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Preface

This book is an edited version of the review talks given in the Second Aegean
School on the Early Universe, held in Ermoupolis on Syros Island, Greece,
in September 22-30, 2003. The aim of this book is not to present another
proceedings volume, but rather an advanced multiauthored textbook which
meets the needs of both the postgraduate students and the young researchers,
in the field of Physics of the Early Universe.

The first part of the book discusses the basic ideas that have shaped our
current understanding of the Early Universe. The discovering of the Cosmic
Microwave Background (CMB) radiation in the sixties and its subsequent
interpretation, the numerous experiments that followed with the enumerable
observation data they produced, and the recent all-sky data that was made
available by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite,
had put the hot big bang model, its inflationary cosmological phase and the
generation of large scale structure, on a firm observational footing.

An introduction to the Physics of the Early Universe is presented in
K. Tamvakis’ contribution. The basic features of the hot Big Bang Model
are reviewed in the framework of the fundamental physics involved. Short-
comings of the standard scenario and open problems are discussed as well as
the key ideas for their resolution.

It was an old idea that the large scale structure of our Universe might have
grown out of small initial fluctuations via gravitational instability. Now we
know that matter density fluctuations can grow like the scale factor and then
the rapid expansion of the universe during inflation generates the large scale
structure of our Universe. R. Durrer’s review offers a systematic treatment of
cosmological perturbation theory. After the introduction of gauge invariant
variables, the Einstein and conservation equations are written in terms of
these variables. The generation of perturbations during inflation is studied.
The importance of linear cosmological perturbation theory as a powerful tool
to calculate CMB anisotropies and polarisation is explained.

The linear anisotropies in the temperature of CMB radiation and its po-
larization provide a clean picture of fluctuations in the universe after the big
bang. These fluctuations are connected to those present in the ultra-high-
energy universe, and this makes the CMB anisotropies a powerful tool for
constraining the fundamental physics that was responsible for the generation
of structure. Late time effects also leave their mark, making the CMB tem-
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perature and polarization useful probes of dark energy and the astrophysics
of reionization. A. Challinor’s contribution discusses the simple physics that
processes primordial perturbations into the linear temperature and polariza-
tion anisotropies. The role of the CMB in constraining cosmological param-
eters is also described, and some of the highlights of the science extracted
from recent observations and the implications of this for fundamental physics
are reviewed.

It is of prime interest to look for possible systematic uncertainties in the
observations and their interpretation and also for possible inconsistencies of
the standard cosmological model with observational data. This is important
because it might lead us to new physics. Deviations from the standard cos-
mological model are strongly constrained at early times, at energies on the
order of 1 MeV. However, cosmological evolution is much less constrained in
the post-recombination universe where there is room for deviation from stan-
dard Friedmann cosmology and where the more classical tests are relevant.
R. Sander’s contribution discusses three of these classical cosmological tests
that are independent of the CMB: the angular size distance test, the lumi-
nosity distance test and its application to observations of distant supernovae,
and the incremental volume test as revealed by faint galaxy number counts.

The second part of the book deals with the missing pieces in the cosmo-
logical puzzle that the CMB anisotropies, the galaxies rotation curves and
microlensing are suggesting: dark matter and dark energy. It also presents new
ideas which come from particle physics and string theory which do not conflict
with the standard model of the cosmological evolution but give new theoret-
ical alternatives and offer a deeper understanding of the physics involved.

Our current understanding of dark matter and dark energy is presented
in the review by V. Sahni. The review first focusses on issues pertaining to
dark matter including observational evidence for its existence. Then it moves
to the discussion of dark energy. The significance of the cosmological con-
stant problem in relation to dark energy is discussed and emphasis is placed
upon dynamical dark energy models in which the equation of state is time
dependent. These include Quintessence, Braneworld models, Chaplygin gas
and Phantom energy. Model independent methods to determine the cosmic
equation of state are also discussed. The review ends with a brief discussion
of the fate of the universe in dark energy models.

The next contribution by A. Lukas provides an introduction into time-
dependent phenomena in string theory and their possible applications to
cosmology, mainly within the context of string low energy effective theories.
A major problem in extracting concrete predictions from string theory is its
large vacuum degeneracy. For this reason M-theory (the largest theory that
includes all the five string theories) at present, cannot provide a coherent
picture of the early universe or make reliable predictions. In this contribu-
tion particular emphasis is placed on the relation between string theory and
inflation.
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In an another development of theoretical ideas which come from string
theory, the universe could be a higher-dimensional spacetime, with our ob-
servable part of the universe being a four-dimensional “brane” surface. In
this picture, Standard Model particles and fields are confined to the brane
while gravity propagates freely in all dimensions. R. Maartens’ contribution
provides a systematic and detailed introduction to these ideas, discussing
the geometry, dynamics and perturbations of simple braneworld models for
cosmology.

The last part of the book deals with a very important physical pro-
cess which hopefully will give us valuable information about the structure
of the Early Universe and the violent processes that followed: the gravita-
tional waves. One of the central predictions of Einsteins’ general theory of
relativity is that gravitational waves will be generated as masses are acceler-
ated. Despite decades of effort these ripples in spacetime have still not been
observed directly.

As several large scale interferometers are beginning to take data at sen-
sitivities where astrophysical sources are predicted, the direct detection of
gravitational waves may well be imminent. This would (finally) open the
long anticipated gravitational wave window to our Universe. The review by
N. Andersson and K. Kokkotas provides an introduction to gravitational
radiation. The key concepts required for a discussion of gravitational wave
physics are introduced. In particular, the quadrupole formula is applied to the
anticipated source for detectors like LIGO, GEO600, EGO and TAMA300:
inspiralling compact binaries. The contribution also provides a brief review
of high frequency gravitational waves.

