E.Amaldi S.Fubini G.Furlan

Pion-Electroproduction

Electroproduction at Low Energy
and Hadron Form Factors

With 47 Figures

Springer-Verlag
Berlin Heidelberg New York 1979



Professor Dr. Edoardo Amaldi

Istituto di Fisica dell'Universita di Roma, Sezione di Roma dell'INFN,
Piazzale A. Moro 5, 1-00185 Roma, Italy

Professor Dr. Sergio Fubini
C.E.R.N., CH-1121 Geneva 23, Switzerland

Professor Dr. Giuseppe Furlan

Istituto di Fisica Teorica dell’'Universita di Trieste, Sezione di Trieste dell'INFN,
International Center for Theoretical Physics, Strada Costiera 11, 1-34014 Trieste, ltaly

Manuscripts for publication should be addressed to:

Gerhard Hohler
Institut fiur Theoretische Kernphysik der Universitat Karlsruhe
Postfach 6380, D-7500 Karlsruhe 1, Fed. Rep. of Germany

Proofs and all correspondence concerning papers in the process of publication
should be addressed to:

Ernst A. Niekisch
Institut fur Grenzflachenforschung und Vakuumphysik der Kernforschungsaniage Jilich GmbH
Postfach 1913, D-5170 Jalich 1, Fed. Rep. of Germany

ISBN 3-540-08998-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-08998-5 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data. Amaldi, Edoardo. Pion-Electroproduction —
Electroproduction at low energy and hadron form factors. (Springer tracts in modern physics; v. 83)
Bibliography: p. Includes index. 1. Hadrons-Scattering. 2. Form factor (Nuclear physics) |. Fubini, S.,
1928-. joint author. 1. Furlan, G., 1935-. joint author. l11, Title. IV, Series. QC1.5797 vol. 83
{QC793.5.H328] 539°.08s [539.7'216] 78-13034

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by
photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright
Law where copies are made for other than private use, a fee is payable to the publisher, the amount

of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1979

Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

Offset printing and bookbinding: Briihlsche Universitatsdruckerei, Lahn-Giessen

2153/3130 — 543210



Preface

Advances in experimental techniques always induce considerable scientific progress
as well. This is particularly true for neutron scattering where the availability

of new instruments (e.g. spectrometers for small-angle scattering, diffuse scat-
tering and high-energy resolution) has stimulated a variety of fields in physics,
chemistry and bioclogy. One area, investigated by both physicists and chemists, is
that of molecular crystals. Interesting questions concern molecular orientations in
various crystal surroundings and the changes from a disordered to an ordered ar-
rangement displayed by some crystals.

Here we mainly deal with a dynamical aspect, namely the rotational motion of
single molecules. Its nature strongly depends on the interaction of a given mole-
cule with its neighbours and - very importantly - on the temperature. In this book
recent experimental results are described. They illustrate the importance of high-
resolution neutron spectroscopy for a better understanding of molecular rotations.
At the same time, recent theoretical models are reviewed which often have served as
guidelines for new experiments. The book is intended to describe the state of the
art, not only to neutron scatterers, but also to solid-state physicists and
chemists interested in molecular systems.

Molecular crystals have been and continue to be an object of active research in
the neutron scattering group in Jilich. The author thanks all his colleagues, es-
pecially H.H. Stiller, M. Prager, H. Grimm, K.D. Ehrhardt, and U. Buchenau, for a
long and fruitful collaboration. On the way to a better understanding of molecular
crystals many theoretical aspects had to be clarified and some still remain open.
It is a particular pleasure to acknowledge the advice from A. Hiiller as well as
many stimulating discussions with him on numerous topics over a long period of time.
The author is very grateful to A. Huller, R. Mueller, P. Grosse, and U. Felderhof
for important suggestions concerning the scientific content of the manuscript and
its formulation.

Jiilich, Jdune 1981 Werner Press



1. Introduction

Starting with initial measurements in the 1920's—at this time CLUSIUS /1.1/ dis-
covered specific-heat anomalies, e.g., in nitrogen—molecular crystals have at-
tracted increasing attention. Most early experiments concentrated on macroscopic
quantities such as specific-heat or dielectric constants. However, without micros-
copic probes the detailed mechanism of phase transitions and elementary excitations
in molecular crystals remained a puzzle.

This has changed considerably in the last decade or so, when systematic efforts
have been made to learn about molecular crystals both experimentally and theoreti-
cally. In the meantime numerous structures of molecular crystals have been solved,
and orientational order-disorder transitions as well as rotational dynamics have
been investigated in great detail. Some of this has been covered in two recent re-
views 1) The Plastically Crystalline State edited by SHERWOOD /1.2/ and 2) Disorder
in Crystals by PARSONAGE and STAVELEY /1.3/. (The latter discussed positional, mag-
netic and—mainly —orientational disorder.) Much of the recent development, how-
ever, is not contained or is reviewed only briefly.

This is particularly true for rotational dynamics, which is one of the most fas-
cinating aspects of molecular solids. The field may be divided (somewhat artificial-
1y) into collective and single-particle rotational motions. In regard to collective
rotational motions, one is concerned with phase retations between the rotational
states of different molecules. These phase relations show up in a wave vector de-
pendence of the rotational excitations. Their origin is the angle-dependent inter-
action between the molecules. The excitations, which are called librational or tor-
sional modes, are analogous to the phonon modes describing the collective transla-
tional modes in a crystal. Single-molecule rotations, on the other hand, describe
the rotational motion of a single molecule in its surroundings. The surroundings
are approximated as an angle-dependent potential which has a time-independent and
a fluctuating part (Chap.2). Obviously single particle excitations have energies
independent of the wave vector and thus have the character of Einstein modes.

Still relatively little experimental work has been done on collective rotational
excitations in molecular crystals. This is so for two reasons. 1) The measurement



of dispersion curves requires single crystals which frequently are not available.
2} Because of several possible damping mechanisms the librational modes are often
not well-defined excitations. A long review was published in 1970 by VENKATARAMAN
and SAHNI /1.4/ and more recently a short one by DOLLING /1.5/.

In the present work the author will review the large field of single-particle
rotations in molecular crystals. Some simple concepts will be introduced in Chap.2.
In particular, the relation between rotational potentials and the type of rotational
excitations found in molecular crystals will be discussed. We shall distinguish be-
tween classical diffusive rotations at high temperatures and quantum-mechanical ro-
tations at low temperatures. Diffusion-Tike motion results if the fluctuating part
of the potential is large. This is the case at high temperatures. At Tow tempera-
tures the static part of the potential dominates and the rotational states can be
calculated by solving a stationary Schridinger equation.

Single-molecule rotations can be studied in a large class of molecular systems.
Our definition of a molecular crystal will include both van der Waals and ionic
crystals. A few digressions to 1) molecules diluted in matrices and 2) molecules
adsorbed on surfaces will also be made.

In the same way as collective phenomena can be probed by coherent neutron scat-
tering, single-particle rotations can be observed directly by incoherent neutron
scattering. In coherent neutron scattering, the neutron waves originating from dif-
ferent scattering cegtres interfere and thus the phase relations between different
molecules become important. This is not the case for “incoherent” neutron scattering.
If the scattering length of a given kind of atoms varies statistically from position
to position in the crystal there are no interference effects. The scattering then
may be described as of independent scattering centres. Incoherent scattering re-
sults if there are various isotopes with different scattering lengths or if the
scattering length depends on the orientation of the neutron spin in relation to
that of the scattering nucleus (parallel and antiparallel). In our case the spin-
dependent scattering is responsible for the observation of single-particle excita-
tions. Fortunately, the most interesting molecules contain hydrogen atoms and pro-
tons happen to possess the largest known (spin) incoherent scattering cross sec-
tion Oinc(H) = 79 barn. In Chap.3 a derivation of the neutron scattering functions
pertaining to the single-particle motion, both in the high-temperature and the low-
temperature limit, will be given. In this chapter only general concepts will be in-
troduced. More specific examples shall be discussed in Chaps.4 and 5 in connection
with models describing the rotational motion.

Inelastic neutron scattering with monochromatization of the incoming neutrons
{wave vector k) and energy analysis of the scattered neutrons (wave vector k')

yields information on the evolution of states in space and time. Measurements of



the scattered neutron intensity can be performed both as a function of the momentum
transfer Q = k'-k (typically Q=0.1-8 Rf1) and as a function of the energy transfer
E = (hZ/ZmN)(kZ-k'z). The former yields spatial information and the latter the ex-

citation spectrum; m, denotes the neutron mass. High~energy resolution has been a

necessary condition ﬁor the success of the inelastic neutron scattering experiments
described in the following. Only moderate Q resolution is required. The backscat-
tering technigue nowadays allows energy resolutions in the range between AE = 0.3 peV
(= 120 MHz) and 2 yeV, with energy transfers up to about 20 yeV. The range of energy
transfers can be extended to several hundred peV with time-of-flight and three-axis
spectrometers. With use of long-wavelength neutrons, resolutions AE = 10 peV can be
achieved. Concerning the design and the detailed characteristics of these spectro-
meters, the reader is referred to the Titerature (e.g., /1.6,7/ and the references
therein).

When considering other techniques which have been successfully applied to the
study of single-particle rotations, we must distinguish between high-temperature
classical motion and rotations at low temperatures. Measurements of the spin-lat-
tice relaxation time T1 appear to be well-suited for the investigation of diffusive
motions at high temperatures. A similar statement refers to optical measurements,
and more specifically, to measurements of IR or Raman linewidths. Neither method
yields information on the spatial aspects of molecular rotations, for example, on
the geometry of rotational jumps. At low temperatures both specific-heat measure-
ments and "advanced" NMR techniques have been used. Specific-heat measurements can
supply information on the Tow-lying rotational states. A difficulty, however, Ties
in the connection between the rotational wave function and the nuclear-spin states
of homonuclear molecules {for a detailed discussion we refer the reader to Chap.5).
Practically all interesting transitions also involve changes of the nuclear-spin
functions. This so-called spin conversion (a well-known example is the transition
from ortho to barahydrogen) occurs on a time scale of about 1 to 105 seconds. In NMR,
spectroscopic techniques recently have been developed. These are based on the con-
cept of level crossing; nuclear-spin relaxation is speeded up when tuning a Zeemann
splitting to resonance with rotational. transitions. This is done by variation of the
strength of an external magnetic field. If the Zeemann splitting of electrons is
used, rotational transitions with energies up to several hundred eV can be observed.
The electronic impurities which, in general, are created by irradiation of the sample
(e.g., y-irradiation of CH4 produces free radicals with unpaired electrons) perturb
the system and can yield spurious peaks. An alternative method consists of using the
Zeemann splitting of the nuclear spins of the rotating molecules themselves. In this
case energies E < 0.5 peV can be measured and thus information complementary to that

from spin-dependent neutron scattering can be obtained.



The advantages of neutron scattering are its applicability to both high- and low-
temperature rotation and the spatial information which none of the other techniques
provides. First, classical diffusive rotation at high temperatures is discussed
(Chap.4). This topic has already been treated in reviews by SPRINGER /1.8,9/ and
LEADBETTER and LECHNER /1.10/. In particular /1.8/ represents an excellent intro-
duction to translational and rotational diffusion and their investigation by quasi-
elastic neutron scattering as well as by other techniques. The coverage of single-
particle rotations seems to be incomplete without the inclusion of diffusive motions.
In view of the above reviews, however, only a few very recent examples will be given.

So far only one relatively short review of single-particle rotations at low tem-
peratures has been published /1.11/ and there has been considerable progress since.
Therefore this aspect will be covered in more detail in Chaps.5-7. Chapter 5 is de-
voted to the calculation of rotational energies and wave functions of a molecule in
a static rotational potential. For the calculation of transition matrix elements be-
tween two rotational states the inclusion of properly symmetrized nuclear-spin func-
tions is essential. In Chap.6 a number of examples for the observation of 1ow-tempe-
rature rotational states by spin-incoherent neutron scattering is given. An attempt
is made to relate the observed spectra with the symmetry and magnitude of the respec-
tive single-particle potential. A distinction between almost free rotation and rota-
tional tunneling is made. In the first case the rotational potential is weak and can
be treated as a perturbation of the states of a free molecule. Rotational tunneling,
on the other hand, is observed if the rotational potential is Targe, yet still allows
a finite overlap of rotational wave functions in neighboring potential wells. The
final chapter covers several special features of the low-temperature rotational mo-
tion. Merely by increasing the temperature a continuous transition to the regime of
classical rotational motion is observed. The understanding of this temperature de-
pendence seems to be of crucial importance for the understanding of single-particle
rotations in general. The pressure dependence of tunneling states might allow learn-
ing about intermolecular interactions. Further topics include the isotope effect and
the influence of substitutional impurities on tunneling states.



2. Interaction and Rotational Potentials

Before starting the discussion of molecular rotations in solids and their observa-
tion with neutron scattering, it appears useful to introduce a few simple aspects
of molecular crystals and to give some clues for possible classifications. The dis-
cussion emphasizes the concept of single-particle potentials, their decomposition
into a fluctuating and a static part, and the expansion into symmetry-adapted func-
tions.

2.1 Rotational Degrees of Freedom

It is useful to Tist a catalogue of different situations which may be encountered
in connection with molecular rotations. An almost trivial distinction is between
one, two and three rotational degrees of freedom; examples are shown in Fig.2.1. The
main difference concerns the complexity of an appropriate description which needs
to keep track of just one angle in the one-dimensional case. Two angles are needed
for linear molecules, while three angles {(e.g., Euler angles or quaternions) are
required for molecules of general shape. The constraint to rotation around just one
axis may be due to two particularly large moments of inertia, covalent bonding (CH3
group) or a dipole moment of the molecule (NH3). Obviously, model calculations are
simpler for one-dimensional rotors than, e.g., for tetrahedral molecules. On the
other hand, the crystallographic structures of crystals composed of the latter are
mostly better known and usually simpler.

2.2 Chemical Bonding

Molecular crystals may be further classified according to the nature of their che-
mical bonds. 1) Van der Waals-type of crystals consisting of neutral molecules {e.q.,
Nz) are the classical molecular crystals. 2) A second important class consists of



B oo arees 1 dim: g 2 dmdye | 3dmEng(uf)

molecules

m

molecular
crystals

{van der Waals
crystals}

polyatomic
ons

n
ionic
molecular

crystals K+ CN- NHZ cr

radicals

in

molecular

crystais,
lymers

poty -CH 3

Fig.2.1. Examples for one, two, and three rotational degrees of freedom; wE = £, 1N,

r denotes the Euler angles which carry the axes fixed in a molecule from a standard
orientation to any desired orientation by successive rotations of n about the z axis,
£ about the resulting y axis, and finally ¢ about the resulting z axis

polyatomic ions in ionic crystals. 3) The importance of covalent bonding in defining
one axis of rotation (o bond: CH, groups) has already been mentioned above (Fig.2.1).
We shall mainly deal with small molecules or molecular groups. The chemical bond-
ing within the molecules is then very strong, usually of covalent nature. This causes
internal degrees of freedom—vibrational excitations, which deform the molecule—to
have energies much higher than the external degrees of freedom, which comprise both
translational and rotational motions. If these internal degrees of freedom may be
negliected, the molecules may be considered as rigid units. This will be done in the
following. Then the molecule can be described by a centre-of-mass coordinate R and

its orientation, collectively denoted by wE.



2.3 Intermolecular Interaction

In contrast to dilute gases where the molecules rotate freely between collisions,
they are subject to an angle-dependent potential in solids. If decomposed in terms
of two-particle interactions between rigid molecules, two contributions may be dis-
tinguished /1.11/.
13 yldg,E.

V1 = V1 (wi’Bi’Bj) (2.1)
depends only on the orientation of the ith molecule as well as on the centre-of-mass
(c.o.m.) positions Bj;

ii

J_ i E E,
VZ - vz (w.iswjaB.isB‘j) (2.2)

on the other hand, depends on the orientations wE and wg of both interacting groups.

V;j is the only contribution if a given molecule only interacts with particles
without angular degrees of freedom, that is, atoms and monatomic ions. The term will
be dominant for molecules in an atomic crystal matrix or in systems like NH4X
(X = €1, Br, I) where the NHZ jons are surrounded by halide ions and the octopole
moment of the NHZ groups interacts with the monopole moment of the halide ions
/2.1-3/. Such a monopole-multipole part also exists in crystals consisting of neu-
tral molecules. There the monopole is due to the angle-dependent van der Waals at-
traction and the hard-core repulsion averaged over the orientation of one of the
two theracting partners /2.4/.

V;J depends on the orientation of two interacting molecules and is responsible
for all collective properties connected with orientation and rotation: orientational
order-disorder phase traqgitions and orientational order as well as propagating 1i-
brational excitations. V;J can be phrased in terms of multipole-multipole interac-
tions /2.5/. Examples are the quadrupole-quadrupole interaction in solid ortho-hy-
drogen /2.6/ or nitrogen and the octopole-octopole interaction in solid methane
/2.7/. The interaction can be due to electrostatic interactions, hard-core repul-
sion, and van der Waals attraction. In this sense the notion of a multipole moment
can be generalized beyond a strictly electrostatic meaning. Another, usually less
jmportant contribution, comes from the interaction of molecules via their polariz-

able neighbors.



2.4 Single Particle Potential

In the following we are mainly interested in the orientationa] potential acting on

the ith molecule and obtained by summing V

molecu]e /1.11/.

13 and V 13 over all the neighbors of the
N+M

i, E. E' _ vl id, K| 'Gijg EOE.

W (w,i s {wj ’Bj}) = 21 V1 (w'i ,B.i aBJ) + 21 vz (w,i s(UJ- ,Bi ’Bj) R (2-3)
J= J=

M and N denote the number of molecules and monatomic units in the crystal, respec-
tively. The prime means that the term i = j should be omitted.

Other aspects, e.g., rotation-translation coupling /2.8/, become apparent after
regrouping the terms in a different way. Here, we shall only include the definition
of the crystalline field Vc(mg):

E, _ ¢'yid, E.
J -i’=j
Here R0 and R denote equ111br1um centre~of-mass positions.

W' st111 depends on {wJ ,BJ}, which represents the set of centre-of-mass coordi-
nates and angular coordinates of all other particles in the crystal. Obviously
{w (t) R (r)} is a time-dependent set of coordinates: w1th1n a classical picture
Bj J(t) due to the Tattice vibration in the crystal and wJ = 5 (t) due to ro-
tational excitations. Consequently W'ois time~-dependent as well. Quantum mechanical-
1y Ni(ws,{wEI;Rj}) needs to be integrated over the states of all the neighbors of

the ith molecule and

i E N+M N
Viiwg,t) = [ 1 dR; ' dw P({w Ry {w LNE sE) W (cu ,{w R . (2.5)
j=1 79 g=t
Here P({w?;Bj},{wg;Bj}';t) is the density matrix of the molecular crystal. Again
the prime in (2.5) means that integration over wg for j = 1 should be omitted.
Usually it is impossiblie to handle the above expression and approximations are re-
quired, e.g., the replacement of P by a product of single particle density matrices

(Hartree approximation /2.9/).



2.5 Classification of Single Particle Rotation

V1(w$,t) may be decomposed into a static and a fluctuating part

i

i E Ly
v (wi,t) = Vs

(05 +VE 5,8 (2.6)

V;t rgpresents the time-depengent part of the potential, while the time average of
V}](w ,t) vanishes for each w;. The fluctuations may be visualized as stochastic
torques exerted on a molecule by its neighboring atoms and molecules. Their magni-
tude typically is of the order of kT.

Only the magnitude of the potential in relation to the rotational constant
B = hz/ze (0 = moment of inertia) is important and therefore a reduced dimension-

less potential is introduced /2.10/
By o E E
V' (wg,t) = Vst(w_i)/B+Vﬂ(w1.,t)/B . (2.7)
Depending on the relative magnitude of both the static and the fluctuating part of

the scaled potential we may distinguish four characteristic situations which are
listed in Table 2.1

Table 2.1. Classification of single particle rotations in molecular crystals in terms
of the rotational potential. Different characteristic situations may be distinguished

depending on the magnitude of the static and the fluctuating part of the potential

Fluctuating
potential
Static Vf] Strong Weak
potential
Vst
Stron Rotational Librations and ro-
rong Jumps tational tunneling
Weak Rotational Quantum-mechanical
diffusion free rotation

High temperature means frequent transitions between the rotational states and
phonon states in the crystal and thus a strong fluctuating part of the potential.
In a number of orientationally disordered crystals of the van der Waals-type
("plastic crystals" like B-N2 or CH4I) the static or time-averaged part of the
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potential is rather weak. Then a diffusion of the molecules with respect to their
angular degrees of freedom is taking place. This rotational diffusion is continuous
in the angular variables, if Vst may be ignored completely. Otherwise both symmetry
and magnitude of the potential have to be taken into account. In the limit of very
strong static potentials Vst’ the molecules are confined to a discrete number of
equilibrium orientations which are occupied at random. Transitions across the bar-
riers separating the equilibrium orientations occur by thermally activated jumps.
In this 1imit the classical diffusive motion is called jump diffusion or molecular
reorientation.

At Tow temperatures only few lattice phonon modes are populated and the system
is close to its rotational ground state. Therefore we may expect the fluctuating
part of the potential to be weak and a stationary gquantum-mechanical picture should
describe the situation rather well. Again two extremes may be distinguished. Because
at low temperatures most systems are orientationally ordered, that with a strong or-
dering potential prevails. In this case one expects librational excitations of the
molecules in their rotational potential, which in general is rather anharmonic.
Additionally there is a tunnel splitting of these states. The splitting is due to
the overlap of wave functions in neighboring potential wells. The other extreme,
namely B 2 Vi(wE,t), i.e., V' < 1, is only rarely found in crystalline solids. The
prime representative is solid hydrogen /2.6/, which is a quantum crystal, particu-
larly with respect to its rotational degrees of freedom but also with respect to
its translational degrees of freedom. Solid hydrogen always has been treated sepa-
rately from all other molecular crystals, and an excellent review has recently been
published /2.11/. Therefore there is no need for a detailed account of it here. There
are, however, also systems with weak rotational potential at some sublattice sites
with high symmetry which is due to a cancellation of the interactions with their
neighbors. Examples are CH4II /2.7,12/ and Y'OZ /2.13/. Certainly we may find all
sorts of intermediate situations between the aforementioned extremes. Of particular
interest is the continuous transition between tunneling and rotational jumps which

comes about merely by increasing temperature.

2.6 Static Orientational Potential VSt

2.6.1 Electrostatic Origin of VSt

In general the details and the relative magnitude of the various contributions to

the rotational potential in a crystal are not well known. The situation is still
relatively simple for electrostatic contributions in which case the knowledge of
the leading multipole moments and the equilibrium distance suffices.
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As an example we may take the electrostatic interaction between (for example)
a tetrahedral molecule and its surroundings

E pp(re (r)
V(w) = ff—-]———]——— dr'dr . (2.8)

Here wE denotes the orientation of the molecule, pT(r') its charge distribution,
and pc(r) that of the crystal. One now may perform an expansion of the charge dis-
tributions into symmetry-adapted surface harmonics sz(e,¢) /2.14,15/ and

© g

pelr) =1 I by (r)K, (8,0) (2.9)

2=0 p=-2
o !

orle') = T 1 ap (e K i(859) (2.10)
2'=0 u|=_9’|
S T g ) Ko, UG W5) (2.11)
llulull

with the expansion coefficients b, (r) and T (r').

Pe (r) is expanded in a (unpr1med) frame f1xed within the crystal, pT(r ) ina
mo]ecu]ar (primed) frame, and the rotator functions /2.7,16,17/ U( ?(wE) transform
the surface harmonics from one frame to the other. For a tetrahedra1 molecule the
Towest order harmonic sz(ﬂ) contributing to (2.9) is (apart from the angle-inde-
pendent harmonic with £ = 0)

Ky (Q) VTEE Xyz . (2.12)

The polar angles 2 = 8,4 are expressed in terms of x = sinb cos¢, y = sind sing
and z = cosd which are coordinates on the surface of a three-dimensional unit sphere

(in Sect.2.6.3 we replace x,y,z by t ,TZ,T3). In methane, therefore, the leading

1
interaction between two molecules (which is not what is presently considered; for
the single particle potential we sum over the contributions from all surrounding
molecules) is an octopole-octopole interaction /2.7/.

If, additionally, 1/|r-r'| is expanded for r'<r

- r'
T C 4 JLZ p Ky (%) KZ..m(Qr ) (2.13)
|Im
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and if use of the orthogonality of the functions sz is made when performing the in-
tegrations in (2.8), one obtains

.4
(b, (1) —T g Ey

£
V(w") :
W (gget)pktt

4r [[dr'dr 2|a£u
Lup

(2.14)
;) uf‘ﬁ?(mE) .
fup’

Obviously both the molecular and the site symmetry, see (2.9,10), determine which of
the coefficients Bﬁﬁ? are nonzero. An expression for a tetrahedral molecule in a

potential of tetrahedral symmetry will be given later (Fig.2.2).

Fig.2.2. Tetrahedron in a potential of tetra-
hedral symmetry

2.6.2 Valence and Dispersion Forces

For anisotropic dispersion forces as well as for valence forces it is much more dif-
ficult to give explicit expressions /2.4,5/. Usually phenomenological potentials are
taken, mostly atom-atom potentials w(r) /2.18/ or, e.g., the Kihara core potential
/2.19,20/. The phenomenological parameters between pairs of atoms often are chosen
to be independent of the chemical bonding of the individual atom /2.20/. This ap-
proach has had some success, particularly in the description of organic crystals
with only very few parameters. It is, in general, inadequate if microscepic behavior
such as phonon dispersion or rotational tunneling is analysed in these terms.

The formulation given above for electrostatic interactions with » ~ 1/r /2.21/
has been generalized /2.4/ to power laws v ~ 1/rn. The result has been used to cal-
culate both the octopole-actopole interaction and the crystalline field in methane
starting from 6-12 potentials /2.5/. The radial dependence of the single particle

potential now contains terms V(wE)~ 1/1”’6+n withn = 6,12 and 2 = 4,6 ...
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2.6.3 Expansion into Symmetry-Adapted Functions with One, Two and Three Angular

Degrees of Freedom

In spite of successes in the prediction of the orientational order in CD4II /2.7,22/
or the calculation of rotational excitations in ammonium salts /2.16,23/, the know-
ledge of intermolecular interactions still is not satisfactory. Therefore very often
the single particle potential simply is expanded into a set of orthonormal functions.
The expansion coefficients then are taken as adjustable parameters, which may be com-
pared with parameters obtained from model pair potentials. In order to learn details
of the intermolecular interactions from such a comparison it is necessary to perform
measurements as a function of pressure (e.g., of the tunnel splitting); the most di-
rect access to VE»E(r)] is via its dependence on the equilibrium distance, which
changes with pressure (Sect.7.2).

In the following we give the expansion of the potential into a complete set of
symmetry-adapted surface harmonics for one, two and three angular degrees of free-
dom (the latter has already been done in Sect.2.6.1).

1) If the molecular rotation is confined to just one angular degree of freedom
¢, the potential can be expanded into a series of trigonometric functions

Vst(¢) = 21(an cosng + b sin ne) . (2.15)
n:

The role of symmetry can be illustrated by the example of the one-dimensional ro-
tation of CH3 or NH3 groups around the threefold symmetry axis of the molecules
(Fig.2.3). Rotations around this axis must leave the potential unchanged. There-
fore the molecular symmetry only allows nonzero terms with n = 3,6,9,... An ad-
ditional reduction results, if the site symmetry is not a subgroup of the molecu-
lar symmetry /2.24/. A simple example is provided by the presence of a mirror plane
{which contains the rotation axis). It causes bn = 0 for all n and the corresponding
symmetry-adapted functions are cos3ng. If the site symmetry provides a twofold or
fourfold axis in addition to the threefold axis of the molecule, orientational dis-
order results. In the high-temperature phase of N1'(NH3)612 the crystal symmetry
along the axis of rotation introduces both a mirror plane and a fourfold rotation
axis. As a consequence the molecules are orientationally disordered and all coeffi-
cients except Ao Bpy e vanish /2.25/.

In order to obtain a unified representation for all three dimensions it is use-

ful to introduce the angular coordinates as coordinates on a unit circle, T, = cosd,

1
and T, = sind, and expand VSt into these coordinates
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Fig.2.3. (a) View of a CH3 group or a NH3 molecule along the threefold symmetry
axis of the molecule (schematically). (b? Four equivalent orientations of these
molecules (viewed as above) originating from the presence of a fourfold axis at
the lattice site. Each of the four orientations has the same statistical weight

Vst(d)) = ¥ (CnT?+dnT2) . (2.16)
n=1

2) Linear molecules possess two angular degrees of freedom © = (6,¢). In this
case an expansion of the potential into a series of spherical harmonics is appro-
priate

o 4§

Vo (000 = T T ay v, (8,0) . (2.17)
2=0 m=-2

The transition to symmetry-adapted harmonics is very simple if either the molecule or
its site processes a centre of inversion. Due to the relation YZm(Q) = ('1)£Ylm('9)
all terms with odd % vanish (e.g., for B-N2 /2.26,27/. Also, if there is just one
axis of symmetry, this imposes simple conditions on the allowed indices m. In a

case of high symmetry it is especially advantageous (particularly for the 5 cubic
point groups) to use symmetry-adapted harmonics. For cubic symmetry, examples being
the alkali cyanides in their orientationally disordered fcc phase /2.28/, the ex-
pansion reads

o 29+1

vst(e,cp) = ¥ 3 mem(e,cb) . (2.18)

=0 m=1

Only a few coefficients bzm are nonzero. In case of cubic symmetry (point group

m3m) these are b01, b b61’ bos ... The cubic harmonics sz(e,¢) usually are ex-

41° 81
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pressed in terms of coordinates on the three-dimensional unit sphere Tys Tps and
T3 which have been introduced before. An explicit expression for £ = 4 is [the
Towest order term for tetrahedral symmetry is given in (2.9)]

4 4
K41(T1 5T25T3) 4,” 4 }/2_ (T +T +T3'0 6) (2.19)

A potential VSt of cubic symmetry truncated after £ = 4 often is referred to as the
"Devonshire potential" /2.29/. It has six minima (or potential pockets) along [100]
for b,, negative and eight minima along [111] for by, positive.

