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Preface 

Advances in experimental techniques always induce considerable scient i f ic progress 

as well. This is part icularly true for neutron scattering where the ava i lab i l i t y  

of new instruments (e.g. spectrometers for small-angle scattering, diffuse scat- 

tering and high-energy resolution) has stimulated a variety of f ields in physics, 

chemistry and biology. One area, investigated by both physicists and chemists, is 

that of molecular crystals. Interesting questions concern molecular orientations in 

various crystal surroundings and the changes from a disordered to an ordered ar- 

rangement displayed by some crystals. 

Here we mainly deal with a dynamical aspect, namely the rotational motion of 

single molecules. I ts nature strongly depends on the interaction of a given mole- 

cule with i ts  neighbours and - very importantly - on the temperature. In this book 

recent experimental results are described. They i l lus t ra te  the importance of high- 

resolution neutron spectroscopy for a better understanding of molecular rotations. 

At the same time, recent theoretical models are reviewed which often have served as 

guidelines for new experiments. The book is intended to describe the state of the 

art, not only to neutron scatterers, but also to solid-state physicists and 

chemists interested in molecular systems. 

Molecular crystals have been and continue to be an object of active research in 

the neutron scattering group in JUlich. The author thanks al l  his colleagues, es- 

pecially H.H. S t i l l e r ,  M. Prager, H. Grimm, K.D. Ehrhardt, and U. Buchenau, for a 

long and f ru i t fu l  collaboration. On the way to a better understanding of molecular 

crystals many theoretical aspects had to be clar i f ied and some s t i l l  remain open. 

I t  is a particular pleasure to acknowledge the advice from A. HUller as well as 

many stimulating discussions with him on numerous topics over a long period of time. 

The author is very grateful to A. HUller, R. Mueller, P. Grosse, and U. Felderhof 

for important suggestions concerning the scient i f ic  content of the manuscript and 

i ts  formulation. 

JUlich, June 1981 Werner Press 



1. Introduction 

Starting with in i t ia l  measurements in the 1920's-at this time CLUSIUS /1.1/ dis- 

covered specific-heat anomalies, e.g., in nitrogen-molecular crystals have at- 

tracted increasing attention. Most early experiments concentrated on macroscopic 

quantities such as specific-heat or dielectric constants. However, without micros- 

copic probes the detailed mechanism of phase transitions and elementary excitations 

in molecular crystals remained a puzzle. 

This has changed considerably in the last decade or so, when systematic efforts 

have been made to learn about molecular crystals both experimentally and theoreti- 

cally. In the meantime numerous structures of molecular crystals have been solved, 

and orientational order-disorder transitions as well as rotational dynamics have 

been investigated in great detail. Some of this has been covered in two recent re- 

views I) The Plastically Crystalline State edited by SHERWOOD /1.2/ and 2) Disorder 

in Crystals by PARSONAGE and STAVELEY /1.3/. (The latter discussed positional, mag- 

netic and-mainly-orientational disorder.) Much of the recent development, how- 

ever, is not contained or is reviewed only briefly. 

This is particularly true for rotational dynamics, which is one of the most fas- 

cinating aspects of molecular solids. The f ield may be divided (somewhat ar t i f ic ia l -  

ly) into collective and single-particle rotational motions. In regard to collective 

rotational motions, one is concerned with phase relations between the rotational 

states of different molecules. These phase relations show up in a wave vector de- 

pendence of the rotational excitations. Their origin is the angle-dependent inter- 

action between the molecules. The excitations, which are called librational or tor- 

sional modes, are analogous to the phonon modes describing the collective transla- 

tional modes in a crystal. Single-molecule rotations, on the other hand, describe 

the rotational motion of a single molecule in its surroundings. The surroundings 

are approximated as an angle-dependent potential which has a time-independent and 

a fluctuating part (Chap.2). Obviously single particle excitations have energies 

independent of the wave vector and thus have the character of Einstein modes. 

St i l l  relatively l i t t l e  experimental work has been done on collective rotational 

excitations in molecular crystals. This is so for two reasons. I) The measurement 



of dispersion curves requires single crysta ls which frequently are not avai lable.  

2) Because of several possible damping mechanisms the l i b ra t iona l  modes are often 

not wel l-def ined exc i ta t ions.  A long review was published in 1970 by VENKATARAMAN 

and SAHNI /1 .4 /  and more recently a short one by DOLLING /1 .5 / .  

In the present work the author w i l l  review the large f i e l d  of s ing le-par t i c le  

rotat ions in molecular crysta ls .  Some simple concepts w i l l  be introduced in Chap.2. 

In par t i cu la r ,  the re la t ion  between rotat ional  potent ials and the type of rotat ional  

exci tat ions found in molecular crystals w i l l  be discussed. We shall dist inguish be- 

tween c lassical  d i f fus ive  rotat ions at high temperatures and quantum-mechanical ro- 

tat ions at low temperatures. D i f fus ion- l i ke  motion resul ts i f  the f luc tuat ing part 

of the potent ial  is large. This is the case at high temperatures. At low tempera- 

tures the s ta t i c  part of the potent ial  dominates and the rotat ional  states can be 

calculated by solving a stat ionary Schr~dinger equation. 

Single-molecule rotat ions can be studied in a large class of molecular systems. 

Our de f in i t i on  of a molecular crystal  w i l l  include both van der Waals and ionic 

crysta ls .  A few digressions to I )  molecules d i lu ted in matrices and 2) molecules 

adsorbed on surfaces w i l l  also be made. 

In the same way as co l lec t i ve  phenomena can be probed by coherent neutron scat- 

te r ing ,  s ing le -par t i c le  rotat ions can be observed d i rec t l y  by incoherent neutron 

scatter ing. In coherent neutron scat ter ing,  the neutron waves or ig inat ing from d i f -  

ferent scattering ceDtres in ter fere  and thus the phase re lat ions between d i f fe ren t  

molecules become important. This is not the case for "incoherent" neutron scattering. 

I f  the scatter ing length of a given kind of atoms varies s t a t i s t i c a l l y  from posit ion 

to posit ion in the crystal  there are no interference ef fects .  The scattering then 

may be described as of independent scatter ing centres. Incoherent scattering re- 

sul ts i f  there are various isotopes with d i f fe ren t  scatter ing lengths or i f  the 

scattering length depends on the or ientat ion of the neutron spin in re la t ion to 

that of the scatter ing nucleus (para l le l  and an t i pa ra l l e l ) .  In our case the spin- 

dependent scatter ing is responsible for  the observation of s ing le -par t i c le  exci ta-  

t ions.  Fortunately, the most in terest ing molecules contain hydrogen atoms and pro- 

tons happen to possess the largest known (spin) incoherent scattering cross sec- 

t ion Oinc(H) = 79 barn. In Chap.3 a der ivat ion of the neutron scatter ing functions 

pertaining to the s ing le -par t i c le  motion, both in the high-temperature and the low- 

temperature l i m i t ,  w i l l  be given. In th is  chapter only general concepts w i l l  be in-  

troduced. More speci f ic  examples shal l  be discussed in Chaps.4 and 5 in connection 

with models describing the rotat ional  motion. 

Ine las t ic  neutron scatter ing with monochromatization of the incoming neutrons 

(wave vector k) and energy analysis of the scattered neutrons (wave vector k ' )  

y ie lds information on the evolution of states in space and time. Measurements of 



the scattered neutron intensity can be performed both as a function of the momentum 

transfer Q = k'-k (typically Q ~0.1,8 ~-I) and as a function of the energy transfer 

E = (~2/2mN)(k2-k'2). The former yields spatial information and the latter the ex- 

citation spectrum; m N denotes the neutron mass. High-energy resolution has been a 

necessary condition for the success of the inelastic neutron scattering experiments 

described in the following. Only moderate Q resolution is required. The backscat- 

tering technique nowadays allows energy resolutions in the range between AE = 0.3 peV 

(~ 120 MHz) and 2 peV, with energy transfers up to about 20 peV. The range of energy 

transfers can be extended to several hundred peV with time-of-flight and three-axis 

spectrometers. With use of long-wavelength neutrons, resolutions AE ~ 10 peV can be 

achieved. Concerning the design and the detailed characteristics of these spectro- 

meters, the reader is referred to the literature (e.g., /1.6,7/ and the references 

therein). 

When considering other techniques which have been successfully applied to the 

study of single-particle rotations, we must distinguish between high-temperature 

classical motion and rotations at low temperatures. Measurements of the spin-lat- 

tice relaxation time T I appear to be well-suited for the investigation of diffusive 

motions at high temperatures. A similar statement refers to optical measurements, 

and more specifically, to measurements of IR or Raman linewidths. Neither method 

yields information on the spatial aspects of molecular rotations, for example, on 

the geometry of rotational jumps. At low temperatures both specific-heat measure- 

ments and "advanced" NMR techniques have been used. Specific-heat measurements can 

supply information on the low-lying rotational states. A d i f f icu l ty ,  however, l ies 

in the connection between the rotational wave function and the nuclear,spin states 

of homonuclear molecules (for a detailed discussion we refer the reader to Chap,5). 

Practically al l  interesting transitions also involve changes of the nuclear-spin 

functions. This so-called spin conversion (a well'known example is the transition 

fromortho to parahydrogen) occurs on a time scale of about I to 105 seconds. In NMR, 

spectroscopic techniques recently have been developed. These are based on the con- 

cept of level crossing; nuclear-spin relaxation is speeded up when tuning a Zeemann 

splitt ing to resonance with rotational transitions. This is done by variation of the 

strength of an external magnetic f ield. I f  the Zeemann splitt ing of electrons is 

used, rotational transitions with energies up to several hundred eV can be observed. 

The electronic impurities which, in general, are created by irradiation of the sample 

(e.g., y-irradiation of CH 4 produces free radicals with unpaired electrons) perturb 

the system and can yield spurious peaks. An alternative method consists of using the 

Zeemann spli t t ing of the nuclear spins of the rotating molecules themselves. In this 

case energies E ~ 0.5 peV can be measured and thus information complementary to that 

from spin-dependent neutron scattering can be obtained. 



The advantages of neutron scattering are its applicability to both high- and low- 

temperature rotation and the spatial information which none of the other techniques 

provides. First, classical diffusive rotation at high temperatures is discussed 

(Chap.4). This topic has already been treated in reviews by SPRINGER /1.8,9/ and 

LEADBETTER and LECHER /1.10/. In particular /1.8/ represents an excellent intro- 

duction to translational and rotational diffusion and their investigation by quasi- 

elastic neutron scattering as well as by other techniques. The coverage of single- 

particle rotations seems to be incomplete without the inclusion of diffusive motions. 

In view of the above reviews, however, only a few very recent examples will be given. 

So far only one relatively short review of single-particle rotations at low tem- 

peratures has been published /1.11/ and there has been considerable progress since. 

Therefore this aspect will be covered in more detail in Chaps.5-7. Chapter 5 is de- 

voted to the calculation of rotational energies and wave functions of a molecule in 

a static rotational potential. For the calculation of transition matrix elements be- 

tween two rotational states the inclusion of properly symmetrized nuclear-spin func- 

tions is essential. In Chap.6 a number of examples for the observation of low-tempe- 

rature rotational states by spin-incoherent neutron scattering is given. An attempt 

is made to relate the observed spectra with the symmetry and magnitude of the respec- 

tive single-particle potential. A distinction between almost free rotation and rota- 

tional tunneling is made. In the f i rs t  case the rotational potential is weak and can 

be treated as a perturbation of the states of a free molecule. Rotational tunneling, 

on the other hand, is observed i f  the rotational potential is large, yet s t i l l  allows 

a f in i te overlap of rotational wave functions in neighboring potential wells. The 

final chapter covers several special features of the low-temperature rotational mo- 

tion. Merely by increasing the temperature a continuous transition to the regime of 

classical rotational motion is observed. The understanding of this temperature de- 

pendence seems to be of crucial importance for the understanding of single-particle 

rotations in general. The pressure dependence of tunneling states might allow learn- 

ing about intermolecular interactions. Further topics include the isotope effect and 

the influence of substitutional impurities on tunneling states. 



2. Interaction and Rotational Potentials 

Before starting the discussion of molecular rotations in solids and their observa- 

tion with neutron scattering, i t  appears useful to introduce a few simple aspects 

of molecular crystals and to give some clues for possible classifications. The dis- 

cussion emphasizes the concept of single-particle potentials, their decomposition 

into a fluctuating and a static part, and the expansion into symmetry-adapted func- 

tions. 

2.1 Rotational Degrees of Freedom 

I t  is useful to l i s t  a catalogue of different situations which may be encountered 

in connection with molecular rotations. An almost t r iv ia l  distinction is between 

one, two and three rotational degrees of freedom; examples are shown in Fig.2.1. The 

main difference concerns the complexity of an appropriate description which needs 

to keep track of just one angle in the one-dimensional case. Two angles are needed 

for linear molecules, while three angles (e.g., Euler angles or quaternions) are 

required for molecules of general shape. The constraint to rotation around just one 

axis may be due to two particularly large moments of inertia, covalent bonding (CH 3 

group) or a dipole moment of the molecule (NH3). Obviously, model calculations are 

simpler for one-dimensional rotors than, e.g., for tetrahedral molecules. On the 

other hand, the crystallographic structures of crystals composed of the latter are 

mostly better known and usually simpler. 

2.2 Chemical Bonding 

Molecular crystals may be further classified according to the nature of their che- 

mical bonds. I) Van der Waals-type of crystals consisting of neutral molecules (e.g., 

N 2) are the classical molecular crystals. 2) A second important class consists of 
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polyatomic ions in ionic crystals. 3) The importance of covalent bonding in defining 

one axis of rotation (a bond: CH 3 groups) has already been mentioned above (Fig.2.1). 

We shall mainly deal with small molecules or molecular groups. The chemical bond- 

ing within the molecules is then very strong, usually of covalent nature. This causes 

internal degrees of freedom-vibrational excitations, which deform the molecule-to 

have energies much higher than the external degrees of freedom, which comprise both 

translational and rotational motions. I f  these internal degrees of freedom may be 

neglected, the molecules may be considered as r ig id units. This wi l l  be done in the 

following. Then the molecule can be described by a centre-of-mass coordinate R and 

i ts orientation, col lect ively denoted by m E . 



2.3 Intermolecular Interaction 

In contrast to dilute gases where the molecules rotate freely between collisions, 

they are subject to an angle-dependent potential in solids. I f  decomposed in terms 

of two-particle interactions between rigid molecules, two contributions may be dis- 

tinguished /1.11/. 

vlJ = v I J (~ ;R i ,R j )  (2.1) 

depends only on the or ientat ion of the i th molecule as well as on the centre-of-mass 

(c.o.m.) posit ions Rj; 

v~j i j  E E ,Rj) (2.2) = V2 (~i'~j ;~i 

on the~ other hand, depends on the orientations m~ and m E. of both interacting groups. 
3 

viJ is the only contribution i f  a given molecule only interacts with particles 

without angular degrees of freedom, that is, atoms and monatomic ions. The term will 

be dominant for molecules in an atomic crystal matrix or in systems like NH4X 

(X = Cl, Br, I) where the NH~ ions are surrounded by halide ions and the octopole 

moment of the NH; groups interacts with the monopole moment of the halide ions 

/2.1-3/. Such a monopole-multipole part also exists in crystals consisting of neu- 

tral molecules. There the monopole is due to the angle-dependent van der Waals at- 

traction and the hard-core repulsion averaged over the orientation of one of the 

two interacting partners /2.4/. 

V~ J depends on the orientation of two interacting molecules and is responsible 

for all collective properties connected with orientation and rotation: orientational 

order-disorder phase transitions and orientational order as well as propagating l i -  

excitations. V~ j ~ can be phrased in terms of multipole-multipole interac- brational 

tions /2.5/. Examples are the quadrupole-quadrupole interaction in solid ortho-hy- 

drogen /2.6/ or nitrogen and the octopole-octopole interaction in solid methane 

/2.7/. The interaction can be due to electrostatic interactions, hard-core repul- 

sion, and van der Waals attraction. In this sense the notion of a multipole moment 

can be generalized beyond a str ict ly electrostatic meaning. Another, usually less 

important contribution, comes from the interaction of molecules via their polariz- 

able neighbors. 
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2.4 Single Par t ic le  Potential 

In the fol lowing we are mainly interested in the or ientat ional  potential  acting on 

i th molecule and obtained by summing V~ j', and V12 j -  over a l l  the neighbors of the the 
.th 
1 molecule /1 .11/ .  

N+M M 

W i E E' ' i j  E ' (~i ; {~j  ,Rj})= Z V I (~i;Ri,Rj) + ~ vI~J(~E,~E; R.,R.) (2.3) 
- - - L I 3 - I  - 3  " 

j=1 j:1 

M and N denote the number of molecules and monatomic units in the c rys ta l ,  respec- 

t i ve l y .  The prime means that the term i = j should be omitted. 

Other aspects, e .g . ,  ro ta t ion- t rans la t ion  coupling /2 .8 / ,  become apparent a f te r  

regrouping the terms in a d i f f e ren t  way. Here, we shall only include the de f in i t i on  

of the c rys ta l l i ne  f i e l d  Vc(m~): 
P 

= x 
j -i ' - j  

Here R~ and R 0 denote equilibrium centre-of-mass positions. 
�9 - -3 E' 

W I st i l l  depends on (~j ,Rj}, which represents the set of centre-of-mass coordi- 

nates and angular coordinates of all other particles in the crystal. Obviously 
E' {mj (t),_Rj(r)} is a time-dependent set of coordinates: within a classical picture 

E' E' = m. (t) due to ro- -J-R~ = _-Rj(t) due to the lattice vibration in the crystal and 
tational excitations. Consequently W i is time-dependent as well. mj QuantumJ mechanical- 

W i, E r E' ;Rj}). needs to be integrated over the states of all the neighbors of 
lYthe i~imto~cule and 

N+M N 
dR ~' d~ P({~,R.},{~,Rj};t) wi'~ E ~ E,Rj}) (2.5) v i ( ~ ' t )  = f j=1 - j  j=1 J J -3 3 - ~ i ' t ~J  - " 

Here P({m~;Rj},{m~;Rj}';t)dj is the density matrix of the molecular crysta l .  Again 

the prime in (2.5) means that in tegrat ion over m~ for  j = I should be omitted. 
3 

Usually i t  is impossible to handle the above expression and approximations are re- 

quired, e .g . ,  the replacement of P by a product of single par t i c le  density matrices 

(Hartree approximation /2 .9 / ) .  



2.5 Classification of Single Particle Rotation 

vi(m~,t)~ may be decomposed into a static and a fluctuating part 

vi(m ,t) i E i (2.61 : Vst(m i) + Vfl 

V~ represents the time-dependent part of the potential, while the time average of 
~(mE,t) vanishes m E V~ for each .. The fluctuations may be visualized as stochastic 

i 
torques exerted on a molecule by its neighboring atoms and molecules. Their magni- 

tude typically is of the order of kT. 

Only the magnitude of the potential in relation to the rotational constant 

B = ~2/20 (0 = moment of inertia) is important and therefore a reduced dimension- 

less potential is introduced /2.10/ 

v(m ,t) : Vst(m )/B+Vfl(m ,t)/B. (2.7) 

Depending on the relative magnitude of both the static and the fluctuating part of 

the scaled potential we may distinguish four characteristic situations which are 

listed in Table 2.1 

Table 2.1. Classification of single particle rotations in molecular crystals in terms 
of the rotational potential. Different characteristic situations may be distinguished 
depending on the magnitude of the static and the fluctuating part of the potential 

lUCtuating 
tential 

Static ~ Vfl 
potential " - . ~ '  

Vst . ~  

Strong 

Strong 

Rotational 
jumps 

Weak 

Librations and ro- 
tational tunneling 

Weak Rotational Quantum-mechanical 
diffusion free rotation 

High temperature means frequent transitions between the rotational states and 

phonon states in the crystal and thus a strong fluctuating part of the potential. 

In a number of orientationally disordered crystals of the van der Waals-type 

("plastic crystals" like B-N 2 or CH41) the static or time-averaged part of the 
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potential is rather weak. Then a diffusion of the molecules with respect to their 

angular degrees of freedom is taking place. This rotational diffusion is continuous 

in the angular variables, i f  Vst may be ignored completely. Otherwise both symmetry 

and magnitude of the potential have to be taken into account. In the limit of very 

strong static potentials Vst, the molecules are confined to a discrete number of 

equilibrium orientations which are occupied at random. Transitions across the bar- 

riers separating the equilibrium orientations occur by thermally activated jumps. 

In this limit the classical diffusive motion is called jump diffusion or molecular 

reorientation. 

At low temperatures only few lattice phonon modes are populated and the system 

is close to its rotational ground state. Therefore we may expect the fluctuating 

part of the potential to be weak and a stationary quantum-mechanical picture should 

describe the situation rather well. Again two extremes may be distinguished. Because 

at low temperatures most systems are orientationally ordered, that with a strong or- 

dering potential prevails. In this case one expects librational excitations of the 

molecules in their rotational potential, which in general is rather anharmonic. 

Additionally there is a tunnel splitt ing of these states. The splitting is due to 

the overlap of wave functions in neighboring potential wells. The other extreme, 

namely B ~ vi(mE,t), i .e. ,  V' < I, is only rarely found in crystalline solids. The 

prime representative is solid hydrogen /2.6/, which is a quantum crystal, particu- 

larly with respect to its rotational degrees of freedom but also with respect to 

its translational degrees of freedom. Solid hydrogen always has been treated sepa- 

rately from all other molecular crystals, and an excellent review has recently been 

published /2.11/. Therefore there is no need for a detailed account of i t  here. There 

are, however, also systems with weak rotational potential at some sublattice sites 

with high symmetry which is due to a cancellation of the interactions with their 

neighbors. Examples are CH411 /2.7,12/ and ~-02 /2.13/. Certainly we may find all 

sorts of intermediate situations between the aforementioned extremes. Of particular 

interest is the continuous transition between tunneling and rotational jumps which 

comes about merely by increasing temperature. 

2.6 Static Orientational Potential Vst 

2.6.1 Electrostatic Origin of Vst 

In general the details and the relative magnitude of the various contributions to 

the rotational potential in a crystal are not well known. The situation is s t i l l  

relatively simple for electrostatic contributions in which case the knowledge of 

the leading multipole moments and the equilibrium distance suffices. 
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As an example we may take the e lectrostat ic  interaction between (for example) 

a tetrahedral molecule and i t s  surroundings 

PT(r')Pc(r) 
V(m E } "  " = f f  d r 'd r  . (2.8) 

]~'-cl  

Here m E denotes the or ientat ion of the molecule, PT(r ' )  i ts  charge d is t r ibu t ion ,  

and pc(~) that of the crystal .  One now may perform an expansion of the charge dis- 

t r ibut ions into symmetry-adapted surface harmonics K~m(O,@) /2.14,15/ and 

Pc(~) = X X mAp(r) K~p(@,r (2.9) 
A=O p=-A 

~o ~, 
PT (r') : Z Z a~,p,(r') K~,p,(O,@) 

~'=0 p'=-~' 

(2.10) 

(~) , E,  
= Z aA,p,(r') K~,p,,(O,~) Up,,p,t~ J 
A,p,p,' 

(2.11) 

with the expansion coeff ic ients b~p(r) and aL ,p , ( r ' ) .  

Pc(r) is expanded in a (unprimed) frame fixed within the crysta l ,  p i ( r ' )  in a 

molecular (primed) frame, and the rotator functions /2.7,16,17/ ' (~) (m E ) transform Umm, 
the surface harmonics from one frame to the other. For a tetrahedral molecule the 

lowest order harmonic K~m(Q) contr ibuting to (2.9) is (apart from the angle-inde- 

pendent harmonic with Z = O) 

K31(~) = ~ x y z  . (2.12) 

The polar angles ~ : 0,r are expressed in terms of x = sinO cos@, y = sinO sin@ 

and z = cosO which are coordinates on the surface of a three-dimensional unit  sphere 

(in Sect.2.6.3 we replace x,y ,z  by ~I,T2,T3). In methane, therefore, the leading 

interact ion between two molecules (which is not what is presently considered; for 

the single par t ic le potential we sum over the contributions from al l  surrounding 

molecules) is an octopole-octopole interact ion /2 .7/ .  

I f ,  addi t ional ly ,  I / J~ - r ' [  is expanded for r ' < r  

1 1 r '~ ' '  * 
T ~  : 4~ 2 2~"+I ~ KA"m(ar) Kc"m(ar') (2.13) 

A"m 



Z 

and i f  use of the orthogonality of the functions K~m is made when performing the in- 

tegrations in (2.8), one obtains 

V(m E) : 4~ff dr'dr Z,a~,( r ' )  b~N(r) 

~(~) U(C)(m E) = Z ~ ,  P~' 
C~p' 

r '~ . (~)~ E~ 

(2~+i)rC+I upp'~ 

(2.14) 

Obviously both the molecular and the site symmetry, see (2.9,10), determine which of 

the coefficients ~(~! are nonzero. An expression for a tetrahedral molecule in a 

potential of tetrahedral symmetry wil l  be given later (Fig.2.2). 

12 

Fig.2.2. Tetrahedron in a potential of tetra- 
hedral symmetry 

2.6.2 Valence and Dispersion Forces 

For anisotropic dispersion forces as well as for valence forces i t  is much more d i f -  

f i cu l t  to give expl ic i t  expressions /2.4,5/. Usually phenomenological potentials are 

taken, mostly atom-atom potentials v(r) /2.18/ or, e.g., the Kihara core potential 

/2.19,20/. The phenomenological parameters between pairs of atoms often are chosen 

to be independent of the chemical bonding of the individual atom /2.20/. This ap- 

proach has had some success, particularly in the description of organic crystals 

with only very few parameters. I t  is, in general, inadequate i f  microscopic behavior 

such as phonon dispersion or rotational tunneling is analysed in these terms. 

The formulation given above for electrostatic interactions with ~ ~ I / r  /2.21/ 

has beer generalized /2.4/ to power laws v - I/r n. The result has been used to cal- 

culate both the octopole-~ctopole interaction and the crystall ine f ie ld in methane 

starting from 6-12 potentials /2.5/. The radial dependence of the single particle 

potential now contains terms v(mE) - I / r  C+n with n = 6,12 and ~ = 4,6 . . .  
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2.6.3 Expansion into Symmetry-Adapted Functions with One, Two and Three Angular 

Degrees of Freedom 

In spite of successes in the prediction of the orientational order in CD411 /2.7,22/ 

or the calculation of rotational excitations in ammonium salts /2.16,23/, the know- 

ledge of intermolecular interactions s t i l l  is not satisfactory. Therefore very often 

the single particle potential simply is expanded into a set of orthonormal functions. 

The expansion coefficients then are taken as adjustable parameters, which may be com- 

pared with parameters obtained from model pair potentials. In order to learn details 

of the intermolecular interactions from such a comparison i t  is necessary to perform 

measurements as a function of pressure (e.g., of the tunnel sp l i t t ing) ;  the most di- 

rect access to v[mE(r)] is via i ts  dependence on the equilibrium distance, which 

changes with pressure (Sect.7.2). 

In the following we give the expansion of the potential into a complete set of 

symmetry-adapted surface harmonics for one, two and three angular degrees of free- 

dom (the la t ter  has already been done in Sect.2.6.1). 

I) I f  the molecular rotation is confined to just one angular degree of freedom 

@, the potential can be expanded into a series of trigonometric functions 

oo 

Vst(@) = ~ (a n cosn@ + b n sin nqb) . (2.15) 
n:1 

The role of symmetry can be i l lustrated by the example of the one-dimensional ro- 

tation of CH 3 or NH 3 groups around the threefold symmetry axis of the molecules 

(Fig.2.3). Rotations around this axis must leave the potential unchanged. There- 

fore the molecular symmetry only allows nonzero terms with n = 3,6,9 . . . .  An ad- 

ditional reduction results, i f  the site symmetry is not a subgroup of the molecu- 

lar symmetry /2.24/. A simple example is provided by the presence of a mirror plane 

(which contains the rotation axis). I t  causes b n = 0 for a l l  n and the corresponding 

symmetry-adapted functions are cos3n@. I f  the site symmetry provides a twofold or 

fourfold axis in addition to the threefold axis of the molecule, orientational dis- 

order results. In the high-temperature phase of Ni(NH3)612 the crystal symmetry 

along the axis of rotation introduces both a mirror plane and a fourfold rotation 

axis. As a consequence the molecules are orientationally disordered and al l  coeffi- 

cients except a12, a24 . . .  vanish /2.25/. 

In order to obtain a unified representation for al l  three dimensions i t  is use- 

ful to introduce the angular coordinates as coordinates on a unit c ircle, T I = cos@, 

and T 2 = sin@, and expand Vst into these coordinates 
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a 

Fig.2.3. (a) View of a CH 3 group or a NH molecule along the threefold symmetry 
axis of the molecule (schematically). (b~ Four equivalent orientations of these 
molecules (viewed as above) originating from the presence of a fourfold axis at 
the lattice site. Each of the four orientations has the same statistical weight 

co 

Vst(@) : Z (Cn~V+dnZ~) �9 
n=l 

(2.16) 

2) Linear molecules possess two angular degrees of freedom ~ = (0,@). In this 

case an expansion of the potential into a series of spherical harmonics is appro- 

pri ate 

Vst(O,@) = ~ Z a~mY~m(O,~). (2.17) 
4=0 m=-~ 

The transition to symmetry-adapted harmonics is very simple i f  either the molecule or 

its site processes a centre of inversion. Due to the relation Ycm(~) = (-I)~Y~m(-R) 

all terms with odd ~ vanish (e.g., for B-N 2 /2.26,27/. Also, i f  there is just one 

axis of symmetry, this imposes simple conditions on the allowed indices m. In a 

case of high symmetry i t  is especially advantageous (particularly for the 5 cubic 

point groups) to use symmetry-adapted harmonics. For cubic symmetry, examples being 

the alkali cyanides in their orientationally disordered fcc phase /2.28/, the ex- 

pansion reads 

2~+I 

Vst(O,q~) = Z ~ b~mK~m(O,@) . (2.18) 
.t=O m=l 

Only a few coefficients b~m are nonzero. In case of cubic symmetry (point group 

m3m) these are b01, b41, b61, b81 ... The cubic harmonics K~m(O,~) usually are ex- 
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pressed in terms of coordinates on the three-dimensional unit sphere T I,  %2' and 

T 3, which have been introduced before. An expl ic i t  expression for ~ = 4 is [the 

lowest order term for tetrahedral symmetry is given in (2.9)] 

I 5 4 4 4 
K41(zI'T2'T3) : T ~ 4  ~ (TI +~2 +T3-0"6)  (2.19) 

A potential Vst of cubic symmetry truncated after ~ = 4 often is referred to as the 

"Devonshire potential" /2.29/. I t  has six minima (or potential pockets) along [100] 

for b41 negative and eight minima along [111] for b41 positive. 

3) Two- and three-dimensional molecules l ike C6H 6 or CH 4 have three angular de- 

grees of freedom. A standard choice for three angular coordinated are the Euler 

angles m E = (~,q,~). They carry the axis fixed in a molecule from a standard orien- 

tation to any desired orientation by successive rotations of q about the z axis, 

about the resulting y axis and, f ina l ly ,  ~ about the resulting z axis. I f  no parti- 

cular symmetry is specified, an appropriate set of orthonormal functions is proVided 

by the Wigner D functions and 

= ~ .(~! ~(~) 
Vst(~,q,~) = Z Z ~mm Umm, (~,q,~) . (2.20) 

&=O m,m' 
:-.~ 

As the number of parameters increases with (2~+I) 2 the introduction of symmetry- 

adapted rotator functions is especially helpful (2.14). 

For tetrahedral molecules at a site of tetrahedral symmetry, many coefficients 
~(0) ~(3) ~(4) and ~(6) B (s vanish and up to order ~ = 6 only D11 , D11 D11 D11 are nonzero. Even pp, 

more than in the previous cases i t  is useful to introduce coordinates on the four- 

dimensional uni t  sphere, the quaternions T : Z1,T2,T3,~4 with T~+T~+T32+T42 : i  

/2.16,30/. T and -T denote the same set of angles. The quaternions have a simple 

geometrical meaning; %1 = xRsin(@/2)' T2 = YR sin(@/2)' T3 : zRsin(@/2)' T4 = COS(qb/2), 

where @ denotes the angle of rotat ions around the axis x R = (x R, YR' ZR) in a Car- 

tesian coordinate system. In general thei r  use is much simpler than that of the 

Euler angles m E. The relat ion to the Euler angles is 

�9 I sin~12(~_~) %1 = sln-~q 

�9 I I 
: cos t (C -c )  z 2 Sl~q 

I I = si~(~+~) T 3 COS~-q 

= I ~4 cos~ cos�89 

(2.21) 
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and the Uuu,(m) are converted into rotator functions H'j~:(T)which are polynomials 
P r  l , . r -  

in the T. of order 2s /2.7,16,17/ and 1 

V(T) : ~(3),(3)(~)+ .(4), (4) + B(6), (6) 
~11 "11 Dll nll 11 nll + " ' "  (2.22) 

AS an example we give the leading terms for point symmetry 43m (Fig.2.2) 

6 ~ 4 4 4 
m11'(3)(T) = 16(~ +T~+T~+~4) - 20(T +T2+~3+T4) + 5 . (2.23) 

h ( 3 ) ( T )  is invariant against 192 symmetry operations (e.g. 4! from permutations of 11 
Ti ) .  As with the surface harmonics there are no odd-order terms in the presence of 

a centre of symmetry and therefore n11'(4)'tmE') is the f i r s t  term for point symmetry 

m3m. 



3. Neutron Scattering 

In this chapter the neutron scattering from rotating molecules shall be discussed. 

For this purpose i t  is necessary to introduce some aspects of the theory of neutron 

scattering /3.1/. This will be done without derivation of fundamental expressions 

such as (3.1,16). Here the reader is referred to standard textbooks as, e.g., /3.1/. 

Naturally the emphasis is on the (spin-dependent) incoherent neutron scattering 

which is related to single particle properties. Single particle properties are ob- 

served i f  the spin-dependent scattering lengths of atoms of a given kind but at 

different positions in the crystal are statist ical ly independent. An equivalent 

formulation in terms of transition matrix elements (Chap.5) can be given for mole- 

cules. The validity of this statistical independence must be examined in specific 

cases. 

There are two alternative formulations of the neutron scattering law. One is 

based on transition matrix elements between quantum-mechanical states. I t  will be 

used in connection with low-temperature rotational motion. The other formulation 

uses classical self-correlation functions within the concept developed by van HOVE 

/3.2/. I t  applies for the diffusive rotational motion at high temperatures. In this 

chapter only the principal ideas shall be developed. I t  appears useful to give spe- 

ci f ic examples only after the underlying model for the classical rotational motions 

(Chap.4) or rotational states (Chap.5) have been formulated. 