Over the last decade, advances in computer hardware and numerical algo-
rithms have opened the door to the possibility that simulations of sources of
gravitational radiation can produce valuable information of direct relevance
to gravitational wave astronomy. Simulations of binary black hole systems
involve solving the Einstein equation in full generality. Such a daunting task
has been one of the primary goals of the numerical relativity community.
The contribution by P. Laguna and D. Shoemaker focusses on the computa-
tional modelling of binary black holes. It provides a basic introduction to the
subject and is intended for non-experts in the area of numerical relativity.

The Second Aegean School on the Early Universe, and consequently this
book, became possible with the kind support of many people and organiza-
tions. We received financial support from the following sources and this is
gratefully acknowledged: National Technical University of Athens, Ministry
of the Aegean, Ministry of the Culture, Ministry of National Education, the
Eugenides Foundation, Hellenic Atomic Energy Committee, Metropolis of
Syros, National Bank of Greece, South Aegean Regional Secretariat.

We thank the Municipality of Syros for making available to the Orga-
nizing Committee the Cultural Center, and the University of the Aegean
for providing technical support. We thank the other members of the Orga-
nizing Committee of the School, Alex Kehagias and Nikolas Tracas for all
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their efforts in resolving many issues that arose in organizing the School.
The administrative support of the School was taken up with great care by
Mrs. Evelyn Pappa. We acknowledge the help of Mr. Yionnis Theodonis who
designed and maintained the webside of the School. We also thank Vasilis Za-
marias for assisting us in resolving technical issues in the process of editing
this book.

Last, but not least, we are grateful to the staff of Springer-Verlag, respon-
sible for the Lecture Notes in Physics, whose abilities and help contributed
greatly to the appearance of this book.

Athens, May 2004 Lefteris Papantonopoulos
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1 An Introduction to the Physics
of the Early Universe

Kyriakos Tamvakis

Physics Department, University of Ioannina, 451 10 Ioannina, Greece

Abstract. We present an elementary introduction to the Early Universe. The basic
features of the hot Big Bang are reviewed in the framework of the fundamental
physics involved. Shortcomings of the standard scenario and open problems are
discussed as well as the key ideas for their resolution.

1.1 The Hubble Law

In a restricted sense Cosmology is the study of the large scale structure of
the universe. In a modern, much wider, sense it seeks to assemble all our
knowledge of the Universe into a unified picture [1]. Our present view of the
Universe is based on the observational evidence and a few theoretical con-
cepts. Central in the established theoretical framework is Einstein’s General
Theory of Relativity (GR) [2] and the dominant role of gravity in the evolu-
tion of the Universe. The discovery of the Expansion of the Universe provided
the most important established feature of the modern cosmological picture.
In addition, the observation of the Cosmic Microwave Background Radiation
(CMB) provided a strong connection of the present cosmological picture to
fundamental Particle Physics.

In 1929 Edwin Hubble [3] announced his discovery that the redshifts of
galaxies tend to increase with distance. According to the Doppler shift phe-
nomenon, the wavelength of light from a moving source increases according
to the formula λ′ = λ(1 + V/c). This formula is modified for relativistic ve-
locities. The quantity z ≡ ∆λ/λ is called the redshift. The non-relativistic
Doppler formula reads z = V/c. The relation discovered by Hubble is

z =
∆λ

λ
∝ L . (1.1)

Subsequent measurements by him and others established beyond doubt the
Velocity-Distance Law

V ∼ H × L . (1.2)

Usually the name Hubble Law is reserved for the redshift-distance propor-
tionality.

K. Tamvakis, An Introduction to the Physics of the Early Universe, Lect. Notes Phys 653, 3–29
(2005)
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The parameter H is called the Hubble parameter and it has today a
value of the order of 100 km(sec)−1(Mpc)−1 = (9.778×Gyr)−1. The Hubble
Law established the idea that the Universe consists of expanding space. The
light from distant galaxies is redshifted because their separation distance
increases due to the expansion of space. The Hubble parameter is constant
throughout space at a common instant of time but it is not constant in time.
The expansion may have been faster in the past. Observational data support
the picture of a Universe that is to a very good approximation homogeneous
(all places are alike) and isotropic (all directions are alike). The hypotheses
of homogeneity and isotropy are referred to as the Cosmological Principle.
Such a Universe is called uniform. A uniform Universe remains uniform if its
motion is uniform. Thus, the expansion corresponds only to dilation, being
almost entirely shear-free and irrotational. The Hubble Law can be easily
deduced from these facts.

1.2 Comoving Coordinates and the Scale Factor

Homogeneity of the Universe implies also all clocks agree in their intervals
of time. Universal time is also refered to as cosmic time. Considering only
uniform expansion we introduce a comoving coordinate system. All distances
between comoving points increase by the same factor. In a comoving coordi-
nate system there exists a universal scale factor R, that increases in time if
the Universe is uniformly expanding (or decreases with time if the Universe is
uniformly contracting). The scale factor R(t) is a function of cosmic time and
has the same value throughout space. All lengths increase with time in pro-
portion to R, all surfaces in proportion to R2 and all volumes in proportion
to R3.

If R0 is the value of the scale factor at the present time and L0 the
distance between two comoving points, the corresponding distance at any
other time t will be L(t) = (L0/R0)R(t). If an expanding volume V contains
N particles, we can write for the particle number density n = n0(R/R0)3.
As an application of the last formula, from the present (average) density of
matter in the Universe of about one hydrogen atom per cubic meter, we can
estimate the average density of matter at an earlier time. At the time at
which the scale factor was 1% of what it is today the average matter density
was one hydrogen atom per cubic centimeter.

