ ¢ 0).(()2oooom3 > (0.85K)
-1 -1
n (8.3144J %.ozgo%lm);zgalw) (0.0015 mo)
~ 1.779%x 10°Nm~2 = 1.779x 10° Pa

where we use the fact that =J1 N m. <

EXAMPLE 7.2 Compare the result of the previous example with the correct
value of the pressure change.

SOLUTION » We can calculate the actual change as follows. Let the initial values 6f
andT be calleduq, V1, andTy, and the final values be called, V», andT>»,

AP = P(np, Vp,T2) — P(n1, V1, T1)
noRT>, n1RTy
Vo Vi

The result of this calculation is.797 x 103N m~2 = 1.797 x 103 Pa, so that our approximate
value is in error by about 1%. <

In these examples the exact calculation could be made more easily than the ap-
proximation. However, in physical chemistry it is frequently the case that a formula
for a function is not known, but values for the partial derivatives are available, so
that approximation can be made while the exact calculation cannot. For example,
there is usually no simple formula giving the thermodynamic energy as a function
of its independent variables. However, the differential of the thermodynamic en-
ergy of a system containing only one substance as a functi@n Bf andn can be

written as
oU oU oU
dU = | — dT + | — dP + | — dn. (7.12)
aT P,I‘l aP T,ﬂ 8” P,T

Experimental values of these partial derivatives are frequently available.
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|[EXERCISE 7.1 b | For a sample of D00 mol (015384 kg) of liquid carbon

tetrachloride, CGJ
v = 1294JK 1
aT P.n

9
< U) — 851x 10 %Jatm?
T.n

aP

where these values are for a temperature ¢f@nd a pressure of@00 atm.
Estimate the change in the energy o®d0 mol of CC}, if its temperature is
changed from 2@°C to 400°C and its pressure from.Gatm to 1000 atm.

[«

EXERCISE 7.2 D> | The volume of a right circular cylinder is given by

V = nrh,

wherer is the radius and the height. Calculate the percentage error in the
volume if the radius and the height are measured and a 1% error is made in
each measurement in the same direction. Use the formula for the differential,
and also direct substitution into the formula for the volume, and compare the
two answers. [«

Change of Variables

In thermodynamics there is usually the possibility of choosing between different
sets of independent variables. For example, we can consider the thermodynamic
energyU of a one-component, one-phase system to be a functi@n Bf andn,

U=U(T,V,n) (7.13)
or a function ofT", P, andn,
U =U(T, P,n). (7.14)

The two choices lead to different expressionsdor,

U U U
dU = (—) dT + (—) dv + <—> dn (7.15)
8T V,n 3P T,n 3l’l T,V

oUu oU ou
dU = (—) dT + (—) dP + (—) dn. (7.16)
AT / p.n P )1 n an Jr p

There are two different derivatives &f with respect to7: (0U/dT)y,, and
(0U/dT)p.». These derivatives have different values for most systems. If we did
not use the subscripts, there would be no difference between the symbols for the
two derivatives, which could lead to confusion.

and
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EXAMPLE 7.3 Express the function = x(x, y) = ax? + bxy + cy? in terms
of x andu, whereu = xy. Find the two partial derivativesz/dx), and
(92/0x),.

SOLUTION »

Cl/l2

x2

9 d
<j> = <— (ax2+bxy+y2>> = 2ax + by
ax y ax ¥

<Bz> 2cu? (3z> bu  2cu?
— = 2ax — =—)] —— - .
ax /, x2 ax y X x3

In this example, there was no difficulty in obtaining an expression for the dif-
ference betwee(®z/dx), and(dz/dx),, because we had the formula to represent
the mathematical function. In thermodynamics, it is unusual to have a functional
form. More commonly we have measured values for partial derivatives and require
a separate means for computing the difference between partial derivatives.

We will obtain a formula of the type

U oUu
Y (&) 42 (7.17)
T V,n or P.,n

where the question mark indicates an unknown term. The procedure that we use is
not mathematically rigorous, but it does give the correct answer. To construct the
partial derivative on the left-hand side of our equation, we begin with an expression
for the differentiald U that contains the derivative on the right-hand side. This is the
same as Eq. (7.16). The first thing we do is to “divide” this differential expression
by dT, because the derivative we want on the left-hand sidei&dT)y ,. This
cannot be done legitimately, becau&E is an infinitesimal quantity, but we do it
anyway. We get

dUu oU dT U dP U dn

— == — + | = — + | — —. (7.18)

dT oT ) p, dT oP ), dT on ) ppdT
This equation contains several things that look like ordinary derivatives. However,
we must interpret them as partial derivatives, since we have specified that we want
to haveV andrn constant. We change the symbols to the symbols for partial deriva-
tives and add the appropriate subscripts to indicate the variables that are being held

fixed. These variables must be the same in all four of the derivatives to keep a valid
equation. We wanV¥ andn to be constant, so we write

U (U T N U P N U an
oT V,n_ AT ) p o \OT )y, \OP )7, \OT )y, \0On)p,\0T /)y,
(7.19)

The partial derivative of” with respect tol’ is equal to unity, no matter what is
held constant, and the partial derivativenolvith respect to anything is zerosfis

constant, so
aU U oUu aP
WY (YY) L (2Y) (22 (7.20)
aT )y, oT Pon P T.n oT Vn

z = z(x,u):ax2+bu+

<
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Equation (7.20) is an example of a set of useful equations. If each symbol is con-
sistently replaced by another symbol, we will have a useful equation for other

variables besides the thermodynamic energy. We regard this as our first identity
for partial derivatives, which we call theriable-change identity.

EXAMPLE 7.4 Apply the foregoing method to the function in Example 7.2 and
find the relation betwee(®z/0x),, and(dz/dx),.

SOLUTION »
) () () (2)
ax /, — \ax y dy /) \dx/,
<8—2> = bx+2€y_bx+26—u
ay / X
WY _[O N
<a>u B |:8x <X>]Lt_ x?
Thus
01\ _ (32 _bu_2u
(a)u_<8x)y X X3
This agrees with Example 7.2, as it must. <
|EXERCISE 7.3 b | Complete the following equations.
aH as EN
(@) (a ) ( T) (b) (W)U,n = (W)U,V + 7
(c) (3;) = (& )¢ w (d) Apply the equation of part c if
z = cos(x/u) + e ¥°/"* + 4y /u
andw = y/u.
Kl

Additional Useful Relations Between
Partial Derivatives

It is fairly common in thermodynamics to have measured values for some partial
derivative such asdH/dT)p ,, Which is equal to the heat capacity at constant
pressure. However, some other partial derivatives are difficult or impossible to
measure. It is convenient to be able to express such partial derivatives in terms
of measurable quantities. We now obtain some identities that can be used for this
purpose.

The next identity is theeciprocal identity, which states that a derivative is equal
to the reciprocal of the derivative with the roles of dependent and independent

variables reversed:
B 1
<_y) - - (7.21)
ax /., (0x/0y)zu

The same variables must be held constant in the two derivatives.
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EXAMPLE 7.5 Show that

(ap) B 1
WV )ur @V/OP)ur

for an ideal gas.

SOLUTION »
gﬁ _ _nRT
(av)n,T B Vz
1 3 1 . p?
®V/dP)yr =~ —nRT/P2 nRT
(nRT/V)®> _ nRT
T " aRT  v2~
|
|EXERCISE 7.4 » | Show that the reciprocal identity is satisfied (dy /dx)
and(dz/dz), if
. X -
z=sin{ — and x=ysin " (z).
y
[«

There are two kinds aecond partial derivatives. If z = z(x, y) we can differ-
entiate twice with respect to:

92 a [
T Z (=) | (7.22)
9x2 0x \ 0x y
_y
In this casey is held fixed in both differentiations. In addition, there amieed
second partial derivatives, such as the derivative with respectit@nd then with

respect toy:
I (7.23)
dydx | dy \ dx y x' ’

Since both variables are shown in the symbol, the subscripts are usually omitted,
as in the symbol on the left. However, if there is a third independent variable, it
must be held constant and is listed as a subscript:

92U 3 [oU
= —(— . 7.24
(8V8T)n [av(w)v,l (7.24)
)7,

The Euler reciprocity relation is an identity relating the mixed second partial
derivatives. If; = z(x, y) is a differentiable function, then the two different mixed
second partial derivatives must equal each other:

327 _ 92z
dydx  dxdy |

(7.25)
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EXAMPLE 7.6 Show that(d2P/dV aT) = (3°P/3dT V) _for anideal gas.

SOLUTION »

[EXERCISE7.5 »|  Show by differentiation tha®2z/9y 9x) = (3%z/dx dy)
if

7= e sin(x) cos(y) .

[«

An important set of identities obtained from the Euler reciprocity relation and
thermodynamic equations is the setMéxwell relations. These relations allow
you to replace a partial derivative that is difficult or impossible to measure with
one that can be measured. One of the Maxwell relations is

as\ (0P

oV )r, \oT )y,
This relation can be used to repla¢g’), by (3%
easily measured.

Another useful identity is theycle rule

D06 ] o
ax /), \9z/),\dy/,

Many people are at first surprised by this identity, thinking at first that the right-
hand side should equall instead of—1. We will “derive” this in the same non-
rigorous way as was used to obtain Eqg. (7.20). We write the differentialasf a

function ofx andz:
0 0
dy = (—y) dx + (—y) dz. (7.27)
ax /, 9z /.

This equation delivers the value dfy corresponding to arbitrary infinitesimal
changes inc andz, so it is still correct if we choose values @t and dx such
thatdy vanishes. We now “divide” nonrigorously hix, and interpret the “quo-
tients” of differentials as partial derivatives, remembering thig held fixed by
our choice that/y vanishes,

()G EE), o

IMortimer, op. cit., p. 140.

)Vn, which is much more
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Since the partial derivative afwith respect tor is equal to unity, this equation be-
comes identical with Eqg. (7.26) when the reciprocal identity is used. Our derivation
is indefensible, but the result is correct.

EXAMPLE 7.7 For the particular function = zIn(x) show that the cycle rule
Eq. (7.26) is correct.

SOLUTION > (39y/dx); = 2/x, (3x/d2)y = €"/*(=%), (02/9y)x = 1/In(x)

Oy /002 0x /02y (02/0y)x = /0 HA/NE) = —(De i) (k)
=-heviz=-2=11 <
|EXERCISE 7.6 b | For the particular functiony = x2/z, show that
Eq. (7.26) is correct. [«

The final identity that we present in this section is the partial derivative version
of thechainrule. If z = z(u, x, y) and ifx can be expressed as a function:ob,

andy, then
d d d
).~ (). )| @29
ay u,v dx u,v 8y u,v

This is very similar to Eq. (4.29). Notice that the same variables must be held
fixed in all three derivatives.

EXAMPLE 7.8 Show that ifz = ax? + bwx andx = uy, then Eq. (7.29) is
correct.

SOLUTION »
0z ox
(&), 5)..
0z
)..

The following are commonly measured quantities that are related to partial
derivatives:

(2ax + bw)(u) = 2au’y + buw

a
|:— (auzyz—l—bwuy)] = 2au2y+buw.
dy uw

<

» heat capacity at constant pressure

(3}1) (85)
cr=(=—=) =71(=
T ) ., T ) p.,

» heat capacity at constant volume

U as
Cy =|— =T |—
T )y, T )y,
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» isothermal compressibility

1 /0V
Kk = —— | —
V\OP /)1,

» adiabatic compressibility

1 /9V
ks =—— | —
V\oP /g,

» coefficient of thermal expansion

1[0V
a=—|—
v\er ),

There are a number of useful relationships among these quantities.

EXAMPLE 7.9 Show thatCp/Cy = k7 /ks.

SOLUTION »

>

P.n n S,n
aT V.n 0 \n aT S.n

where we have used the cycle rule twice. We use the reciprocal identity to write

By the chain rule

Exact and Inexact Differentials

The differential of a function is called aexact differential. There can also be
differential forms that are not differentials of any function. A genelifferential
form or pfaffian form can be written

du = M(x,v)dx + N(x,v)dy. (7.30)

If this is the differential of a function, the and N must be the appropriate
derivatives of that function. Pfaffian forms exist in whigh and N are not the
appropriate partial derivatives of the same function. In this ¢ases called an
inexact differential. It is an infinitesimal quantity that can be calculated from spec-
ified values ofdx anddy, but it is not equal to the change in any functiorncaind

y resulting from these changes.
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In order to tell whether some differential form is an exact differential or not, we
can use the Euler reciprocity relation. If there exists a funciica u(x, y) such

that
u u
M(X,y)=<_> and N(X,)’)=(_) s
ax ), a0y )«

then from the Euler reciprocity relation,

02u . 02u
dxdy  dyox’
which means that if the differential is exact
oN oM . .
(—) = (—) (exact differential), (7.31)
dx y dy /.

Equation (7.31) represents a necessary and sufficient condition for the differential
of Eqg. (7.30) to be exact. That is, if the differential is exact, Eq. (7.31) will be
obeyed, and if Eq. (7.31) is obeyed, the differential is exact.

EXAMPLE 7.10 Show that the differential

9x2 3x2
du:(ny—I—i)dx—i-(xz—iz)dy
y

y
is exact.
SOLUTION »
0 92 g2
— 2y + — = 2 — —
()] -5
3 2
()] -
0x y . y2
<
|EXERCISE 7.7 B | Determine whether each of the following is an exact dif-
ferential.
(@) du = (2ax +by?) dx + (bxy)dy. (b) du = (x + y)dx + (x + y)dy
(€) du = (x2 + 2x + 1) dx + (y2 + 25y + 24) dy.
[«

Differential forms with three or more terms can also either be exact or inexact.
The Euler reciprocity relation provides a test for such differentials. For example, if

du=M(x,v,z)dx + N(x, y,z2)dy + P(x,y, z)dz, (7.32)

then in order for this to be an exact differential, the three equations must be obeyed:

(), - ()
ay vz ox .z

oN 0P

(a—z)x,y - (@)m (7:34
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(), -()
0z Xy 0x vz

|EXERCISE 7.8 b | Show that the following is not an exact differential =
(2y)dx + (x)dy + cos(z) dz. [«

There are two important inexact differentials in thermodynamics. If a system
undergoes an infinitesimal process (one in which the independent variables speci-
fying the state of the system change infinitesimalliy) denotes the amount of heat
transferred to the system add denotes the amount of work done on the system.
Both of these quantities are inexact differentials. For a fluid system undergoing a
reversible process,

dwyey = —PdV, (7.36)

whereP is the pressure of the system a¥ids its volume.

EXAMPLE 7.11 Show that for an ideal gas undergoing a reversible process with
n fixed, dw,., is inexact.

SOLUTION » We choosd” andV as our independent variables and write the differential form

dw=MdT + NdV (nfixed). (7.37)

Comparison with Eq. (7.36) shows thet = 0 andN = P = —nRT/V. We apply the test for
exactness, Eq. (7.31),

oM
(), -2
oV )rn

(3N) [a ( nRT>:| nR
o B (A =-"" 20
T )y T V )y v

<
|EXERCISE 7.9 b | The thermodynamic energy of a monatomic ideal gas is
given approximately by
3nRT
U= ”2 : (7.38)

Find the partial derivatives and write the expressiondorusing7, V, and
n as independent variables. Show that the partial derivatives obey the Euler
reciprocity relations in Egs. (7.33-7.35). [«

In thermodynamics, quantities such as the thermodynamic energy, the volume,
the pressure, the temperature, the amount of substances, and so forth, are functions
of the variables that can be used to specify the state of the system. They are called
state functions. The differentials of these quantities are exact differentials. Work
and heat are not state functions. There is no such thing as an amount of work or an
amount of heat in a system. We have already seen in Example 7.1duthatis
not an exact differential, and the same is trud offor an irreversible process. An
infinitesimal amount of heat is also not an exact differential. However, the first law
of thermodynamics states th&l/, which equalsig + dw, is an exact differential.
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Integrating Factors

Some inexact differentials become exact differential if the inexact differential is
multiplied by a function called aimtegrating factor for that differential.

EXAMPLE 7.12 Show that the differential
du = (2ax2 + bxy)dx + (bx2 + 2cxy) dy

is inexact, but that Ax is an integrating factor, so thai:/x is exact.

SOLUTION »
bx

a
[— (2ax2 + bxy)i|
dy ¥
9 .2
— (bx“ + 2cxy) = 2bx + 2cy # bx
ox y
sodu is inexact. After we divide by we obtain the partial derivatives
)
|:—(2ax + by):| = b
dy

X

Il
S

[i (bx + 2cy):|
0x

y

so(1/x) du is exact. <

|EXERCISE 7.10 | Show that the differential

xlnx  x?2
(l+x)dx+[ v +—]dy

is inexact, and that/x is an integrating factor. [«

There is no general method for finding an integrating factor, although we will
discuss a method that will work for a particular class of differential forms in Chap-
ter 8. However, itis true that if a differential possesses one integrating factor, there
are infinitely many integrating factors for that differential.

Line Integrals

In Chapter 5, we found that a finite increment in a function could be constructed
by a definite integration. lt; andxg are values of the single independent variable
X, we can write

X1

F (x1) — F (xg) = /X1 f(x)dx = / dF, (7.39)
X0 B

0

where JF
fx) = I (7.40)
X

We can think of the integral of Eq. (7.39) as being a sum of infinitesimal increments
equal tof (x) dx and can think of moving along theaxis fromxg to x; as we add
up these increments.
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Flxy, y1) — Flxg, vo) -_ng

F —»

surface representing
F = Flx, y)

Figure 7.3 » Diagram illustrating the line integral of an exact differential.

We now consider the analogous process for a differential with two or more
independent variables. For two independent variablesnd y, we might try to
define

X1,Y1 X1,Y1
/ dF = / [M(x,y)dx + N (x, y)dy]. (7.41)
X0,)0 X0,Y0

However, this integral is not yet well defined. With a single integration variable,
there is only one way to integrate along its axis. With a pair of integration variables
the situation is different. This is shown schematically in Fig. 7.3. The pair of values
(xo0, yo) represents one point in they plane, andx1, y1) represents another point

in the plane. Many different paths in the plane can join the two points. In order
to complete the definition of the integral in Eq. (7.41), we must specify the path
in the x-y plane along which we integrate (add up the increments) from the point
(x0, yo) to the point(x1, y1). We introduce the notation

de:/ [M(x,y)dx+N(x,y)dy], (7.42)
C C

where the lette€ stands for the curve joining the two points. The integral is called
alineintegral or apath integral.

We can think of Eq. (7.42) as representing a sum of many infinitesimal contri-
butions, each one given by the appropriate infinitesimal valdg-afesulting when
x is changed bydx andy is changed byly. However, these changeb anddy
are not independent. They must be related so that we remain on the chosen curve
during the integration process. A curve in the plane specifiey as a function
of x orx as a function ofy. For a given curve, we can write

y = yx) (7.43)
x = x(y) (7.44)

In order to calculate a line integral such as that of Eq. (7.42), we repldne
M (x, y) by the function ofx given in Eqg. (7.43), and we replagein N (x, y) by
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the function ofy given in Eq. (7.44). With this replacemer is a function of
x only, andN is a function ofy only, and each term becomes an ordinary one-
variable integral:

Y1

/dF / x y(x) dx—i—/ Nly,x(y)]dy. (7.45)

Y0
In these integrals, specification of the cutweletermines not only what the begin-
ning point(xop, yo) and the final pointxs, y1) are, but also what the functions are
that replacey in the dx integral andx in thedy integral.

EXAMPLE 7.13 Find the value of the line integral

/ dF = / [(2x + 3y)dx + (3x + 4y)] dy,
C C

wherec is the straight-line segment given bpy= 2x + 3 from (0, 3) to (2, 7).

SOLUTION » In the first term,y must be replaced byx2+ 3, and in the second termmust
be replaced byl/2)(y — 3),

2 7
/dF /[2x+3(2x+3)]dx+/3 [g(y—3)+4y]dy
C

8x2 o 2 11/2)y2 9 !
2 ) T 2

3
|EXERCISE 7.11 B> | Show that the differential in the preceding example is
exact. [«

=126

Line Integrals of Exact Differentials

There is an important theorem, which we now state without proof:
Theorem 1 If dF is an exact differential, then the line integral fc dF depends
only on the initial and final points and not on the choice of curve joining these
points. Further, the line integral equals the value of the function F at the final
point minus the value of the function at the beginning point. We say that the line
integral of an exact differential is path-independent

For example, if(xg, yo) is the initial point of the line integration and4, y1) is
the final point of the line integration, then

oF oF
Joor = [1GE) e+ (55) ]
C ox ay
= F (x1,y1) — F (x0,y0) (dF exac) (7.46)
We have writtenM and N as the partial derivatives which they must be equal to
in order ford F to be exact (see Section 7.4). df: is not an exact differential,
there is no such things as a functimyand the line integral will depend not only on

the beginning and ending points, but also on the curve of integration joining these
points.
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EXAMPLE 7.14 Show that the line integral of Example 7.12 has the same value
as the line integral of the same differential on the rectangular path {@08)
to (2, 3) and then ta2, 7).

SOLUTION » The path of this integration is not a single curve but two line segments, so
we must carry out the integration separately for each segment. This is actually a simplification,
because on the first line segmentis constant, s@y = 0 and thedy integral vanishes. On the
second line segment,is constant, sdx = 0 and thedx integral vanishes. Therefore,

2 7
/dF:/ (2x+9)dx+/ (6+4y)dy.
C 0 3

This follows from the fact that = 3 on the first line segment, and from the fact that 2 on the
second line segment. Performing the integration yields

242 2 42\[
/sz(——l—Qx) +<6y—|——> =126
c 2 2
0 3
<«
EXERCISE 7.12 b | (a) (a) Show that the following differ-

ential is exact:
dz = (ye*)dx + (xe?) dy

(b) Calculate the line integra/. dz
on the line segment froni0, 0)
to (2,2). On this line segment,
y =xandx = y.

(c) Calculate the line integral. dz
on the path going from(0, 0) to
(0, 2) and then ta2, 2) (a rectan-
gular path).

Line Integrals of Inexact Differentials

If a differential is not exact, two line integrals beginning and ending at the same
points will not necessarily yield the same result.

EXAMPLE 7.15 Show that the differential
du = dx +xdy

is inexact and carry out the line integral frai@, 0) to (2, 2) by two different
paths: path 1, the straight-line segment fr@n0) to (2, 2); and path 2, the
rectangular path frond0, 0) to (2, 0) and then ta2, 2).
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SOLUTION » Test for exactness:

0
- (l)]
|:8y x
0 (x)
— X
0x y
The differential is not exact.

Path 1:
2 2
/ du:/ dx—l—/ xdy:/ dx—l—/ ydy,
C1 C1 C1 0 0

where we obtained the second integral by using the factthkatr on the straight-line segment of

path 1,
2
y
du = x|2+ —
./cl 0" 2

Il
o

1+0.

2
=4
0

2 2
/ dx-i—[ xdyzf dx—l—/ 2dy
C2 Co 0 0

X2+ 2y[3=2+4=6.

Path 2,

/ du
Cz

The two line integrals have the same beginning point and the same ending point, but are not equal,

because the differential is not an exact differential. <
|EXERCISE 7.13 | (a) Carry out the two line integrals of
du from Example 7.15 frong0, 0)
to (x1, y1).

(b) Integrate on the rectangular path
from (0, 0) to (0, y1) and then to
(1, y1)-

(c) Integrate on the rectangular path
from (0, 0) to (x1, 0) and then to

(x1, y1)-

Line Integrals with Three Integration Variables

There are also line integrals of functions of three independent variables. The line
integral of the differentiadlu is

/du:/ [M(x,y.2)dx + N(x,y,z)dy + P(x, y,2)dz], (7.47)
C C

where C specifies a curve that givesand z as functions ofx, or x andy as
functions ofz, or x andz as functions ofy. If the beginning point of the curvé
is (xo0, Yo, zo) and the ending point iéc1, y1, z1), the line integral is

X1 y1
/Cdu = [wMly@awlacs [N zm]d

0 Yo

+ f TP @),y (). 2] dz. (7.48)

0
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If du is an exact differential, themis a function, and

/ du = u(x1, y1,z1) — u(xo, y0, zo) (if du is an exact differential (7.49)
c

Line integrals in Thermodynamics

In thermodynamics, thequilibrium state of a system is represented by a pointin a
space whose axes represent the variables specifying the state of the system. A line
integral in such a space representeversible process. A cyclic processis one that

begins and ends at the same state of a system. A line integral that begins and ends
at the same point is denoted by the symipafu. Since the beginning and final
points are the same, such an integral must vanigh i an exact differential:

fdu =0 (if du is exact). (7.50)

If du is inexact, a line integral that begins and ends at the same point will not
generally be equal to zero.

|EXERCISE 7.14 b | Carry out the cyclic line integral afw,.,, for 1.000 mol

of an ideal gas, using the following reversible cycle: Starting Wit 5000 K

andV = 2001, the system is expanded at constant temperature to a volume
of 40.01. The system is cooled at constant volume t0.8®Q The system is
then compressed to a volume of.Q0 at a constant temperature of 30&. It

is finally heated at constant volume to GD&. [«

7.6 I Multiple Integrals

While a line integral can be thought of as adding up infinitesimal contributions
represented as a differential formialtiple integral can be thought of as adding
up contributions given by an integrand function times an infinitesimal element of
area or of volume, etc. Aouble integral is the simplest kind of multiple integral.

It is written in the form

ay prbo

I = / f(x,y)dydx, (7.51)
aip Jb1

wheref (x, y) is the integrand functior; andas are the limits of the: integration,

andb; andb, are the limits of they integration. You should think of the product

dy dx as an infinitesimal element of area in the plane.

The double integral is carried out as follows: The “inside” integration is done
first. This is the integration over the values of the variable whose differential and
limits are written closest to the integrand function. During this integration, the
other independent variable is treated as a constant if it occurs in the integrand. The
result of the first integration is the integrand for the remaining integration. The
limits b1 andb, can depend on, but the limitse; anda> must be constants.
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EXAMPLE 7.16 Evaluate the double integral
a prb
I = / f (x2—|—4xy)dydx.
0 JO
SOLUTION » The integration ovep is carried out, treating as a constant:
b
b Ay
/ (x2 +4xy)dy = (xzy + ﬂ) = bx? + 2b%x.
0 2 /o
This becomes the integrand for the second integration, so that
a b3 2022\ |
I = / (bx2+2b2x>dx: i—{— il
0 3 2 0
b 3
= % + b%a®.
<
EXAMPLE 7.17 Evaluate the double integral
a p3x 5 5
/ / (x“+2xy +y“)dydx.
0 JO
SOLUTION » The result of the inside integration is
3x
3x 2% 2 3
/ (x2+2xy—|—y2> dy = x2y+—y+y—
0 2 3 0
= 33+ o+ o =213
Thex integration gives
a 214" 2144
/ 213 dx = | =
0 0
<
EXERCISE 7.15 b | Evaluate the double integral
4 prm
/ / xsin(y) dydx.
2 JO

The Double Integral Represented as a Volume

In Section 5.2 we saw that a definite integral with one independent variable is
equal to an area in a graph of the integrand function between the axis and the
integrand curve. A double integral is equal to a volume in an analogous way. This
is illustrated in Fig. 7.4, which is drawn to correspond to Example 7.18. In the
x-y plane, we have an infinitesimal element of a#leady, drawn in the figure as
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surface for

surface for
y=0

Y —

surface for

y=x2_4 ‘2,0,0}

Figure 7.4 » The diagram for Example 7.18.

though it were finite in size. The vertical distance from the plane to the surface
representing the integrand functighs the value of the integrand function, so that
the volume of the small box lying between the element of area and the surface is
equal tof (x) dx dy.

The double integral is the sum of the volume of all such infinitesimal boxes, and
thus equals the volume of the solid bounded by.the plane, the surface repre-
senting the integrand function, and surfaces representing the limits of integration.
If the integrand function is negative in part of the region of integration, we must
take the volume above they plane minus the volume below the plane as equal to
the integral.

EXAMPLE 7.18 Calculate the volume of the solid shown in Fig. 7.4. The bpt-
tom of the solid is ther-y plane. The flat surface correspondsyte= 0, the
curved vertical surface correspondsyto= x2 — 4, and the top of the solid
corresponds tg =2 — y.

SOLUTION » We carry out a double integral witfi = 2 — y as the integrand:
2 0
V=/ / (2—y)dydx.
—2Jx2_4

4

=%—6x2+16

The inside integral is

0 )2 0
/2_4(2 —-ydy = <2y - 3)

x2—4

2 (4 B

so that
2

= 384.
-2
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surface representing

curve representing
y=5—x

* Figure 7.5 » The diagram for Exercise 7.16.

|EXERCISE 7.16 | Find the volume of the solid object shown in Fig. 7.5.
The top of the object corresponds fo= 5 — x — y, the bottom of the object
is thex-y plane, the trapezoidal face is thef plane, and the large triangular
face is they- f plane. The small triangular face corresponds te 3. [«

Multiple Integrals in Quantum Mechanics

In gquantum mechanics, the square of a wave function is the probability density for
finding a particle or particles. Since ordinary space has three dimensions, multiple
integrals with three independent variabla$p|e integrals) represent probabilities

of finding a particle in the region of integration.. For example, if the integrand
function f depends on, y, andz, we could have the triple integral

ap prba pc2
1 :/ / / f(x,y,2)dzdydx. (7.52)
a1 Jb1 Jc1

To evaluate the integral, we first integratéeom c1 to c2 and take the result as the
integrand for the double integral overandx. Then we integrate from b1 to ba,

and take the result as the integrand for the integral efesm a; to az. The limits

c1 andcz can depend oy andx, and the limitsh; andb, can depend om, but

a1 andaz must be constants. If the limits are all constants, and if the integrand
function can be factored, the entire integral can be factored, as in the following
example.
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EXAMPLE 7.19 Find the triple integral

r= a2 [ [ (M) s () sie (42 ) deay

This is anormalization integral from quantum mechanics, equal to the total
probability for finding a particle in a three-dimensional box. The integrand is

the square of the wave function for one of the states of a particle in a three-
dimensional box. The quantities, n, andk are integral quantum numbers
specifying the state of the particle. The integral is equal to the total probability
of finding a particle in the box. It is customary to choose the value of the
constantA so that the total probability equals unity, in which case the wave
function is said to b&ormalized.

SOLUTION » The integrand function is a product of three factors, each of which depends on
only one variable, and the limits of integration are constants. The entire integral can therefore be
written in factored form:

e[ [t (M) ]| [t () | [ [t (425 ]

We first carry out the integration, using the substitution= kxz/c,

c . km
/ Sir? (kﬂ—z) dz = i/ Sir (u) du.
0 c kw Jo

The integrand is a periodic function with periad so that the integral from O thr is justk times
the integral from O tor, which is given as Eq. (8) of Appendix F:

¢ kmz c 7 c
sif (222 ) dz = — k= = 2.
/0 ( c ) T2 2

The other integrals are similar, except for havingr b instead of, so that
2abc
-5
Many triple integrals in quantum mechanics are factored in the same way as in this example.

I=A

|EXERCISE 7.17 b | Find the value of the constaunt so that the following

integral equals unity.
o0 o0
A/ / e_xz_yzdy dx.
—00 J—00

Changing Variables in Multiple Integrals

Sometimes it is convenient to take a multiple integral over an area or over a vol-
ume using polar coordinates or spherical polar coordinates, and so on, instead of
Cartesian coordinates. Figure 7.6 shows how this is done in polar coordinates. We
require an infinitesimal element of area given in terms of the coordineées¢.

One dimension of the element of arealisand the other dimension jsd¢, from

the fact that an arc length is the radius of the circle times the angle subtended by
the arc, measured in radians. The element of aredisdp. If the element of area
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%

dA = area = (pd¢)(dp) Qg/\

/ wﬂ"}\

d¢

¥

=

X —

Figure 7.6 » Aninfinitesimal element of area in plane polar coordinates.

were finite, it would not quite be rectangular, and this formula would not be exact,
but it is valid for an infinitesimal element of area.

We can think of the plane as being covered completely by infinitely many such
elements of area, and a double integral over some region of the plane is just the
sum of the value of the integrand function at each element of area in the region
times the area of the element.

EXAMPLE 7.20 In Cartesian coordinates, the wave function for the ground state
of a two dimensional harmonic oscillator is

v =B exp[—a(x2 + yz)] :

Transform this to plane polar coordinates and find the valug sidfich that the
integral ofy2 over the entirec—y plane is equal to unity.

SOLUTION »
Y = Be™ %",

The integral that is to equal unity is

oo p2w 2
BZ/ f e=20% 5 dep dp.
0 0

The integral can be factored,

2 [ 2402 o 2 [ —2ap?
I =B / e < pdp/ d¢ =21 B / e P pdp.
0 0 0

The p integral is done by the method of substitution, letting= 2ap2 anddu = 4apdp. We

obtain
1\ [® B2
B2 = [ e Udu=—-—
da ) Jo 2a

24
B = /=
T

~
I
B
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|EXERCISE 7.18 b | Use a double integral to find the volume of a cone of
heighti and radius: at the base. If the cone is standing with its point upward
and with its base centered at the origin, the equation giving the surface of the

coneis
f:h(1—3>.
a

(<]
In transforming from Cartesian to plane polar coordinates, the fagtahich
is used with the product of the differential® dp is called aJacobian. The symbol
a(x, y)/0(p, @) is used for this Jacobian:

a(x,y)
//f(x,y) dxdy=//f(p,¢> d¢dp=f/f<p,q>>a(p o ds.
’ (7.53)

We will not discuss the mathematical theory, but this Jacobian is given by the
following determinant (determinants are discussed in Chapter 9):

d(x,y) _
d(p,9)

dy/dp dy/d¢

ax/dp 9x/0 ‘ | (754

Equation (9.59) gives the formula for a 2 by 2 determinant:

cos(¢) —psin(¢)
Cos(¢) pCOS(e)

dy/dp dy/d¢

9x/0p 0x/d ‘

‘=pco§(¢)+psin2(¢)=p.

(7.55)
where we have also used Eq. (7) of Appendix B. This equation gives us the same
result as we had before,

dA = element of area= pdo dp. (7.56)

The Jacobian for transformation of coordinates in three dimensions is quite
similar. If u, v, andw are some set of coordinates such that

x = x(u,v,w)
y = y(u,v, w)
z = z(u,v,w),

then the Jacobian for the transformation of a multiple integral from Cartesian co-
ordinates to the coordinatesv, andw is given by the determinant

0x/du dx/dv dx/ow
dy/ou dy/dv dy/ow || (7.57)
dz/du 9z/dv 0z/0w

d(x,y,2)
au, v, w)

The rule for expanding a 3 by 3 determinant is discussed in Chapter 9.

EXAMPLE 7.21 Obtain the Jacobian for the transformation from Cartesian |co-
ordinates to spherical polar coordinates.
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SOLUTION » The equations relating the coordinates are Egs. (2.62)—(2.64):

sin(f) cos(9) rcos(h)cos(¢p) —rsin(d) sin(¢)

sin(®) sin(¢) rcos(9)sin(¢) rsin(6)cos(¢p)
cos(¢) —rsin(9) 0

0(x,y.2)
a6, ¢)

From the expansion of a 3 by 3 determinant illustrated in Example 9.12,

0. %, _ coe0) [rz cos(6) sin(8) coL(p) + r2 sin(9) cos(@) sinz(e)] (7.58)
A, 6, ¢)
+rsin(@) [r Sir?(6) co(¢) + r2 sirk(6) sin2(¢>)]
= r2sin(0) cof(®) + r2sin3©) = r2sin(®), (7.59)
where we have used Eqg. (7) of Appendix B several times. <
|EXERCISE 7.19 b | Find the Jacobian for the transformation from Cartesian
to cylindrical polar coordinates. [«

A triple integral in Cartesian coordinates is transformed into a triple integral in
spherical polar coordinates by

// (x,y,z)dxdydz=// £, 0, $)r2sin(©) de do dr. (7.60)

An element of volume is given by

dV = dxdydz = r?sin®) d¢ do dr |.

To complete the transformation, the limitsar®, and¢ must be found so that they
correspond to the limits om, y, andz. Sometimes the purpose of transforming to
spherical polar coordinates is to avoid the task of finding the limits in Cartesian
coordinates when they can be expressed easily in spherical polar coordinates. For
example, if the integration is over the interior of a sphere of radigsntered at

the origin,¢ ranges from 0 to 2, 6 ranges from O tar, andr ranges from O ta:.

If all of space is to be integrated over,ranges from 0 to 2, 6 ranges from O to

mr, andr ranges from 0 t@o.

Vector Derivative Operators

An operator is a symbol for carrying out a mathematical operation (see Chapter
9). There are severakctor derivative operators. We first define them in Cartesian
coordinates.

Vector Derivatives in Cartesian Coordinates
Thegradient operator is defined in Cartesian coordinates by

0 ad ad
V=i—+4+j—+k— 7.61
ox +l ay + 0z ( )
wherei, j, andk are the unit vectors in the directions of they, andz axes defined
in Chapter 2. The gradient of a scalar function is a vector. The syWpahich is
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an upside-down capital Greek delta, is calldd:” If f is some scalar function of
x, vy, andz, the gradient off is given in Cartesian coordinates by
of .of | of
Vf=i—+]—+k—. 7.62

f= ox + ay + 0z ( )
The gradient off is sometimes denoted by grgdinstead ofV f. The direction
of the gradient of a scalar function is the direction in which the function is increas-
ing most rapidly, and its magnitude is the rate of change of the function in that
direction.

EXAMPLE 7.22 Find the gradient of the function

f =x2+43xy +zzsin<f>.
y

SOLUTION »

a
i) ) ()
. 22 X . XZZ X . X
=i |i2x +3y + —cos(—)} +] [3x -— cos(—)i| + kZZsm(—)
y Y y y Yy

EXERCISE 7.20 b | Find the gradient of the function

g = ax® + ye*

wherea andb are constants. [«

A common example of a gradient is found in mechanics. In a conservative
system, the force on a patrticle is given by

F=-VV (7.63)

whereV is the potential energy of the entire system. The gradient is taken with
respect to the coordinates of the particle being considered, and the coordinates of
any other particles are treated as constants in the differentiations.

EXAMPLE 7.23 The potential energy of an object of massear the surface ot
the earth is
V = mgz,

whereg is the acceleration due to gravity. Find the gravitational force on|the
object.

SOLUTION »
F = —kmg.
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|[EXERCISE 7.21 B | Neglecting the attractions of all other celestial bodies,
the gravitational potential energy of the earth and the sun is given by

Vv _Gmsme’

r

where G is the universal gravitational constant, equal t678 x
101 m3s2kg~L, m, the mass of the sum, the mass of the earth, amd
the distance from the center of the sun to the center of the earth,

1/2
r= (xz—i-yz—i-zz)

Find the force on the earth in Cartesian coordinates. That is, find the force in
terms of the unit vectors j, andk with the components expressed in terms of
x, y, andz. Find the magnitude of the force. [«

The operatovV can operate on vector functions as well as on scalar functions.
An example of a vector function is the velocity of a compressible flowing fluid

vV =V(x,y,2) (7.64)
In terms of Cartesian components
V=ive(x, y,2) +joy(x, y, 2) + Koo (x, v, 2). (7.65)

There are two principal vector derivatives of vector functions. dikiergence of F
is defined in Cartesian coordinates by

e (5) (5)+ (%)
ox ay 0z
whereF is a vector function with Cartesian componetts F,, and F;. The
divergence of a vector functidais a scalar and is somewhat analogous to a scalar
product (dot product) of two vectors. The divergencd-aé sometimes denoted

by divF.

One way to visualize the divergence of a function is to consider the divergence
of the velocity of a compressible fluid. Curves that are followed by small portions
of the fluid are calledtreamlines. In a region where the stream lines diverge (be-
come farther from each other) as the flow is followed, the fluid will become less
dense, and in such a region the divergence of the velocity is positive. The diver-
gence thus provides a measure of the spreading of the stream linesquBEtien
of continuity of a compressible fluid expresses the effect this spreading has on the
density of the fluid,

(7.66)

ap
V.- (pv) = ~ar

wherep is the density of the fluidy is its velocity, and is the time.

, (7.67)

EXAMPLE 7.24 FindV - F if

2
. . Xz
F = |X2+Jyz+k7
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SOLUTION » o
V-F=2x+z7+ —.
y

EXERCISE 7.22 b | FindV -r if

r=ix+jy+Kkz.

[«

Thecurl of the vector functiori is defined in Cartesian coordinates by

. (OF aF . (OF dF oF JF.
VxF=il— -2 )+jl—-—")+k(=—=-—). (7.68)
ay 0z 0z ax ax ay
The curl is a vector and is somewhat analogous to the vector product (cross prod-
uct) of two vectors. To remember which vector derivative is which, remember that
“dot” and “divergence” both begin with the letter “d” and that “cross” and “curl”
both begin with the letter “c.” The symbol cérlis sometimes used for the curl
of F.
The curl of a vector function is more difficult to visualize than is the divergence.
In fluid flow, the curl of the velocity gives theorticity of the flow, or the rate of

turning of the velocity vector. Because of this, the symbdFristalso sometimes
used for the curl oF.

EXAMPLE 7.25 FindV x F if

F=iy+jz+kx.

SOLUTION »
VxF=i0-1)+j0-1)+kO—-1) =—i—j—k.

EXERCISE 7.23 b | FindV x r if

r=ix+jy+Kkz.

(<]
We can define derivatives corresponding to successive application of the del
operator. The first such operator is the divergence of the gradiefitisifa scalar
function, the divergence of the gradient fis given in Cartesian coordinates by

32 92 92
V.szvzfz(axé)—i-(ayé)—i-(azj;) (7.69)

The operatoWV - V occurs so commonly that it has its own name,lthplacian op-
erator,? and its own symboly?, sometimes called “del squared.” It is an operator
that occurs in the Schrédinger equation of quantum mechanics and in electrostatics.

2After Pierre Simon, Marquis de Laplace, 1749-1827, a famous French mathematician and astronomer.
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EXAMPLE 7.26 Find the Laplacian of the function

f(x,y,z) = Asin(ax) sin(by) sin(cz) .

SOLUTION »
V2f = —Aa?sin(ax)sin(by)sin(cz) — Ab®sin(ax) sin(by) sin(cz)
= —Ac? sin(ax) sin(by) sin(cz)
- - (a2+b2+c2) 1.
<
[ExErCiSE724 »|  FindV2fif f = exp(x®+ y2 +72) = e~ e¥’e?. [q]

Two other possibilities for successive operation of the del operator aceithe
of the gradient and thegradient of the divergence. The curl of the gradient of any
differentiable scalar function always vanishes.

[EXERCISE 7.25 B | (@) Show thatv x Vf = 0if fisa
differentiable scalar function.

(b) Write the expression fov (V xF),
the gradient of the divergence of
a vector functionF, in Cartesian
coordinates.

