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PREFACE

The title of this book is no surprise for people working in the field of Analytical
Mechanics. However, the geometric concepts of Lagrange space and Hamilton space
are completely new.

The geometry of Lagrange spaces, introduced and studied in [76],[96], was exten-
sively examined in the last two decades by geometers and physicists from Canada,
Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international
conferences were devoted to debate this subject, proceedings and monographs were
published [10], [18], [112], [113],... A large area of applicability of this geometry is
suggested by the connections to Biology, Mechanics, and Physics and also by its
general setting as a generalization of Finsler and Riemannian geometries.

The concept of Hamilton space, introduced in [105], [101] was intensively studied
in [63], [66], [97],... and it has been successful, as a geometric theory of the Hamil-
tonian function the fundamental entity in Mechanics and Physics. The classical
Legendre’s duality makes possible a natural connection between Lagrange and Ha-
milton spaces. It reveals new concepts and geometrical objects of Hamilton spaces
that are dual to those which are similar in Lagrange spaces. Following this duality
Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the
Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make
this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.

*
* *

The first chapter is an overview of the geometriy of the tangent bundle. Due to its
special geometrical structure, TM, furnishes basic tools that play an important role
in our study: the Liouville vector field C, the almost tangent structure J, the concept
of semispray. In the text, new geometrical structures and notions will be introduced.
By far, the concept of nonlinear connection is central in our investigations.

Chapter 2 is a brief review of some background material on Finsler spaces, in-
cluded not only because we need them later to explain some extensions of the subject,
but also using them as duals of Cartan spaces.

Some generalizations of Finsler geometry have been proposed in the last three
decades by relaxing requirements in the definition of Finsler metric. In the Lagran-

IX



X The Geometry of  Hamilton & Lagrange Spaces

ge geometry, discussed in Chapter 3, the metric tensor is obtained by taking the
Hessian with respect to the tangential coordinates of a smooth function L defined
on the tangent bundle. This function is called a regular Lagrangian provided the
Hessian is nondegenerate, and no other conditions are envisaged.

Many aspects of the theory of Finsler manifolds apply equally well to Lagran-
ge spaces. However, a lot of problems may be totally different, especially those
concerning the geometry of the base space M. For instance, because of lack of the
homogeneity condition, the length of a curve on M, if defined as usual for Fin-
sler manifolds, will depend on the parametrization of the curve, which may not be
satisfactory.

In spite of this a Lagrange space has been certified as an excellent model for
some important problems in Relativity, Gauge Theory, and Electromagnetism. The
geometry of Lagrange spaces gives a model for both the gravitational and electro-
magnetic field in a very natural blending of the geometrical structures of the space
with the characteristic properties of these physical fields.

A Lagrange space is a pair where is a regular
Lagrangian.

For every smooth parametrized curve the action integral may be
considered:

A geodesic of the Lagrange Space (M, L) is an extremal curve of the action integral.
This is, in fact, a solution of the Euler–Lagrange system of equations

where is a local coordinate expression of c.
This system is equivalent to

where

and

Here are the components of a semispray that generates a notable nonlinear con-
nection, called canonical, whose coefficients are given by



Preface XI

This nonlinear connection plays a fundamental role in the study of the geometry of
TM. It generates a splitting of the double tangent bundle

which makes possible the investigation of the geometry of TM in an elegant way, by
using tools of Finsler Spaces. We mention that when L is the square of a function
on TM, positively 1–homogeneous in the tangential coordinates (L is generated by
a Finsler metric), this nonlinear connection is just the classical Cartan nonlinear
connection of a Finsler space.

An other canonical linear connection, called distinguished, may be considered.
This connection preserves the above decomposition of the double tangent bundle and
moreover, it is metrical with respect to the metric tensor When L is generated
by a Finsler metric, this linear connection is just the famous Cartan’s metrical linear
connection of a Finsler space.

Starting with these geometrical objects, the entire geometry of TM can be ob-
tained by studying the curvature and torsion tensors, structure equations, geodesics,
etc. Also, a regular Lagrangian makes TM, in a natural way, a hermitian pseudo-
riemannian symplectic manifold with an almost symplectic structure.

Many results on the tangent bundle do not depend on a particular fundamental
function L, but on a metric tensor field. For instance, if is a Riemannian
metric on M and is a function depending explicitly on as well as directional
variables then, for example,

cannot be derived from a Lagrangian, provided Such situations are often

encountered in the relativistic optics. These considerations motivate our investiga-
tion made on the geometry of a pair where is a nondegenerate,
symmetric, constant signature d–tensor field on TM (i.e. transform as a
tensor field on M). These spaces, called generalized Lagrange spaces [96], [113], are
in some situations more flexible than that of Finsler or Lagrange space because of
the variety of possible selection for The geometric model of a generalized
Lagrange space is an almost Hermitian space which, generally, is not reducible to
an almost Kählerian space. These spaces, are briefly discussed in section 3.10.

Chapter 4 is devoted to the geometry of the cotangent bundle T*M, which fol-
lows the same outline as TM. However, the geometry of T*M is from one point
of view different from that of the tangent bundle. We do not have here a natural
tangent structure and a semispray cannot be introduced as usual for the tangent
bundle. Two geometrical ingredients are of great importance on T*M: the canonical
1-form and its exterior derivative  (the canonical symplectic



XII The Geometry of Hamilton & Lagrange Spaces

strucutre of T*M). They are systematically used to define new useful tools for our
next investigations.

Chapter 5 introduces the concept of Hamilton space [101], [105]. A regular Ha-
miltonian on T*M, is a smooth function such that the Hessian
matrix with entries

is everywhere nondegenerate on T*M (or a domain of T*M).
A Hamilton space is a pair where H (x, p) is a regular Ha-

miltonian. As for Lagrange spaces, a canonical nonlinear connection can be derived
from a regular Hamiltonian but in a totally different way, using the Legendre trans-
formation. It defines a splitting of the tangent space of the cotangent bundle

which is crucial for the description of the geometry of T*M.
The case when H is the square of a function on T*M, positively 1-homogeneous

with respect to the momentum Pi, provides an important class of Hamilton spaces,
called Cartan spaces [98], [99]. The geometry of these spaces is developed in Chapter
6.

Chapter 7 deals with the relationship between Lagrange and Hamilton spaces.
Using the classical Legendre transformation different geometrical objects on TM are
nicely related to similar ones on T*M. The geometry of a Hamilton space can be
obtained from that of certain Lagrange space and vice versa. As a particular case,
we can associate to a given Finsler space its dual, which is a Cartan space. Here,
a surprising result is obtained: the L-dual of a Kropina space (a Finsler space) is a
Randers space (a Cartan space). In some conditions the L-dual of a Randers space
is a Kropina space. This result allows us to obtain interesting properties of Kropina
spaces by taking the dual of those already obtained in Randers spaces. These spaces
are used in several applications in Physics.

In Chapter 8 we study how the geometry of cotangent bundle changes under
symplectic transformations. As a special case we consider the homogeneous contact
transformations known in the classical literature. Here we investigate the so–called
”homogeneous contact geometry” in a more general setting and using a modern
approach. It is clear that the geometry of T*M is essentially simplified if it is
related to a given nonlinear connection. If the push forward of a
nonlinear connection by f is no longer a nonlinear connection and the geometry of
T*M is completely changed by f. The main difficulty arises from the fact that the
vertical distribution is not generally preserved by f. However, under appropriate
conditions a new distribution, called oblique results. We introduce the notion of
connection pair (more general than a nonlinear connection), which is the keystone
of the entire construction.
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The last two decades many mathematical models from Lagrangian Mechanics,
Theoretical Physics and Variational Calculus systematically used multivariate La-

grangians of higher order acceleration, [106].

The variational principle applied to the action integral

leads to Euler–Lagrange system of equations

which is fundamental for higher order Lagrangian Mechanics. The energy function
of order k is conservative along the integral curves of the above system.

From here one can see the motivation of the Lagrange geometry for higher order
Lagrangians to the bundle of acclerations of order k, (or the osculator bundle of
order k) denoted by and also the L-dual of this theory.

These subjects are developed in the next five chapters.
A higher order Lagrange space is a pair where

M is a smooth differentiate manifold and is a regular Lagrangian
or order k, [106]. The geometry of these spaces may be developed as a natural
extension of that of a Lagrange space. The metric tensor,

has to be nondegenerate on A central problem, about existence of regular
Lagrangians of order k, arises in this case. The bundle of prolongations of order k,
at of a Riemannian space on M is an example for the Lagrange space of order
k, [106].

We mention that the Euler–Lagrange equations given above are generated by
the Craig–Synge covector

that is used in the construction of the canonical semispray of This is essential
in defining the entire geometric mechanism of

The geometric model of is obtaining by lifting the whole construction to
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As a particular case, a Finsler space of order k is obtained if L is the square of
a positive k–homogeneous function on the bundle of accelerations of order k. Also
the class of generalized Lagrange spaces of order k may be considered.

Before starting to define the dual of we should consider the geometri-
cal entity having enough properties to deserve the name of dual of
The space should have the same dimension as should carry a natural
presymplectic structure and at least one Poisson structure. Although the subject
was discussed in literature (see [85]) the above conditions are not full verified for
the chosen duals.

Defining [110]:

then all the above conditions are satisfied. The two-form defines a

presymplectic structure and the Poisson brackets  a

Poisson structure.
The Legendre transformation is

where It is a locall diffeomorphism.

Now, the geometry of a higher order regular Hamiltonians may be developed as
we did for

The book ends with a description of the Cartem spaces of order 2, and
the Generalized Hamilton space or order 2.

For the general case the extension seems to be more difficult since the L–duality
process cannot be developed unless a nonlinear connection on is given in ad-
vance.

We should add that this book naturally prolongates the main topics presented in
the monographs: The Geometry of Lagrange Spaces. Theory and Applications (R.
Miron and M. Anastasiei), Kluwer, FTPH no.59; The Geometry of  Higher Order La-
grange Spaces. Applications to Mechanics and Physics (R. Miron), Kluwer, FTPH,
nr.82.

This monograph was written as follows:

• Ch. 1,2,3 – H. Shimada and

• Ch. 4,5,6 – H. Shimada and R. Miron

• Ch. 7,8 – D. Hrimiuc

• Ch. 9,10,11,12,13 – R. Miron
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The book is divided in two parts: Hamilton and Lagrange spaces and Hamilton
space of higher order.

The readers can go in the heart of subject by studying the first part (Ch. 1–8).
Prom this reason, the book is accessible for readers ranging from graduate students
to researchers in Mathematics, Mechanics, Physics, Biology, Informatics etc.

Acknowledgements. We would like to express our gratitude to P.L. Antonelli,
M. Anastasiei, M. Matsumoto for their continuous support, encouragement and
numerous valuable suggestions. We owe special thanks to R.G. Beil, S.S. Chern,
M. Crampin, R.S. Ingarten, D. Krupka, S. Kobayashi, R.M. Santilli, L. Tamassy,
I. Vaisman for useful discussions and suggestions on the content of this book, to

and M. Roman who gave the manuscript a meticulous reading. We
are pleased to thank to Mrs. Elena Mocanu and Mrs. V. Spak who typeset our
manuscript into its final excellent form.

Finally, we would like to thank the publishers for their co-operation and courtesy.



Chapter 1

The geometry of tangent bundle

The geometry of tangent bundle over a smooth, real, finite dimensional
manifold M is one of the most important fields of the modern differential geometry.
The tangent bundle TM carries some natural object fields, as: Liouville vector field

tangent structure J, the vertical distribution V. They allow to introduce the
notion of semispray S, which is a tangent vector field of TM, having the property

We will see that the geometry of the manifold TM can be constructed
using only the notion of semispray.

The entire construction is basic for the introduction of the notion of Finsler
space or Lagrange space [112], [113]. In the last twenty years this point of view
was adopted by the authors of the present monograph in the development of the
geometrical theory of the spaces which can be defined on the total space TM of
tangent bundle. There exists a rich literature concerning this subject.

In this chapter all geometrical object fields and all mappings are considered of
the class expressed by the words ”differentiate” or ”smooth”.

1.1 The manifold TM

Let M be a real differentiable manifold of dimension n. A point of M will be denoted
by x and its local coordinate system by The indices i, j, ... run
over set {1, ..., n} and Einstein convention of summarizing is adopted all over this
book.

The tangent bundle of the manifold M can be identified with the
1-osculator bundle see the definition below.

Indeed, let us consider two curves having images in a domain of
local chart We say that and have a ”contact of order 1” or the ”same
tangent line” in the point if: and for any function

1



2 The Geometry of Hamilton & Lagrange Spaces

The relation ”contact of order 1” is an equivalence on the set of smooth curves in
M, which pass through the point Let be a class of equivalence. It will be
called a ”1–osculator space” in the point   The set of 1–osculator spaces in
the point will be denoted by and we put

One considers the mapping defined by Clearly, is
a surjection.

The set is endowed with a natural differentiable structure, induced by
that of the manifold M, so that is a differentiable mapping. It will be described
below.

The curve is analyticaly represented in the local chart
by taking the function f from (1.1),

succesively equal to the coordinate functions then a representative of the class
is given by

The previous polynomials are determined by the coefficients

Hence, the pair with  is a
local chart on M. Thus a differentiable atlas of the differentiable structure
on the manifold M determines a differentiable atlas on  and therefore
the triple ( M) is a differentiable bundle.

Based on the equations (1.2) we can identify the point  with the
tangent vector Consequently, we can indeed identify the 1–osculator
bundle with the tangent bundle (TM , M).

By (1.2) a transformation of local coordinates on the manifold
TM is given by



Ch.1. The geometry of tangent bundle 3

One can see that TM is of dimension 2n and is orientable.
Moreover, if M is a paracompact manifold, then TM is paracompact, too.
Let us present here some notations. A point whose projection by is

   x, i.e. will be denoted by (x ,y ) , its local coordinates being We
put where {0} means the null section of

The coordinate transformation (1.3) determines the transformation of the natural

basis of the tangent space TM at the point the

following:

By means of (1.3) we obtain

Looking at the formula (1.4) we remark the existence of some natural object fields
on E.

First of all, the tangent space to the fibre in the point is locally

spanned by . Therefore, the mapping V :

provides a regular distribution which is generated by the adapted basis

(i = 1, ..., n). Consequently, V is an integrable distribution on TM. V is called the
vertical distribution on TM.

Taking into account (1.3), (1.4), it follows that

is a vertical vector field on TM, which does not vanish on the manifold It is
called the Liouville vector field. The existence of the Liouville vector field is very
important in the study of the geometry of the manifold TM.

Let us consider the              –linear mapping

Theorem 1.1.1. The following properties hold:

1°   J is globally  defined on TM.

2°
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3° J is an integrable structure on E.

4°

The proof can be found in [113].
We say that J is the tangent structure on E.
The previous geometrical notions are useful in the next sections of this book.

1.2 Homogeneity

The notion of homogeneity of functions with respect to the variables
is necessary in our considerations because some fundamental object fields on E

have the homogeneous components.
In the osculator manifold a point has a geometrical meaning,

i.e. changing of parametrization of the curve does not change the space
Taking into account the affine transformations of parameter

we obtain the transformation of coordinates of in the form

Therefore, the transformations of coordinates (1.3) on the manifold E preserve
the transformations (2.2).

Let us consider

the group of  homoteties of real numbers field R.
H acts as an uniparameter group of transformations on E as follows

where is the point Consequently, H
acts as a group of transformations on TM, with the preserving of the fibres.

The orbit of a point is given by

The tangent vector to orbit in the point is given by

.
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This is the Liouville vector field in the point u0.
Now we can formulate:

Definition 1.2.1. A function differentiable on and continuous
on the null section is called homogeneous of degree r, on the
fibres of TM, (briefly: r–homogeneous with respect to ) if:

The following Euler theorem holds [90], [106]:

Theorem 1.2.1. A function differentiable on and continuous on
the null sections is homogeneous of degree r on the fibres of TM if and only if we
have

being the Lie derivative with respect to the Liouville vector field

Remark. If we preserve Definition 1.2.1 and ask for  to be differentia-
ble on TM (inclusive on the null section), then the property of 1–homogeneity of f
implies that f is a linear function in variables

The equality (2.4) is equivalent to

The following properties hold:

1°

2°

3°

Definition 1.2.2. A vector field is r-homogeneous if

It follows:

Theorem 1.2.2. A  vector field is r-homogeneous if and only if we
have

(2.5)

Of course,  is the Lie derivative of X with respect to

Consequently, we can prove:
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1° The vector fields are 1 and 0-homogeneous, respectively.

2° If is s-homogeneous and is r-homogeneous then f X
is s + r-homogeneous.

3° A vector field on

is r–homogeneous if and only if are functions ( r – l)-homogeneous and
are functions r-homogeneous.

4° is r-homogeneous and is s-homogeneous, then
is a (r + s – 1)-homogeneous function.

5° The Liouville vector field is 1-homogeneous.

6° If is an arbitrary s-homogeneous function, then is a (s – 1)-

homogeneous function and is (s – 2)-homogeneous function.

In the case of q-form we can give:

Definition 1.2.3. A q-form is s-homogeneous if

It follows [106]:

Theorem 1.2.3. A q-form  is s-homogeneous if and only if

(2.6)

Corollary 1.2.1. We have, [106]:

1° s-homogeneous and is

2°

3° are 0-homogeneous 1-forms.
are 1-homogeneous 1-forms.

The applications of those properties in the geometry of Finsler space are num-
berless.
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1.3 Semisprays on the manifold

One of the most important notions in the geometry of tangent bundle is given in
the following definition:

Definition 1.3.1. A semispray S on is a vector field with the
property:

If S is homogeneous, then S will be called a spray.
Of course, the notion of a local semispray can be formulated taking

being an open set in the manifold

Theorem 1.3.1.

1° A semispray S can be uniquely written in the form

2° The set of functions (i = 1, ..., n) are changed with respect to (1.3) as
follows:

3° If the set of functions   are a priori given on every domain of a local chart
in so that (3.3) holds, then S from (3.2) is a semispray.

Proof. 1° If a vector field is a semispray S, then

implies and
So that are uniquely determined and (3.2) holds.
2° The formula (3.3) followsfrom (1.3), (1.4) and the fact that S is a vector field

on    i.e.

3° Using the rule of transformation (3.3) of the set of functions it follows that

is a vector field which satisfies

q.e.d.

From the previous theorem, it results that S is uniquely determined by
and conversely. Because of this reason,  are called the coefficients of the semispray
S.



8 The Geometry of Hamilton & Lagrange Spaces

Theorem 1.3.2. A semispmy S is a spray if and only if its  coefficients  are
2-homogeneous functions with respect to

Proof. By means of 1° and 3° from the consequences of Theorem 2.2 it follows

that  is 2-homogeneous and is 0–homogeneous vector fields. Hence, S is

2–homogeneous if and only if are 2–homogeneous functions with respect to
The integral curves of the semispray S from (3.2) are given by

It follows that, on M, these curves are expressed as solutions of the following diffe-
rential equations

The curves solutions of (3.5), are called the paths of
the semispray S. The differential equation (3.5) has geometrical meaning. Con-
versely, if the differential equation (3.5) is given on a domain of a local chart U
of the manifold M , and this equation is preserved by the transformations of local

coordinates on M, then coefficients obey the transformations

(3.3). Hence are the coefficients of a semispray. Consequently:

Theorem 1.3.3. A semispray S on with the  coefficients is characte-
rized by a system of differential equations (3.5), which has a geometrical meaning.

Now, we are able to prove

Theorem 1.3.4. If  the base manifold M is paracompact, then on there exist
semisprays.

Proof. M being paracompact, there is a Riemannian metric g on M. Consider
the Christoffel symbols of g. Then the set of functions

is transformed, by means of a transformation (1.3), like in formula (3.3). Theorem
1.3.1 may be applied. It follows that the set of functions  are the coefficients of a
semispray S. q.e.d.
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Remarks.

1° isaspray, where whose  differen-

tial equations (3.5) are

So the paths of S in the canonical parametrization are the geodesies of the
Riemann space (M , g).

2° is a remarkable geometrical object field on (called non-

linear connection).

Finally, in this section, taking into account the previous remark, we consider the
functions determined by a semispray S:

Using the rule of transformation (3.3) of the coefficients we can prove, without
difficulties:

Theorem 1.3.5.   If         are the coefficients of a semispray S, then the set of
functions   from (3.6) has the following rule of transformationwith respect
to (1.3):

In the next section we shall prove that  are the coefficients of a nonlinear
connection on the manifold E = TM.

1.4 Nonlinear connections

The notion of nonlinear connection on the manifold E = TM is essentially for study
the geometry of TM. It is fundamental in the geometry of Finsler and Lagrange
spaces [113].

Our approach will be two folded:

1° As a splitting in the exact sequence (4.1).

2° As a derivate notion from that of semispray.
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Let us consider as previous the tangent bundle (TM , M) of the manifold M.
It will be written in the form (E, M) with E = TM. The tangent bundle of the
manifold E is (TE, E), where is the tangent mapping of the projection
As we know the kernel of is the vertical subbundle  (VE, E ). Its fibres are
the linear vertical spaces

A tangent vector vector field on E can be represented in the local natural frame

on E by

It can be written in the form or, shorter, The
mapping has the local form

The points of submanifold VE are of the form (x, y, 0, Y). Hence, the fibres of
the vertical bundle are isomorphic to the real vector space

Let us consider the pullback bundle

The fibres of are isomorphic to We can define the following
morphism of vector bundles It follows that

By means of these considerations one proves without difficulties that the following
sequence is exact:

Now, we can give:

Definition 1.4.1. A nonlinear connection on the manifold E = TM is a left
splitting of the exact sequence (4.1).

Therefore, a nonlinear connection on E is a vector bundle morphism
with the property

The kernel of the morphism C is a vector subbundle of the tangent bundle
(TE, E), denoted by (HE , E) and called the horizontal subbundle. Its
fibres determine a distribution supplementary to the
vertical distribution Therefore, a nonlinear connection N
induces the following Whitney sum:
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The reciprocal property holds [112]. So we can formulate:

Theorem 1.4.1. A nonlinear connection N on E = TM is characterized by the
existence of a subbundle (HE , E) of tangent bundle of E such that the Whitney
sum (4.2) holds.

Consequences.

1° A nonlinear connection N on E is a distribution
with the property

and conversely.

2° The restriction of the morphism   to the HE is an isomorphism
of vector bundles.

3° The component  of the mapping is a morphism of vector bun-
dles whose restrictions to fibres are isomorphisms. Hence for any vector field X
on M there exists an horizontal vector field on E such that
is called the horizontal lift of the vector field X on M.

Using the inverse of the isomorphism  we can define the morphism of vector
bundles such that  In other words, D is a right
splitting of the exact sequence (4.1). One can easy see that the bundle Im D coincides
with the horizontal subbundle HE. The tangent bundle TE will decompose as
Whitney sum of horizontal and vertical subbundle. We can define now the mor-
phism on fibres as being the identity on vertical vectors and zero
on the horizontal vectors. It follows that C is a left splitting of the exact sequence
(4.1). Moreover, the mapping C and D satisfy the relation:

So, we have

Theorem 1.4.2. A nonlinear connection on the tangent bundle is
characterized by a right splitting of the exact sequence (4.1),  such
that

The set of isomorphisms  defines a canonical isomorphism
r between the vertical subbundle and the vector bundle

Definition 1.4.2. The map given by is called the
connection map associated to the nonlinear connection C, where p2 is the projection
on the second factor of
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It follows that the connection map K is a morphism of vector bundles, whose
kernel is the horizontal bundle HE. In general, the map K is not linear on the fibres
of  ( E,  M ).

The local representation of the mapping K is

Let us consider a nonlinear connection determined by C and K the connection map
associated to C, with the local expression given by (4.3). Taking into account (4.3)
and the definition of C, we get the local expression of the nonlinear connection:

The differential functions defined on the domain of
local charts on E are called the coefficients of the nonlinear connection. These
functions characterize a nonlinear connection in the tangent bundle.

Proposition 1.4.1. To give a nonlinear connection in the tangent bundle (TM , M)
is equivalent to give a set of real functions  on every coor-
dinate neighbourhood of TM, which on the intersection of coordinate neighbourhoods
satisfies the following transformation rule:

Proof. The formulae (4.4) are equivalent with the second components
of the connection map K from (4.3) under the overlap charts are changed as follows

Applying Theorem 1.3.5 we get:

Theorem 1.4.3. A semispray S on with the  coefficients   determines

a nonlinear connection N with the coefficients

Conversely, if are the coefficients of a nonlinear connection N, then

are the coefficients of a semispray on
The nonlinear connection N, determined by the morphism C is called homoge-

neousand linear if the connection map K associated to C has this property, respec-
tively.
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Taking into account (4.3) and the local expression of the mapping it follows
that N is homogeneous iff its  coefficients are homogeneous.

Exactly as in Theorem 1.3.4, we can prove:

Theorem 1.4.4. If the manifold M is pracompact, then there exists nonlinear
connections on

1.5 The structures

Now, let be the inclusion and for consider the usual
identification  We obtain a natural isomorphism

called the vertical lift

In local coordinates, for any it follows

The canonical isomorphism is the inverse of the isomorphism
defined by

Explicitely, we have

Consequently, we can define –linear mapping by

Proposition 1.5.1.
1° The mapping (5.1) is the tangent structure J investigated in

2° In the natural basis J is given by

In the same manner we can introduce the notion of almost product structure
on TM.

Based on the fact that direct decomposition (4.2)' holds when a nonlinear con-
nection N is given, we consider the vertical projector   defined
by
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Of course, we have The projector v coincides with the mapping C considered
as morphism between modules of sections. So, N is characterized by a vertical
projector v.

On the same way, a nonlinear connection on TM is characterized by a
linear mapping for which:

The mapping h is called the horizontal projector determined by a nonlinear connec-
tion N.

We have h + v = I.
Finally, any vector field can be uniquely written as follows X =

hX + vX. In the following we adopt the notations

and we say is a horizontal component of vector field X, but is the vertical
component.

So, any can be uniquely written in the form

Theorem 1.5.1. A nonlinear connection N in the vector bundle (TM, M) is
characterized by an almost product structure on the manifold TM whose distri-
bution of eigenspaces corresponding to the eigenvalue –1 coincides to the vertical
distribution on TM.

Proof. Given a nonlinear connection N, we consider the vertical projector v deter-
mined by N and set It follows   Hence is an almost product
structure on TM. We have

Conversely, if an almost product structure on TM is given, and has the pro-

perty (*), we set It results that v is a vertical projector and therefore

it determines a nonlinear connection N.
The following relations hold:

Taking into account the properties of the tangent structure J and almost product
structure we obtain
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Let us consider the horizontal lift determined by a nonlinear connection N

with the local coefficients Denote the horizontal lift of vector fields

(i = l ,..., n), by

Remark that is an isomorphism of vector bundle. Then
the horizontal lift induced by  N is just the inverse map of   restricted  to  HTM.
According to (4.3)' we have

where are the coefficients of the nonlinear connection N.

Locally, if then Moreover,

(i = 1, ..., n), is a local basis in the horizontal distribution HTM.

Consequently, it follows that (i = 1, ... ,  n), is a local basis adapted

to the horizontal distribution HTM and vertical distribution VTM.

Let the dual basis of the adapted basis It follows

Proposition 1.5.2. The local adapted basis and its dual trans-

form, under a transformation of coordinate (1.3) on TM, by

Indeed, the second formula is known from (1.4). The first one is a consequence

of the formula
i

For the operators h, v,  we get:
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Now, let us consider the            linear mapping defined
by

Theorem 1.5.2. The mapping has the properties:

1° is globally defined on the manifold TM.

2° is a tensor field of (1,1) type on TM. Locally it is given by

3° is an almost complex structure on TM:

Proof. Since (5.9) and (5.10) are equivalent, it follows from (5.10) that is globally
defined on TM. From (5.9) we deduce (5.11). q.e.d.

By a straightforward calculation we deduce:

Lemma 1.5.1. Lie brackets of the vector fields from adapted basis  are

given by

where

Let us consider the quantities

Also, by a direct calculation, we obtain:
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Lemma 1.5.2. Under a transformation of coordinates (1.3) on TM, we obtain

Consequently, the tensorial equations have geometrical mean-
ing.

Therefore, we get:

Lemma 1.5.3. The horizontal distribution HTM is integrable if and only if we
have on TM:

Indeed, from (5.12), the Lie brackets give an horizontal vector fields

if and only if
The previous property allows to say that  is the curvature tensor field of

the nonlinear connection N. We will say that from (5.14) is the torsion of the
nonlinear connection N.

Now, we can prove:

Theorem 1.5.3. The almost complex structure is integrable if and only if we
have

Proof. Applying Lemma 1.5.1, and taking into account the Nijenhuis tensor field
of the structure [113]:

putting etc., we deduce

Now it follows that q.e.d.
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1.6 d-tensor Algebra
Let N be a nonlinear connection on the manifold E = TM. We have the direct
decomposition (4.2)'. We can write, uniquely a vector field in the form

where belongs to the horizontal distribution HTM.

Taking the adapted basis to the direct decomposition (4.2)' we can

write:

With respect to (1.3) the components and of and respec-
tively obey the rules of transformation

Also, a 1-form field can be always set as follows

where
Therefore in the adapted cobasis wehave :

(6.2)'

The changes of local coordinate on TM transform the components (x, y), (x, y)
of the 1-form as the components of 1-forms on the base manifold M, i.e.:

A curve has the tangent vector  given in the

form (6.1), hence:

This is a horizontal curve if So, ifthe functions

are given, then the curves solutions of the system of differential

equations determine a horizontal curve c in E = TM.
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A horizontal curve c with the property is said to be an autoparallel

curve of the nonlinear connection N.

Proposition 1.6.1. An autoparallel curve of the nonlinear connection N, with the
coefficients  is characterized by the system of differential equations

Now we study shortly the algebra of the distinguished tensor fields on the ma-
nifold TM = E.

Definition 1.6.1. A tensor field T of type (r, s) on the manifold E is called distin-
guished tensor field (briefly, a d-tensor) if it has the property

For instance, the components and from (6.1) of a vector field X are
d–tensor fields. Also the components and of an 1-form from (6.2) are
d-l-form fields.

Clearly, the set of the d-tensor fields of type (r, s) is a             module and
the module  is a tensor algebra. It is not difficult to see that any

tensor field on E can be written as a sum of d-tensor fields.

We express a d-tensor field T from (6.5) in the adapted basis and

adapted cobasis From (6.5) we get the components of T:

So, T is expressed by

Taking into account the formulae (5.7) and (6.5)', we obtain:

Proposition 1.6.2. With respect to (1.5) the components  of a d-tensor
field T of type (r, s) are transformed by the rules:
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But (6.7) is just the classical law of transformation of the local coefficients of a
tensor field on the base manifold M.

Of course, (6.7) characterizes the d-tensor fields of type (r, s) on the manifold
E = TM (up to the choice of the basis from (6.6)). Using the local expression (6.6)

of a d-tensor field it follows that , (i = 1, ..., n), generate the d-tensor

algebra over the ring of functions           Taking into account Lemma 1.5.2 it
follows:

Proposition 1.6.3.

1° and from (5.12), (5.13) are d-tensor fields of type (1,2).

2° The Liouville vector field is a d-vector field.

1.7 N–linear connections

Let N be an a priori given nonlinear connection on the manifold E = TM.

The adapted basis to N and V is and adapted cobasis is its dual

Definition 1.7.1. A linear connection D (i.e. a Kozul connection or covariant
derivative) on the manifold E = TM is called an N–linear connection if:

1° D preserves by parallelism the horizontal distribution N.

2° The tangent structure J is absolute parallel with respect to D, that is DJ = 0.

Consequently, the following properties hold:

We will denote

Thus, we obtain the following expression of D:
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The operators and are special derivations in the algebra of d-tensor fields
on E. Of course, are not covariant derivations, because

However the operators and have similar properties
to D. For instance, and satisfy the Leibniz rule with respect of tensorial
product of d-tensor fields. It is important to remark that and applied to
d-tensor fields give us the d-tensor fields, too. We can see these important properties

on the local representtion of and in the adapted basis  and

will be called the h-covariant derivation and v-covariant derivation, respectively.
Remarking that we obtain:

Proposition 1.7.1. In the adapted basis an N–linear connection D

can be uniquely represented in the form:

The system of functions gives us the coefficients
of the h-covariant derivative and of the v-covariant derivative respectively.

Proposition 1.7.2. With respect to the changes of local coordinates on TM, the
coefficients  of an N–linear connection D are transformed as
follows:

Indeed, the formulae (7.4) and (5.7) imply the rules transformation (7.5).

Remarks.
1° are the coordinates of a d-tensor field.

2° A reciprocal property of that expressed in the last proposition also holds.

Let us now consider a d-tensor field T in local adapted basis, given for simplicity
by
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Its covariant derivative with respect to is given

by

where we have the h–covariant derivative,

Its coefficients are

Therefore, is the operator of h-covariant derivative. Of course, is a d-tensor
field with one more index of a covariance.

The v-covariant derivative of T is and

the coefficients are as follows:

Here we denoted by the operator of v-covariant derivative and remark that

is a d-tensor field with one more index of a covariance.
The operators and have the known properties of a general covariant

derivatives, applied to any d-tensor field T, taking into account the facts:

for any function

An important application can be done for the Liouville vector field

The following d-tensor fields

are called the h- and v-deflection tensor fields of the N-linear connection D.

Proposition 1.7.3. The deflection tensor fields are given by

Indeed, applying the formulae (7.7), (7.8) we get the equalities (7.9)'.
The d-tensor of deflections are important in the geometry of tangent bundle.
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A N–linear connection D is called of Cartan type if its tensor of deflection have
the property:

From the last proposition, it follows

Proposition 1.7.4 The N–linear connection is of Cartan
type if and only if we have

We will see that the canonical metrical connection in a Finsler space is of Cartan
type.

We can prove [113]:

Theorem 1.7.1. If M is a paracompact manifold then there exist N–linear connec-
tions on TM.

1.8 Torsion and curvature

The torsion of a N–linear connection d is given by

Using the projectors, h, and v associated to the horizontal distribution N and to
the vertical distribution V, we find

Taking into account the property of  skew-symmetry of       and the fact that
0 we find

Theorem 1.8.1. The torsion of an N–linear connection is completely determined
by the following d-tensor fields:
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Corollary 1.8.1. The following properties hold:

a) is an integrable distribution.

b)

We shall say that is h(hh)–torsion of D, that is v(hh)–
torsion, etc.

Since the Lie brackets of the vector field from the adapted basis are given by the
formula (5.12), we obtain

Theorem 1.8.2. The local components, in the adapted basis of the

torsion of an N –linear connection are as follows:

Proof. These local coefficients are provided by the five formulae (8.2) if we consider

instead of X and Y the components of the adapted basis

The curvature of a N–linear connection D is given by

It is not difficult to prove the following theorems:

Theorem 1.8.3. The curvature tensor of the N–linear connection D has the
properties:

Theorem 1.8.4. The curvature of an N–linear connection D on TM is completely
determined by the following three d-tensor fields:
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Remark. The curvature has six components. But the property
shows that only three components, namely the one in (8.6) are essential.