Consider now a comoving body at a fixed coordinate distance. Its actual
distance will be proportional to the scale factor, namely L = R× (coordinate
distance). The recession velocity of the comoving body will be proportional
to the rate of increase of the scale factor Ṙ, namely V = Ṙ × (coordinate
distance). Dividing the two relations, we obtain

V = L
Ṙ

R
, (1.3)
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t
Hubble time

R(t)

H>0, q<0 H>0, q>0

Fig. 1.1. The age of the Universe and Hubble time.

which is the Velocity-Distance Law in another form. The two expressions
coincide if we identify the Hubble parameter with the rate of change of the
scale factor

H =
Ṙ

R
. (1.4)

The Hubble parameter is a time-dependent quantity. Note again that the
Velocity-Distance is a simple consequence of uniform expansion. The exis-
tence of a scale factor, that is the same throughout space and varies in time,
leads directly to the Velocity-Distance Law.

If the Hubble parameter was constant, or if, equivalently, the rate of ex-
pansion of the Universe was constant, the inverse of the Hubble parameter
would give the time of expansion. This time is tH ≡ H−1

0 and it is called
the Hubble time. Although in almost all cosmological models that are be-
ing studied the Hubble parameter is not a constant, the Hubble time, thus
defined, gives a (rough) measure of the age of the Universe (see Fig. 1.1). Nu-
merically, the Hubble time comes out to be tH ∼ 10h−1 billion years, where
the dimensionless parameter h is called normalized Hubble parameter and is
a number between 0.5 and 0.8.

Acceleration is by definition the rate of increase of the velocity, namely
V̇ = R̈× (coordinate distance). As before, the coordinate distance of a comov-
ing body is constant. On the other hand, we know that L = R× (coordinate
distance). Thus,

V̇ = L
R̈

R
. (1.5)

We can define a deceleration parameter , independent of the particular body
at comoving distance L, as the dimensionless parameter
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q ≡ − R̈

RH2 . (1.6)

When q is positive, it corresponds to deceleration, while, when it is negative, it
corresponds to acceleration and should properly be refered to as acceleration
parameter . We can actually classify uniform Universes according to their val-
ues of H and q. Such a classification should be called kinematic classification,
in contrast to a classification in terms of the curvature, which is a geometric
classification. Kinematically, uniform Universes fall into the following classes:

a) (H > 0, q > 0) expanding and decelerating
b) (H > 0, q < 0) expanding and accelerating
c) (H < 0, q > 0) contracting and decelerating
d) (H < 0, q < 0) contracting and accelerating
e) (H > 0, q = 0) expanding with zero deceleration
f) (H < 0, q = 0) contracting with zero deceleration
g) (H = 0, q = 0) static.

There is little doubt that only (a), (b) and (e) are possible candidates for
our Universe at present. Extrapolating an expanding scenario backwards, we
arrive at a very high density state at R → 0. Evidence from CMB radiation
suggests that such a state, described by the suggestive name Big Bang1 could
have occurred in the Early Universe.

1.3 The Cosmic Microwave Background

The Hubble expansion can be understood as a natural consequence of homo-
geneity and isotropy. Nevertheless, an expanding Universe must necessarily
have a much denser and, therefore, hotter past. Matter in the Early Universe,
at times much before the development of any structure, should be viewed as
a gas of relativistic particles in thermodynamic equilibrium. The expansion
cannot upset the equilibrium, since the characteristic rate of particle pro-
cesses is of the order of the characteristic energy, namely T , while the rate
of expansion is given by the much smaller scale H ∼ √

GT 2 ∼ (T/MP )T .
In order to be convinced for this, one has to invoke the Friedmann equation
(see next chapter) and consider the temperature dependence of the energy-
density ρ ∼ T 4 characteristic of radiation. The model of the Early Universe
as a gas of relativistic matter and electromagnetic radiation in equilibrium
was first considered [4] by G. Gamow and his collaborators R. Alpher and R.
Herman for the purpose of explaining nucleosynthesis. As a byproduct, the
existence of relic black body radiation was predicted with wavelength in the
range of microwaves corresponding to temperature of a few degrees Kelvin.
1 This term was first used by Fred Hoyle in a series of BBC radio talks, published

in The Nature of the Universe (1950). Fred Hoyle was the main proponent of the
rival Steady State Theory [9] of the Universe.



1 An Introduction to the Physics of the Early Universe 7

This radiation, now known as Cosmic Microwave Background (CMB), was
discovered in 1965 by A. Penzias and R. Wilson [5] (see A. Challinor’s con-
tribution). The radiation, once extremely hot, has been cooled over billions
of years, redshifted by the expansion of the Universe and has today a tem-
perature of a few degrees Kelvin. Black body radiation of a temperature T
reaches a maximum at a characteristic wavelength λmax ∼ (1.26 �c/kB)T .
The average wavelength is of that order. Very accurate observations by the
Cosmic Background Explorer (COBE) [6] have shown that the intensity of
the CMB follows the blackbody curve of thermal radiation with a deviation
of only one part in 104. Also, after the subtraction of a 24-hour anisotropy
that has to do with the motion of the Galaxy at a speed V = 600 km/sec
(∆T/T ∼ V/c ∼ 0.01), the radiation is surprising isotropic with only very
small anisotropies of order ∼ 10−5. Very recently [7], WMAP has pushed
the accuracy with which these anisotropies are determined down to 10−9.
These anisotropies, surviving from the time of decoupling, are the imprint of
density fluctuations that evolved into galaxies and clusters of galaxies. The
accuracy with which CMB obeys the Planck spectrum is a very strong phys-
ical constraint in favour of an expanding Universe that passes through a hot
stage. The COBE estimate of the CMB temperature is

TCMB = 2.725 ± 0.002 oK .