3.1 Formulation Based on Transition Matrix Elements 

First we will introduce the partial differential cross section d2o/d~d~ (d~ = solid 

angle element, ~dc = energy interval) which results from scattering of neutrons 

treated in the f i rs t  Born approximation. The transition probability of the total 

system from an in i t ia l  state I~aPk> to a final state l~a,P'k'> is calculated, and 

the f i r s t  Born approximation means that this is done in first-order perturbation 

theory, l~a> denotes the wave function of the scatterer, Ipk> = [p>exp(ikr) the 
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spin state and wave vector of the neutron plane wave. Unprimed and primed symbols 

re fer  to quant i t ies before and a f te r  the scat ter ing,  respect ively.  

We w i l l  fo l low rather closely the notation in /3 .3 / .  The double d i f f e ren t ia l  

cross section then is 

d2a k' 
d~d~ = ~  ~ ~ p~Pai<~a,~'k'IWl~a~k>I 2 6(~-Waa,) . (3.1) 

NN' aa' 

pN is the s ta t i s t i ca l  weight for  the i n i t i a l  state of the neutron. For unpolarized 

neutrons the number of spin-up neutrons IN> = Is> and spin-down neutrons IB> is 

the same and pm = PB = I /2.  Pa denotes the population of the i n i t i a l  state of the 

scatter ing molecule. ~maa' is the energy di f ference Ea-E a, between the i n i t i a l  and 

the f ina l  state of the scatterer.  F inal ly  W denotes the spin-dependent nuclear in-  

teract ion between the neutron and the scat terer ,  expressed in terms of the Fermi 

pseudo-potential. 

N N 
W : Z Z A nY6(r-rnY) (3.2) 

n=1 y=1 

A nY : a Y + [2a~ (3.3) coh nc/l(v/~-~T)] ~'~ny 

Here r denotes the posit ion of the yth atom (proton!) in the n th molecule, 
-ny n 

i t s  spin operator and I i ts  total  spin. N is the number of molecules in the 
o 

crystal  and there are M atoms in the molecule. Correspondingly, r and s denote the 

posit ion and the spin-operator,  respect ively,  of the neutron, ain c is the spin-de- 

pendent part of the scatter ing length a, aco h is spin-independent. The connection 

with the scatter ing length a+ and a_ for  the spins of neutron and nucleus paral le l  

and an t ipa ra l l e l ,  respect ively,  is (with the index y dropped) 

_ I [( I+1)a+ + la_] (3.4) 
acoh 21+I 

~ I ( I + I )  ( a + - a )  (3.5) 
ainc - 21+~  - " 

As the spin incoherence is not a property of the scatter ing nucleus, but a conse- 

quence of the s ta t i s t i ca l  independence of the spin states in the c rys ta l ,  the no- 

tat ions aco h and ain c which are found in textbooks should be replaced by asd and 

asi ;  here sd stands for  spin-dependent and si for  spin-independent. 
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In the following i t  is assumed that the single-molecule states of different 

molecules are uncorrelated (Chap.5). Then the spin states of scattering atoms be- 

longing to two different molecules (n I m n 2) are not correlated, either. The double 

differential cross section /3.2/ is 

d2~ 
d~d~ k' AnIY1exp(_i~.~niY1 - k Z Z PpPa Z <P~a I )IP'~ a, 

pp' aa' nlY 1 
n2Y 2 

, n2Y2 . 
�9 <p ~alA exp(1~'~n2Y2)[P~a> ~(m-maa,) 

(3.6) 

= k'-k is the momentum transfer of the neutrons. For n I m n 2 (absence of corre- 

lations) the matrix elements of A nIY1 and A n2Y2 may be replaced by their averages 

A, which allows the following separation: 

d2o d2ed d2e 
s (3.7) 

d~d~ =d--~-d~ + d~d~ 

d2~d/d~d~ does not contain any spin dependence (d denotes "distinct") 

d2Od k '  

d~d~ k Z Z PNPa X2 
NN' aa' 

Z <P~aleXp(-ig'~niY1)IP'~ a, 
nIY1n2Y2 
n1~n 2 

�9 <p'~a,lexp(ig-s > 6(m-maa,) 

(3.8) 

I t  represents the coherent scattering and as such is connected with the collective 

properties of the system (e.g., the periodic structure in a crystal leads to Bragg 

peaks). 

is obtained by averaging over all the spin states Iv> of the (homonuclear) 

atoms in a molecule and 

~ ,  ~ ,  ny 
(3.9) 

For an unpolarized target A : acoh. On the other hand 
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d2Os 

d~d~ - Z PpPa Z <N~a](AnYI-A)exp(-iQ'rn - 
pp' aa' n - - YI 

YIY2 

)Ip'~a,> 

�9 <p'~a,](AnY2-X)exp(iQ.rn ~ )[p~a > ~(m-maa,) 
- - " 2  

(3.10) 

represents the incoherent scattering, which bears information on the single mole- 

cule aspects (s denotes "sel f " ) .  

AnY_~ : [2ainc/ "iny �9 (3.11) 

In order to proceed further i t  is necessary to calculate molecular wave functions 

(which comprise both a rotational and a spin part, see Chap.5) and apply 

o o o o I o o o o 

s" I" ny = Szi nyz + 2 (S+iny- + S-iny+) (3.12) 

o o o_ o 
in order to calculate the matrix element /3.3,4/.o s+, ~ny+ and s , iny - denote crea- 

tion and annihilation operators, respectively; s z and i z the z components of the 
o o o ~ e.g. is operators s and i .  The action of the second term in (3.12), (I/2) S+inu 

th 
as follows: iny - reduces the z component of the n nuclear spin by AI z = I while 
o 

s+ increases the z component of the neutron spin by AI z = I. The nuclear spins are 

correlated within a molecule (see Chap.5), giving rise to interference effects at 

low temperatures. Therefore the scattering is not s t r i c t l y  incoherent (in which 

case the nuclear spins have to be uncorrelated). However, as long as the spin-states 

of two different molecules are uncorrelated, the interference is restricted to with- 

in a molecule and one s t i l l  observes single-molecule motions. 

As mentioned in the introduction the best candidates for successful experiments 

are protonated molecules, because the spin-dependence of the scattering from pro- 

tons is part icularly strong. Very recently low-energy rotational excitations were 

also observed for deuterated molecules (Sect.7.3). 

3.2 Formulation Based on Classical  Se l f -Cor re la t ion  Functions 

An a l t e r n a t i v e  formulat ion in terms of  time-dependent atomic coordinates has been 

given by van HOVE /3 .2 / .  Again the scat te r ing  is separated in to  a coherent and an 

incoherent par t  
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d~d~ d2~ = ~k' L ~ c i ] F ~  a2ohScoh(Q,m) + 4~a2ncSinc(Q,m)7_ _ . (3.13) 

In contrast to the definitions in the previous section the scattering length here 

has been extracted from the scattering function. This is str ict ly correct only for 

a monatomic crystal, but represents a very good approximation i f  the scattering 

from one atomic species dominates. In general this is true for samples containing 

protons. For reasons of brevity we will only give expressions connecting with the 

incoherent (single particle) scattering. Usually i t  is assumed that the spins of 

different nuclei (also within a molecule) are uncorrelated at high temperatures. 

The validity of this assumption, that correlations within a molecule can be ignored, 

has been investigated in /3.2,5,6/. 

S(~,~) is the fundamental quantity which is determined in a neutron scattering 

experiment. I t  is i) real, i i )  fu l f i l l s  detailed balance 

S(Q,m) = exp(~m/kT) S(-Q,-m) , (3.14) 

and i i i )  obeys sum rules for fdm n S(Q,m) /3.1,2/. As indicated, we only want to 

deal with the incoherent scattering function Sinc(_Q,m) which can be introduced as 

the Fourier transform of an intermediate scattering function Is(_Q,t) 

co 

Sinc(-Q'~) = 2~ f exp(-i~t) Is(~,t)dt (3.15) 
-oo 

and 

l N 
Is(_Q,t) = ~ ~ <exp[-i_Q-ri(O) ]exp[i_Q.ri(t)]> . (3.16) 

i : l  

The brackets denote a thermal average; N is the number of nuclei; the quantities 

r . ( t )  and ri(O) are introduced as quantum-mechanical operators which do not commute. 
--1 

In this case the self-correlation function Gs(r,t), which has been introduced by 

van Hove, is a complex function and has no simple physical meaning 

Sinc(g'm) : 2-~ /exp~(g.~-mt)] Gs(r,t)d~dt . (3.17) 

The van HOVE formalism /3.2/ usually is applied in the classical high-temperature 

regime, where the operators commute. Then GS(~,t) is the probability of finding a 

given particle at the position r at time t ,  i f  i t  was at ~ = 0 at time t = O. We 

will stick to a classical meaning of GS(~,t) throughout. I t  is advantageous, how- 

ever, to introduce a generalized self-correlation function /1.10/ Gs(~,ro;t) which 



22 

is the probability of finding a given particle at r at time t, i f  i t  was at ~0 at 

t = 0 [obviously GS(~;O;t) z GS(~,t ~. The probability distribution of the init ial 

positions ~0 is given by g(~o ) and then the thermal average can be written as 

Is(~,t) = H exp[ig([-~O)] GS(~,~O ;t) g(~o)d~d[ 0 (3.18) 

In order to obtain Sinc(g,m) for a polycrystal, an average over the angular coor- 

dinates RQ of 9 has to be performed 

Sinc(Q'm) Ip = 4~ f dQQSinc(g'm) (3.19) 

A simultaneous treatment of a l l  kinds of motion a molecule can perform usually is im- 

possible. Therefore approximations are required. In general i t  is assumed that the 

various kinds of motion are uncorrelated, that is ,  that internal v ibrat ions of the 

molecule and t ranslat ional  and rotat ional  motions happen independently. In th is  

case the intermediate scatter ing function separates into a product. 

Is(Q,t ) = ~ l~i)(Q,t) (3.20) 
1 

T 
where i enumerates the various degrees of freedom. For example, I S stands for the 

R translational and Is, for the rotational function. As internal vibrational energies 

of molecules are usually of the order of 100 meV and above, they are much larger 

than the energies connected with the external degrees of freedom (~ 10 meV). There- 

fore the molecules can be considered as rigid and the internal vibrations are ignored. 

Furthermore, the centre-of-mass motion (coordinate R) is considered independent of 

the rotational motion (coordinate e = ~-~)- This approximation is not always justi- 

fied; the importance of a coupling between translational and rotational degrees of 

freedom in some systems has recently been shown /2.8/. I t  is particularly important 

in case of strongly anisotropic molecules, and obviously the approximation is much 

better justified for globular molecules. So far a formulation of this coupling has 

only been given for simple probability distribution functions /3.7/ which are di- 

rectly connected with GS(~, t§  as w i l l  be shown la te r .  No attempt to include 

such a coupling in the descr ipt ion of classical d i f fus ive  motions of a molecule in 

a molecular crystal has so far  been made. 

The t ranslat ional  function l~(Q,t)  can be wr i t ten in terms of a phonon expansion 

/1.10/ of the intermediate scatter ing functions 

l~ (g , t )  : exp(-2W) [ 1+11 (Q , t )+ . . . ]  . (3.21) 
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The f i r s t  term represents the elastic scattering, the second term the one-phonon 

scattering, the third term the two-phonon scattering, and so on. The exp(-2W) is 

the Debye-Waller factor and for isotropic mean-squared amplitudes <u2> the Debye- 

Waller factor simply is exp(-<u2>Q2). Now i t  is assumed that the scattering can 

be separated into a low-energy quasielastic part due to the diffusive motion and a 

high-energy part due to the lat t ice vibrations. The quasielastic scattering function 

then reads 

Is(Q,t) = I~(~,t)exp(-2W) (3.22) 

The acoustic phonons cause some problems, in particular at large momentum transfers. 

Recently LOTTNER et al. /3.8/ have shown that the acoustic modes, i f  approximated 

by a Debye spectrum, contribute a f la t  background to the quasielastic scattering 

which increases with temperatures. The effect of the diffusive motion on the phonon 

scattering function has been neglected in this consideration. 

The main problem remains, namely, the evaluation of the rotational intermediate 

scattering function 

l~(g, t )  : ffexp[iQ(r(t)-~O) ] Gs(r,ro;t) g(ro)d~od~ (3.23) 

As r is restricted in space (e.g., to the surface of a sphere) some authors have in- 

troduced the rotational analogue of the van Hove self-correlation function G(~,wE;t) 

/1.10,3.9,10/. I t  is the conditional probabil ity of finding a molecule with orienta- 
W E t ,  given that the orientation was m~ at time t = 0 tion at time 

U 

l~(Q,t)_ = ff expDg(r(t)_~O ~ G(mE,mo;t)E f(mo)dmodmE E E (3.24) 

F 
Here f(m O) represents the probability distr ibut ion function of i n i t i a l  orientations 

r 

m n. Specific cases in which certain model assumptions allow the calculation of 
" E  E G(m ,mo;t) are discussed in the next section. 

Some additional remarks pertaining to the elastic scattering, i .e . ,  to S(_Q,m=O) 

can be made independent of the particular model chosen for the diffusion mechanism. 

Afterwards we return to S(_Q,m). For in f in i te ly  long time t / I .10,3.2/ 

R 
l imGs(r,r  O;t) = gR(r O) (3.25) 

l~(g , t=~)  = I fexp( iQ'r)  gR(r)d~I2 (3.26) 

and 
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Sinc(Q,m) le I : l ~ ( ~ , t : ~ )  ~(m) (3.27) 

D 

I~(Q,~) sometimes is cal led the e las t ic  incoherent structure factor  (EISF). A 6 func- 

t ion is present in (3.27) because G~([ , [o; t )  does not decay to zero for  t §  This is 

d i f f e ren t  from the case of t ranslat ional  d i f fus ion.  There an atom or a molecule can 
R 

spread out over the whole crystal and gR(~O )§ In contrast to this, r is restricted 

in space for rotations and gR([) remains f ini te. Being directly connected with the 

Fourier transform of the probability distribution function gR(r), structural infor- 

mation is contained in the EISF. Its knowledge can be very useful for the distinc- 

tion between models with different jump geometry. In principle the EISF might yield 

information superior to that provided by Bragg scattering as i t  may be observed con- 

tinuously in reciprocal space as a function of g. In practice i t  is very d i f f icu l t  

I) to separate the EISF from other sources of elastic scattering, 2) to separate i t  

from the quasielastic scattering, and 3) to correct for multiple scattering /3.11,12~ 

As a rule, measurements have to be extended to Qp >~/2 (p = I~l =distance of atoms 

from molecular c.o.m.), i f  a distinction between various models should be made. 

Classical self-correlation functions GS([,t) lead to symmetric scattering func- 

tions Ss(Q,m) = Ss(Q,-m) which obviously do not f u l f i l l  the condition of detailed 

balance (3.14). Therefore i t  is customary to include a detailed balance factor and 

to define (see, e.g., /1.8,10/. 

Sinc(Q,m) : exp(~m/2kT) Ss(g,m) (3.28) 

The scatter ing funct ion so obtained obeys the detai led balance condit ion (3.14). 

I ts f i r s t  moment (sum ru les! )  diverges, however. As long as the energy width of 

the quasielast ic scat ter ing ? << kT, th is poses no serious problems. D i f f i cu l t i e s  

may ar ise,  however, in d i lu ted molecular systems, which remain o r ien ta t iona l l y  dis-  

ordered down to very low temperatures. In th is  case formulations in analogy to 

scat ter ing functions of paramagnetic sal ts /3 .1 /  may provide a solut ion.  



4. Stochastic Rotational Motion 

The diffusion of atoms in gases or liquids is a well-known phenomenon. In the solid 

state sizable translational diffusion is encountered at temperatures close to the 

melting point and over a wider temperature range in ionic conductors. In an analo- 

guous way there is also diffusion-like motion of molecules with respect to the an- 

gular degrees of freedom. As is the case with translational diffusion, the rota- 

tional motion of interacting particles at high temperatures in principle represents 

an N-body problem. Practicable descriptions of the diffusion process obviously re- 

quire approximations. These and resulting models for the high-temperature rotation- 

al motion are discussed in the following. 

4.1 General Aspects 

In an approximate picture one describes the motion of a given particle in the force 

f ield of its neighbors /4.1/. This force f ield will usually consist of a static and 

a fluctuating part. The static part f (E )  is the negative gradient of the static ro- 

tational potential (here w E collectively denotes angular coordinates again). The 

fluctuating force f ield F(t) can be decomposed into a part f(mE,t) the ensemble 

average of which vanishes and a fr ict ion part of the form -O~o~E(t). I t  is propor- 

tional to the angular velocity bE(t); ~0 is a friction constant. I f  i t  is assumed 

that the fluctuating force f ( t )  is uncorrelated with both the angular velocity and 

with f ( t  =0) one arrives at the Langevin theory of Brownian motion and the following 

equation (the formulation given below is symbolic, i f  m E denotes more than one angu- 

lar degree of freedom): 

o~E(t) : -e~o~E(t)+fo(m E)+f(mE;t) . (4.1) 

The above approximations are correct for large particles immersed in a system of 

small particles. Frequent collisions cause fluctuations on a much shorter time 

scale than typical time constants of the particle under consideration. Certainly, 
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th is  is not true in a molecular crystal in which a l l  par t ic les are of comparable 

size. 

One can go beyond the Langevin equation by i )  introducing memory ef fects into 

the f r i c t i o n  term or by i i )  adjust ing the short time behavior to the real s i tuat ion 

in a crystal ( for  references see/1 .8 / ) .  Often i t  is assumed /4 .2 /  that for  short 

times T I the par t ic les perform an osc i l l a to ry  motion, then di f fuse for  a time %2' 

etc. The calculat ions,  however, ignore the s ta t ic  force fo(m;t) ar is ing,  for  example, 

from the crystal  f i e l d .  In most cases the neglect of fo(mE;t) probably represents an 

even more serious approximation than the res t r i c t i on  to a Brownian type of motion. 

Only very recent ly ,  with the a v a i l a b i l i t y  of high-energy resolut ion and the use of 

mult ip le scatter ing correct ions, the qual i ty  of neutron data has improved to a point 

where the l imi ta t ions of the Langevin theory ( for  rotat ional  motions) could be 

checked. So far  even the d is t inc t ion  between f a i r l y  simple models has turned out 

d i f f i c u l t .  Concerning models beyond the Langevin theory the reader is therefore re- 

ferred to / I . 8 /  which gives an excel lent  review of the whole topic.  Al l  these models 

rather apply to molecular l iquids than to molecular crystals.  

In pract ice,  models have been u t i l i zed  which are based on Langevin d i f fus ion plus 

fur ther  approximations. Mostly two extremes have been used in the data analysis: I) 

potent ial  and consequently the s ta t ic  force fo(m E) in (4.1) have been The s ta t i c  

neglected. This leads to rotat ional  Brownian motion in the absence of a potent ia l .  

There are only few melecular crystals for  which this assumption can safely be ap- 

p l ied.  2) The opposite l im i t  is to take very large potent ia ls giving r ise to a 

strong or ientat ional  loca l iza t ion of the molecules in the i r  potent ial  wel ls.  The 

molecules change the i r  or ientat ion by thermal act ivat ion across the potent ial  bar- 

r i e r .  The path of a molecule in conf igurat ion space is ignored and the rate of jumps 

to and from a given s i te  is chosen to describe the stochastic angular motion. In the 

fo l lowing,  we w i l l  r e s t r i c t  ourselves to the l im i t ing  cases, par t i cu la r l y  concerning 

the experimental examples. In the las t  part  of th is  chapter, however, we shall re- 

turn to models which describe the d i f fus ion in a potent ial  and which seem to describe 

the rotat ional  d i f fus ion in molecular crystals bet ter .  

4.2 Continuous Rotational Dif fusion 

As mentioned before, most stochastic models deal with the d i f fus ion in the absence 

of a periodic potent ia l .  This leads to s ign i f i can t  s impl i f icat ions since the proba- 

b i l i t y  d is t r ibu t ion  functions gR(ro) or, equivalent ly ,  f(~)~ are angle independent. 

On the other hand one must admit that there are only very few molecular sol ids where 

a complete neglect of the s ta t i c  potent ial  Vst seems to be permissible. Therefore 
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i t  appears that the models wi th in the l im i t  Vst = 0 are somewhat bet ter  suited for  

the descr ipt ion of molecular l iqu ids .  There are, however, a few o r ien ta t iona l l y  dis-  

ordered crystals for  which rotat ional  d i f fus ion provides a reasonable approximation. 

Examples, l i ke  the rotat ion of the n-paraff ins /4 .3 / ,  w i l l  be given la te r .  

We w i l l  r e s t r i c t  ourselves to problems in which jus t  one value of the moment of 

iner t ia  C) enters. Consequently there is j us t  one rotat ional  constant B and only 

one d i f fus ion constant D R . There are three such cases (see also Sect.2.1). 

I) Uniaxial rotat ion of CH 3 groups or NH 3 molecules. In both cases the rotat ion 

around two of the three axes is quenched. 2) Linear molecules have only two rota- 

t ional degrees of freedom and the two rotat ional  constants are equal. 3) Obviously 

the values of the three moments of iner t ia  are ident ical  for  spherical top molecules. 
E E 

For a l l  three cases the se l f -co r re la t ion  funct ion G(m ,mo;t) only depends on~ the 
E E 

n ; de- "d i f ference" of the or ientat ions m -mO [more s t r i c t l y  one should wr i te E(mv)-1 
E 

f ined by rotat ional  operators I~ acting on a reference or ientat ion m. one has 
i E An E E A E E E ^^-I E E E -I E E 

= K~I' mO = KOml and consequently (m -mO ) = RR 0 ml = m (~0) ] .  G(~ ,Wo;t) can be 

expanded into a double sum of ro tator  functions of the appropriate dimension. For 

a spherical top, e .g . ,  one obtains /3.10/  

E E 2~+I F~'m ( t ) m  _(~), E, -(~)(mE)o 
G(~ ,mo;t) = ~mm'Z - -8~ 2 ~Z Um,~m ) Umv ; (4.2) 

with the i n i t i a l  condit ion G(mE,m~;t=O)~ = 6[mE(m~) - I ]  i t  is found that only relaxa- 

t ion functions F~o(t) z Fc(t) (with m=m' =0) contr ibute.  IG(mE,~;t) du E = I ne- 

cessitates Fo(t) = I for  a l l  times t and the i n i t i a l  condit ion requires F~(O) = I 

fo r  a l l  orders ~ /4 .2 / .  

Langevin d i f fus ion is characterized by two l im i ts .  Here i t  is useful to in t ro-  

duce z R = I/E 0 as a character is t ic  time. For short times T << T R, one has a free 

par t i c le  behavior and <r2(t )> = f r 2 Gs(r , t )dr  ~ t 2. For t > T R, on the other hand, one 

obtains the d i f fus ion l im i t  and <r2(t)> -= DR(t-TR)/6; here z R represents something 

l i ke  a delay time, a f te r  which d i f fus ion s tar ts .  The simplest and one of the most 

f requent ly used assumptions is that the molecule di f fuses at a l l  times. This means 

the neglect of the delay time T R which is permissible only i f  the f r i c t i o n  constant 

EO is large. Then the Langevin equation leads to a se l f -cor re la t ion  funct ion which 

obeys a d i f fus ion equation 

E;t) : ~G(mE,~;t)/~t (4.3) DRA~G(mE,m 0 

with the following solution for the relaxation functions FC, introduced above (4.2): 
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Ft( t )  = exp[-t(Z+1)DRt ] . (4.4) 

D R is the rotational di f fusion constant and D R = <J>/6T relates i t  with the mag- 

nitude ~ of the di f fusive angular steps. The intermediate scattering function is 

I~(Q,t) = ~ (2~,+I)j2~(Qp)Fz(t) (4.5) 
Z=O 

and after Fourier transforming with respect to time 

S nc(~,~) = jo(QP)6(~) + ~ (2~+1)j~(Qp) 2----2 (4.6) 
~=0 ~ +F~ 

with r~ = ~(L+I)D R. The e last ic  incoherent structure factor (EISF) is d i rect ly  re- 

lated with l~ (Q, t=~) .  For continuous rotational di f fusion al l  F~(t) vanish for 

t §  (4.4),  except Fo(t).  Therefore the EISF simply is given by the spherical Bessel 

function jo(Qp) which is the Fourier transform for a spherical shel l .  This is gene- 

ra l l y  true for Vst = O, as long as F~(t) is based on some kind of d i f fusive motion. 

The quasielastic scattering consists of an in f i n i te  sum of Lorentzians of width Ft. 

This d i f fers  from reorientat ion models (see Sect.4.4) where only a discrete number 

of Lorentzians contributes and the width F(g) remains f i n i t e .  For continuous rota- 

t ional di f fusion S(Q,m) obviously remains unchanged after a powder average is per- 

formed as i t  only depends on Igl- 

The same calculation for uniaxial rotat ional di f fusion /4 .4 / ,  e .g. ,  for a CH 3 

group, yields 

9~I~ 
S R "^ m" 2 2 

inctY, j = Jo(Qpsine)6(m) + 2 Z Jc(Qpsine) 2 2 (4.7) 
~=I rg+m 

where r~ = DR.~2. In order to obtain a polycrystal l ine average the Bessel functions 

(of the f i r s t  kind) J~(Qpsino) have to be replaced by 

<J#(ep)> = �89 

here 8 denotes the angle between Q and the axis  of r o t a t i o n .  Here and in the f o l -  

lowing the s c a t t e r i n g  i s  given per proton.  

I f  T R i s  not neg lec t ed ,  t h a t  i s ,  i f  the Langevin equation in absence of a s t a t i c  

fo rce  i s  used,  a somewhat modified r e l a x a t i o n  funct ion r e s u l t s  ( e . g . ,  / 1 . 8 , 4 . 5 / ) .  

Fc(t) = exp{~(~+I)DRTR[I-t/TR-exp(-t/TR) ] } . (4.8) 
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Another generalization can be obtained i f  a single diffusive Step ~ is replaced by 

a distribution function W(~) /4.6/, e.g., a Gaussian distribution. 

Results for classical rotation in absence of fr ict ion can be obtained from quan- 

tum-mechanical calculations by going to the classical l imit (kT >>~2/20). In this 

case the coupling between spatial wave functions and nuclear-spin functions-which 

is important at low temperatures-can be ignored and the calculation of neutron 

scattering transition matrix elements becomes much simpler (Sect.5.3). Such calcu- 

lations have been performed for freely rotating molecules by SEARS /3.9,10,4.7/ and 

de RAEDT /4.8/. They provide very useful tests of stochastic models in the weak 

friction limit. 

"More-advanced" models generally necessitate the introduction of additional pa- 

rameters and one has to check carefully what generalization is most meaningful. One 

example in which discriminating between two different models proved impossible is 

reported in /4.9/. Both in neopentane and in t-butyl chloride Langevin rotational 

diffusion and a two-step stochastic model f i t ted the data equally well over a wide 

temperature range. This was attributed to very short relaxation times. I t  may be ex- 

pected that new efforts, particularly with single crystalline samples, will be un- 

dertaken to achieve more insight. 

4.3 Examples for the Limit of Rotational Diffusion 

Two simple examples of uniaxial rotational diffusion are discussed in the following. 

In the high-temperature structures of Ni(NH3)612 /2.25,4.10/ and of the paraffin 

C33H68 /4.11/ the l imit in which the static potential Vst can be neglected seems to 

be approached rather closely. 

4.3.1 Ni(NH3)612 

The arrangement of the NH 3 groups in the cubic antifluorite structure of Ni(NH3)6I 2 

(T>T ~ 20 K) is shown in Fig.4.1. The Ni ions are surrounded by octahedrally coor- 
c 

dinated NH 3 groups, the dipole moments of which are aligned along the cubic axes. 

The static periodic potential experienced by the molecules must be invariant against 

both the molecular (3m) and the site symmetry (4/mmm). The combination of the three- 

fold axis of the molecule and the fourfold cubic axis leads to an effective poten- 

tial of the form 

V(@) = Z V12~c~ (4.9) 
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Fi9.4.1. High temperature structure of 
Ni(NH~)6I 2 (space group Fm3m). Only the 
four ENi(NH3)6] ++ complexes at the origin 
and at the face centers of the unit cell 
are shown. The orientationally disordered 
NH 3 groups are represented by cones 

which is rapidly oscillating with 0. The resultant orientational disorder either 

can be sketched as in Fig.2.2b or, more realist ical ly, as the modulation of an 

angle-independent density distribution by terms of the type a~cos12~@. The cor- 

rection to the elastic incoherent structure factor in (4.7) to the lowest order 

is C12J12(Qpsin @) or the corresponding averaged quantity. Such deviations become 

sizable only for momentum transfers Q~ 8 R-I and therefore for all practical pur- 

poses can be neglected. Similarly we may assume that such a potential has l i t t l e  

effect on the dynamical properties. 

Measurements have been performed with powder samples of Ni(NH3)612 /2.25/. In 

order to test the applicability of different models i t  is particularly useful to 

look into the Q dependence of the quasielastic scattering. Figure 4.2 shows the 

elastic intensity as extracted from measurements at T = 90 K in the range 

0.5 R-I ~ Q ~4.5 R-I. The experimental results are compared to the EISF for two 

simple models: uniaxial rotational diffusion and 120 ~ jumps (the latter model has 

been used to analyze quasielastic scattering in Ni(NH3) 6 (Cl04) 2 /4.4/. Agreement 

is found with the diffusion model only. From Fig.4.2 i t  is evident that even ex- 

tremely different models yield an almost identical EISF for Qp ~ 2 and measurements 

need to be extended beyond this limit. This does not come as a surprise. The EISF 

is proportional to IF(Q)12, where F(Q) is the formfactor of the density distribu- 

tion generated by a single diffusing proton (3.26). Formally the same formfactor 

F(Q) is obtained when calculating the coherent Bragg scattering from a crystal com- 

posed by molecules. Then F(Q) describes interferences of the neutron waves origi- 

nating from different atoms (this distinguishes coherent from incoherent scattering). 

Due to this analogy the same methods can be used which have been developed for the 

analysis of orientationally disordered structures /4.12-14/ on the basis of coherent 

Bragg scattering. There the angle-dependent part of the density distribution at a 
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Fig.4.2~ Measurement of the elastic in- 
coherent structure factor (EISF) in 
Ni(NH3)6I at T = 90 K are compared 2 . 
with calculatlons based on one-dimen- 
sional rotational diffusion ( ) and 
120 ~ jumps ( . . . .  ) /2.25/ 

Fig.4.3. Analysis of quasielastic neu- 
tron scattering spectra in Ni(NH3)612 
at 90 K with a single Lorentzian of 
width r (120 ~ jump model) and the ro- 
tational diffusion model (lower half 
of the figure) /2.25/. The la t ter  model 
yields a Q-independent rotational d i f -  
fusion constant D R and therefore seems 
to represent the diffusive motion much 
better than the jump model 

molecular site is expanded into symmetry-adapted surface harmonics (for uniaxial 

rotors, trigonometric functions). In case of continuous diffusion there is no angle 

dependence and the EISF simply is <Jo(Qp)2>. For the 120 ~ jump model there are a l -  

so trigonometric functions with argument 3n@. Therefore the structure factor addi- 

t ional ly contains Bessel functions of order ~ = 3, 6,9 . . . .  These contribute sig- 

n i f icant ly only for large momentum transfer and a distinction between different 

models cannot be based on measurements at small momentum transfer Q. 

The difference between the aforementioned two models becomes even more evident 

when the quasielastic part of the scattering is analyzed. Rotational jump models 

(see Sect.4.4) always predict only a f i n i te  number of Lorentzians, each with a g 

independent width. For uniaxial rotation with a restr ict ion to 120 ~ jumps the situ- 
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at ion is p a r t i c u l a r l y  simple, as there is j us t  one Lorentzian. For continuous rota- 

t ional  d i f f us i on ,  on the other hand, the ca lcu la t ion leads to an i n f i n i t e  series of 

Lorentzians with increasing width [see ( 4 . 7~ .  One now analyzes the observed spectra 

wi th a s ingle Lorentzian. I f  the l inewid th  is Q independent, the jump model holds, 

which is not true otherwise. Figure 4.3 shows that  the width so obtained increases 

monotonously wi th Q and, therefore,  the jump model must be discarded. The spectra 

measured at d i f f e ren t  Q values can, however, be explained with a single d i f fus ion  

constant D R , as may be seen in Fig.4.3.  

I t  is in te res t ing  to look at the temperature dependence of the d i f fus ion  constant 

D R . Figure 4.4 shows spectra of measurements at four d i f f e ren t  temperatures. The 

spectrum at T = 5 K is taken at a temperature well  below the or ien ta t iona l  order-d is-  

order t rans i t i on  temperature T O = 19.9 K in Ni(NH3)612 . In th is  phase the molecules 

become o r i en ta t i ona l l y  ordered, experience a potent ia l  wi th a leading term V3cos3# 

and display ro ta t iona l  tunnel ing.  Tunneling l ines could not be resolved with an 

energy reso lut ion of about 0.30 meV [used for  a l l  scans aimed to determine DR(T) ] . 

Better reso lu t ion y ie lds  a tunnel s p l i t t i n g  of about 65 peV. I t  may be noted that  

at 5 K there is p rac t i ca l l y  no i ne las t i c  scat ter ing found in the range 0.15 IE I ~2 

meV. An analysis of the quas ie last ic  scat ter ing (above the phase t rans i t i on )  in 
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Fig.4.4.  Temperature dependence of the quas ie last ic  neutron scat ter ing from 
Ni(NH3)612 /2 .25/ .  The measurement at T = 5 K is below the order-disorder phase 
t r ans i t i on  (T O = 19.9 K) and can be used to determine the background level  
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Fi~.4.5. Rotational diffusion con- 
stant DR(T) as obtained from a f i t  
of the ~ontinuous rotational di f fu- 
sion model to the spectra from 
Ni(NH 3) I2 at various temperatures 6 
/2.25/. The dashed l ine shows the 
Einstein behavior, D~(T)~ kT. De- 
viations from this llne near the 
phase transition are probably due 
to orientational correlations be- 
tween NH 3 groups 

terms of continuous rotational diffusion leads to the results displayed in Fig.4.5. 

The diffusion constant D R decreases almost l inearly for 50 ~ T ~ 130 K and obeys the 

Einstein relation D R = kT/(~00); ~0 = f r ic t ion constant. Approaching the phase tran- 

si t ion, D R deviates increasingly from this relation to the side of lower values. 

This may have two reasons. I) I t  may ref lect the effect of a small but f in i te  acti- 

vation energy E A ~ 25 K. 2) The deviations may signal the breakdown of single par- 

t ic le  diffusion in the v ic in i ty  of the phase transition ~emperature T O . The orien- 

tational correlations slow down c r i t i ca l l y  on approaching T O (the transition is of 

f i r s t  order, but starts l ike a continuous transit ion). This may show up in the single 

particle rotations as well, as they represent a weighted average of al l  rotational 

modes in the crystal. Detailed calculations are needed in order to relate the ob- 

served deviations near T O to orientational correlations or to discard this picture. 