In the adapted basis, the local coefficients of the d-tensors of curvature are given
by

Now, using Proposition 1.7.1, we obtain:

Theorem 1.8.5. In the adapted basis the d-tensors of curvature  and
of an N–linear connection are as follows:

where | denotes, as usual, the h-covariant derivative with respect to the N–linear
connection

The expressions (8.6) of the d-tensors of curvature
and in the adapted basis lead to the Ricci identities satisfied by an
N–linear connection D.

Proposition 1.8.1. The Ricci identities of the N–linear connection
are:

where is an arbitrary d-vector field.

The Ricci identities for an arbitrary d-tensor field hold also.
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For instance if is a d-tensor field, then the following formulae of the
commutation of second h- and v-covariant derivative hold:

Applying the Ricci identities(8.9) to the Liouville vector field we

deduce some fundamental identities in the theory of N–linear connections. Taking
into account the h- and v-deflection tensors we have from (8.9):

Theorem 1.8.6. For any N–linear connection the  following
identities hold:

Corollary 1.8.2.    If      is an N–linear connection of Cartan type, then the
following relations hold:

The d-torsions and d-curvature tensors of an N–linear connection
are not independent. They satisfy the Bianchi identities[113], obtained

by writting in the adapted basis the following Bianchi identities, verified by the
linear connection D:

where means the cyclic sum over X, Y, Z.

1.9 Parallelism. Structure equations

Consider an N–linear connection D with the  coefficients in

the adapted basis
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If c is a parametrized curve in the manifold

with the property then its tangent vector field  can

be written in the form (6.3), i.e.

The curve c is horizontal if and it is an autoparallel curve of the nonlinear

connection
We denote

Here is the covariant differential along with the curve c of the N–linear con-

nection D.

Setting we have

Let us consider

The objects are called the ”1-forms connection” of D.
Then the equation (9.3) takes the form:

The vector X on TM is said to be parallel along with the curve c, with respect to

N–linear connection D if A glance at (9.3) shows that the last equation

is equivalent to Using the formula (9.5) we find the following
result:

Proposition 1.9.1. The vector field   from            is parallel

along the parametrized curve c in TM, with respect to the N–linear connection
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if and only if   its   coefficients and
are solutions of the linear system of differential equations

A theorem of existence and uniqueness for the parallel vector fields along with a
curve c on the manifold TM can be formulated.

A horizontal path of an N–linear connection D on TM is a horizontal parametrized
curve with the property

Using (9.1) and (9.5), with we obtain the following
theorem:

Theorem 1.9.1. The horizontal paths of an N–linear connection
are characterized by the system of differential equations:

Now we can consider a curve in the fibre It can be repre-
sented by the equations

The above is called a vertical curve of TM in the point
A vertical curve is called a vertical path with respect to the N–linear connec-

tion D if
Again the formulae (9.1), (9.5) lead to:

Theorem 1.9.2. The vertical paths in the point with respect to the N–linear
connection are characterized by the system of differential e-
quations

Obviously, the local existence and uniqueness of horizontal paths are assured if
the initial conditions for (9.6) are given. The same consideration can be made for
vertical paths, (9.7).

Considering the 1-form of connection from (9.4) and the exterior differential
of the 1-forms from the adapted dual basis we can determine the structure
equations of a N–linear connection D on the manifold TM.
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Lemma 1.9.1. The exterior differentials of  1-forms are given
by

where

Indeed, a straightforward calculus on the exterior differential  leads to (9.8).

Remark. from (9.8)' are the h-coefficients of an N–linear connection, called
the Berwald connection.

Lemma 1.9.2. With respect to a changing of local coordinate on TM, the following
2-forms

are transformed like a d-vector field and the 2-forms

are transformed like a d-tensor field of type (1,1).

Indeed, taking into account Lemma 1.9.1 and the expression of 1-forms of con-
nection the previous lemma can be proved.

Now, we can formulate the result:

Theorem 1.9.3. The structure equations of an N–linear connection
on the manifold TM are given by

where and are the 2-forms of torsion
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and the 2-forms of curvature are expressed by

Proof. By means of Lemma 1.9.2, the general structure equations of a linear con-
nection on TM are particularized for an N–linear connection D in the form (9.9).
Using 1-forms connection from (9.4) and the formula (9.8), we can calculate,

without difficulties, the 2-forms of torsion and the 2-forms of curvature
obtaining the expressions (9.10) and (9.11).

The geometrical theory on the manifold TM of tangent bundle will be used in
next chapters for studying the geometries of Finsler and Lagrange spaces.



Chapter 2

Finsler spaces

The notion of general metric space appeared for the first time in the disertation of
B. Riemann in 1854. After sixty five years, P. Finsler in his Ph.D. thesis introduced
the concept of general metric function, which can be studied by means of  variational
calculus. Later, L. Berwald, J.L. Synge and E. Cartan precisely gave the correct
definition of a Finsler space.

During eighty years, famous geometers studied the Finsler geometry in connec-
tion with variational problem, geometrical theory of tangent bundle and for its
applications in Mechanics, Physics or Biology. In the last 40 years, some remarkable
books on Finsler geometry were published by H. Rund, M. Matsumoto, R. Miron
and M. Anastasiei, A. Bejancu, Abate–Patrizio, D. Bao, S.S. Chern and Z.Shen, P.
Antonelli, R.Ingarden and M. Matsumoto.

In the present chapter we made a brief introduction in the geometry of Finsler
spaces in order to study the relationships between these spaces and the dual notion
of Cartan spaces.

In the following we will study: Finsler metrics, Cartan nonlinear connection,
canonical metrical connections and their structure equations.

Some special classes of Finsler manifolds as          –metrics, Berwald spaces will
be pointed out. We underline the important role which the Sasaki lift plays for
almost Kählerian model of a Finsler manifold, as well as the new notion of homoge-
neous lift of the Finsler metrics in the framework of this theory.

2.1 Finsler metrics

At the begining we define the notion of Finsler metric and Finsler manifold.

Definition 2.1.1. A Finsler manifold (or Finsler space) is a pair
where M is a real n-dimensional differentiable manifold and a scalar
function which satisfy the following axioms:

31
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1° F is a differentiable function on the manifold and F is con-
tinuous on the null section of the projection

2° F is a positive function.

3° F is positively 1-homogeneous on the fibres of tangent bundle TM.

4° The Hessian of with elements

is positively defined on

Proposition 2.1.1. The set of functions  from (1.1) is transformed, with
respect to (1.3) in Ch.l, by the rule

Indeed, in virtue of (1.4) in Ch.l we have:

and

Consequently (1.2) holds.
Because of (1.2) we say that is a distinguished tensor field (briefly d-tensor

field). Of course, is a covariant symmetric of order 2 d-tensor field defined on
the manifold

The function F(x, y) is called fundamental function and the d-tensor field  is
called fundamental (or metric) tensor of the Finsler space

Examples.

1° A Riemannian manifold determines a Finsler manifold
where

(1.3)

The fundamental tensor of this Finsler space is coincident to the metric tensor
of the Riemann space

2° Let us consider the function
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defined in a preferential local system of coordinate on

The pair with F defined in (1.4) satisfies the axioms 1-4 from
Definition 2.1.1. So, is a Finsler space. The fundamental tensor field  can be
easy calculated.

Remark. This was the first example of Finsler space from the literature of the
subject. It was given by B. Riemann in 1854.

3° Antonelli–Shimada’s ecological metric is given, in a preferential local system
of coordinate on by

( are positive constants),

where being even.

4° Randers metric. Let us consider the function of a Finsler space

where is a Riemannian metric and  is a dif-
ferential linear function in This metric is called a Randers metric and was
introduced by the paper [135]. The fundamental tensor of the Randers space
is given by [89]:

and one can prove that the fundamental tensor field is positive definite
under the condition (see the book [24]).

The first example motivates the following theorem:

Theorem 2.1.1. If the base manifold M is paracompact, then there exist functions
which are fundamental functions for Finsler manifolds.

Regarding the axioms 1-4 formulated in Definition 2.1.1, we can prove without
difficulties.

Theorem 2.1.2. The system of axioms of a Finsler space is minimal.

However, the axiom 4° of this system is sometimes too strong in applications of
Finsler geometry in construction of geometrical models in other scientific disciplines,
for instance in theoretical physics.
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Let us consider the fibre in a point of the tangent bundle
It is known that is a real n-dimensional vector space. The

set of points

is called the indicatrix of Finsler space in the point
The restriction of the fundamental function F to the fibre de-

termines a Riemann metric in the submanifold immersed in the
manifold TM. Since is positively defined, the following property holds,
[139]:

Theorem 2.1.3. If a Finsler manifold has the property: in every
point the indicatrix is strictly convex, then the axiom 4° is satisfied.

If one retains the axioms 1°, 2°, 3° from the Definition 2.1.1 of a Finsler manifold
and add the following axiom 4 :́

4´ a. rank on
b. signature of d-tensor field is constant,

it results the notion of Finsler manifold with semidefinite metric. If the axioms 1°,
2°, 3°, 4´ are satisfied on an open set we will say that we have a
Finsler space with the semidefinite metric on the open set

In general, Randers metric (without the condition ) give rise to
Finsler spaces with semi–definite Finsler metrics.

In the following sections of chapters of the present monograph we refer to the
Finsler spaces with the definite or semidefinite metric without mention the difference
between them.

2.2 Geometric objects of the space

The property of 1-homogeneity of the fundamental function F(x, y) of the Finsler
space induces properties of homogeneity of the geometrical objects derived from
it.

Theorem 2.2.1. On a Finsler manifold the following properties hold:

1° The components of the fundamental tensor field are 0–homogeneous, i.e.,

2° The functions



Ch.2. Finsler spaces 35

are 1–homogeneous.

3° The functions

are (–l)–homogeneous.

In the same time we have some natural object fields:

Proposition 2.2.1.

1° The quantity Pi from (2.2) is a d–covector field.

2° The set of functions from (2.3) is a covariant of order 3 symmetric d–
tensor field.

3° is a scalar field, if is a d-vector field.

4° is a scalar field, being d-vector fields.

The proof of previous properties is elementary. is called the square of norm
of vector field X and is the scalar product (calculated in a point

Assuming the angle in a point
between vectors are given by the solution of

the trigonometric equation

The number is uniquely determined, because in a Finsler space with the definite
metric cos from (2.4) satisfy the condition

Other properties are given by

Proposition 2.2.2. In a Finsler manifold the following identities
hold:

1°

2°

3°

4°
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Some natural object fields are introduced in the following:

Theorem 2.2.2. In a Finsler manifold we have the following natural
object fields:

1° The Liouville vector field

2° The Hamilton 1 - form

3° The symplectic structure

Proof. 1° The Liouville vector field exists on the manifold TM independently of
the metrical function F of the space (cf. Ch.l).

2° By means of Proposition 2.2.1 and on the fact that with respect to (1.1) it
follows that does not depend on the changing of local coordinates.

3° is a closed 2-form on and

q.e.d.

Definition 2.2.2. A Finsler space is called reducible to a Rie-
mannian space if its fundamental tensor field does not depend on the directional
variables

The previous definition has a geometrical meaning, since the equation

does not depend on the changing of local coordinates.

Theorem 2.2.3. A Finsler space is reducible to a Riemannian space iff the
tensor is vanishing on the manifold

Proof. If does not depend on thus from the identity
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the condition implies Conversely, on and (2.8)

implies on

Let us consider another geometrical notion: the arc length of a smooth curve in
a Finsler manifold

Let c be a parametrized curve in the manifold M:

U being a domain of a local chart in M.
The curve c has an analytical expression of form:

The extension of c to is defined by the equations

Thus the restriction of the fundamental function F(x, y) to  is

We define the ”length” of curve c with extremities c(0), c(l) by the number

The number L(c) does not depend by the changing of coordinates on and,
by means of 1-homogeneity of the fundamental function F, L(c) does not depend
on the parametrization of the curve c. So L(c) depends on c, only.

We can fix a canonical parameter on the curve c, given by the arclength of c.
Indeed, the function given by

is derivable, having the derivative:
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So the function is invertible. Let be its inverse. The
change of parameter given by has the property

So, we have:

Theorem 2.2.4. In a Finsler space for any smooth curve
exists a canonical parameter s with the property (2.11).

2.3 Geodesies

Let us consider a smooth parametrized curve  having
the ending points c(0) and c(l). Its length is given by the formula (2.10). We will
formulate the variational problem for the functional L(c). Consider a vector field

along the curve c with the properties Let be a
set of smooth curve given by the mappings

such that the analytical expression of being

with small, being real number. So, the curves have the same end points
c(0), c(l) and same tangent vectors in this points with curve c. The length of the
curve is given by

The necessary condition for L(c) to be extremal value of is as follows

This equality is equivalent to

Integrating by parts the second term one obtains
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Since is an arbitrary d-vector field we get from the previous equation the following
Euler–Lagrange equations

Definition 2.3.1. The curves solutions of the Euler–La-
grange equations (3.1) are called geodesies of theFinsler space

Since the equations (3.1) are equivalent to the system
of equations

Substituting     we get the following form of the previous Euler–Lagrange
equations

where

the functions being the Christoffel symbols of the fundamental tensor field
This is

Changing now to the canonical parameter s, we have The equations

(3.2) become

Theorem 2.3.1. Geodesics in a Finsler space in the canonical parametrization
are given by the differential equations (3.5).

A theorem of existence and uniqueness of the solutions of differential equations
(3.5) can be formulated.
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2.4 Canonical spray. Cartan nonlinear connec-
tion

For a Finsler space we can define a canonical spray S and an impor-
tant nonlinear connection. Noticing that the function is a regular Lagrangian,
we introduce its energy by:

Thus, integral action of the Lagrangian L(x, y) along with smooth parametrized
curve is given by the functional

The Euler–Lagrange equations are given by:

Remark. Starting from the property that is energy function
of the regular Lagrangian we will prove in the next chapter the following two
properties.

Theorem A. Along with the integral curves of the Euler–Lagrange equations

we have:

Theorem B. (Noether) For any infinitesimal symmetry
( const.) of the regular Lagrangian and for any -func-

tion the following function

is conserved along with the integral curves of the Euler–Lagrange equations
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Proposition 2.4.1. The Euler–Lagrange equations (4.1) can be expressed in the
form

where is given by

Proof. The same calculus as in the previous section, taking
shows us that the equations (4.2) are equivalent to (4.3).

Remarking that the equations (4.3), (4.4) give the integral curve of the spray

The vector field S is called canonical spray of the space.

Proposition 2.4.2. The spray S of (4.5) is determined only by the fundamental
function F(x,y). Its integral curve are given by the equation (4.3), (4.4).

Consequently, we have:

Proposition 2.4.3. In a Finsler space the integral curves of the
canonical spray are the geodesies in canonical parametrization.

Indeed, the equations (3.5) of geodesics in the canonical parametrization are
coincident with the equations (4.3), (4.4).

Now, applying the theory from the section 4, ch.l, one can derive from the canoni-
cal spray S the notion of the nonlinear connection for the Finsler space

Definition 2.4.1. The nonlinear connection determined by the canonical spray 5
of the Finsler space is called Cartan nonlinear connection of the Finsler space

Theorem 2.4.1. The Cartan nonlinear connection N has the coefficients

It is globally defined on the manifold and depends only on the fundamental
function F(x,y).



42 The Geometry of Hamilton & Lagrange Spaces

From now on we will use only the adapted basis to the distributions

N and V, determined only by the Cartan nonlinear connection.
The coefficients of from (4.5)’ are 1–homogeneous functions with respect to

and have the properties

where
We have

Theorem 2.4.2.

1) The horizontal curves with respect to Cartan nonlinear connection
are characterized by the following system of differential equations:

2) The autoparallel curves of the Cartan nonlinear connection are characterized
by the system of differential equations:

2.5 Metrical Cartan connection

The famous metrical Cartan connection in a Finsler space can be
defined as an N–linear connection metrical with respect to the fundamental tensor
field and with h- and v-torsions vanish, N being Cartan nonlinear connection.
Indeed, we have:

Theorem 2.5.1. The following properties hold:

1) There exists a unique N –linear connection D on with coefficients
satisfying the following axioms:

Al D is h-metrical, i.e.
A2 D is v-metrical, i.e.
A3 D is h-torsion free, i.e.
A4 D is v-torsion free, i.e.
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2) The coefficients are given by the generalized Christoffel
symbols:

3) D depends only on the fundamental function F of the Finsler space

The proof of the theorem is made by using the known techniques. It was initiated
by M. Matsumoto [88].

The connection from the previous theorem will be called the canonical
metrical Cartan connection.

Taking into account this theorem one can demonstrate without difficulties the fol-
lowing properties of the Finsler spaces endowed with the canonical Cartan nonlinear
connection and the canonical metrical Cartan connection.

Proposition 2.5.1. The deflection tensor field of the Cartan metrical connection
CT(N) satisfies the following equations:

Remark. If we consider the following Matsumoto’s system of axioms A1–A4 and
the axiom

we obtain the system of axioms which uniquely determined the Cartan metrical
connection Miron, Aikou, Hashiguchi proved the following result:

The Matsumoto’s axioms A1–A5 of the Cartan metrical connection are
independent.

Proposition 2.5.2. The following properties hold with respect to Cartan metrical
connection:

1.

2.

3.
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Proposition 2.5.3. The Ricci identities of the metrical Cartan connection
are:

where the torsion tensors are:

and the curvature d-tensors are:

Hereafter we denote the metrical Cartan connection by or by

Let us consider the covariant d-tensors of curvature

Proposition 2.5.4. The covariant d-tensors of curvature satisfy the following i-
dentities:

Indeed, the last two identities are evident.
Applying the Ricci identities to the fundamental tensor and taking into ac-

count Theorem 2.5.1, we get the first three identities.

Proposition 2.5.5. The Cartan connection has the following properties:
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where means the cyclic sum in the indices i,j,k..

Indeed, by applying the Ricci identities to the Liouville d-vector field and
looking at the tensor of deflection and we get the first iden-
tity (5.6). For the other identities, we will write the symplectic structure
in the form and write that its exterior differential vanishes,

2.6 Parallelism. Structure equations

Let be a metrical Cartan connection of the Finsler space The coefficients
of are given by the formula (5.1). As usually, the adapted basis

of Cartan nonlinear connection N and vertical connection V and the

dual adapted basis we can study the notion of parallelism of the vector
fields in Finsler geometry.

Let be a parametrized curve of the manifold TM and

be the tangent vector field along with the curve Then, we can write

As we know is horizontal curve with respect to the nonlinear connection N if

Also, is autoparallel curve of the nonlinear connection N if

We denote the tangent vector field along with by and taking

into account (6.1), we can set for the vector field X along with

is called the covariant differential along with the curve

Setting we get
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Let us consider

where are the 1-forms connection of D. Then the equation (6.3) can be written
in the form:

Definition 2.6.1. We say that the vector field X on TM is said to be parallel along

with the curve with respect to Cartan mectrical connection if

By means of (6.3), the equation is equivalent with equations

From the formula (6.5), one obtains the following result:

Theorem 2.6.1. The vector field  is parallel along with the

parametrized curve with respect to the metrical Cartan connection if and only if
its coefficients are solutions of the linear system of the differential
equations

A theorem of the existence and uniqueness for the parallel vector field along with
a given curve on TM can be formulated.

A horizontal path of the metrical Cartan connection D on TM is a horizontal
parametrized curve with the property

Using (6.5) for and taking into account the previous theorem, we get:

Theorem 2.6.2. The horizontal paths of Cartan metrical connection in Finsler
space are characterized by the system of differential equations

If we describe the initial conditions of the previous system, we obtain the exis-
tence and uniqueness of the horizontal paths in the Finsler space
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Now let us consider a curve in the fibre of TM. It can be represented
the equations:

The curve is called a vertical curve in the point
A vertical curve is called a vertical path with respect to metrical Cartan

connection if Now, applying equation (6.5), we have

Theorem 2.6.3. In the Finsler space the vertical paths in the point
with respect to metrical Cartan connection are characterized by the system of
differential equations

Now, taking into account the theory of structure equations of N–linear connec-
tion given in the section of chapter 1, we can apply it to the case of metrical Cartan
connection We get the following result:

Theorem 2.6.4. The structure equations of the Cartan metrical connection
are given by

where the 2-forms of torsion and 2-form of curvature are as follows:

Now, the Bianchi identities of the metrical Cartan connection can be
obtained from the system of exterior equations (6.8) by calculating the exterior dif-
ferential of (6.8), modulo of the same system (6.8) and using the exterior differential

of 2-forms and of 2-form of curvature
We obtain:
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Theorem 2.6.5. The Bianchi identities of the Cartan metrical connection
of Finsler spaces are as follows:

where means the interchange of the indices j, k and subtraction and means

the cyclic permutation of indices j,k,l and summation.

Remark. The structure equations given in Theorem 2.6.4 are extremely useful in
the theory of submanifolds of the Finsler manifold

2.7 Remarkable connections of Finsler spaces

Let us consider an N–linear connection D with the coefficients
To these coefficients we add the coefficients of the nonlinear connection and we
write D with the coefficients For metrical Cartan connection

we have the coefficients given by the formulae (4.5)’ and
(5.1).

To the metrical Cartan connection we associate the following
N–linear connections:
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1° Berwald connection

2° Chern–Rund connection

3° Hashiguchi connection

These remarkable connections satisfy a commutative diagram:

obtained by means of connection transformations [113].
The properties of metrizability of those connections can be expressed by the

following table:

Remark. It is shown that the Chern connection (introduced in [25], [42]) can be
identified with the Rund connection (cf. M. Anastasiei [7]).

2.8 Special Finsler manifolds

Berwald space is a class of Finsler spaces with geometrical properties similar to
those Riemann spaces. Based on the holonomy group of Berwald connection Z.
Szabo made a first classification of Berwald spaces. Other important classes of
special Finsler spaces are Landsberg spaces and locally Minkowski Finsler spaces.

In this section we briefly describe some of the main properties of these spaces.
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Definition 2.8.1. A Finsler space is called Berwald space if the connection coef-

ficients of the Berwald connection are function of position alone,

i.e.

We denote by a Berwald space.
The space can be characterized by the following tensor equation.

Theorem 2.8.1. A Finsler space is Berwald space if and only if

Proof. It is not difficult to prove that the Cartan connection
and Berwald connection are related by the formulae:

From here we obtain:

where

From the second expression of (5.5), we have

It follows that the condition is equivalent to

Eliminating the term from (8.3) and (8.4), we find

where we used
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Permutating now the indices (ilj) in (8.5) and taking into account the identity
one obtain:

Contracting this by we obtain

which means So the equation (8.5) reduces to

On the other hand, in general, the hv–curvature tensor of can be written
as, [88]:

Taking into account of from (8.8) we obtain:

Hence, from (8.7), (8.9) we have
Conversely, from we obtain Therefore, (8.3) gives

and then i.e. q.e.d.

Corollary 2.8.1. A Finsler space is Berwald space if and only if the hv–curvature

tensor of vanishes identically.

Another important class of Finsler space is given by the Landsberg spaces [88]:

Definition 2.8.2. A Finsler space is called Landsberg space if its Berwald connection
is h–metrical, i.e.

where the index 0 means contraction by

Theorem 2.8.2. A Finsler space is Landsberg space if and only if the hv–curvature
tensor of Cartan connection vanishes identically.



52 The Geometry of Hamilton & Lagrange Spaces

Proof. From Proposition 2.5.6, a Landsberg space is characterized by In
general, from the equation we obtain

where we used the Ricci identity (5.3) and

Taking into account equation (8.8) and the above equation we obtain:

From (8.11), if hold good, then we obtain
Conversely, from the relation (cf. (5.6)), we can conclude the

assertion. q.e.d.

The following result is now immediate.

Corollary 2.8.2. If a Finsler space is Berwald space, then it is a Landsberg space.

The locally Minkowski Finsler space are introduced by the following definition.

Definition 2.8.3. A Finsler space is called locally Minkowski if in
every point there is a coordinate system such that on
its fundamental function F(x,y) depends only on directional variable Such a
coordinate system is called adapted to a locally Minkowski space.

Theorem 2.8.3. A Finsler space is locally Minkowski if and only if the covariant
tensor of curvature of the Cartan connection vanishes and the tensorial
equation holds.

Proof. In an adapted coordinate system, first two coefficients of the Cartan con-
nection are given by Hence from the definitions of and

taking into account of (5.4), (5.5), respectively, we obtain
Next, we see easily that under the adapted coordinate system

Conversely, if and from (5.6) and (8.8) we obtain

Hence from (8.8) we obtain Hence, So,
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the first equation of (5.5) reduces to

This implies Riemannian flatness. Hence there exists a coordinate system such
that from which

Consequently, from the axiom of h-metrizability, we obtain

from which we obtain q.e.d.

Since we have an example given by Antonelli of a locally Minkowski space [11],
that means:

On the paracompact manifolds there exists locally Minkowski Finsler spaces.
So, we obtain the following sequences of inclusions of special Finsler spaces:

where is the class of Landsberg spaces, the class of the Berwald spaces, the
class of the locally Minkowski spaces, and the class of Riemannian spaces.

We remark that is the class of flat Riemannian spaces.
In 1978, Y. Ichijyo has shown the geometrical meaning of the vanishing hv–

curvature tensor using the holonomy mapping as follows:

Theorem 2.8.4. (Ichijyo) Let us assume that (M, F) is a connected Finsler space
with the Cartan connection Let p and q be two arbitrary points of M, and let

be any piecewise differentiable curve joining p and q. In order that the holonomy
mapping from to along with with respect to the nonlinear connection N,
be always a C–affine mapping, it is necessary and sufficient that the hv –curvature
tensor vanishes identically.

It still remain an open problem: If there exists Landsberg space with vanishing
hv–curvature tensor.

In [68], Y. Ichijyo introduced the following interesting fundamental function

where is a fundamental Finsler function, the function is 1–positively homo-
geneous in and are linearly independent differentiable
1–forms.

Definition 2.8.4. The Finsler metric (8.12) is called 1-form Finsler metric and the
space (M, F) is called 1-form Finsler space.

There are some special 1-form metrics:
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1. Berwald–Móor metric: which is a typical Minkowski metric
in a local coordinat system. G.S.Asanov introduced a more general form:

where are linearly independent 1-forms.

2. m–th root metric: which was studied by
Shimada [152] and Antonelli and Shimada [19] for the case

3. A special Randers metric: where k
is a constant. This example was given by Y. Ichijyo.

Using the Cartan connection, Matsumoto and Shimada proved the following
result for a 2-dimensional 1-form Finsler space [91]:

Theorem 2.8.5. If a 2-dimensional 1-form Finsler space is a Landsberg space, then
it is a Berwald space.

In order to introduce the notion of Douglas space, let us observe first that the
geodesies of a Finsler space can be written in the form:

where

Definition 2.8.5. A Finsler space is called Douglas space if the functions
are homogeneous polynomials in of degree three.

This is equivalent to the fact that the Douglas tensors of vanishes. M.
Matsumoto and S. Bacso [23] proved:

Theorem 2.8.6. If a Landsberg space is a Douglas space, then it is a Berwald space.

Theorem 2.8.7. A Randers space is a Douglas space if and
only if the differential 1-form is a closed form.

We will describe in the sequel the Finsler spaces with constant curvature.

Definition 2.8.6. The quantity K(x,y, X) given by

is called the scalar curvature at (x, y) with respect to X, where is the h-curva-
ture tensor of the Berwald connection [88].
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One can remark that the h-curvature tensor of the Berwald connection is
([88][p.ll8])

From Definition 2.8.6 it can be said that the scalar curvature K(x,y,X) is defined
as the sectional curvature of a 2-section spanned by y and X, with
and in general.

Definition 2.8.7. If the scalar curvature K for a Finsler space of scalar curvature
is a constant, the Finsler space is called a space of constant curvature K.

The following theorem is known ([88]):

Theorem 2.8.8. A Finsler space is of scalar curvature if and only if

where is the torsion tensor of the Cartan connection

The left hand of (8.14) is also called flag curvature:

The flag curvature is one of the important numerical invariants because it lies in
the second variation formula of arc length and takes the place of sectional curvature
from the Riemannian case.

In 1975 the following interesting result concerning scalar curvature was obtained:

Theorem 2.8.9. (Numata [129]) Let be a Berwald space of scalar
curvature K. Then is a Riemannian space of constant curvature or a locally
Minkowski space, according or respectively.

Lastly in this chapter we remark that Finsler spaces with –metric were
studied in the paper [89]. And using the invariants of a Finsler space, was made
a classification of some Finsler spaces with -metric, namely Randers class,
Kropina class, Matsumoto class, etc. The classes are providing new concrete exam-
ples of –metrics.

2.9 Almost Kählerian model of a Finsler mani-
fold

A Finsler space can be thought as an almost Kähler space on the
manifold called the geometrical model of the Finsler space
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In this section we present the Sasaki–Matsumoto lift of the metric tensor of
the space and a new lift, given by R. Miron [109], which is homogeneous and
allows us to study problems concerning the global properties of the Finsler spaces.

In this way the theory of Finsler spaces gets more geometrical consistence.
If we consider the Cartan nonlinear connection of the Finsler space

then we can define an almost complex structure IF on TM by:

It is easy to see that IF is well defined on and it is determined only
by the fundamental function F of the Finsler space

Theorem 2.9.1. The almost complex structure IF is integrable if and only if the
h-coefficients of the torsion of vanishes.

Let be the dual basis of the adapted basis Then, the

Sasaki–Matsumoto lift of the fundamental tensor can be introduced as follows:

Consequently, G is a Riemannian metric on determined only by the fundamen-
tal function F of the Finsler space and the horizontal and vertical distributions
are orthogonal with respect to it.

The following results can be proved without difficulties, [113]:

Theorem2.9.2.
(i) The pair (G, IF) is an almost Hermitian structure on

(ii) The almost symplectic 2-form associated to the almost Hermitian structure
(G, IF) is

(iii) The space is an almost Kählerian space, constructed only
by means of the fundamental function F of the Finsler space

The space is called the almost Kählerian model of the Finsler
space

Theorem2.9.3. The N-linear connection D with the coefficients
of the Cartan connection is an almost Kählerian connection, i. e.:
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Hence, the geometry of the almost Kählerian model  can be studied by means
of Cartan connection of the Finsler space For instance, the Einstein equations
in are given by the Einstein equations in the previous model One can find
it in [113].

Remarking that the Sasaki–Matsumoto lift (9.2) is not homogeneous with re-
spect to a homogeneous lift to of the fundamental tensor field was
introduced by R. Miron in the paper [109].

We describe here this new lift for its theoretical and applicative interest.

Definition 2.9.1. We call the following tensor field on

the homogeneous lift to of the fundamental tensor field of a Finsler space
where a > 0 is a constant, imposed by applications (in order to preserve the

physical dimensions of the components of ) and where is the square of the
norm of the Liouville vector field:

with

We obtain, without difficulties:

Theorem 2.9.4.

1° The pair is a Riemannian space.

2° is 0–homogeneous on the fibers of TM.

3° depends only on the fundamental function F (x, y) of the Finsler space

4° The distributions N and V are orthogonal with respect to

We shall write in the form

where
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Consequently, we can apply the theory of the (h, v)–Riemannian metric on TM
investigated by R. Miron and M. Anastasiei in the book [113].

The equation determines the so called indicatrix of the Finsler space
in the point
Therefore, we have:

Theorem 2.9.5. The homogeneous lift of the metric tensor coincides
with the Sasaki–Matsumoto lift of  on the indicatrix for every
point

A linear connection D on is called a metrical N–connection, with respect

to if D and D preserves by parallelism the horizontal distribution N.
As we know,[113] there exist the metrical N–connection on
We represent a linear connection D, in the adapted basis, in the following form:

where are the coefficients of D.

Theorem 2.9.6. There exist the metrical N–connections D on with respect

to which depend only on the fundamental function F(x, y) of the Finsler space
One of them has the following coefficients

where is the Cartan connection of the Finsler space
is the Berwald connection and means the h–covariant derivation

with respect to
Of course, the structure equations of the previous connection can be written as

in the books [112], [113].

In order to study the Riemannian space it is important to express the
coefficients
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To this aim, expressing in the adapted basis the conditions:

and using the torsions and of the Cartan connection we get by a
direct calculus:

Theorem 2.9.7. The Levi–Civita connection of the Riemannian metric have in
an adapted basis the following coefficients

The structure equations of the Levi–Civita connection (9.11) can be written in
the usual way.

Let us prove that the almost complex structure IF, defined by (9.1) does not
preserve the property of homogeneity of the vector fields. Indeed, it applies the

1–homogeneous vector fields onto the 0–homogeneous vector fields

We can eliminate this incovenient by defining a new kind of almost complex

structure setting:

Taking into account that the norm of the Liouville vector field and the Cartan
nonlinear connection N are defined on it is not difficult to prove:

Administrator
ferret
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Theorem 2.9.8. The following properties hold:

1° is a tensor field of type (1.1) on

2°

3° depends only on the fundamental function F of the Finsler space

4° The –linear mapping preserves the property of
homogeneity of the vector fields form

It is important to know when is a complex structure.

Theorem 2.9.9. is a complex structure on if and only if the Finsler space
has the following property:

Proof. The Nijenhuis tensor

vanishes if and only if the previous equations hold.

Remark. If is a Riemann space, the equation (9.13) is a necessary and sufficient
condition that it to be of constant sectional curvature.

The pair has remarkable properties:

Theorem 2.9.10. We have

1° is an almost Hermitian structure on and depend only on the fun-
damental function F of the Finsler space

2° The associated almost symplectic structure has the expression

where is the symplectic structure (9.3).
3° The following formula holds:
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4° Consequently, is a conformal almost Kählerian structure and we have

Remarks.

1° The previous theorem shows that is a special almost Hermitian struc-
ture.

2° There exist the linear connection compatible with the conformal almost Kä-

hlerian structure

The conformal almost Kählerian space is another geometrical model

of the Finsler space It is based on the homogeneous lift (9.5).
The previous considerations are important for study the Finslerian gauge theory,

[22], [177], and in general in the Geometry of Finsler space The importance of
such kind of lift was emphasized by G.S. Asanov [22]. Namely he proved that some
(h,v) metrics on satisfy the principle of the Post Newtonian calculus. The

metric belongs to this category, while Sasaki–Matsumoto lift has not this proper-
ty.

The theory of subspaces of Finsler spaces can be found in the books [112], [113].



Chapter 3

Lagrange spaces

The notion of Lagrange space was introduced and studied by J. Kern [76] and R.
Miron [96]. It was widely developed by the first author of the present monograph
[106], Since this notion includes that of Finsler space it is expected that the geometry
of these spaces to be more rich and applications in Mechanics or Physics to be more
important.

We will develop the geometry of Lagrange spaces, using the fundamental notions
from Analytical Mechanics as: integral of action, Euler–Lagrange equations, the law
of conservation of energy, Noether symmetries, etc. Remarking that the Euler–La-
grange equations determine the canonical spray of the space, we can construct all
geometry of Lagrange space by means of its canonical spray, following the methods
given in the Chapter 1. So the geometry of Lagrange space is a direct and natural
extension of the geometry of Finsler space.

At the end of this chapter, we emphasize the notion of generalized Lagrange
spaces, useful in the geometrical models for the Relativistic Optics.

3.1 The notion of Lagrange space

At the begining we define the notions of differentiable Lagrangian using the mani-
folds TM and where M is a differentiable real manifold of dimension n.