It is possible to get a qualitative idea of the central event related to the
relic CMB without going into to much detail. The required quantitative re-
lations can easily be met in the framework of specific cosmological models to
be discussed later. We could start at some time in the history of our Universe
when the temperature was greater than 1010 oK. This corresponds roughly
to energy of about 1MeV . The abundant particles, i.e. those with masses
smaller than the characteristic energy kB T , apart from the massless photon
are the electrons, neutrinos and their antiparticles. The energy is dominated
by the radiation of these particles, which are, at these energies practically
massless as the photon. Reactions such as e+ e+ � γ + γ are in thermody-
namic equilibrium, not affected at all by the much slower expansion. The very
important effect of the expansion is to lower the temperature, which decreases
inversely proportional to the scale factor. No qualitative change occurs until
the temperature drops below the characteristic threshold energy kB T ∼ mec

2

at which photons can achieve electron-positron pair creation. Below that tem-
perature all electrons and positrons disappear from the plasma. The photon
radiation decouples and the Universe becomes essentially transparent to it.
It is exactly these photons which, redshifted, we observe as CMB.

The Hubble expansion by itself does not provide sufficient evidence for
a Big Bang type of Cosmology. It is only after the observation of the Cos-
mic Microwave Background and subsequent work on Nucleosynthesis that
the Big Bang Model was established as the basic candidate for a Standard
Cosmological Model.
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1.4 The Friedmann Models

A Cosmological Model is a (very) simplified model of the Universe with a
geometrical description of spacetime and a smoothed-out matter and radia-
tion content. The simplest interesting set of cosmological models is provided
by the homogeneous and isotropic Friedmann-Lemaitre spacetimes (FL) [8]
which are a set of solutions of GR incorporating the Cosmological Principle.
The line element of a FL model reads

ds2 = dt2 −R2(t)dσ2 . (1.7)

The spatial line element dσ2 describes a three-dimensional space of constant
curvature independent of time. It is 2

dσ2 = dχ2 + f2(χ)
(
dθ2 + sin2 θ dφ2) = dχ2 + f2(χ) dΩ2 . (1.8)

These coordinates are comoving. That means that the actual spatial distance
of two points (χ, θ, φ) and (χ0, θ, φ) will be d = R(t)(χ − χ0). There are
three choices for f(χ), each corresponding to a different spatial curvature k.
That is the value of the Ricci scalar (to be defined below) calculated from
dσ2 with the scale factor divided out. They are

f(χ) =






sinχ (k = +1) 0 < χ < π
χ (k = 0) 0 < χ <∞

sinhχ (k = −1) 0 < χ <∞
. (1.9)

The case k = +1 corresponds to a closed spacetime with a spherical spa-
tial geometry. The case k = 0 corresponds to an infinite (flat) spacetime
with Euclidean spatial geometry. Finally, the case k = −1 corresponds to an
open spacetime with hyperbolic spatial geometry. Sometimes the Robertson-
Walker metric is written in terms of r ≡ f(χ) as

dσ2 =
dr2

1 − kr2 + r2dΩ2 .

The above metric comes out as a solution of Einstein’s Equations

Rµν − 1
2
R gµν − Λgµν = 8πGTµν , (1.10)

Rµν is the Riemann Curvature Tensor and R is the Ricci Scalar defined as
R = gµνRµν . G stands for Newton’s Constant of Gravitation. The constant Λ
is called the Cosmological Constant and Tµν is the Matter Energy-Momentum
Tensor . A usual choice is that of a fluid
2 This is the so called Robertson-Walker metric. A more complete name for these

spacetime solutions is Friedmann-Lemaitre-Robertson-Walker or just FLRW
models.
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T ν
µ = (−ρ, p, p p) , (1.11)

with ρ the energy density and p the momentum density, related through some
Equation of State.

In the framework of the Robertson-Walker metric, light emitted from a
source at the point χS at time tS , propagating along a null geodesic dσ2 = 0,
taken radial (dΩ2 = 0) without loss of generality, will reach us at χ0 = 0 at
time t0 given by ∫ t0

tS

dt

R(t)
= χS .

A second signal emitted at tS + δtS will satisfy
∫ t0+δt0

tS+δtS

dt

R(t)
= χS ⇒ δtS

R(tS)
=

δt0
R(t0)

.

The ratio of the observed frequencies will be

ω0

ωS
=
δtS
δt0

=
R(tS)
R(t0)

.

This implies

z ≡ λ0 − λS

λS
=
R(t0)
R(tS)

− 1 ∼ −1 +
R(t0)

R(t0) − (t0 − tS)Ṙ(t0)

z ∼ (t0 − tS)H(t0) ⇒ z = H d . (1.12)

This is the Hubble Law . The Velocity-Distance Law is a simple consequence
of uniformity, namely

V = ḋ = Ṙ
d

R
= H d . (1.13)

Inserting the Robertson-Walker metric into Einstein’s Equations, we ar-
rive at the two equations

R̈ = −4πG
3

(ρ+ 3p)R+
Λ

3
R (1.14)

(Ṙ)2 =
8πG

3
ρR2 +

Λ

3
R2 − k . (1.15)

Multiplying the first of these equations by Ṙ and using the second, we arrive
at the equivalent pair of two first order equations, namely

ρ̇+ 3(ρ+ p)
Ṙ

R
= 0 (1.16)

(
Ṙ

R

)2

=
8πG

3
ρ+

Λ

3
− k

R2 . (1.17)
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The first of these equations is the Continuity Equation expressing the con-
servation of energy for the comoving volume R3. This interpretation is more
transparent if we write it in the form

d

dt

(
4πR3

3
ρ

)
= p
(

4πR3

3

)
⇔ dE
dt

= pV .

The other equation is purely dynamical and determines the evolution of the
scale factor. It is called The Friedmann Equation.