4.3.2 n-Paraffins (C33H68) 

Another class of systems in which uniaxial rotational diffusion has been found are 

the n-paraffins. Stochastic rotational motions have been studied in paraffins of 

different length-mainly by the method of quasielastic neutron scattering /4.3,15,16/. 

Here only one recent work shall be reported, which was performed with a single crys- 

tal of C33H68 /4.3/. Four stable phases of C33H68 exist between room temperature and 

the melting point at T m = 71.8 ~ /4.11/. In a l l  phases the straight chain paraffin 

molecules (Fig.4.6a)-lenght ~45 R-form lamellae-like structures as schematically 

shown in Fig.4.6b. The various phases d i f fer  with respect to the translational and 

rotational disorder of the molecules and consequently also different types of sto- 

chastic motions are characteristic for each phase /4.3,17/. We wi l l  only discuss 

phase D, which is stable in the narrow temperature range 68 ~ ~ T ~ 71.8 ~ In 
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a) 

Fig.4 .6 .  (a) Section of s t ra ight  chain paraf f in (schematic); 
(b) schematic representation of the structural  propert ies of 
the n-alkane C33H68 in the four sol id phases A,B,C and D 
/4.~1/ 

modification 

schematic structure 

r_.rystal closs 

stQte of 
Itnonslationd order 

type of 
rotational motion 

A 

:IIIIIIZ 
orthorhombic 

no interfQciol defects 

90~ of single 
molecules 

B 

Z I I Z  
monodinic 

no interfac~l defects 

cooperotive 
180:- jumps 

C 

IIII[I IItI- 
monoclinic 

irregular staggering 
of straight chains 

flip- flop- motion 

D 

monoclinic 
(triclinic) 

introchoin defects 

rotation, 
kink diffusion 

b) 

th is  phase the measurement of temperature-dependent d i f fus ion constants as has been 

performed for Ni(NH3)612 is not meaningful. Phase D has a strongly disordered struc- 

ture: i )  o r ien ta t iona l l y  i t  is probably close to complete disorder; i i )  t ranslat ional  

disorder shows up in the form of extended in ter fac ia l  defects (several R long) giving 

r ise to rough surfaces of the lamellae; i i i )  add i t iona l ly  there are intrachain de- 

fects in the form of kinks which loca l ly  cause deviations from the s t ra ight  chain 

conf igurat ion. Quasielastic scatter ing studies with energy resolut ion of I ,  8, and 

40 NeV (using d i f f e ren t  spectrometers) have been performed with the momentum trans- 

fer  para l le l  (Q,,) and perpendicular (Q~) to the chain d i rect ion.  The l a t t e r  allows 

a separation between t ranslat ional  d i f fus ion and rotat ional  d i f fus ion ,  a problem 

that is also met in s imi lar  form in connection with l iqu id  crystals.  

There has been no evidence for  kink d i f fus ion at a l l .  Concerning the angular 

motion the low symmetry in the crystal does not immediately suggest complete orien- 

tat ional  disorder ( in contrast to Ni(NH3)612 /2 .25/ ) .  Obviously, the rotat ional mo- 

t ion has to be un iax ia l ,  but there is not necessari ly uniaxial rotat ional d i f fus ion.  

In case of C33H68 , rotat ional  d i f fus ion of " r i g i d  rods" may be concluded from the 

EISF and from the %-dependent width of the quasielast ic spectra. Kinks probably 
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are present, but kink motion is not observed on the time-scale defined by the ener- 

gy resolut ion of the experiment /4 .3 / .  A rotat ional  d i f fus ion constant D R : 6.1010 
- I  s has been found which is somewhat smaller than the values reported for  shorter 

paraf f in  chains /4.15,16/.  Translat ional d i f fus ion over an extension of 4 .5•  

- which seems to define the length-scale of the in te r fac ia l  defects -and a trans- 

la t ional  d i f fus ion constant D T = 1.0.105 cm2/s are found. Al l  f i t s  have included 

mul t ip le scatter ing corrections /4 .3 / .  

The number of crysta ls in which rotat ional  d i f fus ion may be expected to describe 

the stochastic rotat ional  motion is r e l a t i v e l y  small. Examples with more than one 

rotat ional  degree of freedom are B-N 2 (coherent scat terer ;  molecular dynamics cal- 

culations are avai lable /4.18/)  and CH 4 1 or CH 4 d i luted in rare-gas sol id /4.19/ .  

4.4 Rotational Jump Model 

In case of a strong s ta t i c  rotat ional  potential  one is in a l i m i t  opposite to the 

one of rotat ional  d i f fus ion.  A molecule l ib ra tes around any one of a f i n i t e  number 

of allowed equi l ibr ium or ientat ions,  before i t  changes to a d i f fe ren t  equi l ibr ium 

or ientat ion in a d i f fus ive  step (e.g. ,  a 120 ~ jump for  a CH 3 group). The rotat ional  

jump model /4.20,21/ assumes that the jumps are instantaneous, that i s ,  the jump 

time required for  a d i f fus ive  step can be neglected in comparison with the time be- 

tween consecutive jumps (residence time T). I t  is not obvious that the assumption 

of instantaneous jumps is always j u s t i f i e d  (even for  strong or ientat ional  l oca l i -  

zat ion).  In par t i cu la r ,  i t  seems dangerous to estimate jump times assuming that a 

molecule rotates f ree ly  ( c lass i ca l l y  free) on i t s  way from one minimum to the next. 

The molecule e i ther  has to pass through a saddle-point or a maximum of the rotat ion-  

al potent ial  and as th is  w i l l  consume a large part of i t s  k inet ic  energy, the f l i g h t  

time is much longer. In another approximation which is always used, the centre-of- 

mass motion is treated as s t a t i s t i c a l l y  independent from the rotat ional  motion. 

Assuming instantaneous jumps the rotat ional  se l f -cor re la t ion  function reads 

/1.10/ 

M 

(i) (t) 6[~- GS(~,~O ; t )  = Z Pj (~iO-~j)]  (4.10) 
j=1 

_(i) M is the number of allowed s i tes of a given proton, and pj ( t )  denotes the proba- 

b i l i t y  of f inding a proton at the s i te  r j  at t ime t ,  provided that i t  was at [iO at 

time t = O. With the formulation given in (4.10), the integrat ion over a l l  i n i t i a l  

posit ions fdro in (3.23) is replaced by a summation over a discrete number of po- 
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s i t ions [iO" The 6 function in (4.10) cer ta in ly  can be replaced by a Gaussian which 

may account for a f i n i t e  l i b ra t iona l  amplitude. 

( i ) ( t )  obey a simple I f  the successive jumps are uncorrelated the probab i l i t ies  pj 

system of coupled d i f f e ren t i a l  equations, sometimes referred to as rate equations 

1 1 ( i)(t)_ p i ) ( t  ) dP~ i ) ( t ) /d t  = T Z PX 
L=I 

(4.11) 

The sum includes a l l  M' s i tes which are accessible via jumps from the s i te  r .  and 
-3 

a l l  jumps from such s i tes back to r j .  For s imp l i c i t y  i t  has been assumed that the 

equi l ibr ium occupation of the si tes is constant and that a l l  allowed decay channels 

are equally probable. The probabi l i ty  for  a jump of a proton is w = I /~ ,  where T is 

the average time between two successive jumps. Before solving (4.11) i t  is  necessary 

( i ) ( t=O) = 6.. and the normalization to specify the i n i t i a l  conditions pj 13 

M n( i )  = I for  a l l  i Z ~j 
j=1 

In the fol lowing some of the steps on the way to the scatter ing function S#nc(Q,m) 

w i l l  be i l l u s t r a ted  with the example of an equ i la te r ia l  t r iang le  rotat ing around i t s  

axis of symmetry (CH 3 group, NH 3 . . . .  ). In th is  case there are three si tes 

r I = (1,0,O)p O, r~ = (-I/2, V3-/2, O)p O, r~ = (-I/2, -/3/2, O)Po and only 120 ~ 
jumps are possible. Here PO denotes the distance of the atoms from the threefol'd 

symmetry axis. The rate equations (index i omitted, w=~ -I) are as follows: 

1 I 
151 = -WPl +~wP 2 +-~-wP 3 

1 1 (4.12) P2 = 2wPl - wP2 +2wP3 

I 
~3 = �89 +2wP2-wP3 " 

Sometimes a modified meaning for  w is found in the l i t e ra tu re ;  w' denotes the pro- 

b a b i l i t y  of jumps to a d i s t i nc t  s i te  and - f o r  the present geometry-w'=w/2. 

With the ansatz p = 9exp(~t) one obtains 

Xq = W9 with ~ : ~ -2 I . (4.13) 

I - 2  

The symmetry of the problem is ref lected in the eigenvectors of W. In the present 

case th is is the group of even permutations of three par t ic les which is isomorphous 
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with the group C 3 (3-fold rotation axis). The eigenvalue ~I = 0 belongs to the com- 

pletely symmetric (stationary) solution with 91 = �89 and immediately yields 
3 

the elastic incoherent structure factor (EISF). The eigenvalues ~2/3 = - 2 w '  on 

the other hand, belong to the solution with E symmetry. The eigenvector is 9 = 
= I 

!3 (I,~,E*) and 93 is the complex conjugate of 92; ~ 5+ ivi3/2x and ~* are cube roots 

of I. Obviously completely symmetric combinations of the p~(t) do not decay with 

time while combinations of lower symmetry do decay. While not really necessary in 

the present example, group theoretical arguments become very helpful in case of a 

large number of sites and also, i f  both molecular and site symmetry are important 

/4.22-26/. 

With use of the in i t ia l  conditions and the normalization one obtains 

I 2 exp(-~wt) 
p(t) = P1(t) = 3+3  - (4.14) 

P2(t) = P3(t) = �89 D-P ( t ) ]  . 

Taking ~I : 0 as origin and with ~12 = ~2- [ I '  ~13 = ~3-~i the sel f-correlat ion func- 
t ion reads 

G~(~,[1;t) = 6( [ )p ( t )+  ~( [ - [12  )+~( [ - [13 )] [1-p(t ) ] /2 (4.15) 

Corresponding expressions are obtained, i f  [2 and [3 '  respectively, are taken as 
origin and then 

= p(t)+�89 A(Q) (4.16) 

with 

A(Q) = cosQ.[I 2+cOsQ-[2 3+cOsQ.[31 . (4.17) 

The scattering function, f i na l l y ,  reads 

2 A(Q~ 3w/2~ (4.18) 
S~nc(Q,m) = [ �89 A(Q~ 6 ( ~ ) + [ ~ - ~  _ j+(3w/2) 2 

By averaging over al l  orientations ~Q of the wave vector Q (3.19) the equivalent 
expression for a powder is obtained /4.4/  

1 2 L ] F +#jo(Qpv~)l 3w/2x 
S~nc(Q,m) = [ X + ~ j o ( Q p ~  6(m)+ 2 2 m2+(3w/2) 2 " (4.19) 
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I f  the scatter ing function does not re fer  to a single proton (as here) but to the 

molecule, there is an addit ional factor  M (= number of protons in the molecule). 
P 

Both the expressions for  single crystals and powders f u l f i l l  the sum rule 

f S R (g,m)dm = I and lim S~nc(~,m) = ~(~) inc 
Q+0 

4.5 Reorientations in Ammonium Salts 

Several experiments which have been analyzed with the rotat ional jump model are 

given in the review by LEADBETTER and LECHNER / I . 10 / .  We w i l l  only consider the 

example of tetrahedral molecules and discuss two f a i r l y  recent measurements with 

ammonium salts /4.27,28/ .  The simplest model has been discussed by SKOLD /4.21/ 

and applied to the rotat ions in sol id methane, though i ts  appl icat ion to ammonium 

salts seems more adequate. The reor ientat ions of a XH 4 molecule at a tetrahedral 

s i te ,  which corresponds to four possible posit ions for  each proton, is treated. 

Allowing only for  a single type of jump (e i ther  120 ~ or 180 ~ jumps), the quasi- 

e las t ic  scatter ing is described by a single Lorentzian. With a res t r i c t i on  to 

jumps around the threefold axis one obtains for  a powder sample 

I [I +.3 j o ( q p ~ ) ]  6(~)+ 3 [ I - j o ( Q p ~ ) ]  4ul~ 
S~nc(Q,~) = ~ 4 ~2+(4u) 2 " (4.20) 

where u denotes the probabi l i ty  per uni t  time that a 120 ~ jump occurs around a cer- 

tain threefold axis. Al l  required premises for th is model are rather closely f u l -  

f i l l e d  in the o r ien ta t iona l l y  ordered phase (CsCI st ructure,  space group P43m) of 

the ammonium hal ides, well below the t rans i t ion  temperature into the ordered phase. 

In th is  temperature regime, unfortunately,  the residence times are rather long and 

the quasielast ic scatter ing cannot be resolved with presently avai lable resolut ions 

of neutron spectrometers. 

4.5.1 (NH4)2SnCI 6 

There is ,  however, another class of ammonium sal ts ,  which may serve as an example 

instead: (NH4)2MX6 with M 4+ = metal ion, X- = halide ion. These sal ts mostly con- 

dense within the re la t i ve l y  simple a n t i f l u o r i t e  structure (space group Fm3m), which 

has tetrahedral symmetry (43m) at the ammonium s i te  (Fig.4.7) .  

(NH4)2SnCI 6 is one of the hexahalometallates c rys ta l l i z i ng  wi th in th is  structure 

/4.29/ .  The rotat ional  potent ial  is considerably weaker than in the ammonium halides, 
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Fig.4.7. Structure of (NHa)pSnCl 6 (space 
group Fm3m). The f igure empBasizes the te- 
trahedral coordination of the NH~ group 
(posit ion I /4 I /4 I /4 by four [SnCI6]-- com- 
plexes at the face centers of the uni t  cel l  

thus allowing rotat ional  jumps on a time-scale well accessible to neutron scat ter-  

ing. A quant i ta t ive descr ipt ion of the rotat ional  potent ia l  on the basis of Coulomb 

interact ions (which has been successful in the case of the perovskite NH4ZnF 3 /2.23/ 

plus hard-core repulsion has been attempted but has not yielded a sat is factory re- 

su l t  so far  /4.27/ .  A structure analysis of the isostructural  compound (NH4)2SiF 6 

/4.30/ shows that the or ientat ional  p robab i l i t y  funct ion is not Gaussian and sug- 

gests that there is a wide potent ial  well in which the NH~ group l ib ra tes .  The s i tu-  

ation is probably s imi lar  in (NH4)2SnCI 6. The existence of an extremely anharmonic, 

boxl ike potent ial  may be concluded from the energy of the excited l ib ra t iona l  states 

as E 2>2E I is observed /4.27,31/.  Here E I and E 2 denote the energy of the f i r s t  and 

second excited l ib ra t iona l  s tate,  respect ively.  

Without detai led knowledge of the potent ia l ,  i t  is d i f f i c u l t  to estimate how much 

less important 180 ~ jumps are in comparison with 120 ~ jumps. This information could 

also be provided via the g dependence of the quasielast ic scatter ing from a single 

crystal  (Sect.4.5.2).  Experiments with (NH4)2SnCI6 so far  have only been performed 

with powder samples and therefore the question, whether 180 ~ jumps can be ignored 

or not s t i l l  cannot safely be answered. In spi te of that ,  (NH4)2SnCI 6 provides a 

very in terest ing system for  the study of stochastic rotat ional motions. As there 

is no phase t rans i t i on ,  rotat ional  jumps can be observed in a rather wide tempera- 

ture range (bet ter :  range of T). I t  is l imited at high temperatures (T ~ 300 K) by 

the fact  that the jump model probably becomes inadequate and should be replaced by 

a model accounting for  d i f fus ion in a potent ial  (Sect.4.6).  The temperature range 

is l imited on the low-temperature side as well because below T ~ 70 K quantum as- 

pects become important (Sect.6.2.4a). Nevertheless the quasielast ic l inewidth r 

(HWHM) could be observed over almost three orders of magnitude (Figs.4.8,9) .  For 

th is  purpose two d i f f e ren t  spectrometers were employed: a three-axis spectrometer 

for  the work with re la t i ve l y  coarse resolut ion and a backscattering spectrometer 
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Fig.4.8. Quasielastic neutron scattering 
from (NH4)2SnCI 6 powder /4.27/. The half- 
width F =4u =4~/~ of the quasielastic l ine 
is direct ly connected with the jump rate 
for classical reorientation 

Fig.4.9. Arrhenius plot of the halfwidth 
F(T) (in peV); from the slope of the 
straight l ine f i t ted  to the data point, 
an activation energy E A = 590 • 30 K for 
the ammonium reorientation in (NH4)2SnCI 6 
is found /4.27/ 

Fi9.4.10. Fixed-window measurement of the quasielastic scattering from (NH4)2SnCI 6 
/3.8/. A f i t  to the experimental data (solid line) yields an activation energy 
E A = 620 • 130 K for the reorientational motion of the NH~ ions 

for the high-resolution spectra. The temperature-dependent background which has been 

noted in the spectra recorded with coarse resolution and which could not be explained 

in /4.27/, probably is due to acoustic phonons /3.8/. The spectra are analyzed by 

least-squares f i t s  on the basis of a simple model. The quasielastic scattering is 

described as a Lorentzian with temperature-dependent width F(T) (4.20), which is 

convoluted with the instrumental energy resolution. 

Figure 4.9, in which log C(T) is plotted versus I/T, exhibits an Arrhenius type 

of behavior. From the slope of the straight l ine through the data points, an acti- 
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vation energy E A = 590 • K is deduced /4.27/, which is in rather good agreement 

with NMR values. Obviously thermally activated jumps across the potential barrier 

roexp(-EA/kT) with r = 4u [the jump rate u is defined in take place and yield r 

connection with (4.20)]. 

The activation energy E A can be determined in a different way which avoids the 

temperature-dependent measurement of quasielastic spectra: the "fixed window" method 

/4.32/. The spectrometer is set to the elastic position, that is, to an energy trans- 

fer ~m = 0 and the f in i te  energy resolution of the spectrometer defines an "energy" 

window. The intensity in the counter IFW strongly depends on the linewidth r(T), 

which changes with temperature. 

IFw(Q,T) ~ exp(-2W) ~ R(~)S~nc(Q,~)dw (4.21) 

Here R(m) denotes the energy resolution of the instrument at a nominal energy trans- 

fer �9 m = O. A fixed window scan /3.8/ with (NH4)2SnCl 6 and an energy resolution 

bE ~ I meV (FWHM) is shown in Fig.4.10. I t  yields an activation energy E A=620 • 130 K. 

As to be expected the uncertainty of E A is larger than with the measurement of quasi- 

elastic spectra. The advantage of the fixed window technique is i ts simplicity which 

renders the method extremely useful for a f i r s t  survey in an investigation of a new 

system. Its usefulness was demonstrated convincingly in a measurement with Pb(CH3) 4 

/4.32/. Leadtetramethyl is a tetrahedral molecule with methyl groups at the corners 

of the tetrahedron. Two activation steps were found (Fig.4.11) and attributed to 

the stochastic rotational motion of the molecule as a whole with a relat ively large 

activation barrier~ E~/k = 190 K and CH 3 group rotation with a much smaller activa- 

tion barrier E~/k = 7 K. A value E A ~ B (rotational constant) should not be taken 

too l i t e ra l l y ,  however, as the activation step p~obably extends beyond the regime 

of classical rotation. 

o'e 

temperature (K) 

Fi9.4.11. Fixed-window measurement 
of the quasielastic scattering from 
Pb(CH3) 4. Two activation steps are 
observed and yield activation ener- 
gies E~ = 190 K and E~ = 7 K, which 
have been related with the rotation- 
al motion of the whole molecule and 
that of single methyl groups, res- 
pectively /4.32/ 
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4.5.2 Ammonium Chloride (NH4Cl) 

A second example of considerable in terest  is provided by the ammonium halides, par- 

t i c u l a r l y  by NH4CI in the v i c i n i t y  of i t s  or ientat ional  order-disorder t rans i t ion 

at 242 K /4.33/ .  Above the t rans i t ion  temperature the ammonium si tes have symmetry 

m3m which is greater than the tetrahedral symmetry of the NH~ group. Consequently 

the molecules have two dist inguishable or ientat ions or -more p rec ise ly - the re  are 

2 sets of 12 orientat ion! (described by 12 d i f fe ren t  Euler angles mE), each orien- 

tat ion wi th in a given set generating the same density d is t r ibu t ion  (Fig.4.12). Be- 

low the phase t rans i t ion one of the or ientat ions with occupation Pl-We return to 

the s impl i f ied picture of jus t  two or ientat ions -becomes preferred. In the ordered 

phase with the tetrahedra aligned pa ra l l e l ,  one may introduce an order parameter 

n = Pl-P2. Above T c in the disordered phase the order parameter is zero, as 

Pl = P2 = I /2.  

~C3 ,CA 

N:O,CI:O.H:" 

Fig.4.12. Structure of NH4CI (space group 
Pm3m), with the two a l ternat ive or ientat ions 
of the NH~ ion. C 3 and C 4 denote axes for  
120 ~ jumps and 90 ~ jumps, respect ively 
/4.28/ 

MICHEL /4.34/ has discussed the reor ientat ional  motion above T c, where each pro- 

ton may be found in one of eight possible posit ions. The rotat ional  jump model seems 

to be very appropriate for  stochastic rotat ional  motions in NH4CI, as the molecules 

are strongly local ized with respect to the i r  or ientat ions;  the l i b ra t iona l  amplitude 

is only about 7 ~ . Two d i f fe ren t  kinds of jumps are dist inguished: 120 ~ jumps around 

the threefold axis (rate u) which do not a f fec t  the order parameter and 90 ~ jumps 

(rate v) which change the or ientat ion of a molecule and thus the order parameter q. 

For the disordered phase MICHEL /4.34/ f inds that apart from the t o t a l l y  symmetric 

solut ion with ~I = O, there are 3 eigenvalues connected with the quasielast ic scat- 

ter ing:  ~2 = 2v+4u and ~4 = 6v are t r i p l y  degenerate eigenvalues, ~3 = 4v+4u is 

not degenerate. Each Lorentzian of width ~i is connected with a speci f ic  Q-depen- 
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dent form-factor /4.34/ .  Obviously an attempt to determine u(T) and v(T) separately 

- in order to test  Michels's predict ion of a strong change of v in the v i c i n i t y  of 

the phase t rans i t ion  - requ i res  Q-dependent measurements in a single crys ta l .  Such 

a measurement has recently been performed by T~PLER et a l .  /4.28/ .  I t  has been per- 

formed in an extremely careful fashion, rendering i t  a model example for  reor ienta- 

t ion studies. Below the phase t rans i t ion  the cubic potent ial  becomes dis tor ted,  a 

ra t io  p2/Pl = exp(-&E~/kT) ~ I resul ts and consequently, the 90 ~ jumps from (rate v I )  

or to (rate v 2) the favorable posit ions become inequivalent.  AE~ is the dif ference 

of the ground-state energies at the two s i tes.  Therefore, in order to analyze data 

taken at T < T c, i t  turned out to be necessary to solve the rate equations for  a 

nonzero order parameter n /4.28/ .  A calculat ion within mean-field approximation 

(more cor rec t ly ,  the h i would depend on the nearest-neighbor correlat ion function) 

yields generalized eigenvalues ~. (i : 2,3,4) 
1 

~2 = 4u +1-~q (3 - V / 1 - ~ )  (4.22a) 

: 4u+  2) (4.22b) 

6v I 
(4.22c) X4 = 1-n 

Here the re la t ion  v 2 = v1(1+n)/(1-n) has been used. Both l im i t i ng  cases are repro- 

duced. For q = 0 MICHELS's or ig inal  resu l t  /4.34/ is found, while n = I leads to 

the expression obtained by SK~LD /4.21/ .  For s imp l i c i t y  the authors have not d is-  

tinguished between two d i f fe ren t  types of 120 ~ jump rates (u i ) ,  corresponding to 

the two nonequivalent or ientat ions.  The resu l ts ,  as obtained with thin single crys- 

ta ls  of NH4CI (transmission about 80%) with high-resolut ion neutron spectroscopy, 

are shown in Fig.4.13. They are based on measurements at several g posi t ions, chosen 

such as to single out e i ther  ~2 or ~4' to the extent possible. Only i f  n(T) in the 

ordered phase is known, can the jump rates u and v (120 ~ and 90 ~ degree jumps, res- 

pect ive ly)  be extracted from the quasielast ic l inewidth r (g,T) ,  n has been deter- 

mined from measurements of the Bragg in tens i t ies  on a three-axis spectrometer. This 

also allowed the determination of the Debye-Waller factor which is needed for  a 

quant i ta t ive analysis of Sinc(g,m) = e -2Ws#nc(g,m). 

Figure 4.13 shows that the 90 ~ jump rate v f i r s t  decreases continuously on ap- 

proaching T c from above, but then drops sharply at the t rans i t ion  temperature. This 

is due to the f i r s t - o r d e r  character of the t rans i t i on ,  which u l t imate ly  leads to a 

discontinuous change of n as well as AE~ from zero to a f i n i t e  value. To the extent,  

the second or ientat ion (p robab i l i t y  p2 ) becomes forbidden, 90 ~ jumps also become 

less probable. The t rans i t i on ,  by the way, becomes continuous at pressures above 
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Fi9.4.13, The upper part of the figure repre- 
sents results for 120 ~ jumps (rate u) in NH4CI; 
di f ferent symbols denote two di f ferent measure- 
ments (more precise measurement: tr iangles). 
Corresponding results for 90 ~ jumps (rate v) 
are shown in the lower part of the figure /4.28/ 

the t r i c r i t i c a l  point at PT ~ 1.5 Kbar. The 120 ~ jump rate u also decreases, but 

without a noticeable jump at T c /4.28/. 

There are several other aspects, which are worth noting. With use of the rela- 

tion v = vOexp(-E~/kT) and the semi-quantum-mechanical prefactor 

0 -exp(-E1/kT ) ~ + 1 K v = (kT/h) .D ] /4 .35/ ,  E /k = 1985 K can be deduced for  T = T c 

and E~/k = 2260 K for  T = T c - I  K. The energy of the f i r s t  l i b ra t iona l  state is 
�9 0 

E I = 49 meV /4.36/ .  C lass lca l ly  v = E I is an attempt frequency. The act ivat ion ener- 
A gy E 4 which is obtained by the above method /4.28/ is close to, but smaller than 

the value derived from the rotat ional  potent ial  V(T) of HOLLER and KANE /2.16/ via 
I 

E4A = V(Tb)_V(~m ) - 2 ~ L I B ;  (~LIB = El)" Here Tm and T b denote the or ientat ions 

at the minimum and between two minima (passage from the minimum to the other by 

four fo ld ro ta t ion) ,  respect ively.  The dif ference probably is due to the fact  that 

there is a saddle point close to T b, but not at T b. Presently molecular dynamics 

calculat ions are performed /4.37/ with the aim of studying deta i ls  of the passage 

from one minimum to another. 

4.6 Diffusion in the Presence of a Potential 

Before leaving the f ie ld  of classical molecular rotations, we want to discuss the 

situation prevailing in most molecular c rys ta ls - the diffusion in the presence of 

a f i n i t e  rotational potential. So far there are no neutron experiments available 
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which are aimed at testing recent model calculations. Therefore we shall restrict 

ourselves to a brief description of two alternative approaches. 

DIANOUX and VOLINO /4.38/ have calculated the scattering functions S;nc(g,m) 

starting from a diffusion equation for GS([,t) in presence of a rotational poten- 
I t ial V(r = ~ V n cos nr The replacement of the Langevin equation by a diffusion 

equation for the self-correlation function GS([,t) apparently is a reasonable 

approximation in the strong fr ict ion limit (Sect.4.2). Otherwise the short-time 

behavior of GS([,t) which is not adequately described within the above approxima- 

tion, becomes important. The model of Dianoux and Volino correctly reproduces con- 

tinuous rotational diffusion and a rotational jump model between n equidistant 

orientations as limiting cases. In the intermediate regime no analytic expression 

can be given as the solutions are obtained by truncating an otherwise inf inite ma- 

t r ix  before i t  is diagonalized. Though the method has not yet been used to analyze 

rotations in a specific molecular crystal, the approach means a significant step 

forward. I t  may be hoped that a generalization to three-dimensional diffusion soon 

will follow. Other approaches which might favorably be translated into the language 

of rotational motion have been performed in context with ionic conduction. There 

the translational diffusion of a particle in a periodic potential has recently been 

studied /4.39,40/. 

Another promising approach for the treatment of classical rotations in a periodic 

potential recently has been published by de RAEDT and MICHEL /4.41,42/. The authors 

presented a model which combines an oscillatory aspect-at low temperatures the 

molecules perform angular oscillations around one of their equilibrium orienta- 

tions-and a stochastic aspect which may be described by thermally activated re- 

orientations. Obviously the oscillatory aspect dominates at low temperatures, where 

the reorientational motion is exceedingly slow. Because of the classical treatment, 

the model is not applicable at very low temperatures, however. At high temperatures 

the reorientations become increasingly important. The authors used symmetric-adapted 

surface harmonics K~m[~(t) ] as dynamical variables and a continued fraction approach 

(which will not be described here) in order to calculate the dynamics of a single 

molecule in an effective potential. The starting point is the single particle Hamil- 

tonian~of the molecule (see Sect.5.1). For calculating the time-dependent corre- 

lation functions <K~m~(t) ] K~m[~(t=O)]> the time evolution of the dynamical vari- 

ables K~m[~(t) ] is needed and classically can be obtained via the Poisson brackets 

K(t) = {K(t),JC}. So far the approach is restricted to molecular impurities in crys- 

tals. The explicit calculation /4.41/ is specialized to the motion of a dumbbell 

in an octahedral cage (e.g., CN- in KCI; see Fig.2.1). A formulation of both the 

incoherent neutron scattering law and of the Raman intensities is given. The rela- 

tion of the energy width of the quasielastic peak (reorientation) and that of the 
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ine las t ic  peaks (osc i l la t ion)  to the widths generated within the Langevin model of 

d i f fus ion is not yet establ ished. 

As there are p rac t i ca l l y  no examples for  the classical rotat ion of dumbbell-type 

molecules with a large ~inc'  a calculat ion aiming at tetrahedral molecules or methyl 

groups is highly desirable. I t  is for  these reasons that the calculat ion in i t s  pre- 

sent form /4.41/' is compared to Raman measurements with CN- impurit ies in a l ka l i -  

halides /4.43/ .  Very good qua l i ta t i ve  agreement is found. 

An in terest ing aspect concerns the character of the rotat ional  motion for  dynam- 

ical variables of d i f fe ren t  symmetry. Spherical harmonics of order ~ = 2 can be de- 

composed into two harmonics of Eg symmetry and three harmonics wi th in T2g. For a 

potent ial  V(~) = V4K41(~) (2.19) and V 4 posi t ive,  the potent ial  minima are in [111] 

and the maxima in [100]. For a negative ~ign of V 4 th is  is reversed, The authors 

show that harmonics of Eg symmetry have reor ientat ional  character for  V 4 > O, and 

the harmonics of T2g symmetry have osc i l l a to ry  character. For V 4 < 0 the s i tuat ion 

is reversed. The reor ientat ion between three equivalent or ientat ions (minima in 

[100]) is isomorphous to the case of methyl group rotat ions.  There E symmetry is 

( i )  (Sect.4.4) Simi lar ly found for  the relaxat ion of the probabi l i ty  densit ies pj 

the symmetry character of the angular osc i l la t ions can be shown to be that found 

in /4 ,41/ .  



5. Rotational Excitations at Low Temperatures 
I. Principles 

At low temperatures the f luctuat ions of the rotat ional  potential  die out and quan- 

tum aspects determine the single par t ic le  rotat ion.  When f luctuat ions can be neg- 

lected i t  suff ices to solve a stat ionary Schr~dinger equation in order to learn 

about energy eigenvalues and eigenfunctions of a molecule in a given rotat ional  

potent ia l .  Direct measurements of the t ransi t ions between rotat ional  states in 

general require neutrons. Transit ions within the ground-state mu l t ip le t  usually 

are accompanied by a change of the nuclear-spin function which can be produced by 

neutrons. This aspect w i l l  be dealt  with somewhat la te r .  Measurements with mole- 

cules displaying almost free rotat ion in a quantum-mechanical sense have been known 

for  quite a w h i l e - p a r t i c u l a r l y  the t rans i t ion  from p-H 2 to o-H 2 which involves a 

change of the rotat ional  quantum number J from an even to an odd value (e.g. ,  

J=O§ /5 .1 ,2 / .  Another example is sol id methane (CH 4) in i t s  phase I I ;  there 

2 out of 8 molecules (Fig.6.1) remain disordered at low temperatures and rotate 

almost f ree ly  /5 .3-5/ .  Rotational tunneling only recently has opened up as an ac- 

t i ve  f i e l d  for  neutron scatter ing /5 .5 /  and has stimulated a l o t  of a c t i v i t y ,  both 

experimental and theoret ica l .  This does not mean that almost free rotat ion is the 

more frequently found phenomenon-on the contrary. Due to intermolecular interac- 

t ions in a so l id ,  only in rare cases is V/B a small quant i ty.  Rotational tunneling 

has not been observed ea r l i e r  because high resolut ion neutron spectrometers 

(AE 2 0.3 NeV or 4 mK) had not been avai lable before about 1973. 

The natural uni t  of the periodic rotat ional  potential  is the rotat ional  constant 

B =~220; examples are B(H 2) = 85 K and B(NH 3, CH 3, NH~, CH 4) a l l  about 7-8 K. For 

a l l  other molecules B is of the order of 0 .1K or less, e .g . ,  B(CCI 4) ~ 0.08 K. Ob- 

v iously hydrogen is close to the l i m i t  of quantum-mechanical free rotat ion,  espe- 

c i a l l y  because the anisotropic interact ion (o-H 2 has a quadropole moment) is only 

of the order of a few K. For large molecules with heavy const i tuents- the  above 

example is CCI 4 - t h e  rotat ional  constant is very small. As in addit ion the in ter -  

action is strong, the rotat ional  motion at low temperatures is quenched. Low-ener- 

rotat ional  exci tat ions accessible to neutrons are found in CH 4, NH~ sa l ts ,  gY NH 3 

and CH 3 groups in various surroundings and crystal  phases. 
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In th is  section the calculat ion of rotat ional  states is described s tar t ing from 

the single molecule Hamiltonian. Two a l ternat ive approaches have been used. Dealing 

with homonuclear molecules the exclusion pr inc ip le  enters and properly symmetrized 

wave functions have to be constructed as sums of products of rotat ional  wave func- 

t ions r and spin functions • Only a f te r  the construction of complete wave functions 

is the basis for  calculat ing neutron scatter ing t rans i t ion  matrix elements provided. 