Definition 3.1.1. A differentiable Lagrangian is a mapping
of class on manifold and continuous on the null section

of the projection

The Hessian of a differentiable Lagrangian L, with respect to has the ele-
ments:

63
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Exactly as in the Finsler case we prove that is a d–tensor field, covariant of
order 2, symmetric.

Definition 3.1.2. A differentiable Lagrangian L(x, y) is called regular if the fol-
lowing condition holds:

Now we can give:

Definition 3.1.3. A Lagrange space is a pair formed by a
smooth real n-dimensional manifold M and a regular Lagrangian L(x, y) for which
d-tensor has a constant signature over the manifold

For the Lagrange space we say that L(x,y) is fundamental
function and is fundamental (or metric) tensor. We will denote, as usually,
by the contravariant of the tensor

Examples.
1° The following Lagrangian from electrodynamics [112], [113]

where is a pseudo–Riemannian metric, a covector field and U(x) a
smooth function, m, c, e being the known constants from Physics, determine a La-
grange space

More general:

2° The Lagrangian

where F(x, y) is the fundamental function of a Finsler space
is a covector field and U(x) a smooth function gives rise to a remarkable

Lagrange space, called the Almost Finsler–Lagrange space (shortly AFL–space).
In particular, the pair is a Lagrange

space.
In other words,

Proposition 3.1.1. Any Finsler space  is a Lagrange space
Conversely, any Lagrange space   for which fundamen-

tal function L(x, y) is positive and 2-homogeneous with respect to and

is positive definite determine a Finsler space
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The previous example proves that:

Theorem 3.1.1. If the base manifold M is paracompat then there exist regular
Lagrangians L(x, y) such that the pair is a Lagrange space.

3.2 Variational problem Euler–Lagrange equa-
tions

The variational problem can be formulated for differentiable Lagrangians and can
be solved in the case when we consider the parametrized curves, even if the integral
of action depends on the parametrization of the considered curve.

Let be a differentiable Lagrangian and
a curve (with a fixed parametrization) having the image in the domain of a

chart U on the manifold M. The curve c can be extended to as

Since the vector field vanishes nowhere, the image of the mapping

c* belongs to
The integral of action of the Lagrangian L on the curve c is given by the func-

tional

Consider the curves

which have the same end points as the curve c, being
a regular vector field on the curve c, with the property and a
real number, sufficiently small in absolute value, so that

The extension of curves to is given by

The integral of action of the Lagrangian L on the curve is given by
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A necessary condition for I(c) to be an extremal value of is

Under our condition of differentiability, the operator is permuting with operator
of integration.

From (2.2)' we obtain

A straightforward calculus leads to:

Substituting in (2.4) and taking into account the fact that is arbitrary, we
obtain the following.

Theorem 3.2.1. In order that the functional I(c) be an extremal value of it
is necessary that c be the solution of the Euler–Lagrange equations:

Some important properties of the Euler–Lagrange equations can be done.
Introducing the notion of energy of the Lagrangian L(x, y), by:

we can prove the so called theorem of conservation of energy:

Theorem 3.2.2. The energy of the Lagrangian L is conserved along to every

integral curve c of the Euler–Lagrange equation

Indeed, along to the integral curve of the equations we

have:
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Consequently, we have q.e.d.

Remark. A theorem of Noether type for the Lagrangian L(x, y) can be found in
the book [106].

3.3 Canonical semispray. Nonlinear connection

A Lagrange space determines an important nonlinear connection
which depends only on the fundamental function L(x, y). Remarking that
from (2.5) is a d–covector and that the fundamental tensor of the space, is
nondegenerate we can establish:

Theorem 3.3.1. If  is a Lagrange space then the system of differential
equations

can be written in the form:

where

Indeed, the formula

holds. Hence (3.1) is equivalent to (3.1)' , being expressed in (3.2).

Theorem 3.3.2. The differential equation (3.1)' gives the integral curves of the
semi–spray

where are expressed in (3.2).
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Indeed, the differential equations (3.1)' do have a geometrical meaning and there-
fore it follows that are the coefficients of a semispray S from (3.3). The integral
curves of S are given by

hence the differential equations (3.1)' are satisfied. q.e.d.

The previous semispray is determined only by the fundamental function L(x, y)
of the space It will be called canonical semispray of Lagrange space

Corollary 3.3.1. The integral curves of the Euler–Lagrange equations

are the integral curves of the canonical semispray S from (3.3).

Indeed, we can apply Theorems 3.3.1 and 3.3.2 to get the announced property.
As we know, (Ch.1), a semispray S determines a nonlinear connection. Applying

Theorem 1.4.3, we obtain:

Theorem 3.3.3. In a Lagrange space there exists the nonlinear con-
nections which depend on the fundamental function L. One of them has the coeffi-
cients

Proposition 3.3.1. The nonlinear connection N with coefficients is in-
variant with respect to the Carathéodory transformations

where is an arbitrary smooth function.

Indeed, we have So,

determine the same canonical spray with Thus, the previous theo-
rem shows that the Carathéodory transformation (3.5) does not change the nonlinear
connection N.

Because the coefficients of N are expressed by means of the fundamental func-
tion L, we say that N is a canonical nonlinear connection of the Lagrange space



Ch.3. Lagrange spaces 69

Example. The Lagrange space of electrodynamics,
being given by (1.3), with has the coefficients of the canonical
semispray S, of the form:

where are the Christoffel symbols of the metric tensor of
the space and is the electromagnetic tensor

Therefore, the integral curves of the Euler–Lagrange equation are given by solution
curves of the Lorentz equations:

The canonical nonlinear connection of has the coefficients (3.4) of the form

It is remarkable that the coefficients of the canonical nonlinear connection N of
the Lagrange spaces of electrodynamics are linear with respect to This fact has
some consequences:

1° The Berwald connection of the space, has the coefficients

2° The solution curves of the Euler–Lagrange equation and the autoparallel curves
of the canonical nonlinear connection N are given by the Lorentz equation
(3.8).

In the end part of this section, we underline the following theorem:

Theorem 3.3.4. The autoparallel curves of the canonical nonlinear connection N
are given by the following system of differential equations:

where is expressed in (3.4).

This results from Section 3, Ch.1.
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3.4 Hamilton–Jacobi equations

Let us consider a Lagrange space and its canonical non-

linear connection. The adapted basis to the horizontal distribution N

and the vertical distribution V has the vector fields

Its dual is with

The momenta of the space can be defined by

Thus is a d–covector field. We can consider the following forms

Proposition 3.4.1. The forms and are globally defined on and we have

Proof. 1° Indeed, and from (4.4) do not depend on the transformation of
local coordinates on

Because of a direct calculus shows that

Theorem 3.4.1. The 2–form  from (4.4), determines on a symplectic struc-
ture, which depends only on the fundamental function L(x,y) of the space



Ch.3. Lagrange spaces 71

Proof. Using the previous proposition results that  is integrable, i.e. and
q.e.d.

Corollary 3.4.1. The triple is a Lagrangian system.

The energy of the space is given by (2.6), Ch.3. Denoting

we get from (2.6), Ch.3:

But, along the integral curve of the Euler–Lagrange equations we have

And from (4.6), we have also

So, we obtain:

Theorem 3.4.2. Along to the integral curves of Euler–Lagrange equations we have
the Hamilton–Jacobi equations

Corollary 3.4.2. The energy is conserved along to every integral curve of the
Hamilton–Jacobi equations.

3.5 The structures and of the Lagrange space

The canonical nonlinear connection N determines some global structures on the
manifold One of them is the almost product structure It is given by the
difference of the projectors h and v

It follows
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Theorem 3.5.1. The canonical nonlinear connection N of the Lagrange space
determines an almost product structures which depends only on

the Lagrangian L(x, y). The eigensubspace of corresponding to the eigenvalue  –1
is the vertical distribution V and eigensubspace of corresponding to the eigenvalue
+1 is the horizontal distribution N.

Conform to a general result, we get from Ch.1.

Theorem 3.5.2. The almost product structure determined by the canonical non-
linear connection N is integrable if and only if the horizontal distribution N is
integrable.

This condition is expressed by the equations

where

Proof. It is not difficult to see that the Nijenhuis tensor of the structure vanishes
if and only if Taking in the adapted basis we have that

hold iff But is a d-tensor field, so the

condition is verified on the manifold q.e.d.

On the manifold there exists another important structure defined by the
canonical nonlinear connection N: It is the almost complex structure, given by the

-linear mapping

or by tensor field

It follows:

Theorem 3.5.3. We have:

1° is an almost complex structure globally defined on themanifold

2° is determined only by the fundamental function L(x, y) of the Lagrange space
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Indeed, 1° The form (5.5)' of shows that the is a tensor field defined on
From (5.5) we prove that is an almost complex structure. This is that we

have

This can be proved by means of (5.5), using the adapted basis

2° Clearly, is determined only by the canonical nonlinear connection, which
depends only on L(x, y). q.e.d.

Theorem 3.5.4. The almost complex structure is a complex structure (i.e. is
integrable) if and only if the canonical nonlinear connection N is integrable.

Indeed, the Nijenhuis tensor vanishes if and only if

1° the distribution N is integrable, i.e.,

2° the d–tensor

But So, it follows q.e.d.

3.6 The almost Kählerian model of the space

Following the construction of the almost Kählerian model from geometry of Fin-
sler space, we extend for Lagrange spaces the almost Hermitian structure
determined by the lift of Sasaki type of the fundamental tensor field and by
the almost complex structure

The metric tensor of the space and its canonical
nonlinear connection allows to introduce a pseudo–Riemannian structure

on the manifold given by the following lift of Sasaki type:

We have:

Theorem 3.6.1.
1° is a pseudo–Riemannian structure on the manifold determined only by

the fundamental function L(x, y).

2° The distributions N and V are orthogonal with respect to .
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Indeed,
1° The tensorial character of and shows that  does not depend on

the transformations of local coordinates on

2°

q.e.d.

For the pair we get:

Theorem 3.6.2.
1° The pair is an almost Hermitian structure on determined only by

the fundamental function L(x, y).

2° The almost symplectic structure associated to the pair is given by (4.4),
i.e.

3° The space is almost Kählerian.

Proof. 1° is evident. from (6.1) and from (5.5) depend only on L(x,y) and
we have, hold.

2° Calculating in the adapted basis we obtain (6.2).

3° Taking into account Theorem 3.4.1, it follows that  is a symplectic structure.
q.e.d.

The space is called almost Kahlerian model of the Lagrange
space

We can use it to study the geometry of Lagrange space For instance, the
Einstein equations of the Riemannian space can be considered as ”the
Einstein equations” of the space

G.S. Asanov showed [22] that the metric given by the lift (6.1) does not satisfy
the principle of the Post–Newtonian calculus. This fact is because the two terms of

has not the same phyisical dimensions. This is the reason to introduce a new lift
[109] which can be used in a gauge theory.

Let us consider the scalar field:

It is determined only by L(x, y). We assume As in the case of Finsler
geometry (cf. Ch.2), the following lift of the fundamental tensor field
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where a > 0 is a constant, imposed by applications in theoretical Physics. This is

to preserve the physical dimensions of the both members of
Let us consider also the tensor field on

and 2–form

where is given by (6.2).
As in the Finslerian case we can prove:

Theorem 3.6.3. We have

1° The pair is an almost Hermitian structure on depending only on
the fundamental function L(x, y).

2° The almost symplectic structure associated to the structure is given
by the formula (6.5).

3° being conformal to symplectic structure the pair is conformal almost
Kählerian structure.

We can remark now that the conformal almost Kählerian space
can be used for applications in gauge theories which implies the notion of the regular
Lagrangian.

3.7 Metrical N–linear connections

Now applying the methods exposed in the first chapter, we will determine some
metrical connections compatible with the Riemannian metric determined by the
formula (6.1). Such kind of metrical connection will give the metrical N–linear
connections for the Lagrange space These connections depend only on the fun-
damental function L(x, y) and this is the reason for the N–metrical connection to
be called canonical.

Applying the theory of N–linear connection from Chapter 1, one proves without
difficulties the following theorem:

Theorem 3.7.1. On the manifold there exists the linear connection D which
satisfy the axioms:



76 The Geometry of Hamilton & Lagrange Spaces

1° D is metrical connection with respect to i.e.

2° D preserves by parallelism the horizontal distribution of the canonical
nonlinear connection N.

3° The almost tangent structure J is absolute parallel with respect to D, i.e.,

From this theorem it follows that we have and the h–component
and v–component have the properties

Moreover,

Consequently, D is an N–linear connection and has two coefficients
which verify the following tensorial equations:

where is the h (v)–covariant derivative with respect to respectively. And
conversely, if an N–linear connection with the coefficients verifies
the properties (7.3), at (7.4) then it is metrical with respect to i.e. the equations
(7.2) are verified.

But if (7.2) are verified then the equation is verified also. So we can
refer the (7.4). We shall determine the general solution of the tensorial
equations (7.4). First of all we prove

Theorem 3.7.2.
1° There exists only one N–linear connection which verifies

the following axioms:

N is canonical nonlinear connection of the space
(it is h-metrical).
(it is v-metrical).

(it is h-torsion free),
(it is v-torsion free).
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2° The coefficients and are expressed by the following generalized Chris-
toffel symbols:

3° This connection depends only on the fundamental function L(x, y) if the La-
grange space

This theorem can be provided in the usual way (see [113]). And this metrical
N–linear connection will be called canonical and will be denoted by

Similar as in the case of Finsler spaces one can determine all N–linear connections
which satisfy only the axioms from the previous theorem.

Now we can study the geometry of Lagrange space by means of canonical
metrical connection or by the general metrical connections which satisfy the axioms

In this respect we can determine as in the Finsler geometry, the structure
equations of the metrical N–linear connection Moreover, Ricci identities and
Bianchi identities can be written in the usual manner.

Therefore, by means of Ch. 1, the connection 1-forms of the canonical
metrical N–connection are

where are given in (7.5).

Theorem 3.7.3. The connection 1-forms of the canonical metrical N–connection
satisfy the following structure equations

and

where the 2-forms of torsion are as follows
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and the 2-forms of curvature are

the d–tensors of curvature and d-tensor of torsion having
the known expression (see Ch.1, 5).

We notice that starting from the canonical metrical connection
other remarkable connections like the connection of Berwald Chern–Rund

and Hashiguchi have the coefficients

respectively. The following commutative diagram holds.

The corresponding transformations of connections from this diagram may be
easily deduced from the Finslerian case.

Some properties of the canonical metrical connection are given by

Proposition 3.7.1. We have:

1° is totally symmetric.

2°

3° The covariant curvature d-tensors (with
etc.) are skew-symmetric in the first two indices.

4°

These properties can be proved using the property  where is the sym-
plectic structure (6.2), the Ricci identities applied to the fundamental tensor of
the space and the equations

By the same methods we can study the metrical N–linear connections
which satisfy the axioms and have a priori given d-tensors

of torsion and
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Theorem 3.7.4.
1° There exists only one N–linear connection which satis-

fies the following axioms:

N is canonical nonlinear connection of the space
( is h-metrical).
( is v-metrical).

The h-tensor of torsion is apriori given.
The v-tensor of torsion is apriori given.

2° The coefficients and of the previous connection are as follows

being the coefficients of canonical metrical N–connection
The proof is similar with that of Theorem 3.7.2.
From now on will be denoted simply by

Proposition 3.7.2. The Ricci identities of the metrical N–connection are
given by:

Indeed, we can apply Proposition 1.8.1.
Of course, the previous identities can be extended to a d-tensor field of type (r, s)

on the ordinary way.
Denoting

we have the h-deflection tensor field and v-deflection tensor field
The tensors and have the known expressions:

Applying the Ricci identities (7.12) to the Liouville vector field we obtain:
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Theorem 3.7.5. If       is a metrical N–linear connection then the following
identities hold

We will apply the previous theory in next section, taking into account the ca-
nonical metrical N–connection and taking Of course, a
theory of parallelism of vector field with respect to the connection can be
done taking into account the considerations from Ch.1.

3.8 Gravitational and electromagnetic fields

Let us consider a Lagrange space endowed with the canonical
metrical N–connection

The covariant deflection tensors and can be introduced by

Obviously we have

and analogous for the v-covariant derivation. Then, Theorem 3.7.5 implies:

Theorem 3.8.1. The covariant deflection tensor fields and of the canonical
metrical N–connection satisfy the identities:

Some considerations from the Lagrange theory of electrodynamics, lead us to
introduce:

Definition 3.8.1. The tensor fields

are called h- and v-electromagnetic tensor field of the Lagrange spaces respec-
tively.
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Proposition 3.8.1. With respect to the canonical metrical N–connection
the v-electromagnetic tensor vanishes.

The Bianchi identities of and the identities (8.2) lead the following im-
portant result.

Theorem 3.8.2. The following generalized Maxwell equations hold:

where
Remarks.

1° If Lagrange space is a Finsler space then and equations (8.4)
simplifies.

2° If the canonical nonlinear connection N is flat, i.e. the distribution N is
integrable, and the previous equations have a simple form.

If we put

and

then we can prove:

Theorem 3.8.3. The following laws of conservation hold

where is the Ricci tensor of the curvature tensor

Remark. The electromagnetic tensor field and the Maxwell equations were
introduced by R. Miron and M. Radivoiovici, [113]. Important contributions have
M. Anastasiei, K. Buchner, (see Ref. from the book [113]).

The curvature d-tensors of the connection have the
following Ricci and scalar curvatures
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Let us denote by the components in the adapted basis

of the energy momentum tensor.
Using the almost Kählerian model of the Lagrange space and

taking into account the canonical metrical connection (see Theorem 3.7.2)
we obtain[113]:

Theorem 3.8.4.

1° The Einstein equations of the almost Kählerian space (n > 2), endowed
with the canonical metrical connection are the following

where k is a real constant.

2° The energy momentum tensors and satisfy the following laws of con-
servation

The physical background of the previous theory was discussed by S. Ikeda in the
last chapter of the book [112]. All this theory is very simple if the Lagrange spaces

have the property

Corollary 3.8.1. If the canonical metrical connection has the property
then we have

1° For n > 2, the Einstein equations of the Lagrange space have the form:

2° The following laws of conservation hold:

In the next section, we apply this theory for the Lagrangian of Electrodynamics.
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3.9 The Lagrange space of electrodynamics

The Lagrange spaces with the Lagrangian from Electrodynamics

which is obtained from the Lagrangian L(x, y), (1.3) for is a very good
example in our theory. It was studied in the book [113]. We emphasized here only
the main results. The space with the fundamental function (9.1) is called the
Lagrange space of electrodynamics.

The fundamental tensor of the space is

and its contravariant is

The canonical spray of the space is given by the differential equations

where

and

Let us denote

The canonical nonlinear connection N has the coefficients

As we remarked already we have:

Theorem 3.9.1. The autoparallel curve of the canonical nonlinear connection (9.4)
are the solutions of the Lorentz equations
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The canonical metrical connection has the coefficients

It follows that the curvature d-tensors are

where is the curvature tensor of the Levi–Civita connection
The covariant deflection tensors are

Proposition 3.9.1. The h- and v-electromagnetic tensor field of the Lagrange space
of electrodynamics are

Consequently, the v-covariant derivative of the tensor vanishes. We obtain

Theorem 3.9.2. The generalized Maxwell equations (8.4) of the Lagrange space of
electrodynamics reduce to the classical ones.

Since implies and  implies we
get from Corollary 3.8.1.

Theorem 3.9.3. The Einstein equations (8.10) in reduce to the classical Ein-
stein equations associated to the Levi–Civita connection.

3.10 Generalized Lagrange spaces

The generalized Lagrange spaces were introduced by the first author, [95], and then
was studied by many collaborators (see [113]). The applications in the general
Relativity or in the relativistic optics was treated too [115].

A detailed study of these spaces one finds in the books [113].
In this section we give a short introduction in the geometrical theory of gene-

ralized Lagrange spaces, since they will be considered in the geometry of Hamilton
spaces.

Definition 3.10.1. A generalized Lagrange space is a pair
where is a d-tensor field on the manifold covariant, symmetric, of rank
n and of constant signature on
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is called fundamental tensor or metric tensor of the space
Evidently, any Lagrange space is a generalized Lagrange space,

whose fundamental tensor field is But not any generalized Lagrange

space is a Lagrange space.

Definition 3.10.2. We say that with fundamental tensor field is
reducible to a Lagrange space if the system of partial differential equations

has solutions with respect to L(x, y).

In order to a space be reducible to a Lagrange space is necessary that the

d-tensor field be totally symmetric. So we have

Proposition 3.10.1. A generalized Lagrange space for which

the tensor field is not totally symmetric is not reducible to a Lagrange space.

Example 1. The space with

with nonvanishing d-covector field and a Riemannian metric is not re-

ducible to a Lagrange space.

This example is strongly related to the axioms of Ehlers–Pirani–Schield and
theory Tavakol–Miron, from General Relativity [121]. This example was also studied
by Watanabe S., Ikeda, S. and Ikeda, F. [171].

Example 2. The space with the fundamental tensor field

where is a Riemann or Lorentz metric tensor, and is
a refractive index, is not reducible to a Lagrange space.

This metric was introduced in Relativistic Optics by J.L. Synge [156]. It was
intensively studied by R. Miron and his collaborators [113], [115].
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These two examples show that the nonlinear connection with the coefficients

being Christoffel symbols of the metric tensor can be associated to
the fundamental tensor of the space But, generally, we cannot derive a
nonlinear connection N from the fundamental tensor

So, we adopt the following postulate:
The generalized Lagrange space is endowed with an a priori

given nonlinear connection N.
In this situation, we can develop the geometry of the pair by using the

same methods as in the case of Lagrange space

For instance, considering the adapted basis  to N and V, respectively,

we can prove:

Theorem 3.10.1.

1° For a generalized Lagrange space endowed with a nonlinear connection N,
there exists a unique N–linear connection satisfying the
following axioms:

 2° has the coefficients given by the generalized Christoffel symbols:

For more details we send the reader to the books [113].
Let us end this chapter with the following important remark. The class of Rie-

mannian spaces is a subclass of the Finsler spaces and this is a subclass of
the class of the Lagrange spaces Moreover, the class of Lagrange spaces is
a subclass of the generalized Lagrange spaces Hence, we have the following
inclusions:

This sequence of inclusions is important in applications to the geometric models in
Mechanics, Physics, Biology, etc., [18].



Chapter 4

The geometry of cotangent
bundle

The geometrical theory of cotangent bundle (T*M, M) of a real, finite dimen-
sional manifold M is important in the differential geometry. Correlated with that of
tangent bundle (TM, M) we get a framework for construction of geometrical mod-
els for Lagrangian and Hamiltonian Mechanics, as well as, for the duality between
them – via Legendre transformation.

The total space T*M can be studied by the same methods as the total space
of tangent bundle TM. But there exist some specific geometric objects on T*M.
For instance the Liouville–Hamilton vector Liouville 1-form the canonical
symplectic structure and the canonical Poisson structure. These properties are fun-
damental for introducing the notions of Hamilton space or Cartan space.

In this chapter we study some fundamental object fields on T*M: nonlinear
connections, N-linear connections, structure equations and their properties. We
preserve the convention that all geometrical objects on T*M or mappings defined
on T*M are of

4.1 The bundle (T*M, M)

Let M be a real n-dimensional differentiable manifold and let (T*M, M) be its
cotangent bundle [175]. If is a local coordinate system on a domain U of a chart
on M, the induced system of coordinates on are
The coordinates are called ” momentum variables”.

87
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A change of coordinate on T*M is given by

Therefore the natural frame are transformed by (1.1) in the form

Looking at the second formula (1.2) the following notation can be adopted

Indeed (1.2) gives us:

The natural coframe is changed by (1.1) by the rule:

The Jacobian matrix of change of coordinate (1.1) is

It follows

We get:

Theorem 4.1.1. The manifold T*M is orientable.

Like in the case of tangent bundle, we can prove:
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Theorem 4.1.2. If the base manifold M is paracompact, then the manifold T*M
is paracompact, too.

The kernel of the differential of the natural projection
is the vertical subbundle VT*M of the tangent bundle TT*M.

Associating to each point the fibre of VT*M we obtain the vertical
distribution:

This distribution is locally generated by the tangent vector field So it is
an integrable distribution, of local dimension n.

Noticing the formulae (1.2) and (1.2)' we can introduce the following geometrical
object fields:

Theorem 4.1.3. The following properties hold:

1° is a vertical vector field globally defined on T*M.

2° The forms and are globally defined on T*M.

3° is a symplectic structure on T*M.

Proof. 1°. By means of (1.1) and (1.3)' it follows that belongs to the distribution

V and it has the property
2°. and do not depend on the changes of coordinates on T*M.
3°.   is a closed 2-form on T*M and

will be called the Liouville–Hamilton vector field on T*M, is called the
Liouville 1-form and is the canonical symplectic structure on T*M.

The pair (T*M, ) is a symplectic manifold.

4.2 The Poisson brackets. The Hamiltonian sys-
tems

Let us consider the Poisson bracket { , } on T*M, defined by
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Proposition 4.2.1. We have

Proof. By means of (1.1), (1.2), and

Therefore we deduce

because  Consequently, q.e.d.

Theorem 4.2.1. The Poisson bracket { , } has the properties

1°

2° { f , g } is R-linear in every argument

3°

4°

By a straightforward calculus, using (2.1), l°–4° can be proved. Therefore { , }
is called the canonical Poisson structure on T*M. The pair ( { , }) is a
Lie algebra, called Poisson–Lie algebra.

The relation between the structures and { , } can be given by means of the
notion of Hamiltonian system.

Definition 4.2.1. A differentiable Hamiltonian is a function
which is of class on and continuous on the zero section
of the projection

Definition 4.2.2. A Hamiltonian system is a triple (T*M, H) formed by the
manifold T*M, canonical symplectic structure and a differentiable Hamiltonian
H.
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Let us consider the and – of tangent
vectors and covectors fields on T*M, respectively.

Thus, the following mapping:

can be defined by:

Proposition 4.2.2. is an isomorphism.

Indeed, is a mapping and bijective, because

But we can remark that the local base of is sent by in the

local base of by the rule

We get also

We can apply this property to prove:

Theorem 4.2.2. The following properties of the Hamiltonian system (T*M, H)
hold:

1° There exists a unique vector field having the property

2° The integral curves of the vector field are given by the Hamilton–Jacobi
equations:
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Proof. 1°. The existence and uniqueness of the vector field is assured by
Proposition 4.2.2. It is given by

Using (2.3), is expressed in the natural basis by

2°. The integral curves of from (2.6)' are given by the equations (2.5).q.e.d.

is called the Hamilton vector field.

Corollary 4.2.1. The function H(x, p) is constant along the integral curves of the
Hamilton vector field

Indeed,

The structures and { , } have a fundamental property given by the theorem:

Theorem 4.2.3. The following formula holds:

Proof. From (2.6)' we deduce

q.e.d.

Corollary 4.2.2. The Hamilton–Jacobi equations can be written in the form

One knows, [167], the Jacobi method of integration of Hamilton–Jacobi equations
(2.5). Namely, we look for a solution curve in T*M, of the form

where
Substituting in (2.5), we have
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It follows

Consequently, which is called the Hamilton–Jacobi equation

(of Mechanics). If integrated, it defines S and is obtained by the integration of
the first equation (*).

Remarks.
1° In the next chapter we will define the notion of Hamilton space

H being a differentiable regular Hamiltonian and we shall see that the Legen-
dre mapping between the Hamilton space and a Lagrange spce
(M, L(x,y)) sent the Euler–Lagrange equations into the Hamilton–Jacobi e-
quations. This idea is basic for considering the notion of [66], [67],
[105].

2° The Poisson bracket { , } is also basic for quantization. The quantization of
a Mechanical system is a process which associates operators on some Hilbert
space with the real functions on the manifold T*M (phase space), such as
the commutator of two such operators is associated with Poisson bracket of
functions (Abraham and Marsden [3], [167]).

4.3 Homogeneity

The notion of homogeneity, with respect to the momentum variables of a func-
tion can be studied by the same way as the homogeneity of functions
defined on the manifold TM (see Ch.l, §2).

Let be the group of homotheties on the fibres of T*M:

The orbit of a point by is given by

The tangent vector at the point is the Liouville–Hamilton vector field

A function differentiable on and continuous on the zero
section is called homogeneous of degree r, with respect to the variables
(or on the fibres of T*M), if
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This is

Exactly as in the case of the homogeneity of the function f : one can
prove:

Theorem 4.3.1. A function f : differentiable on and continuous
on the zero section of is r-homogeneous with respect to if and
only if we have

where is the Lie derivation with respect to the Liouville–Hamilton vector field

But (3.2) can be written in the form

A vector field is r-homogeneous with respect to if

It follows :

Theorem 4.3.2. A vector field is r-homogeneous if and only if we
have:

Evidently,

Consequently:

1° are 1– and 0–homogeneous with respect to

2° If is s-homogeneous and is r-homogeneous then
f X is homogeneous.

3° A vector field X given in the natural frame by



Ch.4. The geometry of cotangent bundle 95

is r-homogeneous with respect to if and only if are homogeneous

and are r-homogeneous with respect to

4° is 1-homogeneous.

5° If X is r-homogeneous vector field on T*M and f is a function, s-homogeneous,
then X f is -homogeneous function.

6° are homogeneous and are homogeneous, if f is s-ho-
mogeneous.

A q-form is called s-homogeneous with respect to (or on the
fibres of T*M) if:

All properties given in Ch. 1, §2, for q-forms defined on the tangent manifold
TM, concerning their homogeneity are valid in the case of q-forms from

We get:

Theorem 4.3.3. A q-form on T*M is s-homogeneous on the fibres of T*M if
and only if

Consequences.

1° s- respectively s'-homogeneous, imply
-homogeneous.

2° s-homogeneous and r-homogeneous vector fields de-

termine the function homogeneous.

3° are 0- respectively 1-homogeneous.

4° The Liouville 1-form is 1-homogeneous.

5° The canonical symplectic structure is 1-homogeneous.

The previous consideratiosn will be applied especially, in the study of Cartan spaces.
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4.4 Nonlinear connections

On the manifold T*M there exists a remarkable distribution V :
As we know V is integrable, having the adapted basis and it is

of local dimension n.

Definition 4.4.1. A nonlinear connection on T*M is a differentiable distribution
N : :  which is supplementary to the vertical distribution
V, i.e.:

Consequently, the local dimension of the distribution N is
N will be called also the horizontal distribution.
If N is given, there are uniquely determined a system of functions in

every domain of a local chart such that the adapted basis to the distribution
N has the form

The functions are called the coefficients of the nonlinear connection N.

Theorem 4.4.1. A change of coordinate (1.2) on T*M transforms the coefficients
of a nonlinear connection N by the rule:

Conversely, a system of functions defined on each domain of local chart
from T*M, which verifies (4.3) with respect to (1.1), determines a nonlinear con-
nection.

Proof. By means of (1.1), (1.2), it follows from (4.2) the formula (4.3). Therefore,

generate a distribution N, which is supplementary to the vertical

distribution V, V being generated by q.e.d.

The set of vector fields give us an adapted basis to the distributions

N and V. The changes of coordinates (1.1) has the effect:
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The dual basis of is given by with

and the transformations of coordinates (1.1) transform the ”adapted” dual basis,
in the form

Theorem 4.4.2. If the base manifold M is paracompact, then on the manifold T* M
there exist the nonlinear connections.
Proof. M being paracompact, Theorem 4.1.2 affirms that T* M is paracompact,
too. Let G be a Riemannian structure on T* M and N the orthogonal distribution,
to the vetical distribution V with respect to G. Thus, the equality (4.1) holds.
q.e.d.

Consider a nonlinear connection N with the coefficients and define the
set of functions

Proposition 4.4.1. With respect to (1.1), is transformed by the rule

Indeed, the formulae (4.3) and (4.6) lead to (4.7).
Consequently, is a distinguished tensor field, covariant of order two, skew-

symmetric. is called the tensor of torsion of the nonlinear connection N. The
equation has a geometrical meaning. In this case the nonlinear connection
N is called symmetric.

Theorem 4.4.3. With respect to a symmetric nonlinear connection N, the canonical
symplectic structure and the canonical Poisson structure { , }, can be written in
the following invariant form
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Proof. Using (4.2), (4.5) and (4.6) we have

But these formulae, for give us the announced formulae (4.8) and (4.9).
Now, by means of (4.4) and (4.4)' it follows the invariant form of and { , }.q.e.d.

Of course, we can define the curvature tensor field of a nonlinear connection N.
Indeed, imply But is given by

Proposition 4.4.2. The exterior differential of are given by

where

Indeed, and which determine

together (4.11) and (4.12).
It follows, without difficulties:

Proposition 4.4.3. By means of (1.1) we obtain:

So, we can say that is a d-tensor field called the d-tensor of curvature of N
and is a d- connection determined by N called the Berwald connection.

Analogously, we can study the Lie brackets of the vector fields from adapted

basis

Proposition 4.4.4. The Lie brackets of the vector fields

are as follows
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Now we can give a necessary and sufficient condition for the integrability of the
distribution N called the integrability of the nonlinear connection N.

Theorem 4.4.4. The horizontal distribution N is integrable if and only if the d-
tensor of curvature vanishes.

Indeed the Lie brackets of the vector fields from adapted basis of N belongs to N
if and only if (cf. (4.14)).

4.5 Distinguished vector and covector fields
Let N be a nonlinear connection on T*M. It gives rise to the direct decomposition
(4.1). Let h and v be the projectors defined by supplementary distributions N and
V. They have the following properties

If we denote

Therefore we have the unique decomposition

Every component and is called a distinguished vector field. Shortly a d-
vector field.

In the adapted basis we get

With respect to (1.1), we have, using (4.4),

But, these are the classical rules of transformations of the local coordinates of vector
and covector fields on the base manifold M. Therefore is called a d-vector
field, too and is called a d-covector field on T* M.

For instance is a d-vector field and is a d-covector field on T* M.
We have
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A similar theory can be done for distinguished 1-forms. With respect to the
direct decomposition (4.1) an 1-form can be uniquely written in the
form

where

In the adapted cobasis we get

and are called, every one, d-1 form. The coefficients and are
d-covector and d-vector fields, respectively.

Now, let us consider a function The 1-form df can be written in
the form (5.4)

A curve having Im has the analytical representation:

The tangent vector in a point of curve can be set in the form

where

The curve is called horizontal if

Theorem 4.5.1. An horizontal curve is characterized by the system of differential
equations

Clearly, if the functions are given the previous system of differential equa-
tions has local solutions, when a point is given.
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4.6 The almost product structure The metri-
cal structure
The almost complex structure

A nonlinear connection N on T* M can be characterized by some almost product
structure

Let us consider the -linear mapping

defined by

Thus has the properties:

Theorem 4.6.1. A nonlinear connection N on T* M is characterized by the ex-
istence of an almost product structure on the manifold T* M whose eigenspaces
corresponding to the eigenvalue –1 coincide with the linear spaces of the vertical
distribution V on T* M.

Proof. If N is a nonlinear connection, then we have the direct sum (4.1). Denoting h
and v the projectors determined by (4.1) we get

Then has the property (6.1).  is an almost product structure, for which

Conversely, if  and then and

satisfy (5.1). Therefore, v and it follows

q.e.d.

Proposition 4.6.1. The almost product structure is integrable if and only if the
nonlinear connection N is integrable.