At the present epoch we have to a very good approximation p0 ≈ 0. We
can write (1.15) and (1.14) in terms of the present Hubble parameter H0 and
the present deceleration parameter q0. It is convenient to introduce a critical
density ρc defined as

ρc ≡ 3H2

8πG
. (1.18)

At the present time ρc,0 = 1.05 × 10−5 h2GeV cm−3. The name and the
meaning of ρc will become clear shortly. We also introduce the dimensionless
ratio

Ω ≡ ρ0
ρc

(1.19)

in terms of which the Friedmann equations are written as

k

R2
0

= H2
0

(
Ω0 − 1 +

Λ

3H2
0

)
, q0 =

1
2
Ω0 − Λ

3H2
0
. (1.20)

In the case of vanishing cosmological constant Λ = 0, we have

q0 =
1
2
Ω0 ,

k

R2
0

= H2
0 (Ω0 − 1) (1.21)

and, therefore
ρ0 > ρc,0 ⇒ k = +1
ρ0 = ρc,0 ⇒ k = 0
ρ0 < ρc,0 ⇒ k = −1 .

(1.22)

Thus, the measurable quantity Ω0 = ρ0/ρc,0 determines the sign of k, i.e.
whether the present Universe is a hyperbolic or a spherical spacetime. Note
that for Λ = 0, H0 and q0 determine the spacetime and the present age
completely.

It is often necessary to distinguish different contributions to the density,
like the present-day density of pressureless matter Ωm, that of relativistic
particles Ωr, plus the quantity ΩΛ ≡ Λ/3H2. In addition to these, in models
with a variable present-day contribution of the vacuum, one can add a term
Ωv. Thus, in the general case, we have

k

R2
0

= H2
0 (Ωm +Ωr +ΩΛ +Ωv − 1) . (1.23)
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1.5 Simple Cosmological Solutions

1.5.1 Empty de Sitter Universe

In the case of the absence of matter (ρ = p = 0) and for k = 0, the Einstein-
Friedmann equations take the very simple form

H2 =
Λ

3
(1.24)

q = − Λ

3H2 = −1 . (1.25)

For positive Cosmological Constant Λ > 0 we have a solution with an expo-
nentially increasing scale factor

R(t) = R(t0)e
√

Λ
3 (t−t0) . (1.26)

This solution describes an expanding Universe (de Sitter space) which ex-
pands with a constant Hubble parameter and with a constant acceleration
parameter. The force that causes the expansion arises from the non-zero cos-
mological constant. The de Sitter Universe is curved with a constant positive
Curvature proportional to Λ.

1.5.2 Vacuum Energy Dominated Universe

In the case that the dominant contribution to the Energy-Momentum Tensor
comes from the Vacuum Energy (for example the vacuum expectation value
of a Higgs field), the Energy-Momentum Tensor has the form

T ν
µ = −σδνµ , (1.27)

with σ > 0 a constant. The Equation of State is

p = −ρ = −σ (1.28)

which corresponds to the existence of Negative Pressure. The negative pres-
sure of the vacuum can lead to an accelerated exponential expansion, just as
in the previous case of the empty de Sitter space.

For Λ = k = 0, we obtain the Friedmann-Einstein equations

H2 =
8πG

3
σ (1.29)

q = −8πGσ
3H2 = −1 , (1.30)

with the scale factor
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R(t) = R(t0) e(t−t0)
√

σ 8πG
3 . (1.31)

An Exponentially Expanding Vacuum Dominated Universe is a key ingredient
of Inflation [10]. The Vacuum Dominated Universe and the Empty de Sitter
Universe are physically indistinguishable. This is a consequence of the simple
fact that a constant part of the Energy-Momentum Tensor, attributed to
matter, is equivallent to a constant of the opposite sign in the left hand
side of Einstein’s Equations playing the role of a Cosmological Constant,
traditionally attributed to geometry.

In a more general case that p = w ρ, the acceleration parameter is q =
(1 + 3w)Ωv/2. This shows that for an equation of state parameter

w < −1
3
, (1.32)

we are led to accelerated expansion. Current data may indicate that we are
at presently undergoing such a phase of accelerated expansion. The vacuum
energy seems indeed to be a dominant contributor to the cosmological density
budget with Ωv ∼ 0.7, while Ωm ∼ 0.3. Nevertheless, the nature of such a
vacuum term is presently uncertain.

1.5.3 Radiation Dominated Universe

The appropriate description of a hot and dense early Universe is that of a
gas of relativistic particles in thermodynamic equilibrium. A relativistic gas
of temperature T consists of particles with masses m << T . Particles with
masses m > T are decoupled. The energy density for such a relativistic gas is

ρ =
π2

30
QT 4 , (1.33)

where Q is the number of degrees of freedom of different particle species

Q =
∑

B

gB +
7
8

∑

F

gF , (1.34)

where gB , gF are the numbers of degrees of freedom for each boson (B) or
fermion (F). For example, Q = gγ = 2 for photons, as they have two spin
states. The pressure of the relativistic gas is given by

p =
π2

90
QT 4 =

1
3
ρ . (1.35)

As the temperature decreases and crosses the particle mass-thresholds the
decoupling particles are subtracted from the effective number of degrees of
freedom. Thus, gB(T ), gF (T ) and Q(T ) are temperature-dependent.

For a freely expanding gas, the expansion redshifts the wavelength by a
factor f as λ → λ′ = λf . The blackbody formula gives
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∫
dλ

λ5

1
e2π/λT − 1

∝ T 4 ⇒ f4
∫
dλ′

λ′5
1

e2πf/λ′T − 1
∝ T 4 ,

which implies that T ′
T = λ

λ′ = R
R′ . The relation between temperature and the

scale factor is,
T R = const. (1.36)

The Friedmann equation, for Λ = k = 0 gives

H2 =
8πG

3
ρ =

8π3Q

90
T 4 . (1.37)

Note that even if Λ or k were present, they would be irrelevant in early times,
when R is small, comparing to the radiation term ρ ∝ R−4. At late times the
situation is reversed and they are more important than the radiation term.
From (1.36), (1.37) we obtain

Ṙ

R
= − Ṫ

T
=
C2

2
T 2 ,

with C ≡
{

32π3Q
90

}1/4
. Taking the initial time t0 = 0 to be a time of infinite

temperature T (0) → ∞ and, therefore, vanishing scale factor R(0) → 0, we
get

R(t) = C
√
t , T (t) =

C−1
√
t
, H =

1
2t
, (1.38)

where C = (R(t1)T (t1))C, with t1 any finite time. On the other hand, the
deceleration parameter is

q = 1 . (1.39)

The Radiation Dominated Universe is under decelerated expansion.