[a]

Vector Derivatives in Other Coordinate Systems

It is sometimes convenient to work in coordinate systems other than Cartesian co-
ordinates. For example, in the Schrédinger equation for the quantum mechanical
motion of the electron in a hydrogen atom, the potential energy is a simple func-
tion of r, the distance of the electron from the nucleus, but it is a more complicated
function ofx, y, andz. This Schrddinger equation can be solved only if spherical
polar coordinates are used. The complications produced by expressing the Lapla-
cian in spherical polar coordinates are more than outweighed by the simplifications
produced by having a simple expression for the potential energy.

Coordinate systems such as spherical polar or cylindrical polar coordinates are
calledorthogonal coordinates, because an infinitesimal displacement produced by
changing only one of the coordinates is perpendicular (orthogonal) to a displace-
ment produced by an infinitesimal change in any one of the other coordinates.

1. Figure 7.7 shows displacements, drawn as though they were finite, produced
by infinitesimal changes in, 8, and¢. These displacements are lengths

ds, = displacement im direction =dr
dsg = displacement i direction =r d6
dsy = displacement i direction =r sin(¢) do.

We define three vectors of unit length, whose directions are those of the infini-
tesimal displacements in Fig. 7.7, called e;, andey.
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o
&

l ra
& g5, =rsin (8) do
Ny br_,\ >/ / g
& e
$ Z

df

d¢ > \<
‘/X s, = rsin (6) do

Figure 7.7 » Infinitesimal displacementss,, dsy, anddsy produced by infinitesimal increments
dr, d6, andd¢.

An infinitesimal vector displacement is the sum of displacements in the three
orthogonal directions. In Cartesian coordinates,

dr =idx +jdy + Kdz. (7.70)
In spherical polar coordinates,
dr = e.dr + erdb + eyrsin() do. (7.71)

We can write an expression for an infinitesimal vector displacemfent a form

that will hold for any set of orthogonal coordinates. Let the three coordinates
of an orthogonal system in three dimensions be cajigdy», andgs. Let the
displacements due to the infinitesimal increments he caliedds,, anddss. Let

the unit vectors in the directions of the displacements be celleg, andes. The
eqguation analogous to Eq. (7.71) is

dr = eids1 + exdsy + €3ds3z = e1h1dq1 + €hadqgr + €3hadgs,

where theh'’s are the factors needed to give the correct expression for each dis-
placement. For Cartesian coordinates, all three ohitfectors are equal to unity.

For spherical polar coordinatels, = 1, hy = r, andhgy = rsin(9). For other
systems, you can figure out what this are geometrically so thats = hdg for

each coordinate.

Gradients in Orthogonal Coordinates

The gradient of a scalar functigfis written in terms of components in the direc-
tion of ds1, ds2, anddsz as
af af af

Vf=e— — —
! e18S1+e23sz+e38S3
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or

(7.72)

EXAMPLE 7.27 Find the expression for the gradient of a function of spherical
polar coordinate§ = f(r, 0, ¢).

SOLUTION »
vf_eaer 1af+ 1 af
=& T® %0 e¢rsin(9)a¢'

EXERCISE 7.26 b | (a) Find theh factors for cylindrical
polar coordinates.

(b) Find the expression for the gradi-
ent of a function of cylindrical po-
lar coordinates,f = f(p, ¢, 2).
Find the gradient of the function

f=e W sin(g) .
[«]

The divergence of a vector function can similarly be expressed in orthogonal
coordinates. IfF is a vector function, it must be expressed in terms of the unit
vectors of the coordinate system in which we are to differentiate,

F=eF1+e&F+esFs. (7.73)

The component#y, F», andF3 are the components in the directionsepfer, and
€3, not necessarily the Cartesian components.
The divergence of the vector functiénis given by

1 0 0 0
F= —— (F1hoh3) + — (Foh1h3) + —(thlhz)i| . 7.74
hih2h3 [3611 9g2 9g3 (7.74)

EXAMPLE 7.28 (a) Write the expression for the diver-
gence of a vector functiofr ex-
pressed in terms of spherical polar
coordinates.

(b) Find the divergence of the posi-
tion vector, which in spherical po-
lar coordinates is

r =er.
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SOLUTION » (a)
1

V.-F - -
r2sin(9)

a5 d . 9
[5 [F,r sm(@)] +25 [Forsin®)] + %(Fqb’")]

19/, 5 ..
T 29 <r F’>+ rsin@) 0 [sin(®) Fo]

1 9y (7.75)
rsin(@) 0

(b) The divergence af is
1
Vor=>3240+0=3
r

<
| EXERCISE 7.27 b | Write the formula for the divergence of a function in
cylindrical polar coordinates. [«
Thecurl of a vector functionF is
VxF =g 1 [a (h3F3) 9 (hF)}
= €—— | — (h3r3) — — (harl2
h2h3 | g2 9q3
+e L [8 (h1F1) ! (hF)]
—— | =— (h1f1) — — (h3r3
hih3 | 9g3 g1
+ 1 8(hF) 8(hF) (7.76)
eshlhz TR P el '
The expression for the Laplacian of a scalar functipnis
1 d (hoh3 9 d (hih3 9 d (hih2 9
v2f = [_ (ﬁ_f>+_<ﬁ_f)+_(£_f)} ,
hihzh3 [ dq1 \ hi 9q1 dg2 \ h2 0q2 dgq3 \ h3 9q3
(7.77)

EXAMPLE 7.29 Write the expression for the Laplacian in spherical polar cgor-
dinates.

SOLUTION »
19 af 1 a . af 1 af
V2f =S — (r2=2 — | sin —] 1 7.78
f r2 or (r 8r> + r2sin(9) 90 [ ©) 30 + r2sin? (9) 92 (7.78)
EXERCISE 7.28 » | Write the expression for the Laplacian in cylindrical polar coordinates
(<]
<

Maximum and Minimum Values of Functions of

Several Variables

A point at which either a maximum or a minimum value in a function occurs is
sometimes called agxtremum. For example, Fig. 7.8 shows a perspective view of
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in flx, y)

]‘ absolute maximum

N 0, 1)

Y o —
constrained

[ 1y maximum
n 2

\

/X (1,0 curve of constrainty = 1 —x

Figure 7.8 » The surface representing a functionxoindy with the absolute maximum and a
constrained maximum shown.

a graph of the functiory = e—**=¥*. The surface representing the function has

a “peak” at the origin,where the function attains its maximum value. Shown also
in the figure is a curve at which the surface intersects with a plane representing
the equationy = 1 — x. On this curve there is also a maximum, which has a
smaller value than the maximum at the peak. We call this value the maximum
subject to the constraint that= 1 — x. We discuss the constrained maximum
later.

A maximum at a peak such as the maximum at the origin in Fig. 7.8 is called
alocal maximum or arelative maximum. The value of the function at such a peak
is larger than at any other point in the immediate vicinity. However, a compli-
cated function can have more than one local maximum. Also, if we consider a
finite region, the function might have a larger value somewhere on the boundary
of the region that is larger than the value at a local maximum. To find the absolute
maximum of the function for a given region, we must consider all local maxima
and any points on the boundary of the region that might have greater values. The
peak at the origin is the absolute maximum of this function. Points of minimum
value are completely analogous to points of maximum valugcal minima are
located at the bottom of depressions or valleys in the surface representing the func-
tion. To find an absolute minimum for a given region, you must consider all local
minima and any points on the boundary of the region that might have smaller val-
ues.

To find a local maximum or minimum, we use the fact that the plane that is tan-
gent to the surface will be horizontal at any local maximum or minimum. There-
fore, the curve representing the intersection of any vertical plane with the surface
will have a local maximum or a minimum at the same place. The partial deriv-
ative with respect to one independent variable gives the slope of the curve in the
plane corresponding to a constant value of the other independent variable, so we
can find a local maximum or minimum by finding the places where all the partial
derivatives of the function vanish simultaneously.

Our method for a differentiable function of two variables is therefore:
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1. Solve the simultaneous equations

(%) =0 (7.79)

dx y

(%> =0 (7.80)
ay /.,

2. Calculate the value of the function at all points satisfying these equations, and
also at the boundaries of the region being considered. The maximum or mini-
mum value in the region being considered must be in this set of values.

3. If there are points at which the function is not differentiable, such as discon-
tinuities or cusps, these points must also be included in the set of possible
locations of the maximum or minimum.

EXAMPLE 7.30 Find the maximum value of the function shown in Fig. 7.8,
2 2
f=e* 7.

SOLUTION » Atalocal maximum or minimum

<%> = e 20 =0
ox y

a 2_.2
(4) - e2can=o
9y /

The only solution for finite values of andy isx = 0, y = 0. Since no restricted region was

specified, we consider all values efandy. For very large magnitudes af or y, the function
vanishes, so we have found the desired absolute maximum, at Which. <

In the case of one independent variable, a local maximum could be distin-
guished from a local minimum or an inflection point by determining the sign of
the second derivative. With more than one variable, the situation is more com-
plicated. In addition to inflection points, we can have points corresponding to a
maximum with respect to one variable and a minimum with respect to another.
Such a point is called saddle point, and at such a point, the surface representing
the function resembles a mountain pass or the surface of a saddle. Such points are
important in theransition-state theory of chemical reaction rates.

For two independent variables, the following quantity is calculated:

(92F (92f 92f \?
D‘(ax2><8y2)_<ax8y> | (7.81)

The different cases are as follows:

1. If D > 0and(82f/9x?) > 0, then we have a local minimum.
2. If D > 0and(d%f/dx?) < 0, then we have a local maximum.
3. If D < 0, then we have neither a local maximum nor a local minimum.

4. If D = 0, the test fails, and we cannot tell what we have.

|EXERCISE 7.29 | EvaluateD at the point(0, 0) for the function of Exam-
ple 7.30 and establish that the point is a local maximum. [«
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For more than two independent variables, the method is similar, except that
there is one equation for each independent variable.

Constrained Maximum/Minimum Problems

Sometimes we must find a maximum or a minimum value of a function subject
to some condition, which is called @nstraint. Such an extremum is called a
constrained maximum or aconstrained minimum. Generally, a constrained maxi-
mum is smaller than the unconstrained maximum of the function, and a constrained
minimum is larger than the unconstrained minimum of the function. Consider the
following example:

EXAMPLE 7.31 Find the maximum value of the function in Example 7.30 sub-
ject to the constraint + y = 1.

SOLUTION » The situation is shown in Fig. 7.8. The constraint corresponds to the specifica-
tion of y as a function ok by

y=1-—x. (7.82)

This function is given by the line in the-y plane of the figure. We are now looking for the place
along this curve at which the function has a larger value than at any other place on the curve.
Unless the curve happens to pass through the unconstrained maximum, the constrained maximum
will be smaller than the unconstrained maximum.

Sincey is no longer an independent variable on the curve of the constraint, the direct way to
proceed is to replace by use of Eq. (7.82):

f=@lox)=fx) = Q0% 2 pm2e%42-1 (7.83)

The local maximum is now at the point whef§/dx vanishes:
df
dx

This equation is satisfied by = % and by|x| — oo. The constrained maximum corresponds to

x = % and the minimum corresponds|tgf — oo. At the constrained maximump = 1 — % = %

and
11 12 N g
f <§,§)exp[— (5 )—(§> i|:e = 0.6065 - - .

As expected, this value is smaller than the unconstrained maximum, at Which. |

— 21 gy 2y =0, (7.84)

EXERCISE 7.30 b | (a) Find the minimum in the function

fx,y) :x2+y2—|—2x.
(b) Find the constrained minimum subject to the constraint

x+y=0.
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Lagrange’s Method of Undetermined Multipliers3

If we have a constrained maximum or minimum problem with more than two vari-
ables, the direct method of substituting the constraint relation into the function is
usually not practical. Lagrange’s method finds a constrained maximum or mini-
mum without substituting the constraint relation into the function. If the constraint
is written in the formg(x, y) = 0, the method for finding the constrained maxi-
mum or minimum inf (x, y) is as follows:

1. Form the new function

u(x,y) = f(x,y)+rglx,y), (7.85)

wherex is a constant called amdetermined multiplier. Its value is unknown
at this point of the analysis.

2. Form the partial derivatives of, and set them equal to zero,
d a d
(—”) _ (—f) +a (—g) —0 (7.86)
ax y ax y ax y
d ) d
(—”) = (—f> A (—g) —o (7.87)
ox /. ox /. ox /.
3. Solve the set of equations consisting @f= 0 and the two equations of
Egs. (7.86) and (7.87) as a set of simultaneous equations for the valye of

the value ofy, and the value of. that correspond to the local maximum or
minimum.

We will not present a proof of the validity of this method, but you can find a
proof in calculus textbooks.

EXAMPLE 7.32 Find the constrained maximum of Example 7.31 by the method
of Lagrange.

SOLUTION » The constraining equation is written
gx,y)=x+y—1=0. (7.88)
The functionu is
22
u(x,y)=e X 7V 4+ Ax+y—-1
so that the equations to be solved are Eq. (7.88) and

(al‘> — (20 4 =0 (7.89)
0x y

(&)
ay /
Let us begin by solving fok in terms ofx andy. Multiply Eq. (7.89) and Eqg. (7.90) by and add
the two equations. The result can be solved to give

4

_ Sy e_xz_yz.

x+y

Substitute this into Eq. (7.89) to obtain

(—2y) e =0 (7.90)

(7.91)

3Named for Joseph Louis Lagrange (born Guisepps Lodovico Lagrangia), 1736—1813, French-Italian physicist
and mathematician.
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4 !
(—2v) ey P Pyt ) (7.92)
xX+y
The exponential factor is not zero for any finite values afndy, so

4xy

—2x + =0. (7.93)
X+y
When Eq. (7.91) is substituted into Eq. (7.90) in the same way, the result is
4
2y 2 o, (7.94)
X+y
When Eq. (7.94) is subtracted from Eq. (7.94), the result is
—2x+2y=0
which is solved fory in terms ofx to obtain
y=x.
This is substituted into Eq. (7.88) to obtain
x+x—-1=0
which gives
P
X > y = >

This is the same result as in Example 7.31. In this case, the method of Lagrange was more work
than the direct method. In more complicated problems, the method of Lagrange will usually be
easier. <

The method of Lagrange also works if there is more than one constraint. If we
desire the local maximum or minimum of the function

f=rxy2
subject to the two constraints

g1(x,y,2)=0 (7.95)
and

g2(x,y,2) =0 (7.96)

the procedure is similar, except that two undetermined multipliers are used. One
forms the function

u=u(x,y, z)=f(x,y,2) +rg1(x,y,2) + r2g2(x, y, 2) (7.97)

and solves the set of simultaneous equations consisting of Eqgs. (7.95), (7.96), and

(g—i) =0 (7.98)
¥,z
(Z_Z) =0 (7.99)
®).

- =0 (7.100)
0z Xy

The result is a value fok1, a value fori,, and values for, y, andz which
locate the constrained local maximum or minimum.

|EXERCISE 7.31 P> | Find the constrained minimum of Exercise 7.30 using
the method of Lagrange. [«
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SUMMARY

The calculus of functions of several independent variables is a natural extension
of the calculus of functions of one independent variable. The partial derivative is
the first important quantity. For example, a function of three independent variables
has three partial derivatives. Each one is obtained by the same techniques as with
ordinary derivatives, treating other independent variables temporarily as constants.
The differential of a function af1, x2, andxs is given by

0 0 d
df = (—f> dx1 + <—f) dxo + (—f) dxs,
ox X3.x3 0x2 1.3 0x3 X1.%2

wheredf is an infinitesimal change in the functiofi produced by the changes
dx1, dx»2, anddxsz imposed on the independent variables and where the coefficients
are partial derivatives. This is called aract differential, identifying df as in
increment in a function. A similar expression such as

dw = Mdx1+ Ndxy + Pdx3

is an inexact differential if the coefficientd, N, and P are not the appropriate
derivatives of the same function. If not, they do not obey the Euler reciprocity re-
lation, which is one of several relations that partial derivatives obey.

One application of partial derivatives is in the search for minimum and max-
imum values of a function. An extremum (minimum or maximum) of a function
in a region is found either at a boundary of the region or at a point where all of
the partial derivatives vanish. A constrained maximum or minimum is found by
the method of Lagrange, in which a particular augmented function is maximized
or minimized.

A line integral is denoted by

/dw = /(del-i-Ndxz-i- Pdx3).
c c

In this integral, the variables, and x3 in M must be replaced by functions of
x1 corresponding to the curve on which the integral is performed, with similar
replacements itv andP. The line integral of the differential of a function depends
only on the end points of the curve, which the line integral of an inexact differential
depends on the path of the curve as well as on the end points.

A multiple integral is an integral of the form

f/ f(x,y,2)dzdydx

in which the integrations are carried out one after another. As each integration is
carried out, those integration variables not yet integrated are treated as constants.

PROBLEMS

1. A certain nonideal gas has an equation of state

RT Vin
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whereT is the temperature on the Kelvin scalg, is the molar volume (vol-
ume of 1 mol),P is the pressure, anil is the gas constant. Trsecond virial
coefficient B; is given as a function df' by

By = [—1.00 x 1074 — (2.148 x 10—6) £(195610/ T] m® mol2,

Find(@P/0V,,)r and(dP/dT)y, and an expression fafP.

2. For a certain system, the thermodynamic endfgg given as a function of,
V,andn by
U=UGS,V,n) = Kn®3y—2/3,25/3nk

where S is the entropy,V is the volumen is the number of molesK is a
constant, ana is the ideal gas constant.
a) FinddU interms ofdS, dV, anddn.
b) Find an expression fal@U/3S)y ;.
¢) Find an expression faoU/9V)s.p.
d) Find an expression faU/on)s.y.
3. Find (9f/dx),, and(df/dy), for each of the following functions, whetg b,
andc are constants.
a) f =axyIn(y) + bxcos(x + y)
b) f = aebC*Hy%) 4 csin(xzy)
¢) f=alx+by)/(c+xy)
4. Find (9f/0x)y, and(df/dy), for each of the following functions, whetg b,
andc are constants.
a) f =a(bx +cy)~3.
b) f = acof(bx) — bsin’(y)
C) f=a exp(—b(x2 — y2)
5. Find (82 f/9x?)y, (32f/3xdy), (8% f/dydx), and (32 f/dy?), for each of the
following functions, wherer, b, andc are constants.
a) f=@+yt

b) f = cos(x/y)
C) f — e(ax2+by2).

6. Find (32 f/3x?)y, (9% f/3xdy), (32f/dydx), and(d?f/dy?), for each of the
following functions, where:, b, andc are constants.
a) f =alnbx?+cy?)
b) f =a(x?+y?~2
C) f = acogsin(x))
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a) Find the area of the semicircle of radiugiven by
y = +(a? — x?)1/?

by doing the double integral

a (az_x2)1/2
f / ldydx.
—a J0

b) Change to polar coordinates and repeat the calculation.
8. Test each of the following differentials for exactness.

a) du = by cos(bx) dx + sin(bx) dy

b) du = aysin(xy) dx + ax sin(xy) dy

0) du = (y/(1+ x?))dx — tam1(x) dy
9. Test each of the following differentials for exactness.

a) du =xdy + ydx

b) du = yIn(x)dx + xIn(y) dy

C) du = 2xe™ dx + 2ye™ dy.

10. If G = —RT In(aT®?V /n) find dG in terms ofdT, dV, anddn, whereR
anda are constants.

11.

a) Perform the line integral

/ du = / (x%y dx + xy?dy),
C C

wherec represents the line segment from @) to (2 2). Would another
path with the same end points yield the same result?

b) Perform the line integral on the path frog@, 0) to (2, 0) and then from
(2,0)to0 (2, 2.

12.

a) Perform the line integral

/du:/(xyzdx +x2ydy),
C C

wherec represents the line segment from @) to (2 2). Would another
path with the same end points yield the same result?

b) Perform the line integral on the path frof@, 0) to (2, 0) and then from
(2,0)to (2, 2.

13. Find the functionf (x, y) whose differential is
df = (x +y) tdx + (x + y) "ty

and which has the valug(1, 1) = 0. Do this by performing a line integral on
a rectangular path fror¢l, 1) to (x1, y1) wherex1 > 0 andy; > O.
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14.

15.

16.

17.

18.

19.

A wheel of radiusR has a distribution of mass given by
m(p) = ap® +b,

wherep is the distance from the centerandb are constants, and(p) is the
mass per unit area as a functionofAssume that: depends only op. Find
themoment of inertia, defined by

00 2
1= / f m(p)p?dA = /0 /0 m(p)p?pdedp,

whered A represents the element of area and the integral is a double integral
over the entire wheel. Transform to Cartesian coordinates and carry out the
integral again. In order to simplify the limits of integration in Cartesian coor-
dinate, integrate over half of the wheel and double your result.

aS 0S
- - — +?
v P.n v T.n

Find the location of the minimum in the function

Complete the formula

f=f(x,y) =x%—6x+8y+)?

considering all real values afandy. What is the value of the function at the
minimum?

Find the minimum in the function of the previous problem subject to the con-
straintx + y = 2. Do this by substitution and by the method of undetermined
multipliers.

Find the location of the maximum in the function
f=f(x,y) =x%—6x+8y+)?

considering the region & x < 2 and O< y < 2. What is the value of the
function at the maximum?

Find the maximum in the function of the previous problem subject to the con-
straintx + y = 2. Do this by substitution and by Lagrange’s method of unde-
termined multipliers.



Differential
Equations

Preview

A differential equation contains one or more derivatives of an unknown function,
and solving a differential equation means finding what that function is. One impor-
tant class of differential equations consists of classical equations of motion, which
come from Newton’s second law of motion. We will discuss the solution of several
kinds of differential equations, including linear differential equations, in which the
unknown function and its derivatives enter only to the first power, and exact differ-
ential equations, which can be solved by a line integration. We will also introduce
partial differential equations, in which partial derivatives occur and in which there
are two or more independent variables. We will also discuss the solution of dif-
ferential equations by use of Laplace transformations. Some differential equations
can be solved either symbolically or numerically using Mathematica.

Principal Facts and Ideas

1. The solution of a differential equation is a function whose derivative or deriv-
atives satisfy the differential equation.

2. An equation of motion is a differential equation obtained from Newton’s sec-
ond law of motionF = ma.

3. In principle, an equation of motion can be solved to give the position and ve-
locity as a function of time for every particle in a system governed by Newton’s
laws of motion.

4. A homogeneous linear differential equation with constant coefficients can be
solved by use of an exponential trial solution.

5. An inhomogeneous linear differential equation can be solved if a particular
solution can be found.

6. An exact differential equation can be solved by a line integration.
7. Some inexact differential equations can be converted to exact differential equa-

tions by multiplication by an integrating factor.
234
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8. Some patrtial differential equations can be solved by separation of variables.

9. A differential equation can be transformed into an algebraic equation by a
Laplace transformation. Solution of this equation followed by inverse trans-
formation provides a solution to the differential equation.

10. Differential equations can be solved numerically by a variety of methods, in-
cluding the use of Mathematica.

Objectives
After studying this chapter, you should be able to:
1. construct an equation of motion for a particle from Newton’s second law;
. solve a linear homogeneous differential equation with constant coefficients;
. solve a differential equation whose variables can be separated,

. solve an exact differential equation;

. solve a simple partial differential equation by separation of variables;

2
3
4
5. use an integrating factor to solve an inexact differential equation;
6
7. solve a differential equation by use of Laplace transforms;

8

. use Mathematica to solve differential equations symbolically and numerically.

Differential Equations and Newton’s Laws

of Motion

A differential equation is an equation that contains one or more derivations of an
unknown function. The solution of a differential equation is the unknown function,
not a set of constant values of an unknown variable as is the case with an algebraic
equation. Our first examples of differential equationseapgations of motion, ob-
tained fromNewton’s second law of motion. These equations are used to determine
the time dependence of the position and velocity of particles. The position of a par-
ticle is given by the position vectarwith Cartesian components y, andz. The
velocity v of a particle is the rate of change of its position vector,

dr dx .d d . .
VZE IE—I—Jd—);—I-kd—j:vaiHvy—Fkvz, (8.1)
wherei, j, andk are the unit vectors defined in Chapter 2. The acceleratisthe
rate of change of the velocity:

dv _d* d* d%y  d*z
Ezﬁ=Iﬁ+jm+kﬁzlax+jay+kaz. (82)

Consider a particle that moves in théirection only, so that,, vy, a,, anda,
vanish. Ifa, is known as a function of time,

a; = ay(1) (8.3)
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we can write an equation by equating the time derivative of the velocity to this

known function: J
v
d—; = a,(1). (8.4)
This is a differential equation for the velocity, since it contains the derivative of the
velocity. Solving this equation means finding a function to represent the velocity
as a function of time.
To solve Eg. (8.4), we multiply both sides by and perform a definite integra-

tion froms = 0tor = 1.

t t
v, (1) — v;(0) = / ' <Cilﬁ) dt = / laz(t)dz‘. (8.5)
0 t 0

The result of this integration givaes as a function of time, so that the position
obeys a second differential equation

dz

E = Uz(t). (86)
A second integration gives the position as a function of time:
15 dZ 15
222~ 20 = | (—) dis = [ viten, ®.7)
0o \dn 0

There are inertial navigation systems used on submarines and space vehicles
that determine the acceleration as a function of time and perform two numerical
integrations in order to determine the position of the vehicle.

EXAMPLE 8.1 Attime r = 0, a certain particle hag0) = 0 andv,(0) = 0. Its
acceleration is given as a function of time by

a,(t) = age™"/",

whereag andb are constants.
(a) Findv, as a function of time. (b) Findas a function of time.

(c) Find the speed and the positiofal) Find the limiting value of the
of the particle atzr = 30.0s if speed as — oo.
ap = 100ms2andifb = 20.0s.

SOLUTION » (a) The antiderivative of the given acceleration
function plus a constany is the velocity:

v:(t) = —agbe /P +vg = —agbe /P +agh = agh(1—e /)

since it was specified that (0) = 0, the
constantg = agb.
(b) The antiderivative of the velocity plus a
constantg is the position:
z(t) = aobzeﬁ/b—}—aobt—l—zo = aobzefl/b—}—aobt—aobz

Since it was specified that0) = 0, the
constantq = —agh?.
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(c) Att =300s
1:(3009 = (100mMs2)(2009(1 — e 150 = 155ms?t
2(3009 = (10.0ms 2)(20.09% 19+ (2000ms1)(3009
— (100ms?)(20.09% = 2890 m

(d) Ast — oo, the speed approaches
lim v, () = agb = 200 ms 1
—>00

<

Unfortunately, the acceleration is very seldom known as a function of time, so
integration as in the previous example cannot usually be used to find how a particle
moves. Instead, we must obtain the acceleration of the particle from knowledge of
the force on it, using Newton’s second law.

Newton’s Laws of Motion

These laws were deduced by Isaac Newtsam his analysis of observations of
the motions of actual objects, including apples and celestial bodies. The laws can
be stated:

1. A body on which no forces act does not accelerate.
2. A body acted on by a forcE accelerates according to
F =ma, (8.8)
wherem is the mass of the object amads its acceleration.

3. Two bodies exert forces of equal magnitude and opposite direction on each
other.

Classical mechanics is primarily the study of the consequences of these laws.
It is sometimes calletllewtonian mechanics. The first law is just a special case of
the second, and the third law is primarily used to obtain forces for the second law,
so Newton'’s second law is the most important equation of classical mechanics.

If the force on a particle can be written as a function of its position alone, we
have arequation of mation. If the force on a particle depends on the positions of
other patrticles, the equations of motion of the particles are coupled together and
must be solved simultaneously. The equations of motion cannot be solved exactly
for a system of more than two interacting particles.

The simplest equation of motion is for a single particle that can move in only
one direction. From Newton’s second law, we can write the following equation for
a particle that moves in thedirection:

d2
F.(z) = md—;. (8.9)
A force that depends only on position can be derived from a potential energy func-
tion, as in Eq. (7.63). Equation (8.9) becomes

dv d%

daz ~ arz

lisaac Newton, 1642—1727, was a great English physicist and mathematician who discovered the law of gravity
and the laws of motion and who helped invent calculus.

(8.10)
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whereV is the potential energy function. We now examine these equations for a
particular example system.

The Harmonic Oscillator: Linear Differential
Equations with Constant Coefficients

Consider an object of mass attached to the end of a coil spring whose other end
is rigidly fastened. Let the object move only in thealirection, the direction in
which the spring is stretched or compressed. Define ttwordinate so that = 0
when the spring has its equilibrium length. To a good approximation, the force on
the object due to the spring is given bipoke's law,?

F, = —kz, (8.11)

wherek is a constant called thgpring constant. The negative sign produces a
negative force (downward) whenis positive and vice versa, so that the force
pushes the mass toward its equilibrium position. Haemonic oscillator is a
model system that represents the mass on a spring. That is, it is a hypothetical
system (existing only in our minds) which has some properties in common with
the real system, but it is enough simpler to allow exact mathematical analysis. Our
model system is defined by saying that the spring has no mass and that Eq. (8.11)
is exactly obeyed, even ifhas a large magnitude.
Replacement of" by md?z/dt? according to Newton’s second law gives the

equation of motion for our harmonic oscillator:

d’z  k

o2 + = 0. (8.12)
This differential equation has the properties:

1. Itis called anordinary differential equation because it contains only ordinary
derivatives as opposed to partial derivatives.

2. ltis linear, which means that the dependent variab#nd its derivatives enter
only to the first power.

3. It is homogeneous, which means that there are no terms that do not contain

4. Itis second order, which means that the highest order derivative in the equation
is a second derivative.

5. It hasconstant coefficients, which means that the quantities which multiply
and its derivatives are constants.

There are two important facts about linear homogeneous differential equations:

1. If z1(¢) andzx(¢) are two functions that satisfy the equation, then the linear
combinationzz(z) is also a solution, where

z3(t) = c1z21(t) + c2z2(1) (8.13)

andc1 andcy are constants. Anear combination is a sum of functions multi-
plied by constant coefficients.

2After Robert Hooke, 16351703, one of Newton's contemporaries and rivals.
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2. If z(¢) satisfies the equation, then(z) is also a solution, whereis a constant.

A linear homogeneous differential equation with constant coefficients can be
solved by the following routine method:

1. Assume the trial solution
z2(1) = €M, (8.14)

where) is a constant. Arial solution is what the name implies. We try it by
substituting it into the equation and produce an algebraic equatibreatied
the characteristic equation.

2. Find the values of. that satisfy the characteristic equation. For an equation of
ordern, there will ben values ofid. Call these valuegq, Ao,..., A,. These
values produce versions of the trial solution that satisfy the equation.

3. Use fact (1) to write a solution

2(t) = 1™ + c2e’? 4 - + et (8.15)

EXAMPLE 8.2 Show that the differential equation

d3y d%y dy
2y 2y it -0 8.16
() () () om0 10

can be satisfied by a trial solution= e*.

SOLUTION » We substitute the trial solution = ¢** into the differential equation:

azd3eM 4 axn2eM 4 agn2e* + agre + age’* = 0. (8.17)
If x remains finite, we can divide * to obtain the characteristic equation:
agks + agkz +ajh +ag=0. (8.18)
If the constants,, a1, ap,andaz are known, this is an equation that can be solved for three values
of A which cause the trial solution to satisfy Eq. (8.16). |

EXAMPLE 8.3 Solve the differential equation

d%y dy
— 4+ = —2y=0. 8.19
dx? U dx Y ( )

SOLUTION » Substitution of the trial solution = ¢** gives the characteristic equation
A2 4a—2y=0.

The solutions to this equation are
A=1 r=-2

The solution to the differential equation is thus
y(x) = c1e* + cpe” . (8.20)
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The solution to this example satisfies the differential equation no matter what
valuesci andco have. It is actually damily of functions, one function for each set
of values forc1 andc,. A solution to a linear differential equation of ordethat
contains: arbitrary constants is known to b@eneral solution. A general solution
is a family of functions which includes almost every solution to the differential
equation. The solution of Eq. (8.20) is a general solution, since it contains two
arbitrary constants. There is only one general solution to a differential equation.
If you find two general solutions for the same differential equation that appear to
be different, there must be some mathematical manipulations that will reduce both
to the same form. A solution to a differential equation that contains no arbitrary
constants is called garticular solution. A particular solution is usually one of the
members of the general solution, but it might possibly be another function.

We are not finished with a problem when we find a general solution to a dif-
ferential equation. We usually have additional information that will enable us to
pick a particular solution out of the family of solutions. Such information consists
of knowledge of boundary conditions and initial conditioBsundary conditions
arise from physical requirements on the solution, such as necessary conditions that
apply to the boundaries of the region in space where the solution applies, or the
requirement that the value of a physically measurable quantity must be a real num-
ber. Initial conditions arise from knowledge of the state of the system at some
initial time.

We now solve the equation of motion for the harmonic oscillator, Eq. (8.12).
We begin by finding the characteristic equation.

|EXERCISE 8.1 b | Show that the characteristic equation for Eq. (8.12) for
the harmonic oscillator is

k
A2+ —=0. (8.21)
m
(<]

The solution of the characteristic equation for the harmonic oscillator is

1/2
A=+ (f) , (8.22)

m

wherei = 4/—1, the imaginary unit.
The general solution to Eq. (8.12) is therefore

&\ 12 k\ 12
z=12(t) =cr1exp |:+i (—) tj| + coexp |:—i (—) t:| , (8.23)
m m

wherec; andc; are arbitrary constants.

Our principal boundary condition is that the solution be real, because imaginary
and complex numbers cannot represent physically measurable quantities like the
position of the oscillator. From the trigonometric identity in Eq. (2.93) we can
write

z = c1[coqwr) + i Sin(wt)] + c2[coSwt) — i Sin(wt)], (8.24)

K\ 12
o= (_) .
m

where we let



Section 8.2 The Harmonic Oscillator 241

If we letc1 + ¢2 = by andi(cy — ¢2) = bo, then
z = b1 coqwt) + ba sin(wt). (8.25)

Although the solutions in Eq. (8.23) and Eq. (8.25) look different, they are equiv-
alent to each other. Since the sine and cosine of a real variable are real we can
eliminate complex solutions by requiring thatandb» be real.

|EXERCISE 8.2 b | Show that the function of Eq. (8.25) satisfies Eq. (8.12).
[«]

Our new general solution applies to a particular harmonic oscillator if we use
that oscillator’s values df andm to calculate the value @f. We now require some
conditions to make it apply to a particular case of motion. These conditions are
initial conditions that specify the oscillator’s position and velocity at some initial
time. Say that we have the initial conditions at O:

z(0) =0 (8.26a)
v,(0) = vo (8.26b)
whereug is a constant.
We require one initial condition to evaluate each arbitrary constant, so these two
initial conditions will enable us obtain a particular solution for the case at hand.
Knowledge of the position at time= 0 without knowledge of the velocity at that

time would not suffice, nor would knowledge of the velocity without knowledge of
the position. For our initial condition$; must vanish:

z(0) = b1 c0o90) + b2 sin(0) = b1 = 0. (8.27)
The position is therefore given by
z(t) = by sin(wt). (8.28)

The expression for the velocity is obtained by differentiation,

d
va(t) = d—j — bpw cogwt) (8.29)
so that
v;(0) = bow co90) = brw
which gives
vo
by =— (8.30)
w
and gives us our particular solution
z(t) = (E) sin(wt). (8.31)
w

The motion given by this solution is callaghiform harmonic motion. It is
a sinusoidal oscillation in time with a fixed frequency of oscillation. Figure 8.1
shows the position and the velocity of the suspended mass as a function of time.
The motion isperiodic, repeating itself over and over. During one period, the
argument of the sine changes hy,%o that ifr is theperiod (the length of time
required for one cycle of the motion),
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Figure 8.1 » The position and velocity of a harmonic oscillator as functions of time.
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W ——

K\ 12
2T = w1 = <—) T. (8.32)
m
Thus,
ma1/2
T:2n<z) . (8.33)

The reciprocal of the period is called tlfieequency, denoted by. (This is the
Greek lettenu. Try not to confuse it with the lettente”).

1 /k w

- — | _ 8.34
2r V m 2 ( )

The frequency gives the number of oscillations per second. The quansityalled

the circular frequency. It gives the rate of change of the argument of the sine or
cosine function in radians per second.

|EXERCISE 8.3 b | The vibration of a diatomic molecule resembles that of a

harmonic oscillator. Since both nuclei move, the mass must be replaced by the
reduced mass,

mimo

my+my’

wherem is the mass of one nucleus amgd the mass of the other nucletis.
Calculate the frequency of vibration of a hydrogen chloride molecule. The
force constant is equal to 481 Nm! = 481 Jnf. Be sure to use the mass of
the nuclei in kilograms, not the mass of a mole of atoms. [«

Thekinetic energy of the harmonic oscillator is

1
K:Em@. (8.35)

4See, for example, Robert G. Mortim@&hysical Chemistry, 2nd ed., Academic Press, 2000, p. 1030.
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In order for the force to be the negative derivative of the potential energy as in Eq.
(7.63), thepotential energy of the harmonic oscillator must be

1
V(z) = Ekzz. (8.36)
The total energy is the sum of the kinetic energy and the potential energy

B _ 1, 1 /vo\2 .
E=K+V= émvo Coé(a)t) + Ek (;) s|n2(a)t)

= %mvcz,, (8.37)
where we have used the identity of Eq. (7) of Appendix B. As a harmonic oscillator
moves, the total energy remains constant. As the kinetic energy rises and falls,
the potential energy changes so that the total energy remains constant. When the
energy is constant we say that the energgdeserved, and that the system is
conservative. There is an important theorem of classical mechani€she forces
on the particles of a system can be obtained from a potential energy function, the
systemwill be conservative.

The Damped Harmonic Oscillator—A Nonconservative System

We now discuss a@amped harmonic oscillator, which is a harmonic oscillator
that is subject to an additional force that is proportional to the velocity, such as a
frictional force due to fairly slow motion of an object through a fluid,

(8.38)

where¢ is called thefriction constant. Since this force cannot be derived from
a potential energy, the system is not conservative and its energy will change with
time.

The equation of motion is, for motion in thedirection

dz dzz
Foe P e m (22, 8.39
=% ’"(d;z) (8.39)

This equation is a linear homogeneous equation with constant coefficients, so a
trial solution of the form of Eq. (8.14) will work. The characteristic equation is

k
M2+ —=0. (8.40)

From the quadratic equation, the solutions of this equation are

: J@/my? — a/m

2 _ 4k
Ao = —% — \/({/m)z fm (8.41b)

and the general solution to the differential equation is

2(1) = 1™ 4 cpe’?. (8.42)
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|[EXERCISE 8.4 & | Show that Eqg. (8.40) is the correct characteristic equa-
tion, that Eq. (8.41a) gives the correct solutions to the characteristic equation,
and that the function of Eq. (8.42) does satisfy Eq. (8.39). [«]

Greater than Critical Damping

There are three cases. In the first case, the quantity inside the square root in Eq.
(8.41a) is positive, so that; andx, are both real. This corresponds to a relatively
large value of the friction constagt and the case is callegreater than critical
damping. In this case, the mass at the end of the spring does not oscillate, but
returns smoothly to its equilibrium position pt= 0 if disturbed from this position.

Figure 8.2 shows the position of a greater than critically damped oscillator as a
function of time for a particular set of initial conditions.

Figure 8.2 » The position of a greater than critically damped harmonic oscillator as a function of
time.

|EXERCISE 8.5 b | From the fact that, k, andm are all positive, show that
A1 andio are both negative in the case of greater than critical damping, and
from this fact, show that

lim z(5) = 0. (8.43)
[«

Less than Critical Damping

The next case is that of small valueszofor less than critical damping. If

( ¢ )2 4k

_ < _’

m m

the quantity inside the square root in Eq. (8.41a) is negative Aarahd 1o are
complex quantities,

M= —— tio (8.44)

A = —— — i, (8.45)
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where
k ¢ \?
= /—=1= . 8.46
o= [% (2m> (8.46)
The solution thus becomes
z(t) = (clei“’t + czei“”) e~tt/om (8.47)

which can also be written in a form that is similar to Eq. (8.25),
2(t) = [b1coSwr) + by sin(wt)] e 41/2". (8.48)

This showsz(z) to be an oscillatory function times an exponentially decreasing
function, giving the “ringing” behavior shown in Fig. 8.3.

I

N

Figure 8.3 » The position of a less than critically damped oscillator as a function of time for the
initial conditionsz(0) = zg, v; (0) = 0.

|EXERCISE 8.6 B | If the position of the oscillator at time O is a particular
valuez(0) = zg and if the velocity at time zero is a particular valy€0) = vg,
express the constantg andb; in terms of these values. [«

Critical Damping

The final case is that afritical damping, in which the quantity inside the square

rootin Eq. (8.41) exactly vanishes. This case is not likely to happen by chance, but
it is possible to construct an oscillating object such as a galvanometer mirror or a
two-pan balance beam that is critically damped by a magnetic field. The condition

for critical damping is
t Nk
(_) _ K (8.49)
2m m

An interesting thing happens to the solution of Eq. (8.42) in the case of critical
damping. The values df are equal to each other,
¢

A=Ay = 5 (8.50)
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so that Eqg. (8.42) becomes
2(t) = (c1+ c2) ¥ = ce, (8.51)

wherec is the sum of the two constant andc; and where we drop the subscript

on A. This is not a general solution, since a general solution for a second order
linear equation must contain two arbitrary constants, and a sum of two constants
does not constitute two separate constants. This is dafleat dependence. With

two functions, linear dependence means that the functions are proportional to each
other, so that they are not distinct solutions. If we have several solutions, they are
linearly dependent if one or more of the solutions equals a linear combination of
the others.

Since we do not have a general solution, there must be another family of so-
lutions that is not included in the solution of Eq. (8.51). One way to find it is by
attempting additional trial functions until we find one that works. The one that
works is

2(t) = te*. (8.52)

|EXERCISE 8.7 b | Substitute the trial solution of Eq. (8.52) into Eq. (8.39),
using the condition of Eq. (8.49) to restrict the discussion to critical damping,
and show that the equation is satisfied. [«

Our general solution is now
2(t) = (c1 + cat) €™, (8.53)
where we drop the subscript an The velocity is given by
v (1) = Z—j = c1re™ + coe + cotre™
For any particular set of initial conditions, we can find the appropriate values of

andc,. The behavior of a critically damped oscillator is much the same as that of
Fig. 8.2.

EXAMPLE 8.4 Consider a critically damped oscillator with = —1.00s™ L.
Assume that its initial position is(0) = 0.00 m and that its initial velocity is
1.00 ms L. Find its position and velocity at= 1.00s.

SOLUTION » In order forz (0) to equal 000 m, we must require thay = 0.00m. The
velocity is given by
v (1) = cze)‘t + czt}»e)"

The velocity at = 0 is
vz(0) =2

so that
c2=1.00m st

The position at = 1.00s is
2(1.009 = cote = (1.00ms 1)(1.009¢ 1% = 0.368m
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EXERCISE 8.8 b | (a) Construct an accurate graph of the
position of the critically damped
oscillator of the previous example.