Indeed, the Nijenhuis tensor of the structure given by
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vanishes if and only if because

Remark. Of course we can consider a general almost product structure on T* M. It
will determine a general concept of connection on T* M. This idea was developed by
P. Antonelli and D. Hrimiuc in the paper [14] and will be studied in a next chapter
of this book.

Let us consider a Riemannian (or metrical) structure on the manifold T* M.
The following property is evident:     uniquely determines an orthogonal distribu-

tion N to the vertical distribution V on T* M. Therefore N is a nonlinear connection.
Let be the coefficients of N and h, v the supplementary projectors defined
by N and V. Then can be written in the form

Or, in the adapted basis,

where is a covariant nonsingular, symmetric tensor field and is a contravariant
nonsingular, symmetric tensor field. Of course, the matrix are
positively defined.

The Riemannian manifold (T* M, ) can be studied by means of the methods
given by the geometry of the manifold T* M.

If a tensor covariant, symmetric and positively defined on T* M and a
nonlinear connection N with coefficients are given, then we can consider
the following Riemannian structure on T* M:

The tensor is called the N-lift to T* M of the d-tensor metric
Assuming that the d-tensor metric and the symmetric nonlinear con-

nection are given let us consider the following -linear mapping

where

It is not difficult to prove, by a straightforward calculus:
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Theorem 4.6.2.

1°  is globally defined on T* M.

2° is the tensor field

3° is an almost complex structure:

We have, too

Theorem 4.6.3. In order to the almost complex structure be integrable is neces-
sary that the nonlinear connection N be integrable.

Proof. The Nijenhuis tensor imply, firstly It implies also
some conditions for and N.  q.e.d.

The relations between the structures and are as follows

Theorem 4.6.4.

1° The pair given by (6.6) and given by (6.7), is an almost hermitian
structure.

2° The associated almost symplectic structure to is the canonical symplec-
tic structure

Proof. 1°. We get from (6.6), (6.7), in the adapted basis

2°. q.e.d.

4.7 d-tensor algebra. N-linear connections

As we know, a nonlinear connection N determines a direct decomposition (4.1)
with respect to which any vector field X on T* M can be written in the form X =

And any 1-form on T* M is uniquely decomposed: The
components are distinguished vector fields and are distinguished
1-form field. Briefly, d-vector field, d-l-form field.
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Definition 4.7.1. A distinguished field on T* M (briefly d-tensor field) is a tensor
field T of type (r, s) on T* M with the property:

for any and for any

or are examples of d-vector fields or
d-l-form fields.

In the adapted basis and adapted cobasis T can be written,
uniquely, in the form

It follows that the addition of d-tensors and tensor product of them lead to the
d-tensor fields. So, the set (1, ) generates the algebra of d-tensors over the ring
of functions

Other examples are d-covector and d-vector fields, respectively.
Clearly, with respect to (1.1) the coefficients of a d-tensor fields are

transformed by the classical rule:

the notion of N-linear connection can be defined in the known manner (see Ch.l).
In the following we assume N is a symmetric nonlinear connection.

Definition 4.7.2. A linear connection D on T* M is called an N-linear connection
if:

1° D preserves by parallelism every distribution N and V.

2° The canonical symplectic structure has the associate tensor
absolute parallel with respect to D:

The following properties of an N-linear connection D are immediate:

Indeed, For we get
and for we get Similarly,

and
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For an almost Hermitian structure given in the previous section, any
N-linear connection D, with the property has the property  too.

If then

We find new operators of derivation in the algebra of d-tensors defined by:

These operators are not the covariant derivatives in the d-tensor algebra, since

Theorem 4.7.1. The operators  have the following properties:

2°

3°

4°

5°

6°

7° The operators have the property of localization.

The proof of the previous theorem can be done by the classical methods [113].
The operator will be called the operator of h-covariant derivation and

will be called the operator of v-covariant derivation.
act on the 1-form on T* M by the rules

Consequently, the actions of and on a tensor field T of type (r, s) on T* M
are well determined.

1º
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4.8 Torsion and curvature

The torsion of an N-linear connection D is expressed as usually by

It can be characterized by the following vector fields

Taking the h- and v- components of these vectors we obtain the d-tensors of torsion:

Since V is an integrable distribution (8.1) implies

Taking into account the definition (4.8.1) of the torsion we obtain:

Proposition 4.8.1. The d-tensors of torsion of an N-linear connection D are:

The curvature of an N-linear connection D is given by

Remarking that the vector field is horizontal one and
is vertical one, we have

We will see that the d-tensors of curvature of the v-linear connection D are:

Therefore, by means of (8.5)
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Proposition 4.8.2.

1° The Ricci identities of an N-linear connection Dare

2° The Bianchi identities are given by

where means the cyclic sum.

4.9 The coefficients of an N-linear connection

Let D be an N-linear connection and the adapted basis to N

and V. Then In order to determine the coefficients of D in the
adapted basis, we take into account the properties:

Theorem 4.9.1.
1° An N-linear connection D on T* M can be uniquely represented in the adapted

basis in the following form

2° With respect to a change of coordinate (1.1) on T* M, the coefficients
transform by the rule:

while is a d-tensor field of type (2, 1).

3° Conversely, if N is an apriori given nonlinear connection and a set of function
verifying 2° is given, then there exist a unique N-linear connection

D with the properties (9.2).
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Proof. 1°. Setting

and taking into account that where tensor of the 2-form have
the components

it follows that imply Analogously, setting

from it follows

2°. By a straightforward calculus, taking into account the formulae (4.4), it

follows (9.3) and

3°. One demonstrates by the usually methods.

The pair is called the system of coefficients of D.

Proposition 4.9.1. The following formula holds:

Let us consider a d-tensor T, of type (r, s) expressed in the adapted basis in the
form (7.2), and a horizontal vector field Applying Theorems 4.7.1
and 4.9.1 we obtain the h-covariant derivation of T in the form:

where

The operator ”|” is called h-covariant derivative with respect to

Now, taking has the following form
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where

The operator ”|” will be called the v-covariant derivative with respect to

Proposition 4.9.2. The following properties hold:

1° is a d-tensor of type (r, ).

1° is a d-tensor of type ( s).

Proposition 4.9.3. The operators ”|”  and ”|”  satisfy the properties:

1°

2° ”|” and ”|” are distributive with respect to the addition of the d-tensors of the
same type.

3° ”|” and ”|” commute with the operation of contraction.

4° ”|” and ”|” verify the Leibniz rule with respect to the tensor product of d-
tensors.

As an application let us consider the deflection tensors

Using (9.7) we get

In the particular case, is called an N-linear connection of
Cartan type. It is characterized by

We have:
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Proposition 4.9.4. If the pair is given and satis-
fy (9.3), then are the coefficients of a nonlinear connection N, and

are the coefficients of an N-linear connection D.

The proof is not difficult if we apply the point 3° from Theorem 4.9.1.
Based on the previous property we can prove:

Theorem 4.9.2. If the base manifold M is paracompact then on T* M there exist
the N -linear connections.

Proof. Let g(x) be a Riemannian metric on M and its coefficients of Levi-
Civita connection. Then are the coefficients of a nonlinear connection
N on T* M. So, the pair gives us the coefficients of an N-linear connection

on T* M.

4.10 The local expressions of d-tensors of torsion
and curvature

In the adapted basis the Ricci identities (8.8), using the operators ”|” and
”|”, lead to the local expressions of the d-tensors of torsion and curvature.

Theorem 4.10.1. For any N-linear connection  the following
Ricci identities hold:

where the coefficients and are the d-tensors of torsion:

and are the d-tensors of curvature:
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Proof. By a direct calculus, using (9.7) we get

Taking into account the formula the previous equality leads
to the first Ricci formula, with the coefficients from (10.2) and (10.3).
Etc.

Proposition 4.10.1. The following formule hold:

and

The proof can be given by a direct calculus, using the formula (8.5) and the
equations (8.6).

As usually, we extend the Ricci identities for any d-tensor field, given by (7.2).
For instance, if is a d-tensor field, the Ricci identities for with respect

to N-linear connection are

In particular, if the N-linear connection satisfy the supplementary condi-
tions:

then (10.5) lead to the equations
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Such kind of equations will be used for the N-linear connections compatible with a
metric structure of the form (6.6).

The Ricci identities applied to the Liouville-Hamilton vector field
give us some important identities. To this aim, we take into account the deflection
tensors

Theorem 4.10.2. Any N-linear connection D satisfies the following identities

In particular, if the N-linear connection D is of Cartan type, i.e.
then we have

Proposition 4.10.2. Any N-linear connection of Cartan type satisfies the following
identities

Finally, we remark that we can explicitly write the Bianchi identities, of an TV-
linear connection if we express in the adapted basis
the Bianchi identities (8.9).

4.11 Parallelism. Horizontal and vertical paths

Let D be an TV-linear connection, having the coefficients
in adapted basis

Consider a smooth parametrized curve having the image in a
domain of a chart of T* M. Thus has the analytical expression of the form:

The tangent vector field  can be written in the frame (see §5, (5.8)),
as follows

where
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We denote

DX is called the covariant differential of the vector field X and is the covariant

differential along the curve g.
If the vector field X is written in the form

then we can write

A straightforward calculus leads to

where

are called 1-forms of connection of D.
Setting

the covariant differential can be written:

The vector field X is called parallel along the curve
We obtain

Theorem 4.11.1. The vector field is parallel along the parametrized
curve with respect to the N-linear connection D, if and only if its coordinates

are solutions of the differential equations
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The proof is immediate means of (11.7).
A theorem of existence and uniqueness for the parallel vector fields along a given

parametrized curve in the manifold T* M can be formulate in the classical manner.
Let us consider the case of vector field X and N-connection D, for which

for any curve Remark that is equivalent to

But together with (11.6) lead to the system of differential
equations, equivalent to (*)

Since are arbitrary, it follows

Using the Ricci identities (10.1), and taking into account (11.9) we obtain the nec-
essary conditions for a vector field be absolute parallel:

The h-connection D is called with ”absolute parallelism of vectors if, (11.10) is
verified for any vector X. It follows:

Theorem 4.11.2. The N-linear connection D is with the absolute parallelism of
vectors, if and only if the curvature of D vanishes, i.e., we have

Definition 4.11.1. The curve is called autoparallel curve with
respect to the N-linear connection D if

Using (11.2) it follows

The previous formula leads to the property:
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Theorem 4.11.3. The curve (11.1) is autoparallel with respect to the N-connection
D if and only if the functions are the solutions of the following
system of differential equations:

Starting from (11.13) we can ennounce a theorem of existence and uniqueness
for the autoparallel curve can be formulated as in the classical manner.

In Section 5, we introduced the notion of horizontal curve, the condition

Theorem 4.5.1 gives us a characterization of the horizontal curves by means

of the system of differential equation (5.9), i.e.

Definition 4.11.2. An horizontal path of an N-linear connection D is a horizontal
autoparallel curve with respect to D.

Theorem 4.11.4. The horizontal paths of an N-linear connection D are characte-
rized by the system of differential equations:

Indeed, the equations (11.13) and lead to (11.14).

A parametrized curve is called vertical in the point if its
tangent vector field belongs to the vertical distribution V. That means belongs
to the fibre of T* M in the point

Evidently, is a vertical curve in the point has the equations (11.1) of
the form

Definition 4.11.2. A vertical path in the point is a vertical curve in the
point which is autoparallel with respect to the N-linear connection D.

Theorem 4.11.3 implies:

Theorem 4.11.5. The vertical paths in the point with respect to the N-
linear connection D are characterized by the system of differential equations:

Of course, it is not difficult to formulate a theorem of existence and uniqueness for
the vertical paths in T* M at the point
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4.12 Structure equations of an N-linear connec-
tion. Bianchi identities

Let us consider an N-linear connection D with the coefficients
Its 1-form of connection are given by (11.6).

Proposition 4.12.1. With respect to a change of coordinate (1.1) on the manifold
T* M we have

Indeed, the expression of from (11.6) and the rules of transformations of
and leads to (12.1).

Now, it is not difficult to prove:

Lemma 4.12.1. The following geometrical object fields

are a d-vector field, a d-covector field and a d-tensor field of type (1, 1), respectively.

Using this lemma, we can prove by a direct calculus a fundamental result.

Theorem 4.12.1. For any N-linear connection D with the coefficients
the following structure equations hold:

where are the 2-forms of torsion:

and where is the 2-form of curvature:
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Proof. and (11.6) imply the first equation (12.2);
and (4.11) lead to the second equation (12.2). Finally,

the formulae (11.6), (4.11)

give us the last equation (12.2), with from (12.3)’. q.e.d.

Remark. The previous theorem is extremely important in the geometry of the
manifold T* M and, especially in a theory of submanifolds embedded in T* M.

Now we remark that the exterior differential of the system (12.2), modulo the
same system determines the Bianchi identities of an N-linear connection

Theorem 4.12.2. The Bianchi identities of an N-linear connection are as
follows:
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In the applications we will consider the cases:

a.

b.

etc.
Of course, is the symbol of cyclic sum and is the symbol of alternate

sum.



Chapter 5

Hamilton spaces

Based of the conception of classical mechanics, the notion of Hamilton space was
defined and investigated by R. Miron in the papers [97], [101], [105]. It was studied
by D. Hrimiuc and H.Shimada [63], [66] et al.

The geometry of Hamilton spaces can be studied using the geometrical method
of that of cotangent bundle. On the other hand, it can be derived from the geometry
of Lagrange spaces via Legendre transformation, using the notion of –duality.

In this chapter, we study the geometry of Hamilton spaces, combining these two
methods and systematically using the geometrical theory of cotangent bundle.

We start with the notion of generalized Hamilton space. And then we detect
from its geometry the theory of Hamilton spaces.

5.1 The spaces

Definition 5.1.1. A generalized Hamilton space is a pair
where M is a real n–dimensional manifold and is a d-tensor field of type
(2,0) symmetric, nondegenerate and of constant signature on

The tensor is called as usual the fundamental (or metric) tensor of the space

In the case when the manifold M is paracompact, then there exist metric tensors
positively defined such that is a generalized Hamilton space.

Definition 5.1.2. A generalized Hamilton space is called
reducible to a Hamilton one if there exists a Hamilton function H(x, p) on T*M
such that

119
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Let us consider the d-tensor field

In a similar manner in the case of generalized Lagrange spaces (cf. Ch.3) we can
prove:

Proposition 5.1.1. A necessary condition that a generalized Hamilton space be
reducible to a Hamilton one is that the d-tensor be totally symmetric.

Theorem 5.1.1. Let be the fundamental tensor of a space 0-ho-
mogeneous. Thus a necessary and sufficient condition that be reducible to a
Hamilton space is that the d-tensor field be totally symmetric.

Indeed, in this case the Hamilton function satisfies the
conditions imposed by Definition 5.1.2.

Remarks.

1. The definition of Hamilton spaces is given in a next section of this chapter.

2. Let be a Riemann metric tensor. It is not difficult to prove that the
space with the fundamental tensor

is not reducible to a Hamilton space.

The covariant tensor determined by is obtained from the equations

Let us consider the following tensor field:

Proposition 5.1.2. The d-tensor gives the v-coefficients of a v-covariant
derivation with the property:

The proof can be obtained easily.
We use the coefficients (1.4) in the theory of metrical connections with respect

to the fundamental tensor
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5.2 N–metrical connections in

In general, we cannot determine a nonlinear connection from the fundamental tensor
of the space Therefore we study the N-linear connections compatible with
N being a priori given (cf. Ch.4).

If the nonlinear connection N has the coefficients then an adapted basis
to the horizontal distribution N and vertical distribution V on T*M is of the form

And an N-linear connection D has the coefficients

Definition 5.2.1. An N-linear connection is called metrical with respect
to the fundamental tensor of the space if:

In the case when is positively defined we obtain the geometrical meaning of
the conditions (2.2). In this respect we can consider ”the length” of a d-covector

given by as follows

We can prove without difficulties the followings:

Theorem 5.2.1. An N-linear connection is metrical with respect to the
fundamental tensor of the space if, and only if, along any smooth curve

and for any parallel d-covector field i.e., we have

Using the condition (1.3), the tensorial equations (2.2) are equivalent to:

Now, by the same methods as in Ch.3 we can prove a very important theorem.
We have:

Theorem 5.2.2. 1) There exist an unique N-linear connection
having the properties:

1° The nonlinear connection N is a priori given.

2° is metrical with respect to the fundamental tensor of the space
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3° The torisons and vanish.

2) The previous connection has the v-coefficients from (1.4) and the h-coef-
ficients expressed by

For a generalized Hamilton space Obata’s operators [113] can
be defined:

We can prove:

Theorem 5.2.3. The set of all metrical N–linear connections
with respect to the fundamental tensor is given by

where is from (1.4), (2.3) and are arbitrary d-tensor
fields.

It is important to remark that the mappings determined by
(2.5) and the compsotion of these mappings is an Abelian group.

From the previous theorem, we deduce:

Theorem 5.2.4. There exist an unique metrical N-linear connection
with respect to the fundamental tensor having a priori given torsion

d-tensor fields The coefficients of have the
following expressions:

Moreover, if we denote etc. and apply to fundamental tensor
the Ricci identities taking into account the equations (2.2) we obtain:

Proposition 5.2.1. For any metrical N–linear connections with respect to
the fundamental tensor of the space the following identities hold:
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The expressions of the curvature tensors are given in the formulae (10.3), Ch.4.
The notions of parallelism, horizontal or vertical paths, as well as the structure e-

quations for an metrical N-linear connection with respect to the fundamental tensor
can be studied, using the results obtained in the last section of Chapter 4.

5.3 The N–lift of

Let be a generalized Hamilton space and an apriori given
non–linear connection on the manifold T*M. Thus from (2.1) is an adapted
basis to the distributions N and V. Its dual basis is expressed by the
1-forms and by

Definition 5.3.1. The N-lift of the fundamental tensor is:

Theorem 5.3.1. We have:

1° The N-lift is a tensor field of type (0,2) on symmetric, nonsingular
depending only on and on the nonlinear connection N.

2° The pair is a pseudo–Riemannian space.

3° The distributions N and V are orthogonal with respect to

Indeed, every term from (3.2) is defined on and is a tensor field. In the
adapted basis (2.1) the tensor field has the components

It follows that is symmetric, nondegenerate of type (0,2) tensor field. Obviously
we have q.e.d.

Now, assuming that the nonlinear connection is symmetric, i.e.
we consider the –linear mapping defined

in (6.7), Ch.4
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Theorem 5.3.2.

1° is globally defined on T*M.

2° is the tensor field

3° is an almost complex structure determined by the fundamental tensor
and by the nonlinear connection N.

4° The pair is an almost Hermitian structure determined only by and
N.

5° The associated almost symplectic structure to is the canonical symplec-
tic structure

It follows that the space is almost Kählerian. It is called the
almost Kählerian model of the generalized Hamilton space

5.4 Hamilton spaces

A Hamilton space is a particular case of a generalized Hamil-
ton space in the sense that the fundamental tensor derived from a
regular Hamilton function

Since the triple forms a Hamiltonian system, we can apply the theory
from Chapter 4.

Definition 5.4.1. A Hamilton space is a pair where M is a real
n-dimensional manifold and H is a function on T*M having the properties:

1° is differentiable on the manifold and
it is continuous on the null section of

2° The Hessian of H (with respect to the momenta ), given by the matrix
is nondegenerate:

3° The d-tensor field has constant signature on
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Of course, from (4.1) is a d-tensor field, cf. Ch.4. It is called the fun-
damental tensor, or metric tensor of the space and the Hamilton
function H is called the fundamental function for

From the previous definition we obtain:

Theorem 5.4.1. Every Hamilton space is a generalized Hamilton
space.

Indeed, where is given by (4.1), is a generalized Hamilton
space.

The converse is not true (see Proposition 5.1.1).

Theorem 5.4.2. If the base manifold is paracompact, then there exists a Hamilton
function H on T*M, such that is a Hamilton space.

Indeed, M being a paracompact manifold, let be a Riemannian metric
tensor on M. Then we can consider the Hamilton function on T*M:

where and c is speed light. The properties l°–3° from the last definition can
be proved directly. q.e.d.

Let us consider the canonical symplectic structure on T*M:

By means of  Definition 4.2.2, we obtain that the triple where H is
the fundamental function of a Hamilton space form a Hamilton system. Thus
the mapping defined by (2.2), Ch.4, is an
isomorphism. Applying the Theorem 4.2.2 we obtain:

Theorem 5.4.3. For any Hamilton space the following proper-
ties hold:

1° There exists a unique vector field with the property:

2° The integral curves of the vector field are given by the Hamilton–Jacobi
equations:
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Indeed, from (2.6)', the Hamilton vector field can be written as:

Also, we have:

Corollary 5.4.1. The fundamental function H(x, p) of the space is constant
along the integral curve of the Hamilton vector field

Now it is easy to observe that the following formula holds:

Therefore, by means of Poisson brackets, the Hamilton–Jacobi equations can be
written in the form:

We remark that the Jacobi method of integration of Hamilton–Jacobi equations,
mentioned in Ch.4, works in the present case as well.

One of the important d-tensor field derived from the fundamental function H of
the Hamilton space is:

Proposition 5.4.1. We have:

1° The d-tensor field is totally symmetric.

2° vanishes, if and only if the fundamental tensor field does not
depend on the momenta

Let us consider the coefficients from (1.4) of the v-covariant derivation.
From (4.7) it follows

Of course, these coefficients have the properties

In the next section we will use the functions as the v-coefficients of the
canonical metrical connection of the space
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5.5 Canonical nonlinear connection of the space

An important problem is to determine a nonlinear connection for a Hamilton
space depending on the fundamental function H, only.

A method for finding a nonlinear connection with the mentioned property was
given by R. Miron in the paper [97]. This consists in the transformation of the
canonical nonlinear connection N of a Lagrange space via Le-
gendre transformation: Leg : into the canonical nonlinear connection of
the Hamilton space This method will be developed in the Chapter 7, using the
notion of -duality between the spaces and

Here, we give the following result of R. Miron, without demonstration, which
can be found in of Chapter 7.

We have:

Theorem 5.5.1.

1° The following set of functions

determines the coefficients of a nonlinear connection N of the Hamilton space

2° The nonlinear connection with the coefficients depends only on the fun-
damental function H of the Hamilton space

The brackets { } from (5.1) are the Poisson brackets (2.1), Ch.4.
Indeed, by a straightforward computation, it follows that, under a coordinate

change on the total space of cotangent bundle from (5.1) obeys the rule of
transformation (4.3), Ch.4. Hence, the point 1° of Theorem 5.5.1 is verified. Taking
into account the expressions of the coefficients given in (5.1), the property 2°
is also evident.

The previous nonlinear connection will be called canonical.

Remark. If the fundamental function H(x, p) of the space is globally defined
on T*M, then the canonical nonlinear connection has the same property.

Proposition 5.5.1. The canonical nonlinear connection N of the Hamilton space
has the following properties
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where is given by (4.12), Ch.4.

Proof. 1° The proof follows directly by (5.1); 2° is a consequence of the formula
(4.12), Ch.4. q.e.d.

Taking into account the fact that the canonical nonlinear connection N is a
regular distribution on with the property:

it follows that is an adapted basis to the direct decomposition (5.4), where

The dual basis of is where

Therefore, we can apply the theory of N-metrical connection expounded in of the
present chapter for study the canonical case.

5.6 The canonical metrical connection of Hamil-
ton space

Let us consider the N-linear connections with the property
that N is the canonical nonlinear connection with the coefficients (5.1). It can be
studied by means of theory presented in

Consequently, we have:

Theorem 5.6.1. 1) In a Hamilton space there exists a unique
N–linear connection verifying the axioms:

1°  N is the canonical nonlinear connection.

2° The fundamental tensor is h-covariant constant

3° The tensor is v-covariant constant, i.e.

4° is h-torsion free, i.e.
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5° is v-torsion free, i.e.

2) The connection has its coefficients given by (5.1) and
by the following generalized Christoffel symbols:

3) This connection depends only on the fundamental function H of the Hamilton
space

The proof of this theorem follows the ordinary way.
A such kind of connection, determined only by the fundamental function H is

called canonical and is denoted by or by
Now we can repeat Theorems 5.2.3 and 5.2.4, using the canonical metrical con-

nection

Proposition 5.6.1. The Ricci identities, with respect to the canonical connection
are given by

where the d-tensors of torsion are and

respectively, and the d-tensors of curvature of are given by (10.3), Ch.4.

The Ricci identities can be extended as usual to any d-tensor field.
For instance, in the case of a d-tensor field we have

Applying the identities (6.4)' to the fundamental tensor of the Hamilton space
we obtain



130 The Geometry of Hamilton & Lagrange Spaces

Proposition 5.6.2. The canonical connection has the properties (2.7), i.e.

The Ricci identities applied to the Liouville–Hamilton vector field lead
to some important identities.

Proposition 5.6.3. The canonical metrical connection of the Hamilton space
satisfies the following identities

where and are the deflections tensors of

are given by (9.9), Ch.4.

The canonical metrical connection is of Cartan type if From
(6.7) we obtain the following

Proposition 5.6.4. If the canonical metrical connection of the space is of
Cartan type, then the identities (10.8), Ch. 4, hold good.

Applying again the Ricci identities to the fundamental function H of the Hamil-
ton space we obtain:

Proposition 5.6.5. The following identities hold:

5.7 Structure equations of Bianchi iden-
tities

For the canonical connection the 1-form of connection are
given by (11.6), Ch.4:
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The structure equations of are given by Theorem 4.12.1. In this case, we
have:

Theorem 5.7.1. The canonial metrical connection of the Hamilton space
= (M , H) has the following structure equations

where are the 2-forms of torsion:

and where are the 2-forms of curvature:

The previous theorem is very useful in the geometry of Hamilton spaces and
especially in the theory of subspaces of Hamilton spaces.

We can now derive the Bianchi identities of the canonical metrical connection
taking the exterior differential of the system of equations (7.2), modulo the

same system.
We obtain a particular case of Theorem 4.12.2:

Theorem 5.7.2. The canonical metrical connection of the Hamilton space
satisfies the Bianchi identities(12.4)–(12.8), Ch.4, with

5.8 Parallelism. Horizontal and vertical paths

The notion of parallelism of vector fields in the Hamilton spaces
endowed with the canonical metrical connection can be stud-
ied as an application of the theory presented in Chapter 4.

Let be a parametrized curve with the analytical expression

Then it results
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where

Here are the coefficients (5.1) of the canonical nonlinear connection. We say

that the curve is horizontal if

For a vector field X on given in adapted basis by

along of the curve we have the covariant differential D of of the form (11.7),
Ch.4:

where are 1-forms connection of
It follows:

Theorem 5.8.1. The vector field is parallel along the parametrized
curve with respect to the canonical metrical connection if and only if its
coordinates and are solutions of the differential equations (11.8), Ch.4, where

are the 1-forms connection of

In particular, (see Theorem 4.11.2), we have:

Theorem 5.8.2. The Hamilton space endowed with the canonical
metrical connection is with absolute parallelism of vectors if and only if the
d-curvature tensors of and respectively vanish.

We say that the curve is autoparallel with respect to if

Taking into account Theorem 4.11.3, we have

Theorem 5.8.3. A curve is autoparallel with respect to the canonical
metrical connection if and only if the functions are the so-
lutions of the system of differential equations (11.13), Ch. 4, in which are the
1-forms connection of

By means of Definition 4.11.2, a horizontal path of the canonical metrical connec-
tion of Hamilton space is a horizontal autoparallel curve. Theorem 4.11.4
gives us:
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Theorem 5.8.4. The horizontal paths of the Hamilton space endowed with
the canonial metrical connection are characterized by the system of differential
equations:

We recall that is a vertical curve in the point

if Hence, its analytical representation in local coordinates is of the form

Thus, a vertical path in the point is a vertical curve in the point which
is autoparallel with respect to

Theorem 4.11.5 leads to:

Theorem 5.8.5. The vertical paths in the point with respect to the canonical
metrical connection of the Hamilton space are characterized by
the system of differential equations

In next section we apply these results in some important particular cases.

5.9 The Hamilton spaces of electrodynamics

Let us consider some important examples of Hamilton spaces.

1) Gravitational field

The Lagrangian of gravitational field (see Ch.3) is transformed,
via Legendre transformation ,in the regular Hamiltonian

Therefore the pair is a Hamilton space. Its fundamental tensor field
is given by
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It follows that is a Hamiltonian system. Using Theorem 4.2.2, we
obtain

Proposition 5.9.1. The Hamilton–Jacobi equations of the space with the fun-
damental function (9.1), are:

Let us denote the Christoffel symbols of the metric tensor we
obtain:

Proposition 5.9.2. The canonical nonlinear connection N of the space
(M, H), (9.1)  has the following coefficients

Indeed, the coefficients are given by the formula (5.1). Therefore (9.4) holds.

Proposition 5.9.3. The canonical metrial connection of the Hamilton space
has the coefficients

Now we can apply to this case the whole theory from the previous sections of
this chapter.

2) The Hamilton space of electrodynamics

The Lagrangian of electrodynamics (9.1), Ch.3, is transformed via Legendre
transformation in the following regular Hamiltonian

where have the meanings from (9.1), e is the charge of test body,
is the vector–potential of an electromagnetic field, and

The first thing to remark is:

Proposition 5.9.4. The pair (9.6) is an Hamilton space.
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Indeed, a direct calculus leads to the d-tensor

This is the fundamental tensor the space Its covariant is  The
Hamilton–Jacobi equations, (2.2), Ch.4, can be easily written.

The velocity field of this space can be written:

And the canonical nonlinear connection is given by

Proposition 5.9.5. The canonical nonlinear connection of the space with the
Hamiltonian (9.6) has the following coefficients:

where

Indeed, to prove the formula (9.9) we apply the formula (5.1) to the fundamental
function (9.6).

Now, remarking that we get:

Proposition 5.9.6. The canonical metrical connection of the Hamilton space
with the fundamental function H(x, p) with the Hamiltonian (9.6), has the fol-

lowing coefficients:

These geometrical object fields: allow to develop the
geometry of the Hamilton space of electrodynamic.

3) In the case when we take into account the Lagrangian

where U(x) is a force function, applying Legendre mapping we get the following
Hamiltonian
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It follows

Proposition 5.9.7. The pair with the Hamiltonian (9.10) is a Ha-
milton space, having the fundamental tensor field:

We can prove also:

Proposition 5.9.8. The canonical nonlinear connection of the space (9.10)
has the coefficients

Proposition 5.9.9. The canonical metrical connection of the space (9.10), has
the coefficients

Now the previous theory of this chapter can be applied to the Hamilton space
(9.10).

5.10 The almost Kählerian model of an Hamil-
ton space

Let be a Hamilton space and its fundamental tensor
field.

The canonical nonlinear connection N has the coefficients (5.1). The adapted

basis to the distributions N and V is and its dual basis

sis
Thus the following tensor on

gives a pseudo-Riemannian structure on which depends only on the fun-
damental function H(x, p) of the Hamilton space These properties are the
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consequences of Theorem 5.3.1 and of the fact that is the canonical nonlinear
connection.

The tensor is called the N-lift of the fundamental tensor
The distributions N and V are orthogonal with respect to because the for-

mulae (3.3) hold.
Taking into account the mapping defined in (3.4) with

respect to the canonical nonlinear connection, we obtain the following properties:

1° is globally defined on

2° is an almost complex structure: on

3° is determined only by the fundamental function H(x, p) of the Hamilton
space

Finally, we obtain a particular form of Theorem 5.3.2:

Theorem 5.10.1.

1° The pair is an almost Hermitian structure on the manifold

2° The structure is determined only by the fundamental function H(x, p)
of the Hamilton space

3° The associated almost symplectic structure to is the canonical symplec-
tic structure

4° The space is almost Kählerian.

The proof is similar with that from Lagrange spaces (cf. Ch.3).
The equality  follows from the fact

that the torsion  of the canonical nonlinear connection vanishes

(cf (5.1)).
The space is called the almost Kählerian model of the Hamilton

space This model is useful in applications.



Chapter 6

Cartan spaces

The modern formulation of the notion of Cartan spaces is due of the first author [97],
[98], [99]. Based on the studies of E. Cartan, A. Kawaguchi [75], H. Rund [139], R.
Miron [98], [99], D. Hrimiuc and H.Shimada [66], [67], P.L. Antonelli [21], etc., the
geometry of Cartan spaces is today an important chapter of differential geometry.

In the previous chapter we have presented the geometrical theory of Hamilton
spaces In particular, if the fundamental function H(x,p) is
2-homogeneous on the fibres of the cotangent bundle (T*M, M) the notion of
Cartan space is obtained. It is remarkable that these spaces appear as dual of the
Finsler spaces, via Legendre transformation. Using this duality several important
results in the Cartan spaces can be obtained: the canonical nonlinear connection, the
canonical metrical connection etc. Therefore, the theory of Cartan spaces has the
same symmetry and beauty like Finsler geometry. Moreover, it gives a geometrical
framework for the Hamiltonian theory of Mechanics or Physical fields.

6.1 The notion of Cartan space

As usually, we consider a real, n-dimensional smooth manifold M, the cotangent
bundle (T*M, M) and the manifold

Definition 6.1.1. A Cartan space is a pair such that the fol-
lowing axioms hold:

1° K is a real function on T*M, differentiable on and continuous on the
null section of the projection

2° K is positive on T*M.

3° K is positively 1-homogeneous with respect to the momenta

4° The Hessian of with elements

139
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is positive-defined.

It follows that is a symmetric and nonsingular d-tensor field, contravari-
ant of order 2. Hence we have

The functions are 0–homogeneous with respect to the momenta
For a Cartan space the function K is called the fundamental

function and the fundamental or metric tensor.
At the beginning we remark:

Theorem 6.1.1 If the base manifold M is paracompact, then on the manifold T*M
there exist functions K such that the pair (M, K) is a Cartan space.

Indeed, if M is paracompact, then T*M is paracompact too. Let be a
Riemann structure on M. Considering the function

we obtain a fundamental function for a Cartan space

Examples.

1. Let (M, ) be a Riemannian manifold and

Assuming on an open set it follows that

are the fundamental functions of Cartan spaces.
The first one, (1.4), is called Randers metric and the second one, (1.4)´, is called

the Kropina metric. They will be studied in Chapter 7.

Remark. More generally, we can consider the Cartan spaces with –metric.
They are given by the definition 6.1.1, with being
a function 1-homogeneous with respect to and
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2. The pair where

in the preferential charts of an atlas on T*M, is a Cartan space.
The function

and K(p) from (1.5) is the so–called Antonelli ecological metric [11].
A general remark is imporant:

Theorem 6.1.2. Every Cartan space uniquely determines a
Hamilton space:

Indeed, by means of the axioms l°–4° from Definition 6.1.1 it follows that the
pair (M , ) is a Hamilton space.

We can apply the theory from previous chapter. So, considering the canonical
symplectic structure on T*M:

we deduce that the triple (T*M, ) is a Hamiltonian system. We can apply
Theorems 4.4.3 and 5.4.3. Therefore we can formulate:

Theorem 6.1.3. For any Cartan space the following properties
hold:

1° There exists a unique vector field with the property

2° The integral curves of the Hamilton vector field are given by the Hamil-
ton–Jacobi equations

Indeed, is of the form

and (1.8) gives us its integral curves.