1.5.4 Matter Dominated Universe

At relatively late times, non-relativistic matter dominates the energy density
over radiation. A pressurless gas of non-relativistic particles has the equation
of state

p = 0 . (1.40)

The energy density can be written as

ρ(T ) = ρ(T0)
(
T

T0

)3

= ρ̂0R−3 , (1.41)

with ρ̂0 = ρ(T0)R3
0. The Einstein-Friedmann equations (for Λ = k = 0) give

H2 =
8πGρ̂0

3
R−3 (1.42)
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and
q =

1
2
. (1.43)

The time dependence of the scale factor is

R(t) = (6πGρ̂0)
1/3

t2/3 (1.44)

and that of the Hubble parameter

H =
2
3 t
. (1.45)

Thus, the Matter Dominated Universe with vanishing cosmological constant
undergoes a decelerated expansion.

1.5.5 General Equation of State

In certain cosmological settings it is conceivable that matter is not described
by a gas of particles, like the ones we considered, but by fields effectively
described as a fluid with equation of state

p = w ρ . (1.46)

It is not difficult to show that the continuity equation, for arbitrary but
constant w, has the solution

ρ = ρ̂0R−3(1+w) (1.47)

An expanding behaviour corresponds to

1 + w > 0 . (1.48)

Setting again Λ = k = 0 in the Friedmann equation, we obtain

H2 = C R−3(1+w) , q =
1
2
(1 + 3w) . (1.49)

The scale factor is solved to be

R(t) = Ĉ(w) (t)
2

3(w+1) , (1.50)

with Ĉ(w) = (3(1 + w)/2)2/3(w+1) C1/3(w+1).
The above expansion is accelerated provided that

1 + 3w < 0 ⇒ −1 < w < −1
3
. (1.51)

In the case that the matter is represented by the Energy-Momentum
Tensor of a homogeneous scalar field, i.e. that depends only on time, we have

ρ =
1
2
φ̇2 + V (φ) , p =

1
2
φ̇2 − V (φ) . (1.52)

The resulting “equation of state” p = wρ involves a φ-dependent, and, con-
sequently, time-dependent w, namely

w(φ) =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (1.53)
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1.5.6 The Effects of Curvature

In the expanding solutions for the Early Universe that we considered above,
the effects of the curvature term −k/R2 have been neglected. This term
becomes important at late times (R >>) when the radiation (∼ R−4) and
matter (∼ R−3) terms are smaller. Let us consider the previously described
Matter-Dominated Universe inserting the curvature term into the Friedmann
Equations. We have

H2 =
C

R3 − k

R2 (1.54)

(2q − 1)H2 =
k

R2 , (1.55)

where C ≡ 8πGρ̂0/3.

• Open 3, Flat Space (k = 0).

This case, already studied previously, has

R(t) =
(

9C
4

)1/3

t2/3 , H =
2
3t
, q =

1
2
. (1.56)

The energy density satisfies ρ = ρc ≡ 3H2/8πG or, equivalently Ω = 1,
and it is characterized as critical.

• Closed, Spherical Space (k = 1).

In this case we obtain
R(t) = C sin2 φ(t) , (1.57)

where φ(t) is the solution of

t = C (φ− sinφ cosφ) . (1.58)

It is clear that these equations imply a maximal radius of expansion
Rmax = C reached at time Cπ/2. At this time the Hubble parameter
becomes zero. Beyond this time the Universe is contracting until the scale
factor becomes zero at time T = Cπ. Always the deceleration parameter
is q > 1/2 and ρ > ρc (or, equivalently, Ω > 1).

• Open, Hyperbolic Space (k = −1).

In this case we get
R(t) = C sinh2 φ(t) (1.59)

t = C (sinhφ coshφ− φ) . (1.60)
3 The characterizations Open, Closed and Flat given below refer to the three-

dimensional spatial geometry obtained by setting t = const. in the four-
dimensional spacetime manifold.
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k=1

k=0

k=−1

t

R

Fig. 1.2. Friedmann Universes beginning with Big Bangs.

The scale factor grows indefinitely. We have ρ < ρc (or, equivalently,
Ω < 1) and q < 1/2. The behaviour of the scale factor in these three
cases is shown in Fig. 1.2.

1.5.7 The Effects of a Cosmological Constant

Consider the case of a closed k = +1 Universe with a non-zero Cosmological
Constant Λ 
= 0. Assume that matter is present either as radiation or pres-
sureless matter with density ρ = ρ̂0R−3 + ρ̂1R−4. The Friedmann equation

H2 =
8πG

3
ρ(R) +

Λ

3
− 1
R2 (1.61)

shows that the Hubble parameter decreases until it reaches a minimum and
then starts increasing again until it reaches an asymptotic value Λ/3. The
scale factor after the Big Bang follows, first radiation dominated and later
matter dominated, decelerated expansion, then reaches a plateau at the value
R0 = 2πGρ̂0(1 +

√
1 + 2ρ̂1/3πGρ̂20) and finally increases again following an

accelerated expansion (Lemaitre Universe).