(b) Locate the time at which attains
its maximum value and find the
maximum value.

[«]

|EXERCISE 8.9 b | Find a formula for the position of the critically damped
oscillator of the previous example if the initial positionz€) = 0.500 m
andv,(0) = 0.00s. Find the velocity and the position of the oscillator at
t =1.00s. [«

The Forced Harmonic Oscillator: Inhomogeneous Linear
Differential Equations

An inhomogeneous differential equation contains a term that is not proportional to
the unknown function or to any of its derivatives. An example of a linear inhomo-
geneous equation is
d3z d?z dz
) —= ) —= H— = g(1), 8.54
fO) 15 + o= 5 + D) =g ) (8.54)

where f3 f2, f1, andg are some functions of time but do not dependzomhe
term g(¢) is theinhomogeneous term. If an external force exerted on a harmonic
oscillator depends only on the time, the equation of motion is an inhomogeneous
differential equation:

d’z k  F(1)

o T = 8.55

dt2  m m ( )
whereF (¢) is the external time-dependent force and the tér(r) /m is the inho-
mogeneous term.

A method for solving such an equation is:

Step 1. Solve the equation obtained by deleting the inhomogeneous term. This
homogeneous equation is called tioenplementary equation, and the general
solution to this equation is called tlsemplementary function.

Step 2. Find a particular solution to the inhomogeneous equation by whatever
means may be necessary.

Step 3. Take the sum of the complementary function and this particular solution.
This is the general solution to the inhomogeneous equation.

|EXERCISE 8.10 B | If z.(¢) is a general solution to the complementary equa-
tion andz, (¢) is a particular solution to the inhomogeneous equation, show that
Z¢ + zp is a solution to the inhomogeneous equation of Eq. (8.54). [«
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Variation of Parameters Method

There is a method for finding a particular solution to a linear inhomogeneous equa-
tion, known as theariation of parameters. If the inhomogeneous term is a power

of ¢, an exponential, a sine, a cosine, or a combination of these functions, this
method can be used. One proceeds by taking a suitable trial function that contains
parameters (constants whose values need to be determined). This is substituted
into the inhomogeneous equation and the values of the parameters are found so
that the inhomogeneous equation is satisfied. Table 8.1 gives a list of suitable trial
functions for various inhomogeneous terms.

EXAMPLE 8.5 Let us assume that the external force on a forced harmonic os-
cillator is
F(t) = Fpsin(at), (8.56)

where Fpand « are constants. Find the general solution to the equation of
motion.

SOLUTION » Use of Table 8.1 and determination of the parameters gives the particular solu-
tion
Fo

Zp(t) = mSW](CU), (857)

wherew is the circular frequency in the solution of Eq. (8.25), which is the solution to the com-
plementary equation. The general solution is

z(t) = by cogwt) + bp Sin(wt) + z(t), (8.58)

where the constants, andb, are to be determined by the initial conditions. Let us assume that
z(0) =0, so that
(t) = by sin(wt) + Fo
z(t) = ) ———5=
2 m(w? )

5 sin(at) . (8.59)
—

<

|EXERCISE 8.11 b | Verify EqQ. (8.57) and (8.58). [«

TABLE 8.1 » Particular Trial Solutions for the Variation of Parameters Method*

Inhomogeneous Forbidden

Term Trial Solution Characteristic Rdot
1 A 0

" Ao+ A1t + Aot2 + -+ Apt” 0

et Ae! o

et e (Ag+ At + Apt2 + - 4+ Apt")  «

e* sin(Bt) e*'[A coqBt) + B sin(B1)] a, B

e cogBt) e“'[A cogBr) + B sin(Bt)] a, B

* Source: M. Morris and O. E. BrownDifferential Equations, 3rd ed., Prentice-Hall, Englewood
Cliffs, N.J., 1952.

A, B, Ag, A1, etc., are parameters to be determine@ndp are constants in the differential
eguation to be solved.

T The trial solution given will not work if the characteristic equation for the complementary
differential equation has a root equal to the entry in this column. If such a root occurs with
multiplicity &, multiply the trial solution by* to obtain a trial solution that will work.
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The motion of the forced harmonic oscillator shows some interesting features.
The solution in the previous example is a linear combination of the natural motion
and a motion proportional to the external force. If the frequencies of these are not
very different, a motion such as shown in Fig. 8.4, knowteging, can result.
There is a periodic variation of the amplitude of vibration with a circular frequency
equal tow — «. You can hear this beating when a piano is being tuned. There are
two or three string for each note, and they are tuned separately. Each string can
excite a “sympathetic vibration” in the other, which acts as an external force. When
the frequencies of two strings are slightly different you can hear a pulsation like
that in Fig. 8.4.

[

~

I

m{\mnﬂﬁ N
Lk

e

ll
]

Figure 8.4 » The position of a forced harmonic oscillator as a function of time for the case
o=11lw.

Differential Equations with Separable Variables

In this section, we discuss equations that can be manipulated algebraically into the
form

d
g(y)d_y = f(0), (8.60)
X

whereg(y) is some integrable function ofand f (x) is some integrable function
of x. To solve Eqg. (8.60), we multiply both sides of the equationdaxyand use
Eq. (4.20):

D g = dy. (8.61)
dx
We now have
g(y)dy = f(x)dx. (8.62)

If we have manipulated the equation into the form of Eq. (8.62), we say that we
haveseparated the variables, because we have nodependence in the left-hand
side of the equation and nodependence in the right-hand side. We can perform
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an indefinite integration on both sides of this equation to obtain

fg(y)dy = / f(x)dx + C, (8.63)
whereC is a constant of integration. We can alternatively do a definite integration
y2 X2
/ gy dy = f f(x)dx, (8.64)
Y1 X1
where
y1 = y(x1)
y2 = y(x2).

EXAMPLE 8.6 In afirst-order chemical reaction with no back reaction, the con
centration of the reactant is governed by

d
2 e, (8.65)
dt
wherec is the concentration of the single reactants the time, andk is a
function of temperature called thiate constant. Solve the equation to find
as a function of.

SOLUTION » We divide byc and multiply bydr to separate the variables:

ldc 1
——dt = —dc = —kdt.
c dt c
We perform an indefinite integration
1
f Zde =In(c) = —k[dt +C=—kt+C, (8.66)
C

whereC is a constant of integration. Although each indefinite integration would require a constant
of integration, we include only one constant, since the second constant of integration could be
moved to the other side of the equation, giving the difference of two constants, which equals a
constant.
We take the exponential of each side of Eq. (8.66) to obtain
MO = ¢ = Cok = ¢(0)e X, (8.67)

In the last step, we recognized thét had to equal the concentration at time= 0. A definite
integration can be carried out instead of an indefinite integration:

c(t1) 1 . n
/ Zde=1n (‘(t1)> - —k/ dt = —kiy.
c(0) ¢ c(0) 0

This equation is the same as Eq. (8.67) except that the time is now caliestead of. The limits
on the two definite integrations must be done correctly. If the lower limit of the time integration is
zero, the lower limit of the concentration integration must be the value of the concentration at zero

time. The upper limit is similar. <
|EXERCISE 8.12 b | In a second-order chemical reaction involving one re-
actant and having no back reaction,
dc
— = = ke
dt

Solve this differential equation by separation of variables. Do a definite inte-
gration froms = 0tor = 1. [«
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If you are faced with a differential equation and if you think that there is some
chance that separation of variables will work, try the method. If it doesn’'t work
you haven't lost very much time since the method is quite rapid.

Exact Differential Equations

Sometimes you might be faced with an equation that can be manipulated into the
pfaffian form:
M(x, y)dx + N(x,y,)dy =0. (8.68)

Some such differential forms aexact, which means that they are differentials
of functions. Other differentials ali@exact, which means that they are not dif-
ferentials of functions. If the differential is exact, the equation is callegxant
differential equation.

The test for exactness is based onBber reciprocity relation, as in Eq. (7.31):

(%)x _ (%)y (8.69)

then the differential is exact. If the differential equation is exact, there is a function
f(x, y) such that

If

df = M(x,y)dx + N(x,y)dy =0, (8.70)

which implies that
fx,y)=C, (8.71)

whereC is a constant, because a constant function has a differential that vanishes.
This equation can be solved ferin terms ofx, providing a solution to the differ-
ential equation.

In Chapter 7 we discussed the procedure for finding the function in Eq. (8.71)
by using a line integral,

FGx1. y0) = £ (0. y0) + / df, (8.72)

whereC is a curve beginning dlko, yo) and ending afx1, y1). A convenient curve
is the rectangular path frortxo, yo) to (x1, yo) and then tax1, y1). On the first
part of this pathy is constant ayg, so thedy integral vanishes and is replaced
by yo in thedx integral. On the second part of the paths constant ats, so the
dx integral vanishes andis replaced by in thedy integral:

X1 y1
Foay) = foyo)+ [ MGody+ [ NGpdy. (673
X0 Yo
Both integrals are now ordinary integrals, so we have a solution if we can perform
the integrals. The solution will contain an arbitrary constant, because different
constants can be added fa@x1, y1) and f (xg, yo) in Eq. (8.73) without changing
the equality.

EXAMPLE 8.7 Solve the differential equation

2xydx +x2dy =0,
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SOLUTION » The equation is exact, because
b B
—(2y)=2¢ and —(x?) = 2x.
dy Ox

We do a line integral fromx, yg) to (x1, yg) and then toxg, y1), letting f (x, y) be the function
whose differential must vanish:
X

1 y1
0 = f(rpyD) = fGroyo) = [ 2vyod + / x2dy
X0 Yo

2 2 2 2
Yoxy — Yoxg +Xx7y1 — X1)0
2 2
X7y1 — X§Yo0.

<

We regardrg andyg as constants so thagyo = C, whereC is a constant. We
drop the subscripts ary andy1, and write

flx,y)=x%y=C.

Our general solution is = C/x2. Some condition would have to be specified to
obtain the value of the constafit

| EXERCISE 8.13 b | Show that the solution in the previous example satisfies
the equation.

(<]
EXERCISE 8.14 b | Solve the equatio®dx + y)dx + xdy = 0. [«]

8.5. Solution of Inexact Differential Equations by the
Use of Integrating Factors

If we have arinexact pfaffian differential equation
M(x,y)dx + N(x,y)dy =0 (8.74)

we cannot use the method of the previous section. However, some inexact dif-
ferentials yield an exact differential when multiplied by a function known as an
integrating factor. If the functiong(x, y) is an integrating factor for the differen-

tial in Eq. (8.74),

g(x, )M (x, y)dx + g(x, y)N(x, y)dy =0 (8.75)

is an exact differential equation that can be solved by the method of the previous
section. A solution for Eq. (8.75) will also be a solution for Eq. (8.74).

EXAMPLE 8.8 Solve the differential equation

dy 'y

dx x
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SOLUTION » We convert the equation to the pfaffian forpygx — x dy = 0. Test for exact-
ness:

d
), -
3}’ X

=] -
0x y - ’

The equation is not exact. We show thaﬁ is an integrating factor. Multiplication by this factor

gives
(%) dx — (;) dy = 0. (8.76)

WA 1
ay . T ox

[a(—l/x)] 1
ax y Tox2
We can solve Eq. (8.76) by the method of Section 8.4:

x1 /1
2
xo \X yo \*1

_ 1 1 1 Y N
= vl —)-=01—y)="T"-"
X1

This is exact:

N

X1 Xp xo X1
We regardrg andyg as constants, so that
Y_Y_.
X X0

whereC is a constant. We solve forin terms ofx to obtain the solution
y =Cx.

This is a general solution, since the original equation was first order and the solution contains one
arbitrary constant. <

If an inexact differential has one integrating factor, it has an infinite number of
integrating factors. Therefore, there can be other integrating factors for a differen-
tial such as the one in the preceding example. Unfortunately, there is no general
procedure for finding an integrating factor except by trial and error.

[EXERCISE 8.15 | Show that ¥y? and 1/ (x? + y?) are integrating factors
for the equation in the previous example and show that they lead to the same
solution. [«

Partial Differential Equations: Waves in a String

Differential equations that contain partial derivatives of several independent vari-
ables are calleghartial differential equations. The differential equations that we
have been discussing contain ordinary derivatives and are caliigghry differ-

ential equations. Ordinary differential equations occur that contain more than one
dependent variable, but you must have one equation for each dependent variable
and must solve them simultaneously. We will not discuss simultaneous differential
equations, but you can read about such equations in some of the books listed at the
end of the book, and Mathematica is capable of solving simultaneous differential
equations.
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I string position
given by y = ylx, t)

/ 1] - /
x=0 equilibrium position x=1L

Figure 8.5 » A flexible string.

We discuss only a rather simple method of solving a partial differential equa-
tion, devoting most of this section to an example, the classical equation of motion
of aflexible string of length L. There are important similarities between this equa-
tion and the Schrédinger equatibof quantum mechanics. The flexible string that
we discuss is a model system that is simpler than a real string. It is defined by
the following: (1) It is completely flexible, so that no force is required to bend
the string. (2) Its motion is restricted to small vibrations, so that the string is not
appreciably stretched. (3) Both ends of the string are fixed in position. Figure 8.5
shows the string. We choose one end of the string as our origin of coordinates and
use the equilibrium (straight) position of the string as.oaixis. The displacement
of the string from its equilibrium position in the direction is denoted by and
the displacement in thedirection is denoted by. Since the string moves, and
z are functions of time as well as of

= y(x,1) (8.77)
z = z(x, ). (8.78)

The equation of motion of the string is derived by writing Newton’s second law
for a small segment of the string and taking a mathematical limit as the length of
the segment becomes infinitesimal. We do not present the derivaiite. result
is a partial differential equation

32 T (87 32
XV (22 ) =2 (22 (8.79)
912 o \ 9x2 dx2

and a similar equation far. In this equation’ is the magnitude of the tension

force on the string ang is the mass of the string per unit length. The quantity
turns out to be the speed of propagation of a wave along the string.

T
c=_[—
0

Since the two equations are independent of each other, we can solyaffmlz
separately, and the two general solutions will be identical except for the symbol
used for the dependent variable.

SNamed for its discoverer, Erwin Schrodinger, 1887—1961, joint 1933 Nobel Prize winner in physics with
P. A. M. Dirac.
4Robert G. MortimerPhysical Chemistry, 2nd ed., pp. 1026-1027, Academic Press, San Diego, CA, 2000.
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Solution by Separation of Variables

We do not seek a general solution for Eq. (8.79). but seek only a family of solutions
that can be written as a product of factors, each of which depends on only one
variable:

y(x,t) =¥ (x)0(). (8.80)

This is called asolution with the variables separated. We regard it as &ial solu-
tion and substitute it into the differential equation to see if it works. This method
of separation of variables is slightly different from the previous version, since we
are now separating two independent variables instead of one independent variable
and one dependent variable.

Sincey does not depend anandd does not depend on the result of substi-
tuting the trial solution into the Eq. (8.79) is

d?o d%y
v (x) (W) =201 (ﬁ) . (8.81)

We write ordinary derivatives since we now have functions of only one variable.
We separate the variables by manipulating Eq. (8.81) into a form in which one
term contains na dependence and the other term containg dependence, just
as we manipulated Eqg. (8.59) into a form with only one variable in each term. We
divide both sides of Eq. (8.81) by the produictr)6 (). We also divide by:2, but
this is not essential.
1 d?%0 1 d?y
c20(t) di>” Y (x) dx?
The variables are now separated, since each term contains only one independent
variable.
We now use the fact that and are both independent variables. If we tem-
porarily keepr fixed at some value, we can still allawto vary. The function of
x on the right-hand side of Eq. (8.82) must be a constant functian lbécause it
equals a quantity that we can keep fixed while allowirtg range:

(8.82)

1 d2
L V2 _ constant (8.83)
¥ (x) dx?
For the same reason, the left-hand side is a constant functign of
1 d% )
= 2 8.84
200y di2 " (8.84)

We denote the constant by the symbal2 because this will make real. We now
multiply Eq. (8.83) byy (x) and multiply Eq. (8.84) by26(r). We obtain

d2

Kﬁ 42y =0 (8.85)
and

d?o

2t K2c%0 = 0. (8.86)

The separation of variables is complete, and we have two ordinary differential
equations. Except for the symbols used, both of these equations are the same as
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Eq. (8.12). We transcribe the solution to that equation with appropriate changes in
symbols:
Y(x) = a1 coSkx) + ar Sin(kx) (8.87)

0(t) = by coqkct) + by sin(kct). (8.88)

These are general solutions to the ordinary differential equations of Eg. (8.85) and

(8.86), but we do not necessarily have a general solution to our partial differential

equation, because there can be solutions that are not of the form of Eq. (8.80).
We are now ready to consider a specific case. We consider a string of length

with the ends fixed, as in Fig. 8.5. We have the condition that0 atx = 0 and

atx = L. These conditions are call®dundary conditions, and literally arise from

a condition at the boundaries of a regionylinust vanish at = 0 and atv = L,

theny must vanish at these points, since the faétdoes not necessarily vanish:

¥(0) =0 (8.89)
and
(L) =0. (8.90)
Equation (8.89) requires that
ap =0 (8.91)

since cog0) = 1. Equation (8.90) requires that the argument of the sine function
in Eq. (8.87) be equal to some integer timefor x = L, because

sin(nr) =0 (n=0,1,2,...). (8.92)

Therefore,
nim
K = A n=1273"..). (8.93)

We are not interested in the case that= 0, because this corresponds to a
stationary string at its equilibrium position.
The coordinate factoy in our solution is now

¥ (x) = azsin (””Tx) . (8.94)

We return to the time-dependent factar We applyinitial conditions that make
our solution apply to a particular case. Let us consider the case that &, the
string is passing through its equilibrium position, which corresponds=o0 for
all x. If so, thenb; = 0 since cof)) = 1.We now have

. t
6 = bosSin (nnc )
L

y(x,t) = Asin (%) sin(mza>, (8.95)

where we writeA = apb, since the product of two constants is really just one
constant. The maximuramplitude is A, and another initial condition would be
required to specify its value.

We have a set of solutions, one for each value of the integeigure 8.6 shows
the functiony(x) for several values otf. Each curve represents the shape of the

and
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string at an instant whefi = 1. At other times, the string is vibrating between
such a position and a position given by (x). There are fixed points at which the
string is stationary. These points are caliedies, and the number of nodes other
than the two nodes at the ends of the string s 1. A wave with stationary nodes

is called astanding wave.

pel BTN 2T P
s  —

Figure 8.6 » Standing waves in a flexible string.

If we let 1 be thewavelength, or the distance for the sine functionynto go
through a complete period, then

nh = 2L. (8.96)

The period of oscillation is the time required for the sine function in the factor
6 to go through a complete oscillation and return the string to its original position
and velocity, which requires the argument of the sine function to range threugh 2
If T is the period,

2L
(LI W——_— (8.97)
L nc
Thefrequency v is the reciprocal of the period:
nc n T 172
=—=(—)(— . 8.98
Y 2L <2L> (p) ( )

In musical acoustics, the oscillation corresponding te- 1 is called thefunda-
mental, that forn = 2 is thefirst overtone, etc. The fundamental is also called the
first harmonic, the first overtone is called trsecond harmonic, and so on.

|EXERCISE 8.16 B> | A certain violin string has a mass per unit length of
20.00mgcnt! and a length of 55cm. Find the tension force necessary to
make it produce a fundamental tone of A above middle C (440 oscillations per
second= 440 Hz). [«

When a string in a musical instrument is struck or bowed, it will usually not
vibrate according to a single harmonic. The following Fourier series is a linear
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combination that satisfies Eqg. (8.79) and can represent any possible motion of the
string:

ad . nmwx nmct . nmwct
y(x, 1) = ’;sm <T> |:an cos(T) + by, sm( 7 )} . (8.99)

The fact that a linear combination of solutions can be a solution to the equation is
an example of therinciple of superposition. We can regard the linear combination

as a physical representationaaistructive anddestructive interference of the dif-

ferent harmonics. The strengths of the different harmonics are represented by the
values of the coefficients, andb,,. Different musical instruments have different
relative strengths of different harmonics.

|EXERCISE 8.17 b | Show that the function in Eq. (8.99) satisfies Eq. (8.79).
[«

| EXERCISE 8.18 b | For a string of finite length with fixed ends, only stand-
ing waves can occur. For an infinitely long string, traveling waves can also
occur. The following is draveling wave:

y(x,t) = Asin[k(x — ct)]. (8.100)

Show that the function of Eq. (8.100) satisfies Eq. (8.79). [«]

We can show that the function of Eqg. (8.100) is a traveling wave by showing
that a node in the wave moves along the string. When O, there is a node at
x = 0. At a later time, this node is located at a valuecafuch thatk(x — cr) is
still equal to zero. At atime, x = ¢t at the node, so that the speed of the wave
is equal toc. The traveling wave solution in Eq. (8.100) is not a solution in which
the variables are separated. However, using Eg. (14) of Appendix B, we can show
that

Asin[k (x — ct)] = A[sin(kx) cogkct) — cos(kx) sin(kct)] . (8.101)

This equation exhibits the fact that a traveling wave is equivalent to two standing
waves interfering with each other.

|EXERCISE 8.19 b | Find the speed of propagation of a traveling wave in an
infinite string with the same mass per unit length and the same tension force as
the violin string in Exercise 8.16. (<]

Solution of Differential Equations with Laplace
Transforms

Some differential equations can be solved by taking the Laplace transform of the
equation, applying some of the theorems presented in Section 6.5 to obtain an
expression for the Laplace transform of the unknown function, and then finding
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the inverse transform. We illustrate this procedure with the differential equation
for the damped harmonic oscillatoEq. (8.39), which can be rewritten

dZZ ¢ dz k " ¢ / k
(dtz)-i_ma’t—i_mZ ¢ +mz+mz ( )

We introduce the notatiogl’ for the second derivativé?z/dr? andz’ for the first
derivativedz/dt. We take the Laplace transform of this equation, applying Eq.
(6.72) and ther = 2 version of Eq. (6.73), to express the Laplace transforms of
the first and second derivatives. We ¥be the Laplace transform ef

27— 520 — O+ Sz —20)+ Xz =0, (8.103)
m m

This algebraic equation is solved f@r
_ 52(0) +Z'(0) + (£ /m)z(0)
s24 (& /mys +k/m
When we find the inverse transform of this function, we will have our answer.
We must carry out some algebraic manipulations before we can find the inverse
transforms in Table 6.1. In order to match an expression for a transform in Table
6.1, we complete the square in the denominator (that is, we add a term so that we
have a perfect square plus another term):
_2(0)(s +¢/2m) + ¢ /2m + Z'(0)
(24 ¢/2m)2 —¢2/Am2 + k/m’
We have also expressed the numerator in terms of the quantity that is squared in
the denominator. We now make the substitutions,

e ok ;2
= — d = — -2
a an w 2
so that Eg. (8.105) can be written

z(0)(s + a) z(0)a + 7/ (0)

(8.104)

(8.105)

= . 8.106
2+ a)2+w?  (s24a)? + w? ( )
We assume the case of less than critical damping, sathistpositive.
From Table 6.1, we have the inverse transforms,
_1 N .
L {m} = COE(a)t)
£t {Sz_is_—wz} = sin(wt)
and from the theorem of Eq. (6.71)
LHe ™)) = F(s +a) (8.107)
so that
0 ") .
z(t) = |:Z(O) coSwt) + M Sln(a)t):| e . (8.108)
w

|EXERCISE 8.20 B> | Substitute the function of Eqg. (8.108) into Eq. (8.102)
to show that it satisfies the equation. [«

SErwin Kreyszig,Advanced Engineering Mathematics, 8th ed., Wiley, New York, 1999.
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|EXERCISE 8.21 b | Obtain the solution of Eq. (8.102) in the case of critical
damping, using Laplace transforms. <]

Our discussion of the Laplace transform method for solving differential equa-
tions suffices only to introduce the method. The book by Kreyszig in the list at the
end of the book is recommended for further study.

Numerical Solutions of Differential Equations

Many differential equations occur for which no solution can be obtained with pen-
cil and paper. A lot of these occur in the study of chemical reaction rates. With the
use of programmable computers, it is now possible to obtain numerical approxi-
mations to the solutions of these equations to any desired degree of accuracy.

Euler’'s Method

This is a method that is extremely simple to understand and implement. However,
it is not very accurate and is not used in actual applications. Consider a differential
equation for a variable as a function of time that can be schematically represented
by

dx

— = f(x,t 8.109

= fan (8.109)
with the initial condition thatc (0) = xg, a known value. Aormal solution can be
written

t/
x(t) = x0+f fx,t)dt. (8.110)
0

Like any other formal solution, this cannot be used in practice, since the variable
in the integrand function depends nim some way that we don’t yet know.

Euler's method assumes that iis small enough, the integrand function in Eq.
(8.110) can be replaced by its value at the beginning of the integration. We replace
t" by the symbolAr and write

At
x(At) = xo+ f(x0,0)dt = xo+ At f(x0,0). (8.111)
0

A small value ofAr is chosen, and this process is repeated until the desired value
of ¢’ is reached. Let; be the value of obtained after carrying out the process
times, and let; equali Az, the value of after carrying out the procegsimes. We
write

Xi+1 = X; + Atf(x,-,tl-). (8112)

Euler's method is analogous to approximating an integral by the area under
a bar graph, except that the height of each bar is obtained by starting with the
approximate height of the previous bar and using the known slope of the tangent
line.
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|[EXERCISE 8.22 B | The differential equation for a first-order chemical reac-
tion without back reaction is

dc

— = —kec,

dt

wherec is the concentration of the single reactant ans the rate constant.

(a) Set up an Excel spreadsheet to carry out Euler's method for this dif-
ferential equatiof.

(b) Carry out the calculation for the initial concentratio®d0 mol 2, k =
1.000s! for a time of 2000's and forAr = 0.100s.

(c) Compare your result with the correct answer. [«

a|f you know how to use Visual Basic for Applications, you can write a Macro and use it in an Excel
spreadsheet to carry out the calculation of this exercise.

The Runge-Kutta Method

Since Euler's method is not accurate except for very small valuesrpimore
sophisticated methods have been devised. One such widely used method is the
Runge—Kutta method, which is somewhat analogous to using Simpson’s method
for a numerical integration, as discussed in Chapfer 5.

In the Runge—Kutta method, Eqg. (8.112) is replaced by

1
Xit1 ~ x; + é(Fl + 2F> + 2F3 + Fy), (8.113)
where

= Al‘f(x,"l‘i) (8.114)

1 At
Fo = Atf (x,- + éFl’ti + ?> (8.115)

1 At
F3 = Atf (]Ci + EFZ,Z}' + ?> (8116)
F4 = Atf (xi + Fati + At). (8.117)

We do not present the derivation of this method, which is discussed in the book by
Burden and Faires listed at the end of the book.

There are also other numerical methods for solving differential equations,
which we do not discuss. The numerical methods can be extended to sets of simul-
taneous differential equations such as occur in the analysis of chemical reaction
mechanisms. Many of these sets of equations have a property siifieess that
makes them difficult to treat numerically. Techniques have been devised to handle
this problem, which is beyond the scope of this béok.

6See the book by Burden, Faires, and Reynolds and the book by Hornbeck listed at the end of the chapter.
7c.J. Aro,Comput. Phvs. Comm. 97, 304 (1996).
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Solution of Differential Equations with Mathematica

Mathematica can solve differential equations both symbolically and numerically.

Symbolic Solution

The statement DSolve is used to carry out a symbolic solution of a differential
equation. We illustrate this with an example.

EXAMPLE 8.9 Use Mathematica to solve the differential equation

d
ﬁ = ay(x)

SOLUTION » We enter the Mathematica statement

DSolvdy/[x] == a y{x], y[X], X]

and press the “Enter” key. Notice how the statement is written inside the brackets. First comes the
equation, with the first derivative denoted by y'. The double equal sign must be used to let Math-
ematica know that an equation is to be solved. We have used a blank space between the a and the
y[x] to indicate multiplication. After a comma comes the specification of the dependent variable,
y[x]. Note the use of brackets, not parentheses. The independent variable must be included inside
the brackets. After another comma comes the statement of the independent variable. Mathematica
returns the output

Outl = {{y[x] - e**C[1]}}

Note the space between the a and the x and the space between the exponential and the constant
C[1] in the output. The constant C[1] is to be determined by initial conditions. An initial condition
can be included in the original input statement. For examphg(df = 2, we would enter

DSolve{y/[x] == ayIx], y[0] == 2}, y[X]. X]
and press the “Enter” key or a “Shift-return.” The output would be

Outl= {{y[x] - 2 *}}

Numerical Solution

Mathematica carries out numerical solutions of differential equation for which no
exact solution can be written. The solution is given in terms of an interpolating
function, which is a table of values of the unknown function for different values
of the independent variable. The program finds a numerical value of the function
for a specific value of the independent variable by interpolation in this table. The
statement NDSolve is used to solve the differential equation, as in the next exam-
ple:
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EXAMPLE 8.10 Obtain the numerical solution to the differential equation

d_y = 2sin(x) (8.118)
dx

for the interval O< x < 7 with the initial conditiony(0) = 1.

SOLUTION » We type the input
NDSolve[{y'[x]==2 sin[x], y[0]==1}, v, {X, O, Pi}]

and press the “Enter” key. The output appears
Out[1]={{y — InterpolatingFunction[{0,3.141593k >1}}

To obtain the value of the function at some value pfayx = 2, we type the input
y[2] 1.%1

and press the “Enter” key or a “Shift-return.” The /. is tteplacement operator in Mathematica,

and is typed as two characters, a forward slash and a period. The %1 means that the output line
number 1 is referred to. If the interpolating function had been in line 3, we would have typed %3.
The output result now appears

Out[2]={3.83229}
To obtain a graph of the solution, we enter
Plot[Evaluate[y[x] /. %1], {x, 0, Pi}]
and press the “Enter” key or a “Shift-Return”. The graph appears as the output. <

|EXERCISE 8.23 B | Obtain the numerical solution to the differential equa-
tion

d?y .
2= sin(x) (8.119)

for the interval O< x < 7 and for the initial conditionc = 1. [«

SUMMARY

A differential equation contains one or more derivatives, and its solution is a func-
tion that satisfies the equation. Classical equations of motion are differential equa-
tions based on Newton’s laws of motion that when solved give the positions of
particles as a function of time. We have presented the solution to several of these.
These differential equations are deterministic. That is, given the equation of mo-
tion for a given system and the initial conditions (position and velocity of every
particle at some initial time), the positions and velocities are determined for all
times.

Many homogeneous and inhomogeneous linear differential equations with
constant coefficients can be solved by routine methods, which we discussed. An
exact differential equation can also be solved in a routine way. Such an equation
consists of an exact differential set equal to zero. Since a line integral of an exact
differential (the differential of a function) is equal to the value of the function at
the end of the integration minus the value of the function at the beginning of the
integration, a line integration to a general ending point provides the formula for
the function, solving the equation. Some inexact differential equations can be con-
verted into exact equations by use of an integrating factor, and solution of the exact
equation provides a solution to the inexact equation.
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Many partial differential equations arising in physical problems can be
solved by separation of variables. In this procedure, a trial solution consisting
of factors depending on one variable each is introduced, and the resulting equation
is manipulated until the variables occur only in separate terms. Setting these terms
equal to constants gives one ordinary differential equation for each variable.

Some ordinary differential equations can be solved by using some theorems of
Laplace transforms which transform a differential equation into an algebraic equa-
tion. If this equation can be solved for the transform of the unknown function, and
if the inverse transform can be found, the equation is solved.

If a mathematical method for solving a differential equation cannot be found,
numerical methods exist for generating numerical solutions to any desired degree
of accuracy. Euler's method and the Runge—Kutta method were presented.

PROBLEMS

1. An object moves through a fluid in thedirection. The only force acting on the
object is a frictional force that is proportional to the negative of the velocity:

dx
Fy = —fvy =—¢ <Z>

Write the equation of motion of the object. Find the general solution to this
equation, and obtain the particular solution that applies(@ = 0 and
v, (0) = vg = constant. Draw a graph of the position as a function of time.

2. A particle moves along the axis. It is acted upon by a constant gravitational
force equal to—kmg, wherek is the unit vector in the direction. It is also
acted on by a frictional force given by

d
()

where¢ is a constant called a “friction constant.” Find the equation of motion
and obtain a general solution. Findas a function of time ik(0) = 0 and
v, (0) = 0. Draw a graph of as a function of time.

3. An obiject sliding on a solid surface experiences a frictional force that is con-
stant and in the opposite direction to the velocity if the particle is moving, and
is zero it is not moving. Find the position of the particle as a function of time
if it moves only in thex direction and the initial position is(0) = 0 and the
initial velocity isv, (0) = vg = constant. Proceed as though the constant force
were present at all times and then cut the solution off at the point at which the
velocity vanishes. That is, just say that the patrticle is fixed after this time.

4. A harmonic oscillator has a mags = 0.200kg and a force constaht =
98N L.
a) Find the period and the frequency of oscillation.

b) Find the value of the friction constamt necessary to produce critical
damping with this oscillator. Find the value of the constant
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¢) Construct a graph of the position of the oscillator as a functiarnfof the
initial conditionsz(0) = 0, v.(0) = 0.100ms L.

5. Aless than critically damped harmonic oscillator has a mass 0.200kg, a
force constant = 98 Nm 1 and a friction constartt = 4.00kg s 1.

a) Find the frequency of oscillatiota and compare it with the frequency that
would occur if there were no damping.

b) Find the time required for the real exponential factor in the solution to drop
to one-half of its value at = 0.

6. A forced harmonic oscillator with a circular frequeney= 6.283s! (fre-
quencyv = 1.000s 1) is exposed to an external forég sin(at) with circular
frequencyr = 7.540 51 such that in the solution of Eq. (8.59) becomes

z(t) = sin(wt) + 0.100 sin(at) . (8.120)

Using Excel or Mathematica, make a graph; 6f for a time period of at least
20s.

7. Aforced harmonic oscillator with mass = 0.200 kg and a circular frequency
o = 6.283s ! (frequencyy = 1.000s1) is exposed to an external force
Foexp(—pAt) sin(at) with « = 7.540 s 1andg = 0.500s L. Find the solution
to its equation of motion. Construct a graph of the motion for several values of
Fo.

8. A tank contains a solution that is rapidly stirred, so that it remains uniform at
all times. A solution of the same solute is flowing into the tank at a fixed rate of
flow, and an overflow pipe allows solution from the tank to flow out at the same
rate. If the solution flowing in has a fixed concentration that is different from
the initial concentration in the tank, write and solve the differential equation
that governs the number of moles of solute in the tank. The inlet pipe alows
moles per hour to flow in and the overflow pipe allo®s moles per hour to
flow out, whereA and B are constants andis the number of moles of solute
in the tank. Find the values of and B that correspond to a volume in the
tank of 10001, an input of 1000 ™! of a solution with 1000 mol "%, and an
output of 1000 | h! of the solution in the tank. Find the concentration in the
tank after 500 h, if the initial concentration is zero.

9. An nth-order chemical reaction with one reactant obeys the differential equa-

tion

de = —kc"

dt ’
wherec is the concentration of the reactant ahds a constant. Solve this
differential equation by separation of variables. If the initial concentration
is co moles per liter, find an expression for the time required for half of the
reactant to react.

10. Find the solution to the differential equation

d3y d?y dy
CI) 22— (22) + 2y = —xet.
(dx3> (dx2> (dx) tey e



266 Chapter 8 Differential Equations

11. Test the following equations for exactness, and solve the exact equations:

a) (x2+xy +y?)dx + (4x2 — 2xy + 3y?)dy =0
b) ye*dx +e*dy =0
(o)) [ny — COS(x)] dx + (x2 — 1) dy=0

12. Use Mathematica to solve the differential equation symbolically

d .
& + ycogx) = e~ SN,
dx
13. Use Mathematica to obtain a numerical solution to the differential equation in
the previous problem for the range© x < 10 and for the initial condition
y(0) = 1. Evaluate the interpolating function for several values ahd make

a plot of the interpolating function for the range<Ox < 10.
14. Find a particular solution of

2
% — 4y = 263  sin(x).

15. Radioactive nuclei decay according to the same differential equation that gov-
erns first-order chemical reactions, Eq. (8.65). In living matter, the isotope
14C is continually replaced as it decays, but it decays without replacement be-
ginning with the death of the organism. The half-life of the isotope (the time
required for half of an initial sample to decay) is 5730 years. If a sample of
charcoal from an archaeological specimen exhihi@g @isintegrations of*C
per gram of carbon per minute and wood recently taken from a living tree ex-
hibits 153 disintegrations of*C per gram of carbon per minute, estimate the
age of the charcoal.

16. A pendulum of length. oscillates in a vertical plane. Assuming that the mass
of the pendulum is all concentrated at the end of the pendulum, show that it
obeys the differential equation

d? .
L (d_tf) = —gsin(¢),

whereg is the acceleration due to gravity apdthe angle between the pen-
dulum and the vertical. This equation cannot be solved exactly. For small
oscillations such that

sin(¢) ~ ¢
find the solution to the equation. What is the period of the motion? What is the
frequency? Evaluate these quantities &= 1.000 m and ifL = 10.000 m.

17. Use Mathematica to obtain a numerical solution to the pendulum equation in
the previous problem without approximation for the case fhat 1.000 m
with the initial conditions¢ (0) = 0.350rad (about 20) andd¢/dt = 0.
Evaluate the solution far = 0.500s, 1000s and 1500s. Make a graph of
your solution for O< ¢ < 4.00s. Repeat your solution fgr(0) = 0.050rad
(about 29°) andd¢/dt = 0. Determine the period and the frequency from
your graphs. How do they compare with the solution from the previous prob-
lem?
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18. Obtain the solution for Eg. (8.55) and (8.56) for the forced harmonic oscillator
using Laplace transforms.

19. An object of mas#: is subjected to an oscillating force in thelirection given
by a sin(bt) wherea andb are constants. Find the solution to the equation of
motion of the particle.

20. An object of massn is subjected to a gradually increasing force given by
a(1 — e~b") wherea andb are constants. Solve the equation of motion of the
particle. Find the particular solution for the case th@) = 0 anddx/dt =0
atr = 0.



Operators,
Matrices,
and Group Theory

Preview

A mathematical operator is a symbol standing for carrying out a mathematical op-
eration or a set of operations. Operators are important in quantum mechanics, since
each mechanical variable has a mathematical operator corresponding to it. Oper-
ator symbols can be manipulated symbolically in a way similar to the algebra of
ordinary variables, but according to a different set of rules. An important differ-
ence between ordinary algebra and operator algebra is that multiplication of two
operators is not necessarily commutative, so that #nd B are two operators,

AB # BA can occur.

A matrix is a list of quantities, arranged in rows and columns. We will introduce
matrix algebra, which is a branch of algebra that has rules that are different from
the algebra of ordinary variables, and which has similarities with operator algebra.

A group is a set of elements with defined properties, including a single oper-
ation which is not necessarily commutative. The elements of a group can repre-
sent symmetry operators, and group theory can provide useful information about
guantum-mechanical wave functions for symmetrical molecules, spectroscopic
transitions, and so forth.

Principal Facts and Ideas

1. Anoperator is a symbol that stands for a mathematical operation. If an operator
A operates on a functioyi the result is a new functior; A f = g.

2. Operator algebra manipulates operator symbols according to rules that are
slightly different from those of ordinary algebra.

3. An eigenvalue equation has the forry = af where f is an eigenfunction

and a is an eigenvalue.
268



Section 9.1 Operators and Operator Algebra 269

4. Symmetry operators move points in space relative to a symmetry element. A
symmetry operator which belongs to the nuclear framework of a molecule
moves each nucleus to the former position of a nucleus of the same kind.

5. Symmetry operators can operate on functions as well as on points and can
have eigenfunctions with eigenvalues equal to 1 or10 An electronic wave
function of a molecule can be an eigenfunction of the symmetry operators
which belong to the nuclear framework of a molecule.

6. Matrices can be manipulated according to the rules of matrix algebra. which
are similar to the rules of ordinary algebra. One exception is that matrix mul-
tiplication is not necessarily commutative:AfandB are matricesAB # BA
can occur.

7. The inverse of a matrix obeys 1A = AA~! = E whereE is the identity
matrix. The inverse of a given matrix can be obtained by the Gauss—Jordan
elimination procedure.

8. Agroup is a set of elements obeying certain conditions, with a single operation
combining two elements to give a third element of the group. This operation is
called multiplication and is noncommutative.

9. The symmetry operators belonging to a symmetrical object such as the equi-
librium nuclear framework of a molecule form a group.

10. A set of matrices obeying the same multiplication table as a group is a repre-
sentation of the group.

11. Various theorems of group theory make it useful in studying the symmetry
properties of molecules in quantum chemistry.

Objectives

After studying this chapter, you should be able to:

1
2.

perform the elementary operations of operator algebra;
identify and use symmetry operators associated with a symmetrical molecule;

perform the elementary operations of matrix algebra, including matrix multi-
plication and finding the inverse of a matrix;

identify a group of symmetry operators and construct a multiplication table for
the group.

Operators and Operator Algebra

A mathematical operator is a symbol that stands for carrying out a mathematical
operation on some function. For example, we can use the sydaal or the
symbol D, to stand for the operation of differentiating with respectrto We

will usually assign a symbol to an operator that consists of a letter with a caret
(™) over it. When an operator operates on a function, the result will generally be
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another function. We will discuss three principal types of operators: multiplication
operators, derivative operators, and symmetry operalkbulti plication operators

are operators that stand for multiplying a function either by a constant or by a
specified functionDerivative operators stand for differentiating a function one or
more times with respect to one or more independent variables. An operator can
correspond to carrying out more than one operation, such as multiplication by a
function followed by a differentiation or taking the sum of the results of operating
with two operatorsSymmetry operators are defined by the way they move a point

in space but can also operate on functions.

EXAMPLE 9.1 Let the operator be given by

n d
A=x+ —. (9.1)
dx

Find A f if f = asin(bx), wherea andb are constants.

SOLUTION » .
Aa sin(bx) = xa sin(bx) + ab cos(bx) . (9.2)

<
If the result of operating on a function with an operator is a function that is

proportional to the original function, the function is calledeagenfunction of that
operator, and the proportionality constant is calledigenvalue.® If

Af =af (9.3)

then f is an eigenfunction ofi anda is the eigenvalue corresponding to that
eigenfunction. An equation like Eq. (9.3) is called @genvalue egquation. The
time-independent Schrédinger equation of quantum mechanics is an eigenvalue
eqguation, and other eigenvalue equations are important in quantum mechanics.

EXAMPLE 9.2 Find the eigenfunctions and corresponding eigenvalues for the
operatord?/dx?.