Corollary 6.1.1. The function is constant along the integral curves of Hamilton
vector field

The Hamilton–Jacobi equations (1.8) of the Cartan space are fundamental
for the geometry of They are the dual of the Euler–Lagrange equations of the
Finsler space. Therefore (1.8) are called the equations of geodesies of the Cartan
space This theory will be developed in the next chapter.
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6.2 Properties of the fundamental function K of
Cartan space

Proposition 6.2.1. The following properties hold:

1° is 1-homogeneous d-vector field on

2° is 0-homogeneous d-tensor field.

3° is (–1)-homogeneous, symmetric d-tensor field.

Indeed, if f(x,p) is r-homogeneous with respect of then is r – 1–

homogeneous.  Therefore l°–3° follows.  Let  gij be the covariant tensor of gij, i.e.:

Proposition 6.2.2. We have the following formulae:

These formulae are consequences of l°-3° from the previous proposition.
The fundamental tensor depends only on the point if

and only if In this case the pair (M, ) is a Riemannian space. So
we have

Proposition 6.2.3. The Cartan space is Riemannian if, and
only if, the d–tensor field vanished.

Indeed, holds, if and only if
Let us consider the coefficients from (1.4), Ch.5, of the v-covariant deriva-

tion. They are given by (4.8) Ch.5 for a Cartan space, i.e.:

Naturally, these coefficients have the following properties:

Other properties of the fundamental function K of the Cartan space will be
expressed by means of the canonical nonlinear connection and canonical metrical
connection.
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6.3 Canonical nonlinear connection of a Cartan
space

Since the Cartan space is Hamilton space  the canonical
nonlinear connection of the space has the coefficients from (5.1), Ch.5.

If we consider the Christoffel symbols of  given by

then the following contractions by or

lead us to

Theorem 6.3.1.  (Miron [98], [99]) The canonical nonlinear connection of the Car-
tan space is given by the following coefficients

Proof. By means of formula (5.1), with and we obtain

But The two last equations imply the formula (3.3). q.e.d.

Remark. The coefficients (3.3) can be obtained from the coefficients of the Cartan
nonlinear connection of a Finsler spaces by means of the so called –duality (see
Ch.7).

Let us consider the adapted basis to the distributions N and V where
N is determined by the canonical nonlinear connection of the Cartan space Its
dual basis is

Then the d-tensor of integrability of N is (4.12), Ch.4:

By a direct calculus we have:
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Proposition 6.3.1. In a Cartan space the following properties hold:

Proposition 6.3.2. The distribution N determined by the canonical nonlinear con-
nection of a Cartan space is integrable if and only if the d-tensor field
vanishes.

Other consequence of the previous theorem is given by

Proposition 6.3.3. The canonical nonlinear connection of the Cartan space
depends only on the fundamental function K.

6.4 The canonical metrical connection

Let us consider the N-linear connection of the Cartan space
in which N is the canonical nonlinear connection, with the coeffi-

cients from (3.3). The h- and v-covariant derivatives of the fundamental tensor

of the space are expressed by

In particular, in the case of Cartan spaces, Theorem 6.6.1 implies:

Theorem 6.4.1. 1) In a Cartan space there exists a unique
N-linear connection verifying the axioms:

1° N is the canonical nonlinear connection of th espace

2° The equation holds with respect to

3° The equation holds with respect to

4° is h-torsion free:

5° is v-torsion free:
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2) The connection has the coefficients given by the generalized Christoffel
symbols:

3) depends only on the fundamental function K of the Cartan space

The connection from the previous theorem will be called the canonical
metrical connection of the Cartan space

The connection is called metrical since the conditions
hold good. But these two conditions have a geometrical meaning.

Let us consider ”the square of the norm” of a d-covector field on

and a parametrized curve  given in a local chart of  by

We have the folowing

Theorem 6.4.2. An N-linear connection on has

the property along any curve c, and for any parallel covector field

on c, if and only if the following equations hold.

Proof.

But

Or, the curve c being arbitrary we get

Conversely, if then and (*) imply
q.e.d.

We will denote by pointed out all
coefficients of the canonical metrical connection.

The first property of is as follows:
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Proposition 6.4.1.  The coefficients of the canonical metrical con-
nection are homogeneous with respect to momenta of degree 1,0, –1, respec-
tively.

Indeed, are 0–homogeneous imply are 0-homogeneous, are 1-homoge-
neous and, using (3.3), it results are 1-homogeneous etc.

Proposition 6.4.2. The canonical metrical connection of the Cartan space
is of Cartan type. Namely its deflection tensors have the property

Proof.  First of all we remark that the h-coefficients            of        give us

But can be calculated from (3.3). We obtain Therefore

Similarly, q.e.d.

The first equality (4.4) is an important one. It can be substituted with the axiom
1° from Theorem 6.4.1. We obtain a system of axioms of Matsumoto type (cf. 2.5,
Ch.2) for the canonical metrical connection of the Cartan space

Theorem 6.4.3. 1) For a Cartan space there exists a unique
linear connection which satisfies the following axioms

2) The previous metrical connection is exactly the canonical metrical connection

Proof. Assume that the nonlinear connection N, with the coefficients satisfies
the first axiom then the connection satisfies the axioms

given by Theorem 6.4.1.
Now, using from (4.2) we obtain  given by (4.5). So, for we

get and
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Contracting by we deduce Substituting in (*) we have

But these are the coefficients of the canonical nonlinear connection. The uniqueness
of the connection which satisfies the axioms  can be
obtained by usual way [88]. q.e.d.

One can prove that the axioms are independent [88].
Finally of this section we obtain without difficulties

Proposition 6.4.3. The canonical metrical connection         of the Cartan space
has the properties:

1°

2°

3°

4°

Proposition 6.4.4. The d-torsions of the canonical metrical connection are
given by the following:

Of course, we have

Proposition 6.4.5. The d-tensors of curvatures of the canonical metrical connec-
tion are given by the formula (10.3), Ch.4, where

Indeed, by means of and

we obtain the expression (4.8) of the d-tensor of curvature
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Applying the Ricci identities (10.5), Ch.4 to the fundamental tensor field
and denoting as usual etc. we obtain:

Theorem 6.4.4. The d-tensors of curvature of the canonical metrical connection
have the properties:

The Ricci identities applied to the Liouville covector field and taking into
account the equations: we get some important identities.

Theorem 6.4.5. The canonical metrical connection of the Cartan space
satisfies the identities:

We derive from (4.10):

Corollary 6.4.1. The canonical nonlinear connection has the property:

Of course, the index ”0” means the contraction by or

6.5 Structure equations. Bianchi identities

Taking into account the general theory of structure equations and Bianchi identities
of a general N–linear connection in the case of Cartan spaces

we obtain, for the canonical metrical connection with
the coefficients (4.2), the following results.

The 1-form connections of are:

Taking into account the fact that the torsion tensors and vanish, we obtain:

Theorem 6.5.1. The structure equations of the canonical metrical connection
of the Cartan space are:
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being the 2-forms of torsion:

is the 2-form of curvature:

Applying Theorem 4.12.2, we get:

Theorem 6.5.2. The Bianchi identities of the canonical metrical connection of
Cartan space                                     are the following:

where the symbol  is of cyclic sum and is for alternate sum.

and

and
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6.6 Special N-linear connections of Cartan space

Let be a Cartan space, N its canonical nonlinear connection and
the canonical metrical connection of

The set of all N–linear connections which are metrical
with respect to the fundamental tensor field of the Cartan spce is given by
Theorem 5.2.3 with some particular references.

We have

Theorem 6.6.1. In a Cartan space the set of all N–linear
connection metrical with respect to the fundamental tensor

of  is given by

where is the canonical metrical connection and is an
arbitrary 0–homogeneous d-tensor field and is an arbitrary (–1)-homogeneous
tensor field.

In this case we can remark that the mappings determined
by (6.1) form an Abelian group, isomorphic to the additive groups of the pairs
of d-tensor field Theorem 5.2.4 has a particular case for Cartan
spaces.

Theorem 6.6.2. Let be a Cartan space and N its canonical
nonlinear connection. There exists an unique metrical N-linear connection

with respect to the fundamental tensor having a priori given torsions
fields:                              0–homogeneous and (–1)-homogeneous. The
coefficients of have the expressions

where are the coefficients of the canonical metrical connection

If we take in particular case from (6.2) as follows
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we get, for arbitrary, the set of all metrical semisymmetric connections of
Cartan space

Let us consider the following N-linear connections of

1) –canonical metrical connection

2) –Berwald connection

3) –Rund–Chern connection

4) –Hashiguchi connection

These connections are determined only by the fundamental function of the
Cartan space Every connection l)–4) can be defined by a specific system of
independent axioms, [88].

We denote by or etc. the h- and v-covariant derivatives with respect to
etc.

Proposition 6.6.1. The properties of metrizability of the connection
are given by the following table

The calculation of or is similar with Finslerian case (cf. Ch.2).

Let us consider a transformation of N-linear connection

defined by

where are d-tensors 0-homogeneous and –1–homogeneous, respectively.
The following particular transformations are remarkable:
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Now, it follows easily.

Proposition 6.6.2. The following diagram holds good

The existence of this commutative diagram shows us that the N-linear connec-
tions and are important in the geometry of Cartan
spaces.

6.7 Some special Cartan spaces

The Berwald connection of the Cartan spaces has d-tensors of
the torsion:

and

The d-tensors of curvature of are:

where

are the coefficients of the –connection.
The Bianchi identities of the Berwald connection are given by Theorem

4.12.2.
Now, let us give the following definition:
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Definition 6.7.1. A Cartan space  is called Berwald–Cartan space if the coeffi-
cients of Berwald connection are functions of position alone:

The Berwald–Cartan spaces can be characterized by:

Theorem 6.7.1. A Cartan space is a Berwald–Cartan space if and only if the
following tensor equation holds:

The proof is similar with the one of Theorem 2.3.1.
From the formula (7.1) we obtain:

Corollary 6.7.1. A Cartan space is a Berwald–Cartan space if and only if the

d-tensor of curvature vanishes.

Definition 6.7.2. A Cartan space is called a Landsberg–Cartan space if its Berwald
connection is h-metrical, i.e.

Theorem 6.7.2. A Cartan space is a Landsberg–Cartan space if and only if the
following tensor equation holds:

As in the case of Landsberg–Finsler space we can prove:

Theorem 6.7.3. A Cartan space is a Landsberg–Cartan space if and only if the
d-curvature tensor of the canonical metrical connection vanishes iden-
tically.

Corollary 6.7.2. If a Cartan space is a Berwald–Cartan space, then it is a Landsberg–
Cartan space.

Remark. We will study again these spaces, in next chapter using the theory of
duality of Finsler spaces and Cartan spaces. Also, it will be introduced the Cartan
space of scalar and constant curvature.

Definition 6.7.3. A Cartan space is called locally Minkowski–
Cartan space if in every point there is a coordinate system  such that
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on the fundamental function K(x,p) depends only on the momenta

Exactly as in the case of Finsler spaces we can proof the following important
result:

Theorem 6.7.4. A Cartan space is a locally Minkowski–Cartan
space if and only if the d-tensor of curvature of the canonical metrical connec-
tion vanishes and

Examples.

1° The Cartan spaces where K is given by (1.5), is a locally
Minkowski–Cartan space.

2° The Cartan spaces with the fundamental function (Berwald–
Moór)

is a locally Minkowski–Cartan space.

6.8 Parallelism in Cartan space. Horizontal and
vertical paths

In a Cartan space endowed with the canonical metrical connection
the notion of parallelism of vector fields along a curve

can be studied using the associate Hamilton space
(cf.§5.8, Ch.5).

Let be a parametrized curve expressed in a local chart of
by

The tangent vector field is

where
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The curve is called horizontal if So, an horizontal curve is

characterized by the equations:

Taking into account that it follows that:

Proposition 6.8.1. The horizontal curves in the Cartan space are characte-
rized by the equations:

The first consequence is follows:

Theorem 6.8.1. The geodesies of the Cartan space are the horizontal curves.

Proof. The geodesies of the space are given by the Hamilton–Jacobi equations

Therefore, we have q.e.d.

Corollary 6.8.1. The geodesies of the space are characterized by the equations:

For a vector field which is locally expressed by:

we have:

Theorem 6.8.2. The vector field X, given by (8.7) is parallel along the curve
with respect to the canonical metrical connection of the Cartan space if and
only if its coordinate are solutions of the differential equations (11.8), Ch.4,
where is the 1-forms connection of

In particular, Theorem 4.11.2 can be applied:
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Theorem 6.8.3. The Cartan space endowed with the canonical
metrical connection is with the absolute parallelism of vectors, if and only if the
d-tensors of curvature and vanish.

Theorem 4.11.3 can be particularized, too:

Theorem 6.8.4. The curve given by (8.1) is autoparallel with respect to the
canonical metrical connection of the Cartan space if, and only if, the func-
tions are the solutions of the system of differential equations

As is known, the horizontal autoparallel curves of the Cartan space are the
horizontal paths.

Theorem 6.8.5. The horizontal paths of the connection of a Cartan space are
characterized by the system of differential equations

Now, taking into account Theorem 4.11.5, we get:

Theorem 6.8.6. The vertical paths in the point with respect of a Cartan
space are characterized by the system of differential equations

6.9  The almost Kählerian model of a Cartan space

To a Cartan space Cn = (M, K (x,p)) we can associate some important geometrical
object fields on the manifold           .   Namely, the N-lift of the fundamental tensor

the almost complex structure etc. If N is the canonical nonlinear connection
of thus determine an almost Hermitian structure, which is derivated only
from the fundamental function K of the Cartan space. This structure gives us the
so-called [99] geometrical model on of the Cartan space

Let be the adapted basis to the distribution N and V, N being the cano-
nical nonlinear connection of the space Its dual basis is

The N-lift of the fundamental tensor field  of the space  is defined by

We obtainas usual
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Theorem 6.9.1. The following properties hold:

1° is a Riemannian structure globally defined on

2°     is determined only by the fundamental function K of the Cartan space

3° The distributions N and V are orthogonal.

Now, considering the covector fields in every point we can
define the –linear mapping defined in (6.7),
Ch.4, by

By means of Theorem 4.6.2, we obtain

Theorem 6.9.2. We have the followings:
1° is globally defined on
2° is the tensor field of type (1,1) :

3° is an almost complex structure on

4° depends only on the fundamental function K of the Cartan space

Theorem 4.6.4 lead to

Theorem 6.9.3.

1° The pair is an almost Hermitian structure on

2° The almost Hermitian structure depends only on the fundamental func-
tion K of the Cartans space

3° The associate almost symplectic structure to the structure is the cano-
nical symplectic structure

Corollary 6.9.1. The space is almost Kählerian and it is determined
only by the Cartan space

Finally, we remark:
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Theorem 6.9.4. The N -linear connection D, determined by the canonical metrical
connection of the Cartan space is an almost Kählerian one, i. e.

Due to the last property, we call the space the almost Kählerian
model of the Cartan space

It is extremely useful in the applications in mechanics, theoretical physics, etc.



Chapter 7

The duality between Lagrange
and Hamilton spaces

In this chapter we develop the concept of    –duality between Lagrange and Hamilton
spaces (particularly between Finsler and Cartan spaces) investigated in [66], [67],
[97] and a new technique in the study of the geometry of these spaces is elaborated.
We will apply this technique to study the geometry of Kropina spaces (especially the
geometric objects derived from the Cartan Connection) via the geometry of Randers
spaces.

These spaces are already used in many applications.

7.1 The Lagrange-Hamilton duality

Let L be a regular Lagrangian on a domain and let H be a regular
Hamiltonian on a domain

Hence, the matrices with entries

and

are everywhere nondegenerate on D and respectively D*,
Note: The metric tensors (1.1) and (1.2) used in this chapter are those of Chapter

3 and Chapter 5 multiplied by a factor 2. This notation allows us to simplify a certain
number of equations and to preserve the classical Legendre duality encounterd in
Mechanics (see[3]).

159
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If is a differentiable map, we can consider the fiber derivative of L,
locally given by

which will be called the Legendre transformation.
It is easily seen that L is a regular Lagrangian if and only if is a local diffeo-

morphism [3].
In the same manner if the fiber derivative is given locally by

which is a local diffeomorphism if and only if H is regular.
Let us consider a regular Lagrangian L. Then is a diffeomorphism between

the open sets and We can define in this case the function

where is the solution of the equations

Also, if H is a regular Hamiltonian on M, is a diffeomorphism between same
open sets and and we can consider the function

where is the solution of the equations

It is easily verified that H and L given by (1.5) and (1.6) are regular.
The Hamiltonian given by (1.5) will be called the Legendre transformation of the

Lagrangian L (also L given by (1.6) will be called the Legendre transformation of
the Hamiltonian H.

Examples:

1. If L is m–homogeneous, regular Lagrangian, then locally,
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2. If then its Legendre transformation is the

Hamiltonian

where and

In the following, we will restrict our attention to the diffeomorphisms

(where is the Legendre transformation associated to the Hamiltonian given in
(1.6)).

We remark that U and U* are open sets in TM  and respectively T*M and
generally are not domains of charts.

The following relations can be checked directly

where
Using the diffeomorphism (or ) we can pull–back or push–forward the geome-

tric structures from U to U* or from U* to U.

A) if we consider the pull-back of f by (or push-forward by )

Also, if we get

We have the following properties:
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(iii)

(iv)

B) If the push–forward of X by (or pull-back by ) is

( is the tangent map of )
Also, if we can consider the push-forward of X by (or pull-back

by ),

The following relations are easily checked:

C) If the push-forward of by (or pull-back by ) is

and if we can consider

where denotes the cotangent map of
We have similar properties as (i), (ii), (iv) above.

D) Generally if is a tensor field on U we can define similar the push-
forward of K by and, for we get  (see also
[3]) we have
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Let be a linear connection on U. We define a linear connection on U* as
follows:

Also, if is a linear connection on U* we get a linear connection on U

It is easily checked, using the above examples, that and are indeed linear
connections on U* and U.

For the torsion and curvature tensors of we have

Generally, if and is its push–forward by then

Definition 7.1.1. We will say that f and f* (or f and ) X and X* (or X and
), K and K* (or K and ), and (or and ) are dual by the Legendre

transformation or are –dual.

In the next section we will look for geometric objects on U and U* which are
–dual. These geometric objects will be obtained easily each one from the other.

7.2 –dual nonlinear connections

Definition 7.2.1. Let HTU and HTU* be two nonlinear connections on the open
sets U and U*. We say that HTU and HTU* are –dual if

Let and be the coefficients of two nonlinear connections
on U and U*.
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Theorem 7.2.1. The following statements are equivalent:

(i) N and are -dual;

(ii)

(iii)

(iv)

(v)

Proof. N and are
We must have

On the other hand,

Therefore, we get
and

(or,  equivalent, and we have proved that (i) (ii).
Now we have

Using these relations we get the proof.
The –dual of the nonlinear connection N will be denoted by N*. (Similarly, the

–dual of will be denoted by )

Corollary 7.2.1.   If  and are two –dual nonlinear connec-
tions we have

(These properties are characteristic for two –dual nonlinear connections, too.)

Proposition 7.2.1. The following equalities hold good:
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Corollary 7.2.2. Let   be two –dual nonlinear connections.
The following assertions hold:

(i) and

(ii) If then

(iii)

Remark. We have Therefore the com-
ponents of the –dual of K in (x, p) are obtained from the components of K
in (x, y), unchanging the horizontal part and raising and lowering of
indices for vertical part by using gab.

Examples.

1. The –dual of the metric tensor has the components

2. If

If

3. If is the Kronecker delta, with components then the components of its
dual are as follows:

Let be a differentiable curve on U. The tangent
vector can be written as follows:

We say that c is a horizontal curve if
A similar definition holds for differentiable curves on U*.

Proposition 7.2.2. (N , ) is a pair of –dual nonlinear connections if and only
if the –dual of every horizontal curve is also a horizontal curve.
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Proof. Let two –dual curves,
therefore

Let suppose that N and are –dual nonlinear connections. Using Theorem

7.2.1, (ii), and the above relation we get Conversely, from

we obtain easily that N and are –dual.

Example. For a Lagrange manifold the geodesies are extremals of the action inte-
gral of L and coincide with the integral curves of the semispray

where

This semispray generates a notable nonlinear connection, called canonical, whose
coefficients are given by

(see Section 3.3, Ch. 3).
Using (ii) from Theorem 7.2.1, we get the coefficients of its –dual nonlinear

connection:

and after a straightforward computation we obtain

We remark that is expressed here only using the Hamiltonian. This is the cano-
nical nonlinear connection of the Hamilton manifold (M, H) obtained by R.Miron
in [97].

We also remark that the canonical nonlinear connection (2.3) is symmetrical,
that means
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Taking the –dual of (2.7) we get the ”symmetry” condition for

((2.8) can be also checked directly and thus (2.7) may be obtained as a consequence
of (2.8)).

Now, let us fix the nonlinear connection given by (2.5) and (2.6) on U and
respectively U*.

The canonical two form

is just the canonical symplectic form of T*M.
The Hamilton vector field can be obtained from the condition:

Consequently,

The integral curves of are solutions of Hamilton–Jacobi equations

(equivalently with

The –dual of is just  the Lagrange vector field from (2.3).
In adapted frames (2.3) one reads

and we remark that is horizontal iff is 2–homogeneous. An integral curve of
verifies the Euler–Lagrange equations:

which are –dual of (2.10).
The –dual of the canonical one form is the canonical 1–form of the

Lagrange manifold

and the –dual of  is the canonical 2–form of (M, L)
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Proposition 7.2.3.

(i) If N and are –dual then

(ii)

(iii)

Proof.

(i)

(ii) We use the symmetry of the tensor  in all indices.

(iii) On the other hand,

and then we will get (iii).

Proposition 7.2.4. Let N and be two  –dual nonlinear connections. Then

(i)

(ii)

(iii)

Proof, (i) follows from Theorem 7.2.1, (ii), and (ii), (iii) are direct consequences of
(iii) of Proposition 7.2.3.

7.3 -dual d–connections

Let (N, N*) be a pair of –dual nonlinear connections. Then  –dual of the almost
product structure on U is

Let be a linear connection on U and its –dual on U*, given by (1.18).

Definition 7.3.1. A linear connection on TM (T*M) is called d-connection
if

Proposition 7.3.1. is a d–connection if and only if is a d–connection..
Proof. We use

Theorem 7.3.1. Let be a d–connection on U, and

be a d–connection on U*. Then and
are –dual if and only if the following relations hold:
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(i)

(ii)

(iii)

(iv)

Remark. We see that is obtained very simple  from and as the –dual
of that is

On the other hand,

and therefore

Corollary 7.3.1.

0)

(ii) Let K* be a d*–tensor on U*, the -dual of the d–tensor K on U,

and its h– and v–covariant derivative with respect to

Then

A consequence of (1.20) and (1.21) is the following result:

Proposition 7.3.2. Let and be two -dual d–connections. Then, the torsion
and curvature tensors of are –dual of torsion and curvature tensors of

Remark. The proposition above states that the torsion and curvature tensors of
can be obtained from those of by lowering or raising vertical indices, using

As we have seen (Theorem 7.3.1), the –dual of a N-connection generally is not
a N*-connection.

Proposition 7.3.3.  Let   be  a  N-connection  on  U  and
its –dual. Then
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Conversely, if the coefficients of     (the    –dual of   ) verify (3.1) and (3.2) then
is a N-connection.

Proof. Let be the –dual of the almost complex
structures

Then the d-connection is a N-connection if and only if

On the tangent bundle we have the metrical structure

The –dual of this metric tensor is

Therefore we are in the position to apply Theorem 3.10.1 and Theorem 7.3.1 and
so we will get the canonical d–connection of the Lagrange and Hamilton manifolds
(here restricted to U and U*).

Theorem 7.3.2. The  –dual of the canonical N-connection of a Lagrange manifold
is just the canonical N*-connection of its associated Hamilton manifold. (Only in
this case

Proof. Using Theorem 3.10.1 and Theorem 7.3.1, (i) we get

and using Theorem 7.2.1 we obtain

Also, making use of Theorem 7.3.1, (iv) and Theorem 3.10.1, we have
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and from (ii) and (ii) of Theorem 7.3.1 we obtain

Theorem 7.3.3. Let be the –dual of a N-connection on
U. Then we have:

(i) is h-metrical

(ii) is v-metrical

Proof. (i) The h–metrical condition for and (3.1) can be rewritten in the
following forms:

If from the last equality we get the first two and from the last condition
and the first we get By a similar argument we can prove (ii).

Consequently, we can conclude finally:

Theorem 7.3.4. The class of N-connections which is preserved by –duality is only
the class of metrical N-connections.

Let be the canonical symplectic form of (M , L) given by (2.13). The following
result is a consequence of the above theorems:

Theorem 7.3.5.

(i) If is a N-connection on then

(ii)  If   is a N*-connection on then



172   The Geometry of Hamilton & Lagrange Spaces

Proof. (i) Let be the –dual of Then

(ii) We use a similar argument.
Let us stand out some problems connected with the deflection tensor field.
The h–deflection tensor field of a d–connection on the tangent bundle can be

defined as follows:

where C is the Liouville vector field.
Locally we have:

The deflection tensor field of a connection on the cotangent bundle,
where is the Liouville vector field on T*M,  has the local form

Also we can consider the v–deflection tensor field

and its correspondent for cotangent bundle

Using the –duality we see that generally, the –duals of D and d are different
by and respectively

We have

where C* is the –dual of the Liouville vector field,

and locally

The –dual of d is where
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The following result holds:

Proposition 7.3.4. if and only if where F is

1–homogeneous and u is a scalar field. In this case and

Proof.    is 1–homogeneous

and F 1–homogeneous.

Remark. As we have seen from the last two sections there exists many geometric
objects (nonlinear connections, linear connections, metrical structures and so on)
which can be transfered by using –duality from U to U* and also from U* to U.

Now let suppose we have a regular Hamiltonian defined on a domain
The Legendre transformation is a diffeomorphism between some open
subsets U*, U of D* and TM. Taking the Lagrangian

we can construct a Lagrange geometry restricted to U and then
we pull–back by the geometric objects on U, to U*. These will depend only by
Hamiltonian, therefore we will be able to extend them on the whole domain D*.

7.4 The Finsler–Cartan –duality

In this section we will give an idea for the study of the geometry of a Cartan space
using the –duality and the geometry of its associated Finsler space.

Let H be a 2–homogeneous Hamiltonian on a domain of T*M,
the Legendre transformation and

its associate Lagrangian.
We remark, using the 2–homogeneous property of H, that

Proposition 7.4.1. The Lagrangian given by (4.1) is a 2–homogenous Lagrangian.

Proof. Let us put

We know that is 1–homogeneous, then
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and thus is 1–homogeneous so, L is 2–homogeneous.
Therefore, using the theory made in the previous sections we may carry some

geometry of Finsler spaces on 2–homogeneous Hamilton manifolds.

Remark. For 2–homogeneous Hamiltonian we have

(4.3)

(4.4)

(4.5)

Among the nonlinear connections of a Finsler space one has the most interest.
It is the Cartan nonlinear connection

where

Theorem 7.4.1. The –dual of the Cartan nonlinear connection (4.6) is

where we have put

Proof. We have and making use of (4.2) we get

where
On the other hand,

So, we will have
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and

Then (4.8) becomes

But we can write:

and substituting it in the above equality we get (4.7).
Among Finsler connections, the Cartan connection is without doubt very impor-

tant.
The following result is also well known [88].

Theorem 7.4.2. On a Finsler space there exists only one Finsler connection which
verifies the following axioms (Matsumoto’s axioms)

The coefficients of this Finsler connection are:

and the nonlinear connection is given by (4.6).

The Finsler connection given by (4.9), (4.6), (4.10) is the Cartan connection of
the Finsler space

Using the results of the previous sections we can state the –dual of Theorem
7.4.2 for the Cartan space

Theorem 7.4.3. On a Cartan space (M, ) there exists only one N-connection
which satisfies the following axioms:
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It is the –dual of  the Cartan connection above. That is:

and the nonlinear connection is given by (4.7).

Proof. The connection given by (4.11), (4.12) and (4.7), verifies For this
connection and (Proposition 7.3.4).

This connection is unique. Indeed, if there exists another one, taking the  –dual
of it we will get two Finsler connections (restricted to an open set) which satisfy
Matsumoto’s axioms.

The linear connection of Theorem 7.4.3 is just the Cartan connection of the
Cartan space We remark that conditions  are all the  –duals
of

Consequently, all properties of  the Cartan connection from Finsler spaces can be
transfered on the Cartan spaces only by using the –duality.

Remark. When we look for a –dual of a d–tensor field we must pay attention to
the vertical indices; in this section (and sometimes in the other sections) for the sake
of simplicity we have omitted to use indices a, b, c, d, e, f  to stand out the vertical
part.

Let a differentiable curve on D*. c will be called
h–path (with respect to Cartan connection if it is horizontal and

Theorem 7.4.4. The –duals of h–paths of  are h–paths of

Proof. It follows from Proposition 7.2.2 and Theorem 7.3.1, (i).

Corollary 7.4.1. Let be an integral curve of  the Hamilton vector
field (2.9). then c*(t) is an h–path of
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Proof. is an integral curve of iff its dual
is an integral curve of and therefore an h–path so its  –dual c* will be also an
h–path.

The next results will give us an interesting field where the  –dual theory can be
applied.

As we know a Randers space is a Finsler space where the metric has the following
form

(Randers metric) and a Kropina space is a Finsler space with the fundamental func-
tion

(Kropina metric) where is a Riemannian metric and is
a differential 1–form.

We can also consider Cartan spaces having the metric functions of the following
forms

or

and we will again call these spaces Randers and, respectively, Kropina spaces on the
cotangent bundle T*M.

Theorem 7.4.5. Let (M , F) be a Randers space and the Riemannian
length of Then

(i)  If        the –dual of (M, F) is a Kropina space on T*M with

(ii)  If        the –dual of (M , F) is a Kropina space on T*M with

where

(in (4.18) “–” corresponds to and “+” corresponds to ).
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Proof. We put

We have

Contracting in (4.19) by and we get:

Therefore,

(i) If from (4.21) we obtain and using (4.20), we get

(ii) If from (4.20) and (4.21) we have:

and by substitution

From this last relation we obtain (4.18).

Theorem 7.4.6. The –dual of a Kropina space is a Randers space on T*M with
the Hamiltonian

where

(Here “+” corresponds to and ”–” to )
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Proof. We use the same notations as in the proof of Theorem 7.4.5. We have

Contracting by and then by we get:

Using these relations, after a simple computation, we obtain (4.22).
We must have for regularity of But, the regularity condition for the

Kropina metric leads to

Remark. Using the Theorem 7.4.6, we can derive the geometric properties of
Kropina spaces, very simply, from those of Randers spaces, by using    –duality.

We will explain this more precisely in the next section.

7.5 Berwald connection for Cartan spaces. Lands-
berg and Berwald spaces. Locally Minkowski
spaces.

Berwald connection of Cartan space (here are given by
(4.6)) is not the –dual of Berwald connection of its associated Finsler space like
Cartan connection. There exist some important distinctions here, which are conse-
quences of the nonexistence of a spray and thus, the nonlinear connection cannot
be obtained as a partial derivative of a spray.

Theorem 7.5.1. On Cartan space (M, ) there exists only one Finsler connection
with the following properties:

Proof. It is easily checked that the connection with
given by (4.6) satisfies all Indeed, let us take the local diffeomorphism

and consider the –dual of is Cartan
nonlinear connection of  the associated Finsler space (M, F). We have
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and are obvious and is equivalent to (see (2.8)).
Let us prove the uniqueness of the Finsler connection which satisfies

If                               is another connection, then it must have the following form:

Taking the lift of this connection on U*, we get a N-connection
0,0), and is the –dual of this connection, where
is the –dual of

This d–connection provides a Finsler connection of U

which has the following properties:

These conditions are sufficient to assure the uniqueness of Finsler connection of U.
Now, we can easily prove the uniqueness.

Let us put

Berwald connection for Cartan spaces has the following, generally nonvanishing
curvature tensors:

and a torsion tensor

Proposition 7.5.1. The following relations hold good:

(i)    (ii)

Proposition 7.5.2. Let (M, ) be a Cartan space and the h–curvature
tensors of and of Berwald connection of its (locally) associated Finsler space,
respectively. Then we have in U*

where means that the value of is calculated in (x, p),
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Let us denote by “*", the h–covariant derivative with respect to Berwald con-
nection

Theorem 7.5.2. Let and be the Cartan and Berwald connections of  (M ,    ),
respectively. Then

Proof. (i) Let us restrict our considerations to the open sets U*, U such that
Legendre transformation is a diffeomorphism.

If we consider the –dual of Cartan connection we
have in U

Taking the –dual of  this relation, we get

where
(ii) We have

Definition 7.5.1. A Cartan space is called a Landsberg space if It is
called a Berwald space if

Using the –duality between Cartan and Finsler spaces, we can easily prove:

Proposition 7.5.3. A Cartan space is a Landsberg (Berwald) space if and only if
every associated Finsler space is locally Landsberg (Berwald) space.

The following theorems characterize Cartan spaces which are Landsberg and
Berwald spaces.

Theorem 7.5.3. A Cartan space is a Landsberg space if and only if one of the
following conditions holds:

(a) (b) (c)
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Proof. Using the  –duality, we get Then
(b) follows from (5.3).

Theorem 7.5.4. A Carton space is a Berwald space if and only if one of the
following conditions is true:

(a)

(b) is a linear connection (that is are functions of position only),

(c) are functions of position only.

Proof. Obviously Now let us prove

The associated Finsler space (U, F) is Berwald space because of ( –dual
of ), therefore the  coefficients of Cartan connection are functions of
position only. From

we obtain also that are functions of position only.
Now, using (5.3) and again we get (a).
Conversely, we obtain and (5.3) yields

Taking the –dual of this equation, we obtain

or

where is the hv-curvature tensor of  the Rund connection of (U, F). From this
relation we obtain following the same way as in [88], page 161, and by
   –dualization we get

Finally, from the above considerations we can easily prove (a) (c).

Definition 7.5.2. A Cartan space (M, ) is called locally Minkowski space if there
exists a covering of coordinate neighborhoods in which depends on only.

Proposition 7.5.4. A Cartan space (M, ) is a locally Minkowski space if and only
if every locally associated Finsler space is locally Minkowski space.

The following result characterizes the Cartan spaces which are locally Minkowski
spaces.
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Theorem 7.5.5. A Cartan space is locally Minkowski space if and only if one of
the following conditions holds:

(i) (ii)

Proof. If (M, ) is locally Minkowski space, then and Therefore
(i) and (ii) hold.

If (ii) is true, using the –duality we can easily prove that (M, ) is locally
Minkowski space (see also [130]).

If (i) is true, yields that (M, ) is Berwald space and thus
On the other hand, and from (ii) and Proposition 7.5.1, it follows

In the same time holds and therefore, we get from
(5.1).

Definition 7.5.3. a) Cartan space (M, ) is said to be of  scalar curvature if  there
exists a scalar function such that

for every and
b) A Cartan space (M, ) of scalar curvature is said to be of constant curvature

if the scalar function from a) is constant

From Proposition 7.5.1, (ii) and (5.4) we easily obtain that (M, ) is of constant
curvature if and only if where is the angular
metric tensor of Cartan spaces.