In connection with rotat ional  tunneling, a plausible explanation for  i t s  single 

par t ic le  character can be given. While the wave functions @ of two states with d i f -  

ferent symmetry d i f f e r  appreciably, the densit ies @@* (or the corresponding charge 

density) are almost ident ica l .  Therefore, the intermolecular interact ion is prac- 

t i c a l l y  unaffected by a tunneling t rans i t ion .  

5.1 Rotational States 

5.1.1 One-Dimensional Rotation and Exact Methods 

We w i l l  s ta r t  the discussion of the quantum-mechanical states of a molecule in a 

periodic potential  by giving an especia l ly  simple example, that of a dumbbell which 

is res t r ic ted to only one angular degree of freedom. With a s i te  symmetry which is 

a subgroup of (or equal to) the molecular symmetry the leading term in the poten- 

t i a l  is V(@)= (1/2)V2cos2@. The k inet ic  energy is B a2/~@ 2 and the fol lowing Schr~- 

dinger equation is obtained 

22 I V2cos2@) ~ = E~ (5.1) (-B-- +7 a@ 2 

A simple subst i tu t ion,  a = E/B and q = V2/4 B, leads to the well-known Mathieu equa- 

t ion /5.6/  which is exact ly soluble. Expressions for the eigenvalues E i and the 

eigenfunctions ce i and se i are given in /5 .6 / .  Usually the E i are expressed in terms 

of continued fract ions /5 .7 ,8 / .  For deta i ls  of the der ivat ion,  the reader is re- 

ferred to the papers of GLODEN /5 .8 /  who also has adapted the method to general po- 

ten t ia l s  of the shape (Vn/2)cosn@. This allows the calculat ion of eigenstates for  

various kinds of uniaxial  rotors including those of CH 3 groups in potent ials of 

threefold or s ix fo ld  symmetry /5 .8 / .  The solutions of the Mathieu equation also 

are extremely useful for  test ing approximations, which are necessary in case of 

more than one angular degree of freedom. 

The lower energy eigenvalues of the Mathieu equation with a term qcos2~ are 

shown in Fig.5.1. Three d i f fe ren t  regimes may be dist inguished. 
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Fi~.5.1. Energy eigenvalues of a dumbbell 
with one rotational degree of freedom in 
a potential V(@) = I/2 V~cos2@ (solution 
of the Mathieu equation) L 

a) Weak rotational potential. For V 2 = 0 one retains a quantum-mechanically free 
2 

rotor with energy eigenvalues Ej = BJ and eigenfunctions cej(@;V 2 =0) = cosJr and 

sej(r 2 =0) = sinJ@ (norm omitted). All states are labelled by the rotational quan- 

tum number J; only the ground state with J = 0 is nondegenerate-all excited states 

(J ~ I) are doubly degenerate. For small V 2 the potential can be treated as a per- 

turbation and J s t i l l  can be taken as a good quantum number. For comparison we also 

give the energies Ej and degeneracies Mj (of the spatial wave functions) for two- 

and three-dimensional rotors: I) linear molecule: Ej = BJ(J+I), Mj = 2J+I; 2) sphe- 

rical top molecule: Ej = BJ(J+I), Mj = (2J+I) 2. 

b) Strong rotational potential. For V 2 ~ 30 B the molecules perform almost har- 

monic librations (for more angular degrees of freedom this l imit  is approached for 

somewhat higher values of V2). In the l imit  of large V 2 the energy eigenvalues are 

E n = -V2/2 + (n+I/2)~V2.B and the corresponding functions are oscil lator functions. 

As may be found in the expression for E n, the separation between the oscil lator lev- 

els increases with increased orientational localization, i .e . ,  increasing strength 

of the potential. The degeneracy of al l  states is two in the example chosen. 

c) Intermediate regime. In the intermediate regime the eigenstates are neither 

oscil lator functions nor free rotor functions. The states are characterized by their 

symmetry and transform according to the representations of the group C2V (Table 5.1). 

The four symmetry operations, described in Table 5.1, leave the potential V(@) ~ cos2@ 

invariant. The ground-state wave function CeO(@), for example, has symmetry A I and 

therefore may be expressed in terms of functions cos2n@ only. Of particular inter- 

est is the regime close to the l imit  of l ibrational motion. Here the states look 
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Table 5.1. Character table of the point group C2v(mm); l i s ted are also the angular 
transformations with correspond to a given symmetry operation and the tr igonometric 
functions which transform according to the four one-dimensional representations of 
C2V 

C2V E C 2 o(x) a(y) 

transform. 
of angular ~ ~+~ 2~-@ ~-@ 
variable 

A I 

A 2 

B I 

B 2 

I I I I 

I I -I -I 

I -I I -I 

I -I -I I 

cos2n@ 

sin2n@ 

cos(2n+1)# 

sin(2n+1)@ 

almost l i ke  harmonic-osci l lator states. Closer inspection, however, reveals that 

the eigenstates are s p l i t  in two closely spaced levels of d i f fe ren t  symmetry ~round- 

state: A I for  CeO(@) and B 2 for  set(@) ] .  Within the framework of pocket states, that 

is ,  wave functions centred at the minima of a given rotat ional  potent ial  (potential  

pocket), the sp l i t t i ng  is caused by the overlap of wave functions located in ad- 

jacent potent ial  wel ls.  A schematic drawing of tunnel s p l i t  rotat ional  states in a 

periodic potent ial  is shown in Fig. 5.2 ( i t  refers to the more r e a l i s t i c  s i tuat ion 

of a cos3@ potent ia l ) .  An example of pocket states in a cos6@ potent ial  is shown in 

Fig.5.3. The solut ions of the Mathieu equation also provide a "corre lat ion diagram", 

that is ,  they show how the osc i l l a to r  states emerge from the free rotor states when 

the potent ial  is increased. Obviously the mu l t i p l i c i t y  M 0 of the combined ground- 

state levels can be iden t i f i ed  with the total  number of potent ial  pockets. 

As mentioned above the calculat ion of eigenvalues has not been res t r ic ted to a 

uniaxial rotat ion of dumbbells, but mainly concentrated on rotat ing XH 3 groups 

(X = C,N). Both the molecular symmetry and the s i te  symmetry have to be included. 

A careful invest igat ion of th is  aspect is given by KING and HORNIG /5.9/  for 

three-dimensional rotors.  For CH 3 groups the symmetry arguments are much simpler; 

the molecular symmetry causes that only Fourier components VnCOS(n@+@n) of the po- 

ten t ia l  n = 3m (m = 1 ,2 ,3 . . . )  matter. The s i te  symmetry may help to fur ther  reduce 

the nonvanishing terms in the potent ial  and to impose condit ions on the phase angles 

@n" For example, a twofold axis in the crystal  along the symmetry axis of the mole- 

cule eliminates contr ibut ions other than V6m and a mirror plane containing the sym- 

metry axis of the molecule w i l l  render @n ~ 0 (see also Sect.4.3.1 and Fig.2.2).  
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Fig.5.2. Schematic drawing represent- 
ing the tunnel s p l i t t i n g  of the ro- 
tat ional  ground state (A) and of the 
f i r s t  l i b ra t iona l  state. The s p l i t -  
t ing is due to the overlap of wave 
functions (dashed region) in neigh- 
boring potent ial  wells 

~2 

Fi9.5.3. Schematic drawing of a one-dimen- 
sional rotat ional  potent ial  with a s ix fo ld  
symmetry axis.  Also shown are the pocket 
states @i /5 .8/ .  The drawing might repre- 
sent a disordered CH 3 group (s ix fo ld  sym- 
metry axis at the molecular s i te )  

i i i i i | 
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. . . . . .  

0 5 10 15 20 25 
potenfioi V3m/B 

Fig.5.4. Energy eigenvalues of a 
XH 3 group in potent ials V(@) = 
(172)V3mCOS3m@ /5 .8 / .  The dashed l ine 
refers to a cos3@ potent ia l ,  the sol- 
id l ine  to a cos6@ potent ial  

Solutions of the Schr~dinger equation of a one-dimensional rotor have been given 

for  potent ials of the form 

1 )k�89 V(@) = ~V3cos3@+(-1 (5.2) 

with k = • and are tabulated for  several sets of parameters V 3 and V 6 /5 .8 / .  The 

resul ts for  e i ther  V 6 z 0 or V 3 z 0 are shown in Fig. 5.4. Some of the eigenvalues 

may be derived d i rec t l y  from the resul ts obtained from (5.1). 
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5.1.2 Approximate Methods 

Approximate methods have only l i t t l y  immediate importance for the case of uniaxial 

rotation. They become necessary for rotation with two and three angular degrees of 

freedom. Nevertheless, approximate methods have been used also in the context of 

uniaxial rotation /5.10,11/. As has been pointed out by HOLLER and KROLL /5.9/, the 

comparison with exact solutions (which are available for the one-dimensional prob- 

lem) allows a direct test of the quality of a given approximation. 

There are two different approaches which appear possible and have been used main- 

ly for two- and three-dimensional rotation. I) One method uses an expansion into free 

rotor wave functions. 2) The other employs states which resemble harmonic oscillator 

functions. In the f i rs t  case one is lead to the diagonalization of inf inite Hamil- 

tonian matrices <@~l~x~l@~,>. The problem is somewhat simplified by using symmetry- 

adapted wave functions (SAF); the indices C, ~' then include both angular momentum 

and symmetry labels. The use of SAF's leads to block-diagonal matrices. Neverthe- 

less, i t  is necessary to truncate the matrix by restricting i t  to a subspace J ~ Jo 

of the angular momentum quantum number J. 

The method undoubtedly works well for weak potentials, where rapid convergence 

of the expansion of the wave function is guaranteed. Problems, particularly for 

three-dimensional rotators, arise in the strong potential limit. There rather large 

cutoff values Jo are required for sufficient accuracy in the determination of the 

eigenvalues. This, however, considerably blows up the dimension of the truncated 

matrices-in particular for the eigenvalue problem with SAF's of low symmetry (e.g., 

V(m E) with cubic symmetry; for representations with T symmetry the dimension is 

200, with Jo ~ 13 /5.12/). 

The other way is the use of harmonic-oscillator-like wave functions. One starts 

with pocket states @i (as introduced before) which do not represent eigenstates of 

the Hamiltonian. I f  prepared in one of the potential pockets, a state is not sta- 

tionary, but decays with time into other pocket states because of the f in i te pro- 

bability of tunneling. The magnitude of the tunnel splitt ing is determined by over- 

lap matrix elements Hij = <@iI~I@j>; here i and j denote different pockets. For the 

geometry sketched in Fig.5.3 there are three independent matrix elements H12, H13, 

and H14, for example. As in the case of the expansion into free rotor functions, 

symmetry helps to block-diagonalize the Hamiltonian matrix. The method has been 

demonstrated in an especially clear fashion by HOLLER and KROLL /5.13/, who used 
2 

Gaussian-shaped pocket states, e.g., @i = exp(xG~i)" The quantity x G is taken as 

a variational parameter. For strong potentials x G is large and @i becomes a narrow 

Gaussian. The width XG I/2 is determined by minimizing the eigenvalues after the 

diagonalization of the Hamiltonian matrix. I t  depends on both the magnitude of the 
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potential and-to a lesser extent-the symmetry of the state. The method leads to 

exact answers in the l im i t  of weak and strong potentials. In the lat ter  case, how- 

ever, this is only true for the l ibrational energies and not for the tunnel sp l i t -  

tings. The calculated spl i t t ings for a potential V(@)=(I/2)V6cos6@ turn out to be 

about half of the exact value/5.13/for V 6 ~ 150 B (Fig.5.5). The discrepancy be- 

comes even worse for larger V 6. 

One immediately suspects that this results from the fact that Gaussians (with 

just one parameter for the width) do not well represent the wave functions in the 

overlap region, although they are a very good approximation in the region of the 

potential minimum. The magnitude of the wave function in the overlap region, how- 

ever, is decisive for the overlap matrix elements. Therefore improved pocket state 

functions are needed and a step in this direction recently has been made /5.14/. 

There the Gaussian is multiplied by the f i r s t  few terms of a symmetry-allowed poly- 

nomial within the angular coordinates, which may be understood as an admixture of 

excited harmonic-oscillator states to the ground-state function. This also allows 

for a spatial anisotropy of the wave function in the region of the minimum and cer- 

tainly is a better representation in the overlap region. With improved pocket states 

an increased overlap results and, consequently, larger tunnel spl i t t ings are ob- 

tained /5.14/. In /5.14/ the variation principle is applied to wave function with 

several parameters. 
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Fig.5.5. Ground-state tunneling frequen- 
cies of a one-dimensional rotor in a po- 
tential V(@) = (I/2) V6cos6@. mOi refers to 
transitions from J = 0 to J = I ,  2 and 3, 
respectively (perturbed by potential). 
Solid curve: exact results; dashed curve: 
results of a variational calculation using 
pocket states. Both potential and energy 
eigenvalues are given in units of the ro- 
tational constant B = ~/20 /5.13/ 
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An advantage of the pocket state formalism is the very small set of basis func- 

t ions which is required. On the other hand i t s  appl icat ion is d i f f i c u l t  in connec- 

t ion wi th problems with many potent ia l  minima, such as in the case of CH 4 as a sub- 

s t i t u t i o n a l  impuri ty in rare gas matrices /5.15/ .  We w i l l . r e t u r n  to the comparison 

of the two techniques in connection with the ro ta t iona l  states of a tetrahedron. 

5.1.3 Two-Dimensional Rotation (Linear Molecules) 

Rotational tunnel ing of l i near  molecules in sto ichiometr ic  crysta ls  so far  has not 

been observed by incoherent neutron scat ter ing.  P rac t i ca l l y  a l l  experiments deal 

wi th the ro ta t ion of ion ic  molecular groups as impur i t ies in a l ka l i  hal ides, and 

employed techniques other than neutron scat ter ing.  Much of th is  is discussed in re- 

views by NARAYANAMURTI and POHL /5.16/  on tunnel ing states of defects in sol ids and 

also by BARKER and SIEVEN /5.17/ .  In one case coherent neutron scat ter ing has been 

successful ly  appl ied, namely wi th 0.1% CN" in KCl /5.18/ .  There the rotat ional  ex- 

c i ta t i ons  were not observed d i r e c t l y ,  but via t he i r  coupling to acoustic phonons of 

the same symmetry. Dispersion curves with the same symmetry label cannot cross ("an- 

t i c ross ing"  or " level  repuls ion") .  Therefore the ro ta t ional  mode acquires more and 

more acoustic character in the region of ant icrossing.  The ine las t i c  st ructure fac- 

tor  of the acoustic modes is more favorable for  an observation which renders the ex- 

periment possible. A~ explanation of the unexpectedly pronounced ant icrossing has 

been reported in /5.19/ .  An attempt to observe the same phenomenon in so l id  argon 

with N 2 molecules as subs t i tu t iona l  impur i t ies fa i l ed  /5.20/ .  

As most experiments have been done with cubic systems, theoret ica l  e f fo r ts  at cal -  

cu la t ing the ro ta t ional  exc i ta t ions of l i near  molecules also concentrated on s i tes 

wi th cubic symmetry. F i r s t  ca lculat ions have been performed by DEVONSHIRE /2 .29/ ,  

who retained only the f i r s t  term a41K41(~) in an expansion of the potent ia l  in to  

cubic harmonics. Free rotor  wave funct ions have been used with a t runcat ion at J=7 .  

Later authors /5.21-24/ extended th is  subspace to large J ( /5 .21/ ,  J ~ 27), s t i l l  

employing the Devonshire potent ia l .  The resul ts  depend not only on the magnitude 

but also on the sign of the po ten t ia l .  For a pos i t ive sign the 8 potent ia l  minima 

are along ~11] d i rec t ions ,  whi le the 6 minima are along DO~;  This is reversed 

for  a negative sign. A l oca l i za t i on  along ~10] always indicates the presence of 

higher order terms in the potent ia l .  An extension to a potent ia l  V(~) = 

a41K41(~)+a61K61(~) has been given by BEYELER /5.23/ .  His ca lcu la t ion uses a sub- 

space J ~ 12 and is presented in the form of diagrams for  various combinations of 

a41 and a61. He also quoted the ro ta t iona l  states in a potent ia l  V(~) = a81K81(~). 

Results for  the ro ta t ional  states of N 2 molecules in B-N 2 have been given by DUNMORE 

/2.26/ .  His paper contains a careful consideration of the ro ta t ional  potent ia l  in 
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~-N 2 on the basis of intermolecular interactions and provides energy eigenvalues in 

a potential of hexagonal symmetry (62m). I t  appears, however, that the assumption 

of stationary rotational wave functions in the disordered phase of nitrogen is in- 

correct and that fluctuations of the potential are important. 

5.1.4 Three-Dimensional Rotation (Tetrahedral Molecules) 

When talking about rotational tunneling of molecules with a single rotational degree 

of freedom one essentially talks about CH 3 side groups and NH 3 molecules. In a simi- 

lar way a l l  work on rotational tunneling of three-dimensional rotors so far concen- 

trated on tunneling states of tetrahedral molecules such as methane and the ammonium 

ion in a number of i ts  salts. Theoretical approaches also concentrate on tetrahedral 

molecules. The ground-state sp l i t t ing  was f i r s t  considered in connection with the 

zero point entropy of isotopic methanes by NAGAMIYA /5.25/. The method described 

there essentially is a pocket state approach; however, only symmetry arguments are 

used to distinguish between the di f ferent overlap matrix elements <@(R)I~I@(E)>. 

Here R denotes one of the 12 symmetry elements of the tetrahedral group T (= 23 

= subgroup of proper rotations of point group43m); E is the ident i ty operator 

and @(R) is a shorthand notation for R@. In absence of any site symmetry other than 

the ident i ty there are three independent 180 ~ overlap matrix elements H and four 
xi 

pairs of 120 ~ overlap elements h i . The complete Hamiltonian matrix as set up by 

HOLLER /3.3/ is shown in Table 5.2. NAGAMIYA solved the eigenvalue problem for t r i -  

gonal and tetrahedral site symmetry /5.25/. Symmetry reduces the number of indepen- 

dent matrix elements. For tetrahedral site symmetry there is just one 120 ~ overlap 

matrix element h = h I = h 2 = h 3 = h 4 and, s imi lar ly,  just one 180 ~ overlap matrix ele- 

ment H = H x = Hy = H z (Fig.5.6). Diagonalization yields states with A, E and T symme- 

try with the following eigenvalues 

E A = D + 3H + 8h (singlet) 

E T = D- H (three t r ip le ts )  

E E = D + 3H- 4h (doublet) 

(5.3) 

with D = <@!~I@ >- 

The method sketched by NAGAMIYA /5.25/ has been considerably refined by HOLLER and 

KROLL/5.13/and HOLLER /3.3/.  In the la t ter  publication the unitary matrix which 

block-diagonalizes the Hamiltonian matrix is given exp l i c i t l y  as well as the re- 

sult ing 3x3 blocks connected with the T states (Table 5.3). There are three iden- 

t ica l  blocks, each with eigenvalues , and For low symmetry a l l  three ET 1 ET 2 ET 3" 
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Table 5.2. Hamiltonian matrix Hij for  the pocket states @i of a tetrahedral mole- 
cule. D-~  the diagonal matrix element. H x, Hy and H z are the overlap matrix ele- 
ments for  180 ~ rotat ions around the x, y,  and z axes, respect ively.  The matrix 
elements for  120 ~ rotat ions around the I ,  2, 3 and 4 axes, respect ively,  are de- 
noted by h I ,  h 2, h 3 and h 4. The rotat ion axes which are defined in Fig.5.5 are 
f ixed i n  the crysta l  frame /3 .3 /  

D H x Hy H z h 4 h 3 h I h 2 h 4 h 2 h 3 h I 

H x D H z Hy h 2 h I h 3 h 4 h 3 h I h 4 h 2 

Hy H z D H x h 3 h 4 h 2 h I h I h 3 h 2 h 4 

H z Hy H x D h I h 2 h 4 h 3 h 2 h 4 h I h 3 

h 4 h 2 h 3 h I D H x Hy H z h 4 h 3 h I h 2 

h 3 h I h 4 h 2 H x D H z Hy h 2 h] h 3 h 4 

h I h 3 h 2 h 4 Hy H z D H x h 3 h 4 h 2 h I 

h 2 h 4 h I h 3 H z Hy H x D h I h 2 h 4 h 3 

h 4 h 3 h I h 2 h 4 h 2 h 3 h I D H x Hy H z 

h 2 h I h 3 h 4 h 3 h I h 4 h 2 H x D H z Hy 

h 3 h 4 h 2 h I h I h 3 h 2 h 4 Hy H z D H x 

h I h 2 h 4 h 3 h 2 h 4 h I h 3 H z Hy H x D 

Table 5.3. One of the three ident ical  blocks of the block-diagonal Hamiltonian ma- 
t r i x  connected with the T states 

D +H x - H y - H  z -h 1 - h  2+h 3+h 4 -h 1+h 2 - h  3+h 4 

- +H -H +h 1-h 2-h  3§ 4 -h I - h 2 + h 3 + h 4 D H x Y z 

-h 1+h 2 - h  3+h 4 +h 1 - h  2 - h  3+h 4 D -H x -Hy+H z 

eigenvalues d i f f e r ,  except for  accidental degeneracies. In Table 5.4 the ef fect  of 

symmetry on the overlap matrix elements and the T state energies ETi is summarized. 

Resulting level  schemes are also depicted in Fig.5.7 for  the pr incipal  s i te  symme- 

t r i es .  Al l  subgroups of the tetrahedral group 43m are l i s ted .  The eigenvalues E A and 

E E are always those given in (5.3),  i f  the above def in i t ions  for  H and h are gene- 
1 + H ) and h = 1 ra l ized to H = ~ (H x+Hy z 4 (hl +h2 +h3 +h4)" I t  may be noted that ex- 

perimental ly observed T state energies can be used as a sensi t ive probe of the s i te  
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Fi9.5.6. Equilibrium orientation of 
a tetrahedron in a rotational poten- 
t i a l .  180 ~ rotations around the x, y, 
and z axes and correspondingly 120 ~ 
rotations around the I ,  2, 3, and 4 
axes are the symmetry operations of 
the tetrahedron. Site symmetry may 
cause an equivalence of some of 
these axes 

A ~ - 2 A  -2A ~ - 2 A  -2A 

4"3m 3m mm2 m 
42m 3 2 1 

222 

Fig.5.7. Level scheme for the rotational ground state of a tetrahedral molecule at 
crystal sites with di f ferent symmetry (only the 120 ~ overlap matrix elements h i are 
included). The reduction of symmetry causes a sp l i t t ing  of the otherwise degenerate 
T states. A = 4h denotes the main sp l i t t i ng ,  while 61 = h2-h 1, and 52 = 2(hl-h 3) 
refer to the T state sp l i t t ing  for sites with three- and twofold symmetry axes, 
respectively. Transitions from A to E states are forbidden, as well as the TI-T 3 
transit ion in presence of a twofold axis. Except for very low symmetries there is 
always a pair of transitions with an energy ratio 2:1 

symmetry; however, Table 5.4 indicates tha t the  site symmetry in general cannot be 

concluded unambiguously. The results given in Table 5.4 also can be used for mole- 

cules of a symmetry lower than tetrahedral at a site with symmetry 43m (e.g., par- 

t i a l l y  deuterated methane: symmetry 3m for both CHD 3 and CH3D and symmetry mm2 for 

CH2D2). 

As already noted in Sect.5.1.2, a formulation in terms of exp l i c i t  wave func- 

tions means important progress. Their width (or a quantity related with i t )  is 

taken as a variational parameter. This allows the calculation of eigenvalues as 

a function of the rotational potential (Sect.2.6.3). Pocket states @i = exp(xG~)_ 

have been used in /5.9/ and improved states in /5.14/. The la t ter  have been quali- 

ta t ive ly  discussed before. The equilibrium orientations of the 12 pocket states 

are shown in Fig.5.8. For a calculation of overlap matrix elements one s t i l l  has 
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Table 5.4. Tunneling states of tetrahedral molecules: e f fec t  of the s i te  symmetry 
on the overlap matrix elements h i and Hxi as well as the T state energies of a 
molecule with tetrahedral symmetry. Those subgroups of43m which cause the same 
120 ~ overlap are l i s ted  together. As usually H << h [with H = (I/3)(Hx+Hy+Hz) 
and h = (1/4)(h1+h2+h3+h4) ] ,  the Hxi are treated in a very approximate manner in 
the calculat ion of T state levels by taking H z Hxi for  a l l  i .  The ef fects of s i te  
symmetry and molecular symmetry can be exchanged: the re lat ions between the over- 
lap matrix elements also hold for  tetrahedral molecules of lower symmetry in a po- 
tent ia l  of symmetry 43m 

subgroups 120 ~ overlap 180 ~ overlap 
of 43m elements elements 

43m h h h h H H H 

42m 

222 

3m 
3 

h h h h H H H 
X X Z 

h h h h H H H x y z 

h 1 h 2 h 2 h 2 H H H 

mm2 h I h I h 3 h 3 H x H x H z 

2 h I h I h 3 h 3 H x Hy H z 

m h I h 2 h 3 h 3 H x H x H z 

T state energies 

ET i 

ET. = D-H for  a l l  i 
1 

ETi = ET2 = D-H-hi+h2 

ET3 = D-H+2hl-2h 2 

ET. : D-H-2(hl-h3) 
l 

ET2 = D-H 

ET3 = D-H+2(hl-h3) 

ETI/2 = D-H +�89 3) • 

[2(h1_h2)2 +#(h 1 1  +hm_2h3)211/2 

ET3 = D-H+2h3-hl-h 2 

I h I h 2 h 3 h 4 H x Hy H z from Table 5.3 

to specify the potent ial  and the k inet ic  energy K = ~2/20 in terms of quaternions 

(2.20), which reads /5 .9/  

h2 I ~2 d d 32 
K=-2--~I0 I ~ - A 2 Z ~ -  ~ ~ 6  ~ ~ 

c~=I ~ 2  c~=I o~,6=1 

(5.4) 

For a three-dimensional rotor  A I = 4, A 2 = 3 and d = 4. The generalized formulation 

is given because i t  also can be applied for  one-dimensional (A I = I ,  A 2 = I ,  d = 2) 

and two-dimensional rotors (A I = I ,  A 2 = 2, d = 3). In Fig.5.9 the resul ts obtained 

with "improved" pocket states /5.14/ and for  a potent ial  of tetrahedral symmetry 
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�9 

| 
z 

@ 
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i ~ 3  Fig.5.8 

Fi9.5.8. Pocket states of a tetrahedral molecule 
in the librational ground-state. All 12 orien- 
tations (which are distinguished by numbering 
the protons) correspond to equilibrium orien- 
tations of the molecules /3.3/ 

Fig.5.9. Ground-state transitions of a ~rahe- 

~ I d ~ U l ~ n ~ n r ~ f ~ e ~ l ~ u ~ n p ~ ! i ' ~ t e s  
/5.9/ and the dot-dashed line to "improved" pocket 
states /5.14/ which provide a better description 
of the wave function in the overlap region 

, , ( 3 ) ,  T,  V(~) = v3n11 ~ / are compared w i th  a c a l c u l a t i o n  using Gaussian pocket states / 5 . 9 / .  

The 180 ~ over lap e s s e n t i a l l y  can be neglected,  i f  V3/B ~ 20. As a general ru le  one 

may say that for pronounced orientational localization, matrix elements h i (120 ~ 

overlap) practically always dominate. Therefore, potentials which lead to an in- 

equivalence of the 180 ~ overlap only, in general, cause negligible T state split- 

ting (Table 5.4). There is one example of this kind (point group42m) which becomes 

important in connection with the tunneling in CH 4 II (Sect.6.2.3). 

As may be seen in Fig.5.9, the tunnel splitting depends nearly exponentially on 

the magnitude of the potential. This fact, which certainly is not restricted to 

tunneling of tetrahedral molecules, causes extreme sensitivity of the splitting to 

changes of the potential (see Sect.7.2). 
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We now turn to the eigenstates of a tetrahedron as calculated by expanding the 

wave functions into free rotor functions. A very thourough discussion of this topic 

was given by KING and HORNIG /5.10/ for a cubic crystal f ield. These authors em- 

phasized the need to account for both molecular (symmetry operations R) and site 

symmetry (symmetry operations R); the potential has to be invariant under the di- 
~__A 

rect product group RR of both operations. After discussing the effect of space- 

fixed and molecule-fixed angular momentum operators on wave functions within the 

two frames, the authors constructed symmetry-adapted wave functions which have two 
~(J)r~ , symmetry labels. Roughly speaking, ~ imposes conditions on the index m of Umm,, ) 

while R acts on the index m'. R and R represent the subgroups of proper rotations 

at the crystal site and in the molecule. An additional symmetry reflected in 

sDtJ!(T)' " = (-1)m+m'DtJ~m ~ "  " is important and originates from the direct product of 
mm mm" 

the subgroups of improper rotations. Eigenvalues are calculated for a number of 

' ' (4) 'T'  of different magnitude. In particular the examples, namely potentials v4N11 t J 

speed of convergence with the cutoff value of J(4 ~ Jo ~ 22) -which defines the 

size of the set of basis functions-is discussed. As already mentioned, convergence 

is relatively slow for states of lower symmetry. I t  is for this reason that in a 

series of papers by SMITH /5.21,26-28/ only the ground-state splittings with A and 

E symmetry are evaluated. A, for example, is a shorthand notation for AA, which 

wi l l  be used in the following. Smith concentrated on the rotational states of NH~ 

groups. Because of the ionicity of the crystals, the potentials usually are rela- 

t ively strong in ammonium salts. This leads to convergence problems, in spite of 

basis sets with Jo as large as 27. The main aim of the author is the determination 

of potential parameters by consistently explaining as many observations as possible, 

e.g., tunneling, librational states and specific heat (which is not really an inde- 

pendent quantity). Similar calculations have been performed by BARTHOLOME and col- 

laborators /2.23/. They proceeded somewhat further by basing their approach on a 

microscopic model with electrostatic interactions. 

Extensive use of the methods outlined by KING and HORNIG /5.10/ has been made 

by the "Kyoto group" in conjunction with solid methane and its phase transitions 

(/2.22/ and references therein) as well as methane as a substitutional impurity in 

rare-gas matrices /5.29,30/. Their calculations are based on intermolecular inter- 

actions, which represent the angle-dependent part of interactions between atoms be- 

longing to different molecules /2.5/. This means a generalization of the famous 

work of JAMES and KEENAN /2.7/, who only included electrostatic multipole-multipole 

interactions and thus ignored the crystal f ield (which is present also in crystals 

consisting of neutral molecules). There is no electrostatic contribution to the 

crystal f ield from electrically neutral molecules. Level schemes for methane mole- 

cules and various site symmetries have been calculated and compared to experimental 
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results /2.22,5.31/. The work by YAMAMOTO and collaborators probably represents the 

most advanced applications of the free rotor expansion technique. 

A comparison between the pocket state approach and the expansion into free rotor 

functions is d i f f i cu l t .  The speed of convergence of the latter has recently been 

discussed /5.14/, although mainly with respect to the excited librational states 

which considerably suffer from the truncation of the Hamiltonian matrix. Both ap- 

proaches encounter problems for large potentials. In the free rotor function ap- 

proach matrices of increasingly large dimension need to be diagonalized for reasons 

of convergence, while in the pocket state method the simplicity of the in i t ia l  ap- 

proach has to be sacrificed in order to improve the wave functions in the overlap 

region. Nevertheless the pocket state approach appears to be more suitable for large 

potentials. 

5.2 Nuclear-Spin Functions 

So far, only the spatial part of the wave functions has been discussed. Complete 

wave functions, however, must include nuclear-spin functions. In principle they 

also must include electronic and vibrational wave functions. At low temperatures, 

however, these are in the total ly symmetric ground state and therefore need not to 

be considered here. The correct molecular wave functions are constructed from line- 

ar combinations of products of rotational and nuclear-spin functions. For protonated 

molecules they must be total ly antisymmetric upon odd permutations of the protons 

(spin I/2), whereas they must be completely symmetric upon interchange of deuterons 

(spin I) .  An example for the antisymmetric character of the complete wave function 

is hydrogen. In p-H 2 the spin function X is antisymmetric and the rotational wave 

function @ is symmetric. This is reversed for o-H 2, where X is symmetric and @ an- 

tisymmetric. A 180 ~ rotation of the molecule around an axis through the molecular 

centre-of-mass and perpendicular to the intermolecular axis is a symmetry operation 

of the molecule. I t  is equivalent to an odd permutation of two particles, namely 

the two protons within the molecule. This is different for XH 3 and XH 4 groups. There, 

odd permutations can only be performed across potential barriers which are of the 

order of binding energies of a molecule (several eV). Only the even permutations, 

which are isomorphous with the proper rotations that leave the molecule invariant, 

need to be considered. Consequently the complete wave functions must be total ly 

symmetric (A symmetry) for both protonated and deuterated molecules. 

This can only be achieved by combining nuclear-spin functions and rotational 

wave functions of the same symmetry. Transitions which change the symmetry of the 

rotational wave function consequently also change the symmetry of the nuclear-spin 
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functions. As the lat ter  cannot be caused by phonons, well-defined tunneling states 

with a spacing of only a few mK are observed up to about 50 K. Neutrons can f l i p  

nuclear spins and thus render the tunneling states observable. Transitions between 

different spin species which are not mediated by neutrons are summarized under the 

name spin conversion. Spin conversion is necessary to bring a mixture of several 

spin species into equilibrium after cooling or heating (e.g., /5.4,32/). This, how- 

ever, happens on a timescale of minutes to days. In pure samples, spin conversion 

involves the extremely weak intramolecular dipole-dipole interaction of the nuclear 

magnetic moments /5.33/. I t  is known that conversion is speeded up considerably by 

the presence of paramagnetic impurities /5.32/. 

For three protons forming an equilateral triangle (Fig.2.2) as in CH 3 groups or 

NH 3 (point group 3m), there are 23 ways of arranging the nuclear spins in IPlP2P3 >. 