3) Two- and three-dimensional molecules like C6H6 or CH4 have three angular de-
grees of freedom. A standard choice for three angular coordinated are the Euler
angles wE = (&,n,z). They carry the axis fixed in a molecule from a standard orien-
tation to any desired orientation by successive rotations of n about the z axis, &
about the resulting y axis and, finally, ¢ about the resulting z axis. If no parti-
cular symmetry is specified, an appropriate set of orthonormal functions is provided

by the Wigner D functions and

Vst(gsrhz;) = z z A(l (2) (E,n,c) . (2.20)

mm mm
£2=0 m,m'
=-%

As the number of parameters increases with (22+1)2 the introduction of symmetry-
adapted rotator functions is especially helpful (2.14).

For tetrahedral molecules at a site of tetrahedral symmetry, many coefficients

(2) . . (0) ,(3) (4) (6
Buul vanish and up to order & = 6 only 811 . B11 s 11 and B11

more than in the previous cases it is useful to introduce coordinates on the four-
dimensional unit sphere, the quaternions T = TysTpaTgsTy with T?-+T§-PT§-+T§ =1
/2.16,30/. 1 and -1 denote the same set of angles. The quaternions have a simple

) are nonzero. Even

geometrical meaning; Ty = stin(¢/2), Ty = yRsin(¢/2), Ty = stin(¢/2), T4 = cos(¢/2),
where ¢ denotes the angle of rotations around the axis Xp = (xR, Ypo zR) in a Car-
tesian coordinate system. In general their use is much simpler than that of the

Euler angles wE. The relation to the Euler angles is

1
Ty = simn s1n%(£-c)

.1
sinzn cos%(g-;)
1 1 (2.21)
cos3n sin—(£+c)

COS%ﬂ cos= (g+g)

-
N
it
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and the Usu?(m) are converted into rotator functions Hﬁj?(r) which are polynomials
in the 11 of order 2% /2.7,16,17/ and

V(t) = B(3) (3)(1) (4) g?) + B(6)H$?) o (2.22)

As an example we give the leading terms for point symmetry 43m (Fig.2.2)

(SNT)= (T?+T§+T§+T$ -20&?+Tg+rg+ri)+ 5. (2.23)

(3)(1) is invariant against 192 symmetry operations {(e.g., 4! from permutations of

1.) As with the surface harmonics there are no odd-order terms in the presence of
a centre of symmetry and therefore Hg?)

(w") is the first term for point symmetry
m3m.



3. Neutron Scattering

In this chapter the neutron scattering from rotating molecules shall be discussed.
For this purpose it is necessary to introduce some aspects of the theory of neutron
scattering /3.1/. This will be done without derivation of fundamental expressions
such as (3.1,16). Here the reader is referred to standard textbooks as, e.g., /3.1/.
Naturally the emphasis is on the (spin-dependent) incoherent neutron scattering
which is related to single particle properties. Single particle properties are ob-
served if the spin-dependent scattering lengths of atoms of a given kind but at
different positions in the crystal are statistically independent. An equivalent
formulation in terms of transition matrix elements (Chap.5) can be given for mole-
cules. The validity of this statistical independence must be examined in specific
cases.

There are two alternative formulations of the neutron scattering law. One is
based on transition matrix elements between quantum-mechanical states. It will be
used in connection with low-temperature rotational motion. The other formulation
uses classical self-correlation functions within the concept developed by van HOVE
/3.2/. It applies for the diffusive rotational motion at high temperatures. In this
chapter only the principal ideas shall be developed. It appears useful to give spe-
cific examples only after the underlying model for the classical rotational motions
(Chap.4) or rotational states (Chap.5) have been formulated.

3.1 Formulation Based on Transition Matrix Elements

First we will introduce the partial differential cross section dzo/dee (d2 = solid
angle element, fide = energy interval) which results from scattering of neutrons
treated in the first Born approximation. The transition probability of the total
system from an initial state !waug> to a final state Iwa.u'g'> is calculated, and
the first Born approximation means that this is done in first-order perturbation
theory. [p.> denotes the wave function of the scatterer, |uk> = [p>exp(ikr) the
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spin state and wave vector of the neutron plane wave. Unprimed and primed symbols
refer to quantities before and after the scattering, respectively.
We will follow rather closely the notation in /3.3/. The double differential

cross section then is

e 2
dode T kK 2[ 2. pupal<‘pan” k lewau‘?! ‘S(“"waal) . (3.1)
g’ aa

pu is the statistical weight for the initial state of the neutron. For unpolarized
neutrons the number of spin-up neutrons {u> = |a> and spin-down neutrons |B> is
the same and Py = Pg = 1/2. Pa denotes the population of the initial state of the
scattering molecule. ﬁwaa' is the energy difference Ea-Eal between the initial and
the final state of the scatterer. Finally W denotes the spin-dependent nuclear in-
teraction between the neutron and the scatterer, expressed in terms of the Fermi
pseudo-potential.

NN
W=3 5 As(r-r ) (3.2)
Ll
n=1 vy=1
ny _ .y Y °.°
A'M = a Coh+[2a1.nc//1(1+1)] Sl - (3.3)

Here rny denotes the position of the Yth atom (proton!) in the nth molecule, $n
jts spin operator and I its total spin. N is the number of molecules in the
crystal and there are M atoms in the molecule. Correspondingly, r and < denote the
position and the spin-operator, respectively, of the neutron. ine is the spin-de-
pendent part of the scattering length a, Aoh is spin-independent. The connection
with the scattering length a, and a_ for the spins of neutron and nucleus parallel
and antiparallel, respectively, is (with the index y dropped)

1

3on = 7147 [I+1a, +1a] (3.4)
T _%%%ﬁll (a,-a) . (3.5)

As the spin incoherence is not a property of the scattering nucleus, but a conse-
quence of the statistical independence of the spin states in the crystal, the no-

tations 2on and inc which are found in textbooks should be replaced by ay and

3 here sd stands for spin-dependent and si for spin-independent.



19

In the following it is assumed that the single-molecule states of different
molecules are uncorrelated (Chap.5). Then the spin states of scattering atoms be-
Tonging to two different molecules (n1 z nz) are not correlated, either. The double
differential cross section /3.2/ is

sk "M
wae sk LoLep, Do A lexp(-iger, | )u'v,.>
11
i (3.6)

"2Y2, s
*<H'v,[A exp(19'rn2YZ)luwa>s(w-maa.)

Q = k'-k is the momentum transfer of the neutrons. For n, = n, (absence of corre-
lations) the matrix elements of AT ang A"2Y2 may be replaced by their averages
K, which allows the following separation:

2 2
d20 i d 9y . d g (3.7)
dQde ~ dde  dfde '
dzod/dﬂds does not contain any spin dependence (d denotes "distinct")
do; -2
@ "% L Lpph <u“’a]exp('@'rn1¥1)'u Var”
' aal n1YIn2Y2
n1¢n2 (3_8)

. < "Pa' |exp(ig-rn2Y2) lmua> S(m-waa )

It represents the coherent scattering and as such is connected with the collective
properties of the system (e.g., the periodic structure in a crystal leads to Bragg
peaks).

A is obtained by averaging over all the spin states |v> of the (homonuclear)
atoms in a molecule and

- 1 R
A= 1 Iepm L <vwla Yvs . (3.9)
N TRERVVE ny

For an unpolarized target A = a On the other hand

coh
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dzc

ny
s 1= . ,
e ~ z, 2|Pupa L o<uvp (A T-Rlexp(-iQer,  )u'v, >
up” aa n 1
Y,Y
" (3.10)

M2 gy
" <u (A -A)exphg-rmz)luw;6(w—waa.)

represents the incoherent scattering, which bears information on the singie mole-
cule aspects (s denotes "self").

AE - [Zainc//I(IH)];-?nY . (3.11)

In order to proceed further it is necessary to calculate molecular wave functions
(which comprise both a rotational and a spin part, see Chap.5) and apply

oo o9 1
sei = s_i ++ (s 1

ny “znyz 2 s ny-i-s-1ny+) (3.12)

in order to calculate the matrix element /3.3,4/. §+, %nY+ and ;_, %nY- denote crea-
tion and annihilation operators, respectively; gz and $z the z components of the

operators s and 3. The action of the second term in (3.12), (1/2) §+% > €.0., iS

35 follows: inY- reduces the z component of the nth nuclear spin by A?Z = 1 while
s, increases the z component of the neutron spin by AIZ = 1. The nuclear spins are
correlated within a molecule (see Chap.5), giving rise to interference effects at
low temperatures. Therefore the scattering is not strictly incoherent (in which
case the nuclear spins have to be uncorrelated). However, as long as the spin-states
of two different molecules are uncorrelated, the interference is restricted to with-
in a molecule and one still observes single-molecule motions.

As mentioned in the introduction the best candidates for successful experiments
are protonated molecules, because the spin-dependence of the scattering from pro-
tons is particularly strong. Very recently low-energy rotational excitations were

also observed for deuterated molecules (Sect.7.3).

3.2 Formulation Based on Classical Self-Correlation Functions

An alternative formulation in terms of time-dependent atomic coordinates has been
given by van HOVE /3.2/. Again the scattering is separated into a coherent and an

incoherent part
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2
d°s k' [, .2 2
= [4nacohscoh(o,w) +4mas S (Q,w):] . (3.13)

= incTinc

In contrast to the definitions in the previous section the scattering length here
has been extracted from the scattering function. This is strictly correct only for
a monatomic crystal, but represents a very good approximation if the scattering
from one atomic species dominates. In general this is true for samples containing
protons. For reasons of brevity we will only give expressions connecting with the
incoherent (single particle) scattering. Usually it is assumed that the spins of
different nuclei (also within a molecule) are uncorrelated at high temperatures.
The validity of this assumption, that correlations within a molecule can be ignored,
has been investigated in /3.2,5,6/.

S(Q,w) is the fundamental quantity which is determined in a neutron scattering
experiment. It is i) real, ii) fulfills detailed balance

$(Qsw) = exp(hw/kT) S(-Q,-w) , (3.14)
and iii) obeys sum rules for [du o S(Q.w) /3.1,2/. As indicated, we only want to

deal with the incoherent scattering function Sinc(g’w) which can be introduced as

the Fourier transform of an intermediate scattering function IS(Q,t)

Sine(@0) = o [ exp(-iut) 15(g,0)dt (3.15)
and
;N
I5(0,t) = ¢ I <exp[-iQ-r (0)] exp[iQer,(t)]> . (3.16)

i=1

The brackets denote a thermal average; N is the number of nuclei; the quantities
ri(t) and ri(O) are introduced as gquantum-mechanical operators which do not commute.
In this case the self-correlation function G¢(r,t), which has been introduced by
van Hove, is a complex function and has no simple physical meaning

Sinc(Qsw) = i% [exp[i(Q-r-wt)] Gs(r,t)drdt . (3.17)

The van HOVE formalism /3.2/ usually is applied in the classical high-temperature
regime, where the operators commute. Then Gs(r,t) is the probability of finding a
given particle at the position r at time t, if it was at r = 0 at time t = 0. We
will stick to a classical meaning of Gs(r,t) throughout. It is advantageous, how-
ever, to introduce a generalized self-correlation function /1.10/ Gs([,ro;t) which
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is the probability of finding a given particle at r at time t, if it was at rg at
t = 0 [obviously Gg(r;05t) = 6¢(r,t)]. The probability distribution of the initial
positions ry is given by g(ro) and then the thermal average can be written as

1(Q,t) = [[exp[iQ(r-ry)] 6o(raryst) glrgddrdry . (3.18)

In order to obtain Sinc(g,m) for a polycrystal, an average over the angular coor-

dinates @
! Q

of Q has to be performed

-
sinc(Q’w)lp il = fdﬂqsinc(g,w) . (3.19)
A simultaneous treatment of all kinds of motion a molecule can perform usually is im-
possible. Therefore approximations are required. In general it is assumed that the
various kinds of motion are uncorrelated, that is, that internal vibrations of the
molecule and translational and rotational motions happen independently. In this
case the intermediate scattering function separates into a product.

10,0 = 1 18 (g.0) (3.20)

i

where 1 enumerates the various degrees of freedom. For example, Ig stands for the
translational and Ig\for the rotational function. As internal vibrational energies
of molecules are usually of the order of 100 meV and above, they are much larger
than the energies connected with the external degrees of freedom (5 10 meV). There-
fore the molecules can be considered as rigid and the internal vibrations are ignored.
Furthermore, the centre-of-mass motion (coordinate g) is considered independent of
the rotational motion (coordinate p = r-R). This approximation is not always justi-
fied; the importance of a coupling between translational and rotational degrees of
freedom in some systems has recently been shown /2.8/. It is particularly important
in case of strongly anisotropic molecules, and obviously the approximation is much
better justified for globular molecules. So far a formulation of this coupling has
only been given for simple probability distribution functions /3.7/ which are di-

rectly connected with G.(r,t+=), as will be shown Tater. No attempt to include

S
such a coupling in the description of classical diffusive motions of a molecule in
a molecular crystal has so far been made.

The translational function Ig(g,t) can be written in terms of a phonon expansion

/1.10/ of the intermediate scattering functions

11(0,8) = exp(-2W) [1+1,(Q,t) +...] . (3.21)
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The first term represents the elastic scattering, the second term the one-phonon
scattering, the third term the two-phonon scattering, and so on. The exp(-2W) is

the Debye-Waller factor and for isotropic mean-squared amplitudes <u2> the Debye-
Waller factor simply is exp(-<u2>Qz). Now it is assumed that the scattering can

be separated into a Tow-energy quasielastic part due to the diffusive motion and a
high-energy part due to the lattice vibrations. The quasielastic scattering function
then reads

I(Q,t) = Ig(g,t) exp(-2W) . (3.22)

The acoustic phonons cause some problems, in particular at large momentum transfers.
Recently LOTTNER et al. /3.8/ have shown that the acoustic modes, if approximated
by a Debye spectrum, contribute a flat background to the quasielastic scattering
which increases with temperatures. The effect of the diffusive motion on the phonon
scattering function has been neglected in this consideration.

The main problem remains, namely, the evaluation of the rotational intermediate
scattering function

R .
I(Qst) = [Jexp[iQ(r(t)-r;)] Gg(rsryst) glry)drodr . (3.23)
As r is restricted in space (e.g., to the surface of a sphere) some authors have in-

Est)
/1.10,3.9,10/. It is the conditional probability of finding a molecule with orienta-

troduced the rotational analogue of the van Hove self-correlation function G(mg,w

tion wE at time t, given that the orientation was wg at time t =0

E juf (3.24)

Q t) = [fexp[iQ(r(t)-r )] G(w ,wo,t) f(wo)dw
Here f(mg) represents the probability distribution function of initial orientations
mg. Specific cases in which certain model assumptions allow the calculation of
G(wE,wg;t) are discussed in the next section.
Some additional remarks pertaining to the elastic scattering, i.e., to S(Q,w=0)
can be made independent of the particular model chosen for the diffusion mechanism.
Afterwards we return to S(Q,w). For infinitely long time t /1.10,3.2/

. R .y _ R
11mGS(r’rU3t) - g (rD) (3-25)

18(0,t ==) = |f exp(iger) ¢"(r)dr|? (3.26)

and
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Sincl@swllyy = Ig(g,tw)a(w) . (3.27)
Ig(g,w) sometimes is called the elastic incoherent structure factor (EISF). A & func-
tion is present in (3.27) because Gg(r,ro;t)does not decay to zero for t-«. This is
different from the case of translational diffusion. There an atom or a molecule can
spread out over the whole crystal and gg(ro)-+0. In contrast to this, r is restricted
in space for rotations and gR(r) remains finite. Being directly connected with the
Fourier transform of the probability distribution function gR(r), structural infor-
mation is contained in the EISF. Its knowledge can be very useful for the distinc-
tion between models with different jump geometry. In principle the EISF might yield
information superior to that provided by Bragg scattering as it may be observed con-
tinuously in reciprocal space as a function of Q. In practice it is very difficult
1) to separate the EISF from other sources of elastic scattering, 2) to separate it
from the quasielastic scattering, and 3) to correct for multiple scattering /3.11,12/
As a rule, measurements have to be extended to Qo>w/2 {p=[p| =distance of atoms
from molecular c.0.m.), if a distinction between various models should be made.
Classical self-correlation functions Gs(r,t) lead to symmetric scattering func-
tions Sg(Q.w) = S¢(Q,-w) which obviously do not fulfill the condition of detailed
balance (3.14). Therefore it is customary to include a detailed balance factor and
to define (see, e.g., /1.8,10/. :

Sinc(g’w) = exp(ﬁw/ZkT)SS(Q,w) . (3.28)

The scattering function so obtained obeys the detailed balance condition (3.14).
Its first moment (sum rules!) diverges, however. As long as the energy width of

the quasielastic scattering T << kT, this poses no serious problems. Difficulties
may arise, however, in diluted molecular systems, which remain orientationally dis-
ordered down to very low temperatures. In this case formulations in analogy to
scattering functions of paramagnetic salts /3.1/ may provide a solution.



4, Stochastic Rotational Motion

The diffusion of atoms in gases or liquids is a well-known phenomenon. In the solid
state sizable translational diffusion is encountered at temperatures close to the
melting point and over a wider temperature range in ionic conductors. In an analo-
guous way there is also diffusion-Tike motion of molecules with respect to the an-
gular degrees of freedom. As is the case with translational diffusion, the rota-
tional motion of interacting particles at high temperatures in principle represents
an N-body problem. Practicable descriptions of the diffusion process obviously re-
quire approximations. These and resulting models for the high-temperature rotation-
al motion are discussed in the following.

4,1 General Aspects

In an approximate picture one describes the motion of a given particle in the force
field of its neighbors /4.1/. This force field will usually consist of a static and
a fluctuating part. The static part f(wE) is the negative gradient of the static ro-
tational potential (here wE collectively denotes angular coordinates again). The
fluctuating force field F(t) can be decomposed into a part f(wE,t) the ensemble
average of which vanishes and a fr1ct1on part of the form -ecow (t) It is propor-
tional to the angular velocity & (t) %y is a friction constant. If it is assumed
that the fluctuating force f(t) is uncorrelated with both the angular velocity and
with f(t=0) one arrives at the Langevin theory of Brownian motion and the following
equation (the formulation given below is symbolic, if wE denotes more than one angu-
lar degree of freedom):

ot (1) = ~orgd"(t) + £ lu®) + £1uFst) . (4.1)
The above approximations are correct for large particles immersed in a system of

small particles. Frequent collisions cause fluctuations on a much shorter time
scale than typical time constants of the particle under consideration. Certainly,
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this is not true in a molecular crystal in which all particles are of comparable
size.

One can go beyond the Langevin equation by i) introducing memory effects into
the friction term or by ii) adjusting the short time behavior to the real situation
in a crystal (for references see /1.8/). Often it is assumed /4.2/ that for short
times 2 the particles perform an oscillatory motion, then diffuse for a time Tos
etc. The calculations, however, ignore the static force fo(w;t) arising, for example,
from the crystal field. In most cases the neglect of fo(wE;t) probably represents an
even more serious approximation than the restriction to a Brownian type of motion.
Only very recently, with the availability of high-energy resolution and the use of
multiple scattering corrections, the quality of neutron data has improved to a point
where the limitations of the Langevin theory (for rotational motions) could be
checked. So far even the distinction between fairly simple models has turned out
difficult. Concerning models beyond the Langevin theory the reader is therefore re-
ferred to /1.8/ which gives an excellent review of the whole topic. All these models
rather apply to molecular Tiquids than to molecular crystals.

In practice, models have been utilized which are based on Langevin diffusion plus
further approximations. Mostly two extremes have been used in the data analysis: 1)
The static potential and consequently the static force fO(wE) in (4.1) have been
neglected. This leads to rotational Brownian motion in the absence of a potential.
There are only few melecular crystals for which this assumption can safely be ap-
plied. 2) The opposite 1imit is to take very large potentials giving rise to a
strong orientational localization of the molecules in their potential wells. The
molecules change their orientation by thermal activation across the potential bar-
rier. The path of a molecule in configuration space is ignored and the rate of jumps
to and from a given site is chosen to describe the stochastic angular motion. In the
following, we will restrict ourselves to the 1imiting cases, particularly concerning
the experimental examples. In the Tast part of this chapter, however, we shall re-
turn to models which describe the diffusion in a potential and which seem to describe
the rotational diffusion in molecular crystals better.

4.2 Continuous Rotational Diffusion

As mentioned before, most stochastic models deal with the diffusion in the absence
of a periodic potential. This leads to significant simplifications since the proba-
bility distribution functions gR(ro) or, equivalently, f(wg) are angle independent.
On the other hand one must admit that there are only very few molecular solids where
a complete neglect of the static potential V¢, seems to be permissible. Therefore
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it appears that the models within the limit Vst = 0 are somewhat better suited for
the description of molecular liquids. There are, however, a few orientationally dis-
ordered crystals for which rotational diffusion provides a reasonable approximation.
Examples, Tike the rotation of the n-paraffins /4.3/, will be given later.

We will restrict ourselves to problems in which just one value of the moment of
inertia © enters. Consequently there is just one rotational constant B and only
one diffusion constant D,. There are three such cases (see also Sect.2.1).

R

1) Uniaxial rotation of CH, groups or NH3 molecules. In both cases the rotation

around two of the three axes ?s quenched. 2) Linear molecules have only two rota-
tional degrees of freedom and the two rotational constants are equal. 3} Obviously
the values of the three moments of inertia are identical for spherical top molecules.
For all three cases the self-correlation function G(w ,wo,t) only depends on the
"difference" of the orientations wE—wO [more strictly one should write w (wE) 1; de-
fined by rotational operators R acting on a reference orientation wE one has

E_~E E o E E_Ey - pgtuf o oFoE) . Gl uE
w” = Ruy, wy = Rywy and consequently (w -ug) = RRy wy = o (wg) 1. 6w swy3t) can be
expanded into a double sum of rotator functions of the appropriate dimension. For
a spherical top, e.g., one obtains /3.10/

shubit) = 3 2lF (t)zo(‘” ) ) s (a.2)

2mm'* 8"

with the initial condition G(w ,wo,t 0) = GDu (wo) ] it is found that on1y relaxa-
tion functions FOU( )= F (t) (with m=m' =0) contribute. fG(w ,wo,t) dof = 1 ne-
cessitates Fo(t) =1 for al] times t and the initial condition requires FQ(O) =1
for all orders & /4.2/.

Langevin diffusion is characterized by two Timits. Here it is useful to intro-
duce T = 1/::0 as a character1st1c t1me For short times t << Tg» One has a free
particle behavior and <r (t)> = f r G (r t)dr ~ tz For t3>TR, on the other hand, one
obtains the diffusion Timit and <r (t)> =D (t TR)/6 here TR represents something
like a delay time, after which diffusion starts. The simp]est and one of the most
frequently used assumptions is that the molecule diffuses at all times. This means
the neglect of the delay time R which is permissible only if the friction constant
%o is large. Then the Langevin equation leads to a self-correlation function which
obeys a diffusion equation

E

E E.,y _ E
DRAwG(m ,mo,t) = 3G(w wgst)/at (4.3)

with the following solution for the relaxation functions Fﬁ, introduced above (4.2):
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F (t) = exp[—£(£+1)DRt] . (4.4)

DR is the rotational diffusion constant and DR = <a2>/6T relates it with the mag-

nitude o of the diffusive angular steps. The intermediate scattering function is

Qt) 2 (2!L+1)J (Qp)F (t) (4.5)
2=0

and after Fourier transforming with respect to time

/ﬂ
mC(Q w) = §,(Qp)8(w) + 2 (22+1)] (Qp) 2 (4.6)
2=0 Ty

with r, = £(2+1)D The elastic incoherent structure factor (EISF) is directly re-
lated w1th I (Q t-w) For continuous rotational diffusion all Fl(t) vanish for
t>o (4.4), except Fo(t). Therefore the EISF simply is given by the spherical Bessel
function jO(Qp) which is the Fourier transform for a spherical shell. This is gene-

rally true for V__ = 0, as long as Fk(t) is based on some kind of diffusive motion.

The quasie]astics:cattering consists of an infinite sum of Lorentzians of width Fi.
This differs from reorientation models (see Sect.4.4) where only a discrete number
of Lorentzians contributes and the width I'(Q) remains finite. For continuous rota-
tional diffusion S{Q.,w) obviously remains unchanged after a powder average is per-
formed as it only depends on |g{.

The same calculation for uniaxial rotational diffusion /4.4/, e.g., for a CH3

group, yields

r /w
Sinc(Qsw) = (st1n6)6(w) + 2 Z J (st1n6) 2 X (4.7)
=1 g

where Fl = DR-QZ. In order to obtain a polycrystalline average the Bessel functions

{of the first kind) Ji(stine) have to be replaced by
2 1! .
<J£(Qp)> = E:ﬂ J,(Qosing) dcose;

here 6 denotes the angle between Q and the axis of rotation. Here and in the fol-
lowing the scattering is given per proton.
If t, is not neglected, that is, if the Langevin equation in absence of a static

R
force is used, a somewhat modified relaxation function results (e.g., /1.8,4.5/).

Fx(t) = exp{z(l+1)DRTR[1-t/TR-exp(-t/TR)]} . (4.8)
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Another generalization can be obtained if a single diffusive step a is replaced by
a distribution function W(a) /4.6/, e.g., a Gaussian distribution.

Results for classical rotation in absence of friction can be obtained from quan-
tum-mechanical calculations by going to the classical Timit (kT >> ﬂz/ze). In this
case the coupling between spatial wave functions and nuclear-spin functions—which
is important at low temperatures—can be jgnored and the calculation of neutron
scattering transition matrix elements becomes much simpler (Sect.5.3). Such calcu-
Tations have been performed for freely rotating molecules by SEARS /3.9,10,4.7/ and
de RAEDT /4.8/. They provide very useful tests of stochastic models in the weak
friction Timit.

"More-advanced" models generally necessitate the introduction of additional pa-
rameters and one has to check carefully what generalization is most meaningful. One
example in which discriminating between two different models proved impossible is
reported in /4.9/. Both in neopentane and in t-butyl chloride Langevin rotational
diffusion and a two-step stochastic model fitted the data equally well over a wide
temperature range. This was attributed to very short relaxation times. It may be ex-
pected that new efforts, particularly with single crysta]]ihe samples, will be un-
dertaken to achieve more insight.

4.3 Examples for the Limit of Rotational Diffusion

Two simple examples of uniaxial rotational diffusion are discussed in the following.
In the high-temperature structures of N1'(NH3)6I2 /2.25,4.10/ and of the paraffin
633H68 /4.11/ the limit in which the static potential Vst can be neglected seems to
be approached rather closely.

4.3.1 N1'(NH3)612

The arrangement of the NH3 groups in the cubic antifluorite structure of N1'(NH3)6I2
(T>Tc =20 K) is shown in Fig.4.1. The Ni ions are surrounded by octahedrally coor-
dinated NH3 groups, the dipole moments of which are aligned along the cubic axes.
The static periodic potential experienced by the molecules must be invariant against
both the molecular (3m) and the site symmetry (4/mmm). The combination of the three-
fold axis of the molecule and the fourfold cubic axis leads to an effective poten-
tial of the form

L)

V() = § VypaC0s1200 (4.9)
2=1
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Fig.4.1. High temperature structure of
Ni(NH3)gI2 (space group Fm3m). Only the
four |[Ni(NH3)g]** complexes at the origin
and at the face centers of the unit cell
are shown. The orientationally disordered
NH3 groups are represented by cones

which is rapidly oscillating with ¢. The resultant orientational disorder either
can be sketched as in Fig.2.2b or, more realistically, as the modulation of an
angle-independent density distribution by terms of the type alcos12£¢. The cor-
rection to the elastic incoherent structure factor in (4.7) to the lowest order
is C12J12(stin¢) or the corresponding averaged quantity. Such deviations become
sizable only for momentum transfers Q>8 3_1 and therefore for all practical pur-
poses can be neglected, Similarly we may assume that such a potential has little
effect on the dynamical properties.