Theorem 7.5.6 (i) A Cartan space is of scalar curvature K(x, p) if and only if
every associated Finsler space is of scalar curvature K(x, y),

(ii) A Cartan space is of constant curvature K if and only if every associated
Finsler space is of constant curvature K.

Proof. Contracting (7.2) by we get

or

(Here the –dual of is But a Finsler space is said to
be of scalar curvature K(X, y) if and
if it is said to be of constant K (see [88], page 167).
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Now, using (5.5), we obtain the proof.

Remark. We can get some similar results as in Proposition 7.5.3, Proposition 7.5.4
and Theorem 7.5.6 for a Finsler space, considering Cartan spaces, locally associated
to it. Therefore, some nice results in Finsler space can be obtained as the –dual
of those from Cartan spaces.

7.6 Applications of the -duality

In this section, we shall give some applications of the –duality between Finsler
and Cartan spaces.

In terms of the Cartan connection a Landsberg space is a Finsler space such that
the hv–curvature tensor [90].

A Cartan space is called Landsberg if Using the –duality it is clear
that a Finsler space is a Landsberg space iff its –dual is a Landsberg one.

In [151] (see also [90], [77]) was proved that a Randers space is a Landsberg
space iff (here “;" stands for covariant derivative with respect to Levi-Cività
connection of the Riemannian manifold (M, )).

For Kropina spaces we have a “dual” of the above result:

Theorem 7.6.1. A Kropina space is a Landsberg space if and only if

Proof. The Randers metric

is a Landsberg metric  iff

(here stands for covariant derivative with respect to the Levi-Cività connection
of  the Riemannian manifold (M, ).

Hence, we have the following equivalent statements:
The Kropina space is Landsberg its –dual is Landsberg
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But where and

are the coefficients of the Levi-Cività connection of  respectively

therefore and are conformal metrics).
So we get

which also was obtained in [90], [77] by a different argument.
We can obtain other properties of Kropina spaces from those of Randers by using

the –duality.

Theorem 7.6.2 i) Kropina space is a Berwald space if and only if

ii) Kropina space is locally Minkowski space if and only if the condition (6.2) above
holds and also

where stands for the covariant
derivative with respect to Levi-Cività connection of (M, ) and is the Rie-
mannian curvature tensor.

First of all we need the following

Lemma 7.6.1 Let (M, ) be Cartan space with Randers metric

Then
(6.4)

(i) (M, ) is a Berwald space if and only if
(ii) (M, ) is Minkowski space if and only if

where       stands for Levi-Cività connection of  (M , )  and             is Riemannian
curvature tensor.

Proof. The proof of this Lemma follows step by step the ideas of Kikuchi [77].
For example, here, to obtain that (M, ) is Berwald space on the condition
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0, we use Theorem 7.4.3 and prove that the Cartan connection of this space is

where are the coefficients of the Levi-Cività

connection of

Proof of the Theorem 7.6.2. We take the  –dual of the Kropina metric (4.14)
and we get the Hamiltonian (4.18). We have

Therefore, Riemannian manifolds (M, ) and (M, ) are conformal and the coef-
ficients of Levi-Cività connections are related as follows:

The condition (6.4) is written as (6.2).
Also, for the conformal metrics, we have

For our position and using the above equality,
we get (6.3). Finally, we apply the results of the previous section.

Remark. (i) The results of Theorem 7.6.2 were obtained by Kikuchi [77] in a
different form and also by Matsumoto [90] in this form, by using of totally different
ideas.

(ii) A Finsler space with a Kropina metric is Berwald space if and only if (6.2) is
true. Indeed, it is easily checked that the Cartan space with Randers metric (4.15)
is a Berwald space if and only if (see [151] for Finsler spaces with Randers
metric). Therefore, we follow the same idea as in Theorem 7.6.2.

Let us now give another example of using of –duality (see also [63]). If (M, F)
is Finsler space with

(m–th root metric [11], [152]), its –dual is Cartan space having fundamental
function

where
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In particular, if
const.), we get the ecological metric of Antonelli ([11], [13], [152]):

and its –dual is

The geodesies of (M , F), parametrized by the arclength, are just the ecological
equations (see [11], [12], [18], [152]). The –duals of these equations have a simpler
form:

(6.5)

(Hamilton-Jacobi equations), where The solutions of (6.5) are h–paths
of (M, )  [66].



Chapter 8

Symplectic transformations of the
differential geometry of T*M

It is well-known that symplectic transformations preserve the form of the Hamilton-
Jacobi equations. However, the natural metric tensor (kinetic energy matrix) is not
generally invariant nor is its associated differential geometry. In this chapter we ad-
dress precisely the question of how the geometry of the cotangent bundle changes un-
der symplectic transformation. As a special case, we also consider the homogeneous
contact transformations. The geometry of spaces admitting contact transformations
was initiated and developed by Eisenhart [53], Eisenhart and Knebelman [55], where
the first contact frame was introduced. Muto [122] and Doyle [52] introduced inde-
pendently, the second contact frame and the geometry of the homogeneous contact
manifolds was intensively studied by Yano and Muto [173, 174]. The chapter is
based on [14].

8.1 Connection-pairs on cotangent bundle

Let M be a n–dimensional  –differentiable manifold and the
cotangent bundle. As we have seen (Chapter 4) a nonlinear connection on T*M is
a supplementary distribution HT*M of the vertical distribution
( is the tangent map of ). It is often more convenient to think of a nonlinear
connection as an almost product structure on T*M such that
(Section 4.6).

If and is a connection on T*M, the push-forward of by
f generally fails to be a connection. Because of this, we will now define a new
geometrical structure which nevertheless is an extension of the above definition for
connections.

Definition 8.1.1. A connection-pair on T*M is an almost product structure on

189



190 The Geometry of Hamilton & Lagrange Spaces

T*M such that is supplementary to VT*M.
will be called the horizontal bundle and

the oblique bundle.

Conversely, if a connection is given on T*M, we can get a connection-pair on T*M
by taking a complementary subbundle of

Let be a connection-pair on T*M and the associated connection. We will
denote by h and v the projections induced by

and by those induced by

The local expression of is given by

and the local vector fields:

provide us with a frame for HT*M at (x , p) .
We also obtain:

On the other hand,

Indeed, from  we get

and now (1.6) follows easily.
The local vector fields

Remark. If is a connection-pair on T*M, then a unique connection can be
associated to it, such that  therefore on
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form a basis for WT*M at (x ,p ) and

Therefore, is a frame for TT*M at (x , p) , adapted to the connection-pair,

The dual of this adapted frame is where

Using the notation above we have the following local expression of and its
associated connection

With respect to natural frame, has the local form

From (1.4) and (1.7) we get:

Proposition 8.1.1. The adapted basis and its dual transform under
a change of coordinates on T*M as follows:

Proposition 8.1.2. If a change of coordinates is performed on T*M, then the

Remarks. 1. In spite of being an object on T*M, follows the same rule of
transformation as a tensor of type (1,1) on M, therefore  are the components of
a d-tensor field.

coefficients of the connection-pair      obey the following rules of transformation
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2. If M is paracompact, there exists a connection-pair on T*M if and only if, on
the domain of each chart on T*M there exists –differentiate functions  and

satisfying (1.16) and (1.17) with respect to the transformation of coordinates on
T*M.

3. Explicit examples of connection-pair on T*M. Let a Riemannian

metric on M and the Christoffel symbols of g. We can define on every domain

of a chart

These are the local components of a connection pair [146].
More generally, if (M , H) is a Hamilton manifold, we can take as the coeffi-

cients of the canonical nonlinear connection and

Proposition 8.1.3. We have the brackets:

where

Let us put

where denotes the Nijenhuis bracket of and R, R' are given by

We call R the curvature and R' the cocurvature of the connection-pair   R and R'
are obstructions to the integrability of HT*M and WT*M, respectively.
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Locally we have:

HT*M and WT*M are integrable iff is integrable, or equivalently,

Let be the canonical one form of T*M and the canonical
symplectic 2-form.

The Definition 8.1.2 above is invariant because of:

Proposition 8.1.4. A connection-pair is symmetric if and only if

Proof. has the local expression

We obviously have From

we get

We obtain therefore, and

Corollary 8.1.1. The following statements are equivalent

(i) is symmetric.

(ii) WT*M and HT*M are Lagrangian (every subbundle is both isotropic and
coisotropic with respect to ).

tion above, we get that is symmetric.

Definition 8.1.2. A connection-pair on T*M is called symmetric if  and

Proof. If  is symmetric, using the proposition above we get
0 and on account of dim it follows that
HT*M and VT*M are Lagrangian.

Now, if conversely HT*M and VT*M are Lagrangian, using again the proposi-
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Remark. A connection-pair on T*M induces two almost symplectic forms, glob-
ally defined on T*M :

is symmetric iff
Its associated connection is symmetric (that is or equivalently

iff
Let be the Liouville vector field, globally defined on T*M. We denote

by the slit cotangent bundle, that is, the cotangent bundle with zero section
removed.

Definition 8.1.3. A connection-pair on is called homogeneous if the Lie
derivative of with respect to C vanishes, that is

The following, characterize the property of homogeneity for connection-pairs in
terms of homogeneity of its connectors.

Proposition 8.1.5. A connection-pair is homogeneous iff  and are 1-homo-
geneous, respectively, –1 – homogeneous, with respect to p.

Proof. From and (1.5) we get

But,

and from (1.6)

Therefore,

and thus are 1– homogeneous.

We also must have:

and thus

that is, is –1– homogeneous relative to p.

but using the 1 – homogeneity of        above, we get
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8.2 Special Linear Connections on T*M

Let be a fixed symmetrical connection-pair on T*M and

the splitting generated by it. HT*M is the horizontal bundle and WT*M is the
oblique bundle.

Every vector field has two components with respect to the above
splitting

where is the horizontal component and  is the oblique
component of X.

We can also introduce some special tensor fields, called –tensor fields as objects
in the algebra spanned by over the ring of  of smooth real valued
functions on T*M. For instance

is a (2, 2) -tensor field. For a change of coordinates given on T*M the components
of a –tensor are transformed in exactly the same way as a tensor on M, in spite

Definition 8.2.1. Let be a linear connection of T*M and  a  connection-pair.
We say that is a   –connection if

It can easily be proved that is equivalent to or This
definition extends to a general setting, the definition of so called Finsler connection
for Cartan space.

A – –connection can be characterized locally by a pair of coefficients
such that

Proposition 8.2.1. Under a change of coordinates on T*M the coefficients of a

of  dependence, thus K is a d-tensor field.

– connection    change as follows:
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Remarks.

1. (2.6) is equivalent to

2. A –connection can be characterized by a couple of coefficients
which obey the transformation law of (2.5) and (2.6), if a change of coordinates
on T*M, is performed.

A -connection on T*M induces two types of covariant derivative:
(a) the h-covariant derivative

(b) the w-covariant derivative

If K is the -tensor field of (2.2), then the local expressions of its h– and w–covariant
derivative have the following form:

where,

Let the Liouville vector field on T* M.

Definition 8.2.2. A –connection       on T*M is of Cartan type if   and
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Proposition 8.2.2. A –connection is of Cartan type iff

Remarks. 1. If (2.12) is verified, we say that  is h-deflection free and if (2.13) is
true then will be called v-deflection free.

2. When is just the connection which arises as usual. We will
denote this -connection by

Locally, we have

Theorem 8.2.1. Let be a connection-pair and its associated connection. Then

a –connection induces a  –connection on T*M, given by:

The local connectors of are the following:

Proof. from (2.14) is clearly a linear connection. Let us find the local form of
this connection.
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We have

Therefore, is a –connection and also (2.16) are verified.

Let be a -connection and

its torsion.
Locally, with respect ot the frame we have

where
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However, has an extra torsion tensor which does not occur when

It is clear that is h-deflection free iff is h–deflectionfree. The following
result gives the relations between v–deflection free tensors:

(here denote the v–covariant derivative induced by ).
The curvature tensor of a  –connection

has three essential components.
We have:

Proposition 8.2.3. The torsion connectors of and are related as follows:

Proposition 8.2.4. Assume that is h–deflection free. Then is v–deflection

free iff is v-deflection free.

Proof.
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where

where indicates interchange of i and k for the terms in the brackets and

subtraction.
Let us consider the diagonal lift metric tensor on T*M

where is a symmetric nondegenerate d–tensor field.

Theorem 8.2.2. Let be a fixed connection pair on T*M. Then there exists only
one –connection such that the following properties are verified:

(i)

The coefficients of this   – connection are the following:

where

Proof. (i) is written in the following from:

(ii)
(iii) (iv)
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and by using the same technique used to find the Christoffel symbols for Riemannian
manifolds, and the first of (2.19), we get (2.24); similary for (ii), but using the last

and verifies (i) - (iv); this connection is metrical with respect to

Proof. We must show only that is v–metrical. By virtue of (2.16) we have:

Remark. This  –connection, induced by is the appropriate one for studing the
geometry of T*M endowed with the metric tensor (2.23). Eisenhart [53] and also
Yano-Davies [172] used a similar connection.

8.3 The homogeneous case
We specialize, here, the results of previous sections in the particular case when

and H is a real smooth function on a domain 2-homogeneous in and
such that the tensor is everywhere nondegenerate on D*.

of (2.19). In particular, the – connection has the coefficients

– – connection (2.15). Then      is G – metrical.
Theorem 8.2.3. Let be the   – metrical connection above, and its induced
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where we have put, as usual,

Note that is deflection free, [97].
However, the geometry of Cartan manifolds as given, is dramatically changed

under a diffeomorphism which is not fiber-preserving. In this case, the geometrical
approach described in the previous section is the correct one to use.

Theorem 8.3.1. Let be a homogeneous connection-pair on such that

(i) is h-deflection free iff

Proof. (i) By definition is h – deflection free iff  From (3.1) we see
that

is completely symmetric and because is 0 – homogeneous we get

and also

Taking into account that and using the above identities, from (2.24)
transvecting by we get:

If is the  – connection given by (2.24), (2.25) and      are those of
(3.1), then

(iii) If   is h-deflection free, then is also v – deflection free.

(ii) If   is h-deflection free, then



Transvecting again by we obtain and thus

that is, (3.3) holds true.
To prove (ii) we need the following:

Proof. Because is h – metrical and h – deflection free and we get
that is,

Therefore,

Let us now prove (ii). We have

Thus,

and by using the above lemma we get,

Lemma. If  is h-deflection free, then
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On the other hand,

and

and thus is v – deflection free.

Remarks. (1) The condition was used by Yano-Davies [172] and Yano-
Muto [174] and it holds when WT*M is the image of the vertical subbundle through
a –regular homogeneous contact transformation (see the next section). In fact, in
this case the Liouville vector field belongs to WT*M.

(2) Equation (3.3 ) shows how to select the connection such that (2.24), (2.24)
hold and the connection is of Cartan type.

8.4 f -related connection-pairs

oblique and horizontal bundles. We denote by its associated connection (nonlin-
ear).

Definition 8.4.1. is called  – regular if the restriction of the
tangent map to HT*M

is a diffeomorphism.

are linearly independent, that is, the matrix with entries

has maximal rank.

If f has the local expression then it is   –regular iff

Let be a connection-pair on T*M and the

Theorem 8.4.1. Let be a connection-pair on T*M and The
following statements are equivalent

From the last four equalities, by again using (3.5) and we finally get,

(iii) From the last of equation (2.19) we get
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(i) is a connection-pair

(ii) f is  – regular.

Proof. is clearly an almost product structure on T*M and it is a connection-pair

Definition 8.4.2. The connection-pair given by (i) above is called the push-
forward of by f. The connection associated to will also be called the push-

Also we will say that and are f – related.

Proof. From and (1.5) we get: that is
On the other hand,

Therefore,

that is (4.2).
Now, let us prove (4.3). We have

iff is transversal to VT*M, or equivalently, is
an isomorphism. But this last condition is equivalent to (ii) because

forward of  by f .

Theorem 8.4.2. The coefficients of two f – related connection-pairs and are
connected by the following equations:
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But,

Thus iff

By using (4.2) we get (4.3).

duced by and respectively, then:

where

The regularity of follows from (4.5) but is also a consequence of

(ii)                                   and

(iii)

Proof. We have

and (i), (ii) follow.
To prove (iii) we use the following equalities:

Corollary 8.4.1.   If are the adapted frames at (x , p ) and in-

Proposition 8.4.1. (i) f is – regular iff is – regular .
If  is  – regular, then
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Generally, if is a connection on T*M the push-forward of  is not a connection.
Some consequences of Theorem 8.4.2 are the following.

Proposition 8.4.2. Let be a connection on T*M and – regular.
Then is a connection-pair; the coefficients of the connection associated

to are given by (4.2) while has the following  form:

Proposition 8.4.3. The push-forward of a connection-pair by a   –regular dif-
feomorphism is a connection if and only if

Now we will study when the push-forward of symmetric connection-pair by f is
also symmetric.

Theorem 8.4.3. Let be a symmetric connection pair on T*M and the push-

(i) is symmetric

(ii) HT*M and WT*M are    – Lagrangian.

Proof. is symmetric if and only if and are both Lagrangian
(Corollary 8.4.2.). Therefore, we must have:

By using (4.4) and (4.5) these conditions are equivalent to

and

therefore HT*M and WT*M are isotropic and thus Lagrangian with respect to
The converse statement is immediate.

forward of by a –regular diffeomorphism f . The following statements are equiv-
alent:

Corollary 8.4.2. The push-forward of a connection by a  –regular diffeo-
morphism is also a connection iff f is fiber preserving (that is, locally, f (x, p) =
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Corollary 8.4.3. is a symmetric connection pair iff

Proof. We have:

By using Theorem 8.4.3 we get the equalities above.

Note: is symmetric iff (4.9) is verified.

Theorem 8.4.4. Let f be a  –regular symplectomorphism. Then is symmetric

which is equivalent to being symmetric.

To summarise the results above we can state the following:

(ii) is symmetric

(iii) is symmetric.

Remark. 1. The condition is equivalent to

and it is obviously verified when f is a symplectomorphism.
2. If f is a –regular symplectomorphism then

Proposition 8.4.4. Let f be a  –regular symplectomorphism of T*M.

iff  is symmetric.

Proof. is symmetric iff HT*M and WT*M are  –Lagrangian, that is –Lagrangian

Theorem 8.4.5. Let                                   – regular, such that   Then
each pair of the next statements implies the third:

(i) f is a symplectomorphism
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Then

Proof. It follows from

using (4.4) and (4.5).

Note: Under the conditions of the above result and Proposition 8.4.1 we have:

and its reciprocal,

Proposition 8.4.5. I Diff (T*M) is a  –regular symplectomorphism and

Proof.

and first equality (4.15) follows. A similar proof holds for the second.

Let us now study the connection between curvature tensors R' and of  and

is the dual of  then

Proposition 8.4.6. Let be a connection-pair and its push-forward by a –regular
symplectomorphism. If R and are the curvature tensors of and then:
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Proof. From (1.17) we get:

On the other hand,

and the relations above follow immediately.

Corollary 8.4.4. If then

8.5 f-related -connections

Let us now investigate the behaviour of geometrical objects described in Section 8.2
under symplectomorphisms.

If is a connection-pair on T*M and is a –regular sym-
plectomorphism, then the symmetry of the connection-pair is preserved
and also

where
and

We can construct a new geometry on T*M, generated by f, by pushing forward
all geometrical objects described in Section 8.2, there by extending to a more general
setting, the results of [55], [146], [147], [175].

For instance, if K is the tensor field, locally given by (2.2), then we can consider
its push-forward:

where

In particular, the push-forward of G from (2.23) has the following local form:
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where

If is a linear connection on T*M, we define its push-forward by f as follows:

is clearly a linear connection on T*M.

On the other hand,

because f is symplectomorphism and thus

(ii) This follows from

Similar theorems to those of Section 8.2 (Theorems 8.2.2 and 8.2.3) hold when
is replaced by and G by

Proposition 8.5.1. (i) is a -connection iff  is a -connection.

Proposition 8.5.2. The coefficients of  are related to those of by the following
relations:

(ii) is G-metrical iff  is –metrical.

Proof. (i)
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8.6 The geometry of a homogeneous contact trans-
formation

In this section we will restrict our considerations to the slit tangent bundle
(the cotangent bundle with zero section removed) instead of T*M.

Let be the canonical one form of locally given by

Definition 8.6.1. A diffeomorphism is called a homogeneous
contact transformation (h.c.t.) if is invariant under f, that is

Proposition 8.6.1. If f is a h.c.t. then

Proof. We use the property of the Liouville vector field  as the only one
such that where “i" denotes the interior product of C and We have

for every

Note: The set of h.c.t. is clearly a subgroup of the group of symplectomorphisms of

then and are homogeneous of degree 0 and 1 with respect to

Proof.

Remarks.
(1) See also [53] for another proof of this result.

Corollary 8.6.1.    If                      is the local expression of a h.c.t.
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(2) A h.c.t. is a symplectomorphism, therefore we must have:

If are homogeneous of degree 0 and 1 with respect to p,
Eq. (6.3) are also sufficient conditions for to be a h.c.t.

In [53] it is proved that f is a h.c.t. then

which in fact results from (6.3).
(3) If Diff (M ) then the cotangent map induced by is a h.c.t. In fact, if

is the local form of then,

In this case f is called an extended point transformation.
It can easily proved that every fibre preserving map which is also a h.c.t. is an

extended point transformation (see also [146]).
(4) The reason to use the word “contact” in the name of this transformation is

given by the property of preserving the tangency of some special submanifolds of

(See [53], [146].)

Proposition 8.6.2. Let be a connection-pair, its associate connection and f a
   – regular  h.c.t.

(i) is homogeneous is homogeneous

(ii)  If   is a   – connection of is the  – connection defined by (5.4), then is
h(v) – deflection free iff  is h(v)-deflection free.

Proof. Straightforward consequence of Definition 8.2.2 and Proposition 8.6.1

Let be a 2-homogeneous regular Hamiltonian and the push-
forward of H by f,
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is also 2-homogeneous Hamiltonian, but the matrix with entries

Therefore,

and

Let be the metric tensor (5.2). The push-forward of G is given by (2.23),
where

We have

Therefore,

Of course, we also have

but may happen.
In fact, the metric tensor induced by f is and not in general.
The tensor is 0–homogeneous with respect to and nondegenerate, but it

may lack the property

which assures that following Section 8.5, the geometry, as in Section 8.3, can be
derived from it.

Therefore, it is from that we can derive the geometry described in Section
8.2.

Now let us find the relationship between and

Proposition 8.6.3. (i)

may not be regular. Assume also that f is   –regular, where is given by (3.2).
Using the homogeneity property of f we get
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Proof. (i)

But  and by using (3.2) we get, because
of homogeneity of

Therefore,

where we also have used (4.13).
Therefore, we get (i).
Now,

Using equation. (6.9) we obtain

and this equality transforms into (ii) after a straightforward calculation.

Note: The relation (ii) above is just (3.19) combined with (3.20) of [54], if we start
with a Riemannian metric

Remark.  By using (6.3)
we see that this equality is equivalent to

and

for some functions
But from these equalities we get

(see also [54], (3.26)).
Also note,
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As a consequence of the discussion above and results of previous sections, we
have the following summary:

by (3.2), (2.28), (2.29) and (2.30) is a  –connection, –metrical, of Cartan type

and the torsion tensors vanish.

(b) Taking a -regular h.c.t. we get a new triple Here is a homo-
geneous connection-pair those coefficients are given by (4.2) and (4.7); is the

by and by ) and is given by (5.2). This linear connection is
–metrical and of Cartan type. Also, the torsion tensors and vanish. In

fact, and are contact transformation (as (5.1)) of  and
We get a new function as in (6.5) which may not be a regular Hamiltonian.
Also,

where denotes the v – covariant derivative with respect to
(c) If then is a regular Hamiltonian and Theorem 8.3.1 is valid

(baring all the coefficients). A simple consequence, for the deflection-free case, is :

The relation (6.11) can be also written by using Proposition 8.4.6 and (5.3) in terms
of similar objects derived from H. ( and are contact transformations of
and ).

When (6.12) is verified, by virtue of Theorem 8.2.1, Proposition 8.2.2 and Theo-

h- and v-deflection free, but generally fails to have vanishing torsion tensor
Therefore, it does not coincide with the Cartan linear connection for the Hamilton
manifold [66], [97].

If f is an extended point transformation, then and the push-
forward of the geometry of Cartan manifold (M, H) is just the geometry of
so this geometry is invariant.

8.7 Examples

We now construct a connection-pair on which is horizontally flat, but with
complicated In fact, we construct a homogeneous contact transformation be-
tween where and and where and

(a) If we start with a Cartan manifold (M, H), we get the triple given

   –connection of Theorem 8.2.2 (in (2.24) and (2.25) and are substituted

rem 8.2.3 we can pass to the triple  when  is a – connection, – metrical,
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Here, is the Euclidean Hamiltonian in  spanned by
and

Select, once and for all, a Finsler metric function and the
metric and set

where,

is defined in terms of functions and A, some constant. Noting that

we have the possibility of constructing the desired contact transformation
and its inverse, locally. But, two side conditions will be necessary for this.

Firstly,

must hold in some chart Then

has a unique solution in

Of course,

so that the transformation is determined by and
It is also required that the transformation by  – regular. In this case,

so this condition is merely

Now, the push-forward of is required to be (by results of Section 8.6)

where,

We have supposed that is known and defined in a chart
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Secondly, we must now select so that the  –regularity condition holds,
locally.

independent of Thus, is a Minkowski metric function in the chart
Note that and

Proposition 8.7.1. Under the condition in  –regularity holds for

Corollary 8.7.1. In addition, assume where is a sufficiently small
constant. Then  –regularity holds in in (Hessian

determinant) and  Here, is interior of closed
2-disk).

Proof. A short calculation shows that the condition of the proposition reduces to
the non-zero Hessian condition. An easy continuity argument shows that above

in any closed disk and take the radius so that  in this,
(radius = r). Now choose a smaller chart in the interior of This completes

the proof.
Also note that by linear adjustment, we can always suppose that (center of

) = 0 in We can now state the

Theorem 8.7.1. If has a non-degenerate critical point x in of  then
   – regularity holds in some neighborhood of x.

Consequently, is homogeneous contact equivalent to  where
Moreover, is by (4.7) not zero generally and

is completely determined by and this transformation.
Similar results are possible even if has no nondegenerate critical points. For

example, if constants, the conclusion of the theorem above holds. It
can be reformulated as

Theorem 8.7.2. Any 2-dimensional constant Wagner space is the Legendre-dual
of the homogeneous contact transformation of the flat Cartan space  with
non-trivial oblique distribution

Similar reformulations can be made of the main theorem on  –regularity, as
well, using the known result that Wagner spaces with vanishing h –curvature must
have local metric functions of the form [11]. These have been found to be
of fundamental importance in the ecology and evolution of colonial marine inverte-
brates (ibid.).

Set to denote this linear operator and assume is

is well-defined in some closed 2-disk in  Merely note  holds



Chapter 9

The dual bundle of a k-osculator
bundle

The cotangent bundle T*M , dual of the tangent bundle carries some canonical
geometric object field as: the Liouville vector field, a symplectic structure and a
Poisson structure. They allow to construct a theory of Hamiltonian systems, and,
via Legendre transformation, to transport this theory in that of Lagrangian systems
on the tangent bundle. Therefore, the Lagrange spaces appear as
dual of Hamilton spaces (cf. Ch.7).

In the theory of Lagrange spaces of order k, where the fundamental functions are
Lagrangians which depend on point and higher order accelerations, we do not have
a dual theory based on a good notion of higher order Hamiltonian, which depend on
point, higher order accelerations and momentum (of order 1, only). This is because
we have not find yet a differentiable bundle which have a canonical symplectic or
presymplectic structure and a canonical Poisson structure and which is basic for a
good theory of the higher order Hamiltonian systems.

The purpose of this chapter is to elliminate this incovenient. Starting from the
k-osculator bundle identified with k-tangent bundle
we introduce a new differentiable bundle called dual bundle of k-
osculator bundle (or k-tangent bundle), where the total space is the fibered
product:

We prove that on the manifold there exist a canonical Liouville 1–form, a
canonical presymplectic structure and a canonical Poisson structure. Consequently
we can develop a natural theory of Hamiltonian systems of order k, for the Hamilton
functions which depend on point, accelerations of order 1,2,..., k – 1 and momenta.

These properties are fundamental for introducing the notion of Hamilton space
of order k.

We will develop in the next chapters the geometry of second order Hamilton

219
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spaces and we remark that this is a natural extension of the geometry of Hamilton
spaces, studied in the previous chapters.

All this theory is based on the paper [110] of the first author.

9.1 The bundle

Let M be a real n–dimensional manifold and let be its k–osculator
bundle. The canonical local coordinates of a point are

and the point u will be denoted by

The changes of coordinates on are given by [106]:

For every point the natural basis
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in is transformed by (1.1), as follows:

(1.2)

where

For we denote by  the canonical submersion,
locally expressed by

Every of these submersions determines on a simple foliation, denoted by
The sheafs of are embedding submanifolds of of dimension
on which are the local coordinates and  are the
transverse coordinates.

Every foliation determines a tangent distribution

where is the differential of the mapping
Therefore, we have a number of k distributions which are integrable, of

local dimension kn, (k – 1)n,...,n, respectively, and having the propertythat

The manifold carries some others natural geometrical object fields [106], as

the Liouville vector fields belongs to the distribution and is given by

belongs to V 1 and has the form
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Moreover, there is a tangent structure J defined on It is given by

We have the properties

However, it does not exist a canonical symplectic or presymplectic structure over
the manifold

We introduce the following differentiable bundle:

Definition 9.1.1. We call the dual of the k–osculator bundle the
differentiable  bundle whose total space is

The previous fibered product has a differentiable structure given by that of the
(k – 1)–osculator bundle and the cotangent bundle T*M. Of course, for

we have
We will see that over the manifold there exist a natural presymplectic

structure and a natural Poisson structure. Sometime we denote
by A point will be denoted by The
canonical projection is defined by
Of course, we take the projections on the factors of the fibered products (1.4):

as being and It results
the following commutative diagram:

where
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This diagram implies the existence of some natural geometrical object fields over
the manifold

Let be the coordinates of a point
in a local chart on

The change of coordintes on the manifold is:

where the following relation holds:

It follows that is a real differentiable manifold of dimension
(k + 1)n. It is the same dimension with that of the manifold

With respect to (1.4) the natural basis
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in is transformed as follows:

the conditions (1.5)' being satisfied.
Consequently, the Jacobian matrix of the transformation of coordinate (1.5) is

given by

It follows:

Theorem 9.1.1. We have:

a. If k is an odd number, the manifold   is orientable.
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b. If k is an even number, the manifold is orientable if and only if the
manifold M is orientable.

Following the property of the bundle it is not difficult to
prove:

Theorem 9.1.2. If the differentiable manifold M is paracompact, then the differ-
entiable manifold is paracompact, too.

Let us introduce the following differential forms:

Then, we have:

Theorem 9.1.3.

1° The forms and are global defined on the  manifold

2° is closed, i.e.

3° is a presymplectic structure of rank 2n on the manifold

Proof. 1° The forms and are invariant with respect to (1.5).
2°
3° is a 2–form of rank 2n and q.e.d.

Now, let us consider the system of Poisson brackets:

defined by

We obtain:

Theorem 9.1.4. Every bracket defines a canonical
Poisson structure on the manifold
Proof. We prove that the Poisson bracket  is invariant
under the transformations of coordinates (1.5) on  Indeed, by means of (1.6)
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we have

But the first formulae, by means of (1.5)', can be written as follows:

And also, taking into account the identities:

we obtain:

Consequently

It is clear that:

is R-linear in every argument

holds.
Finally, we prove that the Jacobi identities hold, i.e.:
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Finally, by a direct calculus, it is not difficult to prove the Jacobi identities (1.8)"
for every Poisson bracket q.e.d.

For more clarity, all these considerations will be applied in the case in
order to study the geometry of  Hamilton spaces of order 2.

9.2 The dual of the 2–osculator bundle

The theory from the previous section can be particularized to the case
We obtain in this way the dual of the 2-tangent bundle given by

where can be identified with
Notice that the last one is exactly the Whitney sum of vector bundles

We have

where is the tangent bundle of the manifold M and its
cotangent bundle. A point can be written in the form
having the local coordinates The projections

are defined by and
is given by Let us denote We get

the following commuttive diagram:

A change of local coordinates is given by
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The dimension of the manifold is 3n.
For every point the natural basis

of the tangent space transformes, with respect to (2.1), as follows:

The Jacobian matrix of the change of coordinates (2.1) is given by

Theorem 9.2.1. The differentiable manifold is orientable if and only if the
base manifold M is  orientable.

The nul section of the projection is defined by
we denote by

Let us consider the tangent bundle of the differentiable manifold It is given
by the triade where is the canonical projection. Taking
into account the kernel of the differential of the mapping  we get the vertical
subbundle This leads to the vertical distribution

The local dimension of the vertical distribution V is 2n and V is locally

generated by the vector fields As usually, let us

denote
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It follows that the vertical distribution V is integrable. By means of the relation
(2.3), we can consider the following subdistributions of V:

locally generated by the vector fields It is an integrable distri-
bution of local dimension n

Let us consider also the subdistribution

locally generated by the vector fields Of course, is also an
integrable distribution of local dimension n

Clearly, we have

Proposition 9.2.1. The vertical distribution V has the property

Now, some important geometrical object fields can be introduced:
(i) the Liouville vector field on

(ii) the Hamilton vector field on

(iii) the scalar field

We remark that and
Also, let us consider the following forms

Then, Theorem 9.1.3 leads to the following result:

Theorem 9.2.2.

1° The differential  forms  and are globally defined on the  manifold
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2° The 2-form  is closed and rank is 2n.

3° is a presymplectic structure on

The Poisson brackets can be defined on the manifold by:

Therefore, Theorem 9.1.4 can be particularized in:

Theorem 9.2.3. Every bracket and defines a canonical Poisson struc-
ture on the  manifold

Now, it is not difficult to prove that the following         –linear mapping

defined by

has geometrical meaning.
It is not difficult to prove:

Theorem 9.2.4. The following properties hold:

1°. J is a tensor field of type (1,1) on the manifold

2°. J is a tangent structure on i.e.

3°. J is an integrable structure.

4°.

We are going to use these object fields to construct the geometry of the manifold
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9.3 Dual semisprays on

An important notion suggested by the geometrical theory of the Lagrange spaces of
order 2 is that of dual semisprays.

Definition 9.3.1. A dual semispray on is a vector field S on with the
property:

Taking into account (2.6) and (2.11) it follows:

Proposition 9.3.1. A dual semispray S on can be represented locally by

The system of functions is called the coefficients of the dual
semispray S. However, they are not any arbitrary functions. In fact,  and
are important geometrical object fields.