Here the ~i denote the z component of the nuclear spin of the i th proton. The re- 

sulting eight spin functions can be decomposed into four to ta l ly  symmetric states 

• with total nuclear spin I = 3/2 of the molecule and two pairs of doubly degene- 

rate functions • with total spin I/2 (Fig.5.10). The eight spin functions are 

l isted in Table 5.5. I t  may be noted that the total spin I of the molecule unam- 

biguously labels the symmetry in the present case. 

first excited 
librational ! I 

state j /  1 lhwl 
\ IEaE b 

A 

E~ I=~ 2A 
libmtiono, ~ ~ - ' ~  I=~ 2 I 
ground A 
state 

A~m I(XHJ I(XD~} 

l='z~ E 0 0.2 

T I 1,1,2.3 

Fig.5.10. Low-energy rotational states 
of a XH 3 group, labeled by their sym- 
metry. In general E I >>~ml >> ~wO; 
note that the A state has lower energy 
than the E state in the ground-state 
levels; this is reversed in the f i r s t  
excited l ibrational state 

2 0,2.4 

Fig.5.11. Ground-state multiplet for 
tetrahedral XH 4 and XD 4 molecules in 
a potential of tetrahedral symmetry. 
For lower symmetry a spl i t t ing of the 
degenerate T states results (see Table 
5.4 and Fig.6.16). The transitions ob- 
served by spin-incoherent neutron scat- 
tering are marked by arrows; I denotes 
the total nuclear spin of the respec- 
t ive molecule 
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Table 5.5. Spin functions X(?s, m I) of CH 3 groups and NH 3 molecules. I denotes the 
total nuclear spin of a molecule, m I i ts  z component, m = I/2 and B = - I /2 the z 
component of the proton spin, ?s labels the symmetry of the wave functions and 

= - I /2  + i /3/2 

m I X(Y s, m I )  

type A 3/2 ovum 

I /2  ( I /~ ) (mmB + m ~ + ~ )  

I = 3/2 - I / 2  ( I / V ~ ( B B a +  BaB +mBB) 

-3 /2  ~ 

type E I/2 

- I / 2  

I = I / 2  I /2  

- I / 2  

( 1 / , / 3 " ) ( ~  + ~-Baa + ~ * . ~ )  

(1/vs + ~'aBB + ~*'BaB) 

(1 / , / 3 ) (~B  + ~ * ' l ~a  * ~'~B~) 

(1/V3)(BB~ + ~*.~BB + ~ - ~ )  

Table 5.6. Spin functions X(rs,ml) of tetrahedral molecules XH 4. I denotes the to- 
ta-~uc-lear spin of the molecule, mli ts z component, m = I/2 and B = - I /2  the z 
component of the proton spins, rs labels the symmetry of the wave functions and 

= - I / 2  + i ~ / 2  

type A 
I = 2  

type T 
I = 0  

type E 
I = 0  

T 
X 

T 
Y 

T 
Z 

m I 

2 

I 

0 

- I  

-2 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

X(r  s, m I )  

( I / 2 )  (~aB + ~Ba  + mBoK~ + ~mmm) 

( I / ~ )  (o~BB + a~B  + ~B~  + B ~  + B~B~ + B ~ )  

( I / 2 )  ( B~m + BB~B + ~BB + ~BB) 

( I / 2) ( ~ + ~B~  - ~ - ~ )  

( I / 2 )  (~B~ - Bm~B) 

( I / 2 )  (-~mB~ - B~m~ + BBBa + mBB~) 

( I12)  ( B~m + c~Sm - cw~B - (zB~) 

( I I / ~ )  ( ~ - ~ )  

(I/r (BB~ - a~BB) 

(I/2) (c~I~66 + aSc~ - acm~ - aal~a) 

(1/V~) (~66 + 6~ + ~ [~6~6 + 6~6~] + ~* [~6~ + ~] ) 

( 1 1 w ) ( ~  + ~ + ~* [ a ~  + ~ ]  + ~ [ ~  + ~ ]  ) 
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X1 : [aaa~z)  

Fig.5.12. Wave functions ~IN2~3N4 > which define the spin states of the protons at 
positions i in the crystal, and not the spin OT the i th proton. Open circles denote 
spin up, full circles spin down /3.3/ 

For tetrahedral molecules XH 4 there are 16 spin functions and they may be decom- 

posed as • = 5 • +• + 3 • The spin functions /5.34/ are l i s ted  in Table 5.6. 

Again the tota l  nuclear spin is related to the symmetry in a one-to-one re la t ion 

(F ig .5 .1 | ) .  This is d i f fe ren t  for  the f u l l y  deuterated species (e .g . ,  CD 4 with 81 

spin funct ions).  Nuclear-spin functions for  XD 3 and XO 4 may be found in a paper by 

HOLLER and PRESS /3 .4 / .  Their construction requires the appl icat ion of projection 

operators ( in order to construct properly symmetrized funct ion) ,  and use of the fact  
~ 72 

that these functions are eigenfunctions of both i z and I . This is described in more 

deta i l  in the appendix. 

Correctly symmetrized complete wave functions for  o r ien ta t iona l l y  ordered te t ra-  

hedral XH 4 have been constructed by combining the 12 rotat ional  wave functions and 

the 16 nuclear-spin functions into 192 products I@i>INI~2N3N4 >. The method is out- 

l ined in /3 .3 /  which also gives a table of these symmetrized states. I t  should be 

noted that these states are not eigenstates of the molecule in a given potent ia l .  

Eigenstates are obtained by diagonalizat ion of the Hamiltonian m a t r i x ~  T. HOLLER 

/3 .3 /  gives a simple in terpretat ion of the 16 symmetrized wave functions in terms 

of new wave functions [NIN2N3N4 >, Here Ni does not denote the spin of partiole i ,  
but that of the nucleus which is in position i .  [B~a>, for  example, means that the 

nuclear spin with z component ~ z - I / 2  is at s i te  I .  A l l  16 functions ~i~2~3~4> are 

shown in Fig.5.12. They f u l f i l l  the symmetry requirements upon par t ic le  exchange and 

are pa r t i cu la r l y  useful for  the calculat ion of t rans i t ion  matrix elements (Sects.3.1, 

5.3). An equivalent way consists in f i r s t  constructing symmetrized spat ial  wave func- 
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tions @r and symmetrized spin functions • Then functions of the same symmetry are 

combined to totally symmetric wave functions @ = @r,xr. 

The combination of spatial and spin functions for free rotor states of XH 4 mole- 

cules has been demonstrated by HAMA and MIYAGI /3.6/. 

5.3 Transition Matrix Elements for Neutron Scattering 

Withknowledge of the complete molecular wave functions, there is no further con- 

ceptual d i f f i cu l t y  in evaluating the transit ion matrix elements which appear in 

(3.10). Three recent publications deal with this problem /3.3,6.5,35/ and al l  re- 

fer to tetrahedral (spherical top) molecules with thei r  exp l i c i t  formulation. An 

application to CH 3 group rotation is straightforward, and a summary of the results 

is given in the appendix. 

HAMA and MIYAGI /3.6/ studied the l im i t  of free rotor states, HOLLER /3.3/ ap- 

proximates the rotational wave functions by pocket states of zero l ibrat ional am- 

plitude (which recently has been generalized to f i n i t e  l ibrat ional amplitudes /3.4/ ) .  

OZAKI et al. /5.35/ dealt with the intermediate regime and mainly base on the for-  

malism developed by HAMA and MIYAGI /3.6/ .  The f inal results of /3.6,5.35/ look 

rather complex and necessitate the introduction of numerous group-theoretical de- 

f in i t ions .  Therefore only some steps in thei r  derivation wi l l  be outlined. 

As i t  appears, the main d i f f i cu l t y  in the evaluation of matrix elements is the 

proper inclusion of symmetrized wave functions. The results should re f lec t  corre- 

lations of the protons within a molecule which give r ise to interference effects 

/3.3,6/ .  HAMA and MIYAGI noted that previous publications /3.5,10,5.36-38/, in which 

the transit ion matrix elements are calculated for free molecules (in the gas phase), 

either omitted these correlations or did not include them correctly. 

The common aim of al l  three publications is the calculation of the transit ion 

matrix elements A n which appear in (3.10) N'a',Na 

4 
A n '~na,IWnYl~na p'a',~a = Z <~ > (5.5a) 

y:1 
with 

WnY= (A nY-X) exp(ig'rny) (5.5b) 

The meaning of the quantities in (5.5) has been explained in Sect.3.1. In the fol- 

lowing the index n will be dropped and reference is to just one molecule. 
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Let us f i rs t  consider the approaches based on free rotor functions /3.6/ or an 

expansion into these functions /5.35/. The emphasis will be on the second paper. In 

order to calculate A ,a,,p a i t  is necessary to introduce three coordinate systems: 
E I) a space-fixed frame with coordinate X, 2) a crystal frame ~C with orientation m 2 

with respect to X, and 3) a molecular frame X M with orientation m~ with respect to 

~C" For a potential Vst = 0 (which corresponds to the approach of HAMA and MIYAGI 

/3.6/) there is no preferred orientation of the molecule in the crystal and obvious- 

ly there is no need of distinguishing between X and ~C" Furthermore the polar coor- 

dinates of the vectors Q and C# are introduced. They are QQ and Q in the space- 
M ~M Y 

f ixed frame and ~Q and in the molecular frame. 
Y 

As the wave funct ions Ip@a> need to be expressed in symmetry-adapted funct ions 

/3 .3 ,6 ,5 .35 / ,  i t  is convenient also to express the neutron scat ter ing operator 

2a. 4 
W I(~lnc Z S'~y exp('IQ-ry) (5.6) 

y=1 

in terms of symmetry-adapted functions. The tetrahedral symmetry of the molecules 

enters in the following way: 

4 
= Z ~ G with G = exp(iQ.ry) may be decomposed into /5.39/ 

y=1 Y Y 

: QA+WT = WA+NT +WT +WT 
x y z 

with 

4 . . . . .  1oo  
WA = s(ii+i2+i3+i4 ) Z Gy : ~ s' i to t 

y=1 

1 o o o o o 

WT = 4 s(il-i2-i3+i4)(GI-G2-G3+G4 ) 
x 

WT 1 . . . . .  : -# s( i l - i2+i3- i4)(Gi-G2+G3-G4 ) 
Y 

I o o o o o 

WTz = ~- s(i l+i2-i3-i4)(Gl+G2-G3-G4 ) 

4 
ZG 

Y y=l 

(5.7) 

(5.8a) 

(5.8b) 

(5.8c) 

(5.8d) 

WA and WT are irreducible forms within the group of even permutations of four ele- 

ments (point group T = 23). I t  is noted that W does not contain a component WE of 

the operator with E symmetry. The above expressions are obtained by use of projec- 

tion operators, in the same way as in conjunction with spin functions (see appen- 

dix). 
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A similar formulation has been given by SARMA for the neutron scattering in ortho- 

and para-hydrogen /5.40/. HAMA and MIYAGI proceeded in a somewhat different way 

/3.6/. They expressed the spin and spatial parts of (5.6) separately in terms of 

symmetry-adapted operators. 

What is important, though, is the absence of a component of the neutron scat- 

tering operator W with E symmetry. As can easily be found by inspection of the mul- 

tiplication table of the point group T, matrix elements <XA~AIWI~E• > require a com- 

ponent of the neutron scattering operator with E symmetry. As there is no such com- 

ponent, matrix elements <XA@AIWI@EXE > vanish. We will return to this aspect when 

describing the results of neutron scattering experiments (Chap.6). 

The Euler angles ~ and ~ come into play when exp(i~.ru (5.6) is expanded 

within the space-fixed frame X 

exp(i_Q.ry) = 4~ Z i~Jc(QP) Z Y~m(QQ)Y~m(Qy) (5.9) 
~,=0 m=-,~ 

j~ denotes spherical Bessel functions. Then the spherical harmonic YCm(Qy) is trans- 

formed to the molecular frame 

~' ~' M (~,) E (~,) E 
Y~,m(~y) = Z Z Y~,k(~y)Dkm.(ml)Dm.m(W2) (5.10) 

k=-~, m' =-,t 

In order to simplify the expression for AN,a,,N a (5.5) a powder~ average is performed 

/5.35/, which means an integration over the Euler angles m~. The result may be writ- 

ten in terms of an intermediate scattering function I(Q,t) which formally looks iden- 

tical to (4.5) 

eo  

I(Q,t) = Z (2~+I)j~(Qp)2FL(t) 
&=O 

with 

(5.11) 

^ i , f  (5.12) F~(t) = Z Pi (T) ~ ~ 
i , f  

The summation is over all ini t ial  and final states. G! "f is a transition matrix 

. . . .  n lem ~ of A Pro er account element which only conzains the angular part (a g i ) ~'a',~a" P 

has to be taken of the degeneracies of the states. For the 0-I rotational transi- 

tion of a free molecule, e.g., the intensity is simply proportional to j#(Qp). Con- 

^ i , f  and concerning applications cerning explicit expressions of the matrix elements m R 

the reader is referred to /3.6,5.35/. HAMA and MIYAGI were mainly interested in cor- 
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relation effects /3.6/, wh~le OZAKI et al. /5.35/ applied their calculation to the 

neutron spectra of CH 4 I I  /5.4,41/. 

Here one should note that the correlation effects are due to correlations of nuc- 

lear spins within a molecule. An apparent effect concerns the scattering intensity 

at momentum transfer Q = O. For a sample consisting only of A species molecules 

(temperature << tunnel spl i t t ing),  this intensity is 8 o. . This means a doubling 
inc 

in comparison to the scattering intensity from a high-temperature mixture of spin 

species (all states-5A, 3,3T, 2E-equally populated) or in the classical l imit .  

Both yield 4 ain c. On the other hand, the scattering from different molecules does 

not give rise to additional correlation effects (even i f  completely converted to 

the A species), as long as the z components of the total nuclear-spins of different 

molecules are stat ist ical ly independent. 

Nuclear-spin ordering appears possible, however, either stat ist ical ly at low 

temperature (order of NK) and/or high magnetic fields or by means of dynamical po- 

larization. 

The intensities of observed rotational transitions yield information which may 

complement, that from peak positions. This may be seen in analogy to the measure- 

ment of phonon modes. Peak positions yield information on the phonon frequencies, 

while Q-dependent intensities allow one to learn about the symmetry and magnitude 

of the displacement vectors (mode eigenvectors). Similarly the inclusion of inten- 

sities may help to assign the symmetry of rotational states /5.15/. As calculations 

of matrix elements enly recently have become available, l i t t l e  has yet been done 

along these lines. 

As with the calculation of rotational energy eigenvalues there is an alternative 

approach to the calculation of matrix elements Ap,a,,p a within the pocket state for- 

malism /3.3/. HOLLER f i r s t  calculated matrix elements Bp,b,,~ b based on (unsymme- 

trized) pocket states (see preceding section) and then transformed to eigenstates 

by means of a unitary matrix. He used 6 functions, that is, pocket states of zero 

width. This approximation is performed in view of an application of the results to 

salts with small librational amplitude of the NH~ group and the present ammonium 

restriction of high-resolution neutron spectroscopy to Q ~ 1.8 ~-I. The approach, 

therefore, breaks down for large Q and large librational amplitudes. This limita- 

tion is not serious, however. A calculation based on the pocket state formalism but 

including the f in i te width of these states has recently been performed /3.4/. A 

simple approach as in /3.4/ allows the study of scattering as a function of the 

librational amplitude which cannot easily be extracted from /5.35/. On the other 

hand, the calculation is applicable for moderately large momentum transfers and l i -  

brational amplitudes only. 
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The calculation of transition matrix elements /3.3,4/ on the basis of pocket 

states is outlined in the appendix. I t  is distinguished between a) spin-flip scat- 

tering (operators s+iy_ and S_iy+) and b) non-spin-flip scattering (operator SzIyz). 

Inelastic scattering is caused by the part of the neutron scattering operator with 

T symmetry. For degenerate T states there is also a contribution to the elastic 

scattering, originating from the operator W T. 

Only the part of the elastic scattering which results from the totally symmetric 

neutron scattering operator W A also corresponds to the elastic intensity in the 

classical high-temperature l imit. This relation probably has direct consequences 

for the understanding of the temperature dependence (Sect.7.1). 

One should note that the matrix elements B ,b, ~ b are derived for trigonal site 

symmetry C3(z3). This is related to the fact that the calculations in /3.3/ are 

performed in view of the tunneling in NH4CIO 4. The accidental degeneracy of T 2 and 

T 3 states in NH4CIO 4 means that the true site symmetry (m) can be replaced by an 

effective trigonal symmetry (see also Table 5.4). The tables in /3.4/ and in the 

appendix mainly refer to cubic symmetry. 

The results in i t ia l ly  are given for single crystals, whereby the orientation of 

the molecules is introduced by the set of vectors r (denoting the positions of the -y 
atoms of the corners of a tetrahedron). Interference effects in the scattering caused 

by correlations of the proton are predicted, as by HAMA and MIYAGI /3.6/. As a test 

neutron scattering experiments with single crystals are suggested /3.3/, preferably 

for systems with no T state degeneracy. In contrast to this /3.5,6/ refer to the 

hypothetical situation of a methane gas at very low temperatures. 

In agreement with the derivation given before, i t  is found that A-E transitions 

are forbidden. For the purpose of a direct comparison with the scattering from pow- 

der samples, powder averages of the calculated intensities have to be performed. Re- 

sults for tetrahedral symmetry-but also for reduced site symmetry-are given in the 

appendix. Rather good agreement between theory and experiment is obtained (see Sect. 

6.2.4). 

Also /3.3/ has served as a basis for the calculation of the total neutron scatter- 

ing cross section Oto t /5.42/. Oto t represents an integration over all allowed tran- 

sitions which enter the double differential cross section. Usually this integral in- 

formation is obtained by transmission experiments with long-wavelengths neutrons, 

hence Q is small and the approximation of negligible librational amplitude appears 

permissible. As ~tot depends strongly on the population of the librational ground- 

state levels, i t  is well-suited for measuring nuclear-spin conversion with long con- 

version times. 



6. Rotational Excitations at Low Temperatures 
I1. Examples 

After  having discussed the theoret ica l  background, we now turn to examples for  the 

observation of ro ta t iona l  exc i ta t ions at low temperatures. Only very few examples 

close to the l i m i t  of free ro ta t ion  ex i s t ,  whereas there is a f a i r l y  large and 

s tead i ly  increasing number of experiments in the l i m i t  of ro ta t iona l  tunnel ing.  

The chapter mainly is based on experiments wi th i ne las t i c  spin-dependent neutron 

scat ter ing.  Other experimental techniques may y i e l d  complementary information and 

also w i l l  be mentioned in a less detai led fashion. Examples with a ground-state 

s p l i t t i n g  not accessible to neutron scat ter ing w i l l  not be included. 

6.1 Free Rotation 

As mentioned before, there are only few molecular sol ids close to the l i m i t  of free 

ro ta t ion .  This is due to the intermolecular in te rac t ion  in a crystal  which is prac- 

t i c a l l y  always much bigger than the ro ta t iona l  constant B. The only exception with 

B >> V is so l id  hydrogen: there B = 85.25 K = 7.35 meV compares wi th an anisotropic 

in te rac t ion  (e lec t ros ta t i c  quadrupole-quadrupole in te rac t ion)  which gives r ise to 

an ordering t r ans i t i on  at about 3 K for  o-H 2. In a l l  other examples B < V. I f  a 

large spacing of the low- ly ing  states is observed nevertheless, i t  is caused by a 

combination of I )  high symmetry and 2) moderate strength of the po ten t ia l .  

This can be i l l u s t r a t e d  wi th potent ia ls  of the form V(@) : �89 for  which 

the ca lcu la t ion  of eigenvalues is pa r t i cu l a r l y  simple. For the un iax ia l  ro ta t ion  of 

a dumbbell, low symmetry means V 2 ~ O. High symmetry, on the other hand, means 

V 2 = 0 and maybe V 4 m 0 or V 6 m O. Eigenvalues wi th the same s p l i t t i n g  are ob- 

tained for  d i f f e ren t  V n, i f  the magnitude of the potent ia l  V n is  increased by a 

factor  (n/2) 2 wi th respect to V 2. Consequently for  the same magnitude V n = V 2 

(n > 2) the perturbat ion of the free states is much weaker ( for  a comparison of 

the eigenvalues as a funct ion of V 3 and V 6, see F ig .5 .4) .  Within the pocket state 

p ic ture ,  more symmetry means more c losely spaced potent ia l  minima and therefore 
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greater overlap. Al l  presently known examples for  almost free rotat ion w i l l  be given 

below. 

6.1.1 Solid Hydrogen 

Though sol id hydrogen is the prime example of free rotat ion in the so l id ,  we shall 

t rea t  i t  only b r i e f l y  and mainly refer  to the l i t e ra tu re  /2.11,3.12,5.1,2,6.1,2/ .  

Experiments have been performed both with p-H 2 /5 .1,6.1,2/  and with crysta ls high- 

ly  enriched with o-H 2 /3.12,5.2/ .  p-H 2 molecules at low temperatures are in the ro- 

tat ional  ground state and the hexagonal c rys ta l l i ne  f i e l d  is very weak. The 0-I 

t rans i t ion  is observed at EO_ I : 14.6 meV /5.1,6.1/  which compares to a value of 

2B = 14.7 meV for  the free molecule. Only with the anisotropic ortho species ( I  = I ,  

J : I )  and for  o-H 2 concentrations x > 55% is a phase t rans i t ion  from the disordered 

hcp phase to an o r ien ta t iona l l y  ordered cubic phase (4 sublat t ices,  space group Pa3 

/6 .3 ,4 / )  observed. Reduced El_ 0 values of about 14 meV /3.12/ mainly are due to the 

addit ional molecular f i e l d  in the ordered phase. In cubic o-H 2 the J = I state 

sp l i t s  into a ground state described by a wave function YIO(~) (with i t s  axis along 

body diagonals) and two degenerate excited states YI •  which propagate l i ke  spin 

waves ( l ib rons) .  Unfortunately, the l ibron structure factor for  ine las t i c  neutron 

scatter ing is very unfavorable /6 .5 / .  Librons, however, have been observed d i rec t -  

l y  with opt ical  techniques (references in /3 .12,6.5 / ) .  Another very in terest ing 

phenomenon concerns the observation of spectra of o-H 2 pairs in p-H 2 matrices /6 .6 / .  

6.1.2 Methane (CH 4) 

At low temperatures, CH 4 is in a p a r t i a l l y  ordered phase I I  (with respect to the 

molecular or ientat ions) .  The structure has been predicted by JAMES and KEENAN /2.7/  

on the basis of e lec t ros ta t i c  octopole-octopole interact ions (EO0). I t  has been 

ve r i f i ed  by a neutron d i f f r ac t i on  experiment /2.12/ for  CD 4 and afterwards a more 

ind i rec t  confirmation by ine las t i c  neutron scattering experiments has been given 

for  CH 4, too /5 .5 / .  The 8-sublat t ice structure is shown in Fig.6.1. I t  consists 

of 6 ordered s i tes with point symmetry 42m and 2 disordered s i tes with point sym- 

metry 432. The disorder in the l a t t e r  case is due to a cancellat ion of the EO0 in- 

teract ion;  th is  gives r ise to a fourfold axis at the crystal  s i te  -which the te t ra -  

hedral molecules does not have. 

At a l l  s i tes a cubic c rys ta l l i ne  f i e l d  Vc(m E) (~ 150 K) is present (see also 

Sect.6.1.3),  whereas the molecular f i e l d ,  stemming from the EO0 in teract ion,  on- 

ly  acts on the ordered molecules. The exci tat ions of the ordered molecules w i l l  be 
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Fig.6.1. Structure of phase I I  of 
methane (space group Fm3c). There 
are 6 sublattices with orientation- 
a l ly  ordered molecules (site symme- 
try42m) and 2 sublattices with orien- 
tat ional ly disordered molecules (site 
symmetry 432). One of the disordered 
molecules surrounded by a cage of or- 
dered neighbors is shown /2.12/ 
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Fig.6.2. Rotational energy levels of a tetrahedral molecules without and with a 
crystal l ine f ie ld  of octahedral symmetry (potential parameters as for disordered 
molecules in CH 4 I I )  

Fig.6.3. Almost free rotation in solid CH 4 I I  (disordered molecules /5.4/). The 
l ine is a smoothened representation of the experimental data 

described in Sect.6.2.3. Therefore the appearance of almost free rotors in CH 4 I I  

mainly is due to the symmetry at the site of disordered molecules. 

The rotational states of a tetrahedral rotor (Sect.5.1.4) with potential para- 

meters determined for CH 4 are shown in Fig.6.2. Measurements with a resolution 

AE = 0.2 meV have been performed by KAPULLA and GLASER /5.3,4/ and also by PRESS 
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and KOLLMAR /5.5/. In /5.4/ levels at 1.06 meV, 1.8 meV and 2.8 meV (Fig.6.3) are 

found and have been interpreted as 0-I, I-2 and 0-2 transitions, respectively (ro- 

tational constant B = 0.65 meV). As may be seen from Fig.6.2, there is some ambi- 

guity concerning the assignment of a syn~metry label to the observed (perturbed) 

J = 2 states. This is very troublesome in quantitative analyses /5.15/, which have 

to rely on a correct assignment. 

States ~ cannot be reached from the ground state ~ ,  for reasons of nuclear- 

spin conservation (see Sect.5.3). Energy levels determined by an expansion into 

free rotor functions /5.31/ agree rather well with the experimental results. A crys- 

Vc(mE ) (4) E V ns E ) "  ' has been used in these calcu- tal f ield of the form = V4Ul% (m) + 6v11 

lations. 

Whereas information on the level scheme of a rotor is contained in the positions 

of the inelastic peaks, the detailed shape of the wave functions determines the 

dependent intensity of the observed peaks. KAPULLA and GLASER have compared the Q 

dependence of the experimentally observed scattering intensity Io_ I of the 0-I tran- 

sition /5.4/ (powder samples) with results of a calculation based on free rotor func- 

tions /6.7/. Qualitatively the agreement is rather good. There is a slight displace- 

ment of the maximum of the measured intensity towards smaller Q, compared with the 

theoretical curve. This effect probably is spurious, however, because the admix- 

ture of higher order free rotor functions tends to shift the maximum in the oppo- 

site direction. Very recently, transition matrix elements have been calculated by 

OZAKI et al. /5.35/ (see also Sect.5.3), who use perturbed free rotor functions. 

The agreement with the previous results /6.7/ is surprisingly good, which indicates 

that the admixture of higher states has relatively l i t t l e  effect on the Q dependence 

of the 0-1 intensity. The treatment in /5.35/ closely follows the formalism developed 

by HAMA and MIYAGI /3.6/. 

KAPULLA and GLASER /5.4/ performed measurements with samples containing I% oxygen 

impurities (in order to speed up spin conversion) and with pure samples. In the lat- 

ter case thermal equilibrium is reached very slowly (order of several hours) as can 

be judged from the time dependence of I0_i/11_ 0 or-what is equivalent-the time de- 

pendence of an effective temperature introduced via detailed balance (Sect.3.2): 

Slow conversion of the disordered molecules has not been confirmed by NMR /5.32/. 

An attempt has been made to explain spin conversion in CH 4 by a model based on in- 

tramolecular dipole-dipole interaction in conjunction with the intermolecular EO0 

interaction /5.33/. The magnetic dipole-dipole interaction mixes the spin states, 

while the EO0 interaction (modulated by phonons) is responsible for rotational tran- 

sitions. The acoustic phonon density of states at the rotational energy enters. I t  

is proportional to 2 and, accordingly, conversion is fast at disordered sites and 
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slow on ordered ones. Qualitatively this prediction is in agreement with NMR /5.32/ 

and not with the results obtained by inelastic neutron scattering /5.4/. 

At pressures p > 300 bar, CH 4 transforms into i ts  phase I l l  /6.8/, which pre- 

sumably is fu l l y  ordered with respect to the molecular orientations /2.12,6.9/. 

This is supported by a recent neutron scattering experiment at p = 800 bar /6.10/. 

No inelastic peak is observed in the region 0.2 ~ E ~ 2 meV. Therefore almost free 

rotations of CH 4 molecules in phase I l l  can be ruled out. The formerly disordered 

molecules probably display a tunnel spl i t t ing at energies E < 0.2 meV. 

Another interesting feature concerns the temperature dependence of the rotational 

states. Obviously the line spectra must merge into one broad quasielastic component 

(connected with rotational diffusion) above the ordering transition at 20.4 K. This 

already has been observed in /5.4/. More detailed measurements /5.5/ show that the 

energy of the 0-I transition shifts only l i t t l e ,  while the linewidth of the observed 

peaks rises rather steeply with temperature (Fig.6.4). Lacking a better description 

of the scattering function, the positions and widths have been obtained by f i t t i ng  

Lorentzians to the data (see Sect.6o2.3a). 

6.1.3 CH 4 in Rare-Gas Matrices 

I f  i t  is true that the disordered molecules in CH 4 I I  only experience a crystall ine 

f ie ld  and no molecular f ie ld  (just referring to Vst), rotational levels of a very 

similar spacing should be observed for CH 4 molecules as substitutional impurities 

in rare-gas matrices. 

The angle-independent parts of the interaction between two methane molecules and 

between CH 4 and a rare-gas atom (At, Kr, Xe) are not very different. Therefore the 

two partners mix rather well, and local lat t ice relaxations which locally perturb 

the free lat t ice are comparatively small. Low concentrations of CH 4 would be de- 

sirable to avoid a direct interaction between methane molecules, but for intensi- 

ty reasons CH 4 concentrations of ~1% are required. Results with argon, krypton, 

and xenon matrices (al l  fcc) are shown in Fig.6.5 /5.15/. These spectra indeed dis- 

play features very similar to those observed in CH 4 I f .  They have been complemented 

by other measurements with relaxed resolution in order to include rotational states 

of higher energies. The observed energies /5.15/ for the perturbed 0-I transition 

range from EO_I(Ar) = 0.89 meV, EO_I(Kr) = 0.98 meV, EO_I(CH 4) = 1.075 meV (aver- 

age between EO_ I from /5 .4 ,5 / )  to EO_I(Xe) = 1.135 meV. They r ise monotonically 

from argon to xenon, as do the l a t t i ce  constants of the matrices (Fig.6.6) .  This 

seems to prove that the s ta t i c  potent ial  Vst in CH 4 (s i tes of disordered molecules) 

can be iden t i f i ed  with the c rys ta l l i ne  f i e l d  Vc(mE). Free rotat ion (Eo_ I = 1.30 meV) 

is approached more c losely,  the larger the "cage" in which a CH 4 molecule rotates. 
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Fig.6.4. Temperature dependence of the 
low-energy rotational excitations of 
the disordered molecules in CH 4 I I ;  
the neutron scattering data have been 
measured with an energy resolution of 
about 0.2 meV /5.5/ 

Fi9.6.5. Inelastic neutron scattering 
and low-temperature rotational exci- 
tations of CH 4 impurities in solid 
rare-gas matrices /5.15/. The arrows 
mark the energy E = 2B, that is the 
J-O to I transition for a free ro- 
tor. Solid lines refer to computer 
f i ts; the elastic intensity (full 
points) is scaled down by a factor 
ten 
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More elaborate attempts have been made /5.15/ to determine the potential para- 

meters by calculating eigenvalues in a two-dimensional array spanned by the para- 

meters V 4 and V 6 [Vc(mE) truncated at ~ = 6, Free rotor functions with J < 15]. The 

set of parameters V 4 and V 6 best explaining all observations is selected. The re- 

sults are not always unambiguous which means a unique set of parameters V 4 and V 6 

cannot always be determined. This is quite unsatisfactory in view of the further 

aim of determining intermolecular interactions. Other problems may be related to 

the "tunneling between inequivalent sites", in which case orientation-dependent 

distortions of the lattice are suggested /6.11/. Therefore an analysis based on 

static potentials might be inappropriate for site symmetries which are not a sub- 

ground of the molecular symmetry. Earlier optical measurements, which yielded less 

precise information, are analyzed in /5.29/. 

The continuous transition from almost free quantum-mechanical rotation at low 

temperatures to classical rotational diffusion at high temperatures may best be ob- 

served with an argon matrix. Argon does not absorb neutrons and scatters only weak- 
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Fi9.6.7.  Inelastic neutron scattering spectra for 1.6% CH 4 in argon at different 
temperatures /5.15/. The data reflect the continuous transition from almost free 
rotation at low temperature to rotational diffusion above T ~ 30 K. Solid lines 
refer to computer f i ts;  the elastic intensity is scaled down by a factor ten 
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Fig.6.8. Temperature dependence of 
peak position and linewidth s (open 
points) of the perturbed J = 0 to 
I rotational transition of CH 4 mo- 
lecules as substitutional impuri- 
ties in an argon matrix. See also 
Fig.6.7 /5.15/ 

ly. Scans at different temperatures are shown in Fig.6.7. Rotational energies and 

linewidth for the 0-I t ransi t ion-as determined from least-squares f i t s  to the spec- 

t ra -a re  displayed in Fig.6.8. So far there is no quantitative explanation. Quali- 

tat ively the potential fluctuations Vfl increase with temperature when both rota- 

tional states and phonons are increasingly populated. One may add that Vfl is 

stronger in CH 4 for temperatures T > 20.4 K, that is,  in the disordered phase; in 

addition to the phonons, the EO0 interaction contributes to Vfl in phase I of bulk 

methane (CH4I). 

6.1.4 y-Picoline 

So far,  there is just one known example of a CH 3 group rotating almost freely in a 

molecular crystal: y-picoline (4-methyl-pyridine) /6.12,13/. The molecule consists 

of a pyridine ring and a methyl group opposite to the nitrogen atom (N{~CH3). 

Unfortunately the crystal structure is unknown. The neutron inelastic scattering 

experiments /6.13/ have been performed with a resolution at the elastic position 

bE = 0.25 meV (FWHM). A measurement at T = 5 K (Q = 1.5 R-I) with a polycrystalline 

sample (as in most reported experiments) is shown in Fig.6.9. Peaks at 0.52 • 0.01 

meV are interpreted as s l ight ly  perturbed 0-I transitions. Much weaker additional 

peaks at 1.41 • 0.03 meV and 1.92 • meV correspond to I-2 and 0-2 transitions, 

respectively. This compares to free rotor levels at 0.665 meV (J = I) and 2.62 meV 
_free = Bj2. (J = 2), with ~j 

The observations can be understood with a potential V(@) = ~V6cos6@ with a bar- 

r ie r  height V 6 m 15• meV (~ 180 K) /5.9,6.13/. A weak admixture of a cos3@ term 

cannot be ruled out, but probably is absent due to symmetry. This would be the case 

i f  the threefold axis of the CH 3 groups coincided with a twofold axis of the crystal. 

The periodic potential clearly is due to intermolecular interactions in the crystal, 

as the intramolecular barrier to CH 3 rotation is only 0.6 meV. 
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Fi9.6.9. Neutron scattering spectrum of 
the rotat ional  t ransi t ions of the methyl 
group in y-p ico l ine at T = 5 K /6.13/.  
The t ransi t ions are label led by the cor- 
responding free rotor t rans i t ions.  In 
the inser t  the in tens i ty  scale is blown 
up in order to render the t ransi t ions to 
the level with J = 2 v i s ib le  

6.2 Rotational Tunneling 

One talks about rotat ional  tunneling, i f  the rotat ional  constant B is much smaller 

than the s ta t i c  potential  (B << Vst) or, equivalent ly ,  i f  the scaled potential  

V~t(m) << I .  In th is  case small ground-state spl~tt ings ~mO << B resu l t  and the 

rotat ional  wave functions more closely resemble osc i l l a to r  functions than free ro- 

ta tor  functions (Fig.5.2).  For Vst >> B th is  may even be true in the presence of 

high symmetry and tunneling between nonequivalent s i tes.  