SOLUTION » We need to find a functioif (x) and a constant such that
d2f
a2 =
This is a differential equation that was solved as in Chapter 8. The general solution is
f(x) = Aexp(vax) + Bexp(—+ax) .,

whereA andB are constants. Since no boundary conditions were stated, the eigemeaneake

on any value, as can the constaAtandB. <
. . . _d :
|EXERCISE 9.1 b | Find the eigenfunctions of the operat%#, wherei =
X
V=1 <

1The wordei genvalueis a partial translation of the Germ&igenwert, sometimes translated as “characteristic
value.” The wordeigenfunction is a partial translation of the Germdigenfunktion, sometimes translated as
“characteristic function.”
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Operator Algebra

Although a mathematical operator is a symbol that stands for the carrying out of

an operation, we can define an operator algebra in which we manipulate these
symbols much as we manipulate variables and numbers in ordinary algebra. We
define thesum of two operators by

(A+B)f=Af+1§f, (9.4)

whereA and B are two operators and whefeis some function on whict and B
can operate.

The product of two operators is defined as the successive operation of the op-
erators, with the one on the right operating first. If

C=AB (9.5)

then

éf:A(éf). (9.6)

The result of B operating onf is in turn operated on byt and the result is said

to equal the result of operating ghwith the productfié. It is important that an
operator operates on everything to its right in the same term and that the rightmost
operator in an operator product operates first. Equation (9.5) @paator equa-

tion. The two sides of the equation are equal in the sense that if each is applied to
an arbitrary function the two results are the same.

: d .
EXAMPLE 9.3 Find the operator equal to the operator prodgelx.
X

SOLUTION » We take an arbitrary differentiable functigh = f(x) and apply the operator
product to it,

d . df dx d P

dxxf _xdx + fdx N (xdx + ) f
whereE is theidentity operator, defined to be the operator for multiplication by unity (same as
doing nothing). We can write the operator equation that is equivalent to this equation:

d._ d .
EX = XE +
<«
. 2
|EXERCISE 9.2 b | Find the operator equal to the operator prodﬁgtx. [«
The difference of two operators s given by
(A—B)=A+ (—E)B. (9.7)

We now have an operator algebra in which we carry out the operations of addition
and multiplication on the operators themselves. These operations have the follow-
ing properties: Operator multiplicationassociative. This means thatift, B, and

C are operators, then

(AB)C = A(BC). (9.8)
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Operator multiplication and addition adestributive. This means that ifi, B, and
C are operators.

AB+C)=AB+ AC. (9.9)

Operator multiplication is not necessaritpmmutative. This means that in
some cases the same result is not obtained if the sequence of operation of two
operators is reversed:

AB # BA (possible) (9.10)

If the operatorA B is equal to the operatdt A then A and B are said tacommute.
The commutator of A and B is denoted b){fi, é] and defined by

[A, é] = AB — BA (definition of the commutator) (9.11)

If AandB commute, therEA, é] = 0, where0 is thenull operator, equivalent to
multiplying by zero.

EXAMPLE 9.4 Find the commutatof-£, x].

SOLUTION » We apply the commutator to an arbitrary functigfx):

d _d af _ df af _
|:dx’x:| f= dx (/) xdx _xdx +f xdx =/ (0.12)
Therefore,
[i,x] =E=1, (9.13)
dx

where the symbdl stands for multiplication by unity and is the same thing;asVe will generally
omit the caret symbol on multiplication operators. <

[EXERCISE 9.3 b | Find the commutatofx?, d?/dx?]. [«

Here are a few facts that will predict in almost all cases whether two operators
will commute:

1. An operator containing a multiplication by a functionxofnd one containing
d/dx will not generally commute.

2. Two multiplication operators commute. g¢fandh are functions of the same or
different independent variables or are constants, then

(8, h]=0. (9.14)

3. Operators acting on different independent variables commute. For example,

[xi, ii| =0. (9.15)
dx dy
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4. An operator for multiplication by a constant commutes with any other operator.

|EXERCISE 9.4 b | Show that Eq. (9.15) is correct, and that statement (4) is
correct. [«

Since we have defined the product of two operators, we have a definition for
the powers of an operator. An operator raised to theti power is the operator for
n successive applications of the original operator:

A

A"=AAA--- A (nfactors)|. (9.16)

EXAMPLE 9.5 If the operatord is x + 4L, find A3,

SOLUTION »

i = (xg? .2 4+ 2
=\ dx * dx . dx
A | R
X —_— X —X X— —F
dx dx dx = dx?

= x3+xi)? —I—xzi —|—xd—2 + i)62—|— d—zx + i)ci + d—3
dx dx dx2  dx dx? dx" dx = dx3
The order of the factors in each term must be maintained because the two terms in the operator do
not commute with each other. <

EXERCISE9.5 | () For the operatad = x + -L, find
A3Fif £(x) = sin(ax).
(b) Find an expression faB? if B =
x(d?/dx?) and find B2f if f =
bx*.
[«
Division by an operator is not defined. However, we defineitiierse of an

operator as that operator which “undoes” what the first operator does. The inverse
of A is denoted byd 1, and

~ A

AATY=ATA=E (9.17)

ATYAfF=Ef=7F. (9.18)

The inverse of a nonzero multiplication operator is the operator for multiplication
by the reciprocal of the original quantity. Not all operators possess inverses. For
example, there is no inverse fomultiplication by zero).

Operator algebra can be used to solve some differential equatidnknear
differential equation with constant coefficients can be written in operator notation

2see, for example, Max Morris and Orley Browbifferential Equations, 3rd ed. pp. 86—89, Prentice-Hall,
Englewood Cliffs, NJ, 1952.
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and solved by operator algebra. The equation

d?y _dy

—— —-3=4+2y=0 9.19

dx? dx ey ( )
can be written as A A

(D?-3D,4+2y=0 (9.20)

where we introduce the symbpi, as an abbreviation fat/dx. The equation can
be written as an operator equation:

(D?-3D, +2) =0. (9.21)

Using operator algebra, we manipulate this equation as though it were an ordinary
equation. We factor it to obtain

([)x - 2) ([)x - 1) —o. (9.22)
The two roots are obtained from

D,—2=0 (9.23a)
D,—1 = 0. (9.23b)

These equations are the same as

d

2 oy =0 (9.24a)

dx

d

Y _y o (9.24b)

dx

The solutions to these equations are

y = > (9.25a)
y = ¢ (9.25b)

Since both of these must be solutions to the original equation, the general solution
is
y = c1e® + ce”, (9.26)

wherec; andc; are arbitrary constants.

|EXERCISE 9.6 b | Show that the function in Eq. (9.26) satisfies Eq. (9.19).
(<]

Operators in Quantum Mechanics

One of the postulates of quantum mechanical theory is that for every mechanical

quantity there is a mathematical operator. The theory of quantum mechanics de-
fines how these operators are constructed, and they contain derivative operators
and multiplication operators. The eigenfunctions and eigenvalues of these opera-
tors play a central role in the theory. For example, the operator that corresponds
to the mechanical energy is the Hamiltonian operator, and the time-independent
Schrédinger equation is the eigenvalue equation for this operator. For motion in
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the x direction of a single particle of mass with a potential energy given by
V(x), the Hamiltonian operator is

hz 2
 2m ox?
where# is Planck’s constant divided byr2 The termV(x) stands for a multi-

plication operator. You will become familiar with these operators in any physical
chemistry class.

+V(x) (9.27)

Symmetry Operators

Many common objects are said to be symmetrical. The most symmetrical object
is a sphere, which looks just the same no matter which way it is turned. A cube,
although less symmetrical than a sphere, has 24 different orientations in which it
looks the same. Many biological organisms have approxitiddieeral symmetry,
meaning that the left side looks like a mirror image of the right side. Symmetry
properties are related symmetry operators, which can operate on functions like
other mathematical operators. We first define symmetry operators in terms of how
they act on points in space and will later define how they operate on functions. We
will consider onlypoint symmetry operators, a class of symmetry operators that do
not move a point if it is located at the origin of coordinates.

We denote the position of a point by its Cartesian coordinates, keeping the
Cartesian coordinate axes fixed as the point moves. The action of a general sym-
metry operator denoted by is specified by writing

O(x1, y1,21) = (x2, y2, 22), (9.28)

wherexi, y1, z1 are the coordinates of the original location of a point apdy>,
z2 are the coordinates of the location to which the operator moves the point.

Specific Symmetry Operators

Our first symmetry operator is theentity operator, which leaves any point in its
original location. We denote it by ,the same symbol as for the multiplicative
identity operator.

E(x1, y1,20) = (x1, y1, 22) (9.29)
If rq is the vector with componentss, y1, z1), this equation can be written
Erp=ry. (9.30)

The inversion operator is denoted byi. It moves a point on a line from its
original position through the origin to a location at the same distance from the
origin as the original position:

1(x1, y1,21) = (—x1, —=y1, —21) (9.31)

or

irg=-rq (9.32)
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For each symmetry operator, we definsymmetry element, which is a point,
line, or plane relative to which the symmetry operation is performed. The sym-
metry element for a given symmetry operator is sometimes denoted by the same
symbol as the operator, but without the caret For example, the symmetry ele-
ment for the inversion operator is the origin. The symmetry element of any point
symmetry operator must include the origin. If a point is located on the symmetry
element for a symmetry operator, that symmetry operator will not move that point.
A reflection operator moves a point on a line perpendicular to a specified plane,
through the plane to a location on the other side of the plane at the same distance
from the plane as the original point. This motion is calteflection through the
plane. The specified plane is the symmetry element and must pass through the
origin if the operator is a point symmetry operator. There is a different reflection
operator for each of the infinitely many planes passing through the origin. The
operatois;, corresponds to reflection through they plane (the: subscript stands
for “horizontal”). Figure 9.1 shows the action of thg operator. There is only one
horizontal plane passing through the origin, so there is onlybgraperator among
the point symmetry operators. The actiorsgfcorresponds to

on(x1, y1,z1) = (x1, y1, —21) |- (9.33)

A reflection operator whose symmetry element is a vertical plane is denoted by
You must separately specify which vertical plane is the symmetry element.

|EXERCISE 9.7 b | Write an equation similar to Eq. (9.33) for tldg op-
erator whose symmetry element is the plane, and one for thé, operator
whose symmetry element is thyez plane. [«

Next we haveotation operators. An ordinary rotation, in which a point moves
as if it were part of a rigid object rotating about an axis, is callguiaper rota-

“\

23 =74

A

Figure 9.1 » The action of the reflection operaté, .
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tion. The axis of rotation is the symmetry element, and the action of the rotation
operator is to move the point along an arc, staying at a fixed perpendicular distance
from a fixed point on the axis. The axis of rotation must pass through the origin
if the rotation operator is a point symmetry operator. In addition to specifying the
axis of rotation, one must specify the direction of rotation and the angle of rotation.
By convention, the direction of rotation is taken as counterclockwise when viewed
from the end of the axis that is designated as the positive end. We consider only
angles of rotation such thatapplications of the rotation operator will produce ex-
actly one complete rotation, whetids a positive integer. Such a rotation operator
is denoted byC,. The axis of rotation must be specified separately. For example,
the operator for a rotation of 9@bout the; axis can be calleds(z).

Figure 9.2 shows the action of tii&(z) operator. For this operator,

Ca(z)(x1, y1, 21) = (—y1, X1, 21) (9.34)
so that
X2=—y1, Y2=2X1, 2Z2=21. (9.35)
|EXERCISE 9.8 b | Find the following:
(@) Ca(x)(1, —4,6) (b) C2(x)(L, 2, —3).
[«

An improper rotation is equivalent to a proper rotation followed by a reflection
through a plane that is perpendicular to the rotation axis. For this to be a point sym-
metry operation, both the rotation axis and the reflection plane must pass through
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Figure 9.2 » The action of a rotation operatcﬁ,’4.
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the origin. The symbol for an improper rotation operata$,iswhere the subscript

n has the same meaning as with a proper rotation. The symmetry element for an
improper rotation is the axis of rotation. The action of the operator for an improper
rotation of 90 about thez axis is given by

S4(2)(x1, y1, 21) = (—y1, X1, —21).- (9.36)

An improper rotation operatd$, is the same as the inversion operatoand any
S1 operator is the same as a reflection operator.

|EXERCISE 9.9 b | Find the following:

(@) S3(2)(1,2,3) (b) S20)(3,4,5).
[«

We have defined all of the point symmetry operators. In addition, there are other
symmetry operators and symmetry elements, such as translations, glide planes,
screw axes, etc., which are useful in describing crystal lattices but which are not
useful for molecules. We do not discuss these operators.

Symmetry operators can operate on a set of points as well as on a single point.
For example, they can operate simultaneously on all of the particles of a solid ob-
ject or on all of the nuclei of a molecule, or on all of the electrons of a molecule.
For example, a benzene molecule in its equilibrium conformation has the shape
of a regular hexagon. If the center of mass is at the origin, the inversion operator
moves each of the carbon nuclei to the original location of another carbon nucleus
and each of the hydrogen nuclei to the original location of another hydrogen nu-
cleus. If after a symmetry operation all of the particles in an object are in the same
conformation as before except for the exchange of identical particles, we say that
the symmetry operatdrelongs to the object. Any object has a set of symmetry
operators (or symmetry elements) that belong to it. An unsymmetrical object pos-
sesses only the identity operator, but a symmetrical object possesses at least one
additional symmetry operator. The symmetry properties of the object can be speci-
fied by listing all symmetry operators that belong to it or by listing their symmetry
elements. It is found that the symmetry operators belonging to any rigid object
form amathematical group, which we discuss later in this chapter. The symmetry
of the object can also be specified by giving the symbol assigned to the appropriate
group.

A uniform spherical object is the most highly symmetrical object. If the center
of the sphere is at the origin, every mirror plane, every rotation axis, every im-
proper rotation axis, and the inversion center at the origin are symmetry elements
of symmetry operators belonging to the sphere.

EXAMPLE 9.6 List the symmetry elements of a uniform cube centered at|the
origin with its faces parallel to the coordinate planes.

SOLUTION » The symmetry elements are:

The inversion center at the origin.

ThreeC4 axes coinciding with the coordinate axes.

Four C3 axes passing through opposite corners of the cube.
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Four Sg axes. coinciding with th€'3 axes.

Six C» axes connecting the midpoints of opposite edges.

Three mirror planes in the coordinate planes.

Six mirror planes passing through opposite edges. <

[EXERCISE 9.10 »> | (a) List the symmetry elements of a
right circular cylinder. It is cus-
tomary to place the highest-order
rotation axis on the axis, so we
place the axis of the cylinder on
the z axis and place its center at
the origin. Since even an infinites-
imal rotation belongs to the object,
thez axis is aC, axis.

(b) List the symmetry elements of a
uniform regular tetrahedron. It is
possible to arrange the object so
that its center is at the origin and
the four corners are at alternate
corners of a cube oriented as in
Example 9.6.

EXAMPLE 9.7 List the symmetry elements of the benzene molecule.

SOLUTION » Locate the molecule with its nuclei in their equilibrium conformation as shown

in Fig. 9.3. The symmetry elements are:

The inversion center at the origin.

Theoy, mirror plane containing the nuclei.

A Cg axis and arfg axis on thez axis.

Six vertical mirror planes, three through carbon nuclei and three that pass halfway between adja-
cent carbon nuclei.

Six Cy axes located where the mirror planes intersecktiyeplane. These are alsfy axes.

Some of the symmetry elements are shown in Fig. 9.3. The symbols on the rotation axes identify
them, with a hexagon labeling a sixfold axis, a square labeling a fourfold axis, and so on«

|EXERCISE 9.11 b | List the symmetry elements for

(a) HoO (bent) (b) CH (tetrahedral)

(c) CO (linear).

The Operation of Symmetry Operators on Functions

We have described the action of symmetry operators on points. We now define how
they act on functions. When a mathematical operator operates on a function, a new
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Figure 9.3 » The benzene molecule with symmetry elements shown.
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function is produced. We define this same action for a symmetry operatporisif
some function ok, y, andz and O is some symmetry operator, then we define

Oy = ¢, (9.37)
where¢ is a newly produced function. We now have to define this new function.

If O is the operator that carries a point frqmy, y1, z1) to (x2, y2, z2), we define
¢ to have the same value @b, y», z2) thaty has at(x1, y1, z1):

¢ (x2, y2, 22) = ¥ (x1, y1, 21) (9.38)

This definition allows us to treat symmetry operators on an equal footing with other
mathematical operators that operate on functions.

EXAMPLE 9.8 The unnormalized 2x wave function for the electron in a hy
drogen atom is

(9.39)

2a0 ’

1:[f2px =X exp|:

whereaqg is a constant called thgohr radius. Find 64(z)w2px.
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SOLUTION » The effect of this operator is given by Eq. (9.34)

Ca(2)(x1. y1, 21) = (x2. ¥2, 22) = (=y1, X1, 21).
The new function is thus

03413+ PV
2a9 '

(x2, ¥2,22) = Y2px(x1, ¥1,21) = »2 EXF{

Thus
Ca@W2px = V2, - (9.40)

The original function has a positive region in front of the x-z plane and a negative region behind
the x-z plane. The symmetry operator has moved the positive region in the same way that it moves
a rigid object, and similarly for the negative region. <

Symmetry operators can haegenfunctions, like any other operator. The re-
sult of operating on an eigenfunction of the operator is equal to a constant (the
eigenvalue) times the original function. If a symmetry operator leaves a function
unchanged, its eigenvalue is equal to unity. The only other possible eigenvalue for
a symmetry operator is 1.

|EXERCISE 9.12 B | Find7v2,,.. Show thaty,, is an eigenfunction of the
inversion operator, and find its eigenvalue. [«

The importance of symmetry operators in the study of electronic wave functions
arises from the fact that two commuting operators can have a set of common eigen-
functions. In quantum mechanical theory, there is an operator corresponding to
each mechanical variable. The most important guantum mechanical operator is the
Hamiltonian operator, which corresponds to the energy. In Barn—Oppenheimer
approximation, the electronic Hamiltonian operator operates on the coordinates of
the electrons, but treats the nuclear coordinates as constants. This operator has a
term in it that is the operator for multiplication by the potential energy as a function
of the positions of the nuclei and electrons. If a symmetry operator leaves the po-
tential energy unchanged when applied to the electrons’ positions, it will commute
with the Hamiltonian operator, and the eigenfunctions of the Hamiltonian operator
can also be eigenfunctions of the symmetry operator.

A symmetry operator leaves the potential energy unchanged if it moves each
electron so that after the motion it is the same distance from each nucleus or
the same distance from another nucleus of the same charge as it was prior to
the motion. If this is the case, the symmetry operator commutes with the Born-
Oppenheimer Hamiltonian. There is another way to see if the symmetry operator
will commute with the electronic Hamiltonian. Apply it to the nuclei and not to
the electrons. If the symmetry operator either leaves a nucleus in the same position
or places it in the original position of a nucleus of the same type, it belongs to the
nuclear framework. The symmetry operators that belong to the nuclear framework
will commute with the electronic Hamiltonian when applied to the electrons.
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|EXERCISE 9.13 b | The potential energy of two charge®; and Q2 in a
vacuum is
_ Q102
A egri

wherer12 is the distance between the charges and a constant called the
permittivity of a vacuum. If a hydrogen molecule is placed so that the origin is
midway between the two nuclei and the nuclei are onzthgis, show that the
inversion operatof and the reflection operatéy, do not change the potential
energy if applied to the electrons but not to the nuclei. [«]

Full exploitation of the symmetry properties of electronic wave functions re-
quires the use of group theory, which we briefly introduce in a later section of this
chapter. However, we state some facts:

1. Ifamolecule has a permanent dipole moment, the dipole vector must lie along
a proper rotation axis and in a plane of symmetry.

2. A molecule with an improper rotation axis cannot be optically active.

3. A given object, such as a nuclear framework of a molecule, cannot possess a
completely arbitrary collection of symmetry elements. Group theory can tell
us which ones can belong together.

Matrix Algebra

A matrix is an array or list of numbers arranged in rows, columns, and so forth.
Most of the matrices that you will encounter are two-dimensional arrays. That is,
they have rows and columns. If the matrix A hasows and: columns, it is called
anm by n matrix and is written

ail aiz2 aiz -+ din
azi1 azz azz - dp
A= ... . (9.41)
L dml Am2 Am3 *°* Amn |

The quantities that are entries in the two-dimensional list are catkdx ele-
ments. The brackets written on the left and right are included to show where the
matrix starts and stops. #f = n, we say that the matrix issguare matrix. A vec-
tor in ordinary space can be represented as a list of three components. We consider
a matrix with one row and columns to be aow vector. We consider a matrix with
m rows and one column to becalumn vector. We now refer to ordinary numbers
asscalars, to distinguish them from vectors and matrices.

Matrices and mathematical operators have some things in common. There is
a well-defined matrix algebra in which matrices are operated on and this matrix
algebra is similar to operator algebra. Two matrices are equal to each other if and
only if both have the same number of rows and the same number of columns and if
every element of one is equal to the corresponding element of the othesuifhe
of two matricesis defined by

C=A+B ifandonlyifc;; =a;; + b;; for everyi and;. (9.42)
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Two matrices can be added only if they have the same number of rows and the
same number of columns. Tlpeoduct of a scalar and a matrix is defined by

B=cA ifandonlyifb;; = ca;; for everyi andj, (9.43)

wherec is a scalar and\ is a matrix. Theproduct of two matrices is similar to
the scalar product of two vectors. If we rename the components of two veators
F>, F3, G1, G2, andGgsinstead ofFx, Fy, F;, G, Gy, andG_, we can write the
scalar product of two vectors in Eq. (2.70) in the form

3
F-G=F1G1+ F2G2+ F3G3 = Y FiGy. (9.44)
k=1

We define matrix multiplication in a way that is similar to this Alf B, andC are
matrices such that is the matrix producfB, we define

Cij = Za;kbk,-. (945)
k=1

In this equationy is the number of columns iA, which must equal the number
of rows in the matrixB. The matrixC will have as many rows a& and as many
columns as.

We can think of the vectoF in Eq. (9.44) as a row vector with one row and
three columns and the vectGras being a column vector with three rows and one
column. Equation (9.44) is then a special case of Eq. (9.45):

G1
F-G=[FL F2 F3]| G»
G3

Row and column vectors can have a number of elements other than three, just as a
matrix can have a number of rows and columns other than three.
The scalar produdt - G is a scalar, which is equivalent to a matrix with one
row and one column. IA is a 2 by 3 matrix and is a 3 by 3 matrix, we can write
their matrix product as

b1y b1z b13
AB — | 911 @12 a13 | c11 c12 13

bo1 by b3
az1 azz azs €21 €22 €23
b1 bzo b33

}:c. (9.46)

Each element i€ is obtained in the same way as taking a scalar product of a row
from A and a column fronB. For a particular element i@, we take the row iA
which is in the same position as the row@ncontaining the desired element, and
the column inB which is in the same position as the columndrcontaining the
desired element and sum the products of the respective elements.

EXAMPLE 9.9 Find the matrix product
1 02 00 2
0-11 30 1
0 01 11-1
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1 02|[oo0 2 22 0
SOLUTION » [0 -11|[30 1|=|-21-2]. <
0 01||11-1 11 -1
|EXERCISE 9.14 b | Find the two matrix products
1 23 13 2 1 3 2 1 23
3 21 22-1 and 2 2-1 3 21
1-12 -21-1 -2 -1-1 1-12

The left factor in one product is equal to the right factor in the other product,
and vice versa. Are the two products equal? [«

As you can see, matrix multiplication with fairly large matrices can involve a
lot of computation. Computer programs can be written to carry out the process, and
such programs are built into Mathematica and also into computer languages such
as BASIC so that a matrix multiplication can be carried out with a single statement.

Two square matrices can be multiplied together in either order. However, the
multiplication is not alwaysommutative. It is possible that

AB # BA (in some casesg) (9.47)

However, matrix multiplication igssociative,

A(BC) = (AB)C (9.48)

Matrix multiplication and addition ardistributive,

A(B+C)=AB—+AC| (9.49)

Show that the properties of Eqs. (9.48) and (9.49) are obeyed by the particular
matrices

123 0o 2 2 10 1
A=|456 B=]-3 1 2 C=]|03-2
789 1-2 -3 27 =7

Matrix multiplication is similar to operator multiplication. Both are associative
and distributive but not necessarily commutative. In Section 8.1 we defined an
identity operator, and we now define an identity maEiX\We require

EA = AE = A.

The fact that we requirk to be the identity matrix when multiplied on either side
of A requires bottA andE to be square matrices. In fact, only with square matrices
will we get a strict similarity between operator algebra and matrix algebra.
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An identity matrix can have any number of rows and columns. It has the form

1 0 O 0
O 1 0 .- 0
E=| 0 0 1 .- 0 |. (9.50)
| 0 0 0 - 1 |

Thediagonal elements of any square matrix are those with both indices equal. The
diagonal elements dE are all equal to 1 and are the only nonzero elements. This
can be represented by the equation

1 ifi=j

0 ifi#j.

The quantitys;; is called theKronecker delta.

|EXERCISE 9.15 p> | Show by explicit matrix multiplication that
1000|| a1 a12 a13 a4 ail aiz ai3z ai4
0100/ | az1 a2 az1 as1 | _ | az1 az1 as1 a4l
0010]|| az1 as1 az1 an azl as1 asl asi
000 1]|| as1 as1 az1 am as1 as1 asl asi

(<
Just as in operator algebra, we do not define division by a matrix. In operator
algebra we defined an inverse operator, which undoes the effect of a given operator.
We define now thénverse of a matrix. Only square matrices have inverses. We
denote the inverse & by A1 sothat

AAL=E| (9.51)

This multiplication of a matrix by its inverse is commutative, so thas also the
inverse ofA—1,

From Eg. (9.45) we can write the second equality in Eq. (9.51) in terms of
matrix elements:

n

Zaik(A_l)kj = dij, (9.52)
k=1

where we write(A—l)kj for thekj element ofA~L. This equation represents a set
of simultaneous linear algebraic equations, one for each valuamd each value
of j, so that there are just enough equations to determine the elemeits.of

One method for findingA~* is called Gauss-Jordan elimination, which is a
method of solving simultaneous linear algebraic equations. It consists of a set of
operations to be applied to Eg. (9.51). In order maintain a valid equation, these
operations must be applied to both sides of the equation. The first operation is
applied to the matri and to the matriE on the right-hand side of the equation,
but not to the unknown matriA—1. This is analogous to the fact that if you have
an equatiormx = ¢, you would multiplya andc by some factor, but not multiply
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botha andx by the factor to maintain a valid equation. The goal of the operations
is to transform Eq. (9.51) into

EAYH =D (9.53)

so thatA~1 will be the same matrix aB.

In order to carry out the procedure conveniently, we write the ma&riand
the matrixE explicitly side by side and carry out operations on each element of
the same row in each matrix. For example, we might multiply every element in a
given row of A by some constant and multiply every element in the same rdav of
by the same constant. This is an example ohaoperation. If we carry it out we
still have a valid equation. Another row operation that we can apply is to subtract
one row ofA from another row ofA, element by element, while doing the same
thing to E. This amounts to subtracting the left-hand sides of pairs of equations and
subtracting at the same time the right-hand sides of the equations, which produces
valid equations. We can then replace one of the row by the difference of two rows.
Successive application of these two row operations is sufficient to transform the
left factor of a matrix product into the identity matrix. If we apply them in the
appropriate way to Eq. (9.51), we can transform it into Eq. (9.53). We illustrate
the procedure in the following example.

EXAMPLE 9.10 Find the inverse of the matrix

210
A=]122
011

SOLUTION » Our version of Eq. (9.51) is

210 A b A D A b3 100
121 (Ao (A A by [=] 010
012 A Hrw (A s (A hss 001

In order to carry out the row operations we write the two matrices on which we operate side by
side and perform the same operations on the same row of both matrices. The matrix that is not
operated onA~1 is not written. We don’t know what its elements are so we couldn’t operate on

it.

210:100
121:010
012:001

Itis usual to clear out the columns from left to right. We first want to get a zero in the plage,of
which is now equal to 1. We multiply the first row t%/ obtaining
0:

1 00

N NI

1
2
0

121:010

012:001

We subtract the first row from the second and replace the second row by this difference. The result
is
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1 . 1
11o0: loo

3 1
031:-110
012: 001

We say that we have used the elementas thepivot element in this procedure. The left column

is now as we want it to be. We now use e element as the pivot element to clear the second
column. We multiply the second row k%/and replace the first row by the difference of the first
row and the second to obtain

10-3: 2-1o0
1 1 1 1
03 3:-5 30
01 2: 0 01

We now multiply the second row by 2, subtract this row from the third row, and replace the third
row by the difference. The resultis

W WIN Wi

10—
01

= O O

00

Wi W Wik
|
Wk Wk W

We now multiply the third row by% in order to use thez3 element as the pivot element. We
subtract the third row from the second and replace the second row by the difference, obtaining

1 2 1
. 1 1
01 o:-3 1-3
2 1 1 1
00 3: § -3 3

We now multiply the third row by%, add it to the first row, and replace the first row by the sum.
The resultis

: 3 1 1
: 1 1
o10:-3 1-3
1 1 1 1
003 25 1

The final row operation is multiplication of the third row by 3 to obtain

. 3 1 1
100: 3 -1 1
: 1 1
: 1 1 3

We now reconstitute the matrix equation by placing the identity matrix on the left to the left of the
A~lmatrix. This produces a matrix equation such that the left-hand side of the equagianis

and the right-hand side is the right half of the double matrix. Therefore, the right half of this double
matrix isA~1:

ATl = )

1
2
1 —
1
2

|
ENJENTENNIA
ENTNTEN NS
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[EXERCISE9.16 »|  a. Show thalAA~! = E and thatA—1A = E for the
matrices of the preceding example.
b. Find the inverse of the matrix

(3]

Only square matrices have inverses, but not all square matrices have inverses.
Associated with each square matrix is a determinant, which we define in the next
section. If the determinant of a square matrix vanishes, the matrix is said to be
singular. A singular matrix has no inverse.

We conclude this section with the definition of several terms that apply to square
matrices. Therace of a matrix is the sum of the diagonal elements of the matrix:

[«

Tr(A) =Y aii. (9.54)
i=1

The trace is sometimes called thur, from the German wor&pur, which means
track or trace. For example, the trace of thby »n identity matrix is equal ta:.

A matrix in which all the elements below the diagonal elements vanish is called
anupper triangular matrix. A matrix in which all the elements above the diagonal
elements vanish is calledlawer triangular matrix, and a matrix in which all the
elements except the diagonal elements vanish is calldicdgonal matrix. The
matrix in which all of the elements vanish is called tm&l matrix or the zero
matrix. Thetranspose of a matrix is obtained by replacing the first column by the
first row, the second column by~the second row of the original matrix, and so on.
The transpose of A is denoted By(pronounced “A tilde”),

A)ij =aij =aj;. (9.55)

If a matrix is equal to its transpose, it isgmmetric matrix. The matrix in Example
9.10 is symmetric, and its inverse is also symmetric.

The hermitian conjugate of a matrix is obtained by taking the complex con-
jugate of each element and then taking the transpose of the resulting matrix. If a
matrix has only real elements, the hermitian conjugate is the same as the transpose.
The hermitian conjugate is also called thdjoint (mostly by physicists) and the
associate (mostly by mathematicians, who use the term “adjoint” for something
else). The hermitian conjugate is denoted¥y

AT = a¥;. (9.56)

A matrix that is equal to its hermitian conjugate is said to eranitian matrix.
An orthogonal matrix is one whose inverse is equal to its transpose. If A is
orthogonal, then
A=l =A (orthogonal matrix (9.57)

A unitary matrix is one whose inverse is equal to its hermitian conjugate. If A is
unitary, then ~
A~ =AT=A* (unitary matriy. (9.58)
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[EXERCISE 9.17 B | Which of the following matrices are diagonal, symmet-
ric, hermitian, orthogonal, or unitary?

a{;ﬂ b{;g} [01} d.[g_;]. <

Determinants

Associated with every square matrix is a quantity callede@minant. If the
elements of the matrix are constants, the determinant is a single constant, defined
as a certain sum of products of subsets of the elements. If the matrix fosgs

and columns, each term in the sum making up the determinant willhéaetors

in it. The determinant of a 2 by 2 matrix is defined as the product of the diagonal
elements minus the product of the off-diagonal elements:

ail a2
azil azz

detA) = = a11a22 — a12az1 |. (9.59)

The determinant is written in much the same way as the matrix, except that straight
vertical lines are used on the left and right instead of brackets.

EXAMPLE 9.11 Find the value of the determinant

3 —-17
1 5
3 -17
SOLUTION » 5 | = 3B — (—17(1) =15+ 17=32. <

Finding the value of a determinant larger than 2 by 2 requires a number of
operations. One way to do it is l&xpanding by minors, as follows:

1. Pick a row or a column of the determinant. Any row or column will do, but
one with zeros in it will minimize the work.

2. The determinant is equal to a sum of terms, one for each element in this row or
column. Each term consists of an element of the chosen row or column times
theminor of that element, with an assigned sign, either positive or negative.
The minor of an element in a determinant is obtained by deleting the row and
the column containing that element. It is a determinant with one less row and
one less column than the original determinant.

3. Determine the sign assigned to a term as follows: Count the number of steps
of one row or one column required to get from the upper left element to the
element whose minor is desired. If the number of steps is odd, the sign is
negative. If the number of steps is even (including zero), the sign is positive.

4. Repeat the entire process with each determinant in the expansion until you
have a sum of 2 by 2 determinants, which can be evaluated by Eq. (9.59).
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The cofactor of an element in a determinant is the minor multiplied by the
appropriate factor of 1 or1, determined as in step 3. In addition to the minor
which we have defined, other minors of different order are defined, in which two
or more rows and columns are deleted. We do not need to use these and will not
discuss them.

EXAMPLE 9.12 Expand the 3 by 3 determinant of the matfi>by minors.
ail aiz ais
azz azs az1 azs az1 az?
az1 azz azz| = ail —aiz + a13 .
az2 ass as1 ass azl as
asl asz ass
= 11022033 — (11423032 — 412421433 + A12023031
+ai13a21a32 — a13a22a31.
EXERCISE 9.18 b | Expand the following determinant by minors:
3 20
7-15
2 3 4
EXERCISE 9.19 b | Expand the 4 by 4 determinant by minors
ail ai2 ai3z ai4
azl1 azp az3 az4
asl as ass as4
a4l a42 a43 aa4

Determinants have a number of important properties:

1. If two rows of a determinant are interchanged, the result will be a determinant
whose value is the negative of the original determinant. The same is true if two
columns are interchanged.

2. If two rows or two columns of a determinant are identical, the determinant has
value zero.

3. If each element in one row or one column of a determinant is multiplied by the
same quantity: the value of the new determinantdgimes the value of the
original determinant. Therefore, if anby n determinant has every element
multiplied byc, the new determinant i€’ times the original determinant.

4. If every element in any one row or in any one column of a determinant is zero,
the value of the determinant is zero.

5. If any row is replaced, element by element, by that row plus a constant times
another row, the value of the determinant is unchanged. The same is true for
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two columns. For example,

a1+ caiz aiz ais ail aiz ais
az1+ cagp azp a1z | =|a1 az az3|. (9.60)
as1+ cazz azz asz asi as2 ass

6. The determinant of a triangular matrix {@angular determinant) is equal to
the product of the diagonal elements. For example,

ai1 0 O
az azz 0 | = anazass. (9.61)
azi1 azz ass
7. The determinant of a matrix is equal to the determinant of the transpose of that

matrix. ~
det(A) = det(A). (9.62)

These properties can be verified using the expansion of a determinant by mi-
nors.

| EXERCISE 9.20 » | (a) Find the value of the determinant
3 4 5
2 1 6.
3 -5 10

(b) Interchange the first and second
columns and find the value of the
resulting determinant.

(c) Replace the second column by
the sum of the first and second
columns and find the value of the
resulting determinant.

(d) Replace the second column by the
first, thus making two identical
columns, and find the value of the
resulting determinant.

[«]

There is an application of determinants in quantum chemistry that comes from
Property 1. The electronic wave function of a system containing two or more
electrons must change sign but keep the same magnitude if the coordinates of two
of the electrons are interchanged (the wave function musnbsymmetric). For
example, ifr; andr, are the position vectors of two electrons abds a multi-
electron wave function, then the wave function must obey

\Ij(rla r29 r3v r41 LA ] rl’l) = _\IJ(rZ’ rl? r37 r49 L] rﬂ) (9'63)

with similar equations for exchanging any other pair of electrons’ coordinates.
Many approximate multi-electron wave functions are constructed as a product of
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one-electron wave functions, orbitals. If 1, ¥», and so on, are orbitals such a
wave function fom electrons is written as

W = Y1 (r)v2(r2)va(ra)vara) - - ¥ (ry). (9.64)

wherer1, ro, - - - represent the coordinates of electron 1, electron 2, and so on. This
wave function does not obey the antisymmetry condition of Eqg. (9.63). A wave
function that does obey this equation can be constructedSasen determinant.®

The elements of this determinant are the orbital functions, so the determinant is
equal to a function of the coordinates of all electrons:

Yi(ry) va(ra) vars) --- ¥a(r,)
Yo(r1) va(ra) va(ra) --- Ya(ry)
W(re,ro, ..., ry) = V3(ry) va(r2) ¥a(ra) --- ¥3(ry,) |.  (9.65)

1
Vnl

Wn(rl) 1pn(rZ) Yn(rz) -+ Yn(ry)

The factor ¥+/n! is a normalizing factor, which is not important to us now.
The Slater determinant obeys the antisymmetry property, since interchanging
andry, for example, is the same as interchanging two columns, which changes
the sign of the determinant. If we attempt to write such a wave function with two
electrons in the same orbital (two of tijefactors identical), then two rows of the
determinant are identical, and the entire determinant vanishes by Property 2. This
is thePauli exclusion principle, which states that no two electrons in the same atom
or molecule can occupy the same orbftal.

Matrix Algebra with Mathematica

As you have seen, matrix algebra can be tedious. Mathematica has all of the ma-
trix operations built into it, so that you can form matrix products and carry out
matrix inversion automatically. Mathematica treats matrices as lists of lists, with
the elements of each row entered as a list. A list is entered inside curly brackets
("braces”) with the elements separated by commas. A list of lists requires braces
around the set of lists with braces and commas. For example, to enter the following
3 by 3 matrix

123
A=|456]|, (9.66)
7809

you would type in the following:
Clear[a]
a={{1, 2, 3}, {4, 5, 6},{7, 8, 9}}

and press the “Enter” key or a “Shift-Return.” Mathematica will type the following:
In[1]:= a={{1, 2, 3}, {4, 5, 6},{7, 8, 9}}

3After John C. Slater, 1900-1976, a prominent American physicist and chemist.
4The Pauli exclusion principle is named for Wolfgang Pauli, 1900-1958, who received the 1945 Nobel Prize
in physics for his contributions to quantum mechanics.
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Note that the symbol that we chose for the matrix name is in lower case and re-
guires no auxiliary labels. You should start the names of all Mathematica variables
with lowercase letters to avoid possible confusion with Mathematica operators and
functions. If you want to see the matri in standard form, type the statement
MatrixForm[a] and press the “Enter” key or the “Shift-Return.”

Mathematica treats vectors as a single list. It does not distinguish between row
vectors and column vectors. If you want to enter a vester (2, 4, 6), you enter
the components inside curly brackets separated by commas as follows:

v={2, 4, 6}
followed by pressing the “Enter” key or a “Shift-return.” A diagonal matrix is en-
tered as a single list inside square brackets. To enter the diagonal matrix

100
020], (9.67)
00 4

use the statement
DiagonalMatrix[{1,2,4}]
When you press “Enter” or “Shift-Return” you get the output
Out[1]={{1,0,0,},{0,2,0,},{0,0,4}}
After two matrices A and B have been entered, a matrix multiplication is carried
out by the statement
a.b
where you type a period between the symbols for the matrices. The product of a
row vector with a matrix is accomplished with the statement
v.a
and a product of a matrix and a column vector is accomplished with the statement
a.v
The inverse of a matrix is obtained with the statement
Inverse[a]
If the matrix is singular and does not have an inverse, Mathematica will tell you
s0. To obtain the determine of a square ma#juse the statement
Det[a]
Remember the capitalization. Mathematica does not allow alternate choices to
its statements.

[EXERCISE 9.21 p>| Obtain the inverse of the following matrix by hand.
Then use Mathematica to verify your answer. [«
130
304
120

Mathematica is a large and powerful program, and you can refer to the book by
Wolfram listed at the end of this book to learn more about its use.
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An Elementary Introduction to Group Theory

A mathematicabroup is a collection of elements with a single method for com-

bining two elements of the group. We call the method multiplication in order to
exploit the similarities of this operation with matrix and operator multiplication.

The following requirements must be met:

1. If A andB are members of the group, aRds the producAB, thenF must be
a member of the group.

2. The group must contain the identity elemdstsuch that

AE = EA = A. (9.68)

3. The inverse of every element of the group must be a member of the group.

4, The associative law must hold:
A(BC) = (AB)C. (9.69)

It is not necessary that the elements of the group commute with each other.
That s, it is possible that

AB # BA (possible but not required (9.70)
If all the members of the group commute, the group is cailagian.®

The set of symmetry operators which “belong” to a symmetrical object in the sense
of Section 9.3 form a group if we define operator multiplication to be the method
of combining two elements of the group.

We illustrate this fact for the ammonia molecule, NHn its equilibrium con-
formation, the molecule is a triangular pyranfidcigure 9.4a shows the nuclear
framework as viewed from the first octant of the coordinate system, and Fig. 9.4b
shows the framework as viewed from the positive end of:thgis. The molecule
is placed in the coordinate system in the conventional way, with the center of mass
at the origin and the rotation axis of highest order (largest valug afong thez
axis.

The symmetry elements of the molecule are shown in the figure. The symmetry
operators that belong to the nuclear frameworkigy€'s, C3 and the three reflec-
tion operators corresponding to vertical mirror planes passing through each of the
three hydrogen nuclei, which we c&ll, 6;, andé.. The square of thé's operator
is included because we must include the inverse of all operators in the group and
C2 is the inverse ofs.

We now satisfy ourselves that the four conditions to have a group are met:

Condition 1. The product of any two members of the group must be a member
of the group. We show this by constructing a multiplication table, as shown in
Table 9.1. The operators listed in the first column of the table are used as the left
factor, and the operators listed in the first row of the table are used as the right factor

SAfter Niels Henrik Abel, 18021829, a great Norwegian mathematician, who was the first to show that a
general fifth-degree algebraic equation cannot be solved by a radical expression.
6This discussion is adapted from Ira N. Levihdglecular Spectroscopy, pp. 390ff, Wiley, New York, 1975.
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dp

Figure 9.4 » (@) The NH molecule in its coordinate axes, with symmetry elements shown (after
Levine). (b) The NH molecule viewed from the positiveaxis (after Levine).