Measurements have been performed with powder samples of N1'(NH3)612 /2.25/. In
order to test the applicability of different models it is particularly useful to
look into the Q dependence of the quasielastic scattering. Figure 4.2 shows the
elastic intensity as extracted from measurements at T = 90 K in the range

0.5 R_1 £Q<4.5 3_1. The experimental results are compared to the EISF for two
simple models: uniaxial rotational diffusion and 120° jumps (the latter medel has
4)2 /4.4/. Agreement

is found with the diffusion model only. From Fig.4.2 it is evident that even ex-

been used to analyze quasielastic scattering in N1'(NH3)6 (c10

tremely different models yield an almost identical EISF for Qp <2 and measurements
need to be extended beyond this limit. This does not come as a surprise. The EISF

is proportional to {F(Q)]Z, where F(Q) is the formfactor of the density distribu-
tion generated by a single diffusing proton (3.26). Formally the same formfactor
F(Q) is obtained when calculating the coherent Bragg scattering from a crystal com-
posed by molecules. Then F(Q) describes interferences of the neutron waves origi-
nating from different atoms (this distinguishes coherent from incoherent scattering).
Due to this analogy the same methods can be used which have been developed for the
analysis of orientationally disordered structures /4.12-14/ on the basis of coherent
Bragg scattering. There the angle-dependent part of the density distribution at a
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T T T T
Ni {NHsl I
T =90K

10

momentum transfer (A"

T T T T Fig.4.2. Measurement of the elastic in-
ne coherent structure factor (EISF) in

T Ni(NH3)gI, at T = 90 K are compared
3 with calculations based on one-dimen-
sional rotational diffusion (——) and
A ] 120° jumps (----) /2.25/

[ {meV)

I * Fig.4.3. Analysis of quasielastic neu-
1 | tron scattering spectra in Ni(NH3)gI2
r at 90 K with a single Lorentzian of
width T (120° jump model) and the ro-
tational diffusion model (lower half
of the figure) /2.25/. The latter model
yields a Q-independent rotational dif-
: l ‘ . fusion constant DR and therefore seems
b 3 5 3 % to represent the diffusive motion much
momentum transfer (A7) better than the jump model

Dp (meV)

molecular site is expanded into symmetry-adapted surface harmonics (for uniaxial
rotors, trigonometric functions). In case of continuous diffusion there is no angle
dependence and the EISF simply is <J0(Qp)2>. For the 120° jump model there are al-
so trigonometric functions with argument 3n¢. Therefore the structure factor addi-
tionally contains Bessel functions of order % = 3, 6,9, ... These contribute sig-
nificantly only for large momentum transfer and a distinction between different
models cannot be based on measurements at small momentum transfer Q.

The difference between the aforementioned two models becomes even more evident
when the quasielastic part of the scattering is analyzed. Rotational jump models
(see Sect.4.4) always predict only a finite number of Lorentzians, each with a Q
independent width. For uniaxial rotation with a restriction to 120° jumps the situ-
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ation is particularly simple, as there is just one Lorentzian. For continuous rota-
tional diffusion, on the other hand, the calculation leads to an infinite series of
Lorentzians with increasing width [see (4.7)]. One now analyzes the observed spectra
with a single Lorentzian. If the linewidth is Q independent, the jump model holds,
which is not true otherwise. Figure 4.3 shows that the width so obtained increases
monotonously with Q and, therefore, the jump model must be discarded. The spectra
measured at different Q values can, however, be explained with a single diffusion
constant DR’ as may be seen in Fig.4.3.

It is interesting to Took at the temperature dependence of the diffusion constant
DR' Figure 4.4 shows spectra of measurements at four different temperatures. The
spectrum at T=5 K is taken at a temperature well below the orientaticnal order-dis-
order transition temperature T0 = 19.9 K in Ni(NH3)612. In this phase the molecules
become orientationally ordered, experience a potential with a leading term V3c053¢
and display rotational tunneling. Tunneling Tines could not be resolved with an
energy resolution of about 0.30 meV [used for all scans aimed to determine DR(T)].
Better resolution yields a tunnel splitting of about 65 peV. It may be noted that
at 5 K there is practically no inelastic scattering found in the range 0.1 < |E| <2
meV. An analysis of the quasielastic scattering (above the phase transition) in

41500
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Fig.4.4. Temperature dependence of the quasielastic neutron scattering from
Ni(NH3)gIp /2.25/. The measurement at T = 5 K is below the order-disorder phase
transition (T0 = 19,9 K) and can be used to determine the background level
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20 -

%?,/’ Fig.4.5. Rotational diffusion con-
P stant Dp(T) as obtained from a fit
10~ ;0’, - of the continuous rotational diffu-
S sion model to the spectra from
Tim A% Ni(NH3)gI, at various temperatures
o~ /2.25/. The dashed line shows the
o Einstein behavior, Dp(T) ~kT. De-
Ve i . viations from this Tine near the
0 50 100 phase transition are probably due
to orientational correlations be-
temperature (K] tween NH, groups

Dr(T) (meV)

terms of continuous rotational diffusion leads to the results displayed in Fig.4.5.
The diffusion constant DR decreases almost linearly for 50 £ T £ 130 K and obeys the
Einstein relation DR = kT/(;DO); Ty = friction constant. Approaching the phase tran-
sition, DR deviates increasingly from this relation to the side of lower values.
This may have two reasons. 1) It may reflect the effect of a small but finite acti-
vation energy EA = 25 K. 2) The deviations may signal the breakdown of single par-
ticle diffusion in the vicinity of the phase transition temperature TO. The orien-
tational correlations slow down critically on approaching T0 (the transition is of
first order, but starts like a continuous transition). This may show up in the single
particle rotations as well, as they represent a weighted average of all rotational
modes in the crystal. Detailed calculations are needed in order to relate the ob-
served deviations near T0 to orientational correlations or to discard this picture.

4.3,2 n-Paraffins (C33H68)

Another class of systems in which uniaxial rotational diffusion has been found are

the n-paraffins. Stochastic rotational motions have been studied in paraffins of
different length—mainly by the method of quasielastic neutron scattering /4.3,15,16/.
Here only one recent work shall be reported, which was performed with a single crys-
tal of C33H68 /4.3/. Four stable phases of C33H68
the melting point at Tm = 71.8 °C /4.11/. In all phases the straight chain paraffin
molecules (Fig.4.6a)-lenght ~45 R—form lamellae-1ike structures as schematically

shown in Fig.4.6b. The various phases differ with respect to the translational and

exist between room temperature and

rotational disorder of the molecules and consequently also different types of sto-
chastic motions are characteristic for each phase /4.3,17/. We will only discuss
phase D, which is stable in the narrow temperature range 68 °C < T £ 71.8 °C. In
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Fig.4.6. (a) Section of straight chain paraffin (schematic);
ic H (b) schematic representation of the structural properties of
4

the n-alkane C,,H., in the four solid phases A,B,C and D
' /4.11) 33768

I

modification A B C D
) b)
schematic structure ’UHII IIH ]f f[ }/Z'ITZ v
crystal class orthorhombic monoclinic monoclinic monoclinic
(triclinic}
state of

no interfacial defects [no interfacial defects |Fregular staggening iy hain defects

translational order of straight chains

type of 90° - jumps of singlejco tive T, rotation,
rofational motion | molecules 800 < jumpe. flip-flop-motion | 4ot diffusion

this phase the measurement of temperature-dependent diffusion constants as has been

performed for Ni(NH is not meaningful. Phase D has a strongly disordered struc-

) 1
ture: i) orientatioﬁa?]i it is probably close to complete disorder; ii) translational
disorder shows up in the form of extended interfacial defects (several R Tong) giving
rise to rough surfaces of the lamellae; iii) additionally there are intrachain de-
fects in the form of kinks which Tocally cause deviations from the straight chain
configuration. Quasielastic scattering studies with energy resolution of 1, 8, and
40 peV (using different spectrometers) have been performed with the momentum trans-
fer parallel (Q.) and perpendicular (Q,) to the chain direction. The Tatter allows
a separation between translational diffusion and rotational diffusion, a problem
that is also met in similar form in connection with liquid crystals.

There has been no evidence for kink diffusion at all. Concerning the angular
motion the low symmetry in the crystal does not immediately suggest complete orien-
tational disorder (in contrast to N1'(NH3)612 /2.25/). Obviously, the rotational mo-
tion has to be uniaxial, but there is not necessarily uniaxial rotational diffusion.
In case of 033H68’ rotational diffusion of "rigid rods" may be concluded from the
EISF and from the Q, -dependent width of the quasielastic spectra. Kinks probably
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are present, but kink motion is not observed on the time-scale defined by the ener-

gy resolution of the experiment /4.3/. A rotational diffusion constant DR = 6.1010

L has been found which is somewhat smaller than the values reported for shorter

s
paraffin chains /4.15,16/. Translational diffusion over an extension of 4.5+0.5 R
— which seems to define the length-scale of the interfacial defects—and a trans-
lational diffusion constant DT = 1.0-105 cmz/s are found. A1l fits have included
multiple scattering corrections /4.3/.

The number of crystals in which rotational diffusion may be expected to describe
the stochastic rotational motion is relatively small. Examples with more than one
rotational degree of freedom are B—N2 (coherent scatterer; molecular dynamics cal-

culations are available /4.18/) and CH4 I or CH4 diluted in rare-gas solid /4.19/.

4.4 Rotational Jump Model

In case of a strong static rotational potential one is in a 1imit opposite to the
one of rotational diffusion. A molecule Tibrates around any one of a finite number
of allowed equilibrium orientations, before it changes to a different equilibrium
orientation in a diffusive step {e.g., a 120° jump for a CH3 group). The rotational
jump model /4.20,21/ assumes that the jumps are instantaneous, that is, the jump
time required for a diffusive step can be neglected in comparison with the time be-
tween consecutive jumps (residence time t). It is not obvious that the assumption

of instantaneous jumps is always justified (even for strong orientational locali-
zation). In particular, it seems dangerous to estimate jump times assuming that a
molecule rotates freely (classically free) on its way from one minimum to the next.
The molecule either has to pass through a saddle-point or a maximum of the rotation-
al potential and as this will consume a large part of its kinetic energy, the flight
time is much longer. In another approximation which is always used, the centre-of-
mass motion is treated as statistically independent from the rotational motion.

Assuming instantaneous jumps the rotational self-correlation function reads
/1.10/

G p§i)(t) 8[e-(rygry)l - (4.10)

1

(rorgst) =

I~

J

M is the number of allowed sites of a given proton, and pgi)(t) denotes the proba-
bility of finding a proton at the site rj at time t, provided that it was at rio at
time t = 0. With the formulation given in (4.10), the integration over all initial
positions fdro in (3.23) is replaced by a summation over a discrete number of po-
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sitions rio® The & function in (4.10) certainly can be replaced by a Gaussian which
may account for a finite librational amplitude.

If the successive jumps are uncorrelated the probabilities p§1)(t) obey a simple
system of coupled differential equations, sometimes referred to as rate eguations

. M . .
a{Vieyae < Ll ) oV | (4.11)

The sum includes a1l M' sites which are accessible via jumps from the site L and
all jumps from such sites back to rj. For simplicity it has been assumed that the
equilibrium occupation of the sites is constant and that all allowed decay channels
are equally probable. The probability for a jump of a proton is w = 1/t, where T is
the average time between two successive jumps. Before solving (4.11) it is necessary
to specify the initial conditions p§i)(t=0) = aij and the normalization

5 pg") = 1 for all i.

j=1

In the following some of the steps on the way to the scattering function s?nc(g,w)
will be illustrated with the example of an equilaterial triangle rotating around its
axis of symmetry (CH3 group, NH3, ...). In this case there are three sites
1= (1,0, 000, 1ty = (=1/2, ¥3/2, D)oy, vy = (-1/2, -/3/2, D)o, and only 120°
jumps are poss1b1e. Here o0 denotes the d1stance of the atoms from the threefold

L
symmetry axis. The rate equations (index i omitted, w= T ) are as follows:

11
B M ALE

Py =

o1 1

LA I A A 4.12)
1 1

Py = WPy 7P, "Ry -

Sometimes a modified meaning for w is found in the Titerature; w' denotes the pro-
bability of jumps to a distinct site and—for the present geometry—w' =w/2.
With the ansatz p = gexp(it) one obtains

=Wq with W=3 | 1 -2 1]. (4.13)

The symmetry of the problem is reflected in the eigenvectors of W. In the present

case this is the group of even permutations of three particles which is isomorphous
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with the group C, (3-fold rotation axis). The eigenva]ue A = 0 belongs to the com-
pletely symmetr1c (stationary) solution with 9 —-(1 1 1) and 1mmed1ate1¥ yields
5 W, on
the other hand, belong to the solution with E symmetry. The eigenvector is g =

the elastic incoherent structure factor (EISF). The eigenvalues x2/3

%(1,e,e*)and 43 is the complex conjugate of o3 € =-%+1V@]2 and e* are cube roots
of 1. Obviously completely symmetric combinations of the p;(t) do not decay with
time while combinations of lower symmetry do decay. While not really necessary in
the present example, group theoretical arguments become very helpful in case of a
large number of sites and also, if both molecular and site symmetry are important
/4.22-26/.

With use of the initial conditions and the normalization one obtains

(4.14)
Taking ry = 0 as origin and with T2 = r2 s T3 = 30y the self-correlation func-
tion reads
Gg([,r1;t) = 8(r)p(t) + [6(;-512) +8(r-r )] [1-p(t)]/2 . (4.15)

Corresponding expressions are obtained, if r and I3 respectively, are taken as
origin and then

15(0,t) = p(t) +5 [1-p(t)] A(Q) (4.16)
with
A(Q) = cosQ-ry, +C05Qer,n +COSQers, - (4.17)

The scattering function, finally, reads

R -1 2.2 _3w/em
Sinc Q) —[ (Q)](S(w) [ A(Q)] o2 (4.18)

By averaging over all orientations QQ of the wave vector Q (3.19) the equivalent
expression for a powder is obtained /4.4/

(@) =] $+53,(003)] 6(0) +[ 54555 (00vm) | 22 (4.19)

1nc W +(3w/2)2
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If the scattering function does not refer to a single proton (as here) but to the
molecule, there is an additional factor Mp (= number of protons in the molecule).
Both the expressions for single crystals and powders fulfill the sum rule

R _ . <R -
fsinc(g,m)dw = 1 and élg Sinc(g’w) = §(w) .

4,5 Reorientations in Ammonium Salts

Several experiments which have been analyzed with the rotational jump model are
given in the review by LEADBETTER and LECHNER /1.10/. We will only consider the
example of tetrahedral molecules and discuss two fairly recent measurements with
ammonium salts /4.27,28/. The simplest model has been discussed by SK@LD /4.21/
and applied to the rotations in solid methane, though its application to ammonium
salts seems more adequate. The reorientations of a XH4 molecule at a tetrahedral
site, which corresponds to four possible positions for each proton, is treated.
Allowing only for a single type of jump (either 120° or 180° jumps), the quasi-
elastic scattering is described by a single Lorentzian. With a restriction to
jumps around the threefold axis one obtains for a powder sample

Q) =4 [1 t3j0(00/§)]6(m) + %[1 -jo(op/i)] L. (4.20)

e w +(4u)2

where u denotes the probability per unit time that a 120° jump occurs around a cer-
tain threefold axis. A1l required premises for this model are rather closely ful-
filled in the orientationally ordered phase (CsCl1 structure, space group P43m) of
the ammonium halides, well below the transition temperature into the ordered phase.
In this temperature regime, unfortunately, the residence times are rather long and
the quasielastic scattering cannot be resolved with presently available resolutions
of neutron spectrometers.

4.5.1 (NH SnC]6

4)2
There is, however, another class of ammonium salts, which may serve as an example
instead: (NH4)2MX6 with M4+ = metal ion, X = halide ion. These salts mostly con-

dense within the relatively simple antifluorite structure (space group Fm3m), which

has tetrahedral symmetry (43m) at the ammonium site (Fig.4.7).
(NH4)25nC16 is one of the hexahalometallates crystallizing within this structure
/4.29/. The rotational potential is considerably weaker than in the ammonium halides,
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Fig.4.7. Structure of (NH4) SnClg (space
group Fm3m). The figure emphasizes the te-
trahedral coordination of the NHZ group
(position 1/4 1/4 1/4 by four [SnClg]== com-
plexes at the face centers of the unit cell

thus allowing rotational jumps on a time-scale well accessible to neutron scatter-
ing. A quantitative description of the rotational potential on the basis of Coulomb
interactions (which has been successful in the case of the perovskite NH4ZnF3 /2.23/
plus hard-core repulsion has been attempted but has not yielded a satisfactory re-
sult so far /4.27/. A structure analysis of the isostructural compound (NH4)251'F6

/4.30/ shows that the orientational probability function is not Gaussian and sug-
+

4
ation is probably similar in (NH4)ZSnC16. The existence of an extremely anharmonic,

gests that there is a wide potential well in which the NH, group librates. The situ-
box1ike potential may be concluded from the energy of the excited 1ibrational states
as E2>2E1 is observed /4.27,31/. Here E1
second excited librational state, respectively.

and E2 denote the energy of the first and

Without detailed knowledge of the potential, it is difficult to estimate how much
less important 180° jumps are in comparison with 120° jumps. This information could
also be provided via the Q dependence of the quasielastic scattering from a single
crysﬁa] (Sect.4.5.2). Experiments with (NH4)25nC16
with powder samples and therefore the question, whether 180° jumps can be ignored

so far have only been performed

or not still cannot safely be answered. In spite of that, (NH4)ZSnC16 provides a
very interesting system for the study of stochastic rotational motions. As there
is no phase transition, rotational jumps can be observed in a rather wide tempera-
ture range (better: range of 1). It is limited at high temperatures (T = 300 K) by
the fact that the jump model probably becomes inadequate and should be replaced by
a model accounting for diffusion in a potential (Sect.4.6). The temperature range
is limited on the Tow-temperature side as well because below T = 70 K quantum as-
pects become important (Sect.6.2.4a). Nevertheless the quasielastic linewidth T
(HWHM) could be observed over almost three orders of magnitude (Figs.4.8,9). For
this purpose two different spectrometers were employed: a three-axis spectrometer
for the work with relatively coarse resolution and a backscattering spectrometer
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7 T " Fig.4.8. Quasielastic neutron scattering
from {NHy),SnClg powder /4.27/. The half-
4000 | } width I' =4u =4/t of the quasielastic line

is directly connected with the jump rate
for classical reorientation

Fig.4.9. Arrhenius plot of the halfwidth
3000 - ] T(T) (in peV); from the slope of the
straight line fitted to the data point,
an activation energy EA = 590 +30 K for
the ammonium reorientation in (NH4)ZSn016
2000 ] is found /4.27/
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Fig.4.10. Fixed-window measurement of the quasielastic scattering from (NH4)ZSnCI6
/3.8/. A fit to the experimental data (solid Tine) yields an activation energy
Ep = 620 +130 K for the reorientational motion of the NHZ ions

for the high-resolution spectra. The temperature-dependent background which has been
noted in the spectra recorded with coarse resolution and which could not be explained
in /4.27/, probably is due to acoustic phonons /3.8/. The spectra are analyzed by
least-squares fits on the basis of a simple model. The quasielastic scattering is
described as a Lorentzian with temperature-dependent width I'(T) (4.20), which is
convoluted with the instrumental energy resolution.

Figure 4.9, in which log I'(T) is plotted versus 1/T, exhibits an Arrhenius type
of behavior. From the slope of the straight Tine through the data points, an acti-
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vation energy EA = 590 + 30 K is deduced /4.27/, which is in rather good agreement
with NMR values. Obviously thermally activated jumps across the potential barrier
take place and yield T = Foexp(—EA/kT) with T = 4u [the jump rate u is defined in
connection with (4.20)].

The activation energy EA can be determined in a different way which avoids the
temperature-dependent measurement of quasielastic spectra: the "fixed window" method
/4.32/. The spectrometer is set to the elastic position, that is, to an energy trans-
fer fiw = 0 and the finite energy resolution of the spectrometer defines an "energy"
window. The intensity in the counter IFw strongly depends on the Tinewidth I'(T),
which changes with temperature.
R

inc(Qwldw . (4.21)

IFW(Q,T) ~ exp(-2W) [R{w)S
-0

Here R(w) denotes the energy resolution of the instrument at a nominal energy trans-
fer hw = 0. A fixed window scan /3.8/ with (NH4)25nC16 and an energy resolution
AE = 1 meV (FWHM) is shown in Fig.4.10. It yields an activation energy EA==620 +130 K.
As to be expected the uncertainty of EA is larger than with the measurement of quasi-
elastic spectra. The advantage of the fixed window technique is its simplicity which
renders the method extremely useful for a first survey in an investigation of a new
system. Its usefulness was demonstrated convincingly in a measurement with Pb(CH3)4
/4.32/. Leadtetramethyl is a tetrahedral molecule with methyl groups at the corners
of the tetrahedron. Two activation steps were found (Fig.4.11) and attributed to
the stochastic rotational motion of the molecule as a whole with a relatively large
activation barrier E?/k = 190 K and CH3 group rotation with a much smaller activa-
tion barrier Eg/k =7 K. A value EA ~ B (rotational constant) should not be taken

too literally, however, as the activation step probably extends beyond the regime
of classical rotation.

quﬂ- . Fig.4.11. Fixed-window measurement

¢ “’“ﬁ%*?va;; of the quasielastic scattering from
S00r T, T Pb{CH3)4. Two activation steps are
?“ observed and yield activation ener-

gies Ef = 190 K and E = 7 K, which
q‘ﬂn.‘ have been related with the rotation-
s 1 L L . al motion of the whole molecule and
50 100 150 200 250 that of single methyl groups, res-
temperature (K) pectively /4.32/

counts /S min




42

4,5.2 Ammonium Chloride (NH4C1)

A second example of considerable interest is provided by the ammonium halides, par-
ticularly by NH4C1 in the vicinity of jts orientational order-disorder transition
at 242 K /4.33/. Above the transition temperature the ammomium sites have symmetry
m3m which is greater than the tetrahedral symmetry of the NHZ group. Consequently
the molecules have two distinguishable orientations or —more precisely—there are
2 sets of 12 orientations (described by 12 different Euler angles wE), each orien-
tation within a given set generating the same density distribution (Fig.4.12). Be-
Tow the phase transition one of the orientations with occupation py—we return to
the simplified picture of just two orientations —becomes preferred. In the ordered
phase with the tetrahedra aligned parallel, one may introduce an order parameter

N = PPy Above TC in the disordered phase the order parameter is zero, as
P1 = pz =1/2.

Fig.4.12. Structure of NH,C1 (space group
Pm3m), with the two alternative orientations
of the NHj ion. Cg and Cy4 denote axes for
120° jumps and 90° jumps, respectively
N=@.Cl=(Q,H=® /4.28/

MICHEL /4.34/ has discussed the reorientational motion above TC, where each pro-
ton may be found in one of eight possible positions. The rotational jump model seems
to be very appropriate for stochastic rotational motions in NH4C1, as the molecules
are strongly localized with respect to their orientations; the librational amplitude
is only about 7°. Two different kinds of jumps are distinguished: 120° jumps around
the threefold axis (rate u) which do not affect the order parameter and 90° jumps
(rate v) which change the orientation of a molecule and thus the order parameter n.
For the disordered phase MICHEL /4.34/ finds that apart from the totally symmetric
solution with A o= 0, there are 3 eigenvalues connected with the quasielastic scat-
tering: AZ = 2v+4u and A4 = 6v are triply degenerate eigenvalues, k3 = 4y +4u is
not degenerate. Each Lorentzian of width A; is connected with a specific Q-depen-
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dent form-factor /4.34/. Obviously an attempt to determine u(T) and v(T) separately
— in order to test Michels's prediction of a strong change of v in the vicinity of

the phase transition—requires Q-dependent measurements in a single crystal. Such

a measurement has recently been performed by TUPLER et al. /4.28/. It has been per-
formed in an extremely careful fashion, rendering it a model example for reorienta-
tion studies. Below the phase transition the cubic potential becomes distorted, a

ratio pz/p1 = exp(-AEﬁ/kT) # 1 results and consequently, the 90° jumps from (rate v,)

i
or to (rate v2) the favorable positions become inequivalent. AEA is the difference

of the ground-state energies at the two sites. Therefore, in orger to analyze data
taken at T < Tc’ it turned out to be necessary to solve the rate equations for a
nonzero order parameter n /4.28/. A calculation within mean-field approximation
{more correctly, the Ai would depend on the nearest-neighbor correlation function)

yields generalized eigenvalues A (i = 2,3,4)

v
A = 4u+1—_1ﬁ (3 - /1+8n2) (4.22a)
A
Ay = 4u+1—_1ﬁ (3 +/148n%) (4.22b)
6v1
)\4 = 1—-1'_1 . (4.22(2)

Here the relation v, = v1(1+n)/(1-n) has been used. Both limiting cases are repro-
duced. For n = 0 MICHELS's original result /4.34/ is found, while n = 1 leads to
the expression obtained by SKPLD /4.21/. For simplicity the authors have not dis-
tinguished between two different types of 120° jump rates (ui), corresponding to
the two nonequivalent orientations. The results, as obtained with thin single crys-
tals of NH401 (transmission about 80%) with high-resolution neutron spectroscopy,
are shown in Fig.4.13. They are based on measurements at several Q positions, chosen
such as to single out either A, or 14, to the extent possible. Only if n(T) in the
ordered phase is known, can the jump rates u and v (120° and 90° degree jumps, res-
pectively) be extracted from the quasielastic Tinewidth T'(Q,T). n has been deter-
mined from measurements of the Bragg intensities on a three-axis spectrometer. This
also allowed the determination of the Debye-Waller factor which is needed for a
quantitative analysis of Sinc(g’w) <o Ssnc(g,m).

Figure 4.13 shows that the 90° jump rate v first decreases continuously on ap-
proaching Tc from above, but then drops sharply at the transition temperature. This
is due to the first-order character of the transition, which ultimately leads to a
discontinuous change of n as well as AEQ from zero to a finite value. To the extent,
the second orientation (probability p2) becomes forbidden, 90° jumps also become
less probable. The transition, by the way, becomes continuous at pressures above
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temperature (C) = are shown in the lower part of the figure /4.28/

the tricritical point at P = 1.5 Kbar. The 120° jump rate u also decreases, but
without a noticeable jump at Tc /4.28/.

There are several other aspects, which are worth noting. With use of the rela-
tion v = voexp(—Eﬁ/kT) and the semi-quantum-mechanical prefactor
vo = (kT/h)-[]-exp(-E1/kT)] /4.35/, Eﬁ/k = 1985 K can be deduced for T = TC~+1 K
and Eﬁ/k = 2260 K for T = TC— 1 K6 The energy of the first Tibrational state is
E1 =A49 meV /4.36/. Classically v = E1
gy E4 which is obtained by the above method /4.28/ is close to, but smaller than
the value derived from the rotational potential V(t) of HOLLER and KANE /2.16/ via
EQ = V(Tb)-V(Tm) - %'thIB; (thIB = E1). Here T and 7, denote the orientations
at the minimum and between two minima (passage from the minimum to the other by

is an attempt frequency. The activation ener-

fourfold rotation), respectively. The difference probably is due to the fact that
there is a saddle point close to Ty but not at Ty, Presently molecular dynamics
calculations are performed /4.37/ with the aim of studying details of the passage

from one minimum to another.

4,6 Diffusion in the Presence of a Potential

Before leaving the field of classical molecular rotations, we want to discuss the
situation prevailing in most molecular crystals—the diffusion in the presence of
a finite rotational potential. So far there are no neutron experiments available
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which are aimed at testing recent model calculations. Therefore we shall restrict
ourselves to a brief description of two alternative approaches.

DIANOUX and VOLINC /4.38/ have calculated the scattering functions S?nc(g,w)
starting from a diffusion equation for Gs(r,t) in presence of a rotational poten-
tial V(o) = % Vncosn¢. The replacement of the Langevin equation by a diffusion
equation for the self-correlation function Gs(r,t) apparently is a reasonable
approximation in the strong friction 1imit (Sect.4.2). Otherwise the short-time
behavior of Gs(r,t) which is not adequately described within the above approxima-
tion, becomes important. The model of Dianoux and Volino correctly reproduces con-
tinuous rotational diffusion and a rotational jump model between n equidistant
orientations as limiting cases. In the intermediate regime no analytic expression
can be given as the solutions are obtained by truncating an otherwise infinite ma-
trix before it is diagonalized. Though the method has not yet been used to analyze
rotations in a specific molecular crystal, the approach means a significant step
forward. It may be hoped that a generalization to three-dimensional diffusion soon
will follow. Other approaches which might favorably be translated into the language
of rotational motion have been performed in context with ionic conduction. There
the translational diffusion of a particle in a periodic potential has recently been
studied /4.39,40/.

Another promising approach for the treatment of classical rotations in a periodic
potential recently has been published by de RAEDT and MICHEL /4.41,42/. The authors
presented a model which combines an oscillatory aspect—at low temperatures the
molecules perform angular oscillations around one of their equilibrium orienta-
tions—~and a stochastic aspect which may be described by thermally activated re-
orientations. Obviously the oscillatory aspect dominates at low temperatures, where
the reorientational motion is exceedingly slow. Because of the classical treatment,
the model is not applicable at very Tow temperatures, however. At high temperatures
the reorientations become increasingly important. The authors used symmetric-adapted
surface harmonics szﬁn(t)] as dynamical variables and a continued fraction approach
{which will not be described here) in order to calculate the dynamics of a single
molecule in an effective potential. The starting point is the single particle Hamil-
tonianswof the molecule (see Sect.5.1). For calculating the time-dependent corre-
lation functions <KMnB)(t)] Klm[p(t=0)]> the time evolution of the dynamical vari-
ables sz[ﬂ(t)] is needed and classically can be obtained via the Poisson brackets
K(t) = {K(t),#}. So far the approach is restricted to molecular impurities in crys-
tals. The explicit calculation /4.41/ is specialized to the motion of a dumbbell
in an octahedral cage {e.g., CN™ in KC1; see Fig.2.1). A formulation of both the
incoherent neutron scattering law and of the Raman intensities is given. The rela-
tion of the energy width of the quasielastic peak (reorientation) and that of the
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inelastic peaks (oscillation) to the widths generated within the Langevin model of
diffusion is not yet established.