Theorem 9.3.1. With respect to the transformation law (2.2) on  the func-
tions and transform as follows:

Conversely, if on every domain of local chart on are given the systems of
functions  and such that, with respect to (2.2), the formula
(3.3) and (3.3)' hold, then S given by (3.2) is a dual semispray on

The proof is not difficult. It is similar with the proof given by semisprays on the
osculator bundle

Two immediate properties are the following:

Proposition 9.3.2. The integral curves of the dual semispray S, from (3.2), are
given by the solution curves of the system of differential equations:
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Proposition 9.3.3. Every dual semispray S on the  manifold  with the coef-
ficients determines a bundle morphism

defined  by

Moreover, it is a local diffeomorphism if and only if rank
We shall see in Chapter 10 that the bundle morphism defined in (3.5)', is

uniquely determined by the Legendre transformation between a Lagrange space of
order two, and a Hamilton space of order two,
( M , H ( x , y, p)).

Consequently, if the bundle morphism  defined in (3.5)' is apriori given, the
dual spray S, denoted by

is characterized only by the coefficients
We have, also:

Proposition 9.3.4. The formula:

holds.

An important problem is the existence of the dual semisprays on

Theorem 9.3.2. If the base manifold M is paracompact, then on there exist
dual semisprays with apriori given bundle morphism

Proof. Assuming that the manifold M is paracompact by means of Theorem 9.1.2,
it follows that the manifold is paracompact, too. We shall see (Ch.10) that a
bundle morphism defined in (3.5)' exists. Now, let be a Riemannian
metric on M and its Christoffel symbols.

Setting

we can prove that the rule of transformations of the systems of functions with
respect to the transformation of local coordinates (2.2) are given by (3.3)'.
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Indeed, we have

The contractions with and lead to

which is exactly (3.3)'.
Therefore from (3.7) are the coefficients of a dual semispray.
As a consequence, we have:

Theorem 9.3.3. The following systems of functions

are geometrical object fields on having the following rules  of transformations,
with respect to the changing of local coordinates (2.2):

These properties can be proved by a direct computation starting from the for-
mulae (3.3)'.

Remarks.

1°. We will see that the system of functions gives us the coefficients of
a nonlinear connection on

2°. With respect to (2.2), the system of functions

is transformed like a skew symmetric, covariant d-tensor field.
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9.4 Homogeneity

The notion of homogeneity for the functions f (x, y, p), defined on the manifold
can be defined with respect to as well as, with respect to  respectively. Indeed,
any homothety

is preserved by the transformation of local coordinates (2.2).
Let be the group of transformation on

The orbit of a point by is given by

The tangent vector in the point is the Liouville vector field

Definition 9.4.1. A function  differentiable  on
and continuous on the null section of the projection  is called
homogeneous of degree  with respect to if

It follows[106]:

Theorem 9.4.1. A function differentiable on and continuous
of the null section is r-homogeneous with respect to if and only if

where is the Lie derivation with respect to the Liouville vector field

We notice that (4.1) can be written in the form:

The entire theory of homogeneity, with respect to exposed in the book [106], can
be applied.

However, in our case it is important to define the notion of homogeneity with
respect to variables

Let be the group of homotheties
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The orbit of a point by is given by

Its tangent vector in the point is the Hamilton vector field
A function differentiable on and continuous on the null

section is called homogeneous of degree r, with respect to the variables if

In other words:

It follows

Theorem 9.4.2. A function differentiable on   and continuous
on the null section is r–homogeneous with respect to if and only if we have

Of course, (4.2)' is given by

A vector field is r–homogeneous with respect to if

We have:

Theorem 9.4.3. A vector field is r–homogeneous with respect to
if and only if

Corollary 9.4.1. The vector fields   are 1, 1, 0–homogeneous with re-

spect to respectively.

Corollary 9.4.2. A  vector field
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is r—homogeneous with respect to if and only if

is r – l homogeneous,

is r – l homogeneous,

is r homogeneous.

It results:

Proposition 9.4.1.  If arer– and s–homogeneous
with respect to respectively, then f X is r + s–homogeneous.

In particular:

1°. The Hamilton vector field is 1–homogeneous.

2°. A dual semispray

is 1–homogeneous with respect to if and only if  its  coefficients  are 0–ho-
mogeneous  and are 1–homogeneous with respect to

Proposition 9.4.2.    If is r–homogeneous and f is s–homogeneous
with respect to then X f is r + s – l – homogeneous with respect to

Corollary 9.4.3.  If  r       is r–homogeneous with respect to and  differ-
entiable on then

1°. are (r – 1)–homogeneous.

2°. is (r – 2) –homogeneous.

A q–form is called s–homogeneous with respect to if

Corollary 9.4.4. If  the functions f, are r – and s – homogeneous with
respect to respectively, then the functions given by the Poisson brackets
and are (r + s – 1) –homogeneous, respectively.
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The following result holds:

Theorem 9.4.4. A q–form is s–homogeneous with respect to if
and only if

It follows:

Proposition 9.4.3. The  1–forms are 0, 0, 1 homogeneous
with respect to respectively.

In the next section we will apply these considerations for study the notion of the
Hamilton spaces of order 2.

Finally, we remark:

Proposition 9.4.4. A dual semispray is 2–homogeneous with respect to if and
only if the  coefficients  are 2–homogeneous and  are 1–homogeneous with respect
to

A dual semispray which is 2–homogeneous with respect to  is called a dual
spray.

9.5 Nonlinear connections

We extend the classical definition [97] of the nonlinear connection on the total space
of the dual bundle

Definition 9.5.1. A nonlinear connection on the manifold is a regular dis-
tribution N on supplementary to the vertical distribution V, i.e.

Taking into account Proposition 9.2.7 it follows that the distribution  N has the
property:

Therefore, the main geometrical objects on  will be reported to the direct sum
(5.2) of vector spaces.

We denote by



238 The Geometry of Hamilton & Lagrange Spaces

a local adapted basis to Clearly, we have

The systems of functions are the coefficients of the nonlin-
ear connection N.

With respect to the coordinate transformations (2.2), are trans-

formed by the rule:

It is not difficult to prove the following property

Theorem 9.5.1. The coefficients of a nonlinear connection N on
obey the rule of transformations (3.10) with respect to a changing of local coordinates
(2.2). Conversely, if the systems of functions are given on the every
domain of local chart of the manifold such that the first two equations (3.10)
hold, then are the coefficients of a nonlinear connection on

It is convenient then to use the basis (5.3), if the coefficients and are
determined only by the coefficients of the semispray

It is not difficult to prove the following theorem:

Theorem 9.5.2.  If    is a dual semispray with the  coefficients   then the systems
of functions

are the coefficients of a nonlinear connection.

Conversely:

Theorem 9.5.3.   If     are coefficients of a nonlinear connection N, then
the following systems of  functions

are the coefficients of a dual  semispray where are apriori given.

Taking into account Theorems 9.3.2 and 9.5.2, we can affirm:
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Theorem 9.5.4. If  the base manifold M is paracompact, then there exist nonlinear
connections on the manifold

From now on we denote the basis (5.3) by:

The dual basis of the adapted basis (5.3) is given by

where

With respect to (2.2), the covector fields (5.6) are transformed by the rules:

Also, we remark that the differential of a function can be written in
the form

9.6 Distinguished vector and covector fields

Let N be a nonlinear connection. Then, it gives rise to the direct decomposition
(5.2). Let h, be the projectors defined by the distributions N , They
have the following properties:

If we denote:

Therefore we have the unique decomposition:

Each of the components is called a d–vector field on
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In the adapted basis (5.3) we get

By means of (5.4) we have

But, these are the classical rules of the transformations of the local coordinates of
vector and covector fields on the base manifold M [97]. Therefore  are
called d–vector fields and is called a d–covector field.

For instance, the Liouville vector field and Hamilton vector field have the
properties:

A dual semispray from (4.4), in the adapted basis (5.2), has the decomposition

where:

being a d–vector field and a d–covector field.
Assuming that the nonlinear connection N provides from a dual semispray

with the coefficients we get

It follows that the vector and covector  are given by

A similar theory can be done for distinguished 1-forms.
With respect to the direct decomposition (5.2) a 1-form can be

uniquely written in the form:

where
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In the adapted cobasis (5.6) and (5.6)', we have

The quantities are called d-1-forms.

The coefficients and are transformed by (2.2) as follows:

Hence and are called d-covector fields and will be called d-vector field.
If the nonlinear connection N is apriori given, then some remarkable d-1-forms

can be associated in a natural way. Namely, let us consider:

We will use these d-forms for studying the Hamilton geometry of order 2 on

Proposition 9.6.1. The following properties hold:
If  is a dual semispray, as in (6.5), and nonlinear connection N is determined

by as in (6.6)', then we have

Now, let us consider a function f on Its differential can be written in the
form (5.7). Therefore

Let us consider a smooth parametrized curve such that
It can be analytical represented by:
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The tangent vector in a point of the curve  can be written in the form:

where

The curve in (6. 3) is called horizontal if in every point of the curve

Proposition 9. 6. 2. An horizontal curve on is characterized by the following
system  of differential equations:

Clearly, the system of differential equations (6. 15) has local solutions, if the
initial points  on are given,

9. 7 Lie brackets. Exterior differentials

In applications, the Lie brackets of the vector fields  from the adapted
basis to the direct decomposition (5. 2), are important.

Proposition 9. 7. 1. The Lie brackets of the vector fields of the adapted basis are
given by
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where

The proof of this relations can be done by a direct calculus.
Now we can establish:

Proposition 9. 7. 2. The exterior differentials of the  1-forms which
determine the adapted cobasis (5. 6)', are given by

Indeed, from (5. 6)' we deduce

Using (6. 11) for and we have the formula (7. 3).
Now, the exterior differentials of the  from (6. 9), can be easily determined.
Let us consider the following coefficients from (7. 1):

By means of (3. 10) it follows:

Proposition 9. 7. 3. The  coefficients   have the same rule of transfor-

mation with respect to the local changing of coordinates on This is
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We will see that these coefficients are the horizontal coefficients of an N–linear
connection.

We obtain also:

Proposition 9. 7. 4. The  coefficients:

are d-tensor fields.

9. 8 The almost product structure The almost
contact structure

Assuming that a nonlinear connection N is given, we define a –linear map-
ping

by defined

We have also,

Theorem 9. 8. 1. A nonlinear connection N on is characterized by the exis-
tence of an almost product structure on whose eigenspaces corresponding
to the eigenvalue –l coincide with the linear spaces of the vertical distribution V on
E.

Proof. If N is given, then we have the direct sum (5. 1). Denoting by h and v
the supplementary projectors determined by (5. 1) we have with the
properties   So, the imposed condition is verified.

Conversely, if and then let and

We verify easy that So N = Kerv. It follows q. e. d.
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Proposition 9. 8. 1. The almost product structure is integrable if, and only if,
the horizontal distribution N is integrable.

Proof. The Nijenhuis tensor of the structure

gives us for

Therefore if and only if But
allows to say that the horizontal distribution N is integrable.

The nonlinear connection N being fixed we have the direct decomposition (5. 1),
(5. 2) and the corresponding adapted basis (5. 4).

Let us consider the –linear mapping:

determined by

Then, we deduce:

Theorem 9. 8. 2. The mapping has the following properties:

1°. It  is  globally  defined  on

2°. is  a  tensor  field of type (1, 1).

3°.

4°.

5°.
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Proof.

1°. Taking into account (5. 4) we have implies

Also, and lead to

and

 2°. is -linear mapping from to

3°. implies is trivial and

4°. Evidently, by means of 3°.

 5°. and So
and

We can say that is a natural almost contact structure determined by the
nonlinear connection N.

The Nijenhuis tensor of the structure  is given by:

and the normality condition of reads as follows:

Of course, in the adapted basis, using the formula (7. 3) we can obtainthe explicit
form of the equation (8. 5).

9. 9 The Riemannian structures on
Let us consider a Riemannian structure on the manifold

The following problem is arises:  Can the Riemannian structure  determine a
nonlinear connection N on Also, can  determine a dual semispray on

In order to determine a nonlinear connection on by means of      it is
sufficient to determine a distribution N orthogonal to the vertical distribution V.
The solution is immediate. Namely, it is important to determine the coefficients
and of N.
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In the natural basis, is given locally by

where the matrix is positively defined.

Let (i = 1, ..., n), be the adapted basis of N:

The following conditions of orthogonality between N and V:

give us the following system of equations for determining the  coefficients and

where, the matrix

is nonsingular.
Therefore the system (9. 4) has an unique solution.

Whether, take into account the rule of transformation of the coefficients
 from      we can prove that the solution of (9. 4) has the rule of trans-
formation (3. 10), by means of the transformations of local coordinates on
Consequently, we have:

Theorem 9. 9. 1. A Riemannian structure on determines uniquely a non-
linear connection N, if the distribution of  N is orthogonal to the vertical distribution
V. The coefficients of  N are given by the system of equations (9. 4).

Remarking that are the coefficients of a dual spray we have:
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Theorem 9. 9. 2. A Riemannian structure  on determines a dual semispray
with the  coefficients

being determined by the system (9. 4).

Let be the natural almost contact structure determined by the previous non-
linear connection N.

The following problem arises: When will the pair is a Riemannian almost
contact structure?

Of course, it is necessary to have:

Consequently, we get:

Theorem 9. 9. 3. The pair is a Riemannian almost contact structure if and
only if in the adapted basis determined by N and V the tensor has the form

Corollary 9. 9. 1. With respect to the Riemannian structure (9. 5) the distributions
are orthogonal respectively.

Remarks.
1° The form (9. 5) will be used to define a lift to  of a metric structure given

only by a nonsingular and symmetric d–tensor field Namely, we have

These problemes will be studied in a next chapter.

2° Using the metric on we can introduce a new almost contact structure
defined by

We will prove that is a Riemannian almost contact structure and its
associated 2-form is given by

The pair will be studied in the Chapter 11 about the generalized Hamilton
spaces of order 2.



Chapter 10

Linear connections on the
manifold

The main topics of this chapter is to show that there are the linear connection
compatible to the direct decomposition (5.2) determined by a nonlinear connection
N, on the total space of the dual bundle

We are going to study the distinguished Tensor Algebra (or d–Tensor Alge-
bra), N-linear connections, torsions and curvatures, structure equations, autoparal-
lel curves, etc.

10.1 The d–Tensor Algebra
Let N be a nonlinear connection on Then N determines the direct decom-
position (5.2), Ch.9. With respect to (5.2), Ch.9, a vector field X and an one form

can be uniquely written in the form (6.3) and (6.7), Ch.9, respectively, i.e.

Definition 10.1.1. A distinguished tensor field (briefly: d-tensor field) on
of type (r, s) is a tensor field T of type (r, s) on with the property:

for any and for any

For instance, every component and of a vector field
is a d-vector field.

249
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Also, every component and of the 1-form is a
d-l-form.

In the adapted basis and cobasis to the direct decompo-
sition (5.2), a d-tensor field T of type (r, s) can be written in the form:

It follows that the set generates the algebra of the d-tensor fields over
the ring of functions

For example, if then are d-1-covectors and

is a d-vector field.

Clearly, with respect to a local transformation a coordinates on the coef-
ficients of a d-tensor fields are transformed by the classical rule:

10.2 N-linear connections

The notion of N-linear connection will be defined in the known manner [97]:

Definition 10.2.1. A linear connection D on is called an N-linear connection,
if:

(1) D preserves by parallelism distributions N ,       and

(2) The 2-tangent structure J is absolute parallel with respect to D.

(3) The presymplectic structure is absolute parallel with respect to D.

Starting from this definition, any N-linear connection is characterized by the
following:

Theorem 10.2.1. A linear connection D is an N –linear connection on          if
and only if:

(1) D preserves by parallelism every of distributions N,

(2)

(3)
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The proof is similar with the case given in the book [106].
We remark that is trivial, because

and that by means of the property (1), it follows
We obtain also:

Theorem 10.2.2. For any N–linear connectionD we have

Indeed, from if and
we obtain Similarly, we get

Now, taking into account the expression (8.2), Ch.IX, of    it follows
The last equality can be proved in a similar way.

Let us consider a vector field written in the form (1.1). It follows,
from the property of an N–linear connection that

We can introduce new operators of derivation in the d-tensor algebra, defined by:

These operators are not the covariant derivations in the d-tensor algebra, since
(etc.). However they have similar properties with the covariant

derivatives.
From (2.3) and (2.4) we deduce

By means of Theorem 10.2.2, the action of the operator on the d-vector fields
is the same as its action on the d-vectors This property holds for the

operators and too.

Theorem 10.2.3. The operators have the following properties:

1) Every maps a vector field belonging to one of distributions
N, in a vector field belonging to the same distribution.

2)

3)

4)
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5)

6)

7)

8) being the presymplectic structure from
Theorem 6.7.1.

9) The operators have the property of localization on the manifold
i. e. etc. for any open set

The proof of the previous theorem can be done by the classical methods [106].
The operators will be called the operators of h–, and

covariant derivation.
The actions of these operators over the 1-form fields on are given by

Of course, the action of the previous operators can be extended to any tensor
field, particularly to any d-tensor field on

Now, let us consider a parametrized smooth curve
having the image in a domain of a local chart.

Its tangent vector field can be uniquely written in the form

In the case when is analytically given by the equation (6.12), Ch.9, then
are given by (6.13), Ch.9. And we can define the horizontal curve.

A vector field Y defined along the curve has the covariant derivative

The vector field is called parallel along the curve if

In particular, the curve is autoparallel with respect to an N–linear connection
D  if

In a next section we will study these notions by means of adapted basis.
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10.3 Torsion and curvature

The torsion of an N-linear connection D is expressed, as usually, by

It can be characterized by the vector fields

Taking the h– and –components we obtain the torsion d-tensors

Since D preserves by parallelism the distributions H, and the distribu-
tions are integrable it follows

Proposition 10.3.1. The following property of the torsion holds:

Now we can express, without difficulties, the torsion d-tensors by means of the
formula (3.1).

The curvature of D is given by

We will express   by means of the components (2.5), taking into account the de-
composition (1.1) for the vector fields on

Proposition 10.3.2. For any vector fields the following pro-
perties holds:

The previous properties have an important consequence:
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Corollary 10.3.1.
1° The essential components of the curvature tensor field  are

and

2° The vector field is horizontal.

3° The vector field belongs to the distribution

4° The following properties hold

Of course, we can express the d-tensors of curvature by means of the operators
of h–, covariant derivatives (2.5)".

From (3.4) we get the following Ricci identities

As a consequence, we obtain:

Theorem 10.3.1. For any N –linear connection D there are the following identities

where is the Liouville vector field, and is the Hamilton vector field on the
manifold

Using the previous considerations we can express the Bianchi identities of the N–
linear connection D, by means of the operators taking into account
the classical Bianchi identities

where means the cyclic sum.
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10.4 The coefficients of an N-linear connection

An N–linear connection is characterized by its coefficientsin the adapted basis

These coefficients obey particular rules of transformation with respect to the chang-
ing of local coordinates on the manifold

Taking into account Proposition 10.3.2, we can prove the following theorem:

Theorem 10.4.1.
1° An N-linear connection D can be uniquely represented, in the adapted basis

in the following form:

2° With respect to the coordinate transformation (1.1), Ch.6, the coefficients
obey the rule of transformation:

3° The coefficients and are d-tensor fields of type (1,2)
and (2,1), respectively.

Indeed, putting

and taking into account Theorem 10.2.3, it follows

The statements 2° and 3° can be proved by a direct calculus, taking into account
the rule of transformations (5.4)’, Ch.9, for and

The system of functions
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are called the coefficients of the N–linear connection D.
The inverse statement of the previous theorem holds also.

Theorem 10.4.2. If the systems of functions (4.3) are apriori given over every
domain of local chart on the manifold having the rule of transformation
mentioned in the previous theorem, then there exists a unique N –linear connection
D whose coefficients are just the systems of given functions.

Corollary 10.4.1. The following formula hold:

Indeed, the formula (4.1), the condition of duality between and
leads to the formula (4.4).

10.5 The h–, covariant derivatives in lo-
cal adapted basis

Let us consider a d–tensor field T, of type (r, s) in the adapted basis and
its dual (see (1.3)):

For applying (4.1), (4.4) and using the properties of the operator
we deduce:

where

The operator is called h–covariant derivative with respect to
Now, putting we obtain for the d-tensor field T from (5.1),

the formula:
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where

The operator will be called ”the –covariant derivative” with respect to

Finally, taking then has the following form

where

The operator will be called the –covariant derivative.
It is not difficult to prove:

Proposition 10.5.1. The following properties hold:

are d–tensor fields. The first two are of type and the last one is of type

Proposition 10.5.2. The operators and have the properties:

1°.

2°.  They are distributive with respect to the addition of the d–tensor of the same
type.

3°. They commute with the operation of contraction.

4°. They verify the Leibniz rule with respect to the tensor product.

As an application let us consider ”the (y)–deflection tensor fields”

Proposition 10.5.3. The (y)-deflection tensor field have the expression
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These equalities are easy to prove, if one notice

Now, we consider the so called ”(p)-deflection tensor fields”:

Proposition 10.5.4. The (p)-deflection tensors are given by

A particular class of the N–connection with the coefficients is given by
the Berwald connectioin.
Definition 10.5.1. An N–linear connection D with the coefficients (4.3) is called
a Berwald connection if its coefficients are:

This definition has a geometrical meaning if we take into account Proposition
9.7.4.

The existence of the Berwald connection is an interesting example of N–linear
connection.

Remarking that the Berwald connection is uniquely determined by the nonlinear
connection N and the fact that the nonlinear connection exists over a paracompact
manifold (cf. Theorem 9.3.2), we can state:

Theorem 10.5.1. If the base manifold M is paracompact, then on the manifold
there exists the N –linear connections.

Of course, the (y)–deflections and (p)–deflection tensor fields of the Berwald
connection

are very particular.
We get

Hence, if and only if the coefficients are 1-homogeneous with respect
to
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10.6 Ricci identities. The local expressions of
curvature and torsion.

In order to determine the local expressions of d–tensors of torsion and curvature of
an N–linear connection we establish the Ricci identities applied to a d–vector field,
using the covariant derivatives (4.5)', (4.6)' and (4.7)'.

Theorem 10.6.1. For any N –linear connection D the following Ricci identities
hold:

and

where the following tensors

and

and

are torsion d-tensors.
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The d-tensors of curvature are given by

and

Proof. By a direct calculus we have

Interchanging j and k and subtracting, we get

And since the Lie brackets are given by (7.1), Ch.9., the previous equalities
give us the first identity (6.1), the coefficients being given by (6.3), (6.3)' and (6.4).

The identities (6.1) and (6.2) can be proved in the same manner. q.e.d.

Remark. Cf. Proposition 9.7.4, the d-torsions are d-tensors.

As usually, we extend the Ricci identities for any d-tensor field, given by (1.3).
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As a first application let us consider a Riemann d-metric which is covariant
constant, i.e.:

Then we have:

Theorem 10.6.2. If the Riemann d-metric verifies the condition (6.5), then the
following d-tensors

are skew-symmetries in the first two indices (ij).

Indeed, writing the Ricci identities for d-tensor and taking into account by
the equations (6.5) we deduce

And using (6.5)', we get etc.
The Ricci identities (6.1), (6.2) applied to the Liouville d-vector field and to

the Hamilton d-covector field lead to the same fundamental identities.

Theorem 10.6.3. Any canonical N –linear connection D satisfies the following
identities:

and
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as well as

and

In the case of Berwald connection the previous theory is a very simple
one.

Also, if the (y)–deflection tensors and (p)–deflection tensors have the following
particular form

then, the fundamental identities from (6.6), (6.6)' and (6.7), (6.7)' are very impor-
tant, especially for applications.

Proposition 10.6.1. If the deflection tensors are given by (6.8), then the following
identities hold:

and

By means of this analytical aparatus we will study the notion of parallelism on
the manifold
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10.7 Parallelism of the vector fields on the ma-
nifold

Let D be an N–linear connection with the coefficients in
the adapted basis

Let us consider a smooth parametrized curve having the image
in a domain of a chart of

Thus, has an analytical expression of the form:

The tangent vector field by means of (6.13) and Ch.9, can be written

as follows:

where

Let us denote

The quantity DX is the covariant differential of the vector X and is the

covariant differential along the curve
If X is written in the form

and we put

then, after a straighforward calculus, we have
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where

Here, are called 1–forms of connection of D.
Putting

the covariant differential along the curve is given by

The theory of the parallelism of the vector fields along a curve presented in Sect.2
of this chapter can be applied here. We obtain:

Theorem 10.7.1. The vector field is parallel along the

parametrized curve with respect to D, if, and only if, its coordinates
are solutions of the differential equations

The proof is immediate, by means of the expression (7.7) for

A theorem of existence and uniqueness for the parallel vector fields along a given
parametrized curve in can be formulated in a classical manner.

The vector field is called absolute parallel with respect to the
canonical N–linear connection if for any curve It is equivalent
to the fact that the following system of Pfaff equations

is integrable.
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The system (7.9) is equivalent to the system

which must be integrable.
Using the Ricci identities, the previous system is integrable if and only if the

coordinates of the vector X satisfy the following equations

and

The manifold is called with absolute parallelism of vectors with respect to D,
if any vector field on is absolute parallel.

In this case the systems (7.10), (7.11) are verified for any vector field X. It
follows:

Theorem 10.7.2. The manifold is with absolute parallelism of vectors, with
respect to the N–linear connection D if, and only if, all d–curvature tensors of D
vanish.

The curve is autoparallel with respect to D if
By means of (7.2) and (7.7) we deduce

Theorem 10.7.3. A smooth parametrized curve (7.1) is an autoparallel curve with
respect to the N –linear connection D if and only if the functions
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verify the following system of differential equations

Of course, the theorem of existence and uniqueness for the autoparallel curve
can be easily formulated.

We recall that is an horizontal curve if The horizontal curves are
characterized by

Definition 10.7.1. An horizontal path of an N –linear connection D is a horizontal
autoparallel curve with respect to D.

Theorem 10.7.4. The horizontal paths of an N –linear connection D are characte-
rized by the system of differential equations:

Indeed, the equations (7.14), (7.6)' and (7.13) imply (7.15).
A parametrized curve is –vertical in the point if its

tangent vector field belongs to the distribution
Evidently, a –vertical curve in the point is represented by the

equations of the form

and a –vertical curve in the point is analytically represented by the
equations of the form

We define a –path in the point with respect to D to be
a –vertical curve in the mentioned point, which is an autoparallel curve with
respect to D.

By means of (7.16), (7.16)' and (7.12) we can prove:
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Theorem 10.7.5.

1°. The –vertical paths in the point are characterized by the system of
differential equations

2°. The -vertical paths in the point are characterized by the system of
differential equations

Remark. We assume that there exists the coefficients

In the case of the Berwald connection (5.8), the previous characteriza-
tions of -paths appear in a very simple form.

10.8 Structure equations of an N–linear connec-
tion

For an N –linear connection D, with the coefficients in the
adapted basis we can prove:

Lemma 10.8.1.

1°. Each of the following geometrical object fields

are d-vector fields. However, the last one is a d-covector field, with respect to
the index i.

2°. The geometrical object field

is a d-tensor field, with respect to indices i and j.

Using the previous Lemma we can prove, by a straightforward calculus, a fun-
damental result in the geometry of the Hamilton spaces of order 2.
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Theorem 10.8.1. For any N –linear connection D, with the coefficients
the following structure equations hold good:

and

where and are the 2-forms of torsion:

and where is the 2-form of curvature:

In the particular case of the Berwald connection we have
and
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Remark. The previous theorem is extremely important in a theory of submani-
folds embedding in the total space of the dual bundle
endowed with a regular Hamiltonian of order 2.



Chapter 11

Generalized Hamilton spaces
of order 2

One of the most important structures on the total space of the dual bundle
is the notion of generalized Hamilton metric of order two, [110]. It is
suggested by the generalized Hamilton metric, described in the section 1 of Ch.
5, which has notable applications in Relativistic Optics of order two. We define
the concept of generalized Hamilton space as the pair
and study a criteria of reducibility, the most general metrical connections, lift of a
GH–metric, the almost contact geometrical model. We end this section with some
example of remarkable –spaces.

11.1 The spaces

Definition 11.1.1. A generalized Hamilton space of order two is a pair
where

1° is a d–tensor field of type (2, 0), symmetric and nondegenerate on the ma-
nifold

2° The quadratic form has a constant signature on

As usually is called the fundamental tensor or metric tensor of the space

In the case when is a paracompact manifold then on there exist
the metric tensors positively defined such that is a generalized
Hamilton space.

Definition 11.1.2. A generalized Hamilton metric of order two (on short
GH–metric) is called reducible to an Hamilton metric (H–metric) of order two if

271
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there exists a function H(x, y, p) on such that

Let us consider the d-tensor field

We can prove:

Proposition 11.1.1. A necessary condition for a generalized Hamilton metric
of order two to be reducible to a Hamilton metric of order two is that the d–tensors

is totally symmetric.

Theorem 11.1.1. Let be a 0–homogeneous GH–metric with respect to
Then a necessary and sufficient condition that it to be reducible to an H–metric

is that the d–tensor field is totally symmetric.

Proof. If there exists a GH–metric reducible to a H–metric, i.e. (1.1) holds,

then is totally symmetric (Proposition 11.1.1.).

Conversely, assuming that is 0–homogeneous with respect to taking
into account the formula and the fact that

is totally symmetric, it  follows  q.e.d.

Remark. Let be a Riemannian metric. Then it is not difficult to prove that
the d–tensor field

is a GH–metric which is not reducible to an H–metric of order two, provided
does not vanishes .

The covariant tensor field is obtained from the equations

Of course, is a symmetric, nondegenerate and covariant of order two, d-tensor
field.

Theorem 11.1.2. The following d–tensor fields
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have the properties:

and

Indeed, the d-tensors have the properties (1.6). By a direct calculus we
can prove (1.5) taking into account of (1.3). q.e.d.

Remarks.
1° The tensors and are the – –covariant derivatives of the funda-

mental tensor field respectively.

2° The tensors and are the and –coefficients of a canonical metrical
N–linear connection D, respectively.

Some particular cases
1. Let be the fundamental tensor field of a Finsler space

and let be its contravariant tensor field. Let us consider defined
on by

The tensors are given by the first formula (1.4) and by
It follows The GH–metric has the covariant metric

reducible to a particular metric:

We have:

Theorem 11.1.3. The nonlinear connection N of the space
has the coefficients:

They are determined only on the fundamental function of the Finsler space
Proof. The tensors is exactly the Cartan non–linear connection and is its
Berwald connection. A straightforward calculus shows that the rule of transforma-
tion of is exactly (3.10), Ch. 6. q.e.d.

2. Let be the fundamental tensor field of a Cartan space

[97]. It follows  and therefore we obtain that H is 1–homogeneous

with respect to
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We consider the extension of the tensor to
The tensor         vanishes and  is given by the second formula (1.4), where

In this case, we can determine a nonlinear connection N depending only by the
fundamental tensor [see Ch.6]. Indeed, let the Christoffel symbols of

and let us put

Theorem 11.1.4. The space determined by the Cartan
space has a nonlinear connection N with the following coefficients deduced only
from

To a generalized Hamilton space of order two we associate the
Hamilton absolute energy

and consider the d-tensor field

The space is called weakly regular if:

We can prove the following fact:
The weakly regular          –spaces have a nonlinear connection N depending only

on the fundamental tensor field

11.2 Metrical connections in –spaces

If a nonlinear connection N, with the coefficients is a priori given, let us
consider the direct decomposition (see (5.2), Ch.7):

and the adapted basis to it, where
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The dual adapted basis is where

An N–linear connection determines the h–,
covariant derivatives in the tensor algebra of d–tensor fields.

Definition 11.2.1. An N–linear connection is called metrical with respect
to GH–metric if

In the case when is positively defined we can introduce the lengths of a
d-covector field Xi by

The following property is not difficult to prove:

Theorem 11.2.1. An N–linear connection is metrical with respect to GH–
metric if and only if along to any smooth curve   and for any

parallel d-covector field X, we have

The tensorial equations (2.4) imply:

Now, using the same technique as in the case of  Ch. 5, we can prove the following
important result:

Theorem 11.2.2.

1. There exists a unique N–linear connection having
the properties:

1°. The nonlinear connection N is a priori given.

2°. is metrical with respect to GH–metric i.e. (2.6) are verified.

3°. The torsion tensors and vanish.

2. The previous connection has the coefficients and given by (1.4) and
 are the generalized Christoffel symbols:
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The known Obata’s operators, are given by

They are the supplementary projectors on the module of d-tensor fields
Also, they are covariant constants with respect to any metrical connection

Exactly as in Ch.5, we can prove:

Theorem 11.2.3. The set of all N–linear connections
which are metrical with respect to is given by

where is given by (1.4), (2.7) and are arbitrary
d-tensor  fields.

Corollary 11.2.1. The mapping determined by (2.9) and the
composition of these mappings is an Abelian group.

Remark. It is important to determine the geometrical object fields invariant to the
previous group of transformations of metrical connections [105].

From Theorem 11.2.3 we can deduce:

Theorem 11.2.4. There exists a unique metrical connection
with respect to GH–metric having the torsion d–tensor fields

a priori given. The coefficients of are given by the following
formulas

We obtain:
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We can introduce the notions of Rund connection, Berwald connection and Ha-
shiguchi connection as in Chapter 2, and prove the existence of a commutative
diagram from the mentioned chapter.

Finally, if we denote etc., then applying the Ricci identitiesto
and taking into account the equations (1.6), we get

Theorem 11.2.5. The curvature tensor fields etc. are skew
symmetric in the indices h, i.

11.3 The lift of a GH–metric

Let the nonlinear connection N be given, then the adapted basis and its
dual basis can be determined.

Therefore, a generalized Hamilton space of order two allows
to introduce the N–lift:

defined in every point

Theorem 11.3.1.
1°. The N–lift is a nonsingular tensor field on the manifolds symmet-

ric, of type (0,2) depending only by the GH–metric and by the nonlinear
connection N.

2°. The pair is a (pseudo)–Riemannian space.

3°. The distributions N, are orthogonal with respect to respectively.

Indeed, every term from (3.1) is defined on because  is a d-tensor field,
and have the rule of transformations (5.6)", Ch. 9. The determinant of

is equal to the determinant of matrix Hence det Now it is clear
that is a (pseudo)–Riemannian metric. And it is evident that the distributions
N,   are orthogonal with respect to respectively.

The tensor is of the form

Here is the restriction of the metric to the distribution H, is its restriction
to and is its restriction to the distribution Moreover
are d-tensor fields.
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It is not difficult to prove:

Theorem 11.3.2. The tensors are covariant constant with respect
to any metrical N–linear connection

Therefore, the equation is equivalent to

The same property holds for the d-tensors
The geometry of the (pseudo)–Riemannian space can be studied by

means of a metrical N-linear connection.
Let IF be the natural almost contact structure determined by N and is given in

the section 8, Ch.9.

Theorem 11.3.3. The pair ( IF) is a Riemannian almost contact structure de-
termined only by GH–metric and by the nonlinear connection N.

Proof. In the adapted basis it follows that the equation

is verified.
The 2-form associated to the structure (     IF) is given by

Since we get that
In the local adapted basis  has the expression:

Theorem 11.3.4. The 2-form determines an almost presymplectic structure on
the manifold It is not an integrable structure if the metric depends on the
moments

Indeed, is a 2-form of rank 2n < 3n and for the exterior diferential
of does not vanish.