TABLE 9.1 » Multiplication Table for the Symmetry Operators of the NH3
Molecule

E C3 C% 0, Op O

E|E C3 €% 6, & 6
Gles 2 £ 4 & o
Cg E C3 6, 6, 64
6a|6a 6p 6. E C3 C3
oplop o, Oy C% E C3

6c.|6c 64 6 C3 C3 E
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in a product. We must specify which factor comes first because the operators do
not necessarily commute. The entries in the table are obtained as in the example:

EXAMPLE 9.13 Find the producé.Cs.

SOLUTION » Both of these operators leave the nitrogen nucleus in its original location. The
C3 operator moves the hydrogen nucleus originally atdhelane to thes;, plane, the nucleus
originally at theo, plane to thes, plane, and the nucleus originally at #heplane to they, plane.

The . operator reflects in the, plane, so that it exchanges the nuclei atdéheando;, planes.

It thus returns the nucleus originally at the plane to its original position and moves the nucleus
originally at thes, plane to thes, plane. This is the same as the effect thatdh@perator would
have, so

6.C3=0y.

|EXERCISE 9.22 b | Verify several of the entries in Table 9.1. [«]

Some pairs of operators in this group commute, whereas others do not. For
example Ca6. = 63, wherea$,.C3 = 6,.

Condition 2. The group does contain the identity operafor,

Condition 3. The inverse of every operator is in the group. Each reflection
operator is its own inverse, and the invers&gfis C3.

Condition 4. The multiplication operation is associative, because operator mul-
tiplication is always associative.

A group that consists of point symmetry operators is callpdiat group. There
is only a limited number of point groups that exist, and each is assigned a symbol,
called aSchoenflies symbol. The point group of the Ngimolecule is called th€'s,
group. This symbol is chosen because the principal rotation axi§€isais, and
because there are vertical mirror planes. You can communicate what the symmetry
properties of the Nkimolecule are by saying that it h@s, symmetry. Flow charts
have been constructed for the routine assignment of Schoenflies syfbols.

The H,O molecule belongs to th&, point group, which contains the operators
E, C‘z, and two reflection operators, one whose mirror plane is the plane of the
nuclei and one whose mirror plane bisects the angle between the bonds and is
perpendicular to the first.

| EXERCISE 9.23 b | Obtain the multiplication table for th€,, point group
and show that it satisfies the conditions to be a group. [«]

Symmetry Operators and Matrices

Operator algebra and matrix algebra are quite similar, and matrices can be used to
represent symmetry operators. A set of matrices that represent all of the elements
of a group is called aepresentation of that group. Equation (9.28) represents
the action of a general symmetry operatdr,on the location of a point. Let the
original location of the point be given by the Cartesian coordinéates, z), and

the final coordinates be given ly’, v/, z'):

Ax,y,2) = (', 2). (9.71)
"See, for example, P. W. AtkinBhysical Chemistry. 6th ed. p. 433, Freeman, New York, 1998.
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If we represent the position vectors by 3 by 1 matrices (column vectors) this can
be written as a matrix equation:

ai1 aiz ais x
az1 az2 a3 y =1 (9.72)
as1 asz ass Z 7

Equation (9.72) is the same as three ordinary equations:

ai1x +aioy +aizz = x’ (9.73a)
az1x +asoy +azz =y (9.73b)
aszix +azpy +azsz = 7. (9.73c)

We can obtain the elements of the matrix that represériuy comparing these
equations with the equations obtained in Section 9.2 for various symmetry opera-
tors. For example, in the case of the identity operates, x’, y = y/, andz = 7/,

so that the matrix for the identity symmetry operator is the 3 by 3 identity matrix.

100
E<~E=|010]|. (9.74)
001

The double-headed arrow means that the symmetry ope‘.%aatnd the matridE are
equivalent. That is, the matrix product in Eq. (9.72) and the operator expression
in Eq. (9.71) give the same result. We sometimes say that thereris--one
correspondence between this operator and this matrix.

EXAMPLE 9.14 Find the matrix that represents, (z).

SOLUTION » Leta = 27/n radians, the angle through which the operator rotates a particle,

x" = coda)x — sin(a)y
y' = sin(a)x + coga)y
7 =z

Comparison of this with Eq. (9.73a) gives
coSw) —sin(e) O
Cn(z) < | sin(@ cosa) O |. (9.75)
0 0 1

EXERCISE 9.24 b | (a) Verify Egs. (9.74) and (9.75) by
matrix multiplication.

(b) Use Eq. (9.75) to find the matrix
for C2(2).

(c) Find the matrices equivalent to
S3(z) anday,.

[a]
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The matrices that represent a group of symmetry operators have the same effect
as the symmetry operators, so they must multiply together in the same way. We can
show this for our present representation by carrying out the matrix multiplications.
The matrices for th€'s, group are

100 -1/2 —J/3/2 0
E< |010|=E C3s |32 -1/2 0|=A (9.76)
001 0 0o 1
[ —1/2 V3/2 0 1/2 +/3/2 0
C? o | —/3/2 -1/2 0| =B, 6, | v/3/2 -1/2 0| =C
0 0 1 0 o0 1
[ 12 —J3/2 0 -100
6p < | —=v/3/2 -1/2 0|=D, 6.« |0 10]|=F,
0 0o 1 0 01

where we have given each matrix an arbitrarily chosen letter symbol.

| EXERCISE 9.25 b | (a) By transcribing Table 9.1 with
appropriate changes in symbols,
generate the multiplication table
for the matrices in Eq. (9.76).
(b) Verify several of the entries in
the multiplication table by matrix
multiplication.

g

Each of the matrices in Eq. (9.76) is equivalent to one of the symmetry oper-
ators in theCs, group, but it is not exactly identical to it, being only one possible
way to represent the symmetry operator. Any set of matrices that obeys the same
multiplication table as a given group is calledepresentation of that group. Our
set of matrices forms another group of the samter (same number of members)
as theCs, point group. The fact that it obeys the same multiplication table is ex-
pressed by saying that it isomorphic with the group of symmetry operators. A
group of matrices that is isomorphic with a group of symmetry operators is called
a faithful representation of the group. Our group of matrices consists of 3 by 3
matrices and is said to be dimension 3.

The representation of thés, group that we have presented is said to have the
coordinates X, y, and z as itgsis. Other representations can be obtained by us-
ing other functions as a basis and determining how the symmetry operators change
these functions. The matrices in a representation do not have to have any physical
interpretation, but they must multiply in the same way as do the symmetry opera-
tors, must be square, and all must have the same number of rows and columns. In
some representations, calledfaithful or homomorphic, there are fewer matrices
than there are symmetry operators, so that one matrix occurs in the places in the
multiplication table where two or more symmetry operators occur.

Group representations are divided into two kineslucible andirreducible. In
a reducible representation, the matrices are “block-diagonal” or can be put into
block-diagonal form by aimilarity transformation. A similarity transformation
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means forming the matrix product
P=X"1QX (9.77)

whereP, X, andQ are square matrices. l#ock-diagonal matrix is one in which all
elements are zero except those in square regions along the diagonal. The following
matrix has two 2 by 2 blocks and a 1 by 1 block

12000
32000
004 30|.
00330
00002

All the matrices in a reducible representation have the same size blocks in the same
order. The representation of the grogg, given in Eq. (9.76) is reducible, since
each matrix has a 2 by 2 block and a 1 by 1 block. When two block-diagonal
matrices with the same size blocks are multiplied together, the result is a matrix
that is block-diagonal with the same size blocks in the same order. This is apparent
in the case of the matrices in Eg. (9.76), which produce only each other when
multiplied together.

|EXERCISE 9.26 P | Show by matrix multiplication that two matrices with a
2 by 2 block and two 1 by 1 blocks produce another such matrix when multi-
plied together. [«

Because of the way in which block-diagonal matrices multiply, the 2 by 2
blocks in the matrices in Eq. (9.76) if taken alone form another representation
of the C3, group. When a reducible representation is written with its matrices in
block-diagonal form, the block submatrices form irreducible representations, and
the reducible representation is said to be divect sum of the irreducible repre-
sentations. Both the representations obtained from the submatrices are irreducible.
The 1 by 1 blocks form an unfaithful or homomorphic representation, in which
every operator is represented by the 1 by 1 identity matrix. This one-dimensional
representation is called thatally symmetric representation. In this particular case
we could not get three one-dimensional representations, becauSe(thepera-
tor mixes thex andy coordinates of a particle, preventing the matrices from being
diagonal.

|EXERCISE 9.27 | Pick a few pairs of 2 by 2 submatrices from Eq. (9.76)
and show that they multiply in the same way as the 3 by 3 matrices. [«]

In any representation of a symmetry group, the trace of a matrix is called the
character of the corresponding operator for that representation.

|EXERCISE 9.28 P | Find the characters of the operators in €y group for
the representation in Eq. (9.76). [«

The two irreducible representations of thg, group that we have obtained
thus far are said to beonequivalent, since they have different dimensions. There
are several theorems governing irreducible representations for a particulagroup.

8ra N. Levine,Quantum Chemistry, Vol. 11, p. 389, Allyn & Bacon, Boston, 1970.
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These theorems can be used to determine that three irreducible representations of

the C3, group occur, and that their dimensions are 2, 1, and 1. The other one-
dimensional representation is

E+1l (3ol 21

9.78
0,< -1 o0, -1 6.« —1. ( )
|EXERCISE 9.29 | Show that the 1 by 1 matrices (scalars) in Eq. (9.78)
obey the same multiplication table as does the group of symmetry operators.
(<]

Group theory can be applied to several different areas of molecular quantum
mechanics, including the symmetry of electronic and vibrational wave functions
and the study of transitions between energy le?dlfere is also a theorem which
says that there is a correspondence between an energy level and some one of
the irreducible representations of the symmetry group of the molecule, and that
the degeneracy (number of states in the level) is equal to the dimension of that
irreducible representation.

SUMMARY

We discussed three topics in this chapter: operator algebra, matrix algebra, and
group theory. A mathematical operator is a symbol standing for the carrying out of
a mathematical operation. Operating on a function with an operator produces a new
function. Operator symbols can be manipulated in a way similar to the algebra of
ordinary variables, without reference to any function that might be operated on. We
defined the sum and the product of two operators. The product of two operators was
defined as successive operation with the operators. The quotient of two operators
was not defined, but we defined the inverse of an operator, which undoes the effect
of that operator. The principal difference between operator algebra and ordinary
algebra is that multiplication of two operators is not necessarily commutative. We
discussed symmetry operators, a useful class of operators which move points in
space relative to a symmetry element.

A matrix is a list of quantities, arranged in rows and columns. Matrix algebra is
similar to operator algebra in that multiplication of two matrices is not necessarily
commutative. The inverse of a matrix is similar to the inverse of an operator. If
A~lis the inverse oA\, thenA—1A = AA~! = E, whereE is the identity matrix.

We presented the Gauss-Jordan method for obtaining the inverse of a nonsingular
square matrix.

Group theory is a branch of mathematics that involves elements with defined
properties and a single method to combine two elements called multiplication. The
symmetry operators belonging to any symmetrical object form a group. The theo-
rems of group theory can provide useful information about electronic wave func-
tions for symmetrical molecules, spectroscopic transitions, and so forth.

9See P. W. AtkinsPhysical Chemistry, 6th ed., Chap. 15, Freeman, New York, 1998.
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PROBLEMS

1. Find the following commutators, wher®, = d/dx:
a) [Dy, sin(x)];
b) [D3, x];

2. Find the following commutators, whem®, = d/dx:
a) [D3, x?;
b) [DZ. f(x)].

3. Show that thex andz components of the angular momentum have quantum
mechanical operators that do not commute and find their commutator:

i h(.d Ad) i h(f.d . d
= — _— — 77— , = |\ XxX— —VvV— .
T ydz Zdy ST dy dx

4. The Hamiltonian operator for a one-dimensional harmonic oscillator moving
in thex direction is
h? d? N kx?
2m dx? 2

Find the value of the constamsuch that the functioa—** is an eigenfunction
of the Hamiltonian operator. The quantiys the force constant; is the mass
of the oscillating particle, antd is Planck’s constant divided by2

H =

5. In quantum mechanics, tiegpectation value of a mechanical quantity is given
by

_ [yrAydx

C [yrdx

whereA is the operator for the mechanical quantity ane the wave function
for the state of the system. The integrals are over all permitted values of the
coordinates of the system. The expectation value is defined as the prediction of
the mean of a large number of measurements of the mechanical quantity, given
that the system is in the state corresponding torior to each measurement.

For a particle moving in the direction only and confined to a region on
thex axis fromx = 0 tox = a, the integrals are single integrals from Odo
and p, is given by(%/i)d/0x. Find the expectation value ¢f, and ofpf if
the wave function is

. X
v =C sm(;) ,

(4)

where(C is a constant.

6. If A is the operator corresponding to the mechanical quantiandg, is an
eigenfunction of4, such that

A¢n = ay,Pn

show that the expectation value afis equal toa, if the state of the system
corresponds t@g,,. See Problem 5 for the formula for the expectation value.
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7. If x is an ordinary variable, the Maclaurin series fgfll— x) is

1

=142+ 3t
1—x

If X is some operator, show that the series
I+ X+ X2+ X3+ X4+
is the inverse of the operator-1 X.

8. Find the result of each operation on the given point (represented by Cartesian
coordinates):

a) i(2, 4,6)
b) C2(»)(1,1,1)
o) C3()(L, 1, 1)

9. Find the result of each operation on the given point (represented by Cartesian
coordinates):

a) Sa()(L, 1, 1)
b) C2(2)idn(1, 1, 1)
¢) S2(3)éu(1, 1,0).

10. Find the 3 by 3 matrix that is equivalent in its action to each of the symmetry
operators:

a) Sa(z)
b) Ca(x)

11. Find the 3 by 3 matrix that is equivalent in its action to each of the symmetry
operators:

a) Cg(x)
b) Se(x)

12. Give the function that results if the given symmetry operator operates on the
given function for each of the following:

a) Ca(z)x?
b) 6;,x cosx/y)

13. Give the function that results if the given symmetry operator operates on the
given function for each of the following:

a) i(x+y+2z9
b) Sa(x)(x +y +2)
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14. Find the matrix products. Use Mathematica to check your result.

[012][123
a|432||681
761||743

63 2-1 4 7 -6 -8
b) -74 3 2 3 -6 8-6
13 2-2 2 3-3 4
6 7-1-3 -1 4 2 3

15. Find the matrix products. Use Mathematica to check your result.

1 2 3
0O 3 -4
a)[3214] L 1
3 1 0
1 2 3]][3
0O 3-4 2
b
) 1-2 1 1
(3 1 0]|4
B 14-7 3
0) gi_;} 25 8-2
L 36-9 1
16. Show that(tAB)C = A(BC) for the matrices:
012 3114 03 1
A=|131-4|(B=|-201(C=| 42 3
231 321 31-2

17. Show thatA(B + C) = AB + AC for the example matrices in the previous
problem.

18. Test the following matrices for singularity. Find the inverses of any that are
nonsingular. Multiply the original matrix by its inverse to check your work.
Use Mathematica to check your work.

(012
al|231
243

(68 1
by | 73 2
46 -9
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19. Test the following matrices for singularity. Find the inverses of any that are
nonsingular. Multiply the original matrix by its inverse to check your work.
Use Mathematica to check your work.

32 -1
a| -46 3
72 -1
(023

by | 111
201

20. Find the matrixP that results from the similarity transformation

P=X"1QX,

o-[31] - [2]]

21. The HO molecule belongs to the point grodp,, which contains the symme-
try operatorsE?, Co, 64, andé,, where theC, axis passes through the oxygen
nucleus and midway between the two hydrogen nuclei, and whetke, timgr-
ror plane contains the three nuclei and #iemirror plane is perpendicular to
theo, mirror plane.

where

a) Find the 3 by 3 matrix that is equivalent to each symmetry operator.

b) Show that the matrices obtained in part (a) have the same multiplication
table as the symmetry operators, and that they form a group. The multipli-
cation table for the group was to be obtained in Exercise 9.23.

22. Permutation operators are operators that interchange objects. Three objects
can be arranged in!3= 6 different ways, or permutations. From a given
arrangement, all six permutations can be attained by application of the six
operators: E, the identity operator;P1», which interchanges objects 1 and
2; Po3, which interchanges objects 2 andA3, which interchanges objects
1 and 3; P»3P15, which mterchanges objects 1 and 2 and then interchanges
objects 2 and 3, and»3 P13, which interchanges objects 1 and 3 and then
interchanges objects 2 and 3. Satisfy yourself that each of these operators
produces a different arrangement. Show that the six operators form a group.
Construct a multiplication table for the group.



The Solution of
Simultaneous
Algebraic
Equations

Preview

If there are two variables in an equation, suchFgs, y) = 0, then the equation

can be solved foy as a function ofc or x as a function ofy, but in order to solve

for constant values of both variables, a second equation, su¢hasy) = 0,

is required, and the two equations must be solved simultaneously. If thene are
variablesy independent and consistent equations are required. In this chapter, we
discuss various methods for finding the roots to sets of simultaneous equations.

Principal Facts and Ideas

1. To solve forn variablesy equations are required, and these equations must be
independent and consistent.

2. Simultaneous linear inhomogeneous equations can be solved with various
techniques, including elimination, use of Cramer’s formula, and by matrix
inversion.

3. Linear homogeneous simultaneous equations have a nontrivial solution only
when a certain dependence condition is met.

Objectives

After studying this chapter, you should be able to:

1. solve any fairly simple set of several simultaneous linear equations by the
method of elimination;

2. solve a set of linear inhomogeneous simultaneous equations by Cramer’s
method and by matrix inversion;

305
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3. solve a set of linear homogeneous simultaneous equations using the depen-
dence condition.

Simultaneous Equations with More than
Two Unknowns

In Chapter 3, we discussed the use of the method of substitution and the method of
elimination to solve the linear inhomogeneous set of two simultaneous equations:

ayx +apy = c1 (10.1a)
azix +azzy = c2, (10.1b)

where the: 's and ther’s are constants. Systems of several equations are similar to
pairs of equations for two unknowns. For a unique solution, you musthanae-
pendent and consistent equations to solve:fanknowns. Sometimes in practical
calculations you will have more equations than you have unknowns. If the equa-
tions are not all consistent, you have what is calledasrdetermined system of
eguations, which has no solution. If the equations arise from experimental mea-
surements, the source of inconsistency is likely experimental error. In this case,
you can pick various sets af equations and solve them separately, presumably
getting slightly different answers for different sets because of experimental error.
The variation between different answers can be used to get an idea of the effects of
the errors.

10.2 I Cramer’s Rule

This method is a systematic method for solving linear inhomogeneous equations.
We illustrate the method with the set of two linear inhomogeneous equations in Eq.
(10.1). Written in matrix form these equations are

AX = C, (10.2)

whereA is a square matrix, and andC are column vectors (matrices with only
one column):
ail a1z || x1 | _| €1 (10.3)
azi azz || x2 c2

[EXERCISE 10.1 > | Use the rules of matrix multiplication to show that Eq.
(10.2) is identical with Eq. (10.1). [«

Cramer’s rule states that the solutions to this set of equations are written as
guotients of determinants:

€1 a2
c2 azz

(10.4)
aill a2
azi az2
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ail c1
azi c2

y= . (10.5)
ail aiz

azl azz

The solutions are constructed as follows: The denominator in each expression is
the determinant of the matrik, and the numerator is the determinant of this matrix
with one of the columns replaced by the column ve@?}. In the expression for

x, the column of coefficients for is replaced, and in the expression farthe
column of coefficients foy is replaced.

|EXERCISE 10.2 | Use Cramer’s rule to solve the simultaneous equations
4x+y = 14
2x—3y = 0.
Kl

If there are more than two variables and more than two linear inhomogeneous
equations, Cramer’s rule uses exactly the same pattern. If we have a set of three
equations

ainxi1 + aiox2 + a1zxz = 3 (10.6)
az1x1 + azoxz + azzxz = ¢ (10.7)
az1x1 + azpx2 + azsxz = c3, (10.8)

where we call the unknown quantities, x», andxs instead ofx, y, andz. This
eqguation can be written in matrix notation:

ai1 a1z a13 | | x1 c1
a1 azp az3 x2 | =1 ¢ (10.9)
az1 az2 azz | | x3 c3
or
AX =C,

whereX andC are the column vectors shown.
According to Cramer’s rule the value of is given by

€1 di12 4ais
€2 dz2 4azs
€3 d32 4ass

W ) (10. 10)

X1 =

where detA) is the determinant of the 3 by 3 matrix of thecoefficients. The
determinant in the numerator is obtained by replacing the first column by the con-
stantsci, c2, andces (the column vectoC). The value ofx; is given by a similar
expression with the second column in the determinant in the numerator replaced
by the constantsy, ¢, andcs. The value ofxs is given by an expression with the
third column in the determinant replaced by the column veCtor
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EXAMPLE 10.1 Use Cramer’s rule to find the value of that satisfies
24 1 X1 21
1-11 x2 | =14 |. (10.12)
11 1 X3 10
SOLUTION »
21 4 1
4 -11 21[—1 1}_4[4 1}%0[4 1}
101 1 1 1 11 -11
X1 = =
24 1 -11 4 4
S P F
11 1
_ 2U1-D-44-D)+104+1) 4
2-1-1)—-@4-1+@4+1 -2 °
<«
|EXERCISE 10.3 | Find the values ok, andxz for the previous example.

[«

Cramer’s rule for more than three linear inhomogeneous equations is com-
pletely analogous to this. We write the equations in matrix form

AX =C,

where the matrices now have more than three rows and columns. In order to have
a solution, the matriXA must be square and have the same number of rows and
columns as the column vectoXsandC have rows. LefA, be the matrix that is
obtained fromA by replacing the:th column by the column vectd. Cramer’s

rule is now written

_ dettA,)

= GotA) (10.12)

Xn

Linear Dependence and Inconsistency

In Chapter 3 we discussed linear dependence and inconsistency in the case of two
equations. We will not discuss completely the questions of consistency and in-
dependence for sets of more than two equations, but we will make the following
comments, which apply to sets of linear inhomogeneous equations:

1. A set of n equations is said to benearly dependent if a set of constants
b1, b2, ..., by, notall equal to zero, can be found such that if the first equation
is multiplied byb1, the second equation ldg, the third equation bz, and so
on, the equations add to zero for all values of the variables. A simple example
of linear dependence is for two of the equations to be identical. In this case,
we could multiply one of these equations #y. and the other by-1 and all
of the remaining equations by 0 and have the equations sum to zero. If two
equations are identical, one has only- 1 usable equations and cannot solve
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for n variables. More complicated types of linear dependence also occur, and
in any case one has onty— 1 usable equations or fewer.

2. Inthe case of two identical equations, the determinant of the matvanishes,
from property 2 of determinants, described in Chapter 9. The determinant of
A will also vanish in more complicated types of linear dependence. 1AJlet(
vanishes, either the equations are linearly dependent or they are inconsistent.

3. Itis possible for a set of equations to appear to be overdetermined and not ac-
tually be overdetermined if some of the set of equations are linearly dependent.

|EXERCISE 10.4 » | See if the set of four equations in three unknowns can
be solved:

x1+x2+x3 =6
x1+x2+x3 =0
3x14+ 32+ x3 = 12
2x1+x2+4x3 = 16

[«
Solution by Matrix Inversion
We write a set of linear inhomogeneous equations in matrix form:
AX =C|, (10.13)

whereA is now ann by n square matrixX is ann by 1 column vector containing
the unknowns, an@ is anothem by 1 column vector containing constants. If we

possess the inverse 8f we can multiply both sides this equation on the left by
A~1to get

A~lAX =X =A"IC| (10.14)

The solution is represented by a column vector that is equal to the matrix product
A~IC. In order for a matrix to possess an inverse, it mushdresingular, which
means that its determinant does not vanish. If the matrix is singular, the system of
equations cannot be solved because it is either linearly independent or inconsistent.
We have already discussed the inversion of a matrix in Chapter 9. The difficulty
with carrying out this procedure by hand is that it is probably more work to invert
ann by n matrix than to solve the set of equations by other means. However, with
access to Mathematica, BASIC, or another computer language that automatically
inverts matrices, you can solve such a set of equations very quickly.
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|EXERCISE 10.5 b | Solve the following set of simultaneous equations by
matrix inversion:

2x14+x2 = 1
X1+ 2x2+x3 = 2
X2+ 2x3 = 3.

The inverse of the relevant matrix has already been obtained in Example 9.10.

<

Gauss-Jordan Elimination

This is a systematic procedure for carrying out the method of elimination. Itis very
similar to the Gauss—Jordan method for finding the inverse of a matrix, described
in Chapter 9. If the set of equations is written in the vector form

AX =C,

we write anaugmented matrix consisting of thed matrix and theC column vector
written side by side. For a set of four equations, the augmented matrix is

ail aiz ai3z ai4 - C1
azi1 azz az3 az4 . C2 (10 15)

a3l a3z as3 az4 3

| aa1 as2 as2 ass : ocq

Row operations are carried out on this augmented matrix: a row can be multi-
plied by a constant, and one row can be subtracted from or added to another row.
These operations will not change the roots to the set of equations, since such oper-
ations are equivalent to multiplying one of the equations by a constant or to taking
the sum or difference of two equations. In Gauss—Jordan elimination, our aim is to
transform the left part of the augmented matrix into the identity matrix, which will
transform the right column into the four roots, since the set of equations will then
be

EX =C. (10.16)

The row operations are carried out exactly as in Section 9.4 except for having only
one column in the right part of the augmented matrix.

|EXERCISE 10.6 b | Use Gauss—Jordan elimination to solve the set of simul-
taneous equations in the previous exercise. The same row operations will be
required that were used in Example 9.10. [«

There is a similar procedure known @auss elimination, in which row opera-
tions are carried out until the left part of the augmented matrix is in upper triangu-
lar form. The bottom row of the augmented matrix then provides the root for one
variable. This is substituted into the equation represented by the next-to-bottom
row, and it is solved to give the root for the second variable. The two values are
substituted into the next equation, and so on.
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Linear Homogeneous Equations

In Chapter 3 we discussed pairs of linear homogeneous equations for two variables.
We found that such a pair of equations needed to be linearly dependent in order to
have a solution other than thevial solution x = 0, y = 0. The same is true of
sets with more than two variables.

A set of three homogeneous equations in three unknowns is written

aix1 +aizxz +aizxz = 0 (10.17a)
az1x1 + azox2 +azzxz = 0 (10.17b)
az1x2 + azoxo + azzxz = 0. (10.17c)

If we attempt to apply Cramer’s rule to this set of equations, without asking
whether it is legitimate to do so, we find for example that

0 ai2 a3
0 az az3
0 asz2 asz

= (10.18)

X1 =
If det(A) # 0, this yieldsx; = 0, and similar equations will also give = 0
andxz = 0. This trivial solution is all that we can have if the determinanfofk
nonzero (i.e., if the three equations are independent). To have a nontrivial solution,
the equations must be linearly dependent. In order to find a possible nontrivial
solution, we investigate the condition

det/A) =0, (10.19)
which in the 3 by 3 case is the same as

a11a22a33 — 11423032 — 412021433 — 413022431 + a12a23a31 — a13az1azz = 0
(10.20)
This condition must be satisfied for a nontrivial solution to exist.

Matrix Eigenvalues and Eigenvectors

One case in which a set of linear homogeneous equations arisesriattheeigen-
value problem. This problem is very similar to an eigenvalue equation for an op-
erator, as in Eg. (9.3). The problem is to find a column vectoand a scalar
eigenvalue b, such that

BX = bX, (10.21)

whereB is the square matrix for which we want to find an eigenvector rid
a column vector (theigenvector). Since the right-hand side of Eq. (10.21) is the
same a®EX wherekE is the identity matrix, we can rewrite Eq. (10.21) as

(B — bE)X = 0, (10.22)

which is a set of linear homogeneous equations written in the notation of
Eg. (10.13). The equations must be linearly dependent in order to have a solu-
tion, so there are only — 1 independent equations if this condition is satisfied.
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EXAMPLE 10.2 Find the values ob andX that satisfy the eigenvalue equatign
110 X1 X1
111 x2 | =b| x2 (20.23)
011 X3 X3

and also satisfy a “hormalization” condition:
x24x24x2=1 (10.24)

Since the equations must be linearly dependent, this additional equation will
provide unique values for the three variables.

SOLUTION » Inthe form of Eq. (10.22),

1-b 1 0 X1
1 1-b 1 x| =0 (10.25)
0 1 1-b || x3

The condition that corresponds to Eq. (10.19) is

y 10
1 11
1y1ll=y - =y3 -2y =0, (10.26)
0y
01y

where we temporarily let = 1 — b. Equation (10.26) is a cubic equation that can be solved by
factoring. It has the three roots

y=0 y=+v2 y=-+2

or
b=1 b=1-+2, b=1++2 (10.27)

The three roots in Eq. (10.27) are three different eigenvalues. It is only ivieeaqual to one of
these three values that Eq. (10.23) has a nontrivial solution. Since we have three vaélue® of
have three different eigenvectors. We find the eigenvectors by substituting each valinetaifn
into Eq. (10.25) and solving the set of equations. We begin with1 and write

O+x24+0 = 0 (10.28a)
x{+0+x3 = 0 (10.28b)
O+x24+0 = 0. (10.28¢)

It is now obvious that this set of equations is linearly dependent, as required, since the first and
third equations are the same. Our solution is now

x2 =0 (10.28d)

X1 = —x3. (10.28e)
We have solved for two of the variables in terms of the third. Since we have only two independent

equations, we do not have definite valuesifpandxg until we apply the normalization condition
of Eq. (10.24). Imposing it, we find for our first eigenvector

1/v2

X = o |. (10.29)
-1/v/2

The negative of this eigenvector could also have been taken.
We now seek the second eigenvector, for whick /2, orb = 1 — /2. Equation (10.25)
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becomes

|
o

«/le +x2+0 =
x1+V2x +x3
04 x2++v2x3 =
With the normalization condition, the solution to this is
1/2
X=|-1/v2 |. (10.31)
1/2

Il
o

(10.30)

|
©

EXERCISE 10.7 b | (a) Verify Equation (10.31). Show
that this is an eigenvector.

(b) Find the third eigenvector for the
problem of the previous example.
(<
In various methods in quantum chemistry orbital functions are represented as
linear combinations of functions from a basis set containing several functions. A
set of simultaneous equations very similar to Eq. (10.22) arises that is to be solved
for the coefficients in the linear combinations. The condition analogous to Eq.
(10.19) is called aecular egquation, and the eigenvaluein Eq. (10.22) is replaced
by the orbital energy. The simplest theory using this representation for molecu-
lar orbitals is the Hiickel methodwhich is known as a semi-empirical method
because it relies on experimental data to establish values for certain integrals that
occur in the theory while assuming that certain other integrals vanish.

The Use of Mathematica to Solve Simultaneous
Equations

In Chapter 3, we introduced the use of Mathematica to solve a single algebraic
equation, using the Solve statement and the NSolve statement. The Solve statement
can also be used to solve simultaneous equations. The equations are typed inside
curly brackets with commas between them, and the variables are listed inside curly
brackets. To solve the equations
ax +by=c
gx+hy=k
we type the input entry
Solve[{fax+by==c, gx+hy==k},{x,y}]
and press the “Enter” key. Notice the use of braces to notify Mathematica that
we have a list of two equations and a list of two variables and the use of a space to

indicate multiplication. The output is

— b(c g —ak) (cg—ak
Oulll] ={x > ca+ i@ gram Y > "=+ anh

To simplify the expressions for x and y, we use the fact that the percent symbol
represents the last line of output and type
Simplify[%0]

1ponald J. RoyeBonding Theory, pp. 154-163, McGraw-Hill, New York, 1968.
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We receive the output
Outf2={{ x — e vy — —=E8=)
which is the expression obtained from Cramer’s rule.
The Eliminate statement is used to eliminate one or more of the variables
in a set of simultaneous equations. For example, to obtain a single equation in x
from the set of equations above, you would type the input entry (note the double
equal signs):
Eliminate[{fax+by==c,gx+hy==Kk}y]
and would receive the output:
Out[l]=ch==bk-bgx+ahx
we solve this equation for x by typing
Solve[%,X]
We receive the output:

outf2l={{x — 5757 N

The Use of Mathematica to Find Matrix Eigenvalues and
Eigenvectors

Mathematica finds matrix eigenvalues and eigenvectors by use of the statements
Eigenvalues[m] and Eigenvectors[m], where m denotes a matrix that has already
been typed into the program.

EXAMPLE 10.3 Use Mathematica to find the eigenvalues and eigenvectors of
the matrix in the previous example.

SOLUTION » We open Mathematica and type the input statement
m={{1,1,0},{1,1,1},{0,1,1}}

We press the “Enter” key and see the output
Out[1]={{1,1,0},{1,1,1},{0,1,1}}

We then type the statement
Eigenvalues[m]

We press the “Enter” key and see the output
Out[2]={1 ++v/2,1,1— v/2}

We type the statement
Eigenvectors[m]

and see the output

out[3]={{1, v2, 1}, { -1, 0,1}, {1, /2, 1}} <

SUMMARY

To solve for numerical values of two variables, two equations are required, and
they must be solved simultaneously, and similarly for more variables. We pre-
sented several methods for solving simultaneous equations. First was the method
of substitution, which is not limited to linear equations, but which is not practical
for more than two or three equations. We then presented several methods which
can apply to sets of linear inhomogeneous equations. Cramer’'s method is a method
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which uses determinants to obtain the roots. A set of linear equations can be written
in matrix form and can be solved by finding the inverse of the matrix of the coef-
ficients. The methods of Gauss elimination and Gauss—Jordan elimination were
presented.

Finally, we examined linear homogeneous equations. With such a set, the equa-
tions possess only a trivial solution if the equations are linearly independent. The
condition of dependence that must occur in order to have a nontrivial solution is
represented by an equation in which the determinant of the matrix of the coeffi-
cients is set equal to zero. Matrix eigenvalue equations fall into this category, and
we discussed the determination of the eigenvalues and eigenvectors, including the
use of Mathematica to find the eigenvalues and eigenvectors.

PROBLEMS

1. Solve the set of simultaneous equations.

3x+4y+5 =1
4x —3y+6z = 3
Tx +2y —6z = 2

2. Solve the set of simultaneous equations.

y+z =1
Xx+z =2
x+y =3

3. Solve the set of equations, using Cramer’s rule.

3x1+x2+x3 = 19
x1— 2x2+3x3 = 13
X1+ 2x2+ 2x3 = 23

Verify your result using Mathematica.
4. Solve the set of equations, using Gauss or Gauss-Jordan elimination.

x1+x2+x3 =9
2x1—x2—x3 = 9
X1+2x2—x3 = 9

Use Mathematica to confirm your solution.

5. Solve the sets of equations.

a) 3x1+4x2+5x3=25
4x1 + 3x2 — bxz = —7
xX1+x2+x3="6
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1113 X1 6
b) 2111 x2=5
1234 X3 10
2014 X4 7

Decide whether the following set of equations has a solution. Solve the equa-
tions if it does.

x+4y+z =13
4x + 3y + 2z 10
Tx+7y+3z = 23

Solve the set of equations by matrix inversion. If available, use Mathematica
to invert the matrix.

2x1+ 4x2+x3 = 40
X1+ 6x24+2x3 = 55
3x1+x2+x3 = 23

. Find the eigenvalues and eigenvectors of the matrix

=
PR
N

. Find the eigenvalues and eigenvectors of the matrix

011
101
110

Find the eigenvalues and eigenvectors of the matrix

101
101
101

Does this matrix have an inverse?

In the Hiickel method for finding approximate orbitals for electrons in a conju-
gated system of pi bonds, each orbital is represented as a linear combination of
several basis functions. In the treatment of the cyclopropenyl radical, the basis
functions are the three 2pz atomic orbitals, which we denotg by>, and f.

¥ =cifi+cafa+c3f3

The orbital energy, denoted B¥, is expressed as a certain quotient of inte-
grals and the minimum value &¥ is sought as a function of thecoefficients
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by differentiating with respect to eachand setting The three simultaneous
equations are

xc1+c2+cez3 =0
c1+xc2+c3 =0
c1+c2+xc3 = 0,

wherex = (¢ — W)/B) and wherex andg are certain integrals whose values
are to be determined later.

a) The determinant of the coefficients must be set equal to zero in order
for a nontrivial solution to exist. This is th&cular equation. Solve the
secular equation, which will yield three different valuescof

b) Solve the three simultaneous equations, once for each value 8ince
there are only two independent equations, exprgessidcs in terms ofcs.

¢) Impose the normalization condition
c% + c% + c% =1

to find the values of the coefficients for each value a¥.

d) Check your work by using Mathematica to find the eigenvalues and eigen-
vectors of the matrix

A
=
=



The Treatment of
Experimental Data

Preview

Some guantities in which we are interested can be measured directly. More often, a
guantity must be calculated from other quantities that can be measured. This calcu-
lation process is calledata reduction. The simplest form of data reduction is the

use of a formula into which measured values are substituted. Other forms of data
reduction include analysis of a set of data that can be represented by data points on
a graph. Construction of such a graph and analysis of features of the graph, such as
slopes and intercepts of lines, can provide values of variables. Statistical analysis
done numerically can replace graphical analysis, providing better accuracy with
less effort. We discuss both of these approaches.

We also discuss the analysis of the accuracy of experimental data. In the case
that we can directly measure some desired quantity, we need to estimate the ac-
curacy of the measurement. If data reduction must be carried out, we must study
the propagation of errors in measurements through the data reduction process. The
two principal types of experimental errors, random errors and systematic errors,
are discussed separately. Random errors are subject to statistical analysis, and we
discuss this analysis.

Principal Facts and Ideas

1. Every measured quantity is subject to experimental error.

2. When the value of a measured quantity is reported, an estimate of the expected
error should be included.

3. Random experimental errors can be analyzed statistically if the measurement
can be repeated a number of times.

4. Systematic errors must usually be estimated by educated guesswork.

5. The mean of a set of repeated measurements is a better estimate of the correct

value of a variable than is a single measurement.
318



Section 11.1 Experimental Errors in Measured Quantities 319

6. The probable random error in the mean of a set of repeated measurements can
be determined statistically.

7. When a variable is calculated by substitution of measured quantities into a
formula, the estimated errors in the measured quantities can be propagated
through the calculation.

8. Another type of data reduction involves fitting a set of data to a formula. This

can be done graphically or numerically by use of the least-squares (regression)
procedure.

Objectives

After studying the chapter, you should be able to:

1. identify probable sources of error in a physical chemistry experiment and clas-
sify the errors as systematic or random;

2. calculate the mean and standard deviation of a sample of numbers;

3. calculate the probable error in the measured value of a directly measured
quantity;

4. carry out data reduction using mathematical formulas and do an error propaga-
tion calculation to determine the probable error in the final calculated quantity;

5. carry out data reduction using graphical methods and determine the probable
error in quantities obtained from the graphs;

6. carry out data reduction numerically using least squares and other numerical
methods and determine probable errors in quantities obtained by these meth-
ods.

Experimental Errors in Measured Quantities

Once we have obtained a value for a measured quantity, we should try to deter-
mine how accurate that value is, since experimental error is always present. If a
measurement can be repeated a number of times and if the repetitions agree well
with each other, the set of data is said to have gadision. If a measurement
agrees well with the correct value, it is said to have gacdiracy. It is tempting
to assume that a set of repetitions of a measurement that has high precision also
has high accuracy, but this can be a poor assumption.

We divide experimental errors into two categoriSgstematic errorsrecur with
the same direction and with the same magnitude on every repetition of an experi-
ment, so they can affect the accuracy of a measurement without affecting the pre-
cision. Random errors do not have the same direction and magnitude every time,
so they affect the precision as well as the accuracy. Systematic errors are generally
produced by limitations in the apparatus, whereas random errors usually arise from
limitations in the technique used to carry out the experiment.
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magnitude.

EXAMPLE 11.1 A simple apparatus for measuring the melting temperature of
a substance consists of a small bath containing a liquid in which the sample
can be suspended in a small capillary tube held next to a thermometer, The
bath is slowly heated and the thermometer reading at the time of melting of
the sample is recorded. List some of the possible experimental error sources in
this determination. Classify each as systematic or random and guess its relative

SOLUTION » (a) Faulty thermometer calibration. This is

(b

)

(©

d

(e

~

~

systematic. With an inexpensive ther-
mometer, this error might be as large as
several tenths of a degree.

Lack of thermal equilibration between the
liquid of the bath, the sample, and the ther-
mometer. If the experimental procedure is
the same for all repetitions, this will be
systematic. If the thermometer is larger
than the sample, it will likely be heated
more slowly than the sample if the heating
is done too rapidly. This error will proba-
bly be less than“C.

Failure to read the thermometer correctly.
This is random. There are two kinds of er-
ror here. The first is more of a blunder
than an experimental error and amounts
to counting the marks on the thermome-
ter incorrectly and, for example, recording
87.5°Cinstead of 8% °C, and so on. The
other kind of error is due tarallax, or
looking at the thermometer at some angle
other than a right angle. This might pro-
duce an error of about two-tenths of a de-
gree Celsius.

Presence of impurities in the sample. This
is systematic, since impurities that dis-
solve in the liquid always lower the melt-
ing point. If carefully handled samples
of purified substances are used, this error
should be negligible.

Failure to observe the onset of melting.
This error is variable in magnitude, al-
though always in the same direction. If the
heating is done slowly, it should be possi-
ble to reduce this error to a few tenths of a
degree.

<

Some of the errors in this example can be minimized by reducing the rate of
heating. This suggests a possible procedure: an initial rough determination es-
tablishes the approximate value, and a final heating is done with slow and careful
heating near the melting point.
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|[EXERCISE 11.1 »| List as many sources of error as you can for some of
the following measurements. Classify as systematic or random and estimate
the magnitude of each source of error.

(a) The measurement of the diamet@y) The measurement of the length of
of a copper wire with a microme-  a piece of glass tubing with a me-
ter caliper. ter stick.

(c) The measurement of the mass @) The measurement of the mass of
a porcelain crucible using a digital a silver chloride precipitate in a
balance. porcelain crucible using a digital

balance.