As there are practically no examples for the classical rotation of dumbbell-type
molecules with a large Tinc? 2 calculation aiming at tetrahedral molecules or methyl
groups is highly desirable. It is for these reasons that the calculation in its pre-
sent form /4.41/ is compared to Raman measurements with CN~ impurities in alkali-
halides /4.43/. Very good qualitative agreement is found.

An interesting aspect concerns the character of the rotational motion for dynam-
ical variables of different symmetry. Spherical harmonics of order £ = 2 can be de-
composed into two harmonics of E_ symmetry and three harmonics within T2 . For a
potential V() = V4K41(Q) (2.19) and V, positive, the potential minima are in [111]
and the maxima in [100]. For a negative sign of V4 this is reversed. The authors
show that harmonics of Eg symmetry have reorientational character for V4 >0, and

the harmonics of T, symmetry have oscillatory character. For V4 < 0 the situation

is reversed. The rsgrientation between three equivalent orientations (minima in
[100])is isomorphous to the case of methyl group rotations. There E symmetry is
found for the relaxation of the probability densities p(i) (Sect.4.4). Similarly
the symmetry character of the angular oscillations can be shown to be that found

in /4.41/.



5. Rotational Excitations at Low Temperatures
l. Principles

At low temperatures the fluctuations of the rotational potential die out and quan-
tum aspects determine the single particle rotation. When fluctuations can be neg-
Tected it suffices to solve a stationary Schrdodinger equation in order to learn
about energy eigenvalues and eigenfunctions of a molecule in a given rotational
potential. Direct measurements of the transitions between rotational states in
general require neutrons. Transitions within the ground-state multiplet usually
are accompanied by a change of the nuclear-spin function which can be produced by
neutrons. This aspect will be dealt with somewhat later. Measurements with mole-
cules displaying almost free rotation in a quantum-mechanical sense have been known
for quite a while—particularly the transition from p—H2 to o—H2 which involves a
change of the rotational quantum number J from an even to an odd value (e.g.,
J=0+1) /5.1,2/. Another example is solid methane (CH4) in its phase II; there
2 out of 8 molecules (Fig.6.1) remain disordered at low temperatures and rotate
almost freely /5.3-5/. Rotational tunneling only recently has opened up as an ac-
tive field for neutron scattering /5.5/ and has stimulated a lot of activity, both
experimental and theoretical. This does not mean that almost free rotation is the
more frequently found phenomenon—on the contrary. Due to intermolecular interac-
tions in a solid, only in rare cases is V/B a small quantity. Rotational tunneling
has not been observed earlier because high resolution neutron spectrometers
(AE > 0.3 peV or 4 mK) had not been available before about 1973.

The natural unit of the periodic rotational potential is the rotational constant
B = h22@; examples are B(HZ) = 85 K and B(NH3, CH3, NHT, CH4) all about 7-8 K. For
all other molecules B is of the order of 0.1 K or less, e.g., B(CC14) ~ 0.08 K. Ob-
viously hydrogen is close to the 1imit of quantum-mechanical free rotation, espe-
cially because the anisotropic interaction (o-H2 has a quadropole moment) is only
of the order of a few K. For large molecules with heavy constituents—the above
example is CC14——the rotational constant is very small. As in addition the inter-
action is strong, the rotational motion at Tow temperatures is quenched. Low-ener-
gy rotational excitations accessible to neutrons are found in CH4, NHZ salts, NH3
and CH3 groups in various surroundings and crystal phases.
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In this section the calculation of rotational states is described starting from
the single molecule Hamiltonian. Two alternative approaches have been used. Dealing
with homonuclear molecules the exclusion principle enters and properly symmetrized
wave functions have to be constructed as sums of products of rotational wave func-
tions ¢ and spin functions x. Only after the construction of complete wave functions
is the basis for calculating neutron scattering transition matrix elements provided.

In connection with rotational tunneling, a plausible explanation for its single
particle character can be given. While the wave functions ¢ of two states with dif-
ferent symmetry differ appreciably, the densities @9* (or the corresponding charge
density) are almost identical. Therefore, the intermolecular interaction is prac-
tically unaffected by a tunneling transition.

5.1 Rotational States

5.1.1 One-Dimensional Rotation and Exact Methods

We will start the discussion of the quantum-mechanical states of a molecule in a
periodic potential by giving an especially simple example, that of a dumbbell which
is restricted to only one angular degree of freedom. With a site symmetry which is
a subgroup of (or equal to) the molecular symmetry the leading term in the poten-
tial is V(¢)= (1/2)V2c052¢. The kinetic energy is B 32/8¢2 and the following Schri-
dinger equation is obtained

. + 3V C0s20)p = Ep . (5.1)
A simple substitution, a = E/B and q = V2/4 B, leads to the well-known Mathieu equa-
tion /5.6/ which is exactly soluble. Expressions for the eigenvalues Ei and the
eigenfunctions ce; and se, are given in /5.6/. Usually the Ei are expressed in terms
of continued fractions /5.7,8/. For details of the derivation, the reader is re-
ferred to the papers of GLODEN /5.8/ who also has adapted the method to general po-
tentials of the shape (Vn/2)cosn¢. This allows the calculation of eigenstates for
various kinds of uniaxial rotors including those of CH3 groups 1in potentials of
threefold or sixfold symmetry /5.8/. The solutions of the Mathieu equation also
are extremely useful for testing approximations, which are necessary in case of
more than one angular degree of freedom.

The lower energy eigenvalues of the Mathieu equation with a term qcos2¢ are
shown in Fig.5.1. Three different regimes may be distinguished.
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0+ Fig.5.1. Energy eigenvalues of a dumbbell
with one rotational degree of freedom in
a potential V{¢) = 1/2 V, cos2¢ {solution
of the Mathieu equation)

a) Weak rotational potential. For V2 = 0 one retains a quantum-mechanically free
rotor with energy eigenvalues EJ = BJ2 and eigenfunctions ced(¢;V2 =0) = cosdé and
seJ(¢;V2 =0) = sind¢ (norm omitted). A1l states are labelled by the rotational quan-
tum number J; only the ground state with J = 0 is nondegenerate—all excited states
(J 2 1) are doubly degenerate. For small V, the potential can be treated as a per-
turbation and J still can be taken as a good quantum number. For comparison we also
give the energies E‘J and degeneracies MJ (of the spatial wave functions) for two-
and three-dimensional rotors: 1) Tinear molecule: EJ = Bd{J+1), MJ = 2J+1; 2) sphe-
rical top molecule: EJ = BJ(J+1), MJ = (2J+1)2.

b) Strong rotational potential. For V2 > 30 B the molecules perform almost har-
monic Yibrations {for more angular degrees of freedom this limit is approached for
somewhat higher va]ues of VZ)‘ In the limit of large V2 the energy eigenvalues are
En = -V /2+(n+1/2)h 2-B and the corresponding functions are oscillator functions.
As may be found in the expression for En’ the separation between the oscillator lev-
els increases with increased orientational localization, i.e., increasing strength
of the potential. The degeneracy of all states is two in the example chosen.

¢) Intermediate regime. In the intermediate regime the eigenstates are neither
oscillator functions nor free rotor functions. The states are characterized by their
symmetry and transform according to the representations of the group sz (Table 5.1).
The four symmetry operations, described in Table 5.1, leave the potential V{¢) ~ cos2¢
invariant. The ground-state wave function ce0(¢), for example, has symmetry A1 and
therefore may be expressed in terms of functions cos2né only. Of particular inter-
est is the regime close to the limit of librational motion. Here the states look
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Table 5.1. Character table of the point group Coy(mm); Tisted are also the angular
transformations with correspond to a given symmetry operation and the trigonometric
functions which transform according to the four one-dimensional representations of

C2V
CZV E CZ a{x) aly)
transform.
of angular 0 T+ 2m-¢ T~¢
variable
A1 1 1 1 1 cos2no
A2 1 1 -1 -1 sin2n¢
B1 1 -1 1 -1 cos(2n+1)¢
82 1 -1 -1 1 sin(2n+1)¢

almost 1ike harmonic-oscillator states. Closer inspection, however, reveals that

the eigenstates are split in two closely spaced levels of different symmetry [ground-
state: A1 for ce0(¢) and 82 for se1(¢)]. Within the framework of pocket states, that
is, wave functions centred at the minima of a given rotational potential (potential
pocket), the splitting is caused by the overlap of wave functions located in ad-
jacent potential we]is. A schematic drawing of tunnel split rotational states in a
periodic potential is shown in Fig. 5.2 (it refers to the more realistic situation
of a cos3¢ potential). An example of pocket states in a cosb¢ potential is shown in
Fig.5.3. The solutions of the Mathieu equation also provide a "correlation diagram”,
that is, they show how the oscillator states emerge from the free rotor states when
the potential is increased. Obviously the multipiicity MO of the combined ground-
state levels can be identified with the total number of potential pockets.

As mentioned above the calculation of eigenvalues has not been restricted to a
uniaxial rotation of dumbbells, but mainly concentrated on rotating XH3 groups
(X = C,N). Both the molecular symmetry and the site symmetry have to be included.
A careful investigation of this aspect is given by KING and HORNIG /5.9/ for
three-dimensional rotors. For CH3 groups the symmetry arguments are much simpler;
the molecular symmetry causes that only Fourier components Vncos(n¢+¢n) of the po-
tential n = 3m (m = 1,2,3...) matter. The site symmetry may help to further reduce
the nonvanishing terms in the potential and to impose conditions on the phase angles
¢n. For example, a twofold axis in the crystal along the symmetry axis of the mole-
and a mirror plane containing the sym-
0 (see also Sect.4.3.1 and Fig.2.2).

cule eliminates contributions other than V6m

metry axis of the molecule will render ¢,
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N Fig.5.2. Schematic drawing represent-
Vi) N A~ /) / ing the tunnel splitting of the ro-
tational ground state (A) and of the
first librational state. The split-
ting is due to the overlap of wave
functions (dashed region) in neigh-
boring potential wells

T2

~

eigenvalues E/B

O -

10 15 2
potential V3, /B

Fig.5.3. Schematic drawing of a one~-dimen- Fig.5.4. Energy eigenvalues of a
sional rotational potential with a sixfold XH3 group in potentials V(¢) =
symmetry axis. Also shown are the pocket (1/2)V3mcos3m¢ /5.8/. The dashed line
states ¢4 /5.8/. The drawing might repre- refers to a cos3¢ potential, the sol-
sent a disordered CH3 group (sixfold sym-~ id 1ine to a cos6¢ potential

metry axis at the molecular site)

Solutions of the Schrddinger equation of a one-dimensional rotor have been given
for potentials of the form

1

V(o) = —2-V3cos3¢+ (—‘I)k1

5 VgCos6o (5.2)

with k = %1 and are tabulated for several sets of parameters V3 and V6 /5.8/. The

results for either V6 =0 or V3 = 0 are shown in Fig. 5.4. Some of the eigenvalues
may be derived directly from the results obtained from (5.1).
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5.1.2 Approximate Methods

Approximate methods have only 1ittly immediate importance for the case of uniaxial
rotation. They become necessary for rotation with two and three angular degrees of
freedom. Nevertheless, approximate methods have been used also in the context of
uniaxial rotation /5.10,11/. As has been pointed out by HOLLER and KROLL /5.9/, the
comparison with exact solutions (which are available for the one-dimensional prob-
Tem) allows a direct test of the quality of a given approximation.

There are two different approaches which appear possible and have been used main-
1y for two- and three-dimensional rotation. 1) One method uses an expansion into free
rotor wave functions. 2) The other employs states which resemble harmonic oscillator
functions. In the first case one is lead to the diagonalization of infinite Hamil-
tonian matrices <®2|a¢l¢2.>. The problem is somewhat simplified by using symmetry-
adapted wave functions (SAF); the indices 2, &' then include both angular momentum
and symmetry labels. The use of SAF's leads to block-diagonal matrices. Neverthe-
less, it is necessary to truncate the matrix by restricting it to a subspace J < J0
of the angular momentum quantum number J.

The method undoubtedly works well for weak potentials, where rapid convergence
of the expansion of the wave function is guaranteed. Problems, particularly for
three-dimensional rotators, arise in the strong potential 1imit. There rather large
cutoff values J0 are required for sufficient accuracy in the determination of the
eigenvalues. This, however, considerably blows up the dimension of the truncated
matrices —in particular for the eigenvalue problem with SAF's of low symmetry (e.g.,
V(wE) with cubic symmetry; for representations with T symmetry the dimension is
2 200, with JO = 13 /5.12/).

The other way is the use of harmonic-oscillator-like wave functions. One starts
with pocket states @1 {(as introduced before) which do not represent eigenstates of
the Hamiltonian. If prepared in one of the potential pockets, a state is not sta-
tionary, but decays with time into other pocket states because of the finite pro-
babitity of tunneling. The magnitude of the tunnel splitting is determined by over-
Tap matrix elements Hij = <¢il3f[¢j>; here i and j denote different pockets. For the
geometry sketched in Fig.5.3 there are three independent matrix elements H12, H13,
and H14, for example. As in the case of the expansion into free rotor functions,
symmetry helps to block-diagonalize the Hamiltonian matrix. The method has been
demonstrated in an especially clear fashion by HOLLER and KROLL /5.13/, who used
Gaussian-shaped pocket states, e.g., ¢i
a variational paramet?:}zFor strong potentials x

G
diagonalization of the Hamiltonian matrix. It depends on both the magnitude of the

= EXp(XGTf). The quantity Xa is taken as
6 is large and @i becomes a narrow

Gaussian. The width x is determined by minimizing the eigenvalues after the
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potential and—to a lesser extent—the symmetry of the state. The method leads to

exact answers in the limit of weak and strong potentials. In the latter case, how-
ever, this is only true for the librational energies and not for the tunnel split-
tings. The calculated splittings for a potential V(4)= (1/2)V6c056¢ turn out to be
about half of the exact value /5.13/ for V6 = 160 B (Fig.5.5). The discrepancy be-

comes even worse for larger V6.

One immediately suspects that this results from the fact that Gaussians (with
just one parameter for the width) do not well represent the wave functions in the
overlap region, although they are a very good approximation in the region of the
potential minimum. The magnitude of the wave function in the overlap region, how-
ever, is decisive for the overlap matrix elements. Therefore improved pocket state
functions are needed and a step in this direction recently has been made /5.14/.
There the Gaussian is multiplied by the first few terms of a symmetry-allowed poly-
nomial within the angular coordinates, which may be understood as an admixture of
excited harmonic-oscillator states to the ground-state function. This also allows
for a spatial anisotropy of the wave function in the region of the minimum and cer-
tainly is a better representation in the overlap region. With improved pocket states
an increased overlap results and, consequently, larger tunnel splittings are ob-
tained /5.14/. In /5.14/ the variation principle is applied to wave function with
several parameters.

Fig.5.5. Ground-state tunneling frequen-
cies of a one-dimensional rotor in a po-
tential V(¢) = (1/2) Vgcosbo. wpyi refers to
transitions fromdJd =0 to J =1, 2 and 3,
respectively (perturbed by potential).
Solid curve: exact results; dashed curve:
10° G results of a variational calculation using

80 120 160 200 pocket states. Both potential and energy

potential Vs/B eigenvalues are given in units of the ro-
tational constant B = h/20 /5.13/

energy eigenvalues huw,/B
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An advantage of the pocket state formalism is the very small set of basis func-
tions which is required. On the other hand its application is difficult in connec-
tion with problems with many potential minima, such as in the case of CH4 as a sub-
stitutional impurity in rare gas matrices /5.15/. We will.return to the comparison
of the two techniques in connection with the rotational states of a tetrahedron.

5.1.3 Two-Dimensional Retation (Linear Molecules)

Rotational tunneling of linear molecules in stoichiometric crystals so far has not
been observed by incoherent neutron scattering. Practically all experiments deal
with the rotation of ionic molecular groups as impurities in alkali halides, and
employed technigues other than neutron scattering. Much of this is discussed in re-
views by NARAYANAMURTI and POHL /5.16/ on tunneling states of defects in solids and
also by BARKER and SIEVEN /5.17/. In one case coherent neutron scattering has been
successfully applied, namely with 0.1% CN~ in KC1 /5.18/. There the rotational ex-
citations were not observed directly, but via their coupling to acoustic phonons of
the same symmetry. Dispersion curves with the same symmetry label cannot cross ("an-
ticrossing" or "level repulsion"). Therefore the rotational mode acquires more and
more acoustic character in the region of anticrossing. The inelastic structure fac-
tor of the acoustic modes is more favorable for an observation which renders the ex-
periment possible. An explanation of the unexpectedly pronounced anticrossing has
been reported in /5.19/. An attempt to observe the same phenomenon in solid argon
with N2 molecules as substitutional impurities failed /5.20/.

As most experiments have been done with cubic systems, theoretical efforts at cal-
culating the rotational excitations of Tinear molecules also concentrated on sites
with cubic symmetry. First calculations have been performed by DEVONSHIRE /2.29/,
who retained only the first term a41K41(Q) in an expansion of the potential into
cubic harmonics. Free rotor wave functions have been used with a truncation at J=7.
Later authors /5.21-24/ extended this subspace to Targe J (/5.21/, J £ 27), still
employing the Devonshire potential. The results depend not only on the magnitude
but also on the sign of the potential. For a positive sign the 8 potential minima
are along [111] directions, while the 6 minima are along [100]; This is reversed
for a negative sign. A localization along [110] always indicates the presence of
higher order terms in the potential. An extension to a potential V(g) =
a41K41(Q) +a61K61(Q) has been given by BEYELER /5.23/. His calculation uses a sub-
space J £ 12 and is presented in the form of diagrams for various combinations of
a4 and a1 He also quoted the rotational states in a potential V(Q) = a81K81(Q).
Results for the rotational states of N2 molecules in B—N2 have been given by DUNMORE
/2.26/. His paper contains a careful consideration of the rotational potential in
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S-N2 on the basis of intermolecular interactions and provides energy eigenvalues in
a potential of hexagonal symmetry (62m). It appears, however, that the assumption
of stationary rotational wave functions in the disordered phase of nitrogen is in-
correct and that fluctuations of the potential are important.

5.1.4 Three-Dimensional Rotation (Tetrahedral Molecules)

When talking about rotational tunneling of molecules with a single rotational degree
of freedom one essentially talks about CH3 side groups and NH3 molecules. In a simi-
lar way all work on rotational tunneling of three-dimensional rotors so far concen-
trated on tunneling states of tetrahedral molecules such as methane and the ammonium
jon in a number of its salts. Theoretical approaches also concentrate on tetrahedral
molecules. The ground-state splitting was first considered in connection with the
zero point entropy of isotopic methanes by NAGAMIYA /5.25/. The method described
there essentially is a pocket state approach; however, only symmetry arguments are
used to distinguish between the different overlap matrix elements <®(§)|9¢|®(E)>.
Here R denotes one of the 12 symmetry elements of the tetrahedral group T (= 23

= subgroup of proper rotations of point group 43m); E is the identity operator

and @(ﬁ) is a shorthand notation for Re. In absence of any site symmetry other than
the identity there are three independent 180° overlap matrix elements HX_i and four
pairs of 120° overlap elements hi‘ The complete Hamiltonian matrix as set up by
HOLLER /3.3/ is shown in Table 5.2. NAGAMIYA solved the eigenvalue problem for tri-
gonal and tetrahedral site symmetry /5.25/. Symmetry reduces the number of indepen-
dent matrix elements. For tetrahedral site symmetry there is just one 120° overlap
matrix element h =h1 =h2 =h3 =h4 and, similarly, just one 180° overlap matrix ele~-
ment H =HX:=Hy =H (Fig.5.6). Diagonalization yields states with A, E and T symme-
try with the following eigenvaiues

Ep = D+3H+8h (singlet)
ET =D-H (three triplets) (5.3)
EE =D+3H-4h (doublet)

with D = <olat|e>.

The method sketched by NAGAMIYA /5.25/ has been considerably refined by HOLLER and
KROLL /5.13/ and HOLLER /3.3/. In the latter publication the unitary matrix which
block-diagonalizes the Hamiltonian matrix is given explicitly as well as the re-
sulting 3x3 blocks connected with the T states (Table 5.3). There are three iden-
tical blocks, each with eigenvalues ET1’ ET2 and ET3' For low symmetry all three



56

Table 5.2, Hamiltonian matrix Hijj for the pocket states ¢5 of a tetrahedral mole-
cule. D is the diagonal matrix element. Hx, Hy and Hz are the overlap matrix ele-
ments for 180° rotations around the x, y, and z axes, respectively. The matrix
elements for 120° rotations around the 1, 2,3 and 4 axes, respectively, are de-
noted by h1, h2, h3 and hg. The rotation axes which are defined in Fig.5.5 are
fixed .in the crystal frame /3.3/

D HX Hy HZ h4 h3 h1 h2 h4 h2 h3 h1
HX D HZ Hy h2 h1 h3 h4 h3 h1 h4 h2
Hy HZ D HX h3 h4 h2 h1 h1 h3 h2 h4
HZ Hy Hx D h1 h2 h4 h3 h2 h4 h1 h3
h4 h2 h3 h1 D HX Hy HZ h4 h3 h1 h2
h3 h1 h4 h2 HX D HZ Hy h2 h1 h3 h4
h1 h3 h2 h4 Hy HZ D HX h3 h4 h2 h1
h2 h4 h1 h3 HZ Hy HX D h1 h2 h4 h3
h4 h3 h1 h2 h4 h2 h3 h1 D HX Hy HZ
h2 h1 h3 h4 h3 h1 h4 hz HX D HZ Hy
h3 h4 h2 h1 h1 h3 h2 h4 Hy HZ D HX
h1 h2 h4 h3 h2 h4 h1 h3 HZ Hy Hx D

Table 5.3. One of the three identical blocks of the block-diagonal Hamiltonian ma-
trix connected with the T states

D +HX-Hy—HZ —h1-h2+h3+h4 4H+h2~h3+h4
—h1-h2+h3+h4 D -HX+Hy—HZ +h1-h2—h3+h4
--h,|+h2-h3+h4 +h1-h2-h3+h4 D -Hx-Hy+HZ

eigenvalues differ, except for accidental degeneracies. In Table 5.4 the effect of
symmetry on the overlap matrix elements and the T state energies ETi is summarized.
Resulting Tevel schemes are also depicted in Fig.5.7 for the principal site symme-
tries. A1l subgroups of the tetrahedral group 43m are Tisted. The eigenvalues EA and
E. are always those given in (5.3), if the above definitions for H and h are gene-

E

ralized to H = %—(Hx-ny
perimentally observed T state energies can be used as a sensitive probe of the site

1 -
+HZ) and h = Z»(h1 +h2+h3 +h4). It may be noted that ex
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Fig.5.6. Equilibrium orientation of

Y a tetrahedron in a rotational poten-
tial. 180° rotations around the x,y,
and z axes and correspondingly 120°
rotations around the 1, 2,3, and 4

2 axes are the symmetry operations of
the tetrahedron. Site symmetry may
cause an equivalence of some of

these axes
E A A A A
| [ —
T 0 Tz 3 61 .{_3 62 Tz
T o——260 b g

A =24 -2A -2A -2A

i3m 3m mm2 m

L2m 3 2 1

Z

222

Fig.5.7. Level scheme for the rotational ground state of a tetrahedral molecule at
crystal sites with different symmetry (only the 120° overlap matrix elements h; are
included). The reduction of symmetry causes a splitting of the otherwise degenerate
T states. A = 4h denotes the main splitting, while &1 = hy-hy, and 8, = 2(hy-h3)
refer to the T state splitting for sites with three- and two%o]d symmetry axes,
respectively. Transitions from A to E states are forbidden, as well as the Ty-T3
transition in presence of a twofold axis. Except for very low symmetries there is
always a pair of transitions with an energy ratio 2:1

symmetry; however, Table 5.4 indicates that-the site symmetry in general cannot be
concluded unambiguously. The results given in Table 5.4 also can be used for mole-
cules of a symmetry Tower than tetrahedral at a site with symmetry 43m {e.g., par-
tially deuterated methane: symmetry 3m for both CHD3 and CH3D and symmetry mm2 for

D,).

As already noted in Sect.5.1.2, a formulation in terms of explicit wave func-
tions means important progress. Their width (or a quantity related with it) is
taken as a variational parameter. This allows the calculation of eigenvalues as
a function of the rotational potential (Sect.2.6.3). Pocket states 0, = exp(xerf)
have been used in /5.9/ and improved states in /5.14/. The latter have been guali-
tatively discussed before. The equilibrium orientations of the 12 pocket states
are shown in Fig.5.8. For a calculation of overlap matrix elements one still has
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Table 5.4. Tunneling states of tetrahedral molecules: effect of the site symmetry
on the overlap matrix elements h; and H,; as well as the T state energies of a
molecule with tetrahedral symmetry. Those subgroups of 43m which cause the same
120° overlap are Tisted together. As usually H << h [with H = (1/3)(H,+H, +Hz)

and h = (1/4)(hy+hy+h3+hy)], the Hy; are treated in a very approximate manner in
the calculation of T state levels by taking H = H,; for all i. The effects of site
symmetry and molecular symmetry can be exchanged: %he relations between the over-
lap matrix elements also hold for tetrahedral molecules of lower symmetry in a po-
tential of symmetry 43m

subgroups 120° overlap 180° overlap T state energies
of 43m elements elements ET.
i
43m h h h h H H H
42m _ .
7 h h h h HX HX HZ ETi = D-H for all i
222 h h h h HX Hy HZ
E. = E; = D-H-h,+h
3n hy hy hy H O OHH T 12
3 E. = D-H+2h,-2h
T3 1 2
mme h1 h1 h3 h3 HX HX HZ ETi = D-H—Z(h1-h3)
ETZ = D-H
2 h1 h1 h3 h3 HX Hy HZ ET3 = D-H+2(h1-h3)
_ 1
m hy hy hy hy He Hoo oM E; = D-H+z(h,+h,-2h,)
e [2(h, -h,)% + L, +h,-2n,)%] /2
12 4172 73
ET3 = D-H+2h3-h1—h2
1 hy h, hy h, Hy Hy H, from Table 5.3

to specify the potential and the kinetic energy K = 92/2@ in terms of quaternions
(2.20), which reads /5.9/

d
Sl B e R R S o (5.4)
B

For a three-dimensional rotor A1 =4, A2 = 3 and d = 4. The generalized formulation
is given because it also can be applied for one-dimensional (A1 =1, A, = 1, d = 2)
and two-dimensional rotors (A1 =1, A2 =2,d=3). In Fig.5.9 the results obtained
with "improved" pocket states /5.14/ and for a potential of tetrahedral symmetry
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\ ' ' Fig.5.8. Pocket states of a tetrahedral molecule
-\b in the Tibrational ground-state. A1l 12 orien-
wr \\ 1 tations (which are distinguished by numbering
NG the protons) correspond to equilibrium orien-
i tations of the molecules /3.3/
a1 h 0 |
= 10"} hwrg \\\\\
“— 3 \\
© \\\.
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3107 AN :
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g‘ \, .\\
5 \\\«{\\ Fig.5.9. Ground-state transitions of a § rahe-
103+ NN dral molecule in a potential V(t) = V3H}3/(1).
N The dashed Tine refers to Gaussian pockel states
AN /5.9/ and the dot-dashed line to "improved" pocket
5 éo 160 states /5.14/ which provide a better description

potential Vy/B of the wave function in the overlap region
3

V(t) = V3H$?)(r) are compared with a calculation using Gaussian pocket states /5.9/.
The 180° overlap essentially can be neglected, if V3/B > 20. As a general rule one
may say that for pronounced orientational localization, matrix elements hi (120°
overlap) practically always dominate. Therefore, potentials which lead to an in-
equivalence of the 180° overlap only, in general, cause negligible T state split-
ting (Table 5.4). There is one example of this kind (point group 42m) which becomes
important in connection with the tunneling in CH4 I1 (Sect.6.2.3).

As may be seen in Fig.5.9, the tunnel splitting depends nearly exponentially on
the magnitude of the potential. This fact, which certainly is not restricted to
tunneling of tetrahedral molecules, causes extreme sensitivity of the splitting to
changes of the potential (see Sect.7.2).
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We now turn to the eigenstates of a tetrahedron as calculated by expanding the
wave functions into free rotor functions. A very thourough discussion of this topic
was given by KING and HORNIG /5.10/ for a cubic crystal field. These authors em-
phasized the need to account for both molecular (symmetry operations ﬁ) and site
symmetry (symmetry operations ﬁ); the potential has to be invariant under the di-
rect product group ﬁﬁ of both operations. After discussing the effect of space-
fixed and molecule-fixed angular momentum operators on wave functions within the
two frames, the authors constructed symmetry-adapted wave functions which have two
symmetry labels. Roughly speaking, ﬁ;imposes conditions on the index m of Déﬁ?(r),
while R acts on the index m'. R and R represent the subgroups of proper rotations
at the crystal site and in the molecule. An additional symmetry reflected in
SDé;?(T)= (—1)m+m'Dé;?(r) is important and originates from the diregt product of
the subgroups of improper rotations. Eigenvalues are calculated for a number of
examples, namely potentials V4H§?)(r) of different magnitude. In particular the
speed of convergence with the cutoff value of J(4 < JO < 22) —which defines the
size of the set of basis functions—is discussed. As already mentioned, convergence
is relatively slow for states of Tower symmetry. It is for this reason that in a
series of papers by SMITH /5.21,26-28/ only the ground-state splittings with A and
£ symmetry are evaluated. A, for example, is a shorthand notation for AA, which
will be used in the following. Smith concentrated on the rotational states of NHZ
groups. Because of the ionicity of the crystals, the potentials usually are rela-
tively strong in ammonium salts. This leads to convergence problems, in spite of
basis sets with JO as large as 27. The main aim of the author is the determination
of potential parameters by consistently explaining as many observations as possible,
e.g., tunneling, librational states and specific heat (which is not really an inde-
pendent quantity). Similar calculations have been performed by BARTHOLOME and col-
laborators /2.23/. They proceeded somewhat further by basing their approach on a
microscopic model with electrostatic interactions.