Evidence of rotat ional  tunneling in stoichiometr ic crysta ls was f i r s t  deduced 

from low-temperature speci f ic-heat anomalies (e.g. ,  /6.14,15/) and residual entro- 

pies /5.25/ .  Usually only the high-temperature t a i l  of a Schottky anomaly is ob- 

served. More recently NMR measurements also have provided access to rotat ional  tun- 

neling by I )  temperature-dependent measurements of the sp in - la t t i ce  relaxat ion time 

T I /6.16/ (the method is very s imi la r  to an ine las t i c  "fixed-window technique" 

/4.32/ and 2) level crossing techniques /6.17-20/. One modif ication of the l a t t e r  

method has been demonstrated with sol id methane (CH4); the levels of paramagnetic 

impuri t ies (created by i r rad ia t i on )  have been tuned to resonance with the tunneling 

levels /6.17/ .  This measurement, which suffers somewhat from the perturbation caused 

by the impur i t ies,  has d i rec t l y  stimulated the f i r s t  neutron measurement of rota- 

t ional  tunneling /5 .5 / .  

In neutron measurements we are interested in systems with Vst only moderately 

larger than B. Otherwise the sp l i t t i ngs  of the l i b ra t i ona l  ground-state are too 

small to be resolved (e.g. ,  in NH41 /6 .20/ ) .  Measurements can successful ly be per- 
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formed for  potent ia ls V~t ~ 100 B - t h a t  means V ~ 750 K for  XH 3 and XH 4 groups 

(X = C,N). While the upper l im i t  is given by the energy resolut ion of neutron scat- 

ter ing experiments (backscattering technique: AE ~ 0.3 peV) i t  is more or less a 

matter of taste where to place the l im i t  between tunneling and almost free rotat ion.  

For or ientat ional  order (s i te  symmetry ~ molecular symmetry) V~t ~ 30 B is a pos- 

s ib le choice. Sp l i t t ings observed with neutrons range from rather large values 

~m 0 ~ B/tO for  CH 4 /5 .5/  to ~m 0 ~ B/500 for  DMA /4.32,6,21/ and (NH4)2SnCI 6 /4.27/ .  

For sp l i t t i ngs  ~mO < AE the NMR techniques which recently have been developed are 

most appropriate and can complement neutron resul ts .  In the fo l lowing,  representa- 

t ive examples fo r  the observation of rotat ional  tunneling w i l l  be given for  one- 

and three-dimensional rotors.  Pract ica l ly  a l l  measurements have been performed e i ther  

at the reactor FRJ2 in JUlich and at the h igh- f lux  reactor of the ILL in Grenoble. 

6.2.1 CH 3 Groups 

a) Dimethylacetylene 

Representative for  the large class of systems with rotat ing CH 3 groups (which in- 

cludes side groups in polymers) we shall f i r s t  discuss dimethylacetylene (DMA). 

DMA (CH3-C~C-CH3), methyl-subst i tuted acetylene, is a re la t i ve l y  simple molecule. 

Two sol id phases, both with a tetragonal c e l l ,  are known /6.22/ .  In the low-tempe- 

rature phase the pr imi t ive cel l  contains two DMA molecules and the s i te  symmetry 

(C I z I )  is ident ical  for  a l l  CH 3 groups. High-resolut ion measurements (Q = 1.9 R-I) 

at several temperatures are shown in Fig.6.10 /4.32/ .  They have been performed with 

po lycrys ta l l ine  samples. 

At T = 4.5 K two ine las t ic  peaks at • peV are found, located symmetrically 

around the e las t i c  l i ne ,  and represent t rans i t ions from ACE states (energy ~mO ), 

The tunnel s p l i t t i n g  and an act ivat ion energy of 36 meV can be explained simulta- 

neously with a potentialo V(@) = �89 with V 3 = 45 • 3 meV. Higher order terms 

in the potent ia l  (~V6cos6@, etc . )  seem to be negl ig ib le .  

The above potent ial  allows the predict ion of an energy E I : 15 meV /6.17/ for  

the f i r s t  l i b ra t iona l  state. Obviously, a measurement of E I would provide a test  

of the potent ia l ,  predicted on the basis of the ground-state s p l i t t i n g .  

Another in terest ing feature concerns the temperature dependence of the tunneling 

in DMA. I t  displays standard behavior in the sense that the l ines sh i f t  towards 

smaller energies (above T~ 20 K) and simultaneously broaden. A sat is factory  f i t  

/6.17/  of the temperature dependence of both the ground-state s p l i t t i n g  ~mO and 

the l inewidth F is provided by the stochastic averaging model of ALLEN /6.23/ ,  which 

w i l l  be discussed in Sect.7.1.1. DMA is one of the few systems with one-dimensional 
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Fig.6.10. Inelastic neutron scattering 
spectrum from dimethylacetylene /4.32/ 
~t several temperatures 

r o ta t i ons  in which the s t ruc ture  is known and simple. Therefore DMA could wel l  serve 

as a model system fo r  f u r t he r  research. 

b) MDBP 

The most carefully studied system (but probably not the simplest one- its structure 

is not yet known) with CH 3 group tunneling is MDBP (4-methyl-2,6-ditertiarybutyl- 

phenol). A series of experiments employing NMR and inelastic neutron scattering has 

been performed. This has yielded detailed information both for samples with proto- 

nated molecules and for the partially deuterated compound MDBP (D21) (deuteration 

except of CH 3 group). The observed tunnel splittings are rather large: 38 ~eV for 

MDBP /6.24/ and 35 peV for MDBP (D21) /6.25,26/. Such relatively large splitt ing 

can s t i l l  be determined by the backscattering technique. Different crystals have 

been used for the monochromator and the analyzer. On the other hand, the tunnel 

splitt ing of the f i rs t  excited librational state (Fig.5.10) is sufficiently large 

to be observable with standard triple-axis methods. For MDBP (D21) a splitt ing of 

0.9 meV has been observed /6.27/, together with a mean librational energy El = 10.2 

meV (Fig.6.11). In Sect.6.2.1c another successful measurement of an excited-state 

splitt ing will be reported. A number of facts support the assignment by CLOUGH et 

al. /6.27/: I) the level scheme can consistently be explained with a potential 

V(@) = -9.0 cos3@+1.8 cos6@ [meV], 2) the integrated intensities for the transi- 

tions to the'two members of the doublet are the same, 3) partial deuteration has 

l i t t l e  effect on El and 4) the two peaks broaden with temperature in a way very 

similar to the broadening of the ground-state splitt ing. What is even more remark- 

able is the difference in width of the two peaks. While at low temperatures the 

width of the A state (that at higher energy) is resolution controlled, the E state 
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Fi9.6.11. Inelastic neutron scattering 
spectrum of partially deuterated MDBP 
/6.27/. Two peaks at 9.75 meV and 
10.65 meV are identified as f i rs t  ex- 
cited librational states with E and A 
symmetry, respectively. Apart from the 
excited-state tunnel splitting of 0.9 
meV a broadening of the E level may be 
noted 

is much broader and obviously has a shorter lifetime. This is explicable i f  only 

those potential fluctuations which modulate the amplitude and do not change the 

symmetry of the potential V(r are present. The ground-state wave functions as 

well as the perturbation~RL(RL stands for rotation-lattice) then have A I symme- 

try. As the f i rs t  excited librational state has A 2 symmetry, transition matrix ele- 

ments vanish, In order to allow transitions, the phase of the potential needs to be 

modulated by lattice modes which gives rise to~L~  sin3n@. The unexpected broaden- 

ing has important consequences concerning models for the temperature dependence 

(see Sect.7.1). 

The temperature dependence of the tunnel splitting has also been measured for 

MDBP /6.25-28/. Two different activation energies E~ = 5.6 • 0.8 meV and E~ = 11 • I 
I A L 

meV /6.28,29/ are required for a f i t  of the results. E 2 seems to dominate above 

T ~ 15 K; its value is very close to the energy of the librational levels. This is 

suggestive for the role of the librational states in the microscopic mechanism re- 
A sponsible for the broadening. A second process governed by^E I takes over at tempe- 

ratures T ~ 15 K /6.28/. Here an excitation at 5.5 meV = E~ has been found in MDBP 

(D21) and has been identified with an optical lattice mode. Its contribution in a 

second-order Raman process /6.28/ has been invoked. In addition to the broadening 

of the tunnel peaks, a quasielastic component has been found. Its width is always 

less than that of the tunnel peaks /6.25,26/. Both a direct inelastic measurement 

and the fixed-window technique have been applied to determine its temperature de- 

pendence. 

On one hand, the observed features are of extreme importance in the explanation 

of the microscopic events responsible for the continuous transition from quantum- 

mechanical tunneling to classical reorientational motion. On the other hand, some 

"residual uncertainty" concerning the assignment of peaks in MDBP remains. There- 

fore experiments with other substances along similar lines as that with MDPB are 

highly desirable. I t  is clear that future efforts will aim in this direction. For 

further discussion of the temperature dependence of rotational tunneling based on 

MDBP results, see Sect.7.1.2. 
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c) Other Examples 

There are many more examples with rotat ing CH 3 groups which a l l  suf fer  from the 

fact  that  the crystal structures are not known or not su f f i c i en t l y  known. As one- 

dimensional rotat ion has the advantage of s impl ic i ty  (e.g. ,  rotat ional  levels can 

be calculated exact ly for  certain po ten t i a l s /5 .8 / ) ,  systematic crystal lographic 

studies of these systems would be desirable. Below we shall give a short summary 

of several systems which may help to contr ibute to a bet ter  understanding of CH 3 

rotat ion.  

Pb(CH3) 4 has already been mentioned in connection with the fixed-window method 

(Sect.4.5.1).  Direct measurements at 3 K y ie ld  a tunnel s p l i t t i n g  of 35 peV /4.32/ .  

Barely above 3 K the l ines broaden s ign i f i can t l y .  Addit ional data could provide an 

in terest ing test  of recent models pertaining to the temperature dependence of tun- 

neling states (Sect.7.1).  

A rather systematic e f f o r t  has been made to invest igate methyl-substi tuted pyr i -  

dines ( lu t id ines and p ico l ines;  see also Sect.6.1.4) /6.30-32/ as well as toluene 

/6 .33/ ,  both with NMR T I and neutron measurements. Rotational potent ia ls have been 

determined [neglecting contr ibut ions V3n with n ~ 3 and the phases @3n in V(@) = 
I 

Z V3nCOS(3n@+@3n )] from neutron measurements of the tunnel s p l i t t i n g  (A-E t rans i -  

t ion) and of the l ib ra t iona l  exc i ta t ions.  The comparison with resul ts based on NMR 

data for  the same compound is not always sat is factory.  The temperature dependence 

of the relaxat ion time T I is analyzed in terms of a classical  model for  the high- 

temperature relaxat ion and a semiquantum mechanical model /6.34/ for  the low-tem- 

perature re laxat ion.  The method seems to y ie ld  f a i r l y  re l iab le  potent ia ls i f  the 

measurements are extended far  into the regimes of low-temperature and high-tempera- 

ture relaxat ion /6.31/ .  As th is  is not always possible, rotat ional  potent ials based 

on NMR T I data alone appear to be rather uncertain. 

2,6-Dimethylpyridine has a large tunnel s p l i t t i n g  with ~mO = 190 peV and there- 

fore represents another successful measurement of a s p l i t t i n g  of the f i r s t  l i b ra -  

t ional state. Two peaks at EIE = 3.6 meV and EIA = 4.3 meV have been observed /6.31/ .  

Another very in terest ing system is provided by SnF2(CH3) 2 /6.35,36/.  Only the 

structure of the (body-centred) tetragonal high-temperature phase is known. In th is  

phase the CH 3 groups are arranged in planes and the i r  rotat ion axes form a square 

l a t t i c e ;  the square l a t t i ce  probably becomes (weakly) d is tor ted below the phase 

t rans i t ion  at T O = 70 K. From other experimental evidence, tunneling states were 

predicted at about 15 peV /6.35/  and actual ly  were found at 13.7 peV /6.36/ .  

SnF2(CH3) 2 appears to be an excel lent  candidate for  fu r ther  measurements, in par- 

t i cu la r  of Q-dependent in tens i t ies  (with single crysta ls)  aimed to learn about ro- 

tat ional  wave funct ions. 
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6.2.2 NH~ ( in Hexamine Nickel Halides) 

Usually tunneling spectroscopy by neutron scatter ing is complemented by NMR measure- 

ments (or vice versa). For systems Ni(NH3) 6 X 2 with X = I ,  Br or C1 th is  is d i f f e r -  

ent. Evidence for  low-energy rotat ional  phenomena was f i r s t  obtained in spec i f ic -  

heat measurements, down to temperatures of about 0.1 K, by van KEMPEN et al .  /6 .14/ .  

In a l l  three compounds these authors observed Schottky anomalies which they a t t r i -  

buted to a two-level system with a small energy separation A(X). Values A(1) = 62 

peV, A(Br) = 10.5 peV and ~(CI) = 3-4 peV have been extracted from the data. Because 

the sp l i t t i ngs  were small, only high-temperature ta i l s  of the anomalies C ~ ( I /4 )k  

(A/T) 2 could be observed for  the bromide and the chlor ide. Therefore the values 

A(Br) and par t i cu la r l y  A(CI) appeared to be rather uncertain. A quant i ta t ive ex- 

planation in terms of a tunnel s p l i t t i n g  ~mO of the NH 3 group has been given by 

BATES and STEVENS /6.37/  on the basis of an e lec t ros ta t i c  model. Qua l i ta t i ve ly ,  

the rotat ional  potent ial  decreases when the l a t t i ce  parameter and the intermolecu- 

lar  distances increase with the ionic radius of the respective halide ion (from 

CI- to I - ) .  A s imi lar  trend may be noted for  the phase-transit ion temperatures 

TO(I) : 20 K, To(Br) = 45 K and To(C1) = 76 K. 

The structure of the high-temperature phase has already been discussed in Sect. 

4.3.1 in connection with the one-dimensional continuous rotat ional  d i f fus ion in 

Ni(NH3)612. I t  is shown in Fig.4.1. The alignment of the dipole moment of the NH 3 

molecules in the crystal  is responsible for  uniaxial rotat ions around the three- 

fo ld axis of the molecule. Al l  three sal ts display or ientat ional  order-disorder 

t rans i t ions to an ordered low-temperature phase (which is not the same for  the 

three sal ts)  in which rotat ional  tunneling is observed. The deta i ls  of the low- 

temperature structure have not yet been completely established for  any of the three 

compounds /2.25,6.37/ .  Probably there are two inequivalent s i tes with NH 3 molecules 

in the uni t  ce l l .  This introduces some ambiguity into the in terpre ta t ion of low- 

temperature measurements. 

Obviously there is an in teres t  in test ing the speci f ic-heat  resul ts with d i rec t  

neutron measurements. For Ni(NH3)612 an energy resolut ion of only intermediate qua- 

l i t y  is required and therefore a three-axis spectrometer with a resolut ion AE ~ 50 

NeV has been used. A tunnel sp l i t t i ng~mo(1)  = 63• peV has been found, in excel- 

lent  agreement with the corresponding speci f ic-heat  value. In addit ion a rather 

broad peak at 9.0 meV has been observed and assigned to a t rans i t ion  to the f i r s t  

excited l ib ra t iona l  peak /2.25/ .  Maybe the observed "broadening" of th is  peak is 

due to an unresolved s p l i t t i n g  of the energy E I into EIA and EIE (Fig.5.10);  th is 

question deserves fu r ther  experimental e f fo r t s .  
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For the remaining two compounds the measurements have been performed with a back- 

scattering spectrometer and a resolution of 0.36 peV. A ground-state spl i t t ing 

T~mo(Br) = 8.0 • 0.3 peV is found / 6 . 3 8 / - s t i l l  in reasonable agreement with the 

specific-heat value of 10.5 peV. The tunnel spl i t t ing of the NH 3 groups in Ni(NH3)6CI 2 

cannot be resolved. Thus i t  is much smaller than the corresponding value A(CI), ob- 

tained from specific-heat measurements. A broadening of the elastic l ine is observed, 

however, and i t  may serve for an estimate of a spl i t t ing ~mo(Cl) ~ 0.1 peV. For a 

discussion of the rotational potential for the three salts, one is referred to /6.38/. 

6.2.3 Methane 

a) CH 4 I I  

As has already been mentioned, the f i r s t  neutron measurement of rotational tunnel- 

ing has been performed in phase I I  of CH 4 /5.5/. The structure of this phase is 

shown in Fig.6.1. In Sect.6.1.2 we have discussed neutron spectra displaying the 

excitations of the disordered molecules (2 molecules out of 8 in the unit ce l l ) .  

These molecules only experience the crystal f ie ld  Vc(z). We now turn to the ordered 

molecules (6 molecules out of 8) where the potential consists of two contributions: 

1) the crystal f ie ld  with octahedral symmetry and 2) a molecular f ie ld  VM(T) with 

tetrahedral symmetry due to the octopole-octopole interaction. Measurements per- 

formed with a three-axis spectrometer and an energy resolution AE ~ 40 peV are 

shown in Fig.6.12 /5.5/. Two inelastic peaks are observed, both on the energy-gain 

and the energy-loss side of the spectrum. The observed spl i t t ings ~01 = 143 • peV 

and ~m02 = 73 • peV correspond to A-E and T-E transitions, respectively-with 

~m01 = ET-EA and ~m02 = EE-ET" The absence of an A-E transition was or iginal ly ex- 

plained by nuclear spin conservation /5.5/. Such a transition requires a change of 

the total nuclear spin of a methane molecule from I = 2 (A state) to I = 0 (E state), 

as can be seen in Fig.5.11. Changes AI = • 2 cannot be caused by a scattered neutron 
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and therefore the transition is forbidden. The same argument holds for NH~ ions. A 

more general argument for this selection rule has been based on the symmetry of the 

neutron scattering operator (Sect.5.3). 

A ratio mOt/m02 ~ 2 of the observed energies is found, which indicates that the 

180 ~ overlap is indeed very small compared to the 120 ~ overlap (5.3) (Table 5.4). 

This is also the reason why no T state spl i t t ing is observed, in spite of the site 

symmetry 42m. In principle such a spl i t t ing originates from the inequivalence of 

the 180 ~ matrix elements H x and H z. I t  has been estimated to be of the order of 

0.1NeV /5.9/. Detailed analyses of the level scheme as a function of the rotation- 

al potential may be found in /5.9,31/. HOLLER and KROLL /5.9/,  for example, studied 

the influence of the crystal f ie ld  by taking a potential V(T) = VM(T) + Vc(~) with 

VM(~) = A_H (3 = m ~(4) j 11)(T) and Vc(T) -4"11 (~). The t i l de  denotes that V(T) is expressed 

in a rotated frame in which the equi l ibr ium or ientat ion of the CH 4 molecule is a 

standard or ientat ion (Fig.5.6) .  In th is  frame, VM(~) has the simple form given 

above, while V (T) cannot be expressed in terms of j us t  one cubic ro ta tor  func- (~)r~ c 

t ion N11 , ) of order ~. 

The in tens i t ies  of the observed peaks have recent ly been compared to theoret ical  

resu l ts ,  based on the calculat ion of t rans i t ion  matrix elements /5.35/ .  Also, a 

strong sh i f t  of the tunneling states has been observed, when changing to deuterated 

methane (CD 4) /5 .39/ .  This isotope e f fec t  w i l l  be discussed in Sect.7.3. 

Press and Kollmar also invest igated the temperature dependence of the rotat ional  

tunneling in CH 4. Results, obtained with a s l i gh t ] y  relaxed energy resolut ion are 

summarized in Fig.6.13. The width displays the usual increase with temperature. The 

tunneling frequencies, however, show an unusual behav ior - they increase with tempe- 

rature. This is due to the or ientat ional  order-disorder t rans i t ion  at T O : 20.4 K. 

The or ientat ional  order parameter and hence also the molecular f i e l d  (magnitude A 3) 

decreases on approaching the phase t rans i t ion .  The or ientat ional  order parameter is 

d i rec t l y  related to the in tens i ty  of super lat t ice peaks which have been observed as 

a funct ion of temperature in CD 4 /2.24,6.39/ .  I f  one forgets the f luc tuat ing part 

Vfl of the potent ia l  for  the moment, the decrease of the potent ial  leads to an in- 

creased overlap of the wave functions and, therefore,  to a larger tunnel sp l i t t i ng .  

A calculat ion y ie lds qua l i ta t i ve  agreement with the experiment /2.22/ .  The inclusion 

of the f luc tuat ing part of the potent ial  Vfl would lead to a smaller increase of the 

s p l i t t i n g .  Above T O quasie last ic  scat ter ing caused by (almost) continuous rotat ional  

d i f fus ion of a l l  molecules in CH 4 1 is observed /5 .4 ,5 / .  

Another in terest ing phenomenon concerns the tunnel s p l i t t i n g  at low temperatures. 

An increase of EAT and ETE with decreasing temperature has been predicted /2.22/ .  

This is due to the fact  that the magnitude of the octopole-octopole in teract ion de- 
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pends on the spin species. At low temperatures A states become increasingly popu- 

lated. Their rotat ional  wave function is symmetric and therefore is posi t ive every- 

where. The T and E state wave functions possess zeros. In order to compensate th is  

e f fect  the maxima of the T and E state wave functions are more strongly peaked. The 

angle dependence of the A state is smoother, i t  has a "more spherical" density dis- 

t r ibu t ion  and hence a smaller e f fec t ive  octopole moment than the other spin species. 

Recently a neutron scatter ing experiment was performed in the temperature range 

1.4 K ~ T ~ 5 K /6.40/ in order to test  the theoret ical  predict ions. An energy re- 

solut ion of about 10 peV was employed. While the absolute values for  the ground- 

state sp l i t t i ngs  are not well reproduced by the theory /2.22/ ( th is  was already 

clear from the ea r l i e r  measurements/5.5/), the temperature dependence predicted 

by the theory f i t s  rather wel l .  

b) CH 4 Adsorbed on Grafoi l  

Recently the tunneling states of CH 4 on graphite surfaces have been observed /6.41, 

42/. Methane molecules adsorbed on grafo i l  form a t r iangular  two-dimensional l a t t i ce .  

For CH 4 coverages of 0.9 monolayers or less, a commensurate ~ * ~  structure is ob- 

served. ~ * ~  means that the l a t t i ce  constant of the two-dimensional methane l a t t i ce  

is ~ times the l a t t i c e  constant of graphite. The distance of the molecular c.o.m. 
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from the surface is 3.3 R. For higher coverages a change to a more compressed phase, 

which is not in reg is t ry  with the substrate, takes place /6.41/ .  

The Oxford group /6.42/  observes f ive  l ines at 17 peV (TI, 2§ 39 peV (T 3§  

56 peV (TI,  2§  94 ~eV (A§  2) and 112 ~eV (A§ 3) (Fig.6.14).  The respective 

assignment is given in brackets. Spectra have been recorded with two d i f fe ren t  re- 

solut ions: I) t ime -o f - f l i gh t  spectrometer, AE = 20 peV and 2) backscattering, AE = 

I peV. The energies l i s ted  above are accurate to within 2 peV. The resul ts have 

been complemented by measurements of excited l ib ra t iona l  states. 

The magnitude of the observed tunnel sp l i t t i ngs  is very s imi lar to that found 

in bulk methane /5 .5 / .  Taking the average T state energy ET = ( I /3 ) (2  ETI 2 + ET3) 

as a reference energy, the values EAE and EET are about 25% smaller than {n CH 4 I I .  

The observed 5 l ines can consistent ly  be explained by the presence of a potent ial  

with t r igonal  symmetry (Table 5.4). There is a s i te  with tr igonal symmetry in the 

basal plane of graphite, namely, the posit ion of the carbon atoms. I t  is possible 

that the CH 4 molecules s i t  above such si tes in the registered phase and thus retain 

a threefold axis. 

Two kinds of in teract ing contr ibute to the rotat ional  potent ia l :  I) an interac- 

t ion CH 4 substrate and 2) a d i rec t  in teract ion between CH 4 molecules. The authors 

conclude that the second contr ibut ion is more important. Calculations of the ground- 

state sp l i t t i ngs  have been based on phenomenological pair  potent ia ls /6.42/ .  
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Fig.6.14. Tunneling spectrum of CH4 adsorbed on Vul- 
can I I  /6.42/  for  a momentum transfer Q,, and Q~ 
(with respect to the hexagonal a-b plane). The d i f -  
ference of the in tens i t ies  can be explained by a 
calculat ion of neutron scatter ing t rans i t ion  ma- 
t r i x  elements /3 .4/  with h I = -14 and h 4 = -9.1. 
Smoothened experimental data are represented by 
a l ine  
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A very in terest ing feature concerns the in tens i t ies  observed with a substrate 

of exfo l ia ted graphite. In such a sample the hexagonal c axis is largely ordered, 

whereas there is no order re fer r ing to the a and b axis. The neutron spectra d i f -  

fe r  s i gn i f i can t l y  for  g para l le l  (Q,,) and perpendicular (Q~) to the basal plane. 

Inspection of t rans i t ion  matrix elements for  neutron scatter ing /3 .3 ,4 /  shows that 

a s ign i f i can t  contr ibut ion to the in tens i t ies  I(Q~) or iginates only from the A-T 3 

and TI,2-E t rans i t ions ,  when assuming tr igonal s i te  symmetry for  the methane mole- 

cules. This in accord with experimental observations and provides an example for in- 

tens i ty  information supporting the assignment of rotat ional  levels (Fig.6.14). 

6.2.4 Ammonium Salts 

a) (NH4)2SnCl 6 

The face-centred cubic structure of (NH4)2SnCI 2 is shown in Fig.4.7. Rotational ex- 

c i ta t ions in (NH4)2SnCI 6 already have been discussed in Sect.4.5.1 in connection 

with the c lassical  high-temperature reor ientat ional  motion of the NH~ groups. We 

now turn to the tunneling states of th is  compound as observed with a backscatter- 

ing spectrometer and a resolut ion of 0.38 NeV. F i r s t  the resul ts at low tempera- 

tures (T = 6 K; Fig.6.15) shall be discussed. As for  the ordered molecules in CH 411, 

two pairs of ine las t ic  peaks are observed: ~AT = 2.96 • 0.04 NeV and ~TE = 

1.51• NeV /4.27/ .  The selection rule responsible for  the absence of an A-E 

t rans i t ion  has been discussed before (Sects.5.3, 6.2.3). The ra t io  mAT/~TE again 

is 2 within error bars, thus indicat ing the dominance of the 120 ~ overlap. Excita- 

t ions at 13.4 meV and 30 meV help to complete the picture /4.27/ .  They are in ter -  
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Fig.6.15. Ine last ic  neutron scatter ing spectrum of (NH4)2SnCl 6 measured with a back- 
scatter ing spectrometer /4.27/.  The inser t  shows the level scheme of the l i b ra t iona l  
ground-state of the NH~ group 
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preted in terms of t rans i t ions to the f i r s t  and second excited l i b ra t iona l  states 

and signal the presence of a boxlike potent ia l .  Attempts have been made to explain 

a l l  observed features with a rotat ional  potential  of tetrahedral symmetry (2.21) 

/4.27,5.28/,  so far  with l imi ted success. 

Additional tunnel sp l i t t i ngs  have recently been observed by PUNKKINEN et a l .  

/6.43/ with NMR methods at 0.054 , 0.10 and 0.153 peV. These f indings are in te r -  

preted in terms of t rans i t ions wi th in the T state mu l t ip le t .  According to Punk- 

kinen et a l . ,  the T state degeneracy is completely removed because the s i te  sym- 

is lower than tetrahedral (from Table 5.4: s i te  symmetry m or I ,  i f  a l l  NH~ metry 
I 

si tes are equivalent) .  This indicates a weak structural  d is to r t ion  (phase t rans i -  

t ion?) which so far  has escaped crystal lographic studies. Additional experiments 

are required to c l a r i f y  the s i tuat ion.  

HOLLER has calculated the in tens i t ies  of the observed ine las t i c  l ines by per- 

forming powder averages (3.19) of the double d i f f e ren t i a l  neutron scatter ing cross 

sections /3 .3 / .  The e las t i c  l ines have not been included in the comparison because 

of addit ional uncertaint ies concerning scatter ing from the sample container, inco- 

herent scatter ing from other atoms in the sample, etc. A comparison between experi- 

mentally observed in tens i t ies  for both (NH4)2SnCI 6 /4.27/ and NH4ClO 4 /6.44,45/ and 

theoret ical  resul ts is shown in Fig.6.16 and Table 6.1. For (NH4)2SnCI 6 the calcu- 

lat ions are based on tetrahedral s i te  symmetry. Excellent agreement is found. 
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Fi9.6.16. Level scheme of a regular tetrahedron in a potential  which has no symme- 
t ry .  This is compared to schematically drawn neutron scatter ing spectra for  NH4CIO 4 
/6.44,45/ and (NH4)2SnCl 6 /4 .27/ ,  which represent examples with low and high s i te  
symmetry /3 .3 /  
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Table 6.1. Energies and in tens i t ies  (a rb i t ra ry  units) of the tunneling t rans i -  
t ions in NH4CIO 4 /6,45/ and (NH4)2SnCI 6 /4.27/.  The experimentally determined 
in tens i t ies  are compared to theoret ical  values /3.3/  which are given in units 
of (1/24)Na~nc.Jo(Qop) 

Line 

~m (NeV) 

in tens i ty  (exp.) 

in tens i ty  (calc.)  

NH4CIO 4 (NH4)2SnCI 6 

1,2 3 4,5 7,8 9 

7.17 11.28 4.11 5.65 1.51 

I04 49 22 84 5O 

10 5 2 8 4 

1,2,3 7,8,9 

2.96 1.51 
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Fi9.6.17. Ine las t ic  neutron scatter- 
ing spectra of (NH4)2SnCI 6 at various 
temperatures. The inser t  shows the 
temperature dependence of the outer 
l ine  (~mAT) as obtained from f i t s  
to the data /4.27/ 

The temperature dependence of the tunneling l ines in (NH4)2SnCI6 is shown in 

Fig.6.17. As usual the l ines sh i f t  towards lower energies. They do not reveal sig- 

n i f i can t  broadening, however. Therefore tunnel sp l i t t i ngs  remain v i s ib le  up to a tem- 

perature T ~ 60 K, and i t  appears that the classical  high temperature regime is on- 

ly  reached above temperatures T ~ 70 K. As the ra t io  mAT/mTE ~ 2 seems to persist  

as we l l ,  the data have been f i t t e d  with the constraint mAT(T) = 2 mTE(T) (Fig.6.17). 
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I t  is  possible that the absence of broadening is related to the short l i f e t ime  of 

the f i r s t  excited l i b ra t iona l  state (random averaging model, see Sect.7.1.1),  which 

even decreases with temperature [r(T = 6 K) ~ I meV]. 

b) NH4CIO 4 

Ammonium perchlorate (NH4ClO 4) has an orthorhombic structure with four molecules 

per uni t  cel l  /6.46/ .  Al l  molecules are s t ruc tu ra l l y  equivalent, that i s ,  they ex- 

perience the same s ta t i c  rotat ional  potent ia l .  The only symmetry element at a NH~ 

s i te  in NH4CIO 4 is a mirror plane /6.46/.  No phase t rans i t ion  has been reported for  

T < 300 K. From ea r l i e r  NMR T I measurements a tunnel s p l i t t i n g  of about 2 peV has 

been concluded /6.47/ and a constraint to uniaxial rotat ion has been discussed as 

a possible consequence of hydrogen bonding /6.43/.  

Neutron spectra recorded at low temperatures /6.44,45/ rule out the l a t t e r  pos- 

s i b i l i t y  and show that conventional T I measurements can provide a resu l t  in the cor- 

rect frequency range, but cannot reveal the detai led level scheme. The tunneling 

spectrum (Fig.6.18) looks rather complex at f i r s t  glance. Five t ransi t ions are ob- 

served for  energy transfers IEI % 12 peV; the energies are l i s ted  in Table 6.1. An 

extension of the measurements beyond 12 peV did not y ie ld  addit ional l ines.  There 

were some i n i t i a l  d i f f i c u l t i e s  in constructing a level scheme from the observed 

t rans i t ions.  F ina l ly  an explanation was based on the known s i te  symmetry, but needed 

the inclusion of an accidental degeneracy of two of the three T levels.  As may be 

seen from Table 5.4 or Fig.5.7, th is  is equivalent to assuming an e f fec t ive  s i te  

symmetry, 3 or 3m. These symmetries give r ise to re lat ions between the overlap ma- 

t r i x  elements which necessitate the observed degeneracy. 

�9 .~ 30O 
::) 
o 

I I I I I 

NH~O04 
T=5K 

(A~2T) ( 2 T ~ E )  ( E ~ 2 T ) ( A + 2 T )  

-10 -5 0 5 10 
energy transfer (per) 

Fi9.6.18. Ine las t ic  neutron scatter ing spectrum of NH4CIO 4 (T = 5 K) measured with 
a backscattering spectrometer /6.45/ .  Note that the time indicated refers to the 
whole spectrum 
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HOLLER /3 .3 /  has f i t t e d  the observed tunnel ing energies (neglect ing the 180 ~ 

overlap) and f inds h I = -0.038 peV and h 2 : h  3=h 4= -1.410 peV. This corresponds 

to three easy axes and one hard axis of ro ta t ion.  Thus the ro ta t ional  potent ia l  is 

c lea r l y  three-dimensional. Unfortunately,  attempts to calculate V(T) on the basis 

of e lec t ros ta t i c  in teract ions remained unsuccessful. The fact  that  the threefold 

ro ta t ion  axis connected wi th the matr ix element h I is a "hard axis" (therefore 

l i t t l e  overlap) also is ref lected in the l i b ra t i ona l  amplitudes which have been 

found in the structure analysis /3 .3 ,6 .45/ .  In a NMR level crossing experiment 

/6 .48/  a s p l i t t i n g  of ~0.18 NeV has been observed. This probably represents the 

T state s p l i t t i n g  which o r i g i n a l l y  could not be resolved by neutron scat ter ing 

/6.44,45/ and lead to the assumption of an accidental degeneracy /3 .3 / .  A compari- 

son between measured and calculated neutron i n tens i t i es  is shown in Table 6 . I .  

Both, ca lcu la t ion  /3 .3 /  and experiment /6.44,45/ refer  to powder samples and, as 

in the case of (NH4)2SnCI 6, very good agreement is found. 