1.6 The Matter Density in the Universe

From the discussion at the end of the previous chapter it is evident that
the fate of the Universe at late times (p = 0) is dictated by the Friedmann
equation

H2 =
8πG

3
ρ+

Λ

3
− k

R2 (1.62)

which can be put into the form
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k

R2 = H2 (Ω − 1) , (1.63)

with
Ω = Ωm +ΩΛ . (1.64)

having denoted ΩΛ = Λ/3H2. The cosmological constant contribution stands
for a general effective vacuum contribution which could have a, for the mo-
ment unknown, dynamical origin. For Ω > 1, the Universe is closed and,
in the absence of a cosmological constant, the expansion would change into
contraction. This is not necessarily true in the presence of a non-zero cosmo-
logical constant. In the case Ω < 1 the Universe is open and the expansion
continues forever. This is true also for the critical case Ω = 1.

A lower bound for Ω is supplied by the observed Visible Matter

Ω > 0.03 (1.65)

Arguments based on Primordial Nucleosynthesis support this value. We can
denote Ωvm ∼ 0.03. Thus, it seems that most of the mass in the Universe
is in an unknown non-baryonic form. This matter is called Dark Matter . In
general, such matter can only be observed indirectly through its gravitation.
Doing that, one arrives at an estimate Ωdm ∼ 0.3.

What is the origin of the remaining contribution to Ω? Since it cannot be
attributed to matter, visible or dark, it is represented with an effective vac-
uum term and has been given the name Dark Energy . For theoretical reasons
(i.e. Inflation), the value Ω = 1 is particularly attractive. In that case, the
Dark Energy contribution is Ωde ∼ 0.7. This estimate is supported by current
data[11][12]. In particular, current data support the value ΩΛ = Λ/3H2

0 ∼ 0.7
or Λ ∼ O(10−56) cm−2. The estimated small cosmological constant is some-
times represented by a scale Λ

4
= Λ/M2

P ∼ (10−3 eV )4.
Thus, in the case of critical density, the various contributions are

Ωvm ∼ 0.03 , Ωdm ∼ 0.27 , Ωde ∼ 0.7 . (1.66)

Although it seems unavoidable, it is surprising that at least 90% of the matter
in the Universe is of unknown form.

1.7 The Standard Cosmological Model

The present Universe seems to be described by a Matter Dominated Fried-
mann model (p = 0) with a possible vacuum contribution in order to account
for acceleration. For any time smaller than 104 years from the beginning the
dominant part of the energy density was relativistic matter (electromagnetic
radiation, neutrinos, etc). Thus, the Universe corresponded to a Radiation
Dominated Friedmann model (p = ρ/3). The relativistic gas description is
valid down to times t ∼ 10−10 sec, corresponding to energies of the order
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of 100GeV . For smaller times, or larger energies, the description depends
on the assumed theoretical framework beyond [13] the Standard Model of
Particle Physics. If a Quantum Field Theory description of Particle Physics
remains valid up to energies of the order of 1018GeV , then, the relativistic
gas description of the Early Universe can be extrapolated down to times of
the order of 10−42 sec.

1.7.1 Thermal History

During the Radiation Dominated epoch the Friedmann equation is H2 ∼
8πGρ/3, since the curvature term is irrelevant at small values of the scale
factor. Thus, the energy density has the critical value

ρ ∼ 3H2

8πG
= ρc . (1.67)

The solution (1.38), for each interval of constant effective number of degrees
of freedom Q(T ), gives

T (t) =
C−1
√
t
, H =

1
2t

, ρ =
3

32πGt2
, (1.68)

with

C ≡
{

16π3QG

45

}1/4

. (1.69)

The value of Q(T ) at any given temperature depends on the Particle Physics
model valid in the given temperature/energy range. In the following table we
give the values of Q(T ) up to temperatures of O(100GeV ) in the framework
of the SU(3)C × SU(2)L × U(1)Y Standard Model.

We assume that the relativistic gas is in a state of thermodynamic equi-
librium. This is a reasonable assumption since the rate of expansion is much
smaller than the rate of interactions that can restore the equilibrium. The
rate of these interactions is given by the cross section σ ∝ T−2 ∝ t times the
particle number density n ∝ T 3 ∝ t−3/2. Thus, the rate of reactions goes as
σn ∼ t−1/2, while the rate of expansion goes as H = 1/2t, guaranteeing that
σn > H as the Universe expands and cools down.

Let us now attempt a bottom-up description of the expansion starting
from the relatively late time of t ∼ 1 sec, equivalent to T ∼ 1MeV ∼ 1010K
and move backwards in time. Below 1MeV , the plasma consists of photons
and neutrinos. At temperatures T ∼ 1MeV > me electron-positron pairs
should appear thanks to the process

γ + γ � e− + e+ .
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Temperature New Particle 4Q(T)
T < me γ, ν 29
me < T < mµ e± 43
mµ < T < mπ µ± 57
mπ < T < Tc π 69
Tc < T < ms π, u, u, d, d, g 205
ms < T < mc s, s 247
mc < T < mτ c, c 289
mτ < T < mb τ± 303
mb < T < mW,Z b, b 345
mW,Z < T < mH W±, Z 381
mH < T < mt H0 385
mt < T t, t 427

Protons and neutrons play no role in the energy density. Their number
is of the order of 10−9 of the number of light particles (γ, ν, e). At smaller
times t ∼ 10−3 − 10−4 sec, muons and π-mesons participate in the plasma.
Near this range lies the so-called deconfinement temperature Tc at which a
phase transition between the hadron phase and the quark-gluon phase occurs.
Above Tc, at times t < 10−4 sec, gluons and free quarks, u and d and, later, s,
join the plasma. At higher temperatures charmed quarks, τ -leptons and bot-
tom quarks appear. At times t ∼ 10−10 sec, corresponding to temperatures
T ∼ 100GeV , theW± and Z bosons of Weak Interactions become abundant.
At even higher temperatures, the Higgs boson and top-quark appear. At these
temperatures, the full Electroweak symmetry SU(3)C × SU(2)L × U(1)Y is
restored.