The last theorem suggests to consider another almost contact Riemannian struc-
ture on

In order to do this, let us consider some new geometrical object fields on
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Let us define the –linear mapping

given in the local adapted basis by

Theorem 11.3.5. The mapping has the following properties:

1°. is globally defined on

2°. is a tensor field of type (1, 1) on

3°. Ker Im

4°. rank

5°.

The proof is completely similar with the one of exactly like Theorem 9.8.2. The
mapping will be called the (p)–almost contact structure determined by  and
by N. The Nijenhuis tensor of the (p)–almost contact structure is

and the condition of normality of is as follows

The relation (8.3) can be explicitely written in adapted basis.

Theorem 11.3.6. The pair is a Riemannian almost contact structure de-
termined by and by N.

Indeed, we have verified the property:

The 2-form associated to is
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As we know, if the torsion of the nonlinear connection vanishes
(Ch.9), then we have:

Hence for the 2-form is canonical presymplectic structure. It does not
depend on the nonlinear connection N (see, Theorem 9.1.3).

Theorem 11.3.7. The associated 2-form of the almost contact structure
has the properties:

1°. is globally defined on

2°. rank

3°.  depends by and by N.

4°. defines an almost presymplectic structure on

5°. If the torsion of the nonlinear connection N vanishes, then is canonical
presymplectic structure:

6°. is covariant constant to any N–linear connection

The Riemannian almost contact space will be called the geomet-
rical model of the generalized Hamilton space

11.4 Examples of spaces

We shall consider a generalized Hamilton space of order two,
whose fundamental tensor is as follows:

where is the fundamental tensor of a Finsler space is its
contraviant tensor field and  is a smooth function.

In the particular case where and is a Lorentz metric,
this structure was used for a constructive axiomatic theory of General Relativity by
R. Miron and R. Tavakol [121].

In the adapted basis    is given by
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If is a locally Minkowski Finsler space and then (4.1) gives a
class of a generalized P.L. Antonelli and H. Shimada metric [19].

In order to study the spaces with the metric (4.1) in the general case
when the d–vector field does not vanish, we prove at the beginning that this
metric is not reducible to an H–metric.

Theorem 11.4.1. The generalized Hamilton space of order two with the metric
(4.1) is not reducible to an Hamilton space of order two.

Proof. Taking into account Proposition 11.1.1 is sufficiently to prove that  if

then the tensor field is not totally symmetric.  q.e.d.

From the formula (4.1), we deduce

Consequently, is totally symmetric if and only if
Let us consider the Cartan nonlinear connection of the Finsler space with the

coefficients Thus, using Theorem 11.1.3, we can a priori take the nonlinear
connection N with the coefficients (1.7) as the nonlinear connection of the considered
space

Proposition 11.4.1. The nonlinear connection N, with the coefficients
from the formulas (1.7) depend only on the GH–metric (4.1).

Now we can determine the metrical connection of the space using
Theorem 11.2.3. This metrical N–linear connection will be called canonical.

It is not difficult to prove:

Theorem 11.4.2. The canonical metrical connection of the space
with fundamental tensor field (4.1), has the coefficients:

where is the Cartan metrical connection of the Finsler space
Now, applying the theory from the previous chapters and using Theorem 11.4.2,

we can develop the geometry of  the spaces  with the metric (4.1). For instant,
we can write the structure equations of the canonical connections (4.2), etc.
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Other important example suggested by the Relativistic Optics is given by the
following GH–metric of order two:

where on the manifold and is contravariant tensor of a
fundamental tensor field of a Finsler space

In this case we can prove that with the metric (4.3), is not reducible to
a Hamilton space of order two.

Taking into account the nonlinear connection N with coefficients (1.7) we can
determine, by means of Theorem 11.2.3, a canonical metrical connection
depending only by the considered space

As a final example, we can study by the previous methods ”the Antonelli–
Shimada metric” defined in the preferential charts of an atlas on the manifold
by

where

Finally, we remark that the theory exposed in this chapter will be useful in the next
chapters for study the geometry of Hamilton spaces of order two.
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Hamilton spaces of order 2

The theory of dual bundle ( M) mentioned in the last three Chapters
allows to study a natural extension to order two of the notion of Hamilton spaces
studied in the Chapters 4,5,6. A Hamilton space of order two is a pair
(M, H(x, y, p)) formed by a real, n-dimensional smooth manifold M and a regular
Hamiltonian function The geometry of the
spaces can be constructed step by step following the same ideas as in the
classical case of the spaces by using the geometry of manifold

endowed with an regular Hamiltonian H(x, y, p).

12.1 The spaces

Let us consider again a differentiable manifold M, real and of dimension n and the
dual bundle of the 2-osculator bundle

Definition 12.1.1. A regular Hamilton of order two is a function
differentiable on and continuous on the zero section of the projection

whose Hessian, with entries

is nondegenerate.

In other words, the following condition holds

Moreover, since being a d-tensor field, of type (2, 0), the condition (1.1)´
has geometrical meaning.

283
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Of course, if the base manifold M is paracompact, then on there exist the
regular Hamiltonians.

The d–tensor is symmetric and contravariant. Its covariant d-tensor field
will be denoted by and it is given by the elements of the matrix
Hence we have:

Definition 12.1.2. A Hamilton space of order two is a pair
where H is a regular Hamiltonian having the property that the tensor field
has a constant signature on the manifold

As usually, H is called the fundamental function and fundamental tensor field
of the Hamilton space or order two,

In the case when the fundamental tensor field is positively defined, then the
condition (1.1)´ is verified.

Theorem 12.1.1. If the manifold M is paracompact then always exists a regular
Hamiltonian H such that the pair (M , H) gives rise to a Hamilton space of order
two.

Proof. Let be a Finsler space having as fundamental
tensor. Then, the function defined on the manifold by

is a regular Hamiltonian or order two, and the pair is an Ha-
milton space of order two. Its fundamental tensor is Obvi-
ously, M being paracompact, a Finsler space
= (M , F(x, y)) exists and therefore H(x, y, p) exists.     q.e.d.

One of the important d-tensor field derived from the fundamental function H of
the space is:

Proposition 12.1.1. We have:

1° is a totally symmetric d-tensor field.

2° vanishes, if and only if the fundamental tensor field does not depend
on the momenta
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Other geometrical object fields which are entirely determined by means of the
Hamiltonian of order two, H(x, y, p), are the and coefficients of a metrical
connection, respectively.

Theorem 12.1.2. The d-tensor fields

have the following properties:

1° They depend only on the fundamental function H.

2° They are symmetric in the indices jk.

3° The formula

holds.

4° They are the coefficients of the and metrical connection. So we get:

The proof is not difficult.
The curvature d-tensor fields and expressed in formulae (6.4)",

Ch.10, depend only on the fundamental function H.
The and paths of the Hamilton space of order two are given by

Theorem 10.7.5, respectively. Namely

Theorem 12.1.3.
1° The paths of the space in the point are characte-

rized by the system of differential equations

2° The of the space in the point are characterized by
the system of differential equations

The horizontal paths of the Hamilton space of order two will be studied after a
canonical nonlinear connection will be introduced.
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12.2 Canonical presymplectic structures and ca-
nonical Poisson structures

As we know on the total space of the dual of 2-osculator bundle there exist
different remarkable canonical structures and object fields. Namely:

where is a presymplectic structure on of rank 2n.
There exist, also, the canonical Poisson structures and defined for any

by

Each of these Poisson brackets are invariant with respect to changes of coor-
dinates on the manifold they are with respect to each argument,
skewsymmetric, satisfies the Jacobi identities and the mapping

is a derivation in algebra of the functions

Proposition 12.2.1. The following identities hold:
1°

2° For any we have:
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Assuming that the manifold is endowed with a regular Hamiltonian H
such that is an Hamilton space of order two, we get an Hamiltonian
system of order 1 given by the triple (T*2 M, H (x, y, p), θ) and we can treat it by the
classical methods [cf. M. de Leon and Gotay [85]]. In this case, evidently only the
Poisson structure will be considered.

Therefore we will study the induced canonical symplectic structures and the
induced Poisson structures on the submanifolds and of the manifold
where and will be described below.

Let us consider the bundle and its canonical section,
Let us denote by It follows that

is a submanifold of the manifold Let us denote the restriction of to the
submanifold by and let us remark that has the equation where

are the coordinates of the points

Theorem 12.2.1. The pair is a symplectic manifold.

Proof. Indeed,

is a closed 2–form and q.e.d.

In a point the tangent space has the natural basis

and natural cobasis

Let us consider and of tangent
vector fields to and of cotangent vector fields to respectively.

Then, the following mapping

defined by

has the property:

A glance at the formula (2.8)´, gives:

Proposition 12.2.2. The mapping is an isomorphism.
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Let us consider the space and denote Then
the pair (M , ) is a classical Hamilton space (see Ch. 5) having the funda-

mental tensor field

The Proposition 12.2.2 shows that there exists a unique vector field
such that

In local basis, we get

Theorem 12.2.2. The integral curves of the vector field are given by the
”      –canonical equations”:

given by

Theorem 12.2.3. The following formula holds

Proof. Indeed, we have

Now, taking a canonical 2-form on the fibres of the bundle we
can obtain a similar relation for the Poisson structure

Let be the fibre in the point Then is an
immersed submanifold given by In a point

the natural basis of the tangent space is given by

and natural cobasis by

For two functions f, let be the corresponding vector fields
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We can prove, without difficulties, that the following expressions give rise to
geometrical object fields on the manifold

Consequently, we get:

Theorem 12.2.4. The following properties hold:

1° is canonical symplectic structure on the manifold

2° is a canonical Poisson structure on

The relationship between these two canonical structures can be deduced by the
same techniques in the case of the pair of structures

Indeed, the mapping

defined by

has the properties

Proposition 12.2.3. is an isomorphism.

That means that there exists an unique vector field such that

where is the regular Hamiltonian,
Locally, is given by

and its integral curve are as follows



290 The Geometry of Hamilton & Lagrange Spaces

These are called ”the -canonical equations” of the space Therefore, we can
state:

Theorem 12.2.5. The integral curve of the vector field are given by the
canonical equations (2.18).

Finally, we can prove:

Theorem 12.2.6. The following formula holds

The previous theory shows the intimate relations between symplectic structures
and the Poisson structure on the manifolds

12.3 Lagrange spaces of order two

We shall prove the existence of a natural diffeomorphism between the Hamilton
space of order two, and the Lagrange spaces of order two

To this purpose, we shall briefly sketch the general
theory of the space (see, §1,2, Ch.6, of the book [106]). The fundamental
function of the space is a Lagrangian of order two,

which is regular and the fundamental tensor field

has a constant signature.
On the manifold there exist two distribution and The distribution
is the vertical distribution of dimension 2n and  Clearly,

A transformation of local coordinates on
(i, j, h, k,…= 1, 2,…, n) is given by the formula (1.1), Ch.6, for Namely,
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where

Of course, for every point the natural basis of the tangent
space transforms as:

By means of these formulae one can prove that the vector fields

determine a local basis of the distribution and

is a local basis of the vertical distribution These distributions are integrable and

Let us remark that there are two Liouville vector fields:

with the properties that belongs to the distribution and belongs to the

distribution The vector fields and are linear independent.
There exists a 2-tangent structure J, on defined by

The following properties of the 2-tangent structure J hold:

1° J is a tensor field on of type (1, 1).

2° J is an integrable structure.

3°

4°



292    The Geometry of Hamilton & Lagrange Spaces

5°

6°

A 2-semispray on is a vector field S on with the property

Locally S is given by

where are the coefficients of S and they characterize the vector field S.
A nonlinear connection N on the manifold is a vector subbundle

of the tangent bundle which, together with the vertical subbundle
give the Whitney sum:

Noticing that and that is a subdistribution of the vertical
distribution we obtain the direct decomposition of linear spaces

An adapted basis to this direct decomposition is given by

where

The systems of functions give the coefficients of the nonlinear connection

N.
The adapted cobasis, which is the dual basis of (3.9),

where
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The new coefficients of the nonlinear connection N that appear here are

called the dual coefficients of N. They are related with the primary coefficients
by the formula:

Conversely, the previous formulae, uniquely determine as functions of

R. Miron [106] and [36], [37] showed that a 2-semispray with the
coefficients uniquely determines a nonlinear connection. The dual coefficients
given by are very simple:

Studying the variational problem for the regular Lagrangian of order 2,
we can determine a canonical nonlinear connection of the Lagrange space of order
two,

12.4 Variational problem in the spaces

let us denote the operator of Lie derivation with respect to X by

Applying this operator with respect to the Liouville vector fields (2.4) we get
two important scalar fields determined by the Lagrangian L:

They are called the main invariants of the space
Let c : be a smooth parameterized curve and assume

where U is a domain of a local chart on the manifold M. The curve c is represented
by the equations The extension of c to the manifold  is:

The integral of action of the Lagrangian along the curve c is defined
by

Let us consider a Lagrange space of order two,  If
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It is known that if I(c) does not depend by the parameterization of the curve c

then (Zermelo conditions). In this case So, the
fundamental tensor of the space is singular. Consequently, the functional I(c)
depends on the parametrization of the curve c.

Along the curve c, the following operators can be introduced:

In the monograph [106], the following theorems are proved:

Theorem 12.4.1.

1° For any differentiable function we have

2° are d-covector fields.

3°

Theorem 12.4.2. The variational problem on the integral of action I(c) leads to
the Euler–Lagrange equations

Taking into account of the Theorem 12.4.1 it follows that do not vanishes

along with the integral curve of the Euler–Lagrange equations. Therefore, it intro-
duce the notion of (Hamiltonian) energy, [106]. However we point out that in the
case of the space it will depend on the curve c :

Definition 12.4.1. Along the smooth curve c : the following functions
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are called the energy of order two and of order 1 of the Lagrange space
(M , L), respectively.

In the monograph [106] it is proved:

Theorem 12.4.3. For any differentiable Lagrangian the energy of

order two is conserved along every solution curve c of the Euler–Lagrange

equations

Along the smooth curve c : the energies and can be
written in the form

where

are the Jacobi–Ostrogradski momenta.

Theorem 12.4.4. Along a smooth curve c we have

This property is useful in order to prove:

Theorem 12.4.5. Along each solution curve c of the Euler–Lagrange equations

the following Hamilton equations hold:

From this reason is called the Hamiltonian energy of the space
Some of the previous results hold even in the case when L is not a regular Lagran-

gian. If L is the fundamental function of a Lagrange space of order 2,
we can determine a canonical nonlinear connection N depending only on L.
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Indeed, we consider the Synge equation [106]:

where

Thus, the canonical semispray of is given as follows:

Theorem 12.4.6. Any Lagrange space has a canonical semispray,
determined only by the fundamental function L. It is given by:

where the coefficients are expressed in the formula (4.13).

Consequently, we obtain [106]:

Theorem 12.4.7. For any Lagrange space there exist the nonlinear
connections determined only by the fundamental function L. One of them is given
by the dual coefficients from the formulae (3.12), (4.13).

The nonlinear connection mentioned in the previous theorem will be called ca-
nonical for the space

12.5 Legendre mapping determined by a space

If a Lagrange space of order two, is given, then it de-
termines a local diffeomorphism which preserves the fibres.
The mapping transforms the canonical semispray S of in the dual semispray

where and determines a nonlinear connection N* on Still, like
in the classical case, does not transform the regular Lagrangian
in a regular Hamiltonian H(x, y, p). However, a formula of type (1.6), Ch.8 can be
introduced. We investigate these problems in the following.

If we denote the fundamental function L in will be written as
and its fundamental tensor will be given by



two, then the following mapping
given by

is a local diffeomorphism which preserve the fibres.

Proof. The mapping is differentiable and its Jacobian has the determinant equal
to det which do not vanish on

Of course, we have
This diffeomorphism is called the Legendre mapping (or transformation).
We denote

Clearly, is a d-covector field on
The local inverse diffeomorphism is given by

The mapping has the same rule of transformation as the variables from (3.2),
with respect to a changing of local coordinates on

The mappings and satisfy the conditions:

We have the following identities

and
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Proposition 12.5.1. If L is the fundamental function of a Lagrange space of order
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The differential of the diffeomorphism is expressed
in the natural basis as follows

Theorem 12.5.1. The mapping (5.1), transforms the semispray

in the dual semispray on

which has the following coefficients

Proof. If have the local expression

then

Consequently holds.

Corollary 12.5.1. The dual semispray (5.7)´, determines on a nonlinear
connection with the coefficients:
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We have to ask ourselves if by means of the mapping we can transform a regular
Lagrangian in a regular Hamiltonian. Notice that
is not a vector field. Therefore the product is not a scalar field as in the
classical case of the Hamilton spaces

Let us fix a nonlinear connection with the coefficients on
Then on we get the d-vector field

This d-vector field is transformed by in the following d-vector field on

Let us consider the following Hamiltonian:

Then we have:

Theorem 12.5.2. The Hamiltonian function H, (5.10), is the fundamental func-
tion of a Hamilton space and its fundamental tensor field is
the contravariant of the fundamental tensor field of the space

Proof. From the formula (5.10) we deduce

Therefore, we get

Consequently, the pair (5.10), is an Hamilton space or order two.
q.e.d.

The space (5.10), is called the dual of the space

Of course, this dual depends on the choice of the nonlinear connection of

12.6 Legendre mapping determined by

Now let us pay attention to the inverse problem: Being given a Hamilton space of
order two, let us determine its dual, i.e., a Lagrange space
of order two.
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In this case, we will start from and try to determine a local diffeomorphism
of form (5.3) by means of the fundamental function H(x, y, p) of But is

not a vector field. Therefore we cannot define it only by which is a d-vector

field. As in the previous section we assume that the nonlinear connection with

coefficients which does not depend on the momenta is apriori given.
Consequently,

is a d-vector field on
The mapping defined by

where

is the Legendre transformation determined by the pair (H (x , y, p), ).

Theorem 12.6.1. The mapping given by (6.2), (6.2)´, is a local diffeomorphism,
which preserves the fibres of  and

Proof. The determinant of the Jacobian of is equal to det and

The formula (6.1), (6.2), (6.2)´ imply:

Let us consider the inverse mapping of the Legendre transformation

It follows

In a regular Lagrangian it is interesting to remark that the Hamiltonian H(x, y, p)
is transformed by exactly as in the classical case:
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Theorem 12.6.2. The Lagrangian L from (6.7) is a regular one. Its fundamental
tensor field is given by

Proof. Because it results and from (6.6) we

get q.e.d.

The space with L given in (6.7) is called the dual of the space

12.7 Canonical nonlinear connection of the space

The Lagrange space of order two, with the fundamental
function

is the dual of the Hamilton space of order two, Its canonical
semispray

is transformed by the Legendre transformation in the canonical dual semispray

The relation between the coefficients and is as follows

And since and are the inverse mappings, respectively, we have

Substituting in (7.2) we get
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The expression (4.13) of give

The last formula and (7.2)´ leads to

Because is in (6.2)´, we have:

Theorem 12.7.1. The coefficients  of the canonical semispray of the Hamilton
spaces are given by:

Finally, applying Theorem 9.5.2., we can formulate:

Theorem 12.7.2. The coefficients of the canonical nonlinear connection N of the
Hamilton space are as follows:

Remarks.

1° If then N coincides with

2° The torsion vanishes.

The Theorem 12.7.2 is important in applications.

12.8 Canonical metrical N connection of space

For a Hamilton space of order two, let us consider the
canonical nonlinear connection N determined in the previous section. We are going
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to investigate the N-linear connections which are metrical with respect to funda-
mental tensor field of i.e.:

Considering the space as a generalized space with the fundamental
tensor we can apply Theorems 11.2.1 and 11.2.2, one obtain:

Theorem 12.8.1. For a Hamilton space of order two, the
following properties hold:

1° There exists a unique N-connection which satisfies
(8.1), as well as the conditions

2° The coefficients of are given by the generalized Christoffel symbols:

where the operators are constructed using the canonical
nonlinear connection N.

The connection is called the metrical N-connection of
Now, applying the theory from Ch.9, we can write the structure equations of the

metrical N-connection Ricci identities and Bianchi identities. The paral-
lelism theory as well as, the theory of the special curves, horizontal paths etc. can
be obtained.

We can conclude that the geometry of the second order Hamilton spaces, can be
constructed from the canonical connections N and

The geometrical model of the space is determined the N-lift ((3.1),
Ch.11) of the fundamental tensor and by the (p)-almost contact structure
((3.7), Ch.11).

We obtain, without difficulties:

Theorem 12.8.2. The pair is a Riemannian almost contact structure de-
termined only by canonical nonlinear connection N and by fundamental function H
of the space If N is torsion free (i.e. ) , then its associated 2-form

is canonical presymplectic structure

The geometrical space is called the geometrical model of the
space It can be used to study the main geometrical features
of the space
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12.9 The Hamilton spaces  of electrodynam-
ics

Let us consider the Hamilton spaces of order two, with the
fundamental function

where is the fundamental tensor of a Finsler space
is a vector field, on and m, c, e are the physical constants. The func-

tions can be considered as gravitational potential and the electro-
magnetic potentials.

In the classical theory of the electrodynamics H (x, p) is obtained from the known
Lagrangian of electrodynamics via Legendre transformation, [97], [105].

The fundamental tensor field of the space is given by:

It is homothetic to the fundamental tensor  of Finsler space
This remark leads to the fact that is the Hamilton space

of order two of the Electrodynamics.
The covariant tensor is given by

The tensor field (1.3), vanishes. It follows:

The tensor from (1.4) reads:

Then, Theorem 12.1.3 leads to:

Theorem 12.9.1.

1° The of space in the point are characterized by the
system of differential equations



Ch.12. Hamilton spaces of order 2 305

2° The of the space in the point are characterized by the
system of differential equations

Let be the Cartan nonlinear connection of the Finsler space and
the d-vector field on

Remember that the Christoffel symbols of and gives

Let us consider the functions

We obtain the Legendre transformation (6.2) determined by the Hamilton space
Then, it follows:

The dual space of the space has the property

and the canonical dual semispray has the coefficients (7.4) given in our case by

Taking into account Theorem 12.7.2 we obtain the coefficients and of
the canonical nonlinear connection N of the space

Therefore the coefficients can be written:



306 The Geometry of Hamilton & Lagrange Spaces

Clearly is a d-tensor field of type (1,1).

The adapted basis to the distributions N, has the first

vector fields of the form

In other words:

Therefore, the coefficients of the canonical connection of the space
are given in the following

Theorem 12.9.2. The canonical metrical connection of the Hamilton space
of electrodynamics has the following coefficients

where is Cartan metrical connection of the Finsler space and is
a d-tensor field expressed by

Indeed, the last theorem follows from a straightforward calculus, using the for-
mula (*) and the expression of from (8.3).

We remark that the geometry of the Hamilton spaces of electrodynamics
(9.1) can be developed by means of the canonical nonlinear connection N, (9.10)
and on the canonical metrical connection (9.11).



Chapter 13

Cartan spaces of order 2

The Hamilton spaces for which the fundamental function
H(x, y, p) is 2-homogeneous with respect to momenta form an interesting class of
Hamilton spaces of order two, called Cartan spaces or order two.

For these spaces it is important to determine the fundamental geometrical object
fields, as canonical nonlinear connections and canonical metrical N-connections.

13. –spaces

Definition 13.1.1. A Cartan space of order two is a pair
for which the following axioms hold:

1° K is a real function on differentiable on and continuous on zero
section of the projection

2° K > 0 on

3° K is positively 1-homogeneous with respect to momenta

4° The Hessian of with elements:

is positively defined on

It follows that from (1.1) is contravariant of order two, symmetric and non-
degenerate d-tensor field. It is called fundamental (or metric) tensor of space
K(x, y, p) is called fundamental function of

Let us start noticing:

307
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Theorem 13.1.1. If the base manifold M is paracompact, then there exist on
functions K such that the pair (M , K) is a Cartan space of order two.

Proof. The manifold M being paracompact, it follows that is paracompact,
too, and therefore there exists a real function F on TM, which is fundamental for
the Finsler space Let be the fundamental tensor of
and be its contravariant tensor. Obviously is positively defined. If we
consider the function

then we obtain the fundamental function of a Cartan space of order two. q.e.d.

The Cartan spaces with fundamental function (1.2) are special. They can
be characterized by the vanishing of the d-tensor field

Proposition 13.1.2. For any Cartan spaces of order 2, we obtain:

1° The components of the fundamental tensor are 0-homogeneous with
respect  to

2°

3°

4°

Let be the covariant tensor of
A similar theorem with that given in Ch.12, can be formulated:

Theorem 13.1.2. For any Cartan space the following d-tensors

have the properties:

1° They are the – and –coefficients of a canonical metrical connection, i.e.
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2° The following identities hold:

The proof is similar with that given in Ch.5.
Let us consider a –vertical curve in the point (Ch.10).

Applying Theorem 10.7.5., we have:

Theorem 13.1.3.

1) The –vertical paths in the point of a Cartan space of order two,
are characterized by the system of differential equations

2) In the space the –paths in the point are characterized
by the system:

13.2 Canonical presymplectic structure of space

The natural geometrical object fields on the manifolds in the case of Cartan
space of order two, together with the fundamental function K(x, y, p) of space
give rise to some important properties, especially in the case of canonical equations
( ch.12).

We have and

is the canonical presymplectic structure.
The canonical Poisson structure { , }0 and { , }1 from (2.4), ch.12, can be also

considered.
Remarking that

is a regular Hamiltonian, by means of Proposition 12.2.1, we get:



310 The Geometry  of  Hamilton & Lagrange Spaces

Proposition 13.2.1. In a Cartan space the following equations
hold:

Notice that the triple is a Hamiltonian system.
Let us consider the canonical section of given by

(x, 0, p) and Then is an (immersed) submanifold of the
manifold and let us denote the restriction of to by We remark that

has the equation
Theorem 12.2.1. affirmes that the pair is a symplectic manifold.
Therefore the mapping defined by

is an isomorphism.
We denote Then we have

Proposition 13.2.2. The pair (M , ) is a classical Cartan space.
Indeed, in this case, the definition from Ch.6 is satisfied. Its fundamental tensor

field is

We obtain, also:

Theorem 13.2.1. There exists a unique vector field with the property

In the local basis, the vector field has the expression

The integral curves of  the vector field  determines the –canonical equations
of  the space
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Theorem 13.2.2. The –canonical equations of the space are as  follows:

Corollary 13.2.1. The equations (2.8) can be written in the form

Remark. It is clear that the Jacobi method, described in Section 2, ch.4, for
integration of  the equations (2.8), can be used in this case.

Now, let be the fibre, in the point of the bundle
Then is an immersed submanifold in

Let us consider (cf. ch.12) the following differential forms on

and the Poisson bracket:

The relations between these canonical structures on the manifold  can be studied
applying the same method as in the case of  structures

If we denote we get the  following –canonical equations.

Theorem 13.2.3.
The –canonical equations of the Cartan space are the
following

Taking into account the formula (2.3) we obtain

Corollary 13.2.2. The equations (2.12) are equivalent to the system of equations
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For the integration of  the –canonical equations we can use the Jacobi method.
Let us try to determine a solution curve in the fibre at point of the
form

where
Substituting in (2.12) we get:

It follows from (2.14)

and therefore

By integration of (2.15), we can determine and from (2.14) we obtain the curve

13.3 Canonical nonlinear connection of

We can associate the Hamilton space of order two, to a
Cartan space of order two, Then the canonical nonlinear
connection N of the space will be called the canonical nonlinear connection
of the Cartan space Therefore, we can apply the theory from the section 7 of
the previous chapter.

Let be a fixed connection with the coefficients Thus, on we
have the vector field

and we obtain the Legendre mapping determined by and by
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where

It follows that (3.2), (3.2)' is a local diffeomorphism which preserves the fibres of
and

From (3.1), (3.2) we obtain:

Let be the inverse mapping of Then it is of the form

From (3.5) we get

The Lagrangian (6.7), determined from by means of Legendre transformation
is given by

The formula (3.7) and the property of homogeneity of with respect to momenta
lead to the equation:

Indeed, from (3.4) and (3.7) it follows

The canonical dual semispray of is

Theorems 12.7.1 and 12.7.2 imply:

Theorem 13.3.1. The canonical semispray       has the coefficients
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Theorem 13.3.2. The coefficients of the canonical nonlinear connection N of the
Cartan space of order two, are given by:
(3.11)

Remarks.

1° The coefficients of canonical nonlinear connection N depend on an a priori

given nonlinear connection The previous theory is more simple

if is the Cartan nonlinear connection of  a Finsler space

2° The torsion of the canonical nonlinear connection vanishes. In this case the
canonical presymplectic structure (2.1), can be written in the form:

where

3° Since Prop. 6.3, ch.9, we have:

Theorem 13.3.3. A horizontal curve on is characterized by the system of
differential  equations:

where are a priori given.

13.4 Canonical metrical connection of space

Let N be the canonical nonlinear connection N of the Cartan space of order two,

The adapted basis to the distributions N,

and its dual basis is where
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and

Now, using an already very known method, we can prove:

Theorem 13.4.1.
1) In a Cartan space of order two, there exists a unique N-linear

connection which verifies the following axioms:

1° N is the canonical nonlinear connection with coefficients (3.11).

2° is metrical with respect to fundamental tensor   of space
i.e.

3° The d-tensor of  torsion vanish.

2)  This connection has the coefficients:

The N-connection (4.3), is called the canonical metrical connection of
the space

Let us consider the covariant curvature tensors (6.5)', Ch.10 of Then,
applying the Ricci identities (see 9.7) to the covariant of fundamental tensor field,

and taking into account the equations

we obtain:

Theorem 13.4.2. The tensors of  curvature and
are skew–symmetric in the first two indices.

The (y)–deflection tensors of are given by (5.5)', ch.10, and (p)–deflection
of  the same connection are
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Now, let us solve the problem of determination of a metrical N-linear connection
for which the p-deflection tensor vanishes.

Theorem 13.4.3.

1) In a Cartan space there exists a unique N-linear connection
for which the following axioms hold:

1° and the coefficients of the nonlinear connection

are given a priori.

2° is metrical with respect to i.e. (4.2) holds.

2) 1°. The coefficients of are given by (4.3).

2°. The coefficients of the nonlinear connection N are expressed by:

where  are the Christoffel symbols of                  and the index ”0”
means the contraction by or by

Proof. If the nonlinear connection N is known, then The-
orem 13.4.1 can be applied and it follows the existence and uniqueness of the coef-
ficients from (4.3) which satisfy the axioms 2° and 3°. Let us
determine the coefficients of N in the condition of  axiom 1°, i.e.

Taking into account (4.4), is equivalent to Since the

operators have the expressions the equations

leads to

Thus allows to write:
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A new contraction by leads to

Substituting in the formula (4.7) we have the solution (4.5) of  the equation
and the theorem is proved. q.e.d.

For the canonical metrical connection (4.3) the Ricci identities are given
in Theorem 10.6.1, taking into account the axiom 3°, i.e.:

The torsions are given by (6.3), (6.3)'' and the curvature tensors are expressed by
(6.4) and (6.4)'.

Theorem 10.6.3 gives some important identities for in which we take
into account (4.6) and (4.4).

13.5 Parallelism of  vector fields. Structure equa-
tions of

Let us consider the canonical metrical connection (4.3), and let
be a smooth parameterized curve as in section 7, Ch.10.

For a vector field given in the adapted basis by

the covariant differential DX is expressed by:

where the 1-forms of connection of the Cartan space of order two are:

Therefore, Theorem 10.7.1 gives the necessary and sufficient condition for the paral-
lelism of vector field X, (5.1) with respect to along the parametrized curve

Theorem 10.7.2 states that the Cartan space is with the absolute parallelism
of  vectors if, and only if, all d–tensors of  curvature vanish:
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We recall Theorem 10.7.3, also:

Theorem 13.5.1. A smooth parametrized curve is  autoparallel
with respect to the canonical metrical connection of Cartan space if
and only if the system of differential equations (7.13), Ch.7, is verified.

Of course, a theorem of existence and uniqueness for the autoparallel curve one
can formulate without difficulties.

Taking into account Theorem 10.3.3, and (7.15), Ch.10, we get:

Theorem 13.5.2. The horizontal paths of  the canonical metrical connection
of the space are characterized by the system of differential equations:

Finally, Theorem 10.7.5 has as consequence:

Theorem 13.5.3.
1° The –vertical paths of in the point is characterized by the

system of differential equations

2° The –vertical paths of in the point is characterized by

Remark. We assume that the restrictions of the coefficients to the zero section
of exist.

The structure equations of the canonical metrical connection of the Car-
tan space of order two, are given in the section 7 of Ch.7,
taking into account the particular properties of  this connection.

So, we obtain:

Theorem 13.5.4. The canonical metrical connection of the Cartan space
of order two, has the following structure equations:
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and

where the 2-forms of torsion and 2-forms of curvature are given by
the formulae (8.6), ch.7, and (4.8).

The Bianchi identities of the connection can be obtained taking the
exterior differential of the system of equations (5.4), (5.5) modulo the same system.

Remark. Using the structure equations, we can study, without major difficulties,
the theory of Cartan subspaces of order two in a Cartan space

13.6 Riemannian almost contact structure of a
space

Consider a Cartan space of order two, and its canonical
nonlinear connection N, with coefficients from (3.11). The adapted basis

and its dual are determined by N.
The associated space of is uniquely determined.

Therefore, using the theory from section 3, ch.11, we can investigate the notion of
Riemannian almost contact structure of the space

We introduce the N-lift to of the fundamental tensor by:

which is defined in every point

Theorem 13.6.1.

1° is a tensor field on the manifold   of type (0, 2), nonsingular depending
only on the fundamental function K of  and by the nonlinear connection

2° The pair is a Riemannian space.

3° The distributions N, are respectively orthogonal with respect to

Proof. Since and are d-tensor fields, symmetric and positively defined, it
follows that has the properties 1°, 2° and 3°.

Applying Theorem 11.3.2, we deduce:
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Theorem 13.6.2. The tensor is covariant constant with respect to canonical
metrical connection of the space i.e.

In other words, the canonical metrical connection  is an N-linear metrical
connection with respect to the Riemannian structure

Let us consider the -linear mapping

defined by

Theorem 13.6.3. The mapping has the following properties:

1° is globally defined on

2° is a tensor field of type (1, 1) on           i.e.

3° ker

4° rank

5°

The proof  is exactly like the case of  Theorem 9.8.2.

Hence, is called the (p)-almost contact structure determined by  and by
The Nijenhuis tens or and the condition of normality of can be explicitely

written in adapted basis (see ch.11).
Now if we remark the tensor (6.3) and the fact that and are covariant

constant with respect to the canonical metrical connection, it follows:

Theorem 13.6.4. The tensor field is covariant constant with respect to the
canonical metrical connection i.e.

Finally, let us notice that the pair has some remarkable properties.
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Theorem 13.6.5.
1° The pair is a Riemannian almost contact structure on the manifold

determined only by the space and by the nonlinear connection

2° The tensor fields and are covariant constant with respect to canonical
metrical connection of the space

3° The associated 2-form of the structure is the canonical presymplectic
structure on

Indeed, we have and
In adapted basis we get But the torsion

vanishes, hence as consequence and therefore Theorems 13.6.2 and
13.6.4 implies 2°, etc.

The Riemannian almost contact space is called the Riemannian
almost contact model of the Cartan space of order 2,

It is extremely useful in applications.
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