(e) The measurement of the resié) The measurement of the time re-
tance of an electrical heater using quired for an automobile to travel
a Wheatstone bridge. the distance between two highway
markers 1km apart, using a stop-
watch.
[«]

The usual approach to systematic errors is to make an educated guess about the
inherent accuracy of the apparatus. For example, if we use a wooden meter stick
we might conclude that its length is probably accurate.8%®or Q3% because
of shrinkage or swelling of the wood or poor calibration when the meter stick was
manufactured. If we use a mercury-in-glass thermometer, we might conclude that it
is accurate to about®°C because of faulty manufacture or calibration. Although
it is useful to engage in educated guesswork, it is better to have some kind of
objective way to estimate the magnitude of experimental errors. There are two
principal ways to gain information about systematic errors. One is to modify the
apparatus and repeat the measurement or to repeat the measurement with a different
apparatus. For example, in making a voltage measurement with a potentiometer,
one compares the voltage with that of a standard cell. One could see if the same
result is obtained with a different standard cell. If the result is different, you can
assume that at least one of the standard cells is contributing a systematic error that
is likely as large as the difference in the values. Another possibility a change in the
design of the apparatus. For example, the apparatus may include some insulation
that minimizes unwanted heat transfer. If the measurement gives a different value
when the insulation is improved, there was probably a systematic error at least as
big as the change in the result. It is even better to use a totally different apparatus,
possibly in a different laboratory. There have been cases in the literature in which
some quantity was measured in one laboratory and a certain probable error was
specified. When the measurement was made in a different laboratory a value was
obtained that differed significantly from the first value, exposing the existence of
systematic error in one or both of the measurements.

The other approach to the study of systematic errors is to use the same apparatus
to measure a well-known quantity, observing the actual experimental error. For
example, if you are measuring the melting temperature of an unknown substance,
you could also measure the melting temperature of a known substance and compare
your result with the accepted result. Any discrepancy could be due to systematic
error, although if only one measurement is made you cannot separate the effects
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of systematic and random errors. These methods of estimating systematic errors
are usually not available in physical chemistry laboratory courses. In this event,
educated guesswork is nothing to be ashamed of.

Statistical Treatment of Random Errors

Statistics is the study of a large set of people, objects, or numbers, caitgaa

lation. The population is not studied directly, because of its large size or inacces-
sibility. A subset from the population, calledsample, is studied and the likely
properties of the population are inferred from the properties of the sample. If sev-
eral repetitions of a measurement can be made, this set of measurements can be
considered to be a sample from a population. The population is an imaginary set of
infinitely many repetitions of the measurement. Statistical analysis can be used to
study the properties of the sample and to infer likely properties of the population.

Properties of a Population

The infinitely many members in a population of numerical quantities will be dis-
tributed among all values in some range according to some probability distribution.
We have discussed probability distributions in Chapter frdébability density or
probability distribution f(x) is defined such that

(probability of values ofc betweent’ andx’ + dx) = f(x")dx (11.1)

If the probability distribution isormalized the total probability of all occurrences
equals unity:

[P fodx =1, (11.2)

wherea is the smallest possible value ofandb is the largest possible value. for
convenience we will sometimes assume that —oo and thath = 4oc0. This
is generally not correct for measured quantities, but the probability of values of
with large magnitude is small so that this assumption will not introduce significant
errors

The most important property of a population of numerical quantities regts
value. If there are no systematic errors, the mean of the population of measure-
ments will equal the correct value of the measured quantity, since random errors
are equally likely in either direction and will cancel in taking the mean. If the
probability distributionf (x) is normalized thgopulation mean w is given by Eq.
(5.69),

b
,uz/ xf(x)dx | (11.3)

Thepopulation standard deviation is a measure of the spread of the distribution,
and is given by Eq. (5.74)

b
o = [ / (x M)Zf(X)dX}

1/2
(11.4)
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where we add a subscriptto remind us that is the variable being discussed.

|EXERCISE 11.2 | Show that the definition of the standard deviation in Eq.
(11.4) is the same as that in Eq. (5.74). That is, show that

2

b b b
/ (x — w2 f(x)dx =/ x? f(x)dx — (/ xf(x)dx) . (11.5)

[«
We will assume that any population of experimental results is governed by the
Gaussian probability distribution (also called theormal distribution), introduced
in Chapter 5. The important properties of that distribution are as listed in that
chapter:

1. Atotal of 683% of the members of the population have their valueslgfng
within one standard deviation of the mean: in the integval 0, < x <

W+ oy

2. A total of 95% of the members of the population have their values lging
within 1.96 standard deviations of the mean: in the intewall1.960, < x <
w+ 1.960,.

3. The fraction of the population with value afin the intervaly — x1 < x <
w + x1is erf(x1/+/20) where erf. - - ) stands for the error function, discussed
in Appendix G.

If a random experimental error arises as the sum of many contributions, the
central limit theorem of statistics gives some justification for assuming that our
experimental error will be governed by the Gaussian distribution. This theorem
states that if a number oandom variables (independent variables), xo, ..., x,
are governed by some probability distributions with finite means and finite standard
deviations, then Hnear combination (weighted sum) of them

n
y = Zaixi (11.6)
i=1

is governed by a probability distribution that approaches a Gaussian distribution as
n becomes large. If experimental errors arise from multiple sources, they should
be at least approximately described by a Gaussian distribution.

There are other probability distributions that are used in statistics, including the
binomial distribution, the Poisson distribution, and theLorentzian distribution.t
We will not discuss these distributions. However, all of them have properties that
are qualitatively similar to those of the Gaussian distribution.

Properties of a Sample

Our sample is a set of repetitions of a measurement, which we think of as being
selected randomly from a large population of many imaginary repetitions. From

1see Philip R. BevingtorData Reduction and Error Analysis for the Physical Sciences, Chap. 3, McGraw-
Hill, New York, 1969, or Hugh D. YoungSatistical Treatment of Experimental Data, McGraw-Hill, New York,
1962, for discussions of various distributions.
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this sample, we need to estimate the correct value of the measured quantity and
the probable error in this estimate. We will assume that an average of our set of
measurements gives the best estimate of the population mean, which is equal to the
correct value if there are no systematic errors. There are several common averages.
Themedian is a value such that half of the members of a set are greater than the
median and half are smaller than the median. frede is the value that occurs

most frequently in a set. Theean of a set ofNV values is defined by Eq. (5.59)

2|~

X =

N
> i) (11.7)
i=1

wherexi, xo, ... are the members of the set. In a population governed by the
Gaussian distribution, the population median, the population mode, and the popu-
lation mean all have the same value. In a sample of finite size the median, mode,
and mean are not necessarily equal to each other. The mean of a sample taken
from a population is said by statisticians to be an unbiased estimate of the pop-
ulation mean. We will use the mean of a set of repetitions as our estimate of the
population mean, which is equal to the correct value if systematic errors are absent.
Thesample standard deviation is defined by

1/2
(11.8)

1 N
Sx = [m ;(xi —5)2:|

wherex is the sample mean. The square of the standard deviation is called the
variance. In Eqg. (11.8), every term in the sum is positive or zero, since it is the
square of a real quantity. The standard deviation can vanish only if every member
of the sample is equal to the mean, and otherwise must be positive. The larger
the differences between members of the set, the larger the standard deviation will
be. In most cases, about two-thirds of the members of a sample will have values
betweent — s andx + s.

It has been shown that if we use tNe— 1 denominator of Eq. (11.8) instead of
a denominator equal t§ thens is an unbiased estimate of the population standard
deviationo. This has to do with the fact that in a sampleNdimnembers, there are
N pieces of information, which means that there Are- 1 independent pieces of
inforrr;ation in addition to the mean, &f — 1 degrees of freedomin addition to the
mean:

EXAMPLE 11.2 Find the mean and the standard deviation of the set of numpers

3241, 3376, 3291, 3304, 3275 3323

2TheseN — 1 degrees of freedom were illustrated once in a physical chemistry class that included one student
who did not want the other students to know her score on an exam. The other students took their scores and the
announced mean score and calculated the score of the first student.
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SOLUTION »
1
X = 6(32.41+ 3376+ 3291+ 3304+ 3275+ 33.23) = 3302

=)
Il

1/2
{ é [(0.39)2 (0782 + (—0.11)2 + (0.022 + (0.27)2 + (0.21)2] }
= 041

One of the six numbers lies below .82, and one lies above 3B, so that two-thirds of them lie
betweent — s andx + s. <

[EXERCISE 11.3 | Find the meany, and the sample standard deviation,
for the following set of values: .876m, 2881m, 2864m, 2879m, 2872m,
2.889m, 2869m. Determine how many values lie beldw- s and how many
lie abovex + s. [«

Numerical Estimation of Random Errors

A common practice among scientific workers is to make statements that have a 95%
probability of being correct. Such a statement is said to be at thec®bfitlence
level. For example, we want to make a statement of the form

correctvalue=pu =x +¢ (11.9)

that has a 95% chance of being right. That is, we want to state an interval <

x < X + ¢ that has a 95% chance of containing the correct valuehich we do

not know. We call such an interval the 95€énfidence interval, and we call the
positive numbek the probable error at the 95% confidence level or theestimated

error. If we knew the value of, the population standard deviation, we could make

this statement after a single measurement. Since a single measurement has a 95%
change of being within . 960 of u, we could say with 95% confidence that

u = x £ 1.960, (11.10)

wherex is the outcome of our single measurement. If we have no opportunity to
repeat our measurement, the only thing we can do is to make educated guess of the
value ofo.

However, let us assume that we can makeeasurements of the same quantity.
Think of our set ofN measurements as only one possible se¥ sheasurements
from the same population. If we could take infinitely many setevomeasure-
ments from our population, the means of these sets would themselves form a new
population. If the original population is governed by a Gaussian distribution, the
population of sample means will also be governed by a Gaussian distribution (al-
though we do not prove this fact). The mean of this new population is the same as
the mean of the original population, anagl, the standard deviation of the popula-
tion of sample means, is given by

Om = —— (11.11)

whereo is the standard deviation of the original population. The new population
of sample means has a smaller spread than the original population, and its spread
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becomes smaller a8 becomes larger. That is, the means of the sets of measure-

ments cluster more closely about the population mean if the number of members
of each sample is made larger. Af = 10, 0,, = 0.3162, and if N = 100,

om = 0.100s. Most people intuitively agree with the notion that the average of

a set of measurements is more likely to come close to the correct value than is a
single measurement.

If we knew the standard deviation of the original population, we would now
be able to write an expression for the expected error in the mean of a 8kt of
measurements:

1.960

VN’
However, we do not know the population standard deviation. Since we use the
sample standard deviation as our estimate of the population standard deviation, we
could write as a first approximation

e = 1.960,, = (11.12)

1.96s
¢ = —— (first approximation, 11.13
N ( pp ) ( )
wheres is the sample standard deviation. However, there is better estimate. A
statistically correct formula was derived by Gosse@ossett defined th&tudent
t factor
(F — wN?

, (11.14)

N

whereu is the population meary, is the sample mean, ands the sample stan-
dard deviation. There is a different value rofor every sample. Althouglx is
not known, Gossett derived the probability distribution thabeys? From this
distribution, which is called®udent’s t distribution, the maximum value af cor-
responding to a given confidence level can be calculated for any valtie ®he
notation used is(v, 0.05). The quantityv is the number of degrees of freedom,
equal toN — 1, and 005 represents the confidence level of 95%. Table 11.1 gives
these values for various valuesigfand for four different confidence levels. Notice
that asN becomes large the maximum Studemalue for 95% confidence (also
called 005 significance) approaches96, the factor in Eq. (11.13). For fairly
small values ofN the Student distribution corresponds to larger probability for
large values of — u than does the Gaussian distribution. Howeverydsecomes
large the Studentdistribution approaches a Gaussian distribution. Unfortunately,
some authors use a different notation for the critical valug sfich as, (0.025
to represent the Studentactor forv + 1 data points at the 95% confidence level.

Using a value from Table 11.1, we can write a formula for the expected error in
the mean at the 95% confidence level

e t(v, 0.05)s
N

for a sample ob + 1 members §¥ members).

(11.15)

Swilliam Sealy Gossett, 1876-1937, English chemist and statistician who published under the pseudonym
“Student” in order to keep the competitors of his employer, a brewery, from knowing what statistical methods he
was applying to quality control.

4See Walter Clark Hamiltoratistics in Physical Science, pp. 78ff, The Ronald Press Company, New York,
1964.

5John A. Rice Mathematical Satistics and Data Analysis, Wadsworth & Brooks/Cole, Pacific Grove, CA,
1988.



Section 11.2 Statistical Treatment of Random Errors 327

TABLE 11.1 » Some Values of Student’s r Factor*

Number of Maximum Value of StudentisFactor
Degrees of for the Significance Levels Indicated
Freedom
v t(v, 0.60) t(v,0.10) t(v,0.05 t(v, 0.0
1 1.376 6.314 12.706 63.657
2 1.061 2.920 4.303 9.925
3 0.978 2.353 3.182 5.841
4 0.941 2.132 2.776 4.604
5 0.920 2.015 2.571 4.032
6 0.906 1.943 2.447 3.707
7 0.896 1.895 2.365 3.499
8 0.889 1.860 2.306 3.355
9 0.883 1.833 2.262 3.250
10 0.879 1.812 2.228 3.169
11 0.876 1.796 2.201 3.106
12 0.873 1.782 2.179 3.055
13 0.870 1.771 2.160 3.012
14 0.868 1.761 2.145 2.977
15 0.866 1.753 2.131 2.947
16 0.865 1.746 2.120 2.921
17 0.863 1.740 2.110 2.898
18 0.862 1.734 2.101 2.878
19 0.861 1.729 2.093 2.861
20 0.860 1.725 2.086 2.845
21 0.859 1.721 2.080 2.831
22 0.858 1.717 2.074 2.819
23 0.858 1.714 2.069 2.807
24 0.857 1.711 2.064 2.797
25 0.856 1.708 2.060 2.787
26 0.856 1.706 2.056 2.479
27 0.855 1.703 2.052 2.771
28 0.855 1.701 2.048 2.763
29 0.854 1.699 2.045 2.756
30 0.854 1.697 2.042 2.750
40 0.851 1.684 2.021 2.704
60 0.848 1.671 2.000 2.660
00 0.842 1.645 1.960 2.576

* John A. Rice Mathematical Satistics and Data Analysis, Wadsworth & Brooks/Cole, Pacific
Grove, CA, 1988, p. 560

EXAMPLE 11.3 Assume that the melting temperature of calcium nitrate tetrghy-

drate, C&NO3)2- 4H>O, has been measured 10 times, and that the results are
42.70°C, 42.60°C, 42.78°C, 42.83°C, 42.58°C, 42.68°C, 42.65°C, 42.76°C
42.73°C, and 4271°C. Ignoring systematic errors, determine the 95% confi-
dence interval for the set of measurements.
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SOLUTION » Our estimate of the correct melting temperature is the sample mean:

1
Telr = 1—0(427O°C +42.60°C+42.78°C+4283°C+4258°C +42.68°C+
42.65°C + 42.76°C+42.73°C+42.71°C)
=4270°C

The sample standard deviation is
1 1/2
§[(o.oooc:)z + (0.10°C)2 + (0.08°C)2 + (0.13°C)? + (0.12°C)2+

(0.02°C)2 + (0.05°C)2 + (0.16°C)2 + (0.13°C)2 + (0.01°C)?]
— 0.08°C

The value of (9, 0.05) is found from Table 11.1 to equalZb, so that

. (2.26)(0.08°C)
a V10
Therefore, at the 95% confidence levE),;; = 42.70°C +0.06°C.

= 0.06°C.

|EXERCISE 11.4 b | Assume that the H-O-H bond angles in various crys-
talline hydrates have been measured to b 1089, 11C°, 103, 111°, and
107°. Give your estimate of the correct bond angle and its 95% confidence
interval. (<]

Rejection of Discordant Data

Sometimes a repetition of a measurement yields a value that differs greatly from
the other members of the samplediacordant value). For example, say that we
repeated the measurement of the melting temperature 4@, - 4H,0 in the
previous example one more time and obtained a value GB3€. If we include

this eleventh data point, we get a sample mean of3fZC and a sample standard
deviation of 089°C. Using the table of Studentisvalues, we obtain a value for

¢ of 0.60°C at the 95% confidence level. Some people think that the only honest
thing to do is to report the melting temperature agl42 0.6°C.

If we assume that our sample standard deviation.8C is a good estimate
of the population standard deviation, our data point a789C is 301 standard
deviations away from the mean. From the table of the error function in Appendix
G, the probability of a randomly chosen member of a population differing from the
mean by this much or more is@3, or 03%. There is considerable justification
for asserting that such an improbable event was due not to random experimental
errors but to some kind of a mistake, such as misreading a thermometer. If you as-
sume this, you discard the suspect data point and recompute the mean and standard
deviation just as though the discordant data point had not existed. Do not discard
more than one data point from a set of data. If two or more apparently discordant
data points occur in a set, you should regard it as a signal that the data simply have
low precision.

There are several rules for deciding whether to discard a data point. Some
people discard data points that are more thah 2andard deviations from the
mean (this means.2 standard deviations calculated with the discordant point left
in). This discards points that have less than a 1% chance of having arisen through
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TABLE 11.2 » Critical Q Values at the 95% Confidence Level

N 3 4 5 6 7 8 9 10 20 30

Q 0.97 0.84 0.72 0.63 0.58 0.53 0.50 0.47 0.36 0.30

normal experimental error. Pugh and Winsfosuggest that for a sample of
data points, a data point should be discarded if there is less than one chante in 2
that the point came from the same population. This rule discards more points than
the first rule for a sample of 10 measurements, since it would discard a point lying
1.96 standard deviations from the mean in a sample of 10 measurements. Since
you would expect such a point to occur once in 20 times, the probability that it
would occur in a sample of 10 by random chance is fairly large.

There is a test called th@test, in which Q is defined as the difference between
an “outlying” data point and its nearest neighbor divided by the difference between
the highest and the lowest values in the set:

__| (outlying valug—(value nearest the outlying valug)
Q= (highest value)-(lowest value) : (11-16)

An outlying data point is discarded if its value ¢f of exceeds a certain critical
value, which depends on the number of members in the sample. Table 11.2 contains
the critical value ofQ at the 95% confidence level for samples\domembers.

|EXERCISE 11.5 » | Apply the Q test to the 3F5°Cdata point appended to
the data set of Example 11.2. [«

Data Reduction and the Propagation of Errors

Many values that are obtained by measurement in a physical chemistry laboratory
are used along with other values to calculate some quantity that is not directly
measured. Such a calculation is addta reduction. An experimental error in a
measured quantity will affect the accuracy of any quantity that is calculated from
it. This is calledpropagation of errors.

The Combination of Errors

Assume that we have measured two quantitieand b, and have established a
probable value and a 95% confidence interval for each:

a = ate, (11.17a)
b = btey, (11.17b)

wherea is our probable value af, perhaps from a single measurement or perhaps
from a mean of several measurements, anié our expected error in, perhaps

6Emerson M. Pugh and George H. Winslde Analysis of Physical Measurements, Addison-Wesley, Read-
ing, MA, 1966.
7W. J. Dixon,Ann. Math. Satist. 22, 68 (1951); and R. B. Dean and W. J. Dixémal. Chem. 23, 636 (1951).
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computed from Eqg. (11.15) or perhaps obtained by educated guesswork. Analo-
gous quantities are defined fbr Assume that we want to obtain a probable value
and a 95% confidence interval foy the sum ofz andb. The probable value af

is the sum ofz andb:

c=a-+b. (11.18)

A simple estimate of the probable errordris the sum ok, ande;, which corre-
sponds to the assumption that the errors in the two quantities always add together:

gc = ¢&q4 + &5 (simple preliminary estimaje (11.19)

However, Eq. (11.19) provides an overestimate, because there is some chance that
errors ina and inb will be in opposite directions. I andb are both governed

by Gaussian distributions, mathematicians have showrrtisalso governed by a
Gaussian distribution, and that the probable errarigsgiven by

& = (83 + 85)1/2 . (11.20)

This formula allows for the statistically correct probability of cancellation of errors.

EXAMPLE 11.4 Two lengths have been measured as824+0.4m and
13.6 m+0.3 m. Find the probable value of their sum and its probable error

SOLUTION » The probable value of the sum is.84n+13.6 m = 384 m, and the probable
error ise = [(0.4m)2 + (0.3m)2]¥/2 = 0.5m. Therefore, the sum is reported asf38-+0.5m.

|
|EXERCISE 11.6 b | Two time intervals have been clocked as®6s+0.13 s
and 7512s+0.17s. Find the probable value of their sum and its probable
error. [«

The Combination of Random and Systematic Errors

Statistics can be used to determine the probable error due to random errors if the
measurements can be repeated. The probable error due to systematic errors can be
estimated by apparatus modification or by guesswork. These errors combine in the
same way as the errors in Eq. (11.20)e/fis the probable error due to random
errors and; is the probable error due to systematic errors, the total probable error

is given by

g = (82 + 212 | (11.21)

In using this formula, you must try to make your estimate of the systematic error
conform to the same level of confidence as your random error. If you use the 95%
confidence level for the random errors, do not estimate the systematic errors at the
50% confidence level, which is what most people instinctively tend to do when
asked what they think a probable error is. You might make a first guess at your
systematic errors and then double it to avoid this underestimation.
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EXAMPLE 11.5 Assume that you estimate the total systematic error in the melt-
ing temperature measurement of Example 11.3.28°C at the 95% confi-
dence level. Find the total expected error.

SOLUTION »
& = [(0.06°C)2 + (0.20°C)?]Y/2 = 0.21°C.

<

Notice that if two sources of error combine additively and if one is much larger
than the other, the smaller error makes a much smaller contribution after the errors
are squared. If the error from one source is five times as large as the other, its
contribution is 25 times as large, and the smaller error source can be neglected.

Error Propagation in Data Reduction Using Mathematical
Formulas

In the Dumas method for determining the molar mass of a volatile ligjoite uses

the formula RT
m=2E0 (11.22)
PV
whereM is the molar massy is the mass of the sample of the substance contained
in volumeV at pressureé® and temperatur@, andRr is the ideal gas constant. We

think of Eq. (11.22) as being an example of a general formula,
y = y(x1, X2, X3, - . ., Xn). (11.23)

Let us assume that we have a 95% confidence interval for each of the independent
variablesxs, x2, - - - such that

xi=xite (i=L12---,n). (11.24)

Our problem is to take the uncertainties.iin x2, and so on, and calculate the
uncertainty iny, the dependent variable. This is called fitepagation of errors.

If the errors are not too large, we can take an approach based on a differential
calculus. The fundamental equation of differential calculus is Eqg. (7.9),

d 0 d 0
dy = (2 Varg + (2 Yo+ (2 g+ + (2 ) dny.  (11.25)
0x1 0x2 9x3 0xy

This equation gives an infinitesimal change in the dependent varjadige to
arbitrary infinitesimal changes in the independent variabjes;, xs3, .. ., x,.

If finite changesAxi, Ax2, and so on, are made in the independent variables,
we could write as an approximation

3 3 3
Ay~ (22) arg 4+ (2 ) Axp oo+ (22 Ax,. (11.26)
0x1 0

X2 0xp

If we had some known errors iy, x2, and so on, we could use Eq. (11.26) to
calculate a known error ip. Since all we have is probable errors in the independent
variables and do not know whether the actual errors are positive or negative, one

8Lawrence J. Sack&xperimental Chemistry, pp. 26—29, Macmillan Co., New York, 1971.
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cautious way to proceed would be to assume that the worst might happen and that

all the errors would add:
dy dy dy
&y N — el + — ) eo| + -+ — ) Ax
! ’(3)61) ! ‘(3362) ? ‘(3xn "
wheres, e2, - - - &, represent the expected errors in the independent variables and
ey represents the expected erronin This equation overestimates the erroryin
because there is some probability that the errors inxtivalues will cancel in-

stead of adding. An equation that incorporates the statistical probability of error
cancellation is

2 2 2 Y2
e [ (22) 20 (2) e2q o (22 22 (final formula)
AT 1 9x2 2 Xy " '

(11.28)

(first estimate) (11.27)

This equation is analogous to Eq. (11.21). It will be our working equation for the
propagation of errors through formulas. Since it is based on a differential formula,
it becomes more nearly exact if the errors are small.

EXAMPLE 11.6 (@) Find the expression for the propa-
gation of errors for the Dumas mo-
lar mass determination.

(b) Apply this expression to the fol-
lowing set of data for-hexane:

T = 37315+ 0.25K

V = 20634+ 0.15ml
P = 7604 0.2 torr
w = 0.5854+0.005¢g

SOLUTION » (a) The analogue of Eq. (11.28) for our equa-
tionis

1/2
RT22+wR22+wRT22+wRT22/

EM —_— & —_— & - & ——y &

M pv) 7w \pv) T\ p2v) P\ py2) "V

<

Substituting the numerical values, we obtain

(0.585 g(0.082057 | atm KX mol~1)(37315 K)
(1.000 atm (0.20634 )

M =

= 86.81 g mol™~.

We do not report the numerical calculation of the expected error, but the result is

ey = 0.747 gmot™
M = 86.8+0.7 g mol ™.
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One significant digit suffices in an expected error. The digit 8 after the decimal
point in the value o in the previous example is not quite significant, but since the
error is smaller than.0 g mol1, it provides a little information, and we include

it. The accepted value is 867g mol™L, so that our expected error is larger than our
actual error, as it should be about 95% of the time.

|EXERCISE 11.7 B | In the cryoscopic determination of molar m&tke mo-
lar mass in kg mott is given by

wKy
M= (1—kyATy),
WATy
whereW is the mass of the solvent in kilograms s the mass of the unknown
solute in kilograms AT, is the amount by which the freezing point of the
solution is less than that of the pure solvent, &dandk ; are constants char-
acteristic of the solvent. Assume that in a given experiment, a sample of an un-
known substance was dissolved in benzene, for wkigh= 5.12 K kg mol~?
andky = 0.011 K-1. For the following data, calculat®# and its probable
error:

W = 13185+ 0.003 g
w = 0.423+0.0029g
ATy = 1.263+0.020 K

4

aCarl W. Garland, Joseph W. Nibler, and David P. Shoemdkeaeriments in Physical Chemistry, 7th
ed., p. 182, McGraw-Hill, New York, 2003.

Graphical and Numerical Data Reduction

There are a number of functional relationships in physical chemistry that require
data reduction that is more involved that substituting values into a formula. For
example, thermodynamic relations imply that the equilibrium pressure of a two-
phase system containing one substance is a function of the temperature. If we
control the temperature and measure the pressure, we write

P = P(T). (11.29)

This equation represents a function that we assume to be piecewise continuous.

Table 11.3 contains a set of student data for the vapor pressure of ethanol, which
is the pressure observed when the liquid and the vapor are at equilibrium. Error
estimates are included in the table.

Figure 11.1 is a graph on which these data have been plotted. A fairly smooth
curve has been drawn near the points, passing through or nearly through the confi-
dence intervals given in the table. The curve in Fig. 11.1 is an approximate repre-
sentation of the function of Eq. (11.29). It gives us a means to interpolate between
the data points, and it can give us “smoothed” values at the data points. However,
we can extract more information from these data. Thapeyron equation for any
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TABLE 11.3 » Experimental Vapor Pressures of Pure Ethanol at Various
Temperature

t/°C T/IK Vapor Pressure/torr Expected Error/torr
25.00 298.15 55.9 3.0
30.00 303.15 70.0 3.0
35.00 308.15 93.8 4.2
40.00 313.15 117.5 55
45.00 318.15 154.1 6.0
50.00 323.15 190.7 7.6
55.00 328.15 241.9 8.0
60.00 333.15 304.15 8.8
65.00 338.15 377.9 9.5
400
350 -
300 -
E 250 -
Eﬁ zool—
>
150 -
mAaT
100 |-
50 - TR T
AT
2 a0 0 60 70

Temperature (°C)

Figure 11.1 » The vapor pressure of ethanol as a function of temperature.

phase transition is
dP AH,,
dT ~ TAV,,’
whereP is the pressure) H, is the molar enthalpy change of the phase transition,
T is the absolute temperature, and,, is the molar volume change of the phase
transition. IfAV,, is known and the value of the derivatide® /dT can be deter-
mined, then the enthalpy change of vaporization can be calculated. The derivative
dP/dT is the slope of the tangent line at the point being considered (see Chapter
4). After a smooth curve has been drawn as in Fig. 11.1, a tangent line can be con-
structed. Two line segments can be drawn parallel to the coordinate axes, forming
a right triangle with the tangent line, as is shown in the figure.

(11.30)

EXAMPLE 11.7 Determine the value af P /dT from the triangle in Fig. 11.1

SOLUTION » The slope of the tangent line is equal to the height of the triangle divided by its
base (“rise” over “run”). This gives
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dP _ 115torr

dT 200K

=5.75torr K1 (11.31)

<

Numerical Differentiation

Drawing a graph and constructing a tangent by hand in is tedious. There are
numerical procedures that can be carried out on a computer. The first proce-
dure is “smoothing” data. The idea is that the mathematical function that the
data should conform to is continuous and smooth, so that if we adjust the data
points so that they lie closer to a smooth curve, we have probably reduced the
experimental errors. One procedure is based on choosing polynomial functions
that provide smoothed values of the function. If we have the set of data points
(x1, y1), (x2, ¥2), (x3, ¥3), and so on, such that thevalues are equally spaced, a
smoothed value for the dependent variaplés given by

1
i =32 [17yi + 12(yi11 4 yi-1) — 3(it2 + yi-2)] .- (11.32)

This equation corresponds to the value of the 3rd-degree polynomial that most
nearly fits the five data points included in the formula and is valid only for equally
spaced values of. There are also similar formulas that involve a larger number of
points.

We now define a set differences, which are used to calculate numerical ap-
proximations to derivatives for a set of equally spaced data pointsfirehdiffer-
ence for theith point is defined by

Ayi = Yi4l — i (11.33a)
The second difference for theith point is defined by
A%y = Ayit1 — Ayi = yit2 — 2Vis1 + Vi (11.33b)
Thethird difference for theith point is defined by
A3y; = Ay — APy, (11.33c)

Higher-order differences are defined in a similar way. For data sets of ordinary
accuracy, the values gfin Egs. (11.33a) should be the smoothed values given by
Eq. (11.32). This set of differences for point numbenvolves only points with
subscripts greater than or equaltdther schemes can be defined that use points
on both sides of théth data point.

A numerical value for the derivatiwy /dx at theirh point is given by°

dy 1 1., 1 5 1 4
- =—|Ay; — =A%y + =A%y — =A%y +--- |, 11.34
dx i w ( Vi > i+ 3 Vi 4 i+ ( )
wherew is the spacing between valuesxof
W= Xj+1 — Xi. (11.35)

Equation (11.34) is based on ti&regory—Newton interpolation formula.ll The
second derivative is given by

9C. W. Garland, J. W. Nibler and D. P. Shoemak&xperiments in Physical Chemistry, 7th ed., pp. 770ff,
McGraw-Hill, Boston, 2003.

101big.

U)big.
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d%y

11 10
dx2 (Azyi — A%+ Ay — A%+ ) : (11.36)

1
w2 12 12

X=x;

EXAMPLE 11.8 Smooth the data of Table 11.3. Find the value of the derivative
dP/dT at 40°C and find the value oh H,,,.

SOLUTION » The data were entered into an Excel spreadsheet and smoothed. The first three
differences were calculated, and the derivative was calculated for the déta point.

dpP 1
— =5.75torrK 11.37
7 ( )
The enthalpy change of vaporization was calculated using the approximation
RT
AV = Vin(gas) — Vip(liquid) =~ Vy, (gas) = - (11.38)
AH 0 RT?dP  (8.3145JK 1mol~1)(31315K)%(5.75torr K1)
m = m o, = T 5 g
daTr P dr 1197 torr (11.39)
= 39200Jmot! = 39.2kImor ! (11.40)
Notice that we did not use Sl units for all quantities, but that the torr unit canceled, so that the
correct answer was obtained. <
|EXERCISE 11.8 b | The rate of a first-order chemical reaction obeys the
equation
dc
—— = kc, (11.42)
dt

wherec is the concentration of the reactant andé a function of tempera-
ture called theate constant. The following is a set of data for the following
reaction at 23C.2

(CH3)3CBr + HoO — (CH3)3COH + HBr

Time/h [(CH3)3CBr]/moll~1

0 0.1051

5 0.0803
10 00614
15 00470
20 00359
25 00274
30 00210
35 00160
40 00123

Smooth the data using Eq. (11.32). Using Excel, make a table of the first,
second, third, and fourth differences. Use Eq. (11.34) to evaluate the derivative
dc/dt att = 20 h. Use this value to evaluate the rate constant. [«]

8. C. Bateman, E. D. Hughes, and C. K. Ingold, “Mechanism of Substitution at a Saturated Carbon
Atom. Part XIX. A Kinetic Demonstration of the Unimolecular Solvolysis of Alkyl Halidels,Chem. Soc.
960 (1940).
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Linearization

In some cases, a variable obeys a mathematical relation that tismedsézed. This
means finding new variables such that the curve in a graph of our data is expected
to be a line instead of some other curve. In our vapor pressure example, these
variables are found by manipulation of the Clapeyron equation. We assume that
the volume of the liquid is negligible compared to that of the gas, and that the gas
is ideal:

AV, = Vi (gas) — V,,(liquid) ~ V,,(gas) ~ R—PT (11.42)

We also assume thatH,, is equal to a constant. After separation of variables and
integration, we obtain th€lausius-Clapeyron equation

m

AH,
In(P) = — RT

+C, (11.43)

whereC is a constant of integration.

|EXERCISE 11.9 »| Multiply both sides of Eq. (11.30) by T, separate the
variables do an indefinite integration to obtain Eq. (11.43), using the stated
assumptions. [«

Equation (11.43) represents a linear function if we usg as the independent
variable and 10P) as the dependent variable. Figure 11.2 is a graph of the same
data as Fig. 11.1, using these variables.

A straight line passing nearly through the points has been drawn in the figure.
The expected errors in (?) were also plotted. They were obtained by use of Eq.

eor \ (2.96 X 107%,5.91)

{3.34 X 1073, 5.91)
575+

5.50

5.0+

4.5

Natural Logarithm of Vapor Pressure in Torr

4251

(3.34 % 1072, 4.06)

4.0 1 1 1 I 1 ¥
29 3.0 3.1 3.2 3.3 34

Reciprocal Temperature X 10° (K™')
Figure 11.2 » The natural logarithm of the vapor pressure of ethanol as a function of the reciprocal
of the absolute temperature.
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6.00 -

575

5.50

525

5.00 -

475

425

4.0 L1 1 1 1 1
29 3.0 3.1 3.2 3.3 3.4

Figure 11.3 » The lines of maximum and minimum slope in Figure 11.2.

(11.28), withy = In(P).

1/2
dy\? , dy 1
e(In(P)) =¢ey = ((d_P) 8P) = ‘(d_P ep| = ;sp. (11.44)
|EXERCISE 11.10 b | Calculate the expected error in(l?) for a few data
points in Table 11.3, using Eq. (11.44). <]

EXAMPLE 11.9 Find the enthalpy change of vaporization of ethanol from the
graph in Fig. 11.2.

SOLUTION » The necessary right triangle has been drawn in Fig. 11.2 and the coordinates of
the vertices are given in the figure.sifis the slope, then

AH, = —mR = —(—487x 10°K)(8.3145JK 1 mol™1)
405 x 103 Jmol ! = 405 kJ mor L.

<
|EXERCISE 11.11 b | Construct the graph of the data in Exercise 11.8. Do
this by solving Eqg. (11.41) to obtain
In(c) = —kt + K. (11.45)

Find the value of the rate constant [«
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Numerical Curve Fitting: The Method of Least
Squares (Regression)

Graphical techniques have lost favor because of the availability of computers and
software packages that make numerical procedures much less tedious than graphi-
cal techniques. Furthermore, numerical procedures are less subjective and are usu-
ally more accurate than graphical procedures. The method of least squares is a nu-
merical procedure for finding a continuous function to represent a set of data points.
Our data points are represented by ordered pairs of numbarsy1), (x2, y2),
(x3, v3), etc. wherex is the independent variable. We assume that there is some
function

y =y (11.46)

governing the behavior of as a function ofx, and that we know a family of
functions to which the correct function belongs,

y=f(x,a1,az,...,ap), (11.47)

where thea’s are parameters that have different values for different members of
the family. We want to find the values of the parameters for the member of the
assumed family that most nearly fits the data points. For example, a family of
linear functions is

y=mx + b, (11.48)

where the slope: and the interceph are the parameters that have different values
for different members of the family.

We define theesidual for theith data point as the difference between the mea-
sured value and the value of the function at that point:

ri =yi — f(xi,a1,az, ..., ap). (11.49)

When a function has been chosen that fits the points well, these residuals will col-
lectively be small. Under certain conditions, it has been shown by mathematicians
that the best fit is obtained when the sum of the squares of the residuals is mini-
mized. The method of finding the best curve to fit a set of data points by minimizing
this sum is called thenethod of least squares. The method is also calledgres-
sion. It was first applied by Sir Francis Galton (1822-1911), a famous geneticist
who studied the sizes of plants and their offspring, and also the heights of fathers
and sons. He found in both these cases that there was a correlation between the trait
in the second generation and the earlier generation. However, he also found that
the offspring tended to be closer to the mean of the trait than the earlier generation.
He called this tendency “regression toward mediocrity” and it has also been called
“regression toward the mean.” The name “regression” has stuck to the method.

We seek the minimum aR, the sum of the squares of the residuals,

N
2
R=Z[yl _f(-xi’a7a27"',ap)] ’ (1150)
i=1

whereN is the number of data points. This minimum occurs where all of the partial
derivatives ofR with respect taiy, ay, ..., a, vanish:

oR

— =0 i=212...,p). (11.51)

da;
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This is a set of simultaneous equations, one for each parameter. For some families
of functions, these simultaneous equations are nonlinear equations and are solved
by successive approximatiok For linear functions or polynomial functions, the
equations are linear equations, and we can solve them by the methods of Chapter
10.

In the method ofinear least squares or linear regression, we find the linear
function that best fits our points. If we have a nonlinear function, we might have
a theory that produces a linear dependeticedrize) by changing variables. The
family of linear functionsis given by

y=mx +b. (11.52)

We seek that value of the slopeand that value of the interceptthat give us the
best fit to our data points (possibly after linearization). For the linear function of
Eq. (11.52), the sum of the squares of the residuals is

N
R =Y (yi —mx; —b). (11.53)
i=1

The simultaneous equations are

8_R = Zi(yi —mx; —b)(—x;) =0 (11.54a)
am =

8_R = 2%()},- —mx; —b)(=1) =0. (11.54b)
ob

i=1

This is a set of linear inhomogeneous simultaneous equationsitdb. We write
them in the form

S,om + Syb = Syy (11.55a)
Sem 4+ Nb = S, (11.55b)
where

N

Sy = Y xi (11.56a)
i=1

Sy =Y v (11.56b)
i=1
N

Sy = Y _xivi (11.56¢)
i=1
N

S = Y x7. (11.56d)

These linear inhomogeneous equations can be solved by any of the techniques of
Chapter 10Cramer’sruleis the easiest method in this case. From Egs. (10.4) and

12Garland, Nibler, and Shoemaken. cit., pp. 724ff
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(10.5),
1
m= S (NSey = 5:Sy) (11.57)
1
b= (828 = ScSu) | (11.58)
where
D=NS,2—S? (11.59)

These are our working equations. The calculation of the four sums can be carried
out by hand if there are not too many data points, but many handheld calculators
carry out the calculation automatically, and we will describe how to do the calcu-
lation with the Excel spreadsheet later in this section.

EXAMPLE 11.10 Calculate the slopa and the intercepi for the least-squares
line for the data in Table 11.3, using(lR) as the dependent variable andrl
as the independent variable. Calculate the enthalpy change of vaporization
from the slope.

SOLUTION » When the numerical work is done, the results are

m = —4854K
b = 2028
AH, = —mR = (—4854K)(8.3145J K1 mol™1)

— 4036x 1033 mor L.

This value compares with the accepted value 084010% J mol~1, and is somewhat closer to the
accepted value than the result obtained from the derivdtR/&IT in an earlier example. <

|EXERCISE 11.12 »>| The following data give the vapor pressure of water at
various temperaturés.

(a) Find the least-squares line for the data, usirig Jrfor the dependent vari-
able and 1T for the independent variable. Calculate the four sums by hand.
Find the molar enthalpy change of vaporization.

TemperaturélC Vapor pressureorr

0 4579
5 6.543
10 9209
15 12788
20 17535
25 23756
(b) Verify your results using Excel. [«

aR. Weast, Ed.Handbook of Chemistry and Physics, 51st ed., p. D-143, CRC Press, Boca Raton, FL,
1971-1972.
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In some problems, it is not certain in advance what variables should be used
for a linear least-squares fit. In the vapor pressure case, we had the Clausius-
Clapeyron equation, Eq. (11.43), which indicated thaPhand I/ T were the
variables that should produce a linear relationship. In the analysis of chemical rate
data, it may be necessary to try two or more hypotheses to determine which gives
the best fit. In a reaction involving one reactant, the concentratadrihe reactant
is given by Eq.(11.45) if there is no back reaction and if the reactioffiiistaorder
reaction. If there is no back reaction and the reaction seeond-order reaction,
the concentration of the reactant is given by

1

- =kt+C, (11.60)

C
wherek is the rate constant ard is a constant of integration. If there is no back
reaction and the reactiontlird order, the concentration of the reactant is given
by

L +C (11.61)
2c2 ’ '

If the order of a reaction is not known, it is possible to determine the order by
trying different linear least-squares fits and finding which one most nearly fits the
data. One way to see whether a given hypothesis produces a linear fit is to examine
the residuals. Once the least-squares line has been fausadgb are known. The
residuals can be calculated from

ri =y —mx; —b. (11.62)

If a given dependent variable and independent variable produce a linear fit, the
points will deviate from the line only because of experimental error, and the resid-
uals will be either positive or negative without any pattern. However, if there is a
general curvature to the data points in a graph, the residuals will have the same sign
near the ends of the graph and the other sign in the middle. This indicates that a
different pair of variables should be tried or a nonlinear least-squares fit attempted.

EXAMPLE 11.11 The following is a fictitious set of data for the concentration
of the reactant in a chemical reaction with one reactant. Determine whether
the reaction is first, second, or third order. Find the rate constant and the initial
concentration.

Time/min  Concentration/moti:

5.0 0.715
100 0.602
150 0.501
20.0 0.419
25.0 0.360
30.0 0.300
350 0.249
40.0 0.214

450 0.173
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SOLUTION » We first test for first order by attempting a linear fit using-lnas the dependent

variable and as the independent variable. The result is
—0.03504 min ! = —k

m =
b = —0.1592= In[c(0)]

¢(0) = 0.853mol 'L,

The following set of residuals was obtained:
rp = —0.00109 rg = 0.00634
rp =0.00207  r7 = —0.00480
r3 = —0.00639 rg=0.01891
rqg = —0.00994 rg = —0.01859
r5 = 0.01348

This is a good fit, with no pattern of general curvature shown in the residuals.