Recently, the neutron spectra have been reanalyzed /6.49/  using the 120 ~ over- 

lap matr ix elements h i d i r e c t l y  as f i t  parameters. This has become possible since 

energies and i n tens i t i es  of the t rans i t i ons  can be calculated d i r ec t l y  ( /3 .4 /  and 

appendix) s ta r t ing  from a general set of h i . As a resu l t  matr ix elements h I = 

-0.035• NeV, h 2 = h 3 = -1.317• peV and h 4 = -1.410• NeV are found, 

which y ie lds  a s p l i t t i n g  ETI-ET2 = 0.24 • 0.02 NeV. The agreement wi th the NMR re- 

su l t  is su rp r i s ing ly  good. We may conclude that  the inc lus ion of i n tens i t i es  into 

the f i t  is superior to the conventional analysis and y ie lds  more detai led informa- 

t i on ,  as long as the width of the wave funct ions can be neglected. 

The temperature dependence of the t rans i t ions  w i th in  the ground-state mu l t i p le t  

of NH4CIO 4 has been measured and analyzed as well /6 .45/ .  However, due to the com- 

p lex i t y  of the spectra, NH4CIO 4 does not provide a model example sui table for  com- 

parison with current theor ies.  I t  may be noted that the observed broadening of the 

l ines seems to show an ac t i va t ion  behavior wi th an ac t i va t ion  energy E A = 22 meV. 

The meaning of th is  value is not qui te c lear ;  the f i r s t  l i b ra t i ona l  state is found 

at a much lower energy /6.45/  and does not seem to be related to E A. 



7. Rotational Excitations at Low Temperatures 
III. Special Features 

Several pa r t i cu la r l y  in terest ing subjects have already been b r i e f l y  mentioned e i ther  

in the general discussion of low-temperature rotat ions in Chap.5 or in context of 

the example presented in Chap.6. They include the continuous t rans i t ion  from low- 

temperature to high-temperature ro ta t ion,  the isotope ef fect  and the pressure de- 

pendence of the rotat ional  states. I t  appears useful to discuss these and related 

aspects in more deta i l  in a f ina l  chapter. 

7.1 Temperature Dependence 

One of the most fascinat ing aspects of single par t ic le  rotat ion is the continuous 

transi ton from quantum-mechanical rotat ion at low temperatures to classical  d i f f u -  

sive rotat ional  motion at high temperatures. In neutron scatter ing th is  means a 

t rans i t ion  from l ine spectra at low temperatures to quasielast ic scatter ing at 

high temperatures. In Chap.6 we have given a number of examples for  th is  tempera- 

ture dependence, both close to the l i m i t  of free rotat ion and in the l i m i t  of ro- 

tat ional  tunneling. The common feature of a l l  examples (CH 4 I I  is an exception, 

because of i t s  order-disorder phase t rans i t ion)  is a sh i f t  of the peak posi t ion(s) 

of the tunneling l ine(s )  towards lower energies, before they merge into a quasi- 

e las t i c  l ine  at high temperatures. In most cases th is s h i f t  is accompanied by a 

broadening of the l ines.  

I t  appears that access to the mechanism behind th is temperature dependence is 

of extreme importance for  a f ina l  understanding of single par t i c le  rotat ions. Be- 

cause of the importance of the topic,  numerous attempts have been made to solve 

th is problem. We may note, however, that in spite of considerable progress and 

some success of current theories, the f ina l  aim has not yet been reached. This is 

par t l y  due to the fact  that rather often standard information about the invest i -  

gated substances has not been avai lable concerning I)  s ta t i c  aspects: the structural  

parameters and 2) dynamical aspects: the conventional l a t t i ce  dynamics. Furthermore 

mostly powder samples have been used in the experiments. Apparently the l a t t i c e  dy- 
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namical exc i ta t ions,  which become increasingly populated with temperature, give r ise 

to a f luc tuat ing potent ial  and are responsible for the observed phenomenon. The mo- 

dels put forward e i ther  need not specify the nature of these exci tat ions at a l l  

/6.23,25/ or base the explanation on e i ther  acoustic phonons /6 .11/ ,  t ranslat ional  

opt ic modes /6.26,27/ ,  l ib ra t iona l  modes of the crystal /7 .1 /  or internal modes of 

the molecules /7 .2 / .  Below, a b r ie f  review of these models w i l l  be given. Al l  cal- 

culations deal with the simpler case of uniaxial rotat ion of CH 3 groups. An exten- 

sion to three-dimensional rotat ional  motion so far  has not been attempted. 

7.1.1 Random Averaging Model 

The most f requent ly applied - b u t  also least speci f ic-model  has been coined by ALLEN 

/6.23/ .  In th is  model the temperature dependence is explained in terms of a dynami- 

cal averaging between two f requenc ies- the  tunnel s p l i t t i n g  of the ground state w 0 

and of the f i r s t  excited state m1" The averaging is due to thermally act ivated tran- 

s i t ions between these states, the tunnel sp l i t t i ngs  of which have opposite signs 

(Fig.5.10).The magnitude of the sp l i t t i ngs  can be calculated exact ly by solving 

Mathieu's equation. Allen has adapted a semiclassical model of ANDERSON /7.3/  ( la-  

ter  reviewed in /7 .4 / )  which describes the frequency spectrum of an osc i l l a to r  which 

switches randomly between two frequencies. This switching is treated as a stat ionary 

Markov process / 7 . 8 / t  While Anderson gave an example with two frequencies • and 

equal populations Pi states, pertain- and l i fe t imes w i l o f  the Allen took the values 
I ing to a r ig id  t r iangular  group rotat ing in a potent ial  ~V3cos3 #, The general ex- 

pression for  the spectrum function l(m) /7 .3 /  reads 

l(m) : Re {~x I} (7.1) 

with I = (1,1).  In case of a tunneling CH 3 group /6.23/ ~ = (po,Pl) denotes the 

population of the l ib ra t iona l  states (Boltzmann s ta t i s t i cs )  and A = AI+A 2 is a ma- 

t r i x  composed of a diagonal matrix containing the discrete frequencies of the ro- 

tor  

A I = i (7.2) 

(~i-~) 

and the matrix of relaxat ion rates 

A2: ( -w~ W~ (7.31 
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w 0 represents the rate of t rans i t ions from the ground state and, in an analogous 

fashion, w I the rate of t rans i t ions from the excited state. I t  is assumed that the 

t rans i t ion  rates are related by w 0 = w I exp(-E1/kT). E I is introduced as a mean l i -  

brat ional frequency (geometrical average) which needs to be defined for  larger tun- 

nel sp l i t t i ngs .  

The evaluation of (7.1) y ie lds a spectral function l(m) 

Wl (UO_W1)2 exp(_E1/kT ) [l+exp(_E1/kT) ] -1 
I(m) : (7 .4 2 2 

[(U-mO) (m-~1)] + Wl [(m-UO)+(m-Ul) exp(-E1/kT~ 2 

In discussing the above expression i t  is important to note that the tunnel s p l i t -  

t ing is much larger in the excited state and has the opposite sign (Fig.5.10).  The 

magnitude of the relaxat ion w I (excited state) determines the re la t i ve  importance 

of the two terms in the denominator. For small w I and low temperatures the tempe- 

rature-independent f i r s t  term dominates and gives r ise to two discrete tunneling 

frequencies close to u 0 and m1" 

The second term in the denominator increases with temperature and tends to es- 

tab l ish an average frequency close to Up = UO+U I exp(-E1/kT) which becomes smaller 

at higher temperatures. In order to maintain a non-negative value for  the peak po- 

s i t i on ,  l i b ra t iona l  states with n > I need to be included. For large relaxat ion 

rates w I ,  a rather loosely defined general izat ion for  the peak posit, ions Up(T) 

reads /7 .5 /  

Up(T) = ~ MnCon(r=o)exp(-En/kI ~ Mnexp(-En/kI) (7.5) 
n=O ! n=O 

M u l t i p l i c i t i e s  M n have been included in order to extend the app l i cab i l i t y  of the 

above expression to three-dimensional rotors.  The equivalent expression for  the 

energy width is given in /7 .5 / .  

For low temperatures, one has exp(-E1/kT) << I and for  frequencies w _-< co n the 
2 2 2 " 2  

denominator of (7.4) can be approximated /6.25/ by (UO-W I) +w 1[(W-uO-~ p) + a ] .  

The fol lowing def in i t ions  have been introduced: 

6p : -(UO-m I) exp(-E1/kT)/(1+x2) (7.6a) 

= WlX2(1+x2)-lexp(-E1/kT) = 6.x (7.6b) 

x : -(~O-~l)/Wl (7.6c) 
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F]_~g.7.1. Temperature-dependent posit ion and 
width of the ine las t ic  l ines of a tunneling 
CH 3 group /6.23/.  For the reduced jump rate 
Wl/m I an exponential form Wl/m I = c exp(-E1/kT) 
is assumed. The solutions of Mathieu's equa- 
t ion for  a CH 3 group in a potent ial  of magni- 
tude V 3 ~ 55 meV are used, and resul ts are 
given for  several values of the parameter c. 
Note the l i t t l e  broadening in case of fast  
relaxat ion (c = 10) 

The spectral function l(w) then has a Lorentzian shape, I t  is centered at Up = ~O+~p 

(dp is negative!) and has a width (HWHM) ~. 

Examples both for  the peak posit ion up(T) and the width a are given in Fig.7.1 

/6.23/ on the basis of (7.4).  The solutions of the Mathieu equation for  a potent ial  

V 3 = 55 meV are used, and the relaxat ion rate w I serves as a parameter. Usually a 

strong sh i f t  6 is accompanied by a broadening of the same magnitude. I f ,  however, 
P 

the temperature-dependent term in the denominator of (7.4) is strongly weighted due 

to a large w I ,  the change of the width a Lee de f in i t ion  in (7.6b)] remains re la-  

t i v e l y  sma11. An example where th is  phenomenon as well as a short l i f e t ime  of 

the excited state has been observed is (NH4)2SnCI 6 /4.27/ .  The relaxat ion rate w I 

enters Al len 's  model of the temperature dependence in addit ion to the parameters 

which describe the tunneling at low temperatures, w I can be determined by f i t s  to 

the observed temperature dependence and then can be compared to direct measurements 

of w I , 

Generalization of A l len 's  model to the tunneling of tetrahedral molecules /4.27, 

7.5/ so far  are somewhat questionable as they do not account for  the more compli- 

cated level scheme. One aspect of the random averaging model is that only d i f feren-  

ces between the energies of the A and E states enter (Fig.5,10). This can be made 

plausible for  strong potent ials with very small ground-state s p l i t t i n g .  Then a pocket 

state can be chosen as an eigenstate which can be wr i t ten as a l inear  combination of 

symmetrized states. During excursions to the excited state,  the A and E states de- 

phase with the dif ference of the i r  l i b ra t iona l  state energies. This dif ference is 

the tunne] s p l i t t i n g  ~I of the f i r s t  excited state. 
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7.1.2 Refined Random Averaging Model 

A combined ef for t  of both testing Allen's model with NMR and neutron measurements 

(particularly with MDBP, see Sect.6.2.1b) and incorporating additional aspects into 

the model published by ALLEN /6.23/ has been made by CLOUGH and collaborators /6.27, 

28/. In interpreting Allen's model they distinguished between two different "rela- 

xation mechanisms". Their meanings are discussed in connection with the evolution 

of a pocket state, say, @I (with proton I in minimum I ,  etc.).  I) The process called 

"rotation" has a simple classical meaning; i t  means transitions from the pocket 

state @I to the other pocket state @2 or @3 by means of a reorientation. 2) The 

second process, called " f l ip - f lop"  motion has no classical analogue; i t  describes 

the evolution with time of the pocket state after a transition to the f i r s t  excited 

l ibrational state. As described in the last paragraph of the preceeding section, a 

very small spl i t t ing of the ground-state multiplet is assumed /7.6/. The name " f l i p -  

flop" refers to the two states, between which the nonstationary pocket state oscil- 

lates 

Here ml denotes the tunnel spl i t t ing in the excited state. E a and E b denote the com- 

plex conjugate pair of E states. The evolution is different for the states with E 

symmetry, which leads to a phase difference between A and E states. The " f l ip - f lop"  

mechanism therefore is made responsible for the broadening of the A-E transit ion, 

yet does not affect Ea-E b transitions /7.6/. In order to account for the quasielas- 

t ic  scattering observed in MDBP /7.11/, CLOUGH et al. introduced a strain-induced 

Ea-E b sp l i t t ing.  "Rotation", which is not necessarily restricted to the classical 

values for angular steps • does influence both kinds of transition matrix ele- 

ments. 

Fl ip-f lop motion is made responsible for the broadening in Allen's treatment 

which, however, fa i l s  to explain a quasielastic peak at low temperatures /7.6/. 

Randomly occurring excursions to the excited state lead to a mean additional phase 

angle denoted by x in (7.6c) and yield a contribution a to the linewidth. In ana- 

logy to this and in order to explain the quasielastic scattering a width b in con- 

nection with "rotation" is postulated. The same form as in (7.6c) is used. No r i -  

gorous derivation is given, though. I n i t i a l l y  the same activation energy was intro- 

duced for both relaxation processes /6.26,27/. This assumption has been dropped 

after new experimental evidence /6.28/ of methyl group tunneling in MDBP. The mean- 

ing of the two activation energies has been discussed in Sect.6.2.1b. Clough's pic- 

ture is supported by the fact that the quasielastic linewidth (due only to the 

second relaxation process) is smaller than that of the inelastic peaks /6.27/. 
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A fur ther  refinement of the model followed the observation of symmetry-dependent 

l i fe t imes of the excited l i b ra t iona l  states /6.27/.  Because in Al len 's model the 

l i fe t ime is independent of the spin state of the molecule /6.23/ ,  a modif ication 

of the dynamical averaging model appeared necessary. CLOUGH et a l .  /6.27/ did that 

by generalizing the relaxat ion rate introduced in Al len 's  model [matrix A 2 in (7.3) ] .  
A E The quanti ty w I which is independent of the spin state is replaced by wi+wi+w i [with 

( i  = 0 ,1) ] .  A der ivat ion analogous to that of /6.23/ is given, based, however, on an 

equation of motion for  the density matrix P. With the same re la t ion between w 0 and 

w las  in Al len 's derivat ion and, add i t iona l l y ,  w~_=w# = O, Al len 's  resu l t  can be re- 

produced. The more general model is found to be consistent with the observations in 

MDBP, taking only w A. = O. Detai ls can be found in /6.26,27/.  
1 

7.1.3 Coupling to Col lect ive Modes 

In the fol lowing we shall describe attempts to explain the observed temperature de- 

pendence by a coupling to I )  acoustic phonons /6.11/ ,  2) l i b ra t iona l  exci tat ions of 

the crystal  /7 .1 / ,  and internal v ibrat ions of the molecule /7 .2 / .  The role of tran- 

s i t ions to the excited l i b ra t iona l  states of the molecule under consideration (and 

of t rans lat ional  optic modes) has been discussed before and w i l l  not be repeated 

here. 

HOLLER /6.11/ emphasized the dif ference between the polaron problem /7.7/  and 

tunneling, where symmetry is due to the molecule i t s e l f .  Remaining in the language 

of the polaron e f fec t ,  nevertheless, he distinguished between a "d is tor t ion"  of the 

potent ial  (modulates i t s  amplitude) and a "shaking" (modulates the phase Cn in the 

potent ia l ) .  Only the l a t t e r  gives r ise to a b i l i near  coupling term in an expansion 

of the potent ial  V(UR,{Ui}) into the rotat ional  displacement ~R and the t ranslat ional  

displacements ~i" The cur ly  brackets s ign i f y  that the potent ial  V depends on the set 

of t ranslat ional  displacements of a l l  par t ic les in the crys ta l .  

F i r s t  the problem of a CH 3 group coupled to a single t ranslat ional  osc i l l a to r  

with {ui } = u T is considered. Then the k inet ic  energy in the Hamiltonian is 

K = �89174189 , (7.8) 

and the harmonic part of V expanded around the minimum in one pocket is 

Vh(UR,U T) = mlUR+~2u#+m3URUT (7.9) 

Contours of the potential  are shown in Fig.7.2; the i r  skewness originates from the 

coupling term ~3URUT . Pocket state functions are taken to describe the molecule 
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Fiq.7.2. Contours of the potential 
@(u ,u ) Minima at u T = 0 and R T "  
u R = O, 2~/3 and 4~/3 are de- 
noted by I ,  I I  and I I I ;  S denotes 
saddle points. The coupling term 
~3URU T (7.9) is responsible for  
the skewness of the contours /6.11/ 

in i t s  rotat ional  ground-state ( l i b ra t iona l  exci tat ions are excluded), while the 

t ranslat ional  wave function is represented by harmonic osc i l l a to r  functions speci- 

f ied by a quantum number n T. States with n T > 0 become increasingly populated with 

r i s ing  temperature. Tunneling frequencies ~O(nR=O, n T) are calculated and found to 

decrease monotonically with n T. The s p l i t t i n g  is reduced by the increasing cancel- 
i 

la t ion of the overlap of the wave functions with increasing nT; as a function of u T 

the sign of @ changes n T times in presence of a nonzero coupling. 

Second, the Einstein model is replaced by a more r e a l i s t i c  Debye model for  the 

t ranslat ional  exci tat ions in the crys ta l .  Only the ( t rans la t iona l )  displacement u 
x 

of the molecule immersed in a bath of Debye phonons is included. The harmonic po- 

ten t ia l  V h is rewr i t ten in terms of phonon coordinates /6.11/ .  Tunneling frequen- 

cies then are calculated as a function of phonon occupation. The resu l t  f o r ~ D  >>kT 

(mD = Debye frequency) is 

Up(T) = mo(T:O) I -~-~ g T l~mDJ 

The coupling constant g is a measure for  the admixture of t ranslat ional  character 

to the rotat ional  wave function. I t  is d i rec t l y  connected with the coupling term 

between phonon coordinates and angular coordinate. The usually observed decrease 

of the peak posit ion m of the tunnel l ine  can successful ly be explained by a de- 
P 

crease with T 4. On the other hand, the model does not y ie ld  a broadening of the 
+ 

states, which is in agreement with resul ts for  several NH4-salts, but not for most 

other systems. The model probably w i l l  y ie ld  a broadening, too, i f  a coupling be- 

yond the b i l i near  term is included. A fur ther  general izat ion dealing with the ef fect  

of d is tor t ion  or the nondiagonal t rans i t ions /6.11/ also would be in terest ing.  

A T 4 behavior also has been found by SVARE /7 .5 /  in a less rigorous treatment. 

An a l te rna t ive  approach via the coupling to l i b ra t iona l  exci tat ions of other mole- 

cules has been formulated by PUNKKINEN /7 .1 / .  Punkkinen doubted that the r~le of 
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wil the l i fe t ime of the f i r s t  excited l i b ra t iona l  state is decisive. Also, ALLEN's 

model /6.23/ sometimes overestimates the broadening of the tunneling l ines.  For jus t  

two interact ing rotors the coupling is represented by a b i l i near  term k12UR1UR2, s i -  

mi lar  to the case of a coupling to t ranslat ional  modes. Only a weak coupling which 

y ie lds negl ig ib le  wave vector dependence of the l i b ra t iona l  energy is assumed. There- 

fore an exponential temperature dependence governed by the average l i b ra t iona l  ener- 

gy E I resul ts .  The coupling causes a mixing of the l i b ra t iona l  states and this gives 

r ise to a weighted average of sp l i t t i ngs .  No broadening of the levels resu l ts ,  as 

in the case of a coupling to Debye phonons /6.11/.  A width is added la te r  in a very 

phenomenological way by equating the relaxat ion rate w 0 with a mean-squared l i b ra -  

t ional  amplitude. 

The model suffers from several approximations. Also i t  appears, that in many 

cases in which tunneling has been observed the dominant contr ibution to the rota- 

t ional  potential  is of a c r y s t a l - f i e l d  type. Contributions depending on the orien- 

tat ions of two molecules often are less important (e.g. ,  ammonium sa l ts ) .  This cer- 

t a i n l y  is not true for  van der Waals crystals l i ke  methane. 

The phenomenological descript ion of the relaxat ion rate w 0 y ie lds a nonvanishing 

rate in the l i m i t  T = O, for which zero-point l ib ra t ions  are made responsible. This 

is reminescent of the "adiabatic reor ientat ion processes" postulated by other authors 

/6 .8 ,7 .8 ,9 / .  They found a l ine broadening in the low-temperature l i m i t  and claimed a 
- I  homogeneous broadening due to a f i n i t e  l i fe t ime �9 = w 0 . 

PUNKKINEN has also studied internal v ibrat ions (bending modes) of a molecule in 

a surrounding of low symmetry /7 .2 /  and the i r  coupling to rotat ional  tunneling. The 

coupling is e f fec t ive  only for  low s i te  symmetry, which res t r i c t s  the app l i cab i l i t y  

of the model. Nevertheless i t  has been demonstrated that the reservoir  of modes which 

may be involved in the mechanism behind the temperature dependence is rather large. 

At present i t  is not possible to single out a par t icu lar  type of exc i ta t ion as the 

most important one. 

7.2 Pressure Dependence of Tunneling Energies 

The pressure dependence of rotat ional  tunneling or, more general ly,  of a l l  observable 

rotat ional  t rans i t ions of a molecule, provides an in terest ing access to rotat ional  

potent ia ls and intermolecular in teract ions.  As can be seen in Fig.5o9, the tunnel 

sp l i t t i ngs  calculated as a function of the potential  display an almost exponential 

behavior. Relat ive ly  mild changes of the potential  are amplif ied to rather dramatic 

changes of the observed tunnel sp l i t t i ngs  which therefore can be used as a sensi t ive 

probe of the rotat ional  potent ia l .  More quant i ta t i ve ly  th is may be phrased in terms 
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of the GrUneisen constant y = -~Inm/~]nV. Here V denotes the volume of the crysta l .  

For l a t t i c e  phonons u is posi t ive and t yp i ca l l y  y = 3. A s imi lar  behavior may be 

expected for  l i b ra t iona l  exc i ta t ions,  whose frequency also increases with decreasing 

volume. This is d i f f e ren t  for  rotat ional  tunneling in which case the tunnel s p l i t -  

t ing drops with increasing potent ia l .  Using the numbers taken in the estimate below, 

y = -20 ought to be a typical  quant i ty.  

For a precise estimate of the sh i f t  of the tunneling energies as a function of 

pressure, one must know the intermolecular forces and the pressure dependence of 

the structural  parameters of the sample. The l a t t e r  determine the interatomic dis-  

tances which enter the rotat ional  potent ia l .  I f  the posit ions and or ientat ions of 

the atoms and molecules contr ibut ing to the rotat ional  potential  are not f ixed by 

symmetry, i t  is necessary to determine these quant i t ies as a function of pressure, 

too. This would necessitate a sequence of structure analyses accompanying measure- 

ments of the tunneling states. I f ,  on the other hand, the structural  parameters are 

f ixed by symmetry (which is seldom) or change but l i t t l e  i f  scaled to the cel l  pa- 

rameters, i t  is su f f i c ien t  to know the pressure dependence of the cel l  parameters. 

For the l a t t e r  case and cubic symmetry a fur ther  s imp l i f i ca t ion  ar ises,  and one on- 

ly  needs to know the isothermal compressibi l i ty  ~. 

An estimate based on the knowledge of the compressibi l i ty  K and a single power 

law 

A3(a) = A3(ao)(ao/a) n (7.11) 

for  the strength of the rotat ional  potent ial  has been given by HOLLER and RAICH 

/5 .14/ ;  a is the l a t t i c e  parameter at the pressure p = pO+6p, where PO is a re- 

ference pressure. The estimate is given for  tetrahedral molecules in a potential  

V(~) = A3N11'(3)(T). The general ideas, however, are not res t r ic ted to th is example. 

As indicated above, the tunneling frequency mO can be wr i t ten as 

mo(A 3) = m~(A 3)exp[gO(A3)A 3] 

where m~(A 3) and go(A3) depend only weakly on A 3. 

(7.12) 

In par t icu lar  the product go(A3)B 

varies l i t t l e  with A3; i t  is 0.08 and 0.05 for  potent ials A 3 = -25 B and A 3 = -125 B, 

respect ively.  For small changes, ~A3/A 3 = -n~a/a with ~a/a = - ( I / 3 )  K6p, one obtains 

n go(A3)A3K~p a~/~ = (7.13) 

HOLLER and RAICH gave an estimate for  (NH4)2SnCI 6 /4.27,5.14/,  where A 3 ~ -100 B, 

go(A3) ~ 0.055/B, K ~ 0.007 Kbar - I .  A value 6m/w = -5%/Kbar is found for  e lectros- 
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ta t i c  in teract ion.  The leading term in the crystal  f i e l d  experienced by the NH~ 

group in (NH4)2SnCI6 is a monopole-octopole interact ion.  For an e lec t ros ta t ic  o r i -  
-n 

gin of th is interact ion the radial dependence of the crystal  f i e l d  is r with n=4. 

A recent measurement of tunnel sp l i t t i ngs  in (NH4)2SnCI6 with neutrons (backscatter- 

ing) for  pressures p ~ 2 Kbar /7.10/ y ie lds an e f fec t  twice as strong as expected 

for  purely e lec t ros ta t ic  interact ions.  This indicates important contributions based 

on overlap or valence forces with a larger value for  the exponent n. 

Much stronger ef fects can be predicted for  more compressible sol ids.  In methane 

(CH4), for  example, the compressibi l i ty  is about 0.04 Kbar - I  /6 .8 / .  Pressures of 

about 5 Kbar would reduce the tunneling energies by almost two orders of magnitude. 

For th is estimate one must not use the l inear izat ions which lead to (7.13). The ap- 

p l icat ion of high pressures is less d i f f i c u l t  than for sol id methane. 

The corresponding experiment is d i f f i c u l t  and has not yet  been performed. Measure- 

ments so far  have been rest r ic ted to pressures of about I Kbar and below /6.10/.  

Such pressures are obtained by pressuring l iqu id  methane up to about 4.0 Kbar and 

then cooling to low temperatures at constant volume (of the pressure ce l l ) .  A f i r s t  

resu l t  of these measurements, which extend into phase I I I  of CH 4, is the absence of 

t rans i t ions corresponding to almost free rotat ions above 600 bar. One may conclude 

that a l l  CH 4 molecules are o r ien ta t iona l l y  ordered in phase I I I  (see also next sec- 

t ion) .  

A beauti ful  example for  the pressure dependence of rotat ional  tunneling has been 

provided by CLOUGH et a l .  /7.11/ with sodium acetate t r ihydrate [Na(CH3COO)3H20 ~. 

The appl icat ion of high pressures is less d i f f i c u l t  than for  sol id methane. Measure- 

ments with pressures up to 5 Kbar (Fig.7.3) show that the tunneling energies change 

Y \o_ o 

'% ,\ 
-6 -4 -2 0 2 4 6 

energy (peV) -,~ 

Fig.7.3. Ine las t ic  neutron scattering spectra of sodium acetate t r ihydrate 
~a(CH3COO)3H20 ] at d i f fe ren t  pressures (T=4 K). A pronounced decrease with 
pressure of the tunneling energy of the methyl group is observed /7.11/ 



103 

from 5.7 NeV at p = I bar to 2.2 NeV at p = 5 Kbar. An almost exponential pressure 

dependence is found. The authors gave an estimate similar to that of HOLLER and 
I 

RAICH /5.14/, this time for a potential V(r =~V3cos3@. The expression 

�9 ~ = 316 exp(-O.116 V 3) (7.14) 

is found to hold approximately in the range studied. In (7.14) ~mO is in NeV and 

V 3 in meV. Assuming an isothermal compressibility K = 0.01 Kbar -I as a typical 

value, a power n ~14 is obtained. The example probably belongs to the category for 

which detailed information on the intermolecular interaction can only be safely de- 

duced, i f  structure analyses are available at least at two di f ferent pressures. 

The requirement of accurately known interatomic or intermolecular distances re- 

presents a serious restr ict ion to the determination of intermolecular interactions. 

Further experiments are needed for a better judgement concerning the usefulness of 

the method in this respect. An ef for t  to test the intermolecular interactions in 

solid nitrogen has recently been published /7.12/. The rotational constant of the 

nitrogen molecule already is re lat ive ly  small (B = 0.25 meV), therefore scaled po- 

tent ials in the ordered phases are large and the classical aspects of solid N 2 do- 

minate. Librational frequencies as a function of pressure and the ~-u transit ion 

l ine are calculated both for a Kihara core potential and for electrostatic quadru- 

pole-quadrupole interaction. 

7.3 Isotope Effect 

The most d i rec t  proof of the presence of tunneling states is the isotope ef fect  

/5.16/ ,  due to the charac te r i s t i ca l l y  large change of the observed tunnel s p l i t -  

t ings upon isotopic subst i tu t ion.  An example is the tunneling of 6Li + and 7Li + ions 

in KCl /7 .13/ ;  observed energies d i f f e r  by about 40%. One may ask whether an iso- 

tope ef fect  of s im i la r  magnitude holds for rotat ional  tunneling. 

When discussing the isotope e f fec t ,  a glance at Fig.5.9 reveals a close re la t ion 

to the pressure dependence of rotat ional  tunneling, described in the previous sec- 

t ion.  In both cases r e l a t i v e l y  moderate changes of the s ta t i c  potential  (scaled with 

B =~2/2@) are amplif ied to very large changes of the observed s p l i t t i n g .  The d i f -  

ference is as fol lows. By applying pressure the scaled s ta t i c  rotat ional  potent ial  

V' = Vst/B is changed in a continuous fashion because V' depends on the l a t t i ce  st st 
constant. Substi tut ion of the protons in H 2, XH 3 and XH 4 by deuterons, on the other 

hand, increases the moment of i ne r t ia  @ and therefore also the scaled potential  
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, = 20Vst/~ 2 Vst by a factor of two. Thus deuteration has the same ef fec t  as a large 

change of pressure. 

In order to render the e f fec t  observable for  ine las t i c  neutron scatter ing, exam- 

ples with a r e l a t i v e l y  large s p l i t t i n g  for  the protonated species must be used. 

Otherwise the ground-state s p l i t t i n g  in the deuterated species is too small to be 

resolved even with high-resolut ion neutron spectroscopy. Another poss ib i l i t y  is 

par t ia l  deuteration which leads to scaled potent ials V~t of intermediate magnitude 

- but also to a more complex s i tua t ion ,  due to the reduced symmetry of the molecule. 

Recently both neutron and speci f ic-heat experiments have been performed with par t i -  

a l l y  deuterated methane; the former with CH3D adsorbed on grafo i l  /6 .42/ ,  the other 

with bulk samples of CH2D 2 and CHD 3 /7.14-16/. 

As an example of the isotope ef fect  we shall discuss deuterated sol id methane, 

which has recently been investigated /5.39,7.17/.  A spectrum within the energy range 

IEI ~ 9 peV is shown in Fig.7.4. Eight l ines at energies 1.20, 2.14, 2.75, 3.37, 

4.58, 5.35, 6.70, and 7.95 peV ( s t a t i s t i c a l  error for  a l l  l ines about • peV) 

have been obtained from least-squares f i t s  to the data. An extension of the measure- 

ments to energy transfers up to 20 peV did not y ie ld  addit ional l ines.  A previous 

measurement /5.39/ covered an energy range IEI ~ 4 peV and thus only allowed the 

observation of four t rans i t ions.  The measuring times are rather long even at a high- 

f lux  reactor (about two to three days are required for  one spectrum). This is part- 

l y  due to the complicated spectrum and par t l y  due to the small incoherent scatter-  

ing cross section Oin c = 2.2 barn of deuterium. 

At th is  point of the discussion i t  appears useful to report a theoret ical  pre- 

d ic t ion for  the isotope ef fect  in methane /5.9,7.10/ .  The observed s p l i t t i n g  in 

CH 4 I I  (143 peV and 73 peV) can be explained with a rotat ional  potent ial  V(T) = 

A3H(3)(T) with A3/B = -37. Naively, one would expect a doubling of A3/B in CD 4 be- 

cause of the change in B, but due to the reduced l i b ra t iona l  zero point motion, the 
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Fi~.7.4. Ine las t ic  neutron scatter-  
ing spectrum of sol id CD 4 I I I ,  
measured with a backscattering 
spectrometer. The ground-state 
s p l i t t i n g  of the deuterated com- 
pound (CD 4) decreases by a factor 
30 with respect to the protonated 
species (CH4). This decrease re- 
veals a pronounced isotope ef fect  
/5.39,7.17/ 
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molecular f i e l d  in CD 4 is A3/B(CD 4) = -85, more than twice the value in CH 4 /5.14/ .  

The predict ion for  the tunnel s p l i t t i n g  in CD 4 is~mTE = 0.0038.B = 1.25 peV; th is  

s h i f t  re la t i ve  to CH 4 corresponds to an isotope e f fec t  of about a factor of 50. As 

can be seen from the tunnel sp l i t t i ngs  in CD 4 (T : 3 K), measured by PRAGER et a l .  

/7 .17/ ,  the observed isotope e f fec t  is about 30, which is in reasonable agreement 

with the theoret ical  predict ions /5.14/ .  In any case the isotope e f fec t  is very 

large, much larger than for  the ring tunneling of Li + ions in KCI /7 .13/ ,  for  ex- 

ample. 

I t  is a complication that the predict ion is based on phase I I  of methane (Fig. 

6.1),  while the measurements actua l ly  have been performed in CD 4 I I I .  As already 

indicated, the two structures are believed to be closely re lated,  the main d i f f e r -  

ence being that a l l  molecules are ordered in phase I I I  /2.12,6.10,7.18,19/. I t  is 

not clear whether th is  statement can be maintained in view of the complicated struc- 

ture of the observed spectra. So fa r ,  no simple assignment (e.g. ,  on the basis on 

MAKI's predicted structure of phase I I I / 7 . 1 9 / )  has been found. Within the model of 

MAKI et a l . ,  large T state sp l i t t i ngs  appear to be very un l ike ly  as the low-symme- 

t r y  terms in the potent ial  are very weak. 

Instead of f i t t i n g  peak posit ions and peak in tens i t ies  separately, the data ana- 

l ys is  can also be based on a f i t  of the 120 ~ overlap matrix elements h i (see also 

Sect.6.2.4b). Di f ferent  sets of h. have to be at t r ibuted to sublat t ices which are I 
not symmetry related. A set of h. determines both the level scheme and-v ia  the 1 
t rans i t ion  matrix elements, which recently have been calculated for  CD 4 /3 .4 /  (see 

Sect.5.3 and the appendix) - t h e  in tens i ty  of the t rans i t ions.  No unambiguous re- 

su l t  is obtained. Several models with 3 and 4 inequivalent sublat t ices f i t  the da- 

ta equally well /7 .17/ .  A f i na l  answer requires e i ther  a structure analysis in phase 

I I I  of methane or addit ional high-resolut ion measurements in CH 4 I I I .  