Extensive use of the methods outlined by KING and HORNIG /5.10/ has been made
by the "Kyoto group" in conjunction with solid methane and its phase transitions
(/2.22/ and references therein) as well as methane as a substitutional impurity in
rare-gas matrices /5.29,30/. Their calculations are based on intermolecular inter-
actions, which represent the angle-dependent part of interactions between atoms be-
longing to different molecules /2.5/. This means a generalization of the famous
work of JAMES and KEENAN /2.7/, who only included electrostatic multipole-multipole
interactions and thus ignored the crystal field (which is present also in crystals
consisting of neutral molecules). There is no electrostatic contribution to the
crystal field from electrically neutral molecules. Level schemes for methane mole-
cules and various site symmetries have been calculated and compared to experimental
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results /2.22,5.31/. The work by YAMAMOTO and collaborators probably represents the
most advanced applications of the free rotor expansion technique.

A comparison between the pocket state approach and the expansion into free rotor
functions is difficult. The speed of convergence of the latter has recently been
discussed /5.14/, although mainly with respect to the excited librational states
which considerably suffer from the truncation of the Hamiltonian matrix. Both ap-
proaches encounter problems for large potentials. In the free rotor function ap-
proach matrices of increasingly large dimension need to be diagonalized for reasons
of convergence, while in the pocket state method the simplicity of the initial ap-
proach has to be sacrificed in order to improve the wave functions in the overlap
region. Nevertheless the pocket state approach appears to be more suitable for large
potentials.

5.2 Nuclear-Spin Functions

So far, only the spatial part of the wave functions has been discussed. Complete
wave functions, however, must include nuclear-spin functions. In principle they
also must include electronic and vibrational wave functions. At Tow temperatures,
however, these are in the totally symmetric ground state and therefore need not to
be considered here. The correct molecular wave functions are constructed from 1ine-
ar combinations of products of rotational and nuclear-spin functions. For protonated
molecules they must be totally antisymmetric upon odd permutations of the protons
{spin 1/2), whereas they must be completely symmetric upon interchange of deuterons
(spin 1). An example for the antisymmetric character of the complete wave function
is hydrogen. In p-H2 the spin function y is antisymmetric and the rotational wave
function & is symmetric. This is reversed for o—Hz, where x is symmetric and & an-
tisymmetric. A 180° rotation of the molecule around an axis through the molecular
centre-of-mass and perpendicular to the intermolecular axis is a symmetry operation
of the molecule. It is equivalent to an odd permutation of two particles, namely

the two protons within the molecule. This is different for XH, and XH4 groups. There,

odd permutations can only be performed across potential barrizrs which are of the
order of binding energies of a molecule (several eV). Only the even permutations,
which are isomorphous with the proper rotations that leave the molecule invariant,
need to be considered. Consequently the complete wave functions must be totally
symmetric (A symmetry) for both protonated and deuterated molecules.

This can only be achieved by combining nuclear-spin functions and rotational
wave functions of the same symmetry. Transitions which change the symmetry of the

rotational wave function consequently also change the symmetry of the nuclear-spin
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functions. As the latter cannot be caused by phonons, well-defined tunneling states
with a spacing of only a few mK are observed up to about 50 K. Neutrons can flip
nuclear spins and thus render the tunneling states observable. Transitions between
different spin species which are not mediated by neutrons are summarized under the
name spin conversion. Spin conversion is necessary to bring a mixture of several
spin species into equilibrium after cooling or heating {(e.g., /5.4,32/). This, how-
ever, happens on a timescale of minutes to days. In pure samples, spin conversion
involves the extremely weak intramolecular dipole-dipole interaction of the nuclear
magnetic moments /5.33/. It is known that conversion is speeded up considerably by
the presence of paramagnetic mpurities /5.32/.

For three protons forming an equilateral triangle (Fig.2.2) as in CHy groups or
NH3 (point group 3m), there are 23 ways of arranging the nuclear spins in Iu1u2u3>.
Here the Wy denote the z component of the nuclear spin of the 1th proton. The re-
sulting eight spin functions can be decomposed into four totally symmetric states

with total nuclear spin I = 3/2 of the molecule and two pairs of doubly degene-

X
A
rate functions xp with total spin 1/2 (Fig.5.10). The eight spin functions are

listed in Table 5.5. It may be noted that the total spin I of the molecule unam-

biguously labels the symmetry in the present case.

first excited —A I=3'2
librational / oo
state { 1
\ a b
LEE
Es
EE .1
(" {hug
librationat A I= 3’2
ground
state

Fig.5.10. Low-energy rotational states
of a XH3 group, labeled by their sym-
metry. In general Eq >>hwy >> Tug;
note that the A state has 1ower energy
than the E state in the ground-state
Tevels; this is reversed in the first
excited librational state

Ahw  IXH) I(XD,)

E ) 0 0.2
A
J{ 11123
24

A l 2 024

Fig.5.11. Ground-state multiplet for
tetrahedral XH; and XDy molecules in
a potential of tetrahegra1 symmetry.
For lower symmetry a splitting of the
degenerate T states results (see Table
5.4 and Fig.6.16). The transitions ob-
served by spin-incoherent neutron scat-
tering are marked by arrows; I denotes
the total nuclear spin of the respec-
tive molecule
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Table 5.5. Spin functions x(l"s, mI) of CHy groups and NH3 molecules. I denotes the
total nuclear spin of a molecule, my; its z component, o = 1/2 and 8 = -1/2 the z
component of the proton spin, Iy labels the symmetry of the wave functions and

e = =1/2+i/3/2

m x(Tgs mp)
type A 3/2 Qo
1/2 (1/v3) (a0 + oBa + Bor)
I=23/2 -1/2 (1/v3)(BBo. + BaB + 0BB)
-3/2 BBB
type E 1/2 (1/V/3) (008 + £+Bao. + €% *0a)
-1/2 (1//3){BBa + £+aiBB + £*+BaB)
I1=1/2 1/2 (1/V3) (0B + £*+Baa + c+afa)
-1/2 (17/3)(BBa + €* +aBB + £+ BoR)

Table 5.6. Spin functions x(l’s ,mI) of tetrahedral molecules XHy. 1 denotes the to-
tal nuclear spin of the molecule, mIits z component, o = 1/2 and B = -1/2 the z
component of the proton spins, Iy labels the symmetry of the wave functions and

e =-1/2+1/3/2

i X(Fs’ mI)
type A 2 QOO0
L= 1 (1/2) (a0 + aoBa + afod + Booo)
0 (1//8) (BB + 0B + 0BBa + Baad + BaBar + BBowt)
-1 (1/2)(BBBa + BBaB + RaBB + aBRB)
-2 888
type T 1 (1/2) (aBac + aoBa - Booo ~ cooR)
=01 1 (1/2) (o8B0 ~ Baa)
-1 (1/2)(-BaBB - BBB + BBRA + aBBB)
1 (1/2)(Boca + axBo - B ~ aBoo)
Ty 0 (1/vZ)(BoBo - 0BaB)
-1 (1/2)(aBRB + BB - BBRO ~ RaBB)
1 (1/2) (Boco + aRoa - aoop ~ o)
T, 0 (1/v2) (8Bowt - cBB)
-1 (1/2)(aBBB + aBoo - 008 ~ aaBa)
type E 0 (1//8)(0aBB + BBoa + € [0BoB + BaBa] + e* [aBRa + Boad] )
I=0 0 (1/v8) (0B + BRao + * [aBaB + BaRa] + € [0RBa + Roaf] )




Xy = [@aaad

(Tl

Xp=tBaady xyplapac) x:laapdy xs=lacaf
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Fig.5.12. Wave functions [uqupugug> which define the spin states of the protons at
pasitions i in the crystal, and not the spin of the 1€h proton. Open circles denote

spin up, full circles spin down /3.3/

For tetrahedral molecules XH4 there are 16 spin functions and they may be decom-
posed as x = 5 XA+-XE+-3 X7+ The spin functions /5.34/ are Tisted in Table 5.6.
Again the total nuclear spin is related to the symmetry in a one-to-one relation
(Fig.5.11). This is different for the fully deuterated species (e.g., (D, with 81
spin functions). Nuclear-spin functions for XD3 and XD4 may be found in a paper by
HOLLER and PRESS /3.4/. Their construction requires the application of projection
operators (in order to construct properly symmetrized function), and use of the fact
that these functions are eigenfunctions of both ﬁz and 32. This is described in more
detail in the appendix.

Correctly symmetrized complete wave functions for orientationally ordered tetra-
hedral XH4 have been constructed by combining the 12 rotational wave functions and
the 16 nuclear-spin functions into 192 products |©i>lu1u2u3u4>. The method is out-
1ined in /3.3/ which also gives a table of these symmetrized states. It should be
noted that these states are not eigenstates of the molecule in a given potential.
Eigenstates are obtained by diagonalization of the Hamiltonian matrix 3%}. HOLLER
/3.3/ gives a simple interpretation of the 16 symmetrized wave functions in terms
of new wave functions [u1u2u3u4>. Here Ws does not denote the spin of particle 7,
but that of the nucleus which is in position <. [Buaa>, for example, means that the
nuclear spin with z component 8 = -1/2 is at site 1. A1l 16 functions Ej1u2u3u4> are
shown in Fig.5.12. They fulfill the symmetry requirements upon particle exchange and
are particularly useful for the calculation of transition matrix elements (Sects.3.1,
5.3). An equivalent way consists in first constructing symmetrized spatial wave func-
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tions @F and symmetrized spin functions Xp- Then functions of the same symmetry are
combined to totally symmetric wave functions ¢ = oL Xp e
The combination of spatial and spin functions for free rotor states of XH4 mole-

cules has been demonstrated by HAMA and MIYAGI /3.6/.

5.3 Transition Matrix Elements for Neutron Scattering

With/khowledge of the complete molecular wave functions, there is no further con-
ceptual difficulty in evaluating the transition matrix elements which appear in
(3.10). Three recent publications deal with this problem /3.3,6.5,35/ and all re-
fer to tetrahedral (spherical top) molecules with their explicit formulation. An
application to CH3 group rotation is straightforward, and a summary of the results
is given in the appendix.

HAMA and MIYAGI /3.6/ studied the limit of free rotor states, HOLLER /3.3/ ap-
proximates the rotational wave functions by pocket states of zero librational am-
plitude (which recently has been generalized to finite Tibrational amplitudes /3.4/).
0ZAKI et al. /5.35/ dealt with the intermediate regime and mainly base on the for-
malism developed by HAMA and MIYAGI /3.6/. The final results of /3.6,5.35/ look
rather complex and necessitate the introduction of numerous group-theoretical de-
finitions. Therefore only some steps in their derivation will be outlined.

As it appears, the main difficulty in the evaluation of matrix elements is the
proper inclusion of symmetrized wave functions. The results should reflect corre-
lations of the protons within a molecule which give rise to interference effects
/3.3,6/. HAMA and MIYAGI noted that previous publications /3.5,10,5.36-38/, in which
the transition matrix elements are calculated for free molecules (in the gas phase),
either omitted these correlations or did not include them correctly.

The common aim of all three publications is the calculation of the transition
matrix elements A:'a',ua which appear in (3.10)

4
n - . ny
Avatpa = L0 W g > (5.5a)
v=1
with
WY = (AM-R) exp(iQer, ) . (5.5b)

The meaning of the quantities in (5.5) has been explained in Sect.3.1. In the fol-
Towing the index n will be dropped and reference is to just one molecule.
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Let us first consider the approaches based on free rotor functions /3.6/ or an
expansion into these functions /5.35/. The emphasis will be on the second paper. In

order to calculate Au, it is necessary to introduce three coordinate systems:

1) a space-fixed frameaw;gﬁ coordinate X, 2) a crystal frame X. with orientation mg
with respect to X, and 3) a molecular frame XM with orientation w% with respect to
XC' For a potential VSt = 0 (which corresponds to the approach of HAMA and MIYAGI
/3.6/) there is no preferred orientation of the molecule in the crystal and obvious-
ly there is no need of distinguishing between X and ZC' Furthermore the polar coor-

Q

dinates of the vectors Q and L, are introduced. They are Q. and QY in the space-
fixed frame and Qg and Qﬁ in the molecular frame.
As the wave functions lu¢a> need to be expressed in symmetry-adapted functions
/3.3,6,5.35/, it is convenient also to express the neutron scattering operator
2a1'nc v M
W=——= 1} s+i exp(iQ-r )} (5.6)
VI(I+1) 21 Y -y
Y:
in terms of symmetry-adapted functions. The tetrahedral symmetry of the molecules
enters in the following way:

I, S
W=} si G with G = exp(iQ-r ) may be decomposed into /5.39/
v=1 YY Y
W= NA+NT = NA+NT +NT +NT {5.7)
X 'y 'z
with
~ 12,0 ¢ o o 4 10°¢ 4
Wy =7 s(11+12+13+14) ¥ GY =75 Tt ) GY (5.8a)
y=1 y=1
F129 9 e e
WTX _ z—s(11-12-13+14)(G1-GZ-G3+G4) (5.8b)
TR 1% T S S SO
wTy = 1-5(11 iy*iy 14)(G1 G2+G3 G4) (5.8c)
~ 199 9 2 e L
wTZ = g sl +iy=1,-1,)(6,+6,-63-G,) . (5.8d)

ﬁA and ﬁT are irreducible forms within the group of even permutations of four ele-

ments {point group T = 23). It is noted that W does not contain a component ﬁE of
the operator with E symmetry. The above expressions are obtained by use of projec-
tion operators, in the same way as in conjunction with spin functions (see appen-

dix).
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A similar formulation has been given by SARMA for the neutron scattering in ortho-
and para-hydrogen /5.40/. HAMA and MIYAGI proceeded in a somewhat different way
/3.6/. They expressed the spin and spatial parts of (5.6) separately in terms of
symmetry-adapted operators.

What is important, though, is the absence of a component of the neutron scat-
tering operator W with E symmetry. As can easily be found by inspection of the mul-
tiplication table of the point group T, matrix elements <XA¢AIWI¢EXE> require a com-
ponent of the neutron scattering operator with E symmetry. As there is no such com-
ponent, matrix elements <XA¢AIW|¢EXE> vanish. We will return to this aspect when
describing the results of neutron scattering experiments (Chap.6).

The Euler angles w? and wg come into play when exp(iQ-rY) in (5.6) is expanded
within the space-fixed frame X

exp(ig-rY) dr 2 i J (Qp) 2 YZm(QQ)YZm(Qy) . (5.9)
2=0 m=-4%

3, denotes spherical Bessel functions. Then the spherical harmonic Yzm(Qy) is trans-
formed to the molecular frame

2 L
- (z) (2) E
Ym(szY) = 3 ) ng(ﬂ )D (w ) (wz) (5.10)
k==2 m'=-%
In order to simplify the expression for A ._. (5.5) a powder average is performed

v'a ,pa
/5.35/, which means an integration over the Euler angles wg. The result may be writ-

ten in terms of an intermediate scattering function 1(Q,t) which formally Tooks iden-
tical to (4.5)

10,t) = § (20415 (00)Fy () (5.11)
2=0
with
64 .i.f
F(t) = 1 pi(M 367" . (5.12)
i,f
i,f

The summation is over all initial and final states. G,° is a transition matrix

element which only contains the angular part (ang1euH) of A ‘3 Proper account

,pa’
has to be taken of the degeneracies of the states. For the 0 1 rotat1ona1 transi-
tion of a free molecule, e.g., the intensity is s1mp1y proportional to 31(Qp) Con-
cerning explicit expressions of the matrix elements G i.f and concerning applications

the reader is referred to /3.6,5.35/. HAMA and MIYAGI were mainly interested in cor-
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relation effects /3.6/, while 0ZAKI et al. /5.35/ applied their calculation to the
neutron spectra of CH4 II /5.4,41/.

Here one should note that the correlation effects are due to correlations of nuc-
lear spins within a molecule. An apparent effect concerns the scattering intensity
at momentum transfer Q = 0. For a sample consisting only of A species molecules
(temperature << tunnel splitting), this intensity is 8 o.

inc”
in comparison to the scattering intensity from a high-temperature mixture of spin

This means a doubling

species (all states—b5A, 3%3T, 2E—equally populated) or in the classical limit.
Both yield 4 %ine® On the other hand, the scattering from different molecules does
not give rise to additional correlation effects (even if completely converted to
the A species), as Tong as the z components of the total nuclear-spins of different
molecules are statistically independent.

Nuclear-spin ordering appears possible, however, either statistically at Tow
temperature (order of pK) and/or high magnetic fields or by means of dynamical po-
larization.

The intensities of observed rotational transitions yield information which may
complement. that from peak positions. This may be seen in analogy to the measure-
ment of phonon modes. Peak positions yield information on the phonon frequencies,
while Q-dependent intensities allow one to learn about the symmetry and magnitude
of the displacement vectors (mode eigenvectors). Similarly the inclusion of inten-
sities may help to assign the symmetry of rotational states /5.15/. As calculations
of matrix elements cnly recently have become available, 1ittle has yet been done
along these lines.

As with the calculation of rotational energy eigenvalues there is an alternative

approach to the calculation of matrix elements Au within the pocket state for-

malism /3.3/. HOLLER first calculated matrix e1eme£ri\t;uaBu,b.,ub based on (unsymme-
trized) pocket states (see preceding section) and then transformed to eigenstates
by means of a unitary matrix. He used & functions, that is, pocket states of zero
width. This approximation is performed in view of an application of the results to
ammonium salts with small librational amplitude of the NHZ group and the present
restriction of high-resolution neutron spectroscopy to Q < 1.8 3_1. The approach,
therefore, breaks down for large Q and large Tibrational amplitudes. This limita-
tion is not serious, however. A calculation based on the pocket state formalism but
including the finite width of these states has recently been performed /3.4/. A
simple approach as in /3.4/ allows the study of scattering as a function of the
librational amplitude which cannot easily be extracted from /5.35/. On the other
hand, the calculation is applicable for moderately large momentum transfers and Ti-

brational amplitudes only.



The calculation of transition matrix elements /3.3,4/ on the basis of pocket
states is outlined in the appendix. It is distinguished between a) spin-flip scat-
tering (operators s+iY_ and s_iY+) and b} non-spin-flip scattering (operator sZiYZ).
Inelastic scattering is caused by the part of the neutron scattering operator with
T symmetry. For degenerate T states there is also a contribution to the elastic
scattering, originating from the operator wT.

Only the part of the elastic scattering which results from the totally symmetric
neutron scattering operator wA also corresponds to the elastic intensity in the
classical high-temperature 1imit. This relation probably has direct consequences
for the understanding of the temperature dependence (Sect.7.1).

One should note that the matrix elements Bu'b',ub are derived for trigonal site
symmetry C3(53). This is related to the fact that the calculations in /3.3/ are
performed in view of the tunneling in NH4C104. The accidental degeneracy of T2 and
T, states in NH4C104 means that the true site symmetry (m) can be replaced by an
effective trigonal symmetry (see also Table 5.4). The tables in /3.4/ and in the
appendix mainly refer to cubic symmetry.

The results initially are given for single crystals, whereby the orientation of
the molecules 1is introduced by the set of vectors rY (denoting the positions of the
atoms of the corners of a tetrahedron). Interference effects in the scattering caused
by correlations of the proton are predicted, as by HAMA and MIYAGI /3.6/. As a test
neutron scattering experiments with single crystals are suggested /3.3/, preferably
for systems with no T state degeneracy. In contrast to this /3.5,6/ refer to the
hypothetical situation of a methane gas at very low temperatures.

In agreement with the derivation given before, it is found that A-E transitions
are forbidden. For the purpose of a direct comparison with the scattering from pow-
der samples, powder averages of the calculated intensities have to be performed. Re-
sults for tetrahedral symmetry-but also for reduced site symmetry—are given in the
appendix. Rather good agreement between theory and experiment is obtained (see Sect.
6.2.4).

Also /3.3/ has served as a basis for the calculation of the total neutron scatter-
ing cross section %ot /5.42/. Yot represents an integration over all allowed tran-
sitions which enter the double differential cross section. Usually this integral in-
formation is obtained by transmission experiments with long-wavelengths neutrons,
hence Q is small and the approximation of negligible librational amplitude appears
permissible. As Otot depends strongly on the population of the librational ground-
state levels, it is well-suited for measuring nuclear-spin conversion with Tong con-
version times.



6. Rotational Excitations at Low Temperatures
Il. Examples

After having discussed the theoretical background, we now turn to examples for the
observation of rotational excitations at low temperatures. Only very few examples
close to the limit of free rotation exist, whereas there is a fairly large and
steadily increasing number of experiments in the 1imit of rotational tunneling.
The chapter mainly is based on experiments with inelastic spin-dependent neutron
scattering. Other experimental techniques may yield complementary information and
also will be mentioned in a less detailed fashion. Examples with a ground-state
splitting not accessible to neutron scattering will not be included.

6.1 Free Rotation

As mentioned before, there are only few molecular solids close to the limit of free
rotation. This is due to the intermolecular interaction in a crystal which is prac-
tically always much bigger than the rotational constant B. The only exception with
B >> V is solid hydrogen: there B = 85.25 K = 7.35 meV compares with an anisotropic
interaction (electrostatic quadrupole-quadrupole interaction) which gives rise to
an ordering transition at about 3 K for o-Hz. In all other examples B < V. If a
large spacing of the low-lying states is observed nevertheless, it is caused by a
combination of 1) high symmetry and 2) moderate strength of the potential.

This can be illustrated with potentials of the form V(¢) =-%Vncosn¢, for which
the calculation of eigenvalues is particularly simple. For the uniaxial rotation of
a dumbbell, low symmetry means V2 # 0. High symmetry, on the other hand, means
V2 = 0 and maybe V4 z 0 or V6 # 0. Eigenvalues with the same splitting are ob-
tained for different Vn’ if the magnitude of the potential Vn is increased by a
factor (n/2)2 with respect to VZ‘ Conseguently for the same magnitude Vn = V2
(n > 2) the perturbation of the free states is much weaker (for a comparison of
the eigenvalues as a function of V3 and V6’ see Fig.5.4). Within the pocket state

picture, more symmetry means more closely spaced potential minima and therefore
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greater overlap. All presently known examples for almost free rotation will be given

below.

6.1.1 Solid Hydrogen

Though solid hydrogen is the prime example of free rotation in the solid, we shall
treat it only briefly and mainly refer to the literature /2.11,3.12,5.1,2,6.1,2/.
Experiments have been performed both with p—H2 /5.1,6.1,2/ and with crystals high-
ly enriched with o-H2 /3.12,5.2/. p—H2 molecules at Tow temperatures are in the ro-
tational ground state and the hexagonal crystalline field is very weak. The 0-1
transition is observed at Eg_q = 14.6 meV /5.1,6.1/ which compares to a value of

2B = 14.7 weV for the free molecule. Only with the anisotropic ortho species (I =1,
J=1) and for o-H2 concentrations x > 55% is a phase transition from the disordered
hcp phase to an orientationally ordered cubic phase (4 sublattices, space group Pa3
/6.3,4/) observed. Reduced Eizo
additional molecular field in the-ordered phase. In cubic o-H2 the J = 1 state

values of about 14 meV /3.12/ mainly are due to the

splits inte a ground state described by a wave function Y10(Q) (with its axis along

body diagonals) and two degenerate excited states Y, ,(Q), which propagate Tike spin

1+1
waves (Tibrons). Unfortunately, the 1ibron structure factor for inelastic neutron
scattering is very unfavorable /6.5/. Librons, however, have been observed direct-
1y with optical techniques (references in /3.12,6.5/). Another very interesting

phenomenon concerns the observation of spectra of o-H2 pairs in p-H2 matrices /6.6/.

6.1.2 Methane (CH4)

At Tow temperatures, CH4 is in a partially ordered phase II (with respect to the
molecular orientations). The structure has been predicted by JAMES and KEENAN /2.7/
on the basis of electrostatic octopole-octopole interactions (E00). It has been
verified by a neutron diffraction experiment /2.12/ for CD4 and afterwards a more
indirect confirmation by inelastic neutron scattering experiments has been given
for CH4, too /5.5/. The 8-sublattice structure is shown in Fig.6.1. It consists
of 6 ordered sites with point symmetry 42m and 2 disordered sites with point sym-
metry 432. The disorder in the latter case is due to a cancellation of the E00 in-
teraction; this gives rise to a fourfold axis at the crystal site—which the tetra-
hedral molecules does not have.

At all sites a cubic crystalline field VC(wE) (~ 150 K) is present (see also
Sect.6.1.3), whereas the molecular field, stemming from the E0O interaction, on-
ly acts on the ordered molecules. The excitations of the ordered molecules will be



Fig.6.1. Structure of phase II of
methane (space group Fm3c). There

are 6 sublattices with orientation-
ally ordered molecules (site symme-
try 42m) and 2 sublattices with orien-
tationally disordered molecules (site
symmetry 432). One of the disordered
molecules surrounded by a cage of or-
dered neighbors is shown /2.12/
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Fig.6.2. Rotational energy levels of a tetrahedral molecules without and with a
crystalline field of octahedral symmetry (potential parameters as for disordered
molecules in CH, I1)

Fig.6.3. Almost free rotation in solid CHy II (disordered molecules /5.4/). The
Tine is a smoothened representation of the experimental data

described in Sect.6.2.3. Therefore the appearance of almost free rotors in CH4 11
mainly is due to the symmetry at the site of disordered molecules.

The rotational states of a tetrahedral rotor (Sect.5.1.4) with potential para-
meters determined for CH4 are shown in Fig.6.2. Measurements with a resolution
AE = 0.2 meV have been performed by KAPULLA and GLASER /5.3,4/ and also by PRESS
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and KOLLMAR /5.5/. In /5.4/ levels at 1.06 meV, 1.8 meV and 2.8 meV (Fig.6.3) are

found and have been interpreted as 0-1, 1-2 and 0-2 transitions, respectively (ro-
tational constant B = 0.65 meV). As may be seen from Fig.6.2, there is some ambi-

guity concerning the assignment of a symmetry label to the observed {perturbed)

J = 2 states. This is very troublesome in quantitative analyses /5.15/, which have
to rely on a correct assignment.

States wEf cannot be reached from the ground state WAK’ for reasons of nuclear-
spin conservation (see Sect.5.3). Energy levels determined by an expansion into
free rotor functions /5.31/ agree rather well with the experimental results. A crys-
tal field of the form Vc(wE) = V4U§?)(wE) +V6U§$)(wE) has been used in these calcu-
lations.

Whereas information on the level scheme of a rotor is contained in the positions
of the inelastic peaks, the detailed shape of the wave functions determines the Q
dependent intensity of the observed peaks. KAPULLA and GLASER have compared the §
dependence of the experimentally observed scattering intensity IO_1 of the 0-1 tran-
sition /5.4/ (powder samples) with results of a calculation based on free rotor func-
tions /6.7/. Qualitatively the agreement is rather good. There is a slight displace-
ment of the maximum of the measured intensity towards smaller Q, compared with the
theoretical curve. This effect probably is spurious, however, because the admix-
ture of higher order free rotor functions tends to shift the maximum in the oppo-
site direction. Very recently, transition matrix elements have been calculated by
0ZAKI et al. /5.35/ (see also Sect.5.3), who use perturbed free rotor functions.

The agreement with the previous results /6.7/ is surprisingly good, which indicates
that the admixture of higher states has relatively little effect on the Q dependence
of the 0-1 intensity. The treatment in /5.35/ closely follows the formalism developed
by HAMA and MIYAGI /3.6/.

KAPULLA and GLASER /5.4/ performed measurements with samples containing 1% oxygen
impurities (in order to speed up spin conversion) and with pure samples. In the lat-
ter case thermal equilibrium is reached very slowly (order of several hours) as can
be judged from the time dependence of 10_1/11_0 or—vwhat is equivalent—the time de-
pendence of an effective temperature introduced via detailed balance (Sect.3.2):
Slow conversion of the disordered molecules has not been confirmed by NMR /5.32/.

An attempt has been made to explain spin conversion in CH4 by a model based on in-
tramolecular dipole-dipole interaction in conjunction with the intermolecular EOO
interaction /5.33/. The magnetic dipole-dipole interaction mixes the spin states,
while the E00 interaction (modulated by phonons) is responsible for rotational tran-
sitions. The acoustic phonon density of states at the rotational energy enters. It
is proportional to w2 and, accordingly, conversion is fast at disordered sites and
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slow on ordered ones. Qualitatively this prediction is in agreement with NMR /5.32/
and not with the results obtained by inelastic neutron scattering /5.4/.