We test the hypothesis that the reaction is second order by attempting a linear fit (tsemythe
dependent variable ands the independent variable. The result is

0.1052 Imol't = &

m =
b — 048461 mort = ——
c(0)
¢(0) = 2.064mol I'L.
The following set of residuals was obtained:
r1=0.3882 rg=—0.3062
rp=0.1249 7 =-0.1492
r3 = —0.0660 rg= —0.0182
rqg = —0.2012 rg = 0.5634.
r5 = —0.3359

This is not such a satisfactory fit as in part a, since the residuals show a general curvature, beginning
with positive values, becoming negative, and then becoming positive again.

We now test the hypothesis that the reaction is third order by attempting a linear fit using
1/(2c2) as the dependent variable ands the independent variable. The results are

0.3546 P mol~2min~1 =

m =
b = —3.054 P mol2.
This is obviously a bad fit, since the intercépthould not be negative. The residuals are
r1=22589 rg=-2.0285
rp =0.8876  r5g=-1.2927
r3=—-0.2631 rg=-0.2121
rqg = —11901 rg = 3.8031.
r5 = —1.9531

Again, there is considerable curvature. The reaction is apparently first order, with the rate constant

and initial concentration given in part a of the solution.

<

In addition to inspecting the residuals, we can calculatectineelation coeffi-
cient, which gives information about the closeness of a least-squares fit. For linear

least squares, the correlation coefficient is defined by

B NSyy — S¢Sy
~ [(NS,2— SH(NS,2 — $2)]2

r

: (11.63)

whereS,, Sy, Sxy, andS,. are defined in Eq. (11.55a) and where

N
2
i=1

(11.64)
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If the data points lie exactly on the least-squares line, the correlation coefficient
will be equal to 1 if the slope is positive or tel if the slope is negative. If the data
points are scattered randomly about the graph so that no least-squares line can be
found, the correlation coefficient will equal zero. The magnitude of the correlation
coefficient will be larger for a close fit than for a poor fit. In a fairly close fit,

its magnitude might equal.@9. Some software packages give the square of the
correlation coefficient rather than the correlation coefficient itself.

EXAMPLE 11.12 Calculate the correlation coefficients for the three linear fits
the previous example.

n

SOLUTION » Use of Eq. (11.63) gives the results:

(a) For the first-order fit; = —0.9997.

(b) For the second-order fit,= 0.9779.

(c) For the third-order fit;y = 0.9257.

Again, the first-order fit is the best. <

|EXERCISE 11.13 b | Do three linear least-squares fits on the data of Exercise
11.8. Calculate the correlation coefficients for the three fits and show that
the reaction is first order. If you wish, you can use a spreadsheet such as
Excel, which will plot the data and carry out the least-squares fit for you. The
procedure is described later in this section. [«

The correlation coefficient is related to a quantity calleddthwariance, defined

by13

N
1 i} N
Sty =g 2 = D0 = ), (11.65)
i—1

wherex is the average of the's,

t=—8,, 11.66
f= (11.66)
and wherey is the average of the's,

_ 1

y= NSy. (11.67)

The covariance has the same general behavior as the correlation coefficient. If large
values ofx tend to occur with small values of, the covariance will be negative,

and if large values of tend to occur with large values gf the covariance will

be positive. If there is no relationship betweeandy, the covariance will equal

zero.

Error Propagation in Linear Least Squares

We discuss two cases: (1) the expected error in each value of the dependent variable
is known, and (2) the expected error in these values is not known. In both cases, we
assume that the errors in the values of the independent vaxiakenegligible.

1330hn E. Freundylodern Elementary Statistics, 7th ed., p. 459, Prentice-Hall, Englewood Cliffs, NJ, 1988.
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Case 1. Let the expected error in the valug,obe denoted by;. Equations for
the slope and the intercept of the least-squares line are given in Eqs. (11.57)
and (11.58). The’s can be considered to be independent variables, so we can
apply Eq. (11.28). The expected error in the slope is given by

N fam\2 12 1N 1/2
m\~ - 2.2
; , =Y xi—s0%2| . (L
€ |:E <3yi) 8[j| |:D2 i:1(Nx Sx) 8lj| (11.68)

i=1

whereD andS, are given in Egs. (11.59) and (11.56d). In the case that all of
the expected errors in theés are equal to each other,

N\ 12
Em = (B) ey | (11.69)
wheree, is the value of all the;’s.
The expected error in the intercept is
N a2 1/2 L 1/2
ey = {Z <§> g?} = [ﬁ Z(sz — Sxxi)28i2:| . (11.70)
i=1 i=1
For the case that all of thg's are assumed to be equal,
S. 1/2
Ep = (3) &y | (1171)
whereS, - is given in Eq. (11.56d).
|EXERCISE 11.14 » | Verify Egs. (11.69) and (11.71). [«

EXAMPLE 11.13 Assume instead of the given expected errors that the expected
error in the logarithm of each vapor pressure in Table 11.3 is equad#®0
Find the expected error in the least-squares slope and in the enthalpy change
of vaporization.

SOLUTION » From the data,
D=1327x 10 %K2

so that
9 1/2
em = <m> (0.040) = 104 K
eaH, = Rem =870Jmoll=087kImor?l.
<
|EXERCISE 11.15 » | Assume that the expected error in the logarithm of each

concentration in Example 11.10 is equal t010. Find the expected error in
the rate constant, assuming the reaction to be first order. [«
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Case 2. If we do not have information about the expected errors in the dependent
variable, we assume that the residuals are a sample from the population of
actual experimental errors. This is a reasonable assumption if systematic errors
can be ignored. The variance of tiveresiduals is given by

2 = 1 > (11.72)

The standard deviation of the residuals is the square root of the variance:

N 1/2
1 2
s, = (N—_2 Zri) . (11.73)

i=1

This differs from Eq.(11.8) in that a factor &f — 2 occurs in the denominator
instead of¥V — 1. The number of degrees of freedonMs- 2 because we have
calculated two quantities, a least-squares slope and a least-squares intercept
from the set of numbers, “consuming” two of the degrees of freedom. The
mean of the residuals does not enter in the formula, because the mean of the
residuals in a least-squares fit always vanishes.

|EXERCISE 11.16 b | Sum the residuals in Example 11.11 and show that this
sum vanishes in each of the three least-square fits. [«]

Equation (11.73) provides an estimate of the standard deviation of the popula-
tion of experimental errors. We assume that the erroysaire distributed according
to the Student distribution, so the expected errorjrat the 95% confidence level
is given by

gy =t(v,0.05)s, |, (11.74)

wheret (v, 0.05) is the Student factor forv = N — 2; the number of degrees of
freedom forN data points after the slope and the intercept have been calculated.
If there were a very large number of data points, the Studeigtribution would
approach the Gaussian distribution, and this factor would appra8éh 1

We can now write expressions similar to Eqs. (11.69) and (11.70) for the ex-
pected errors at the 95% confidence level:

N\ M2
Em = (5) t(v, 0.05)s, (11.75)
and
L 1/2
2
&y = (5 ;xi) t(v, 0.05)s,. (11.76)
1=

The standard deviations of the slope and intercept are given by similar formulas
without the Student factor:

1/2

1 N
Sm = (5 2;Xi2) 5 (11.77)
1=
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N\ 2
Sp = (B) Sy (11.78)

The slope and the intercept of a least-squares line are not independent of each other,
since they are derived from the same set of data, anddt.rianceis given by
—S,ZSX

Cov(m, b) = spp = D (11.79)

EXAMPLE 11.14 Calculate the residuals for the linear least-squares fit of Ex-

ample 11.10. Find their standard deviation and the probable error in the slope
and in the enthalpy change of vaporization, using the standard deviation of the
residuals.

SOLUTION » Numbering the data points from the 26 point (number 1) to the 68C point
(number 9), we find the residuals:

r1=0.0208 rg=—0.0116

ro = —0.0228 r7 = —0.0027

r3=0.0100 rg=0.0054

ra = —0.0162 rg = 0.0059.

r5 = 0.0113
The standard deviation of the residuals is found to be
sy = 0.0154

Using the value oD from the previous example, the uncertainty in the slope is
9 1/2
em=|——m 2.365(0.0154 = 94.9K,
" (1.327>< 10-6 K—Z) (236900154

where we have used the value of the Studenfactor for seven degrees of freedom from Table
11.1. The uncertainty in the enthalpy change of vaporization is

enn, = Rem = (83145 K mol~1)(96.9K) = 789 Jmor ™.

|EXERCISE 11.17 »| Assuming that the reaction in Exercise 11.12 is first
order, find the expected error in the rate constant, using the residuald <]

Expected Errors in the Dependent Variable

If the linear least-squares method is used to find the line that best represents a set of
data, this line can be used to predict a value for the dependent variable correspond-
ing to any given value of the independent variable. We now consider the probable
error in such a predictiol® Since the dependent variabeis a function of the
slopem and the intercepit, we might try to apply Eq. (11.28):

1/2
9 2 9 2
£y = ((ﬁ) 2 + (%) g§> (NOT APPLICABLE). (11.80)

1430hn A. Rice, op. cit., p. 460.

15Edwin F. MeyerJ. Chem. Educ. 74, 1339 (1997). The author of this article refers to a software package by
Ramette, called FLEXFIT, which is available on JCE Online at http.//ichemed.chem.wisc.edu/. This package can
be manipulated to give the covariancenofindb.
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However, this equation is incorrect, becausandb have been derived from the
same set of data and are not independent of each other, as was assumed in obtaining
Eq. (11.28).

The correct equation is obtained by including the covarianoe ahdb. We
consider the standard deviationyf

2 3\ A dy \ (dy
= (= - 21 —= —= | 5m 11.81
Sy (8m> Sm ¥ (az;) S+ (8m) (ab)s b (11.81)
= x%52 4+ 52+ 2xSm b, (11.82)
wheres,, is the standard deviation of, s;, is the standard deviation éf ands,,

is the covariance ofi andb. In this equationy stands for the value of for which
we want the value of. The expected error in at the 95% confidence level is

gy =1(N — 2,0.05)s,. (11.83)

If you want to determine a value affor a given value ofy, a similar analysis
can be carried out, considering that for a given valug,of is a function ofn and
b.

|EXERCISE 11.18 b | (a) From the least-squares fit of Ex-
ample 11.10, find the predicted
value of the vapor pressure of
ethanol at 7M°C. Find the ex-
pected error in the natural loga-
rithm of the vapor pressure. Com-
pare the values of the three terms
in Eq. (11.81). Find the expected
error in the predicted value of the
vapor pressure.

(b) From the least-squares fit of Ex-
ample 11.10, find the predicted
temperature at which the vapor
pressure of ethanol is equal to
3500torr. Find the expected error
in the reciprocal of the absolute
temperature. Compare the values
of the three terms analogous to
those in EqQ. (11.81).

Carrying Out Least Squares Fits with Excel

The following instructions are written for Excel 2003 for Windows. If you have a
later version or an earlier version of this spreadsheet, there might be small differ-
ences in the procedure. There are also small differences in Excel for the Macintosh
computer. The Excel spreadsheet will carry out least squares fits in two different
ways. You can carry out linear least squares in a worksheet, or you can carry out
linear and various nonlinear least squares procedures on a graph. The advantage of
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the worksheet procedure is that expected errors in the slope and intercept of the lin-
ear fit are provided by the software. The disadvantage of the worksheet procedure
is that nonlinear least squares fits apparently cannot be carried out.

Doing Linear Least Squares Fits in a Worksheet

The first step in carrying out linear least squares fits in a worksheet after opening
the worksheet is to enter the data points into columns of the worksheet. The values
of the variable that will go on the axis go into one column and the corresponding
values of the variable that will go on the axis go into another column. This
column does not have to be immediately to the right of the first column as it does
in making a graph. If necessary, use formulas to transform your original data into
variables that will give a linear fit. Go to the Tools menu and select Data Analysis.
If Data Analysis does not show up as one of the items on the menu, select Add-
Ins. A list of tools should appear, and you should check Analysis ToolPak and
click on OK. After you select Data Analysis, a list of techniques appears. Select
Regression and click on OK. A window appears with several blanks. In the Input
Y Range blank, type in the first and last cell addresses of the dependent variable,
separated by a colon (;). If the values are in the first ten rows of column B, you
type B1:B10. The software will change this to $B$1:$B$10 or you can type in
the absolute addresses (with $ signs). In the Input X Range blank, type in the cell
addresses for the independent variable, such as A1:A10. In the Confidence Level
blank, make sure that 95% is chosen. Choose 95% if it is not already chosen. You
will probably want to see a list of the residuals, so check the Residuals box. If
you want to see a plot of the residuals, check the Residuals Plot box. You can
specify where you want to put the output. The output occupies several columns
and several rows, so it is probably best to check the New Worksheet Ply box.
Otherwise, specify a location on your worksheet for the upper left corner of the
area where you want the output. Click on OK.

When you click on OK, the computer carries out the procedure and puts the
output on the screen. A number of statistical parameters are exhibited. You can
find the value of correlation coefficient and its square (in the R Square cell). At
the bottom of the output are the parameters of the fit. There are columns labeled
Coefficient, Standard Error, t Stat, P-Value, Lower 95%, and Upper 95%. There
are two rows for the intercept and slope. The intercept row is labeled Intercept, and
the slope row is labeled X Variable. The Coefficient column contains the parame-
ter. The Standard Error column contains the error based on the standard deviation
(about 68% confidence). The Lower 95% column contains the parameter decre-
mented by the expected error at the 95% confidence level, and the Upper 95%
column contains the parameter incremented by the expected error. To obtain the
expected error, you will have to do a subtraction. You should look at the list of
residuals to see it there is a systematic curvature in the data, which shows up with
residuals having one sign at the ends of the fit and the other sign in the middle.

Least Squares Fits on a Graph with Excel

With Excel, it appears that only linear least squares fits can be carried out on a
worksheet, but various functions can be fit to your data on a graph. Unfortunately,
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residuals and expected errors in the parameters are not provided when you work
from the graph. The correlation coefficient is provided. To begin a fit, you make
the graph in the usual way, using the X-Y Scatter option. Do not choose the op-
tion that places a curve in the graph. When you finish the graph, go to the Chart
menu and select Add Trendline. A window appears with two tab-like areas at the
top. The Type tab should already be selected. You can choose from linear, poly-
nomial, logarithmic, power, exponential, and moving average fits. If you choose
polynomial, you must specify the degree (highest power) in the polynomial. After
you select the type of fit, click on the Options tab. Click on the “Display Eqg. on
Chart” area and on the “Display R-Squared Value on Chart” area. If you want the
displayed curve to extend past your first and last data points, click on Forecast and
specify how far on the x axis your want the curve to extend in the forward and
back directions. Click on OK and the computer carries out the curve fit. The least-
squares curve, the equation of the fitting function and the square of the correlation
coefficient appear on the graph. If you want more digits for the equation parame-
ters or want scientific notation, double-click on the equation. A window appears.
Click on Number. A window appears in which you can choose whether you want
scientific notation or ordinary notation (click on “number”) and can specify the
number of digits after the decimal point. Click on OK and look at your results.

Some Warnings about Least-Squares Procedures

It is a poor idea to rely blindly on a numerical method. You should always deter-
mine whether your results are reasonable. It is possible to spoil your results by
entering one number incorrectly or by failing to recognize a bad data point. Re-
member the first maxim of computing:Garbage in, garbage out.” You should
always look at your correlation coefficient. A low magnitude usually indicates a
problem. Another way to make sure that a linear least-squares procedure has given
you a good result is to inspect the graph. If you carry out the fit on an Excel work-
sheet, you should also make the graph. If you have an incorrectly entered data
point you will probably be able to tell by looking at the graph. If the data points
show a general curvature, you will probably be able to tell that as well from the
graph.

A final warning is that in making a change in variables in order to fit a set of
data to a straight line rather than to some other function, you are changing the
relative importance, or weight, of the various data polfitén analyzing reaction
rate data, fitting Itc) to a straight line Ikc¢) = —kt + C will not necessarily give
the same value df as will fitting ¢ to the functionc = e€e~*". We now discuss a
way to compensate for this and also to compensate for errors of different sizes in
different data points.

Weighting Factors in Linear Least Squares

Consider the case that we want to make a linear least-squares fit to a set of data
in which the probable errors in the values of the dependent variable are not all
of the same size. In this case, instead of minimizing the sum of the squares of the
residuals, it has been shown that one should minimize the sum of the squares of the
residuals divided by the square of the standard deviation of the population of errors

16Donald E. Sands, “Weighting Factors in Least Squakshem. Educ. 51, 473 (1974).
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from which the residual is drawn. &; is the standard deviation of this population
for data point numbet, we should minimiz&’

/ Y T N 1 2

The factors laiz in the sum are calledeighting factors. The effect of this weight-

ing is to give a greater importance (greater weight) to those points that have smaller
expected error§® The standard deviations are generally unknown, so if we have
expected error values for the different data points, we use the expected;éarror
place of the standard deviatiof:

N

1

R'=Y" ?(y,' — mx; — b)? (11.85)
i=1"1

We can now minimizeR’. The equations are very similar to Eqgs. (11.54a)—
(11.59), except that each sum includes the weighting factors. The results for the
slope and intercept are

1
m = ﬁ(sis;y ) (11.86)
1
b = ﬁ(s;zs;—sgs;y), (11.87)
where
D' =518, - 82, (11.88)
and where
Vo1
S=) = 11.89
1 ;qz (11.89)
N X
S =Y = (11.90)
i—1 %
N .
s, =y (11.91)
i=1 9;
N .
S = A 11.92
- ; -2 (11.92)
N x_z
S, = Z? (11.93)

The standard deviations in these formulas could be replaced by the expected
errors.

17p_R. Bevington and D. K. RobinsoBata Reduction and ErrorAnalysis for the Physical Sciences, 2nd ed.,
McGraw-Hill, New York, 1992.
18R. deLevie,J. Chem. Educ. 63, 10 (1986).
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EXAMPLE 11.15 Find the least-squares line for the data of Table 11.3, assum-
ing that the weighting factors are inversely proportional to the squares of the
expected errors in the logarithms.

SOLUTION » The expected errors in(®) were calculated by Eq. (11.44) from the expected
errors in the pressures given in the table. These were substituted into Egs. (11.86)—(11.88) in place
of theo;’s. The results were

m —4872K
b = 2034

These figures differ slightly from those of Example 11.9, and since the expected errors in the
logarithms are not all equal to each other, these values are likely more nearly correct. The slope
gives a value of the enthalpy change of vaporization

AH, = —Rm = —(8.3145JK mol~1)(—48723mor?)
= 40501 Jmot! = 4051 kImot . (11.94)

<

In the following example, we see what an inaccurate point can do if the un-
weighted least-squares procedure is used.

EXAMPLE 11.16 Change the data set of Table 11.3 by adding a value of|the
vapor pressure at A€ of 421 torr+=40torr. Find the least-squares line using
both the unweighted and weighted procedures.

SOLUTION » After the point was added, the unweighted procedure was carried out as in Ex-
ample 11.10, and the weighted procedure was carried out as in Example 11.15. The results were:
For the unweighted procedure,

m = slope= —4752K

b = intercept= 19.95.
For the weighted procedure,

m = slope= —4855K

b = intercept= 20.28.
The data point of low accuracy has done more damage in the unweighted procedure than in the
procedure with weighting factors. <

If the values of the original dependent variable have equal expected errors, an
unweighted least-squares fit is appropriate if we use that variable in our procedure.
However, if we take a function of the original variable in order to use a linear fit,
then the original expected errors, which are all equal, will not generally produce
equal errors in the new variable, and the weighted least-squares procedure is pre-
ferred.

This discussion suggests a possible procedure to use if you carry out a least
squares fit and a few points lie a long way from the line: Carry out the fit a second
time using weighting factors, utilizing the residuals from the first fit in place of
the o;'s of Eq. (11.88). This procedure should give a better fit than use of the
unweighted procedure alone. If there is only one data point with a residual that
is much larger in magnitude that the others, a reasonable procedure would be to
calculate the standard deviation of the residuals after an initial fit and to disregard



Section 11.5 Numerical Curve Fitting: The Method of Least Squares (Regression) 353

the data point if its residual is at least as large as the standard deviation of the
residuals times.Z, which correspond to a probability of less than 1% that the data
point arose from experimental error.

Linear Least Squares with Fixed Slope or Intercept

At times it is necessary to do a linear least-squares fit with the constraint that the
slope or the intercept must have a specific value. For example, the Bouguer—Beer
law states that the absorbance of a solution is proportional to the concentration
of the colored substance. In fitting the absorbance of several solutions to their
concentrations, one would specify that the intercept of the least-squares line had to
be zero.

In the minimization of the sum of the squares of the residuals, one minimizes
only with respect to the slope if the intercept is fixed. This is the same as given
in Eq. (11.54a):

dR N
——= 22@,- —mx; — b)(—x;) = 0. (11.95)
The solution to this is S bS
m= 2T (11.96)
S.2

If the slopem is required to have a fixed value, we have only one equation, which
is the same as Eq. (11.54a).

dR N
2 23 (v — mx; — b)(=1) = 0. 11.97
= ;(y, mx; —b)(=1) =0 (11.97)
The solution to this is S S
p= 2y Mx (11.98)
N

If the required slope is equal to zero, the resulting intercept is equal to the mean of
the y values and can be calculated
S
bh=-2=7. 11.99
N =) ( )

The Excel spreadsheet will carry out fits on a graph with the intercept required
to have a specific value. After finishing the graph and selecting “Trendline,” click
on the “Options” tab, and then click on the “Set intercept” box and specify O or
another appropriate value for the intercept. You should include the equation for the
curve and the square of the correlation coefficient.

|EXERCISE 11.19 » | Using Excel or by hand calculation carry out a linear
least squares fit on the following data, once with the intercept fixed at zero and
one without specifying the intercept:

x 0 1 2 3 4 5

11.100
y 010 098 200 299 402 498 ( )

Compare your slopes and your correlation coefficients for the two fits[«]
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SUMMARY

We discussed several related techniques in this chapter. The first is the estimation
of probable errors in directly measured quantities. We assumed the existence of a
population of infinitely many repetitions of the measurement. If several repetitions
of the measurement can be made, we considered this set of measurements to be
a sample from the population. We took the sample standard deviation to be an
unbiased estimate of the population standard deviation and the sample mean to be
an estimate of the population mean (which is the correct value if systematic error is
absent). The probable error in the mean was determined by a formula of Student.

If a formula is used to calculate values of some variable from measured values
of other variables, it is necessary to propagate the errors in the measured quantities
through the calculation. We provided a scheme to calculate the expected error in
the dependent variable, based on the total differential of the dependent variable.

We also discussed graphical and numerical data reduction procedures. The
most important numerical data reduction procedure is the least squares, or regres-
sion, method, which finds the best member of a family of functions to represent a
set of data. We discussed the propagation of errors through this procedure and pre-
sented a version of the procedure in which different data points are given different
weights, or importances, in the procedure.

PROBLEMS

1. Assume that a sample of 10 sheets of paper has been selected randomly from
a ream(500 sheets) of paper. Regard the ream as a population, even though it
has only a finite number of members. The width and length of each sheet of
the sample were measured, with the following results:

Sheet number  Width/in  Length/in

1 8.50 1103
2 8.48 1099
3 851 1098
4 8.49 1100
5 8.50 1101
6 848 1102
7 852 1098
8 847 1104
9 8.53 1097
10 851 1100

a) Calculate the sample mean length and its sample standard deviation, and
the sample mean width and its sample standard deviation.

b) Give the expected ream mean length and width, and the expected error in
each at the 95% confidence level.
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¢) Calculate the expected ream mean area from the width and length, and
give the 95% confidence interval for the area.

d) Calculate the area of each sheet in the sample. Calculate from these areas
the sample mean area and the standard deviation in the area.

e) Give the expected ream mean area and its 95% confidence interval from
the results of part d.

f) Compare the results of parts ¢ and e. Would you expect the two results to
be identical? Why (or why not)?

2. The intrinsic viscosity §] of a set of solutions of polyvinyl alcohol is defined

as the limit?®
. 1 n
Iim{-In{—)), (11.101)
c—=0\ ¢ no

wherec is the concentration of the polymer in grams per deciliteis the
viscosity of a solution of concentratian andng is the viscosity of the pure
solvent (water in this case). The intrinsic viscosity and the viscosity-average
molar mass are related by the formula

0.76
[n]=(200x 107*dl g™t (%) , (11.102)
0

whereM is the molar mass antfp = 1 gmol! (1 daltor). Find the molar
mass if[n] = 0.86 dl g~1. Find the expected error in the molar mass if the
expected error ifiy] is 0.03 dl g~2.

3. Assuming that the ideal gas law holds, find the amount in moles of nitrogen
gas in a container if
P = 0.856 atn#0.003 atm
V = 0.01785n¥ +0.00008 n?
T = 2973K+0.2K.

Find the expected error in the amount of nitrogen.

4. The van der Waals equation of state is
2
n-a
(P + W) (V —nb) =nRT

For carbon dioxideg = 0.3640 Parfimol~tandbs = 4.267x 10-°>m3 mol~.

Find the pressure of.B00 mol of carbon dioxide iV = 0.00256 n¥ and

T = 2980 K. Find the uncertainty in the pressure if the uncertainty in the
volume is 000004 n? and the uncertainty in the temperature s &. Assume

that the uncertainty in is negligible. Find the pressure predicted by the ideal
gas equation of state. Compare the difference between the two pressures you
calculated and the expected error in the pressure.

19Carl W. Garland, Joseph W. Nibler, and David P. Shoemakegeriments in Physical Chemistry, 7th ed.,
McGraw-Hill, New York, 2003, pp. 321-323.
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5. The following is a set of student data on the vapor pressure of liquid ammonia,
obtained in a physical chemistry laboratory course. Find the indicated enthalpy
change of vaporization. Remember that the Kelvin temperature must be used.

Temperature/°C  Pressure/torr

—76.0 5115
—74.0 5940
—72.0 60.00
—70.0 7510
—68.0 9170
—64.0 11275
—62.0 13480
—60.0 15430
—58.0 17645
—56.0 19290

a) Ignoring the systematic errors, find the 95% confidence interval for the
enthalpy change of vaporization.

b) Assuming that the apparatus used to obtain the data in the previous prob-
lem was about like that found in most undergraduate physical chemistry
laboratories, make a reasonable estimate of the systematic errors and find
the 95% confidence interval for the enthalpy change of vaporization, in-
cluding both systematic and random errors.

6. The vibrational contribution to the molar heat capacity of a gas of nonlinear
molecules is given in statistical mechanics by the formula

3n—6 u%e*”f

Cn(ViD) =R Y —L .
o L—emm?

whereu; = hv;/kpT. Herey; is the frequency of théth normal mode of
vibration, of which there arex3- 6 if zn is the number of nuclei in the molecule
(assumed nonlineary, is Planck’s constankg is Boltzmann’s constant is
the gas constant, arid is the absolute temperature. The®molecule has
three normal modes. If their frequencies are given by

v; = 4.78x 108s14+0.002x 1018571
vy = 1.095x 10*s140.004x 10*4s1
v3 = 1.126x 10s140.004x 10Ms1

calculate the vibrational contribution to the heat capacity eOHapor at
500K and find the 95% confidence interval.

7. Water rises in a clean glass capillary tube to a hetghiven by
r 2y
3 pgr’
where r is the radius of the tubep is the density of water, equal to
9982 kg m~3at 20°C, g is the acceleration due to gravity, equal tB®m s2,
h is the height to the bottom of the meniscus, and the surface tension of the

water. The termt/3 corrects for the liquid above the bottom of the meniscus.
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a) If water at 20°C rises to a height: of 29.6 mm in a tube of radius
r = 0.500 mm, find the value of the surface tension of water at this tem-

perature.

b) If the heightx is uncertain by 8! mm and the radius of the capillary tube
is uncertain by @2 mm, find the uncertainty in the surface tension.

¢) The acceleration due to gravity varies with latitude. At the poles of the
earth itis equal to 83 m s72. Find the error in the surface tension of water
due to using this value rather tharBO ms2, which applies to latitude

39°.

8. Thenth moment of a probability distribution is defined by

AL1=‘/Cx—AO”fUOdX-

The second moment is the variance, or square of the standard deviation. Show
that for the Gaussian distributiodfs = 0, and find the value a¥/4. For this
distribution, the limits of integration areco and+oc.

9. Vaughar® obtained the following data for the dimerization of butadiene at

326 C.

Time/min Partial pressure of butadiene/atm

0

3.25

8.02
1218
17.30
24.55
33.00
42.50
55.08
68.05
90.05
11900
25950
37300

to be deduced
07961
07457
07057
06657
06073
05573
05087
04585
04173
03613
03073
01711
01081

Determine whether the reaction is first, second, or third order, using the least-
squares method. Find the rate constant and its 95% confidence interval, ignor-
ing systematic errors. Find the initial pressure of butadiene.

10. Make a graph of the partial pressure of butadiene as a function of time, using
the data in the previous problem. Find the slope of the tangent lineG@ 88n
and deduce the rate constant from it. Compare with the result from the previous

problem.

20w . E. Vaughan, “The Homogeneous Thermal Polymerization of 1,3-Butadi@nyi. Chem. Soc. 54, 3863

(1932).
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11. The following are (contrived) data for a chemical reaction of one substances.

Time/min  Concentration/mott

0 0.500
2 0.349
4 0.267
6 0.217
8 0.182
10 0157
12 0139
14 0124
16 0112
18 0102
20 0093

a) Assume that there is no appreciable back reaction and determine the order
of the reaction and the value of the rate constant.

b) If you use Excel, find the expected error in the rate constant at the 95%
confidence level.

¢) Smooth the data. Find the value of the derivativgdr att = 10min.,
using the first, second, and third differences. Find the value of the rate
constant from this value and compare it with your value from part a.

12. Use Eq. (11.32) to “smooth” the data given in Example 11.11. Using the
smoothed data and Eq. (11.34) find the derivativédr atr = 25 min. Find
the rate constant.

13. If a capacitor of capacitana@ is discharged through a resistor of resistaRce
the voltage on the capacitor follows the formula

V(t) = V(0)e !/RC (11.103)

The following are data on the voltage as a function of time for the discharge of
a capacitor through a resistance of 102 k

t/s V/s
0.00 100
0.020 0819
0.040 Q670
0.060 0549
0.080 Q449
0.100 0368
0.120 Q301
0.140 Q247
0.160 0202
0.180 Q165
0.200 Q135

Find the capacitance and its expected error.
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14. The Bouguer—Beer law (sometimes called thieambert—Beer law) statesA =
abc, where A is the of a solution, defined as Ipglo/I) where I is the
incident intensity of light at the appropriate wavelength aiglthe transmitted
intensity; b is the length of the cell through which the light passes; aisl
the concentration of the absorbing substance. The coeffigientalled the
molar absorptivity if the concentration is in moles per liter. The following is
a set of data for the absorbance of a set of solutions of disodium fumarate at a
wavelength of 250 nm. Using a linear least-squares fit with intercept set equal
to zero, find the value of the absorptivityif » = 1.000 cm. For comparison,
carry out the fit without specifying zero intercept.

A

0.1425
0.2865
0.4280
0.5725
0.7160
0.8575

c(mol I=1)

100 x 104
200 x 104
300x 104
400 x 104
500 x 104
600 x 10~4



Additional Reading

Here is a list of some books that are useful sources for further study in mathematics
to be used in chemistry. No attempt has been made to be comprehensive. Some of
the books are out of print, but should be available in college and university libraries.

Books on Mathematics for Science

» Donald A. McQuarrie Mathematical Methods for Scientists and Engineers,
University Science Books, New York, 2003. This is an ambitious book, with
over 1000 pages. The author is well known for writing clear and useful books.

» Philip M. Morse and Herman Feshbackethods of Theoretical Physics,
McGraw-Hill, New York, 1953. This book comes in two parts and is a com-
plete survey of all of the mathematics that a scientist might need. It is out of
print, but should be found in almost any college or university library.

» Clifford E. Swartz,Used Math for the First Two Years of College Science,
AAPT, College Park, MD, 1993. This book is a survey of various mathematical
topics at the beginning college level.

Calculus Textbooks

» Thomas H. Barr\ector Calculus, 2nd ed., Prentice Hall, Upper Saddle River,
NJ, 2000. This is a textbook for a third-semester calculus course that empha-
sizes vector calculus.

» Wilfred Kaplan,Advanced Calculus, 5th ed., Addison-Wesley, Reading, MA,
2003. This is a text for a calculus course beyond the first year. It discusses
infinite series and Fourier series.

» H. M. Schey,Div, Grad, Curl, and All That: An Informal Text on Vector Cal-
culus, Norton, 1996

» James StewarGalculus, 5th ed., Brooks/Cole, Pacific Grove, CA, 2003. This
is a calculus textbook that uses some examples from physics in its discussions.
You can read about coordinate systems, vectors, and complex numbers in al-
most any calculus textbook, including this one.

Books on Numerical Analysis

» Richard L. Burden and J. Douglas FairBisimerical Analysis, 4th ed., Brooks/

Cole, 2001. This is a standard numerical analysis textbook at the advanced
360



Section 11.5 Numerical Curve Fitting: The Method of Least Squares (Regression) 361

undergraduate level. It contains explicit algorithms that can easily be converted
into computer programs. out of print

Advanced Mathematics Books

» Dean G. Duffy,Transform Methods for Solving Partial Differential Equations,
2nd ed., Chapman and Hall/CRC Press, Boca Raton, 2004. This book is a
textbook for engineering students and focuses on practical applications.

» J. F. JamesA Sudent's Guide to Fourier Transforms, with Applications to
Physics and Engineering, Cambridge Univ. Press, Cambridge, UK, 2002. This
book is designed to teach the subject to a student without previous knowledge
of Fourier transforms. It contains a description of the fast Fourier transform
method and a computer program in BASIC to carry out the transformation.

» Erwin Kreyszig, Advanced Engineering Mathematics, 8th ed., Wiley, New
York, 1999. This book is meant for engineers. It emphasizes applications
rather than mathematical theory in a way that is useful to chemists.

» David L. PowersBoundary Value Problems, Harcourt/Academic Press, New
York, 1999. This book includes a 40-page chapter on Fourier series and inte-
grals.

Books on Experimental Data Analysis

» P. R. Bevington and D. K. RobinsoBata Reduction and Error Analysis for
the Physical Sciences, 2nd ed., McGraw-Hill, New York, 1992. This is a very
nice book, which includes a lot of useful things, including a discussion of
different probability distributions, including the Gaussian distribution, and a
discussion of weighted least-squares procedures.

» Carl W. Garland, Joseph W. Nibler, and David P. Shoemakgreriments in
Physical Chemistry, 7th ed., McGraw-Hill, New York, 2003. This is a stan-
dard physical chemistry laboratory textbook and contains a good section on
the treatment of experimental errors as well as most of the experiments com-
monly done in physical chemistry courses.

» John A. Rice,Mathematical Statistics and Data Analysis, 2nd ed., Duxbury
Press, 1985. This is a standard textbook for mathematical statistics. It includes
numerous examples from experimental chemistry and is a good reference for
chemists.

Computer Books

» E. J. Billo, Microsoft Excel for Chemists: A Comprehensive Guide, 2nd ed.,
Wiley, New York, 2001. This is a much more useful guide to Excel than the
manual provided by the manufacturer.

» Robert de LevieHow to Use Excel in Analytical Chemistry and in General
Scientific Data Analysis, Cambridge University Press, 2001.
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Robert de Levie Advanced Excel for Scientific Data Analysis, Oxford Uni-
versity Press, 2004. This book is available in both paperback and hardbound
editions.

Dermot Diamond and Venita C. A. Hanratt§jpreadsheet Applications in
Chemistry Using Microsoft Excel, Wiley Interscience, New York, 1997. This
is a comprehensive introduction to the use of Excel for chemists.

Erwin Kreyszig and E. J. NormintoMathematica Computer Manual to Ac-
company Advanced Engineering Mathematics, 8th ed., Wiley, New York,
2001.

Stephen Wolfram,The Mathematica Book, 5th ed., Wolfram Media, 2003.
This is a textbook that provides a complete introduction to the use of Math-
ematica, written by its inventor.

Problem-Solving and Problem Books

| 2

| 2

G. Polya,How to Solve It, A New Aspect of Mathematical Method, 2nd ed.,
Princeton Univ. Press, Princeton, NJ, 1957. This small book is out of print
but it should be in every college or university library. It contains a detailed
discussion of general methods of solving problems.

C. R. Metz,2000 Solved Problemsin Physical Chemistry, McGraw-Hill, New
York, 1990. This is a good source of practice problems in physical chemistry.

Mathematical Tables

| 2

Milton Abramowitz and Irene A. Stegun, Edddandbook of Mathematical
Functions with Formulas, Graphs and Mathematical Tables, National Bureau

of Standards Applied Mathematics Series No. 55, U.S. Government Printing
Office, Washington, DC, 1964. This large but inexpensive book contains a
variety of different things, including integrals and useful formulas.

A. Erdélyi, Ed., Tables of Integral Transforms, Vols. | and Il, McGraw-Hill,

New York, 1954. This set of two volumes contains a brief introduction of sev-
eral types of integral transforms, with extensive tables of transforms of specific
functions.

Herbert B. Dwight,Tables of Integrals and Other Mathematical Data, 4th ed.,
Macmillan Co., New York, 1962. This book is out of print, but if you can
find a used copy, you will find that it is a very useful compilation of formulas,
including trigonometric identities, derivatives, infinite series, and definite and
indefinite integrals.

I. S. Gradshteyn and I. M. RyzhiKables of Integrals, Series and Products,

4th ed., prepared by Yu. V. Geronimus and M. Yu. Tseytlin, translated by Alan
Jeffreys, Academic Press, New York, 1965. This is a large book with lots of
definite and indefinite integrals in it. It is out of print but should be available
in college and university libraries.
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» The Handbook of Chemistry and Physics, CRC Publishing Co., Boca Raton,
FL, with various editors and various editions, contains various mathematical
tables.
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Values of Physical
Constants?

Avogadro’s constant,
Nay = 6.02214x 10°° mol™*.
Molar ideal gas constant,

R = 8.3145JKmol™! = 0.082056 liter atm K1 mol~1
= 1.9872 cal Kt molt.

The magnitude of an electron’s charge,
e =1602177x 1071°C.

Planck’s constant,
h = 6.62608x 1034 J s

Boltzmann’s constant,
kp = 1.38066x 1023 J K1,
The rest-mass of an electron,
m. = 9.10939x 103! kg.
The rest-mass of a proton,
mp = 1.672623x 102" kg.
The rest-mass of a neutron,
m, = 1.674929x 10’ kg.
The speed of light (exact value, used to define the standard meter),

c = 2.99792458« 10° ms 1 = 2.99792458« 10°°cms?t.

1From E. G. Cohen and B. N. Taylor, The 1986 Adjustment of the Fundamental Physical Constants, CODATA
Bulletin, Number 63, November 1986.
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The acceleration due to gravity near the earth’s surface (varies slightly with lati-
tude. This value applies near the latitude of Washington, DC, USA, or Madrid,
Spain),

¢g=980ms".

The gravitational constant,
G=6.673x 107 m3s2kgL.
The permittivity of a vacuum,
€0 = 8.854518781% 10 °C°N~"tm~2.
The permeability of a vacuum (exact value, by definition),

po = 4w x 1077 NA™2.

Some Conversion Factors

1 pound= 1lb = 0.4535924 kg

linch= 1in = 0.0254 m (exact value by definition)

1 calorie= 1 cal= 4.184 J (exact value by definition)

1 electron volt= 1 eV = 1.60219x 1071%J

1 erg= 10’ J (exact value by definition)

1 atm= 760 torr= 101 325 N nT2 = 101, 325 pascal (Pa) (exact values by
definition)

1 atomic mass unie 1 u= 1.66054x 10~27 kg

1 horsepowet= 1 hp= 745700 watt= 745700 J 51



Some Mathematical
Formulas and
ldentities

1. The arithmetic progression of the first ordemtterms,

a+a+d)y+@a+2d)+---+[a+®m—Dd] = na—i—%n(n—l)d

= g(lst term+ nth term).
2. The geometric progression #oterms,
1—pn
a+ar+ar’+- +ar" = u.
1—r
3. The definition of the arithmetic mean &f, ay, ..., a,,
1
;(al—l—az—l-'-'—i-an).
4. The definition of the geometric mean®f, ao, ..., a,,
ac = (araz . ..an)Y".
5. The definition of the harmonic mean @f, ao, ..., a,: If ay is the harmonic
mean, then
1 1/1 1 1 1
—_—=—-|—+—+—4+---+—.
aygy n \ai ar as dan
6. If

ao+arx +apx?+azx3+ -+ ayx" = bg+ bix + box2 +byx3+ -+ byx"
for all values ofx, then

ag = bo, ay = by a =bp,--- ,a, =by.

367
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10.

11.

12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.

Appendix B Some Mathematical Formulas and Identities

Trigonometric Identities

sir?(x) + co(x) = 1.

sin(x)

tan(x) = cos)”
1

ctn(x) = @)’
1

sedx) = ot
csqx) = L

) = G

seé(x) — tarf(x) = 1.

cs@(x) — ctrP(x) = 1.

sin(x 4+ y) = sin(x) cosy) + cogx) sin(y).

co9x + y) = coqx) cogy) — sin(x) sin(y). 16.

sin(2x) = 2 sin(x) cogx).

cog2x) = cof(x) — Sirf(x) = 1 — 2 sirf(x).
tan(x) + tan(y)

@ 3 = T ) tangy)”
_ 2tan(x)

1 . .
sin(x) = f(e”‘ —e ).
i

cogx) = %(ei" + 7).

sin(x) = — sin(—x).

coS(x) = COg—x).

tan(x) = —tan(—x).

sin(ix) = i sinh(x).

cogix) = cosh(x).

tan(ix) = i tanh(x).

sin(x £iy) = sin(x) cosh(y) £ i cogx) sinh(y).
co9x *+iy) = cogx) coshy) F i sin(x) sinh(y).
coshix) = 3(e* + e ™).

sinh(x) = %(ex —e ).
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sinh(x)
32. tanh(x) = e
33. sechix) = 1 .
coshx)
34. cschix) = — 1 )
sinh(x)
35. ctnh(x) = 1 .
tanh(x)

36. costf(x) — sinkP(x) = 1.
37. tant?(x) + secl(x) = 1.
38. ctnh?(x) — scs(x) = 1.
39. sinh(x) = — sinh(—x).
40. coshx) = cosh—x).

41. tanh(—x) = — tanh(—x).

42. Relations obeyed by any triangle with angleopposite sider, angleB oppo-
site sideb, and angleC opposite side:

a) A+ B+C =180 =rrad

b) ¢? = a? + b? — 2ab coqC)

C) — T __ - b = — ¢ .
sin(A) sin(B)  sin(C)




Infinite Series

Series with Constant Terms

L1+3+3+3+ =00
21+5+5+4+..=2.
B1+4+5+5+- =5
4.1+ 343 +7+ =)

The function (p) is called theRiemann zeta function.
5.1-3+3—3+ - =InQ).
6. 1— & + 2+ 4+ =(1—2)(p).