Three common features of the models appear noteworthy. I )  The speci f ic  heats de- 

r ived from the models are p rac t i ca l l y  indist inguishable.  Hence one may not hope for  

detai led resul ts from speci f ic-heat measurements in systems l i ke  CD 4 I I I  (with se- 

veral inequivalent sublat t ices) .  2) The peaks at large energies always combine in- 

to one level scheme with low s i te  symmetry. Because of the large s p l i t t i n g  ( ind i -  

cating a weaker po ten t ia l ) ,  a corre lat ion with the s i tes of disordered molecules 

in phase I I  is suggestive. Then, however, one also would expect a r e l a t i v e l y  high 

s i te  symmetry. 3) Al l  models generate more than eight t rans i t ions ,  some of which 

are very close to each other and appear as single l ines.  
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7.4 Tunneling in Molecular Mixtures 

We have already discussed rotat ional  exci tat ions of molecules, matrix isolated in 

atomic crystals (Sect.6.1.3). S imi lar ly  one may s tar t  from the opposite side, that 

i s ,  molecular c rys ta ls ,  and ask for  the ef fect  of subst i tut ional  impuri t ies on low- 

temperature rotat ional  exci tat ions.  I t  has been mentioned before that paramagnetic 

impur i t ies,  such as oxygen or free radicals created by y i r rad ia t ion ,  couple to the 

spin functions of the molecules and can speed up nuclear-spin conversion consider- 

ably. Here we only want to discuss the ef fect  of nonmagnetic atomic impuri t ies.  

The s t a t i s t i c a l  replacement of molecules (which have an anisotropic density d is-  

t r ibu t ion)  by atoms or monatomic ions (which are isotropic)  has several in terest ing 

aspects. In analogy to magnetic systems one may expect that the impuri t ies behave 

l i ke  nonmagnetic atoms, destabi l ize o r ien ta t iona l l y  ordered phases and eventually 

give r ise to phases with spin glass character. Interest ing systems of this kind are 

mixtures of o-H 2 and p-H 2 /7.20/ (where p-H 2 is the isotropic component), K(CN)I_xBrx 

/7.21/ and also (N2)1_xAr x /7.22/ and (CD4)I_xKr x. Much remains to be done in th is  

f i e l d ,  which is not a topic of the present review, however, 

Another in terest ing aspect is the ef fect  of impuri t ies on the rotat ional  exci- 

tat ions in a molecular c rys ta l .  Judging from the ef fect  of pressure, one may sus- 

pect that the rotat ional  energies are rather sensi t ive to impuri t ies.  Atoms or mon- 

atomic ions which s t a t i s t i c a l l y  replace molecules give r ise to a d is t r ibu t ion  func- 

t ion of rotat ional  potent ia ls.  In general, the influence of subst i tut ional  impuri- 

on the c rys ta l l i ne  f i e l d  Vc(~ ~)_ w i l l  be rather weak. This is due to the fac t ,  t ies 

that good mixing occurs only i f  the substituted and the subst i tut ing par t ic les have 

the same charge and i f  t he i r  ionic or van der Waals rad i i  are rather s im i la r ,  too. 

A larger e f fect  w i l l  concern interact ions of the type V ( ~ , ~ )  (see Sect.2.3) to 

which atoms or monatomic ions do not contr ibute. Therefore the summation in 

vi(  l = 
I I  

J 

is over fewer neighbors than in the unperturbed crysta l .  

This gives r ise to a d is t r ibu t ion  function of rotat ional  potent ials and thus a l -  

so to a spectrum of energy eigenvalues, that i s ,  to a (inhomogenous) broadening of 

the l ines which depends on the impurity concentration. 

Idea l ly  the subst i tut ion only af fects the orientation-dependent interact ion and 

no position-dependent interact ions.  This is almost per fect ly  f u l f i l l e d  in mixtures 

of o-H 2 and p-H 2 /7.20/ and (NH4)2SnCI 6 and K2SnCI 6 /7.23/ where the l a t t i ce  con- 

stants of the two components are very s imi lar .  For most other substances a local 

l a t t i ce  relaxat ion around the impurity w i l l  resu l t .  
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Fig.7.5. Effect of krypton impuri t ies on 
the tunneling l ines and the rotat ional  ex- 
c i ta t ions in CH 4 I I  /7.24/ 

The e f fec t  of impuri t ies in a system with dominant mul t ipole-mult ipole interac- 

t ions is shown in Fig.7.5. The f igure displays the low-lying rotat ional  exci tat ions 

in the mixed system (CH4)1_xKrx with x=0.02,  0.05, and 0.08 /7.24/ :  I )  the tunnel- 

ing t rans i t ions of the ordered molecules and 2) the perturbed 0-I rotat ional  tran- 

s i t i on  of the disordered molecules. From speci f ic-heat measurements /7.25/ i t  is 

known that phase I I  is destabi l ized for  x ~ 0.15 /7.23/.  Thus for  the reported ex- 

periments the binary mixture is in phase I I .  One may note that both tunneling states 

and almost free rotat ion broaden with increasing concentration [e.g. ,  for  tunneling: 

?(x=0.02) = 26• NeV, F(x=0.05) = 50• NeV, r (x=0.08)  = 63• ~eV]. The tunnel- 

ing l ines s h i f t  to larger energies which can be explained by a weaker average poten- 

t i a l  in the presence of krypton impur i t ies.  For the 0-I rotat ional  t rans i t i on ,  on the 

other hand, a reduction of the energy with impurity concentration resul ts.  This ind i -  

cates a stronger potent ial  and shows that the cancel lat ion of the octopole-octopole 

in teract ion at the s i tes of disordered molecules does not work as per fect ly  in the 

binary mixture as in pure methane (see also Sects.6.1.2 and 6.2.3a). 

There is not only an e f fec t  on the average magnitude of the rotat ional  potent ia l ,  

but also on i t s  symmetry. S ta t i s t i ca l  replacement of molecules leads to a binomial 

d i s t r ibu t ion  of the number of neighbors of a given kind. On average the surroundings 

of a molecule reta in high symmetry, but l oca l l y  the symmetry w i l l  be perturbed. For 

tetrahedral molecules th is  gives r ise to a T state s p l i t t i n g ,  which adds to the 

broadening of A-T at T-E t rans i t ions (a f te r  averaging over many conf igurat ions),  
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but also gives rise to inelastic transitions within the T state multiplet. The cal- 

culation of rotational spectra for binary mixtures requires the calculation of ener- 

gy eigenvalues for many configurations of low symmetry with a subsequent averaging 

over the configurations (inhomogenous broadening). Such calculations have not been 

performed yet. 

For large impurity concentrations (x ~ 0.5) one may expect a broad distribution 

of potentials and thus very broad spectra. I f  one may ignore the crystal f ie ld,  and 

attributes the main contribution to the potential to anisotropic interactions be- 

tween molecules, the neutron spectra wil l  look almost l ike quasielastic scattering. 

This indeed has been found for (N2)o.7Aro. 3 /7.26/. 

Here an interesting aspect appears. Quasielastic spectra at low temperatures im- 

ply an almost constant density of rotational states at low energies and consequent- 

ly one should observe an almost linear specific heat for T << e D (O D = Debye tempe- 

rature). This means that one can start with a molecular crystal with low-energy ro- 

tational excitations (e.g., tunneling states in CH 4) which give rise to Schottky 

anomalies, and by admixing impurities one may obtain a solid with a linear speci- 

f ic  heat at low temperatures. Apparently there is a similarity to glasses, in which 

the observed linear specific heat is attributed to the presence of a distribution 

function of two-level systems (tunneling states /7.27/). These low-energy states, 

however, are absent in the respective crystall ine system (e.g., of SiO 2) and no 

continuous transition from the crystall ine to the glassy state is possible. In a 

crystal l ike SiO 2, the only low-lying energy states are associated with acoustic 

phonons, which gives rise to the usual T 3 behavior of the specific heat. 

Another binary systen which has recently been studied /7.23/ is (NH4)2_2xK2xSnCI6 . 

As becomes obvious from Fig.7.6, the impurities have only l i t t l e  effect on the tunnel- 

ing spectrum. Figure 7.7 shows both the tunnel spl i t t ing ~mT-E and the width of the 

lines for concentrations x ~ 0.6. The findings indicate that the octopole-octopole 

interaction between two NH; _ tetrahedra in (NH4)2SnCI6 (Sects.4.5.1 and 6.2.4a) pro- 

vides only a minor contribution to the potential and that the rotational potential 

largely has crystal-f ield character. This is due to the strong monopole-octopole 

interaction which does not change when a NH; group is replaced by an isoelectronic 

potassium ion. 

At concentrations x ~ 0.65 a phase transition to the low-temperature phase of 

K2SnCl 6 /7.28/ takes place, the structure of which is not yet completely estab- 

lished. The resulting distortions seem to cause an increase of the rotational po- 

tential and, consequently, a strong decrease of the tunneling energies. As an up- 

l imit a value ~a~A_ T = 0.3 ~eV may be given. In principle one could use the NH; per 

ion as a probe for the site symmetry at the potassium or rubidium sites. In the pre- 
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sent case (K2SnC16), however, the energy resolut ion avai lable in a neutron backscat- 

tering experiment has not been sufficient. 
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Fi~.7.6. Tunneling spectra of the 
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Appendix: Calculation of Transition Matrix Elements 

At. Calculation of Spin Functions for XH 4 and XD 4 

The spin functions for  tetrahedral molecules can be constructed as follows (a simi- 

la r  calculat ion applies to other molecules with internal symmetries). F i r s t  we note 

that there are four d i f fe ren t  types of spin states: 

X I = {aaaa> (A.la) 

X 2 = Ibaaa> (A. Ib) 

• = Ibbaa> (A. Ic) 

X4 = (bbac> . (A. Id) 

For protonated molecules a and b denote e i ther  of the eigenvalues I /2 or - I / 2  of the 

z component of the protDn spins. Only the f i r s t  three types of spin states Xi ex is t  

( tota l  number 24 = 16). For deuterated molecules a, b and c denote one of the eigen- 

values +I ,  O, - I .  Al l  four types Xi ex is t  ( tota l  number 34 = 81). Now symmetrized 
Ip r*  ^ 

functions are obtained by use of the projection operator Pr~Z~1~ mij(N)R . Here the 

sum is over a l l  12 symmetry operations R of the tetrahedral group; F denotes the 
F 

representations A, E and T, respect ively,  and mij(N) the elements of the representa- 
F 

t ion matrices. For one-dimensional representations the m.. are the characters of the i j  
representation. 

The functions obtained by the use of pr are eigenfunctions of the nuclear-spin 
o 72 

operator i z, but not necessari ly of l as wel l .  Obviously [aaaa> is completely sym- 

metric and has A symmetry. The functions of the type Ibaaa>+ labaa>+ laaba>+ laaab> 

are also completely symmetric. S im i la r l y ,  the functions Ibaaa>+ laaab>-laaba>-labaa> 

have symmetry T x. From • and • no spin functions of E symmetry can be constructed. 
72 

The above functions are also eigenfunctions of i in the case of CH 4, and for  i I z l  ~2 

also for  CD 4. The construction of spin functions I I , I z ,?>  is more d i f f i c u l t  for 

I = 0 (CH 4 and CD 4) and I = • (CD4). "Families" of spin functions with tota l  
Z Z 
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spin I can be generated by repeated appl icat ion of the t o t a l l y  symmetric lowering 

o 4 and use of orthogonal i ty.  This method is needed for  CD 4, where operator i_ = ~u iu 
81 symmetrized spin functions have to be constructed: 15 A functions with I = 4,2 

and O, 3x18 T functions with I = 3, 2, I and I ,  and 2x6 E functions with I = 2 and O. 

Only the spin functions for  CH 4 are l i s ted  in th is  work (Table 5.6). I f  one is only 

interested in the tota l  in tens i ty  for  a t rans i t ion  between states of d i f fe ren t  sym- 

metry-one step, namely, the construction of functions which are also eigenfunctions 
~2 

of I , can be omitted. Wave functions ~, which are completely symmetric under the 

symmetry operations of the tetrahedral group, are obtained as products of spin func- 

t ions and rotat ional  wave functions of the same symmetry ~ = @r.• As in /3 .3/  

functions have been used for  the spat ial  pocket states, which is inadequate for 

the calculat ion of overlaps, but often represents a good approximation on the way 

to t rans i t ion  matrix elements. 

In pract ical  calculat ions of t rans i t ion  matrix elements a somewhat modified ap- 

proach has been used. In the spin functions defined above, Ni denotes the z compo- 

nent of the i th proton. Instead, functions [PlP2N3~4 > are used /3 .3 / ,  where Pi de- 
th 

notes the z component of the i s i te  and not that of an individual proton (Sect.5.2). 

With th is  de f in i t i on  the spat ial  part of the wave function I@> is simply included as 

a function sharply ~eaked at the equi l ibr ium or ientat ion zO of the tetrahedron. For 

complete or ientat ional  loca l iza t ion  I@> ~~(T-ZO), independent of the symmetry of the 

rotat ional  state considered. This modified approach takes into account that u l t i -  

mately only the spin state at a given s i te  determines the matrix elements and leads 

to a considerable s imp l i f i ca t ion  of the calculat ions. A general ization to f i n i t e  size 

wave functions [@> is demonstrated in /3 .4 / .  

A2. Calculation of Transit ion Matrix Elements (Cubic Symmetry) 

The next step consists in the appl icat ion of the neutron scatter ing operator W =WA+W T 

(Sect.5.3) to the wave functions ~ = l@>~F( l , lz)>.  W A does not change the symmetry 

of the spin functions •  while i t  is  always changed by W T. Matrix elements are 

obtained by decomposing the resul tant  functions (WA+WT) ~ into symmetry adapted func- 

t ions ~' = ]@>~r , ( l ' , l ~ )> .  In practice th is  calculat ion is done by means of a com- 

puter program. In par t i cu la r  the 81x81 matrix of t rans i t ion  elements for  CD 4 neces- 

s i ta tes such an approach. The resul tant  16• matrix A for  CH 4 is e x p l i c i t l y  given 

in Table A. I .  For reasons of spin conservation the scatter ing obeys the selection 
o o  

rules AI = O, • and AI z = O, •  Transit ions caused by Sz.i z (Sect.5.3) leave both 

z-component ~ of the neutron spin and I z unchanged (scatter ing without spin f l i p ) .  

However, the "non-sp in- f l ip"  part of W T may change the to ta l  spin I of the molecule. 
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Table A.I. Transition matrix elements for CH 4. In i t i a l  and final states are described 
b-yt-heTrr symmetry r and F', respectively, and by the z component of the nuclear spin 
I z and ~I' r espec t i ve l y ;  a = I ,  b : I / 2 ,  c : I / ~ ,  d = I / / 6 ,  e = I / ~ ,  f = ~ ,  
g = ,/3/2, h = 2v~/3. For t r a n s i t i o n s  w i thout  symmetry change the elements have to be 
m u l t i p l i e d  by G A, otherwise by GTy, GTv and GT7 ( ind ices x, y and z denote which one 
has to be taken).  When ca l cu la t i n~  i n t~ns i t i es~  i t  should be noted that  t r ans i t i ons  
w i thout  s p i n - f l i p  occur both f o r  neutrons wi th  spin up I~> and spin down IB>. Mat r ix  
elements which are zero are omit ted from the Table. The corresponding 81x81 matr ix  
fo r  CD 4 is not l i s t e d  e x p l i c i t l y  ( i t s  T-T par t  is given in / 3 . 4 / ) .  I n t e n s i t i e s  fo r  
powder samples can be found in Table A.2 

~ I  'i T x Ty T z E A 

0 0 0 

-2 -a a a a a x y z 

-I a -b g b x e x by ey b z e z 

A 0 g g -d x c x d x -dy Cy dy -d z c z d z 

I g b a -e x b x -ey by -e z b z 

2 a a -a -a -a 
x y z 

- I  -a x b x -d x -b e b z -e z by -ey -c x a x 

T x 0 e x c x -e x e e -e z -e z -ey -ey -d x c x 

I d x b x -a x e b -e z -b z -ey -by c x -a x 

- I  ay by -dy b z -e z -b e b x -e x -Cy -ay 

Ty 0 ey Cy -ey -e z -e z e e -e x -e x -dy -ey 

I dy by -ay -e z -b z e b -e x -b x Cy ay 

-I a z b z -d z by -ey b x -e x -b e fz 

T O  e c - e  -e - e - e  -e e e h z z z z y y x x z 

I d z b z -a z -ey -by -e x -b x e b fz  

0 -c -d c -c -d c f h f 
E x x x y y y z z z 

0 a x c x -a x -ay -ey ay 

o o o o 

Transitions caused by s+iu and s_iv+ are associated with a change of both ~ and I z 

(spin-f l ip  scat ter ing) .  The diagonal blocks in the matrix are mediated by the to ta l -  

ly symmetric part of the operator W A. They al l  are proportional to G A = �89 ~yGy with 

Gy = exp(iQ.r_ -'u and ry denoting the positions of the four protons of a tetrahedron. 
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The off-diagonal blocks are obtained by application of the operators W T , W T 
x y 

and W T (see Sect.5.3). Action of WT on a function [• > leads to functions D< T > 
z I -  -x y z 

and a factor GTx : ~(GI-G2-G3+G4 ). The other blocks can be constructed by cycl ic 

permutations or have to be transposed for noncyclic permutations. F inal ly ,  inten- 

s i t ies  are obtained by taking the modulus squared of the matrix elements and then 

summing within a block connecting the symmetries F and r ' .  This summation yields 

symmetric matrices of dimension 5 which are given for both CH 4 (Table A.2) and CD 4 

(Table A.3). The 9 dependence of the scattering is contained in expressions 

12 ~i~j~i~jF r r 
IG r = I+0.5 cos ~ ' [ i j '  with [ i j  = [ i - [ j ;  the ~i are ~I, with the pat- 
tern of signs defined in (5.8). 

Table A.2atb. Intensities for transitions between the group of states with symmetry 
F and F' of a tetrahedral molecule; a common factor Oinc/216 has been extracted from 
both tables for (a) CH 4 and (b) CD4. The following abbreviations have been used: 
g~ = IGBI2, g2 = IGTv I 2, g~ = IGT~[2 and g~ = IGT~I 2. The table in its present form 
a~sumes"T >> ~(A is ~ measure forJthe tunnel splitting) in which case the population 
of all ground-state levels is the same. A generalization to lower temperatures with 
proper inclusion of Boltzmann factors is straightforward 

(a) 

JH 4 

A 

T x 

Ty 

T z 

A T T T E x y z 

135g2 45g2x 45g2y 45g2z 0 

45g2 x 27g 2 27g~ 27g~ 36gx 2 

45g~ 27g2 z 2792 27g2 x 36g~ 

4592 z 27g~ 27g2 x 27g~ 36g2z 

0 36g~ 36g2y 36g2z 0 

(b) 
CD 4 

A 

T x 

Ty 

T z 

E 

A T T T 0 x y z 

2 30g2 x 30g~ 30g2z 0 70g A 

30g2 x 42g 2 42g2z 42g2y 36g2 x 

30g2y 42g2z 42g 2 42g2x 36g~ 

30g2 z 42g~ 42g2 x 42g~ 36g2z 

As most measurements use powder samples, i t  is useful to quote powder averaged 
quantities as well. Defining g~- = IGFI 2, and g~ as its powder average one obtains 

2 
gA = I + 3 Jo (QP~/~) (A.2) 

2 2 2 2 
gT - gTx + gTy + gT z = I -Jo (QPvr~/~) (A.3) 
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Table A.3a,b. In tensi ty  of T-T t ransi t ions for  CH 4 (and CD 4) for  reduced s i te  symme- 
t r ies .  (a) refers to a threefold symmetry axis;  T1 denotes-the nondegenerate leve l ,  
T2 and T3 the degenerate, ones. (b). refers to a twofold symmetry.axis; TI,  T2 and T3 
denote the states wlth energy elgenvalues -6, 0 and +6, respect lvely.  A common fac- 
tor ~inc/216 has been extracted from both tables. The corresponding tables for  CD 4 
are obtained by mul t ip l i ca t ion  with 14/9. The in tens i t ies  of A-T i and E-T i t rans i -  
t ions (Table A.2) remain unaffected by reduced symmetry 

T I 

T 2 

T 3 

T I T 2 T 3 

63+45 Jo 9 -  9 Jo 9 -  9 Jo 

9 -  9 Jo 54+54 Jo 18-18 Jo 

9 -  9 JO 18-18 Jo 54-54 Jo 

T I 

T 2 

T 3 

T I T 2 T 3 

54+54 Jo 27-27 Jo 0 

27-27 Jo 27+81 Jo 27-27 JO 

0 27-27 Jo 54+54 Jo 

Here Jo denotes a spherical Bessel function and p is the radius of a molecule. For 

cubic symmetry, a l l  T states are degenerate and therefore a l l  T-T t ransi t ions are 

e las t ic .  Only the part resul t ing from the t o t a l l y  symmetric operator W A corresponds 

to the e las t ic  in tens i t ies  in the classical l im i t .  The same statement holds also 

for  CH 3 groups. One may suspect that th is  re la t ion is important in connection with 

models for  the temperature dependence of rotat ional  tunneling. 

A3. Transit ions at Sites with Reduced Symmetry 

So fa r ,  only the in tens i ty  for  cubic s i te  symmetry has been calculated. As we shall 

see somewhat l a te r ,  the ava i l ab i l i t y  of in tens i ty  information in addit ion to the po- 

s i t ions of the ine las t ic  t ransi t ions is important for  reduced s i te  symmetries. In 

the fo l lowing,  a simple method for  the calculat ion of in tens i t ies  is given. I t  s tar ts 

from the t rans i t ion  matrix elements in the cubic case. Only the T states are affected 

by lower symmetry. Degeneracies are removed, and as a consequence some or al l  of the 

t rans i t ions between the T states (with energy ETi) become ine las t ic .  The spatial wave 

functions @CUB combine to new states @N 

~N ~N = ~CUB (A.4) 

A 

The matrix ~N diagonalizes the Hamiltonian m a t r i x ~ T ( T a b l e  5.3) and thus can easi- 

ly be obtained. 

Simi lar ly ,  the spin funct ion • (both F• and IX > ) combine to new states • 
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XN = R XCUB 

with 

(A.5) 

R11 R21 R31 

R = R12 R22 R32 (a.6) 

R13 R23 R33 

Here Rij = R~j~;_ ~ is the unit  matrix of dimension 3 for  CH 4 and of dimension 18 

for  CD 4, respect ively,  Transit ion matr ix elements which are adapted to the given 

symmetry are obtained by rotat ing the T-T part M of the relevant matrix. A 

A N : RT~LR (A.7) 

For CH 4, th is  matrix is given in Table A . I ;  the corresponding 54x54 matrix for  T-T 

t rans i t ions in CD 4 is not l i s ted  e x p l i c i t l y .  

Only for  two cases w i l l  the resul ts be presented in the form of tables and in 

both cases the 180 ~ overlap matrix elements H are neglected: a) for  a threefold 

axis at the crystal  s i te  which y ie lds h 1~h 2=h 3=h4; b) for  a twofold axis at 

the crystal  s i te  which causes the re la t ion h I = h 2 ~ h 3 = h 4 between the 120 ~ over- 

elements h i . For more than two independent elements h i , the matrix R N lap matrix 

depends not only on the symmetry but also on the re la t i ve  magnitude of the overlap 

matrix elements h.. For s imp l i c i t y  only powder-averaged quant i t ies are given in 
1 

Table A.3. One may note that - a p a r t  from a f a c t o r - t h e  resul ts are the same for  

XH 4 and XD 4. 

Relations between the 120 ~ overlap matrix elements, which contain information 

on the s i te  symmetry, cannot always be concluded unambiguously from the energy-level 

scheme. A "symmetric" T state s p l i t t i n g  does not necessari ly mean the presence of 

a twofold axis.  For an unambiguous assignment, the in tens i ty  of the observed tran- 

s i t ions has to be analyzed in addit ion to the level scheme. I f  there is a twofold 

axis at the molecular s i t e ,  one T-T t rans i t ion  is forbidden (Table A.3). Unambiguous 

conclusions (on the basis of peak posit ions only) are possible i f  two or a l l  three 

T states are degenerate. 

The use of in tens i ty  information is even more important i f  the 180 ~ overlap ma- 

t r i x  elements H. cannot be neglected and addit ional parameters enter. Sizeable con- i 
t r ibu t ions from H, however, signal a r e l a t i v e l y  large width of the pocket states 

and inclusion of th is width in the calculat ions may be required. 
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A4. Transit ion Matrix Elements for  the Neutron Scattering from Methyl Groups 

In a calculat ion of the neutron scatter ing from tunneling CH 3 groups or NH 3 mole- 

cules one proceeds as in Sect.A.1. Only the resul ts of a calculat ion with ~ type 

pocket states shall be quoted. The spin functions may be decomposed into states 

with A,E a and E b symmetry which are l i s ted  in Table 5.6. Simi lar ly  the neutron 

scat ter ing operator may be wr i t ten W = WA+W E, with 

WA : �89 ~(~I+~2+~3)(GI+G2+G3 ) (A.8) 

o ~ o ~o 

= s(11+~i2+E i3)(GI+C*G2+cG3 ) (A.9) WEa 

WEa y WEb is the complex conjugate of and G 

Sect.A.1 we define 

= exp(iQ'~y). In a way analogous to 

2 I I 1 T ~ cosQ-r.. GA, = I + ~  _ - -1j  
IXJ 

[ 2 cos(g ' [ i  j IGE~ =I+�89 j 

(A.IO) 

• 2~/3) (A.11) 

with r i j  = r i - r  j .  The corresponding powder-averaged quantities are 

2 (A.12) 
gA = I + 2 jo(Qp~) 

gE2 = gE a2 +gE b2 = 2_2Jo(Qp~) (A.13) 

The intensities for the possible transitions are given in Table A.4. For a powder 

sample, the scattering function is 

Here A denotes the tunnel s p l i t t i n g .  In th is  expression an equal population of a l l  

ground-state levels is assumed which is f u l f i l l e d  for  kT >> A. On the other hand, 

the temperature has to be su f f i c i en t l y  low to allow the neglect of f luctuat ions of 

the rotat ional  potent ia l .  
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Table A.4. Intensity of the transitions between the different symmetry states F and 
F' of a CH 3 group or a NH 3 molecule. Intensities for powder samples are obtained by 
averaging the quantities G~(g) over all orientations of g. The values given in the 
table refer to T >> A (A = tunnel splitting) and thus are based on equally populated 
ground-state levels 

\ 

E a 

E b 

A E a E b 

G~a i 2 2 
GA GEa 
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d~de 

d~ 

de 

E 

E A 

E i 

1 

EJIJ 2 

EAT, ETE 

E A, E E, E T 

AE 

EQQ 

EO0 

EISF 

Shi f t  of peak posit ion 
for  tunneling t rans i t ion 

Wigner functions 

Double d i f f e ren t i a l s  
scat ter ing,  cross-sec- 
t ions ( d = d i s t i n c t ,  s = 
se l f )  

Solid angle element 

Energy in terval  

Energy transfer of the 
neutrons 

Act ivat ion energy 

Energy of i th l i b ra t iona l  
state 

Mean energy of i th l i b ra -  
t ional state 

Transit ions of almost 
f ree ly  rotat ing molecule 

Transit ions within ground- 
state mul t ip le t  of te t ra -  
hedral molecule 

Ground-state energy of 
tetrahedral molecule 

Energy resolut ion 

Electrostat ic  quadrupole- 
quadrupole interact ion 

Electrostat ic  octopole- 
octopole interact ion 

Elast ic incoherent struc- 
ture factor 



exp(-2w) 

q 

Fm~,m(t) ,F~(t) 

f(m E) 

F(t) 

fo(m E) 

F(_Q) 

qb n 

Gs(r ,t) 

Gs(r'-ro;t)E E } 
Gs(m ,mO ;t) 
g(r), gR(r O) 

Gi,f 

G(,  G I, 

2 2 
gA' gE 

g 

F~,,F 

F 

Y 

I~ = h12~ 

H(~!(~) 
mm 

Je,  T 

Debye-Waller factor 

Order parameter 

Rotational relaxation 
functions 

Distribution function of 
orientations w E 

Fluctuating force field 

Static force field 

Form factor 

Rotational angle 

Phase angle 

Rotational wave function 

Van Hove self-correla- 
tion function 

Generalized self-corre- 
lation function 

Probability distribution 
over init ial  position r 0 
of protons 

Transition matrix elements 

Phase factor 

average of IGA 12 and Powder 
IGE 12 

Coupling constant 

Relaxation rate 

Symmetry label 

GrUneisen constant 

Planck's constant 

Rotator functions ex- 
pressed in terms of 
quaternions 

Hamiltonian 

Hamiltonian matrix 

h,h.  
1 

H,H x,Hy,H z 

o o o o 

1 , I z , I + ~ I  - 

I , I  z 

Is(Q,t) 

T IR(Q,t) I s , _ 

I1(Q,t) 

IFW 

I(m) 

j~(x) 

J~(x) 

J 

K~. m 

k,_k' 

K 

K 

k 

M,M 
P 

M' 
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120 ~ overlap matrix ele- 
ments 

180 ~ overlap matrix ele- 
ments 

Neutron scattering ope- 
rators (total, z compo- 
nent, raising and lower- 
ing operators), acting 
on nuclear spin of scat- 
terer 

Nuclear spin of scatter- 
ing nucleus: total spin 
and z component 

Intermediate scattering 
function 

Translational, rotation- 
al intermediate scatter- 
ing function 

Intermediate one-phonon 
scattering function 

Intensity of fixed-win- 
dow measurement 

Spectral function 

Spherical Bessel func- 
tion of order 

Bessel function of or- 
der 

Rotational quantum num- 
ber 

Cubic harmonics 

Wave vector of the neu- 
tron 

Kinetic energy 

Compressibility 

Eigenvalue 

Number of atoms (protons) 
in molecule 

Number of sites acces- 
sible via jumps 



120 

m N 

Mj 

M, M N 

I~> 

I~i~2~3~4 > 

~ I  N2~3N4 > 

n R 

n T 

E 
CO 

~, QQ,QM 

Co' Coaa' 

Co0 

CO 

P 
CO. 

1 

CoD 

P({co~;~J}' I E  
{coj, ;Rj,} t)  

P~' Pa 

P!i)(t),PJ t ) j  

p? 

Neutron mass 

Mult ipl ic i ty of state with 
rotational quantum number J 

Matrix of transition ma- 
t r i x  elements 

Spin function of neutron 

Spin function of tetra- 
hedral molecule; Pi de- 
notes spin of particle i 

Spin function of tetra- 
hedral molecule; Ni de- 
notes spin at position i 

Number of molecules 
(sometimes: atoms) in 
the crystal 

Quantum number of rota- 
tional oscil lator 

Quantum number of trans- 
lational oscil lator 

Euler angles (sometimes col- 
lectively denotes angles) 

Polar coordinates 

Frequency 

Ground-state spl i t t ing 

Peak frequency 

th Splitting of i excited 
librational state 

Debye frequency 

Density matrix 

Stat is t ica l  weights of 
quantum-mechanical states 

Probabi l i ty of f inding a 
part ic le at s i te r~ at 
time t provided that i t  
was ~iO at t=O 

Projection operator 

4, C a 

_Q, Q,,, Q,. 

9 

r 

_R i 

o 

p(r) 

A ^ A 

R, R, R 0 

R 

o o o o 

S ~  S z ,  S+~ S_ 

s(_Q,co) 

Ss(_Q,co) 

Sinc(_Q,co) 

~i n c 

SAF 

s e .  
3 

t 

T 

Total wave function of 
a molecule 

Momentum transfer of the 
neutrons 

Eigenvector in reorien- 
tat ion problems 

Positional vector (of 
atom within molecule) 

Centre-of-mass coordi- 
nate of i th molecule 

Vector connecting atom 
with molecular centre 

Radius of molecule (dis- 
tance from molecular 
c.o.m. ) 

Density or charge dis- 
t r ibut ions 

Rotational operator 
(symmetry operation) 

Rotation matrix 

Matrix which diagona- 
l izes Hamiltonian ma- 
tr ix~x~ T 

Scattering operator act- 
ing on neutron ( to ta l ,  
z component, ra is ing,  
lowering) 

Scattering function 
(van Hove) 

Symmetric scattering 
function 

Incoherent scattering 
function 

Incoherent scattering 
cross-section 

Symmetry-adapted function 

Mathieu functions (odd) 

Time 

Residence time 



T I 

~R 

T 

T O 

0 D 

0 

@ 

= TI,T2,T3,T 4 

<U2> 

U 

~R 

~T 

v l J , v ~ J , v , v  n 

Vc(~E) 

v i (~E, t )  

i E 
Vst(~i ) 

i ( ~ , t )  
Vfl 

v' = V/B 

V h 

~(r) 

v I , v 2, v 

W, W ? 

Spin- lat t ice relaxation 
time 

Characterist ic time in 
Diffusion 

Temperature 

Transit ion temperature 

Debye temperature 

Moment of iner t ia  of a 
molecule 

Azimuthal angle 

Quaternions (coordinates 
on four-dimensional uni t  
sphere) 

Rotator functions 

Mean squared amplitude of 
translat ion osci l la t ions 

Probabi l i ty of 120 ~ jump 

Rotational displacement 

Translational displace- 
ment 

Potential 

Crystal f ie ld  

Single-part ic le potential 

Stat ic part of single- 
par t ic le potential 

Fluctuating part of 
s ingle-par t ic le  poten- 
t ia l  

Scaled potential 

Harmonic part of poten- 
t i a l  

Atom-atom potential 

Probabi l i ty of 90 ~ jump 

Neutron scattering opera- 
tor 

W i 

w(~) 

- I  w :  T 

w 0 

w I 

x R 

_X, X c, X M 

x G 

x 

Y~m(9 ,qS) 

;0 
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Single-part ic le potential 

Distr ibut ion function of 
angular steps 

Relaxation rate 

Rate of t ransi t ions from 
ground-state (CH 3 group) 

Rate of t ransi t ions from 
f i r s t  excited state (CH 3 
group) 

Matrix of relaxation 
rates 

Rotational axis 

Coordinate systems 

Width parameter of pocket 
state 

Concentration 

Euler angles 

Spherical harmonics 

Fr ict ion constant 
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The following c. rections were received after a portion of the book had been 
printed. 

page 9 Table 2.1 please read 
Fluctuating I 

I  potenti l 1 

page 64 l i n e  7 from t he  top  p l e a s e  r ead  . . .  symmetr ized  f u n c t i o n s  . . .  

page 94 one l i n e  above E q . ( 7 . 1 )  p l e a s e  read  . . .  f o r  the  s p e c t r a l  f u n c t i o n  . . .  

page 102 p l e a s e  move the  l a s t  s e n t e n c e  o f  the  2nd paragraph . . .  The a p p l i c a t i o n  

of  h igh  . . .  to  the  end o f  the  f i r s t  paragraph . . .  exponen t  n. The a p p l i -  

c a t i o n  of high . . .  

E E  page 106 unnumbered equation . . .  = Z V (mi,mj) 

J 


	front-matter
	Single-particle rotations in molecular crystals
	back-matter