At pressures p > 300 bar, CH4 transforms into its phase III /6.8/, which pre-

sumably is fully ordered with respect to the molecular orientations /2.12,6.9/.
This is supported by a recent neutron scattering experiment at p = 800 bar /6.10/.
No inelastic peak is observed in the region 0.2 < E £ 2 meV. Therefore almost free
rotations of CH4 molecules in phase III can be ruled out. The formerly disordered
molecules probably display a tunnel splitting at energies E < 0.2 meV.

Another interesting feature concerns the temperature dependence of the rotational
states. Obviously the 1ine spectra must merge into one broad quasielastic component
(connected with rotational diffusion) above the ordering transition at 20.4 K. This
already has been observed in /5.4/. More detailed measurements /5.5/ show that the
energy of the 0-1 transition shifts only little, while the Tinewidth of the observed
peaks rises rather steeply with temperature (Fig.6.4). Lacking a better description
of the scattering function, the positions and widths have been obtained by fitting
Lorentzians to the data (see Sect.6.2.3a).

6.1.3 CH4 in Rare-Gas Matrices

If it is true that the disordered molecules in CHy IT only experience a crystalline
field and no molecular field (just referring to Vst)’ rotational levels of a very
similar spacing should be observed for CH4 molecules as substitutional impurities
in rare-gas matrices.

The angle-independent parts of the interaction between two methane molecules and
between CH, and a rare-gas atom (Ar, Kr, Xe) are not very different. Therefore the
two partners mix rather well, and Tocal lattice relaxations which locally perturb
the free lattice are comparatively small. Low concentrations of CH4 would be de-
sirable to avoid a direct interaction between methane molecuies, but for intensi-
ty reasons CH4 concentrations of ~1% are required. Results with argon, krypton,
and xenon matrices (all fcc) are shown in Fig.6.5 /5.15/. These spectra indeed dis-
play features very similar to those observed in CH4 II. They have been complemented
by other measurements with relaxed resolution in order to include rotational states
of higher energies. The observed energies /5.15/ for the perturbed 0-1 transition
range from Ey_,(Ar) = 0.89 meV, Ey_,(Kr) = 0.98 meV, Eg_q(CHy) = 1.07; meV (aver-
age between EO_1 from /5.4,5/) to EO—i(Xe) = 1.135
from argon to xenon, as do the lattice constants of the matrices (Fig.6.6). This

meV. They rise monotonically

seems to prove that the static potential V . in CH (sites of disordered molecules)

can be identified with the crystalline field V (w ) Free rotation (E0 1= 1.30 meV)

is approached more closely, the larger the "cage" in which a CH4 molecule rotates.
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More elaborate attempts have been made /5.15/ to determine the potential para-
meters by calculating eigenvalues in a two-dimensional array spanned by the para-
meters V4 and V6 [VC(wE) truncated at £ = 6, free rotor functions with J < 15]. The
set of parameters V4 and V6 best explaining all observations is selected. The re-
sults are not always unambiguous which means a unique set of parameters V4 and V6
cannot always be determined. This is quite unsatisfactory in view of the further
aim of determining intermolecular interactions. Other problems may be related to
the "tunneling between inequivalent sites", in which case orientation-dependent
distortions of the lattice are suggested /6.11/. Therefore an analysis based on
static potentials might be inappropriate for site symmetries which are not a sub-
ground of the molecular symmetry. Earlier optical measurements, which yielded less
precise information, are analyzed in /5.29/.

The continuous transition from almost free quantum-mechanical rotation at lTow
temperatures to classical rotational diffusion at high temperatures may best be ob-
served with an argon matrix. Argon does not absorb neutrons and scatters only weak-
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Fig.6.7. Inelastic neutron scattering spectra for 1.6% CHy in argon at different
temperatures /5.15/. The data reflect the continuous transition from aimost free
rotation at low temperature to rotational diffusion above T ~ 30 K. Solid lines
refer to computer fits; the elastic intensity is scaled down by a factor ten
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1y. Scans at different temperatures are shown in Fig.6.7. Rotational energies and
Tinewidth for the 0-1 transition—as determined from least-squares fits to the spec-
tra—are displayed in Fig.6.8. So far there is no quantitative explanation. Quali-
tatively the potential fluctuations Vf1 increase with temperature when both rota-
tional states and phonons are increasingly populated. One may add that Vﬂ is
stronger in CH4 for temperatures T > 20.4 K, that is, in the disordered phase; 1in
addition to the phonons, the EQ0 interaction contributes to Vﬂ in phase I of bulk
methane (CH4I).

6.1.4 vy-Picoline

So far, there is just one known example of a CH3 group rotating almost freely in a
molecular crystal: y-picoline (4-methyl-pyridine) /6.12,13/. The molecule consists
of a pyridine ring and a methyl group opposite to the nitrogen atom (N<::>CH3).
Unfortunately the crystal structure is unknown. The neutron inelastic scattering
experiments /6.13/ have been performed with a resolution at the elastic position
AE = 0.25 meV (FWHM). A measurement at T =5 K (Q = 1.5 2'1) with a polycrystalline
sample (as in most reported experiments) is shown in Fig.6.9. Peaks at 0.52 +0.01
meV are interpreted as slightly perturbed 0-1 transitions. Much weaker additional
peaks at 1.41+0.03 meV and 1.92+0.03 meV correspond to 1-2 and 0-2 transitions,
respectively. This compares to free rotor levels at 0.665 meV (J=1) and 2.62 meV
(3=2), with £'® = Bo%.

The observations can be understood with a potential V{(¢) =-%V6c056¢ with a bar-
rier height Vg = 15+ 2 meV (~ 180 K) /5.9,6.13/. A weak admixture of a cos3¢ term
cannot be ruled out, but probably is absent due to symmetry. This would be the case
if the threefold axis of the CH3 groups coincided with a twofold axis of the crystal.
The periodic potential clearly is due to intermolecular interactions in the crystal,

as the intramolecular barrier to CH3 rotation is only 0.6 meV.
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6.2 Rotational Tunneling

One talks about rotational tunneling, if the rotational constant B is much smaller
than the static potential (B << Vst) or, equivalently, if the scaled potential
V;t(w) << 1. In this case small ground-state splittings Ty << B result and the
rotational wave functions more closely resemble oscillator functions than free ro-
tator functions (Fig.5.2). For Vst >> B this may even be true in the presence of
high symmetry and tunneling between noneguivalent sites.

Evidence of rotational tunneling in stoichiometric crystals was first deduced
from low-temperature specific-heat anomalies (e.g., /6.14,15/) and residual entro-
pies /5.25/. Usually only the high~temperature tail of a Schottky anomaly is ob-
served. More recently NMR measurements also have provided access to rotational tun-
neling by 1) temperature-dependent measurements of the spin-lattice relaxation time
T1 /6.16/ (the method is very similar to an inelastic "fixed-window technique"
/4.32/ and 2) level crossing techniques /6.17-20/. One modification of the latter
method has been demonstrated with solid methane (CH4}; the levels of paramagnetic
impurities (created by irradiation) have been tuned to resonance with the tunneling
levels /6.17/. This measurement, which suffers somewhat from the perturbation caused
by the impurities, has directly stimulated the first neutron measurement of rota-
tional tunneling /5.5/.

In neutron measurements we are interested in systems with Vst only moderately
larger than B. Otherwise the splittings of the librational ground-state are too
small to be resolved (e.g., in NH4I /6.20/). Measurements can successfully be per-
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formed for potentials V;t < 100 B—that means V < 750 K for XH3 and XH4 groups

(X = C,N). While the upper limit is given by the energy resolution of neutron scat-
tering experiments (backscattering technique: AE = 0.3 peV) it is more or less a
matter of taste where to place the 1imit between tunneling and almost free rotation.
For orientational order (site symmetry < molecular symmetry) V' > 30 B is a pos-
sible choice. Splittings observed with neutrons range from rather Targe values

hwo = B/10 for CH4 /5.5/ to hwo = B/500 for DMA /4.32,6.21/ and (NH4)ZSnC16 /4.27/.
For sp1itt1ngs‘hw0 < AE the NMR techniques which recently have been developed are
most appropriate and can complement neutron results. In the following, representa-
tive examples for the observation of rotational tunneling will be given for one-
and three-dimensional rotors. Practically all measurements have been performed either
at the reactor FRJ2 in Jlilich and at the high-flux reactor of the ILL in Grenoble.

6.2.1 CH3 Groups

a) Dimethylacetylene

Representative for the large class of systems with rotating CH3 groups (which in-
cludes side groups in polymers) we shall first discuss dimethylacetylene (DMA).

DMA (CH3-CEC~CH3), methyl-substituted acetylene, is a relatively simple molecule.
Two solid phases, both with a tetragonal cell, are known /6.22/. In the low-tempe-
rature phase the primitive cell contains two DMA molecules and the site symmetry
(C1 =1) is identical for all CH3 groups. High-resolution measurements (Q = 1.9 R'1)
at several temperatures are shown in Fig.6.10 /4.32/. They have been performed with
polycrystalline samples.

At T = 4.5 K two inelastic peaks at #1.7 peV are found, located symmetrically
around the elastic line, and represent transitions from AZE states (energy hwo).
The tunnel splitting and an activation energy of 36 meV can be explained simulta-
neously with a potent1a1 V(d) —-lV cos3¢ with Vs 45 £ 3 meV. Higher order terms
in the potential (2V6c056¢, etc. ) seem to be neg]wg1b1e.

The above potential allows the prediction of an energy E1 = 15 meV /6.17/ for
the first 1ibrational state. Obviously, a measurement of E1 would provide a test
of the potential, predicted on the basis of the ground-state splitting.

Another interesting feature concerns the temperature dependence of the tunneling
in DMA. It displays standard behavior in the sense that the lines shift towards
smaller energies (above T~ 20 K) and simultaneously broaden. A satisfactory fit
/6.17/ of the temperature dependence of both the ground-state sp]itting'hmo and
the linewidth I' is provided by the stochastic averaging model of ALLEN /6.23/, which
will be discussed in Sect.7.1.1. DMA is one of the few systems with one-dimensional
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rotations in which the structure is known and simple. Therefore DMA could well serve
as a model system for further research.

b) MDBP

The most carefully studied system (but probably not the simplest one—~its structure
is not yet known) with CHy group tunneling is MDBP (4-methyl-2,6-ditertiarybutyl-
phenol). A series of experiments employing NMR and inelastic neutron scattering has
been performed. This has yielded detailed information both for samples with proto-
nated molecules and for the partially deuterated compound MDBP (021) (deuteration
except of CH3 group). The observed tunnel splittings are rather large: 38 eV for
MDBP /6.24/ and 35 ueV for MDBP (021) /6.25,26/. Such relatively large splitting
can still be determined by the backscattering technique. Different crystals have
been used for the monochromator and the analyzer. On the other hand, the tunnel
splitting of the first excited Tibrational state (Fig.5.10) is sufficiently large
to be observable with standard triple-axis methods. For MDBP (021) a splitting of
0.9 meV has been observed /6.27/, together with a mean librational energy E1 = 10.2
meV (Fig.6.11}. In Sect.6.2.1c another successful measurement of an excited-state
splitting will be reported. A number of facts support the assignment by CLOUGH et
al. /6.27/: 1) the level scheme can consistently be explained with a potential

V(¢) = -9.0 cos3¢+ 1.8 cosb¢ [meV], 2) the integrated intensities for the transi-
tions to the ‘two members of the doublet are the same, 3) partial deuteration has
little effect on E& and 4) the two peaks broaden with temperature in a way very
similar to the broadening of the ground-state splitting. What is even more remark-
able is the difference in width of the two peaks. While at low temperatures the
width of the A state (that at higher energy) is resolution controlled, the E state
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is much broader and obviously has a shorter lifetime. This is explicable if only
those potential fluctuations which modulate the amplitude and do not change the
symmetry of the potential V(¢) are present. The ground-state wave functions as

well as the perturbation 3¢kL(RL stands for rotation-lattice) then have A1 symme-
try. As the first excited librational state has A2 symmetry, transition matrix ele-
ments vanish. In order to allow transitions, the phase of the potential needs to be
modulated by lattice modes which gives rise to o, ~ sin3ng. The unexpected broaden-
ing has important consequences concerning models for the temperature dependence
(see Sect.7.1).

The temperature dependence of the tunnel splitting has also been measured for
MDBP /6.25-28/. Two different activation energies Ej = 5.6+0.8 meV and Ep = 111
meV /6.28,29/ are required for a fit of the results. Eg seems to dominate above
T z 15 K; its value is very close to the energy of the librational levels. This is
suggestive for the role of the librational states in the microscopic mechanism re-
sponsible for the broadening. A second process governed by E? takes over at tempe-
ratures T ¢ 15 K /6.28/. Here an excitation at 5.5 meV = E? has been found in MDBP
(D21) and has been identified with an optical lattice mode. Its contribution in a
second-order Raman process /6.28/ has been invoked. In addition to the broadening
of the tunnel peaks, a quasielastic component has been found. Its width is always
less than that of the tunnel peaks /6.25,26/. Both a direct inelastic measurement
and the fixed-window technique have been applied to determine its temperature de-
pendence.

On one hand, the observed features are of extreme importance in the explanation
of the microscopic events responsible for the continuous transition from quantum-
mechanical tunneling to classical reorientational motion. On the other hand, some
“residual uncertainty" concerning the assignment of peaks in MDBP remains. There-
fore experiments with other substances along similar lines as that with MDPB are
highly desirable. It is clear that future efforts will aim in this direction. For
further discussion of the temperature dependence of rotational tunneling based on
MDBP results, see Sect.7.1.2.
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c) Other Examples

There are many more examples with rotating CH3 groups which all suffer from the
fact that the crystal structures are not known or not sufficiently known. As one-
dimensional rotation has the advantage of simplicity (e.g., rotational levels can
be calculated exactly for certain potentials /5.8/), systematic crystallographic
studies of these systems would be desirable. Below we shall give a short summary
of several systems which may help to contribute to a better understanding of CH3
rotation.

Pb(CH3)4 has already been mentioned in connection with the fixed-window method
(Sect.4.5.1). Direct measurements at 3 K yield a tunnel splitting of 35 peV /4.32/.
Barely above 3 K the Tines broaden significantly. Additional data could provide an
interesting test of recent models pertaining to the temperature dependence of tun-
neling states (Sect.7.1).

A rather systematic effort has been made to investigate methyl-substituted pyri-
dines (lutidines and picolines; see also Sect.6.1.4) /6.30-32/ as well as toluene
/6.33/, both with NMR T1 and neutron measurements. Rotational potentials have been
determ1ned [neglecting contributions V with n 2 3 and the phases b3 in V(¢) =
5 2 V3ncos(3n¢-+¢3 )] from neutron measurements of the tunnel splitting (A-E transi-
tion) and of the Tibrational excitations. The comparison with results based on NMR
data for the same compound is not always satisfactory. The temperature dependence

of the relaxation time T, is analyzed in terms of a classical model for the high-

temperature relaxation a;d a semiquantum mechanical model /6.34/ for the low-tem-
perature relaxation. The method seems to yield fairly reliable potentials if the
measurements are extended far into the regimes of Tow-temperature and high-tempera-
ture relaxation /6.31/. As this is not always possible, rotational potentials based
on NMR T1 data alone appear to be rather uncertain.

2,6-Dimethylpyridine has a large tunnel splitting with hwo = 190 yeV and there-
fore represents another successful measurement of a splitting of the first Vibra-
1E " 3.6 meV and E1A = 4,3 meV have been gbserved /6.31/.

Another very interesting system is provided by SnFZ(CH3)2 /6.35,36/. Only the

tional state. Two peaks at E

structure of the (body-centred) tetragonal high-temperature phase is known. In this
phase the CH3
lattice; the square lattice probably becomes (weakly) distorted below the phase

groups are arranged in planes and their rotation axes form a square

transition at TO = 70 K. From other experimental evidence, tunneling states were
predicted at about 15 ueV /6.35/ and actually were found at 13.7 ueV /6.36/.

SnF,(CH,),
ticular of Q-dependent intensities (with single crystals) aimed to learn about ro-

appears to be an excellent candidate for further measurements, in par-

tational wave functions.
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6.2.2 NH3 {in Hexamine Nickel Halides)

Usually tunneling spectroscopy by neutron scattering is complemented by NMR measure-
ments (or vice versa). For systems N1(NH3) X with X = I, Br or C1 this is differ-
ent. Evidence for low-energy rotational phenomena was first obtained in specific-
heat measurements, down to temperatures of about 0.1 K, by van KEMPEN et al. /6.14/.
In all three compounds these authors observed Schottky anomalies which they attri-
buted to a two-level system with a small energy separation A(X). Values A(I) =

peV, A(Br) = 10.5 peV and A(C1) = 3-4 peV have been extracted from the data. Because
the splittings were small, only high-temperature tails of the anomalies C = (1/4)k
(A/T)2 could be observed for the bromide and the chloride. Therefore the values
A(Br) and particularly A(C1) appeared to be rather uncertain. A quantitative ex-
planation in terms of a tunnel splitting hwo of the NH3 group has been given by
BATES and STEVENS /6.37/ on the basis of an electrostatic model. Qualitatively,

the rotational potential decreases when the lattice parameter and the intermolecu-
lar distances increase with the ionic radius of the respective halide ion (from

C1” to I'). A similar trend may be noted for the phase-transition temperatures

T (1) = 20 K, T (Br) = 45 K and T (C1) =76 K.

The structure of the high- temperature phase has already been d1scussed in Sect.
4.3.1 in connection with the one-dimensional continuous rotational diffusion in
Ni(NH3)6IZ. It is shown in Fig.4.1. The alignment of the dipole moment of the NH3
molecules in the crystal is responsible for uniaxial rotations around the three-
fold axis of the molecule. A1l three salts display orientational order-disorder
transitions to an ordered low-temperature phase (which is not the same for the
three salts) in which rotational tunneling is observed. The details of the Tow-
temperature structure have not yet been completely established for any of the three

compounds /2.25,6.37/. Probably there are two inequivalent sites with NH, molecules

3
in the unit cell. This introduces some ambiguity into the interpretation of low-
temperature measurements.

Obviously there is an interest in testing the specific-heat results with direct

neutron measurements. For Ni(NH an energy resolution of only intermediate qua-

) I
lity is required and therefore 2 ihiee-axis spectrometer with a resolution AE = 50
ueV has been used. A tunnel splitting ﬁwo(l) = 63 £2 ueVY has been found, in excel-
lent agreement with the corresponding specific-heat value. In addition a rather
broad peak at 9.0 meV has been observed and assigned to a transition to the first
excited Tibrational peak /2.25/. Maybe the observed "broadening" of this peak is
due to an unresolved splitting of the energy E1 into E1A and E1E (Fig.5.10); this

question deserves further experimental efforts.



For the remaining two compounds the measurements have been performed with a back-
scattering spectrometer and a resolution of 0.36 peV. A ground-state splitting
ﬁmO(Br) = 8.0+0.3 peV is found /6.38/—still in reasonable agreement with the
specific-heat value of 10.5 peV. The tunnel splitting of the NH3 groups in Ni(NH3)6C12
cannot be resolved. Thus it is much smaller than the corresponding value A(C1}, ob-
tained from specific-heat measurements. A broadening of the elastic line is observed,
however, and it may serve for an estimate of a splitting hwo(c1) z 0.1 peV¥. For a
discussion of the rotational potential for the three salts, one is referred to /6.38/

6.2.3 Methane

a) CH! 11

As has already been mentioned, the first neutron measurement of rotational tunnel-
ing has been performed in phase II of CH4 /5.5/. The structure of this phase is
shown in Fig.6.1. In Sect.6.1.2 we have discussed neutron spectra displaying the
excitations of the disordered molecules (2 molecules out of 8 in the unit cell).
These molecules only experience the crystal field Vc(r). We now turn to the ordered
molecules (6 molecules out of 8) where the potential consists of two contributions:
1) the crystal field with octahedral symmetry and 2) a molecular field VM(T) with
tetrahedral symmetry due to the octopole-octopole interaction. Measurements per-
formed with a three-axis spectrometer and an energy resolution AE = 40 peV are
shown in Fig.6.12 /5.5/. Two inelastic peaks are observed, both on the energy-gain
01 = 143 £3 peV
and hwoz = 73 £3 eV correspond to A-E and T-E transitions, respectively—with

and the energy-loss side of the spectrum. The observed splittings hw

hw01 = ET-EA and"nw02 = EE—ET. The absence of an A-E transition was originally ex-
plained by nuclear spin conservation /5.5/. Such a transition requires a change of
the total nuclear spin of a methane molecule from I = 2 {A state) to I = 0 (E state),
as can be seen in Fig.5.11. Changes Al = £2 cannot be caused by a scattered neutron

CH, I
tunneling
49K

g

:

counts /75min
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Fig.6.12. Tunneling lines in CHy II /5.5/.
R The solid lines represent a fit to the data;

450 920 60 0 60 10 10 the intensity of the elastic Tine is scaled
energy transfer (peV) down by a factor 5
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and therefore the transition is forbidden. The same argument holds for NHZ ions. A
more general argument for this selection rule has been based on the symmetry of the
neutron scattering operator (Sect.5.3).

A ratio wm/w02 = 2 of the observed energies is found, which indicates that the
180° overlap is indeed very small compared to the 120° overlap (5.3) (Table 5.4).
This is also the reason why no T state splitting is observed, in spite of the site
symmetry 42m. In principle such a splitting originates from the inequivalence of
the 180° matrix elements HX and Hz’ It has been estimated to be of the order of
0.1 peV /5.9/. Detailed analyses of the level scheme as a function of the rotation-
al potential may be found in /5.9,31/. HOLLER and KROLL /5.9/, for example, studied
the influence of the crystal field by taking a potential V(t) = V (r)-+V {t) with
V (1) = A (1)(1) and V (1) = A4 §1)(T) The tilde denotes that V(T) is expressed
in a rotated frame in wh1ch the equilibrium orientation of the CH4 molecule is a
standard orientation (Fig.5.6). In this frame, Vy (1) has the simple form given
above, while V (T) cannot be expressed in terms of just one cubic rotator func-
tion H$1)(T) of order %.

The intensities of the observed peaks have recently been compared to theoretical
results, based on the calculation of transition matrix elements /5.35/. Also, a
strong shift of the tunneling states has been observed, when changing to deuterated
methane (CD4) /5.39/. This isotope effect will be discussed in Sect.7.3.

Press and Kollmar also investigated the temperature dependence of the rotational
tunneling in CH4. Results, obtained with a slightly relaxed energy resolution are
summarized in Fig.6.13. The width displays the usual increase with temperature. The
tunneling frequencies, however, show an unusual behavior—they increase with tempe-
rature. This is due to the orientational order-disorder transition at T0 = 20.4 K.
The orientational order parameter and hence also the molecular field (magnitude A3)
decreases on approaching the phase transition. The orientational order parameter is
directly related to the intensity of superlattice peaks which have been observed as
a function of temperature in CD4 /2.24,6.39/. If one forgets the fluctuating part
Vf] of the potential for the moment, the decrease of the potential leads to an in-
creased overlap of the wave functions and, therefore, to a larger tunnel splitting.
A calculation yields qualitative agreement with the experiment /2.22/. The inclusion
of the fluctuating part of the potential Vf1 would Tead to a smaller increase of the
splitting. Above T0 quasielastic scattering caused by (almost) continuous rotational
diffusion of all molecules 1in CHy I is observed /5.4,5/.

Another interesting phenomenon concerns the tunnel splitting at low temperatures.
An dincrease of EAT and ETE with decreasing temperature has been predicted /2.22/.
This is due to the fact that the magnitude of the octopole-octopole interaction de-
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pends on the spin species. At low temperatures A states become increasingly popu-
lated. Their rotational wave function is symmetric and therefore is positive every-
where. The T and E state wave functions possess zeros. In order to compensate this
effect the maxima of the T and E state wave functions are more strongly peaked. The
angle dependence of the A state is smoother, it has a "more spherical" density dis-
tribution and hence a smaller effective octopole moment than the other spin species.
Recently a neutron scattering experiment was performed in the temperature range

1.4 KT <5K/6.40/ in order to test the theoretical predictions. An energy re-
solution of about 10 peV was employed. While the absolute values for the ground-
state splittings are not well reproduced by the theory /2.22/ (this was already
clear from the earlier measurements /5.5/), the temperature dependence predicted

by the theory fits rather well.

b) CH4 Adsorbed on Grafoil
Recently the tunneling states of CH4 on graphite surfaces have been observed /6.41,

42/. Methane molecules adsorbed on grafoil form a triangular two-dimensional lattice.
For CH4 coverages of 0.9 monolayers or less, a commensurate v3*/3 structure is ob-
served. v¥3*/3 means that the lattice constant of the two-dimensional methane lattice
is /3 times the Tattice constant of graphite. The distance of the molecular c.o.m.
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from the surface is 3.3 R. For higher coverages a change to a more compressed phase,
which is not in registry with the substrate, takes place /6.41/.

The Oxford group /6.42/ observes five lines at 17 peV (T1,2-+T3), 39 eV (T3—+E),
56 peV (T1,2-+E), 94 peV (A->T1,2) and 112 peV (A—+T3) (Fig.6.14). The respective
assignment is given in brackets. Spectra have been recorded with two different re-
solutions: 1) time-of-flight spectrometer, AE = 20 peV and 2) backscattering, AE =
1 ueV. The energies listed above are accurate to within 2 peV. The results have
been complemented by measurements of excited 1ibrational states.

The magnitude of the observed tunnel splittings is very similar to that found
in bulk methane /5.5/. Taking the average T state energy Ef = (1/3)(2 ET1 2-+ET3)
as a reference energy, the values EAE and EET are about 25% smaller than in CH4 II.
The observed 5 lines can consistently be explained by the presence of a potential
with trigonal symmetry (Table 5.4). There is a site with trigonal symmetry in the
basal plane of graphite, namely, the position of the carbon atoms. It is possible
that the CH4 molecules sit above such sites in the registered phase and thus retain
a threefold axis.

Two kinds of interacting contribute to the rotational potential: 1) an interac-
tion CH4 substrate and 2) a direct interaction between CH4 molecules. The authors
conclude that the second contribution is more important. Calculations of the ground-

state splittings have been based on phenomenological pair potentials /6.42/.
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A very interesting feature concerns the intensities observed with a substrate
of exfoliated graphite. In such a sample the hexagonal ¢ axis is largely ordered,
whereas there is no order referring to the a and b axis. The neutron spectra dif-
fer significantly for Q parallel (Q,) and perpendicular {Q,) to the basal plane.
Inspection of transition matrix elements for neutron scattering /3.3,4/ shows that
a significant contribution to the intensities I(Q ) originates only from the A-T3
and T1’2—E transitions, when assuming trigonal site symmetry for the methane mole-
cules. This in accord with experimental observations and provides an example for in-
tensity information supporting the assignment of rotational levels (Fig.6.14).

6.2.4 Ammonium Salts

a) (NH4)25nC16

The face-centred cubic structure of (NH4)ZSnC12 is shown in Fig.4.7. Rotational ex~
citations in (NH4)ZSnC16 already have been discussed in Sect.4.5.1 in connection
with the classical high-temperature reorientational motion of the NHZ groups. We
now turn to the tunneling states of this compound as observed with a backscatter-
ing spectrometer and a resolution of 0.38 peV. First the results at low tempera-
tures (T = 6 K; Fig.6.15) shall be discussed. As for the ordered molecules in CH4II,
two pairs of inelastic peaks are observed: ﬁwAT = 2.96+0,04 ueV and thE =
1.51+0.03 peV /4.27/. The selection rule responsible for the absence of an A-E
transition has been discussed before {Sects.5.3, 6.2.3). The ratio wAT/wTE again

is 2 within error bars, thus indicating the dominance of the 120° overlap. Excita-
tions at 13.4 meV and 30 meV help to complete the picture /4.27/. They are inter-
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Fig.6.15. Inelastic neutron scattering spectrum of (NH4)25nC16 measured with a back-
scattering spectrometer /4.27/. The insert shows the level scheme of the Tibrational
ground-state of the NHZ group
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preted in terms of transitions to the first and second excited 1ibrational states
and signal the presence of a boxlike potential. Attempts have been made to explain
all observed features with a rotational potential of tetrahedral symmetry (2.21)
/4.27,5.28/, so far with Timited success.

Additional tunnel splittings have recently been observed by PUNKKINEN et al.
/6.43/ with NMR methods at 0.054, 0.10 and 0.153 peV. These findings are inter-
preted in terms of transitions within the T state multiplet. According to Punk-
kinen et al., the T state degeneracy is completely removed because the site sym-
metry is lower than tetrahedral (from Table 5.4: site symmetry m or 1, if all NHZ
sites are equivalent). This indicates a weak structural distortion (phase transi-
tion?) which so far has escaped crystallographic studies. Additional experiments
are required to clarify the situation.