Power Series

7. Maclaurin’s series. If there is a power seriesifor f(x), itis

af

1 4?2
f(x)=f(0>+d— /
X

o T 2 dx?

1 d3f

3
xXc= — ——

3
x=0 3! dx

x=0

X
8. Taylor’s series. If there is a power seriesiin- a for f(x), itis

df

1 d%f
fo) = fla)+ -
X

(X—a)‘f‘z—!ﬁ

(x—a2)+---.
X=a

X=a

In Egs. (7) and (8),3—{2 means the value of the derivatid¢/dx evaluated
atx =a. =

1See H. B. DwightTables of Elementary and Some Higher Mathematical Functions, 2nd ed., Dover, New

York, 1958, for tables of values of this function.
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9. If, for all values ofx,
a4 arx + azx® 4 agx® + - -+ = bo + b1x 4 bax? 4+ bax3 + - ..
thenag = bg, a1 = b1, ax = by, etc.
10. The reversion of a series. If

y=ax+bx2+cx3+-'-

and
x=Ay+By*+Cy*+- -,
then
1 b 1
A== B=-——, C:—5(2b2—ac),
a a a
D = i(5abc—azd—5b3) etc
= - , _

See Dwight,Table of Integrals and Other Mathematical Data (cited above),
for more coefficients.

11. Powers of a series. If
S=a-+bx+cx?+dx3+--- ,
then

$? = a® + 2abx + (b2 + 2ac)x2 + 2(ad + bc))c3
—{—(c2 + 2ae + 2bd)x* + 2(af + be + cd)x® + - -

b 2 b2
sz _ a1/2|:1+_x+(__$)x2+...i|

2a 2a
b b2 ¢ 2bc d b3
S_lza_l[l——x—i-(—z——)xz—i- )x3+---].
a a a a a

. 3 5 7
12.sin(x) =x — 3 +5 — 7 +--.

2

13.cosx) =1—45 + 5 —L ...

2 3
14. sin(6 + x) = sin(@) + x cog6) — % sin(9) — % cos6) + - --.

2 3
15. cos6 + x) = cog0) — x Sin(@) — % cos6) + % Sin@) + - - -

x3 N 1-3x° N 1-3-5x/
2.3 2-4.5 2-4-6-7
gives the principal value; /2 < sin"!(x) < /2.
3 5
b4 X 1-3x

17. cos(x) = = — —
(x) > (x+2.3+2.4.5
gives the principal value, & cos 1(x) < 7.

+---, wherex? < 1. The series

16. sin"1(x) = x +

+) wherex? < 1. The series
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2 x3 4

18. ex=1+x+);—!+§+);—!+---(x2<oo).

19. ax=exm(“)=l+x|n(a)+(xmz#))2+~--.

20. In(l—i—x):x—x—zz—i—x—;—%--- (x? < 1andx =1).

21. |n(1—x>=—<x+x—22+x—33+x7:+---)(x2<1andx=—1).

x3 X% X!

1 — —_— —_— — RS 2
22. sinh(x) = x + 3 + 5 + = + - (x° < 00).

2 4 6

_ X 2
23. COSf'(x)_l+§+E+E+---(x < 00).



A Short Table of

Derivatives

In the following list, a, b, and ¢ are constants, and is the base of natural

logarithms.
1. i(au) = ad—u.
dx dx
dv du
2. — =u— —.
dx () udx + de
3 ( )= dw 4 dv n du
. dx uvw _uvdx uwdx dex.
4, ae") = nx"" L,
dx
5 d (u ldu u dv 1 du dv
 — () =" == v——u—.
dx v vdx v2dx v2 \ dx dx
d df d . . . : .
6. —f(u) = d—fd—u wheref is some differentiable function af andu is some
udax
differentiable function ok (thechainrule).
d? df d?u  d2f (du\?
A LW NN
dx du dx dus \dx

10.

11.

12.

d
— sin(ax) = a coYax).
dx

d .
— co9ax) = —a Sin(ax).
dx

d
—tan(ax) = a Se@(ax).
dx

d
—cCtin(ax) = —a CS(?(ax).
dx

i sedax) = a SeCax) tan(ax).
dx

373
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d
13. T Ccsdax) = —a csax)cCtn(ax).
X

d . _1/(x 1 . .. .
14. 7 sin (;> = ﬁ if x/a is in the first or fourth quadrant
= _ if x/a is in the second or third quadrant.
22 — 12
d —
15. —cos! <f) = ———— if x/a isin the first or second quadrant
dx a a2 — )C2
1 . . .
= if x/a is in the third or fourth quadrant.
W2 _ 2
d X a
16. —tanl (=) = —.
dx <a) a? + x2
d X —a
17. —ctn ! (Z) = —.
dx (a) a? + x?
18. ie‘”‘ = ae?*.
dx
d
19. —a* = a*In(a).
dx
d
20. —a“ = ca® In(a).
dx
d

d d
21, —u) = y-1- Y1n —.
dxu v dx tu (u)dx

22. *=x*"[1+4 In(x)].

—X

dx
d 1

23. — In(ax) = —.
dx X

24, i log, (x) = M.
dx X
d [
25. d—f f(x)dx = f(q) if pisindependent of.
qJp

q
26. dif f(x)dx = — f(p) if g isindependent op.
qJp



A Short Table of
Indefinite Integrals

In the following, an arbitrary constant of integration is to be added to each equation.
a, b, ¢, g, andn are constants.

1./dx:x.
[ra=%
xdx = 5

1 . . .
. / —dx = In(|x]) Do not integrate from negative to positive valuescof
X

N

w

xn+1
4. Tdx = , Where -1.
/x by T n =+
(a + bx)"t1
5. bx)'dx = ——
/(a + bx)" dx bt D

1 1

6. dx = —1In bx|).
/(a~|—bx) x = 7 N(la +bxl)

1

e = .
(a + bx)" (n — Db(a + bx)"1

8. / ol dx = b_lz [(a + bx) —aln(la + bx])].

(a + bx)
b b —-b
9./“+ Zdx = 2=+ " in(le + gx.
c+gx 8 8
1 1
10, dx = in (| <821,
(a+bx)(c+ gx) ag — bc cx + bx

1 1. 1.
11. m dx = ; tan (E)

375



376

13.

14.

15.

16.

17.

18

19.

20.

21.

22.

23.

/ (a® + x2)2

X
" dx ==
/(a2+x2) * 2
| @
(a2_b2x2) X
X
T dx =
/(az—xz) !
1/2
/xidx:
(a? + b2x)

Appendix E A Short Table of Indefinite Integrals

-1
= 22+ x2)

In(a2 + x2).

a+ bx
a—bx

1
=—1In
2ab (

1
-5 In(ja? — x2)).

)

22 2 (bxl/2>

IS

a

-2

/ PN
1
’ (x2 + a2)1/2

X
/ (xz + a2)1/2 d

/ (x 2)1/2

(P = 2)b(a + bx)(P=2/2°

dx = In(x + (x2 + a®1/?),
x = (x% +a®)Y2,

dx = In(x + (x2 — a®1/?),

/ (x2— 2)1/2 dx = (x* = a®)'2.
. 1
/Sln(ax) dx = —— coYax).
a
f sin(a + bx)dx = —= cos(a + bx).

24, /x sin(x) dx = sin(x) — x cogx).

25.

26.

27.

28.

29.

30.

/xzsin(x) dx = 2x sin(x) — (x2 — 2) cogx).

fsinz(x) dx = = —

/xsinz(x)dx = — —

_ d
/1+sin(x) *

sin(2x)  x  sin(x) cos(x)

4 2 2
x2  xsin(2x) cog2x)
4 4 g

T X
=—tan(3-3)

/Cos(ax) dx = %Sin(ax).

1 .
fCOS(a +bx)dx = 5 sin(a + bx).
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31. /x coqx) dx = cog9x) + x sin(x).
32. /xzcos(x)dx = 2x cogx) + (x2 — 2) sin(x).

. [[eogyay =54 A X, S cos)

4 2 2
_ x%  xsin(2x) = cog2x)
34./x0052(x)dx—7+ 7 + g
35 /71 dx = tan al
") 15cosn) T (5)
36. /sin(x) coSx)dx = szz(x).
37. /sinz(x) CO(x) dx = }[x _ S'n(4x)}.
8 4
L1 (X — rain1(X 2 _.2\1/2
38. /sm (a> dx = x sin (a>+(a xX)H 4,
1 (N2 g el (Y2 2 212q-1(F
39. /[sm <a)] dx = x[sin (a>] 2x + 2(a x°)~<sin <a>.

41. /[COS_l G)]zdx = x[cos™t (£>]2 — 2x — 2(a? — x®)Y2¢cos1 (f)

a a

42. /tan‘1 (f) dx = xtan! (i) — 6—21 In(a? + x2).

a

43. /xtan—l <)—C) dx = %(x2 +ad®tan?! (£> _w
a

a 2
1
44, /e“x dx = —e®,
a
a)C
45, /a’ dx =
In(a)
1
46. /xe‘”‘ dx = e** (i — —2>
a a
2
2x 2
47, /xze‘”‘ dx = e |:x_ -+ —3i|
a a a

ax

a?+1

48. /e”x sin(x) dx = [a sin(x) — cogx)].

ax

49, /e“x cos(x) dx = a;—H[a sin(x) + sin(x)].
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ax

50. /e‘”‘ SI(x) dx = ——— [a SirP(x) — 2 sin(x) cos(x) + E].
ac+4 a

2

51 /ln(ax) dx = xIn(ax) — x.

2 2

X by
52. [ dx = —| - —.
/x N(x)dx > n(x) 7

53, / @) 4~ Linore.
X 2

1
54. /xln(x) dx = In(| In(x)|).

55, /tan(ax)dx = %In(| sedax)|) = —% In(] cogax)|).

56. fcot(ax)dx = }In(|sin(ax)|).
a



A Short Table of
Definite Integrals

In the following list,a, b, m, n, p, andr are constants.

[ele) 1
1.[ x”_le_xdx:/[ <)] dx=Tm) n>0).

0
The functionl"(n) is called thegamma function. It has the following proper-
ties: foranyn > 0O,

'nh+1) =nl'(n).

for any integral value of > 0,

'n)=m-121)!
for n not an integer,
Fera—m = sin(nm)
1
2 /°° 1 4 T
. X = .
0 1+ x+x2 33
00 p—1
3./ al dx = .n O<p<l.
o (1+x)r sin(prm)

oo ,.p—1 p—1
4./ = ©<p<1).
0 a+x sin(pm)

o xP pr
5. / ——dx = —————.
o (14+ax)? artlsin(pm)

*© 1 b4
6. / dx = — "
o 1+xP psin(z/p)
/2 /2 T
7. / sinf(mx) dx = / cof(mx)dx = 7 m=12...).
0 0

379



380 Appendix F A Short Table of Definite Integrals

8. /n sit(mx) dx = /n cof(mx)dx = % m=12 ..)).

0 0
/2 /2 T )
9. tar’ (x)dx = ctnfP(x)dx = ——— < 1.
/o 0 /o 0 2cospr/2) (P )
/2 X T
10. dx = = 1In(2).
/0 tan =29

F'(p+D/2T (g +1)/2)
2L((p+q)/2+ 1)

/2
11. / sin? (x) cod (x)dx = (p+1>0,g+1>
0

0).
12. f sin(mx) sin(nx) dx = { S _If m 7 n (m, n integers).
0 > |f m=n
13. / cogmx) coSnx)dx = { ,? .Ifm 7 (m, n integers).
0 5 ifm=n

14. /n sin(mx) sin(nx) dx
0

0 ifm=n

= 0 ifm#nandm+niseven

—2n_ if m % n andm + n is odd (m, n integers.

m2_n2

00 2 00 2
15. / sin T dx = / cos T dx =1/2.
0 2 0 2
. 1\ . /=
16. / sinx?)dx =T (1+ —) sm(—) (p>1).
0 P 2p
o 1 T
17. / cogx?P)dx =T (l—i— —) COS(—) (p>1.
0 P 2p
) T ifm=>0
* gin 2
18./ " =1 0 itm=o0.
o 7 —Zifm<0
© sin(mx) amP~1
19. dx = 0 2, 0).
/ o 2 T 2sinpmprgy OSP=em0

o 1
20. / e Pdx =— (a>0).
0 a

o0

1
xe %dx=— (a>0).

21
a2

o0

'/o
5 _ 2

22. x“e ‘”“dxz—3 (a > 0).
a

0
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JT

3

xP~ e~ sin(mx) dx = (@ >0, p>0,m> 0), where

1/2 ,—ax —
23. ./0 x+%e dx_2a3/2 (a > 0).
[e.e]
24, / e gy = ﬁ (r > 0).
0 2r
o0
1
25. /0 xe "% dx = 52 (r > 0).
o0
26. f X262 gy = \/—Es (r > 0).
0 4r
00 '
27. /0 r2”+1e_r2x2dx = # r>0,n=12..).
o 2y DG -+ (2n -1
28. /0 X211 gy — YRS R Jro (r>0n=12..)).
o0 1 1
29. fo o=’ gy — br“+1r (GZ ) (a+1>0,r>0,b>0).
00 ,—ax —bx
— b
30. / £ "% dx=n (—)
0 X a
o m
—ax o} J—
31. /0 e sin(mx) dx = m (a > 0).
o 2am
32. ~4X sin dx = ————5— 0).
/0 xe (mx) dx @ 1 mD)? (a > 0)
/‘X’ I'(p) sin(p0)

(a2 + m2)p/2

o

Sin@) = m/r, cos0) = a/r, r = (a® +m?)¥2,
o0
34, / e~ cogmx)dx = 3 5 (a> 0).
0 a?+m
o0 612 _ m2
35. ~4¥co dx = ——— 0).
/0 xe Imx) dx @@ 1 m2? (a > 0)
1 '(p) cos(ph) ,
1,—ax —
36. /0 xP~re~% cogdmx)dx = m (a > 0, p > 0), wheref is the
same as given in Eq. (33).

00 ,—ax
37. / sin(mx) dx = tan1 (ﬂ) (a > 0).
0 a
oo ,—ax 1 2 2
38. /0 ex [costmx) — costnx)] dx = S In (;’2 I:ﬂ> (@ > 0).
oo a® + 2m?
39. /0 e Cog(mX) dx = m (Cl > 0)
00 _ 2
40. /0 e S|n2(mX) dx = m (a > 0).
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1 1 q
41. / [In <;>] dx=T(g+1) (qg+1>0).
0

42 /1 p|n<1)d 1 (p+1>0
. X — X =——————>- > .
0 x p+12 P

1 1\ ¢ I'(g+1)

1
44, / In(1—x)dx = —1.
0

1 -3
45, / xIn(l—x)dx = —.
0 4

1
46. f IN(1+ x)dx = 2In2) — 1.
0

o
47. f e—ax? cogkx)dx = ﬁe_kz/(“a).
0 2Ja



Some Integrals with
Exponentials in the
Integrands: The
Error Function

We begin with the integral

o0

/e_xz dx =1.

0

We compute the value of this integral by a trick, squaring the integral and changing
variables:

o0 2 o 0¢) o0 0
12 = |:f exzdx:| = /e_xz dx/e_yzdy =f/€_(x2+),2) dxdy.
0 0 00

0
We now change to polar coordinates,

2

B
~

1% =

oS~

o o0
/epz,odpdgbz %/epzpd,o
0 0

7 1
T —z T
2/26 ‘T3
0
Therefore,
o
I = /e_xz dx = ﬁ
2
0
and

o0 1
/ e P L) (A1)
0 2V a

383
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Another trick can be used to obtain the integral,

o0

2
/xzne X dx,
0

wheren is an integer. For = 1,

)

00 00 J
2 2 2
/x2e—ax dx = f P - _ e 9 dx
da
0 0

i w

Forn an integer greater than unity,

/xzne_“xz dx = (=1" — d- |:1- z] (A.3)

da | 2V a

Equations (A.2) and (A.3) depend on the interchange of the order of differentiation
and integration. This can be done if an improper integral is uniformly convergent.
The integral in Eq. (A.1) is uniformly convergent for all real values:ajreater
than zero. Similar integrals with odd powers.ofare easier. By the method of
substitution,

7 17 1
_ax? _
dx = — Ydy = —. A4
/xe X 2 /8 y 2 ( )
0 0
We can apply the trick of differentiating under the integral sign just as in Eq. (A.3)
to obtain
i (1
f 24l ,-ax? g (L 1) (-) (A.5)
2a
0

The integrals with odd powers af are related to the gamma function, defined in
Appendix G. For example,

00

)
/x2n+le Xy =
0

The Error Function

NI =

(e ¢]

1
/y”e_y dy = EF(n +1). (A.6)
0

The indefinite integral

/e_xz dx

has never been expressed as a closed form (a formula not involving an infinite
series or something equivalent). The definite integral for limits other than 0 and
oo is not obtainable in closed form. Because of the frequent occurrence of such
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definite integrals, tables of numerical approximations have been genér@ed.
form in which the tabulation is done is as téreor function, denoted by effr) and

defined by
o0 7t2
erf(x) = e ' dt.
0

S~

As you can see from Eq. (A.1),
lim erf(x) = 1.
X—> 00
The name “error function” is chosen because of its frequent use in probability

calculations involving the Gaussian probability distribution. Another form giving
the same information is theormal probability integral?

l X
2
L / 12 4y,
N
—X
Values of the Error Function
2 X
erf(x) = —/ e dt*
NEN
X 0 1 2 3 4 5 6 7 8 9

00| 00 | 000| 113| 226 | 338| 451 564 676 | 789 | 901 | *013
0.1] 01 125 | 236 | 348 | 459 | 569 | 680 | 790 | 900 | *009 | *118
0.2 0.2 227 | 335| 443 | 550| 657 763 (| 869 | 974 | *079 | *183
0.3] 0.3 286 | 389 | 491 | 593 694 | 794 | 893 | 992 | *090 | *187
0404 | 284 380| 475 569 | 662 | 755 847 | 937 | *027 | *117
05| 05 205 292 | 379 | 465 | 549 633 716 | 798| 879 | 959
0.6 0.6 | 039 117 194 | 270 346 | 420 | 494 | 566 | 638 | 708

0.7 778 847 914 | 981 | *047 | *112 | *175 | *238 | *300 | *361
08| 0.7 421 | 480 | 538 595 651 707 761 814 | 867 918
0.9 969 | *019 | *068 | *116 | *163 | *209 | *254 | *299 | *342 | *385
1.0] 0.8 427 | 468 | 508 [ 548 | 586 | 624 | 661 698 733 | 768
11 802 835 (| 868 | 900 931 961 991 | *020 | *048 | *076
12 0.9 103 130 155 181 205 | 229 252 275 297 319
13 340 | 361 | 381 400 419 | 438 | 456 | 473 | 490 | 507
14| 095 | 23 39 54 69 83 97 *11 *24 *37 *49
15| 096 | 61 73 84 95 *06 *16 *26 *36 *45 *55
1.6 | 097 | 63 72 80 88 96 *04 *11 *18 *25 *32

Continued on next page

1Two commonly available sources are Eugene Jahnke and Fritz Hatlles of Functions. Dover, New York,
1945, and Milton Abramowitz and Irene A. Stegun, Edtandbook of Mathematical Functions with Formulas,
Graph and Mathematical Tables, U.S. Government Printing Office, Washington, DC, 1964.

2See for example Herbert B. DwighEables of Integrals and Other Mathematical Data, 4th ed., Macmillan,
New York, 1961.
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X 0 1 2 3 4 5 6 7 8 9
1.7 | 0.98 38 44 50 56 61 67 72 77 82 86
1.8 91 95 99 *03 *07 *11 *15 *18 *22 *25

19| 0.99 28 31 34 37 39 42 44 47 49 51
2.0 0.995 | 32 52 72 91 *09 *26 *42 *58 *73 *88
21| 0997 | 02 15 28 41 53 64 75 85 95 *05
22 (0998 | 14 22 31 39 46 54 61 67 74 80

2.3 86 91 97 *02 *06 *11 *15 *20 *24 *28
24 (0999 | 31 35 38 41 44 47 50 52 55 57
25 59 61 63 65 67 69 71 72 74 75
2.6 76 78 79 80 81 82 83 84 85 86
2.7 87 87 88 89 89 90 91 91 92 92
2.8 0.9999| 25 29 33 37 41 44 48 51 54 56
2.9 59 61 64 66 68 70 72 73 75 77

* From Eugene Jahnke and Fritz Emdiahles of Functions, Dover Publications, New York,
1945, p. 24.

To use this table, obtain the first digits of @rf from column 2 and the remain-
ing digits from the appropriate column. Entries marked Wittorrespond to the
value in the next lower row of column 2.



| ndex

abelian group, 294
abscissa, 93
absolute address in Excel, 66
absolute maximum, 111
absolute value

of a complex number, 47

of a scalar quantity, 6
absorbance, 359
absorptivity, 359
acceleration, 122
acceleration due to gravity, 123
accuracy, 319
addition of vectors, 33
algebra, 22, 52

matrix, 282

operator, 271
algebraic irrational number, 7
algebraic irrational numbers, 2
algorithm, 52
ammonia molecule, 294
amplitude, 256
analytic function, 166
antiderivative, 123
antilogarithm, 8
antisymmetric, 291
arcsine function, 30
Argand diagram, 46
Argand plane, 46
argument of a complex number, 47
assignment operator, 74
associative, 5, 45, 271, 284
atmosphere (unit of pressure), 13
augmented matrix, 310
average

mean, 145

median, 145

mode, 145
Avogadro’s constant, 4

bar-graph approximation, 142

base of logarithms, 7

base of natural logarithms, e, 3

basis functions, 165

basis of a representation of a group, 298
beating, 249

bell-curve, 96

binomial distribution, 323

Bohr radius, 55, 119, 280
Born-Oppenheimer approximation, 281
Bouger-Beer law, 359

boundary conditions, 240, 256

Cartesian components, 32, 38
Cartesian coordinates, 32, 37
cells in Mathematica, 72
Celsius temperature scale, 13
central limit theorem, 323
chain rule, 105, 201, 373
change of variables, 136
changing variables in multiple integrals, 214
character, 299
characteristic equation, 239
circular frequency, 242
circular trigonometric functions, 24
Clapeyron equation, 333
classical mechanics, 123, 237
Clausius-Clapeyron equation, 337
closed system, 193
coefficients of a series, 165
cofactor, 290
colligative properties, 171
column vector, 282
column vectors, 297, 306
common logarithms, 7
commutative, 5, 45, 272, 284
commutator, 272
commute, 7
complementary equation, 247
complementary function, 247
completeness, 173, 177
complex conjugate, 177
complex conjugate of a complex number, 48
complex number, 45

absolute value, 47

cube root, 51

magnitude, 47

modulus, 47

phase or argument, 47

polar representation, 47
complex numbers, 3
complex plane, 46
components, 32

Cartesian, 38
composite function, 105
confidence interval, 325
confidence level, 325
conservation of energy, 243
conservative system, 243
constant of integration, 133
constrained maximum, 227
constrained minimum, 227
constraint, 227
constructive interference, 258
continuity, 191

387
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continuous function, 91
convergence

in an interval, 165

of a power series, 169

of a series, 160

of an improper integral, 135

uniform, 165
convergence of a series

tests for, 163
conversion factor, 17
convolution theorem, 181
coordinates

Cartesian, 37

orthogonal, 221

plane polar, 32
correlation coefficient, 343
covariance, 344, 347
Cramer’s rule, 340
critical damping, 245
cross product of two vectors, 42
cube root, 6
cube root of a complex number, 51
cubic equation, 58
curl, 220

in orthogonal coordinates, 224
curl of the gradient, 221
curvature of a function, 110
curve fitting

numerical, 339
cusp, 100
cycle rule, 200
cyclic process, 210
cylindrical polar coordinates, 40

damped harmonic oscillator, 243
damping

critical, 245

greater than critical, 244

less than critical, 244
data reduction, 318, 329
definite integral, 126, 133
degree (measure of an angle), 25
degree of a polynomial equation, 58
degrees of freedom, 324
del, 218
v, 218
DeMoivre’s formula, 47
dependent variable, 25, 90
derivative, 99, 108

higher-order, 108

partial, 193
derivative identities, 104
derivative operators, 270
Descartes, Rene duPerron, 32
destructive interference, 258
determinant, 216

Slater, 292

triangular, 291
determinant properties, 290
determinants, 289
diagonal elements of a matrix, 285
diagonal matrix, 288
Dieterici equation of state, 63, 88
difference, 94

A, symbol for, 94
difference of two operators, 271
differentiability, 100

Index

differential, 103, 194
exact, 202
inexact, 202
differential equation, 235
differential equations
partial, 253
dimension of a representation of a group, 298
direct sum, 299
discontinuities, 92
discordant data, 328
discriminant, 59
distribution function, 147
distributive, 5, 45, 272, 284
div (divergence operator), 219
divergence, 219
in orthogonal coordinates, 223
of a series, 160
of an improper integral, 135
dot product, 35
double equal sign in Mathematica, 77
double integral, 210
as a volume, 211

e, base of natural logarithms, 8
eigenfunction, 270
eigenfunctions, 177

of symmetry operators, 281
eigenvalue, 270, 281, 311
eigenvalue equation, 270
eigenvector, 311
electric field, 44
enantiomorphs, 118
English units of measurement, 13
entropy

absolute, 156
equation

operator, 271
equation of continuity, 219
equation of motion, 237
equations of motion, 235
equilibrium thermodynamic state, 210
error function, 150, 385
error propagation

in least squares, 344
estimated error, 325
Euler reciprocity relation, 199, 203, 251
Euler’s formula, 47
Euler’s method, 260
Euler, Leonhard, 9
even function, 26, 131
exact differential, 202, 251
exact differential equation, 251
Excel spreadsheet, 65
expand, 166
expanding by minors, 289
expectation value, 301
exponent, 6
exponential, 10
extremum, 110, 224

factor-label method, 17

factorial, 63, 102

faithful representation of a group, 298
Faltung theorem, 181

family of functions, 93, 240

fast Fourier transform, 182

finite series, 159

first difference, 335
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first maxim of computing, 108, 350
first-order chemical reaction, 250
flexible string, 254
force on a charged object, 44
formal solution, 260
Fourier cosine series, 175
Fourier cosine transform, 181
Fourier integral, 180
Fourier series, 172

with complex basis functions, 177
Fourier sine series, 175
Fourier sine transform, 181
Fourier transforms, 180
Fourier, Jean Baptiste Joseph, 172
free induction decay, 182
frequency, 242, 257
friction constant, 243
function, 25, 90

analytic, 166
function of several variables, 190
functional, 127
functional series, 165
functions

basis, 165

periodic, 172
fundamental, 257

fundamental equation of differential calculus, 194,

331
fundamental theorem of integral calculus, 126

Galton, Sir Francis, 339
gamma function, 379
gas kinetic theory, 146
Gauss elimination, 310
Gauss quadrature, 144
Gauss, Karl Friedrich, 96
Gauss-Jordan elimination, 285
Gaussian distribution, 149
Gaussian functions, 96
gaussian probability distribution, 323
general solution to a differential equation, 240
geometric series, 161
Gibbs phenomenon, 176
Gibbs, Josiah Willard, 176
Goal Seek command in Excel, 78
Gossett, William Sealy, 326
grad (gradient operator), 218
grad (measure of an angle), 25
gradient, 217
in orthogonal coordinates, 222
gradient of the divergence, 221
graphical method for solving an equation, 64
graphical representation of functions, 93
Gregory-Newton interpolation formula, 335
group, 294

half-life, 11

half-time, 11

Hamiltonian operator, 281
harmonic oscillator, 238

harmonic oscillators, 115
harmonic series, 163

harmonics, 257

hermitian conjugate, 288

hermitian matrix, 288
homogeneous linear differential equation, 238
homogeneous linear equations, 83
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homomorphic representation of a group, 298
Hooke, Robert, 238
hyperbolic trigonometric functions, 30

ideal gas, 52, 194
ideal gas constant, 19, 52
ideal gas equation, 191, 194
identities for partial derivatives, 198
identity, 6, 25
identity operator, 271, 275
imaginary axis, 46
imaginary numbers, 3
imaginary part of a complex number, 3, 45
imaginary unit, 44
imaginary unit, i, 3
improper integral, 134
convergence, 135
divergence, 135
improper rotation, 277
inconsistent equations, 81
indefinite integral, 126, 133
independent equations, 81
independent variable, 25, 90
inexact differential, 202
inexact pfaffian differential equation, 252
infinite series, 159
infinity, 29
inflection point, 99, 111
inhomogeneous equation, 247
inhomogeneous simultaneous equations, 79
inhomogeneous term, 247
initial conditions, 240, 241, 256
integers, 2
integral
definite, 126
improper, 134
indefinite, 126
line, 206
path, 206
trapezoidal approximation, 142
integral calculus
fundamental theorem of, 126
/. 126
integral sign, 126
integral transform, 180
integrals
multiple, 210
integrand, 126
integrating factor, 205, 252
integration by parts, 137
integration, numerical, 141
intercept, 94
interference, 172, 258
interferometer, 182
interval of convergence, 169
inverse of a matrix, 285
inverse of an operator, 273
inverse sine function, 30
inverse trigonometric functions, 29
inversion operator, 275
irrational number, 2
algebraic, 7
transcendental, 7
irreducible representation of a group, 298
isomorphic representation of a group, 298
iterative procedure, 106

jacobian, 216
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kinetic energy, 242 hermitian, 288
Kronecker delta, 173, 285 inverse, 285
nonsingular, 309
L'Hopital, rule of, 114 orthogonal, 288
Lagrange, Joesph Louis, 228 singular, 288
Lambert-Beer law, 359 transpose, 288
Laplace transform, 182 triangular, 288
use to solve a differential equation, 258 unitary, 288
Laplace, Pierre Simon, 182 matrix algebra, 282
laplacian, 220 matrix eigenvalue problem, 311
least squares, 339 matrix elements, 282
with weighting factors, 350 matrix multiplication, 283
least-squares fit maximum
with Excel, 348 constrained, 227
left-handed coordinate system, 37 local, 225
limit, 27 relative, 225
limits of integration, 126 maximum or minimum value
limits, mathematical, 113 of a function of several variables, 224
line integral, 206 maximum value of a function, 110
linear combination, 238, 258, 323 Maxwell relations, 200
linear dependence, 83, 246, 308 mean, 322, 324
linear differential equation, 238 mean (type of average), 145
linear equation, 58 mean value, 322
linear function, 94 mean value theorem, 153
linear functions, 340 measure of an angle, 25
linear least squares, 340 mechanics
with fixed slope or intercept, 353 classical, 237
linear regression, 340 quantum, 177
linear simultaneous equations, 79 median, 324
linearization, 63, 337, 340 median (type of average), 145
local maximum, 111, 225 method of substitution, 136
local minimum, 111, 225 minimum
logarithms, 7 constrained, 227
logarithms, natural, 9 local, 225
Lorentzian distribution, 323 minimum value of a function, 110
V2,220 minors
expanding by, 289
Maclaurin series, 166 mixed second partial derivatives, 199
magnetic induction (magnetic field), 44 MKS system of units, 11
magnitude, 22 mode, 324
of a complex number, 47 mode (type of average), 145
of a scalar quantity, 6 model system, 238, 254
of a vector modulus of a complex number, 47
three-dimensional, 38 molar concentrations, 59
magnitude of a vector, 32 moment of a probability distribution, 357
Mathematica, 71 moment of inertia, 233
Mathematica statements multiple integral, 210
Apart, 76 multiplication operators, 270
Clear, 74 multiplier
Eliminate, 84, 314 undetermined, 228
Expand, 75
Factor, 75 Napier, John, 9
FindRoot, 77 natural logarithms, 9
NSolve, 77 Newton’s laws of motion, 237
Simplify, 75 Newton’s method, 106
Solve, 77 Newton'’s second law of mation, 235
Together, 76 Newton, Sir Isaac, 237
mathematical function, 25 Newton—Raphson method, 106
mathematical identity, 6, 25 Newtonian mechanics, 123
mathematical limit, 27 nodes, 257
mathematical operations on series, 178 nonequivalent representations of a group, 299
mathematical operator, 269 normal distribution, 149, 323
matrix, 282 normal probability integral, 385
adjoint, 288 normalization, 96, 146, 147, 177, 214, 322
associate, 288 notebook in Mathematica, 71
block-diagonal, 299 null (zero) matrix, 288

diagonal, 288 null operator, 272
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null vector, 42
numerical integration, 141

octant, 37
odd function, 26, 131
one-to-one correspondence, 297
operator, 217
assignment, 74
mathematical, 269
operator algebra, 271
operator equation, 271
operators
difference, 271
inverse, 273
inversion, 275
powers of, 273
product of, 271
quantum mechanical, 177, 274
reflection, 276
rotation, 276
sum of, 271
orbital, 119
orbitals, 292
order
of a chemical reaction rate, 342
of a differential equation, 238
of a group, 298
of a rate law, 140
ordered pairs, 90
ordinary differential equation, 238
ordinary differential equations, 253
ordinate, 93
Origin, 31
orthogonal coordinates, 221
orthogonal matrix, 288
orthogonality, 173, 177
orthogonality of vectors, 35
overdetermined system of equations, 306
overtones, 257

panel, 142

parabola, 95

parallax, 320

parameters, 23, 93

partial derivative, 193

partial differential equations, 253
partial fractions, 76, 138

partial integration, 137

partial sum, 159

particular solution, 240

partition function, 162

path integral, 206
path-independent, 207

Pauli exclusion principle, 292
Pauli, Wolfgang, 292

period, 241, 257

periodic functions, 26, 172
perturbation method, 166
pfaffian form, 202, 251

phase of a complex number, 47
pi, 7, 2

piecewise continuous, 92

pivot element, 287

planimeter, 129

point group, 296

point symmetry operators, 275, 296
Poisson distribution, 323
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polar coordinates, 32, 214
cylindrical, 40
spherical, 39
polar representation of a complex number, 47
polynomial, 94
polynomial equation, 58
degree, 58
polynomials, 138
population, 148, 322
position vector, 32, 38, 122
potential energy, 243
power series, 166
powers, 6
powers of an operator, 273
precision, 319
pressure virial equation of state, 171
principal values, 30
probability, 145
probability density, 147, 322
probability distribution, 147, 322
probable error, 325
problem solving, 52
product
of a matrix and a scalar, 283
of a scalar and a vector, 35, 41
of two matrices, 283
of two operators, 271
projection, 39
propagation of errors, 329, 331
proper rotation, 277
Pythagoras, theorem of, 27
three-dimensional, 38

Q test, 329

guadratic equation, 58

guadratic formula, 59

guadratic function, 95

guantum mechanics, 220, 254
operators, 274

guartic equation, 58

radian (measure of an angle), 25
radiant spectral emittance, 112
radioactive decay, 104
radius of convergence, 169
random errors, 319
random variables, 323
Rankine temperature scale, 19
rate constant, 140, 250, 336
rate law, 140
order, 140
rational numbers, 2
real axis, 46
real numbers, 2, 22
real part of a complex number, 3, 45
real variables, 22
reciprocal identity, 198
reciprocal of a complex number, 45
reducible representation of a group, 298
reflection operator, 276
regression, 339
relative address in Excel, 66
relative maximum, 111, 225
relative minimum, 111
relativity, 151
relaxation time, 11
replacement operator in Mathematica, 263
representation of a function, 91
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representation of a group, 296, 298
residuals, 339
reversible process, 210
right triangle, 24
right-hand rule, 42
right-handed coordinate system, 37
root-mean-square (rms), 146
roots, 6
roots to an equation, 58
rot (curl operator), 220
rotation

improper, 277

proper, 276
rotation operators, 276
round-off error, 16
row operation, 286
row operations, 310
row vector, 282
rules

for integrals, 129

for significant digits, 15
Runge-Kutta method, 261

saddle point, 226
sample, 322
scalar product

of two functions, 173, 177
scalar product of two vectors, 35, 41
scalars, 3, 22, 282
Schoenflies symbol, 296
scientific notation, 4
second difference, 335
second partial derivatives, 199
second-order chemical reaction, 250
second-order reaction, 343
secular equation, 313, 317
separation of variables, 249, 255
sequence, 159
series, 159

constant, 159

Fourier, 172

functional, 165

geometric, 161

Maclaurin, 166

mathematical operations on, 178

power, 166
shifting theorem, 183
Sl, System of International Units, 11
sign (positive or negative), 22
significant digits, 3
similarity transformation, 298
Simpson'’s five-eighths rule, 143
Simpson'’s one-third rule, 143
Simpson’s rule, 143
single-valued, 91
singular matrix, 288
Slater determinant, 292
slope, 94
smoothed data, 335
solute, 172
solution
general, 240
of a differential equation, 236
particular, 240
solutions to an equation, 58
specific heat capacity, 20
spherical polar coordinates, 39

Index

spreadsheet, 65
spring constant, 238
square integrable, 181
square matrix, 282
square root, 6
square root of a complex number, 51
standard deviation, 96, 148, 322
of a sample, 324
standard normal distribution, 149
standing wave, 257
state functions, 204
statistical mechanics, 115, 162, 356
stiff differential equations, 261
stoichiometric concentration, 59, 80
stream lines, 219
Student (pseudonym for William Sealy Gossett),
326
Student t factor, 326
Student’s t distribution, 326
substitution, method of, 136
successive approximations, 62
¥, 125
sum, 125
partial, 159
sum of two matrices, 282
sum of two operators, 271
summation index, 125
superposition, 258
symbolic mathematics, 22
symmetric matrix, 288
symmetry element, 276
symmetry operators, 270, 275
operation on functions, 279
System of International Units
base units, 12
overview, 11
systematic errors, 319

tangent to a curve, 98
Taylor series, 166
tesla, 44
Tesla, Nikola, 44
third derivative, 108
third difference, 335
third-order reaction, 342, 343
torr (unit of pressure), 13
totally symmetric representation of a group, 299
trace (spur) of a matrix, 288
transcendental equations, 60
transcendental irrational numbers, 2, 7
transform
Fourier, 180
integral, 180
Laplace, 182
transformation of coordinates, 33, 39
transition-state theory, 226
transpose of a matrix, 288
traveling wave, 258
trial solution, 239, 255
trial value, 77
triangular determinant, 291
triangular matrix, 288
trigonometric functions, 24
hyperbolic, 30
inverse, 29
properties, 28
triple integral, 213
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trivial solution, 83, 311
two-dimensional vector, 32

undefined, 29

undetermined multiplier, 228

unfaithful representation of a group, 298
uniform convergence, 165, 179

uniform harmonic motion, 241

unit vectors, 35, 38

unitary matrix, 288

van der Waals equation of state, 20, 23, 120, 156
variable
dependent, 25
independent, 25
variable-change identity, 198
variables in Mathematica, 74
variance, 324
variation of parameters, 248
vector, 22, 31
magnitude, 32

null, 42
position, 32, 38
scalar product, 35
three-dimensional, 39
two-dimensional, 32
unit, 35, 38
vector addition, 33
vector derivative operators, 217
vector derivatives
in other coordinate systems, 221
vector product of two vectors, 42
velocity, 122
virial coefficients, 170, 231
virial equation of state, 170
virial series, 170
vorticity, 220

wavelength, 257

weak acid, 59
weighting factors, 351
weighting function, 153

393



	Cover Page
	Mathematics for Physical Chemistry
	Title Page
	ISBN 0125083475
	Contents
	Preface
	1 Numbers, Measurements, and Numerical Mathematics 
	Numbers and Measurements
	Numerical Mathematical Operations
	Units of Measurement
	Numerical Calculations

	2 Symbolic Mathematics and Mathematical Functions
	Algebraic Operations on Real Scalar Variables
	Trigonometric Functions
	Inverse Trigonometric Functions
	Vectors and Coordinate Systems
	Imaginary and Complex Numbers
	Problem Solving and Symbolic Mathematics
	PROBLEMS

	3 The Solution of Algebraic Equations
	Algebraic Methods for Solving One Equation with One Unknown
	Graphical Solution of Equations
	Numerical Solution of Algebraic Equations
	Simultaneous Equations: Two Equations with Two Unknowns
	PROBLEMS

	4 Mathematical Functions and Differential Calculus
	Mathematical Functions
	The Tangent Line and the Derivative of a Function
	Differentials
	Some Useful Facts About Derivatives
	Higher-Order Derivatives
	Maximum-Minimum Problems
	Limiting Values of Functions: L’Hôpital’s Rule
	PROBLEMS

	5 Integral Calculus
	The Antiderivative of a Function
	The Process of Integration
	Indefinite Integrals: Tables of Integrals
	Improper Integrals
	Methods of Integration
	Numerical Integration
	Probability Distributions and Mean Values

	6 Mathematical Series and Transforms
	Constant Series
	Functional Series
	Fourier Series
	Mathematical Operations on Series
	Integral Transforms
	PROBLEMS

	7 Calculus With Several Independent Variables
	Functions of Several Independent Variables
	Change of Variables
	Additional Useful Relations Between Partial Derivatives
	Exact and Inexact Differentials
	Line Integrals
	Multiple Integrals
	Vector Derivative Operators
	Maximum and Minimum Values of Functions of Several Variables
	PROBLEMS

	8 Differential Equations
	Differential Equations and Newton’s Laws of Motion
	The Harmonic Oscillator: Linear Differential Equations with Constant Coefficients
	Differential Equations with Separable Variables
	Exact Differential Equations
	Solution of Inexact Differential Equations by the Use of Integrating Factors
	Partial Differential Equations: Waves in a String
	Solution of Differential Equations with Laplace Transforms
	Numerical Solutions of Differential Equations
	PROBLEMS

	9 Operators, Matrices, and Group Theory
	Operators and Operator Algebra
	Symmetry Operators
	Matrix Algebra
	Matrix Algebra with Mathematica
	An Elementary Introduction to Group Theory
	PROBLEMS

	10 The Solution of Simultaneous Algebraic Equations
	Simultaneous Equations with More than Two Unknowns
	Cramer’s Rule
	Solution by Matrix Inversion
	The Use of Mathematica to Solve Simultaneous Equations
	PROBLEMS

	11 The Treatment of Experimental Data
	Experimental Errors in Measured Quantities
	Statistical Treatment of Random Errors
	Data Reduction and the Propagation of Errors
	Graphical and Numerical Data Reduction
	Numerical Curve Fitting: The Method of Least Squares (Regression)
	PROBLEMS

	Additional Reading
	Appendixes
	A Values of Physical Constants
	B Some Mathematical Formulas and Identities
	C Infinite Series
	Series with Constant Terms
	Power Series

	D A Short Table of Derivatives
	E A Short Table of Indefinite Integrals
	F A Short Table of Definite Integrals
	G Some Integrals with Exponentials in the Integrands: The Error Function

	Index