HOLLER has calculated the intensities of the observed inelastic lines by per-
forming powder averages (3.19) of the double differential neutron scattering cross
sections /3.3/. The elastic lines have not been included in the comparison because
of additional uncertainties concerning scattering from the sample container, inco-
herent scattering from other atoms in the sample, etc. A comparison between experi-
mentally observed intensities for both (NH4)25nC16 /4.27/ and NH4C104 /6.44,45/ and
theoretical results is shown in Fig.6.16 and Table 6.1. For (NH4)ZSnC16 the calcu-
lations are based on tetrahedral site symmetry. Excellent agreement is found.
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Fig.6.16. Level scheme of a regular tetrahedron in a potential which has no symme-
try. This is compared to schematically drawn neutron scattering spectra for NH4C104
/6.44,45/ and (NH4)25nC16 /4.27/, which represent examples with low and high site
symmetry /3.3/
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Table 6.1. Energies and intensities (arbitrary units) of the tunneling transi-
tions in NHyC104 /6.45/ and (NHg),SnClg /4.27/. The experimentally determined

intensities_are compared to theoretical values /3.3/ which are given in units

of (1/24)Nal +3(Qpe)

NH,C10, (NH4)ZSnC16
Line 1,2 3 4,5 7.8 9 1,2,3  7,8,9
fw (ueV) 7.17  11.28 4.1 5.65 1,51 2.96 1.5
intensity (exp.) 104 49 22 84 50 35 26
intensity (calc.) 10 5 2 8 4 15 12
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The temperature dependence of the tunneling lines 1in (NH4)ZSnC16 is shown in
Fig.6.17. As usual the lines shift towards lower energies. They do not reveal sig-
nificant broadening, however. Therefore tunnel splittings remain visible up to a tem-
perature T = 60 K, and it appears that the classical high temperature regime is on-
1y reached above temperatures T = 70 K. As the ratio wAT/wTE = 2 seems to persist
as well, the data have been fitted with the constraint wAT(T) =2 wTE(T) (Fig.6.17).
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It is possible that the absence of broadening is related to the short lifetime of
the first excited librational state (random averaging model, see Sect.7.1.1), which
even decreases with temperature [T(T=6 K) = 1 meV].

b) NH4C104

Eﬁﬁaﬁ¥aa—aérch1orate (NH4C1O4) has an orthorhombic structure with four molecules
per unit cell /6.46/. A1l molecules are structurally equivalent, that is, they ex-
perience the same static rotational potential. The only symmetry element at a NHZ
site in NH4CTO4 is a mirror plane /6.46/. No phase transition has been reported for
T < 300 K. From earlier NMR T1 measurements a tunnel splitting of about 2 peV has
been concluded /6.47/ and a constraint to uniaxial rotation has been discussed as

a possible consequence of hydrogen bonding /6.43/.

Neutron spectra recorded at low temperatures /6.44,45/ rule out the latter pos-
sibility and show that conventional T1 measurements can provide a result in the cor-
rect frequency range, but cannot reveal the detailed level scheme. The tunneling
spectrum (Fig.6.18) looks rather complex at first glance. Five transitions are ob-
served for energy transfers |E| < 12 peV; the energies are listed in Table 6.1. An
extension of the measurements beyond 12 peV did not yield additional lines. There
were some initial difficulties in constructing a level scheme from the observed
transitions. Finally an explanation was based on the known site symmetry, but needed
the inclusion of an accidental degeneracy of two of the three T Tevels. As may be
seen from Table 5.4 or Fig.5.7, this is equivalent to assuming an effective site
symmetry, 3 or 3m. These symmetries give rise to relations between the overlap ma-
trix elements which necessitate the observed degeneracy.
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Fig.6.18. Inelastic neutron scattering spectrum of NHzC104 (T = 5 K) measured with

a backscattering spectrometer /6.45/. Note that the time indicated refers to the
whole spectrum
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HOLLER /3.3/ has fitted the observed tunneling energies (neglecting the 180°

overlap) and finds h, = -0.038 peV and h2 =h3 =h4 = -1.410 peV. This corresponds

to three easy axes ald one hard axis of rotation. Thus the rotational potential is
clearly three-dimensional. Unfortunately, attempts to calculate V(t) on the basis
of electrostatic interactions remained unsuccessful. The fact that the threefold
rotation axis connected with the matrix element h1 is a "hard axis" (therefore
1ittle overlap) also is reflected in the librational amplitudes which have been
found in the structure analysis /3.3,6.45/. In a NMR level crossing experiment
/6.48/ a splitting of =0,18 peV has been observed. This probably represents the

T state splitting which originally could not be resolved by neutron scattering
/6.44,45/ and lead to the assumption of an accidental degeneracy /3.3/. A compari-
son between measured and calculated neutron intensities is shown in Table 6.1.
Both, calculation /3.3/ and experiment /6.44,45/ refer to powder samples and, as
in the case of (NH4)ZSnCI6, very good agreement is found.

Recently, the neutron spectra have been reanalyzed /6.49/ using the 120° over-
lap matrix elements hi directly as fit parameters. This has become possible since
energies and intensities of the transitions can be calculated directly (/3.4/ and
appendix) starting from a general set of hi' As a result matrix elements h1 =
-0.035+0.005 pev, h2 = h3 = -1,317 £0.004 peV and h4 = -1,410£0.006 peV are found,
which yields a splitting ET1—ET2 = 0.24 £0.02 peV. The agreement with the NMR re-
sult is surprisingly good. We may conclude that the inclusion of intensities into
the fit is superior to the conventional analysis and yields more detailed informa-
tion, as Tong as the width of the wave functions can be neglected.

The temperature dependence of the transitions within the ground-state multiplet
of NH4C1O4 has been measured and analyzed as well /6.45/. However, due to the com-

plexity of the spectra, NH4C1O does not provide a model example suitable for com-

4
parison with current theories. It may be noted that the observed broadening of the

lines seems to show an activation behavior with an activation energy EA = 22 meV.
The meaning of this value is not quite clear; the first librational state is found

at a much lower energy /6.45/ and does not seem to be related to EA.



7. Rotational Excitations at Low Temperatures
lll. Special Features

Several particularly interesting subjects have already been briefly mentioned either
in the general discussion of low-temperature rotations in Chap.5 or in context of
the example presented in Chap.6. They include the continuous transition from low-
temperature to high-temperature rotation, the isotope effect and the pressure de-
pendence of the rotational states. It appears useful to discuss these and related
aspects in more detail in a final chapter.

7.1 Temperature Dependence

One of the most fascinating aspects of single particle rotation is the continuous
transiton from quantum-mechanical rotation at low temperatures to classical diffu-
sive rotational motion at high temperatures. In neutron scattering this means a
transition from 1ine spectra at low temperatures to quasielastic scattering at
high temperatures. In Chap.6 we have given a number of examples for this tempera-
ture dependence, both close to the limit of free rotation and in the 1imit of ro-
tational tunneling. The common feature of all examples (CH4 IT is an exception,
because of its order-disorder phase transition) is a shift of the peak position(s)
of the tunneling line(s) towards Tower energies, before they merge into a quasi-
elastic Tine at high temperatures. In most cases this shift is accompanied by a
broadening of the lines.

It appears that access to the mechanism behind this temperature dependence is
of extreme importance for a final understanding of single particle rotations. Be-
cause of the importance of the topic, numerous attempts have been made to solve
this problem. We may note, however, that in spite of considerable progress and
some success of current theories, the final aim has not yet been reached. This is
partly due to the fact that rather often standard information about the investi-
gated substances has not been available concerning 1) static aspects: the structural
parameters and 2) dynamical aspects: the conventional lattice dynamics. Furthermore

mostly powder sampies have been used in the experiments. Apparently the lattice dy-
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namical excitations, which become increasingly populated with temperature, give rise
to a fluctuating potential and are responsible for the observed phenomenon. The mo-
dels put forward either need not specify the nature of these excitations at all
/6.23,25/ or base the explanation on either acoustic phonons /6.11/, translational
optic modes /6.26,27/, librational modes of the crystal /7.1/ or internal modes of
the molecules /7.2/. Below, a brief review of these models will be given. A1l cal-
culations deal with the simpler case of uniaxial rotation of CH3 groups. An exten-
sion to three-dimensional rotational motion so far has not been attempted.

7.1.1 Random Averaging Model

The most frequently applied—but also least specific—model has been coined by ALLEN
/6.23/. In this model the temperature dependence is explained in terms of a dynami-
cal averaging between two frequencies—the tunnel splitting of the ground state Wy
and of the first excited state Wy - The averaging is due to thermally activated tran-
sitions between these states, the tunnel splittings of which have opposite signs
(Fig.5.10). The magnitude of the splittings can be calculated exactly by solving
Mathieu's equation. Allen has adapted a semiclassical model of ANDERSON /7.3/ (la-
ter reviewed in /7.4/) which describes the frequency spectrum of an oscillator which
switches randomly between two frequencies. This switching is treated as a stationary
Markov process /7.8/> While Anderson gave an example with two frequencies +A and

1

equal populations Py and lifetimes w; of the states, Allen tock the values pertain-

ing to a rigid triangular group rotating in a potentia1-%v cos34. The general ex-

3
pression for the spectrum function I(w) /7.3/ reads

I(w) = Re {p4 1) (7.1)

with 1 = (1,1). In case of a tunneling CH3 group /6.23/ p = (po,p1) denotes the
population of the librational states (Boltzmann statistics) and 4 = A1+A2 is a ma-
trix composed of a diagonal matrix containing the discrete frequencies of the ro-

tor

P A R (7.2)

0 (w1-w)

and the matrix of relaxation rates

A, = -WO WO\ (7.3)
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W, represents the rate of transitions from the ground state and, in an analogous
fashion, w, the rate of transitions from the excited state. It is assumed that the
transition rates are related by Wy = Wy exp(-E1/kT). E1 is introduced as a mean 1i-
brational frequency (geometrical average) which needs to be defined for larger tun-
nel splittings.
The evaluation of (7.1) yields a spectral function I(w)

iy (ogm )2 exp(~E, /KT) [1+exp(~E,/kD)] "

H{w) = 75 5 (7.4
[(w-wo)(w-m1)] +~w1[(w-w0)+(w-w1) exp(-E1/kTﬂ

In discussing the above expression it is important to note that the tunnel split-
ting is much larger in the excited state and has the opposite sign (Fig.5.10). The
magnitude of the relaxation W, (excited state) determines the relative importance
of the two terms in the denominator. For small W, and Tow temperatures the tempe-
rature-independent first term dominates and gives rise to two discrete tunneling
frequencies close to ¥y and @, -

The second term in the denominator increases with temperature and tends to es-
tablish an average frequency close to wp = Wty exp(-E1/kT) which becomes smaller
at higher temperatures. In order to maintain a non-negative value for the peak po-
sition, Tibrational states with n > 1 need to be included. For large relaxation
rates w,, a rather Toosely defined generalization for the peak positions wp(T)
reads /7.5/

N
wp(T) E

o (T=0) exp(-E /kT// ) M exp(-E /kT) . (7.5)
n=0

Multiplicities Mn have been included in order to extend the applicability of the
above expression to three-dimensional rotors. The equivalent expression for the
energy width is given in /7.5/.

For low temperatures, one has exp(-E1/kT) << 1 and for frequenc1es w £
denominator of (7.4) can be approximated /6.25/ by (w ) +-w1[ W= )
The following definitions have been introduced:

w the

a.

6, = ~luguy) exp(-E/KT)/ (1) (7.6a)

a = w,|>(2(‘l+x2)_1 exp(-E1/kT) = §eX (7.6b)

X = -(u)o-w1)/w1 . (7.6¢)



Fig.7.1. Temperature-dependent position and
width of the jnelastic lines of a tunneling
CHz group /6.23/. For the reduced jump rate
Wi/wg an exponential form wWy/wq = cexp(-E1/kT)
is assumed. The solutions of Mathieu's equa-
tion for a CHy group in a potential of magni-
tude V3 = 55 meV are used, and results are
given for several values of the parameter c.
Note the 1ittle broadening in case of fast
temperature (K) relaxation (¢ = 10)

reduced frequency wp and linewidth a

The spectral function I(w) then has a Lorentzian shape. It is centered at wp = m0+6
(ép is negative!) and has a width (HWHM) a.

Examples both for the peak position wp(T) and the width @ are given in Fig.7.1
/6.23/ on the basis of (7.4). The solutions of the Mathieu equation for a potential

p

V3 = 55 meV are used, and the relaxation rate W, serves as a parameter. Usually a
strong shift 6p is accompanied by a broadening of the same magnitude. If, however,
the temperature-dependent term in the denominator of (7.4) is strongly weighted due
to a large Wy the change of the width a [see definition in (7.6b)] remains rela-
tively small. An example where this phenomenon as well as a short lifetime Wy of
the excited state has been observed is (NH4)ZSnC16 /4.27/. The relaxation rate v,
enters Allen's model of the temperature dependence in addition to the parameters
which describe the tunneling at low temperatures. w, can be determined by fits to
the observed temperature dependence and then can be compared to direct measurements
of Wy

Generalization of Allen's model to the tunneling of tetrahedral molecules /4.27,
7.5/ so far are somewhat questionable as they do not account for the more compli-
cated level scheme. One aspect of the random averaging model is that only differen-
ces between the energies of the A and E states enter {Fig.5.10}. This can be made
plausible for strong potentials with very small ground-state splitting. Then a pocket
state can be chosen as an eigenstate which can be written as a linear combination of
symmetrized states. During excursions to the excited state, the A and E states de-
phase with the difference of their librational state energies. This difference is

the tunnel splitting Wy of the first excited state.
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7.1.2 Refined Random Averaging Model

A combined effort of both testing Allen's model with NMR and neutron measurements
(particularly with MDBP, see Sect.6.2.1b) and incorporating additional aspects into
the model published by ALLEN /6.23/ has been made by CLOUGH and collaborators /6.27,
28/. In interpreting Allen's model they distinguished between two different "rela-
xation mechanisms". Their meanings are discussed in connection with the evolution

of a pocket state, say, 2, (with proton 1 in minimum 1, etc.). 1) The process called
"rotation" has a simple classical meaning; it means transitions from the pocket
state @1 to the other pocket state 2, or ¢3 by means of a reorientation. 2} The
second process, called "fiip-flop" motion has no classical analogue; it describes
the evolution with time of the pocket state after a transition to the first excited
librational state. As described in the last paragraph of the preceeding section, a
very small splitting of the ground-state multiplet is assumed /7.6/. The name "flip-
flop" refers to the two states, between which the nonstationary pocket state oscil-

lates
LIB 1 LIB LIB . LIB .
2 (t) = vl |®A >+|<I>Ea >exp(1m1t) +|<I>Eb >exp(-1w1t) . (7.7)

Here Wy denotes the tunnel splitting in the excited state. E% and Eb denote the com-
plex conjugate pair of E states. The evolution is different for the states with E
symmetry, which leads to a phase difference between A and E states. The "fl1ip-flop"
mechanism therefore is made responsible for the broadening of the A-E transition,
yet does not affect Ea-Eb transitions /7.6/. In order to account for the quasielas-
tic scattering observed in MDBP /7.11/, CLOUGH et al. introduced a strain-induced
Ea—Eb splitting. "Rotation", which is not necessarily restricted to the classical
values for angular steps #2m/3, does influence both kinds of transition matrix ele-
ments.

Fi1ip-flop motion is made responsible for the broadening in Allen's treatment
which, however, fails to explain a quasielastic peak at low temperatures /7.6/.
Randomly occurring excursions to the excited state lead to a mean additional phase
angle denoted by x in (7.6c) and yield a contribution a to the linewidth. In ana-
Togy to this and in order to explain the quasielastic scattering a width » in con-
nection with "rotation" is postulated. The same form as in (7.6c) is used. No ri-
gorous derivation is given, though. Initially the same activation energy was intro-
duced for both relaxation processes /6.26,27/. This assumption has been dropped
after new experimental evidence /6.28/ of methyl group tunneling in MDBP. The mean-
ing of the two activation energies has been discussed in Sect.6.2.1b. Clough's pic-
ture is supported by the fact that the quasielastic linewidth (due only to the
second relaxation process) is smaller than that of the inelastic peaks /6.27/.
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A further refinement of the model followed the observation of symmetry-dependent
lifetimes of the excited 1ibrational states /6.27/. Because in Allen's model the
lifetime is independent of the spin state of the molecule /6.23/, a modification
of the dynamical averaging model appeared necessary. CLOUGH et al. /6.27/ did that
by generalizing the relaxation rate introduced in Allen's model [matrix Ay in (7.3)].
The quantity W, which is independent of the spin state is replaced by wi+w1+w5 [with
(i= 0,1)]. A derivation analogous to that of /6.23/ is given, based, however, on an
equation of motion for the density matrix P. With the same relation between Wy and
W, as in Allen's derivation and, additionally, w? EWE = 0, Allen's result can be re-
produced. The more general model is found to be consistent with the observations in
MDBP, taking only w? = 0. Details can be found in /6.26,27/.

7.1.3 Coupling to Collective Modes

In the following we shall describe attempts to explain the observed temperature de-
pendence by a coupling to 1) acoustic phonons /6.11/, 2) Tibrational excitations of
the crystal /7.1/, and internal vibrations of the molecule /7.2/. The role of tran-
sitions to the excited Tibrational states of the molecule under consideration (and
of translational optic modes) has been discussed before and will not be repeated
here.

HOLLER /6.11/ emphasized the difference between the polaron problem /7.7/ and
tunneling, where symmetry is due to the molecule itself. Remaining in the language
of the polaron effect, nevertheless, he distinguished between a "distortion" of the
potential (modulates its amplitude) and a "shaking" (modulates the phase 9 in the
potential). Only the latter gives rise to a bilinear coupling term in an expansion
of the potential V(yR,{gi}) into the rotational displacement up and the translational
displacements us- The curly brackets signify that the potential V depends on the set
of translational displacements of all particles in the crystal.

First the problem of a CH3 group coupled to a single translational oscillator

with {91} = u, is considered. Then the kinetic energy in the Hamiltonian is

T

mi (7.8)
and the harmonic part of V expanded around the minimum in one pocket is

_ 2 2
Vh(uR,uT) = 0yUp + Uy + Oglplie (7.9)
Contours of the potential are shown in Fig.7.2; their skewness originates from the

coupling term agUpUs- Pocket state functions are taken to describe the molecule
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% Fia.l.2,
Fig.7.2. Contours of the potential
S /ngi\> $ /CZi:i) Jr o{ug,ur). Minima at ur = 0 and

up = 0, 2n/3 and 4n/3 are de-

/NN v/
noted by I, II and III; S denotes
saddle points. The coupling term
aguput (7.9) is responsible for

<+ —

the skewness of the contours /6.11/

in its rotational ground-state (librational excitations are excluded), while the
translational wave function is represented by harmonic oscillator functions speci-
fied by a quantum number Nye States with ny > 0 become increasingly populated with
rising temperature. Tunneling frequencies wo(nR==0, nT) are calculated and found to
decrease monotonica!]y with Ny The splitting is reduced by the increasing cancel-
Tation of the overlap of the wave functions with increasing ns as a function of g
the sign of @ changes Ny times in presence of a nonzero coupling.

Second, the Einstein model is replaced by a more realistic Debye model for the
translational excitations in the crystal. Only the (translational) displacement uy
of the molecule immersed in a bath of Debye phonons is included. The harmonic po-
tential Vh is rewritten in terms of phonon coordinates /6.11/. Tunneling frequen-
cies then are calculated as a function of phonon occupation. The result for ﬁwD>> kT

(w, = Debye freguency) is

D

6 w 4
(1) = g (T=0) [1 SR (%) J ) (7.10)

The coupling constant g is a measure for the admixture of translational character
to the rotational wave function. It is directly connected with the coupling term
between phonon coordinates and angular coordinate. The usually observed decrease
of the peak position wp of the tunnel Tine can successfully be explained by a de-
crease with T4. On the other hand, the model does not yield a broadening of the
states, which is in agreement with results for several NHZ—sa]ts, but not for most
other systems. The model prebably will yield a broadening, too, if a coupling be-
yond the bilinear term is included. A further generalization dealing with the effect
of distortion or the nondiagonal transitions /6.11/ also would be interesting.

A Th
An alternative approach via the coupling to librational excitations of other mole-
cules has been formulated by PUNKKINEN /7.1/. Punkkinen doubted that the rdle of

behavior also has been found by SVARE /7.5/ in a less rigorous treatment.
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the Tifetime w;1 of the first excited 1ibrational state is decisive. Also, ALLEN's
model /6.23/ sometimes overestimates the broadening of the tunneling lines. For just
two interacting rotors the coupiing is represented by a bilinear term k12uR1uR2, si-
milar to the case of a coupling to translational modes. Only a weak coupling which
yields negligible wave vector dependence of the 1ibrational energy is assumed. There-
fore an exponential temperature dependence governed by the average librational ener-
ay E1 results. The coupling causes a mixing of the librational states and this gives
rise to & weighted average of splittings. No broadening of the levels results, as

in the case of a coupling to Debye phonons /6.11/. A width is added later in a very
phenomenological way by equating the relaxation rate Wy with a mean-squared 1ibra-
tional amplitude.

The model suffers from several approximations. Also it appears, that in many
cases in which tunneling has been observed the dominant contribution to the rota-
tional potential is of a crystal-field type. Contributions depending on the orien-
tations of two molecules often are less important (e.g., ammonium salts). This cer~
tainly is not true for van der Waals crystals 1ike methane.

The phenomenological description of the relaxation rate Wy yields a nonvanishing
rate in the 1imit T = 0, for which zero-point Tibrations are made responsible. This
is reminescent of the "adiabatic reorientation processes" postulated by other authors
/6.8,7.8,9/. They found a line broadening in the Jow-temperature limit and claimed a
homogeneous broadening due to a finite Tifetime © = w61.

PUNKKINEN has also studied internal vibrations (bending modes) of a molecule in
a surrounding of low symmetry /7.2/ and their coupling to rotational tunneling. The
coupling is effective only for low site symmetry, which restricts the applicability
of the model. Nevertheless it has been demonstrated that the reservoir of modes which
may be involved in the mechanism behind the temperature dependence is rather Targe.
At present it is not possible to single out a particular type of excitation as the
most important one.

7.2 Pressure Dependence of Tunneling Energies

The pressure dependence of rotational tunneling or, more generally, of all observable
rotational transitions of a molecule, provides an interesting access to rotational
potentials and intermolecular interactions. As can be seen in Fig.5.9, the tunnel
splittings calculated as a function of the potential display an almost exponential
behavior. Relatively mild changes of the potential are amplified to rather dramatic
changes of the observed tunnel splittings which therefore can be used as a sensitive

probe of the rotational potential. More quantitatively this may be phrased in terms
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of the Griineisen constant v = -31nw/31nV. Here V denotes the volume of the crystal.
For lattice phonons v is positive and typically y = 3. A similar behavior may be
expected for librational excitations, whose frequency also increases with decreasing
volume. This is different for rotational tunneling in which case the tunnel split-
ting drops with increasing potential. Using the numbers taken in the estimate below,
vy = -20 ought to be a typical quantity.

For a precise estimate of the shift of the tunneling energies as a function of
pressure, one must know the intermolecular forces and the pressure dependence of
the structural parameters of the sample. The latter determine the interatomic dis-
tances which enter the rotational potential. If the positions and orientations of
the atoms and molecules contributing to the rotational potential are not fixed by
symmetry, it is necessary to determine these quantities as a function of pressure,
too. This would necessitate a sequence of structure analyses accompanying measure-
ments of the tunneling states. If, on the other hand, the structural parameters are
fixed by symmetry (which is seldom) or change but 1little if scaled to the cell pa-
rameters, it is sufficient to know the pressure dependence of the cell parameters.
For the latter case and cubic symmetry a further simplification arises, and one on-
1y needs to know the isothermal compressibility «.

An estimate based on the knowledge of the compressibility k and a single power
law

Ay(a) = Ajlag)(ap/a)” (7.11)

for the strength of the rotational potential has been given by HULLER and RAICH
/5.14/; a is the lattice parameter at the pressure p = p0+6p, where Po is a re-
ference pressure. The estimate is given for tetrahedral molecules in a potential
v(t) = A3H$?)(T). The general ideas, however, are not restricted to this example.
As indicated above, the tunneling frequency Wy can be written as

_ 0
wy(A3) = wy(Ay) exp g, (A;)A,] (7.12)
where wg(A3) and 90(A3) depend only weakly on As. In particular the product gO(A3)B
varies little with A3; it is 0.08 and 0.05 for potentials A3 = -25 B and A3 = -125 B,
respectively. For small changes, 6A3/A3 = -néa/a with sa/a = -(1/3) «Sp, one obtains

=1
Sw/w = 3 gO(A3)A3|<cSp . (7.13)

HOLLER and RAICH gave an estimate for (NH4)ZSnC16 /4.27,5.14/, where A3 =z -100 B,
gD(A3) =z 0.055/B, « = 0.007 Kbar_1. A value Sw/w = -5%/Kbar is found for electros-
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tatic interaction. The leading term in the crystal field experienced by the NHZ
group in (NH4)25nC16 is a monopole-octopole interaction. For an electrostatic ori-
gin of this interaction the radial dependence of the crystal field is v with n=4.
A recent measurement of tunnel splittings in (NH4)ZSnC16 with neutrons (backscatter-
ing) for pressures p £ 2 Kbar /7.10/ yields an effect twice as strong as expected
for purely electrostatic interactions. This indicates important contributions based
on overlap or valence forces with a Targer value for the exponent n.

Much stronger effects can be predicted for more compressible solids. In methane
(CH4), for example, the compressibility is about 0.04 Kba\r_1 /6.8/. Pressures of
about 5 Kbar would reduce the tunneling energies by almost two orders of magnitude.
For this estimate one must not use the linearizations which lead to (7.13). The ap-
plication of high pressures is less difficult than for solid methane.

The corresponding experiment is difficult and has not yet been performed. Measure-
ments so far have been restricted to pressures of about 1 Kbar and below /6.10/.
Such pressures are obtained by pressuring Tiquid methane up to about 4.0 Kbar and
then cooling to low temperatures at constant volume (of the pressure cell). A first
result of these measurements, which extend into phase III of CH4, is the absence of
transitions corresponding to almost free rotations above 600 bar. One may conclude
that all CH4 molecules are orientationally ordered in phase III (see also next sec-
tion).

A beautiful example for the pressure dependence of rotational tunneling has been
provided by CLOUGH et al. /7.11/ with sodium acetate trihydrate [Na(CH3C00)3H20].
The application of high pressures is less difficult than for solid methane. Measure-
ments with pressures up to 5 Kbar (Fig.7.3) show that the tunneling energies change

D
Q

£~
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counts {arb. units)

energy (peV) —=

Fig.7.3. Inelastic neutron scattering spectra of sodium acetate trihydrate
[Na(CH3C00)3H20] at different pressures {T=4 K). A pronounced decrease with
pressure of the tunneling energy of the methyl group is observed /7.11/
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from 5.7 peV at p = 1 bar to 2.2 peV at p = 5 Kbar. An almost exponential pressure
dependence is found. The authors gave an estimate similar to that of HULLER and
RAICH /5.14/, this time for a potential V(¢) =-%V3c053¢. The expression

hw = 316 exp(-0.116 V,) (7.14)

is found to hold approximately in the range studied. In (7.14) ﬁwo is in peV and

V3 in meV. Assuming an isothermal compressibility « = 0.01 Kba\r'1 as a typical
value, a power n ~14 is obtained. The example probably belongs to the category for
which detailed information on the intermolecular interaction can only be safely de-
duced, if structure analyses are available at least at two different pressures.

The requirement of accurately known interatomic or intermolecular distances re-
presents a serious restriction to the determination of intermolecular interactions.
Further experiments are needed for a better judgement concerning the usefulness of
the method in this respect. An effort to test the intermolecular interactions in
solid nitrogen has recently been published /7.12/. The rotational constant of the
nitrogen molecule already is relatively small (B = 0.25 meV), therefore scaled po-
tentials in the ordered phases are large and the classical aspects of solid N2 do-
minate. Librational frequencies as a function of pressure and the a-y transition
line are calculated both for a Kihara core potential and for electrostatic quadru-
pole-quadrupole interaction.

7.3 Isotope Effect

The most direct proof of the presence of tunneling states is the isotope effect
/5.16/, due to the characteristically large change of the observed tunnel split-
tings upon isotopic substitution. An example is the tunneling of 6Li+ and 7Li+ ions
in KC1 /7.13/; observed energies differ by about 40%. One may ask whether an iso-
tope effect of similar magnitude holds for rotational tunneling.

When discussing the isotope effect, a glance at Fig.5.9 reveals a close relation
to the pressure dependence of rotational tunneling, described in the previous sec-
tion. In both cases relatively moderate changes of the static potential (scaled with
B = hz/zo) are amplified to very large changes of the observed splitting. The dif-
ference is as follows. By applying pressure the scaled static rotational potential
V;t = Vst/B is changed in a continuous fashion because V;t depends on the lattice
constant. Substitution of the protons in HZ’ XH3 and XH4 by deuterons, on the other

hand, increases the moment of inertia © and therefore also the scaled potential
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V;t = Zevst/h2 by a factor of two. Thus deuteration has the same effect as a large
change of pressure.

In order to render the effect observable for inelastic neutron scattering, exam-
ples with a relatively large splitting for the protonated species must be used.
Otherwise the ground-state splitting in the deuterated species is too small to be
resolved even with high-resolution neutron spectroscopy. Another possibility is
partial deuteration which leads to scaled potentials V;t of intermediate magnitude
~ but also to a more complex situation, due to the reduced symmetry of the molecule.
Recently both neutron and specific-heat experiments have been performed with parti-
ally deuterated methane; the former with CH3D adsorbed on grafoil /6.42/, the other
with bulk samples of CH202 and CHD3 /7.14-16/.

As an example of the isotope effect we shall discuss deuterated solid methane,
which has recently been investigated /5.39,7.17/. A spectrum within the energy range
|E| £ 9 peV is shown in Fig.7.4. Eight lines at energies 1.20, 2.14, 2.75, 3.37,
4.58, 5.35, 6.70, and 7.95 peV (statistical error for all lines about +0.04 peV)
have been obtained from least-squares fits to the data. An extension of the measure-
ments to energy transfers up to 20 peV did not yield additional lines. A previous
measurement /5.39/ covered an energy range |E| £ 4 peV and thus only allowed the
observation of four transitions. The measuring times are rather long even at a high-
flux reactor (about two to three days are required for one spectrum). This is part-
1y due to the complicated spectrum and partly due to the small incoherent scatter-
ing cross section Tinc = 2.2 barn of deuterium.

At this point of the discussion it appears useful to report a theoretical pre-
diction for the isotope effect in methane /5.9,7.10/. The observed splitting in
CHy 11 {143 peV and 73 peV) can be explained with a rotational potential V(1) =
A3H(3)(1) with A3/B = -37. Naively, one would expect a doubling of A3/B in CD4 be-
cause of the change in B, but due to the reduced librational zero point motion, the

800
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5 Fig.7.4. Inelastic neutron scatter-
< 400 ing spectrum of solid CDg III,
3 measured with a backscattering
spectrometer. The ground-state
200 splitting of the deuterated com-

pound (CDy) decreases by a factor
30 with respect to the protonated
species {CHa). This decrease re-
veals a pronounced isotope effect
energy transfer (ueV) /5.39,7.17/
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molecular field in CD4 is A3/B(CD4) = -85, more than twice the value in CH4 /5.14/.
The prediction for the tunnel splitting in CD4 is thE = 0.0038-B = 1.25 peV; this
shift relative to CH4 corresponds to an isotope effect of about a factor of 50. As
can be seen from the tunnel splittings in (D, (T = 3 K), measured by PRAGER et al.
/7.17/, the observed isotope effect is about 30, which is in reasonable agreement
with the theoretical predictions /5.14/. In any case the isotope effect is very
Targe, much larger than for the ring tunneling of Li* jons in KC1 /7.13/, for ex-
ample.

It is a complication that the prediction is based on phase II of methane (Fig.
6.1), while the measurements actually have been performed in CD4 ITI. As already
indicated, the two structures are believed to be closely related, the main differ-
ence being that all molecules are ordered in phase IIl /2.12,6.10,7.18,19/. It is
not clear whether this statement can be maintained in view of the complicated struc-
ture of the observed spectra. So far, no simple assignment (e.g., on the basis on
MAKI's predicted structure of phase III /7.19/) has been found. Within the model of
MAKI et al., large T state splittings appear to be very unlikely as the low-symme-
try terms in the potential are very weak.

Instead of fitting peak positions and peak intensities separately, the data ana-
lysis can also be based on a fit of the 120° overlap matrix elements hi (see also
Sect.6.2.4b). Different sets of hi have to be attributed to sublattices which are
not symmetry related. A set of hi determines both the Tevel scheme and —via the
transition matrix elements, which recently have been calculated for CD4 /3.4/ (see
Sect.5.3 and the appendix)—the intensity of the transitions. No unambiguous re-
sult is obtained. Several models with 3 and 4 inequivalent sublattices fit the da-
ta equally well /7.17/. A final answer requires either a structure analysis in phase
IIT of methane or additional high-resolution measurements in CH4 ITI.

Three common features of the models appear noteworthy. 1) The specific heats de-
rived from the models are practically indistinguishable. Hence one may not hope for
g I (with se-
veral inequivalent sublattices). 2) The peaks at large energies always combine in-

detailed results from specific-heat measurements in systems like CD

to one Tevel scheme with Tow site symmetry. Because of the large splitting (indi-
cating a weaker potential), a correlation with the sites of disordered molecules

in phase II is suggestive. Then, however, one also would expect a relatively high
site symmetry. 3) A1l models generate more than eight transitions, some of which

are very close to each other and appear as single lines.
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7.4 Tunneling in Molecular Mixtures

We have already discussed rotational excitations of molecules, matrix isolated in
atomic crystals (Sect.6.1.3). Similarly one may start from the opposite side, that
is, molecular crystals, and ask for the effect of substitutional impurities on low-
temperature rotational excitations. It has been mentioned before that paramagnetic
impurities, such as oxygen or free radicals created by y irradiation, couple to the
spin functions of the molecules and can speed up nuclear-spin conversion consider-
ably. Here we only want to discuss the effect of nonmagnetic atomic impurities.

The statistical replacement of molecules (which have an anisotropic density dis-
tribution) by atoms or monatomic ions (which are isotropic) has several interesting
aspects. In analogy to magnetic systems one may expect that the impurities behave
Tike nonmagnetic atoms, destabilize orientationally ordered phases and eventually
give rise to phases with spin glass character. Interesting systems of this kind are
mixtures of o-H, and p-H, /7.20/ (where p-H, is the isotropic component), K(CN)1_XBrX
/7.21/ and also (N,), Ar /7.22/ and (CD,),_,Kr . Much remains to be done in this
field, which is not a topic of the present review, however,

Another interesting aspect is the effect of impurities on the rotational exci-
tations in a molecular crystal. Judging from the effect of pressure, one may sus-
pect that the rotational energies are rather sensitive to impurities. Atoms or mon-
atomic ions which statistically replace molecules give rise to a distribution func-
tion of rotational potentials. In general, the influence of substitutional impuri-
ties on the crystalline field Vc(wg) will be rather weak. This is due to the fact,
that good mixing occurs only if the substituted and the substituting particles have
the same charge and if their ionic or van der Waals radii are rather similar, too.
A Targer effect will concern interactions of the type V(w%,w?) (see Sect.2.3) to

which atoms or monatomic ions do not contribute. Therefore the summation in
i, Ey _ E E
v (wi) = ZV(wi,wi)
J

is over fewer neighbors than in the unperturbed crystal.

This gives rise to a distribution function of rotational potentials and thus al-
so to a spectrum of energy eigenvalues, that is, to a (inhomogenous) broadening of
the lines which depends on the impurity concentration.

Ideally the substitution only affects the orientation-dependent interaction and
no position-dependent interactions. This is almost perfectly fulfilled in mixtures
of o-H2 and p—H2 /7.20/ and (NH4)ZSnC]6 and K25nc16 /7.23/ where the lattice con-
stants of the two components are very similar. For most other substances a local

lattice relaxation around the impurity will result.
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The effect of impurities in a system with dominant multipole-multipole interac-
tions is shown in Fig.7.5. The figure displays the low-lying rotational excitations
in the mixed system (CH4)1_xer with x=0.02, 0.05, and 0.08 /7.24/: 1) the tunnel-
ing transitions of the ordered molecules and 2) the perturbed 0-1 rotational tran-
sition of the disordered molecules. From specific-heat measurements /7.25/ it is
known that phase II is destabilized for x z 0.15 /7.23/. Thus for the reported ex-
periments the binary mixture is in phase II. One may note that both tunneling states
and almost free rotation broaden with increasing concentration [e.g., for tunneling:
T(x=0.02) = 26 +4 peV, T(x=0.05) = 506 peV, I'(x=0.08) = 63£15 peV]. The tunnel-
ing Tines shift to larger energies which can be explained by a weaker average poten-
tial in the presence of krypton impurities. For the 0-1 rotational transition, on the
other hand, a reduction of the energy with impurity concentration results. This indi-
cates a stronger potential and shows that the cancellation of the octopole-octopole
interaction at the sites of disordered molecules does not work as perfectly in the
binary mixture as in pure methane (see also Sects.6.1.2 and 6.2.3a).

There is not only an effect on the average magnitude of the rotational potential,
but also on its symmetry. Statistical replacement of molecules leads to a binomial
distribution of the number of neighbors of a given kind. On average the surroundings
of a molecule retain high symmetry, but locally the symmetry will be perturbed. For
tetranhedral molecules this gives rise to a T state splitting, which adds to the

broadening of A-T at T-E transitions (after averaging over many configurations),
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but also gives rise to inelastic transitions within the T state multiplet. The cal-
culation of rotational spectra for binary mixtures requires the calculation of ener-
gy eigenvalues for many configurations of low symmetry with a subsequent averaging
over the configurations (inhomogenous broadening). Such calculations have not been
performed yet.

For large impurity concentrations {x = 0.5) one may expect a broad distribution
of potentials and thus very broad spectra. If one may ignore the crystal field, and
attributes the main contribution to the potential to anisotropic interactions be-
tween molecules, the neutron spectra will look almost Tike quasielastic scattering.
2)0.7Ag.3 /7-26/.

Here an interesting aspect appears. Quasielastic spectra at low temperatures im-

This indeed has been found for (N

ply an almost constant density of rotational states at low energies and consequent-
ly one should observe an almost Tinear specific heat for T << @D (@D = Debye tempe-
rature). This means that one can start with a molecular crystal with Tow-energy ro-
tational excitations {e.g., tunneling states in CH4) which give rise to Schottky
anomalies, and by admixing impurities one may obtain a solid with a linear speci-
fic heat at low temperatures. Apparently there is a similarity to glasses, in which
the observed Tinear specific heat is attributed to the presence of a distribution
function of two-level systems (tunneling states /7.27/). These low-energy states,
however, are absent in the respective crystalline system (e.g., of 5102) and no
continuous transition from the crystalline to the glassy state is possible. In a
crystal like 5102, the only low-lying energy states are associated with acoustic
phonons, which gives rise to the usual T~ behavior of the specific heat.

Another binary systen which has recently been studied /7.23/ is (NH K SnC]G.

4)2-2x 2X
As becomes obvious from Fig.7.6, the impurities have only 1ittle effect on the tunnel-

ing spectrum. Figure 7.7 shows both the tunnel splitting th-E and the width of the

Tines for concentrations x £ 0.6. The findings indicate that the octopole-octopole

Z tetrahedra in (NH,),SnCl. (Sects.4.5.1 and 6.2.4a) pro-
vides only a minor contribution to the potential and that the rotational potential

interaction between two NH

largely has crystal-field character. This is due to the strong monopole-octopole
interaction which does not change when a NHZ group is replaced by an isoelectronic
potassium ion.

At concentrations x = 0.65 a phase transition to the low-temperature phase of
KZSnC16 /7.28/ takes place, the structure of which is not yet completely estab-
Tished. The resulting distortions seem to cause an increase of the rotaticnal po-
tential and, consequently, a strong decrease of the tunneling energies. As an up-
per l1imit a value ﬁmA-T = 0.3 ueV may be given. In principle one could use the NHZ
jon as a probe for the site symmetry at the potassium or rubidium sites. In the pre-
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sent case (K25n016), however, the energy resolution available in a neutron backscat-

tering experiment has not been sufficient.
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Appendix: Calculation of Transition Matrix Elements

A1. Calculation of Spin Functions for XH4 and XDQ

The spin functions for tetrahedral molecules can be constructed as follows {a simi-
lar calculation applies to other molecules with internal symmetries). First we note
that there are four different types of spin states:

Xy = |aaaa> (A.1a)
X, = |baaa> (A.1b)
Xg = |bbaa> (A.1c)
Xy = {bbac> . (A.1d)

For protonated molecules a and b denote either of the eigenvalues 1/2 or -1/2 of the
z component of the protan spins. Only the first three types of spin states X; exist
(total number 24 = 16). For deuterated molecules a, b and ¢ denote one of the eigen-
values +1, 0, -1. A1l four types X; exist (total number 34 81). Now symmetrized

LZ1 o (u)R Here the
sum is over all 12 symmetry operations R of the tetrahedral group; P denotes the

representations A, E and T, respectively, and o, J( u) the elements of the representa-

functions are obtained by use of the projection operator P ~2

tion matrices. For one-dimensional representations the “gj are the characters of the
representation.

The functions obtained by the use of PT are eigenfunctions of the nuclear-spin
operator $z’ but not necessarily of ?2 as well. Obviously [aaaa> is completely sym-
metric and has A symmetry. The functions of the type |baaa>+ |[abaa>+ |aaba> + |aaab>
are also completely symmetric. Similarly, the functions |baaa>+ |aaab> - |aaba> - |abaa>
have symmetry T From X4 and Xp 1O spin funct1ogs of E symmetry can be constructed.
The above funct1ons are also eigenfunctions of 1~ in the case of CH4, and for II |22
also for CD4 The construction of spin functions |I, IZ,F> is more difficult for
IZ =0 (CH4 and CD4) and IZ = 1 (CD4). "Families" of spin functions with total
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spin I can be generated by repeated application of the totally symmetric lowering
operator i_ = 23=1 i
81 symmetrized spin functions have to be constructed: 15 A functions with I = 4,2

and 0, 3x18 T functions with I = 3,2,1 and 1, and 2x6 E functions with I = 2 and 0.

Only the spin functions for CH4 are listed in this work (Table 5.6). If one is only

and use of orthogonality. This method is needed for CD4, where

interested in the total intensity for a transition between states of different sym-
metry —one step, namely, the construction of functions which are also eigenfunctions
of %2, can be omitted. Wave functions y, which are completely symmetric under the
symmetry operations of the tetrahedral group, are obtained as products of spin func-
tions and rotational wave functions of the same symmetry ¢ = @F-XT. As in /3.3/
¢ functions have been used for the spatial pocket states, which is inadequate for
the calculation of overlaps, but often represents a good approximation on the way
to transition matrix elements.

In practical calculations of transition matrix elements a somewhat modified ap-~
proach has been used. In the spin functions defined above, My denotes the z compo-

nent of the 1th proton. Instead, functions [p1u2u3 > are used /3.3/, where My de~

U
notes the z component of the 1th site and not that gf an individual proton (Sect.5.2).
With this definition the spatial part of the wave function |&> is simply included as
a function sharply peaked at the equilibrium orientation ) of the tetrahedron. For
complete orientational Tocalization |¢> ~6(T-10), independent of the symmetry of the
rotational state considered. This modified approach takes into account that ulti-
mately only the spin state at a given site determines the matrix elements and Teads
to a considerable simplification of the calculations. A generalization to finite size
wave functions |¢> is demonstrated in /3.4/.

A2. Calculation of Transition Matrix Elements (Cubic Symmetry)

The next step consists in the application of the neutron scattering operator W =wA+wT
(Sect.5.3) to the wave functions y = |¢>[xF(I,IZ)>. W, does not change the symmetry
of the spin functions XF(I’IZ)’ while it is always changed by wT. Matrix elements are
obtained by decomposing the resultant functions (wA+wT)¢ into symmetry adapted func-
tions y' = |®>[XF'(Il’I£)>' In practice this calculation is done by means of a com-

puter program. In particular the 81x81 matrix of transition elements for CD, neces-

sitates such an approach. The resultant 16x16 matrix A for CH4 is exp1ic1t1§ given
in Table A.1. For reasons of spin conservation the scattering obeys the selection
rules AI = 0, #1 and AIZ = 0, x1. Transitions caused by gz'$z (Sect.5.3) leave both
z-component y of the neutron spin and IZ unchanged (scattering without spin flip).

However, the "non-spin-flip" part of wT may change the total spin I of the molecule.
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Table A.1. Transition matrix elements for CHg. Initial and final states are described
by their symmetry T and I'', respectively, anﬁ by the z component of the nuclear spin
I, and Iy , respective]y; a=1,b=1/2,¢c=1//3,d=1//8, e =1/V2, f = /4/3,

g = V372, h = /2/3. For transitions without symmetry change the elements have to be
multiplied by Gp, otherwise by GT , 6T, and GT (indices x, y and z denote which one
has to be taken). When ca]cu]at1ng 1nt¥ns1t1es, it should be noted that transitions
without spin-flip occur both for neutrons with spin up |o> and spin down |g>. Matrix
elements which are zero are omitted from the Table. The corresponding 81x81 matrix
for CDg is not listed explicitly (its T-T part is given in /3.4/). Intensities for
powder samples can be found in Table A.2

? A T T, T, E
r IZZ -2 | -1 0 1 2 |-1 0 1 ]-1 0 1T ]-1 0 1 0 0
-2 |-a a a, ay 2,
-1 a |-b g bx e, by ey bZ e,
A O g g -d e | d, -dy' | )41 | 4
1 g b a --eX bx -e by -eZ bz
2 a a -2, —ay -a,
-1 -a, bx —dX -b e bZ -e, by -ey “C. | 3,
TX 0 el Sl "8 e e |-e, -e, —ey -ey -dX y
i dX bX -a, e b -e, -bZ -ey -by ol "3y
-1 ay by -d bZ -e, -b e bx -e, -cy -ay
T 0 ey cy -ey -e, e | e e |-e, e, —dy -ey
1 dy by -3, -e, -bZ e b -e, -bx cy ay
-1 a, bZ -dZ by -ey bX -e, -b e fz
TZ 0 el ¢ |8, -ey -ey e, e | e e hZ
1 dZ bZ -a, -ey -by -e, -bX e b fz
‘ 0 -Cy -dx Cy -cy —dy cy fz hZ fz
0 a, <y -ay —ay —ey ay

Transitions caused by ;+%Y- and §_$Y+ are associated with a change of both p and I,
(spin-flip scattering). The diagonal blocks in the matrix are mediated by the total-
ly symmetric part of the operator wA They all are proportional to G 2 Z G with
GY = exp(iQ-rY) and EY denoting the positions of the four protons of a tetrahedron
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The off-diagonal blocks are obtained by application of the operators wT . wT
and wT {see Sect.5. 3) Action of NT on a function [xTy> Teads to functions [XT >
and a factor GTx (G G2 -G +G ). The other blocks can be constructed by cyclic
permutations or have to be transposed for noncyclic permutations. Finally, inten-
sities are obtained by taking the modulus squared of the matrix elements and then
summing within a block connecting the symmetries T and T''. This summation yields
symmetric matrices of dimension 5 which are given for both CH, (Table A.2) and CD,
(Tab]e A.3). The Q dependence of the scattering is contained in expressions
IGH -1+052 oo cos Q-r, ,wﬁhr..=rnff mecgamzﬂ,wﬁhtm;mb

ij ij -ij -
tern of signs def1ned in (5.8).

Table A.2a,b. Intensities for transitions between the group of states with symmetry
I and T'' of a tetrahedral molecule; a common factor ¢j,./216 has been extracted from
both tab]es for (a) CHg and (b} CDg. The f0110w1ng abbreviations have been used:

IG 12, |GT | 2, g = |Gt ?2 and gZ = |G7,|2. The table in its present form
assumes T>> K(A is & measure for” the tunnel sp11%t1ng) in which case the population
of all ground-state levels is the same. A generalization to lower temperatures with
proper inclusion of Boltzmann factors is straightforward

é:i AT, T, T, égi AT T, T, 0
A | 13500 459)2( 45g§ 4595 0 A | 7062 306 3093 306" 0
Tx 459i 27g§ 2795 2795 369x2 Tx 30g 4Zg§ 4292 4295 369§
T, 4593 27g§ 27gf\ 279)2( 3695 T, 309}2, 42g§ 429,2\ 429)2( 3695
T 4595 2795 279)2( 27gf\ 3Sg§ T, | 308 4295 429)2( 429§ 3692
E| 0 36 3695 36g° 0 E] o 36 36g§ 369 2095

As most measurements use powder samples, it is useful to quote powder averaged
quantities as well. Defining g% = IGrlz, and g? as its powder average one obtains

o’ = 1+3 (Qo/8//3) (A.2)
R A A R A (T I (A.3)
X 'y 'z
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Table A.3a,b. Intensity of T-T transitions for CH; (and CD4) for reduced site symme-
tries. (a) refers to a threefold symmetry axis; Ty denotes the nondegenerate level,
T, and Ty the degenerate ones. (b) refers to a twofold symmetry axis; Tys Tp and T3
denote the states with energy eigenvalues -8, 0 and +8, respectively. A common fac~
tor 04,./216 has been extracted from both tables. The corresponding tables for Cp4
are obtained by multiplication with 14/9. The intensities of A-T; and E-T; transi-
tions (Table A.2) remain unaffected by reduced symmetry

! T
T T T T T T
- 1 2 3 r 1 2 3
. _ . _ . . _ . 0
T1 63 +45 dg 9- 9 Jg 9- 9 Jg T1 54 + 54 g 27 - 27 ig
T2 9- 9 jo 54 + 54 jD 18-18 jo TZ 27 - 27 jO 27 + 81 ig 27 - 27 Ig
T3 9- 9 ‘jO 18-18 ‘jO 54 - 54 jO T3 0 27 - 27 jo 54 +54 ‘jD

Here jo denotes a spherical Bessel function and o is the radius of a molecule. For
cubic symmetry, all T states are degenerate and therefore all T-T transitions are
elastic. Only the part resulting from the totally symmetric operator WA corresponds
to the elastic intensities in the classical limit. The same statement holds also
for CH3 groups. One may suspect that this relation is important in connection with
models for the temperature dependence of rotational tunneling.

A3. Transitions at Sites with Reduced Symmetry

So far, only the intensity for cubic site symmetry has been calculated. As we shall
see somewhat later, the availability of intensity information in addition to the po-
sitions of the inelastic transitions is important for reduced site symmetries. In

the following, a simple method for the calculation of intensities is given. It starts
from the transition matrix elements in the cubic case. Only the T states are affected
by Tower symmetry. Degeneracies are removed, and as a consequence some or all of the
transitions between the T states (with energy ETi) become inelastic. The spatial wave
functions QCUB combine to new states @N

o = R 20 p (A.4)
The matrix RN diagonalizes the Hamiltonian matrix 3@}.(Tab1e 5.3) and thus can easi-
1y be obtained.

Similarly, the spin function XcuB (both [x> and [x>) combine to new states Xy
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XN = ® Xeus (A.5)
with
Rip Ryp Ry
=l Ry Ryp Ry (A.6)
Riz Roz Rsg
Here E = EN.E‘ E is the unit matrix of dimension 3 for CH4 and of dimension 18

for CD4, respect1ve1y Transition matrix elements which are adapted to the given
symmetry are obtained by rotating the T-T part M of the relevant matrix. A

My = RN . (A.7)

For CH4, this matrix is given in Table A.1; the corresponding 54x54 matrix for T-T
transitions in CD4 is not listed explicitly.

Only for two cases will the results be presented in the form of tables and in
both cases the 180° overlap matrix elements H are neglected: a) for a threefold
axis at the crystal site which yields h1 #h =h3 =h4; b) for a twofold axis at
the crystal site which causes the relation h1 =h ¢h3 —h4 between the 120° over-
lap matrix elements hi' For more than two independent elements h the matrix R
depends not only on the symmetry but also on the relative magnitude of the over]ap
matrix elements hi’ For simplicity only powder-averaged quantities are given in
Table A.3. One may note that—apart from a factor-the results are the same for
XH4 and XD4.

Relations between the 120° overlap matrix elements, which contain information
on the site symmetry, cannot always be concluded unambiguously from the energy-level
scheme. A "symmetric" T state splitting does not necessarily mean the presence of
a twofold axis. For an unambiguous assignment, the intensity of the observed tran-
sitions has to be analyzed in addition to the level scheme. If there is a twofold
axis at the molecular site, one T-T transition is farbidden (Table A.3). Unambiguous
conclusions (on the basis of peak positions only) are possible if two or all three
T states are degenerate.

The use of intensity information is even more important if the 180° overlap ma-
trix elements Hi cannot be neglected and additional parameters enter. Sizeable con-
tributions from H, however, signal a relatively large width of the pocket states

and inclusion of this width in the calculations may be required.
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A4. Transition Matrix Elements for the Neutron Scattering from Methyl Groups

In a calculation of the neutron scattering from tunneling CH3 groups or NH3 mole-
cules one proceeds as in Sect.A.1. Only the results of a calculation with & type
pocket states shall be quoted. The spin functions may be decomposed into states
with A,Ea and Eb symmetry which are listed in Table 5.6. Similarly the neutron
scattering operator may be written W = wA+wE, with

o

_Vee e g
WA = §-s(11+12+13)(G1+GZ+G3) (A.8)

W 5 ';’g('lﬁe% +e*} G, +*G

£ 2*€*13) (G +e7Gy+es) (A.9)

W b is the complex conjugate of wEa and GY = exp(ig-jy). In a way analogous to
Sect.A.1 we define

1
[GA[ +§:2_C°SQ'Cij (p.10)
1¢J
|G gl =1 +-— 2 cos(Q- r; -+2ﬂ/3) (A.11)
#j
with rij = gi-rj. The corresponding powder-averaged quantities are
of = 1+23,(00/3) (A.12)
A 0
2 7 7, (A.13)
% = %t " 2-23,(Q0/3) .

The intensities for the possible transitions are given in Table A.4. For a powder

sample, the scattering function is

5., (@) = [S+d5 @] o) +[ §- 5350008 By sote)] . (A1)

Here A denotes the tunnel splitting. In this expression an equal population of all
ground-state levels is assumed which is fulfilled for kT >> A. On the other hand,
the temperature has to be sufficiently low to allow the neglect of fluctuations of

the rotational potential.
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Table A.4. Intensity of the transitions between the different symmetry states I' and
I'' of a CH3 group or a NH3 molecule. Intensities for powder samples are obtained by
averaging the quantities GZ(Q) over all orientations of Q. The values given in the
table refer to T >> A (A ="tunnel splitting) and thus are based on equally populated
ground-state levels

o
r A Ea I-:b
A |56 62 6
E, 62 G TG
Eb Gga —41: Gf\ Géa
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Single-particle potential

Static part of single-
particle potential

Fluctuating part of
single-particle poten-
tial

Scaled potential

Harmonic part of poten-
tial

Atom-atom potential
Probability of 90° jump

Neutron scattering opera-
tor

=1

Es N> T

PRCI)
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Single-particle potential

Distribution function of
angular steps

Relaxation rate

Rate of transitions from
ground-state (CH3 group)

Rate of transitions from
first excited state (CH3
group)

Matrix of relaxation
rates

Rotational axis
Coordinate systems

Width parameter of pocket
state

Concentration
Euler angles
Spherical harmonics

Friction constant
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Mathieu equation 48,50,94,96

Mean-field approximation 43

Molecular field 71,74,84,85,105

Molecular "spin glasses" 106

Molecular wave function, complete wave
functions 20,61,64-66,111

Multipole-multipole interaction (elec-
trostatic) 7,11,12,60,70,71,73,77,
84,85,102,103,107,108

Neutron scattering function, law 2,17,
21

Neutron scattering operator 18,66,67,
69,111

NMR Tevel crossing 3,78,92

Nuclear spin conversion 3,62,69,73,106

Nuclear spin conservation 73,84

Nuclear spin function 3,4,29,47,48,61-
66,106,110,114

Nuclear spin ordering 68

Orientational disorder 1,9,24,27,30,33,
34,42,72

Orientational order-disorder transition
1,7,32,42,70,71,74,83,85,93

Overlap matrix element, overlap 50-59,
85,88,92,99,105,111,115

Pocket states, potential pockets 50-61,
65,68-70,97,98,111,115

Polarons 90

Projection operator 64,110

Quantum-mechanical rotations 2,76,81,93
Quasi-elastig scattering 23,24,28-34,
38-42,45,74,81,85,93,97,108

Random (stochastic) averaging model 79,
96,98

Rate equations 36,43

Relaxation functions 27,28

Relaxation rates, rate of transitions,
jump rate 26,36,41-44,94-98,100

Residence time 38

Rigid molecules 6,7,22,94

"Rotation" 97

Rotational constant 9,27,47,70,71,78,
103

Rotational diffusion 10,26-35,45,74,76,
83,85

Rotational jumps, jump diffusion, mole-
cular reorientation 3,10,28-39,42-46

Rotational motion, collective 1

Rotational motion, single particle,
single molecule 1-4,20,33,47,93

Rotational quantum number 47,49,52

Rotational potential, fluctuating part-
time dependent part 2,5,9,10,25,47,
55,77,85,94,115

Rotational potential, static part 1,4,
5,8,9,25,26,29,35,45,49,52,57,74,78,
79,82,83,85,89,91,103

Rotational tunneling, tunnel splitting
4,10,12,34,47-55,59-62,70,76-107,115

Rotational wave function 3,4,48,49,
60-65,82,99,111

Rotation-translation coupling 8,22,81

Rotator function 11,16,27,85



Scaled potential 9,10,78,103,104
Schottky anomaly 78,83,108
Schridinger equation 47,48,51
Second~-order Raman process 81
Selection rule 85,88
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Sum rules 21,38

Symme try-adapted surface harmonics,
cubic harmonics 11,13,14,31,45,46

Symme try-adap ted wave function (SAF)
52,60

Self-correlation function 17,21-24,
27,35,37,45

Shaking 98

Single molecule Hamiltonian 48

Spectral function 94,95,96

Spin-dependent neutron scattering 2,3,
4,17,18,20,62,70

Spin-flip scattering, non-spin-flip
scattering 20,69,111,112

Stochastic rotational motion 25,26,33,
39,41,42

Symmetry-dependent lifetimes 98

Transition matrix elements 17,29,64-69,
73,81,85,88,97,105,111-115

van der Waals interaction 2,5,7,100
van Hove formalism 17,20,21,23

Wigner D functions 15

Zero-point Tibrations 100

Errata

The following ¢. rections were received after a portion of the book had been
printed.

page 9 Table 2.1 please read Fluctuating

potential
Static V%]
potential
Vst
page 64 line 7 from the top please read ... symmetrized functions ...

page 94 one line above Eq.{(7.1) please read ... for the spectral function ...

page 102 please move the last sentence of the ond paragraph ... The application
of high ... to the end of the first paragraph ... exponent n. The appli-
cation of high ...

page 106 ummmbered equation ... =} V(m%,m?)
J
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