1.7.2 Nucleosynthesis

The period from 1 sec to 200 sec from the Big Bang plays an important role in
the history of the Universe [14]. During this period light nuclei have been pro-
duced and the usual matter started to appear. This is the time that the abun-
dances of light nuclei were fixed, namely He4 (.25), H2 (3 × 10−5), He3 (2 ×
10−5), Li7 (10−9), etc. Heavier nuclei were produced much later in stars. It is
remarkable that the primordial Helium abundance of 25% has been modified
only by a few per cent during the billions of years of converting hydrogen
into helium in stars. Yet only 200 sec of the early radiation era sufficed to
convert hydrogen into almost all of the helium abundance. The amount of
helium produced can be estimated in the following way. For t < 1 sec, or
T > 1MeV , protons and neutrons move freely in the primordial plasma.
Their relative number can be expressed through the Boltzmann formula

Nn

Np
= e−

(mn−mp)
T ∼ e−(1.3 MeV )/T . (1.70)



20 Kyriakos Tamvakis

The equilibrium is maintained by the processes ν+ p� e+n, n+ ν � p+ e,
etc. At a temperature Tf ∼ 0.7MeV , these reactions become too slow and the
ratio freezes out at the value (Nn/Np)f ∼ 0.16. Thus, there is one neutron
to about 5 − 6 protons. Free neutron decay (τ ∼ 15min) is too slow to
change that. Protons and neutrons collide together to form deuterium nuclei
or deuterons through the process

p+ n→ H2 + γ . (1.71)

The deuterons break apart through the inverse process giving back to the
plasma protons and neutrons. Only beyond t ∼ 100 sec the temperaure drops
to a point that it is energetically possible for deuterons to be stable. By this
time that protons and neutrons have been able to combine, the abundance of
neutrons has decreased to about two neutrons in every 14 protons. Out of 16
nucleons we get two deuterons and 12 protons. The, now stable, deuterons
can combine and produce a He4 nucleus

H2 +H2 ↔ He4 + γ . (1.72)

Actually, one has to consider all the two-body processes, like p + H2 ↔
He3+γ, n+He3 ↔ He4+γ, etc. The whole process is over in roughly 200 sec,
and in that time 25 % of matter is converted into helium (four out of sixteen
nucleons form a heliun nucleus) and the remainder consists predominantly of
protons. Slight amounts of deuterium, He3 and Li are also produced.

1.8 Problems of Standard Cosmology

The Standard Cosmological Model described in the previous section incorpo-
rates GR, CMB, the Hubble law and the light nuclei abundance. Needless to
say that its successes are compatible and intimately connected with the Stan-
dard Model of fundamental Particle Physics. Nevertheless, it faces a number
of serious problems having to do mostly with the lack of understanding of
initial conditions. Modifications are needed, which, however, should leave its
successes intact.

1.8.1 The Horizon Problem

The maximum size of a region in which causal relations can be established is
given by the horizon

rH(t) = R(t)∆χ = R(t)
∫ t

0

dt′

R(t′)
. (1.73)

During the Radiation Dominated phase, R(t) ∼ t1/2 and rH(t) = 2t. For
t → 0, rH shrinks much faster than R(t). Thus, at every epoch, most of
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Horizon−>

R(t)

t

Fig. 1.3. Horizon growth in the Standard Cosmological Model.

the regions within a typical dimension R(t) are causally unrelated despite
the extreme isotropy of the Standard Cosmological Model established by the
CMB data, as is shown in Fig. 1.3. Radiation and matter were in thermal
equilibrium until the time tR of hydrogen recombination after which the
Universe became transparent to radiation. The present isotropy of the CMB
implies a similar isotropy at time tR. Nevertheless, what we see today is
the same radiation-temperature from regions that had not established causal
contact at the epoch tR. The coordinate distance between our epoch t0 and
tR (we take r = 0 to be our position), is

∆χ(t0, tR) =
∫ t0

tR

dt′

R(t′)
. (1.74)

Since the horizon at tR was

∆χH =
∫ tR

tP

dt′

R(t′)
(1.75)

the number of horizon lengths contained in the distance 2∆χ(t0, tR) between
two opposite directions in the sky will be

N =
∫ t0

tR

dt′

R(t′)

/∫ tR

tP

dt′′

R(t′′)
. (1.76)

Applying this formula in the case of the Radiation Dominated expansion, we
obtain a very large number. In contrast, an altered expansion law for the
scale factor, as in the case of inflation, could change that dramatically. For
R ∼ eHt, we obtain for N a very small number.
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This is the so-called horizon problem of the Standard Cosmological Model.
This problem is solved and the observed homogeneity and isotropy is ex-
plained in the framework of Inflation which predicts a period of exponential
growth for the Universe.

1.8.2 The Coincidence Puzzle and the Flatness Problem

The Friedmann equation for the present epoch has the form

H2
0 =

8πG
3
ρ0 − k

R2
0

+
Λ

3
. (1.77)

Observations indicate that all three terms of the right hand side can be
roughly of the same order of magnitude

8πG
3H2

0
ρ0 ∼ |k|

R2
0H

2
0

∼ Λ

3H2
0

∼ O(1) . (1.78)

At very early times these terms are of greatly different magnitudes. Since
ρ ∝ R−4, this term dominates over the others which become relevant at
very late times. This very near balance of the three different terms seems
coincidentally very beneficial for our existence and for the existence of the
world around us. For instance, a balance for the first two terms only, for
a k = +1 model would be disastrous. In a few Planck-times4 the Universe
would collapse. On the other hand, if we have a balance of these two terms
in a k = −1 Universe, the resulting expansion would be so rapid that at
the present epoch Ω would be catastrophically small. The coincidence of
the magnitudes of the different terms is often refereed to as the Coincidence
Puzzle.

The balance between the different terms can be best formulated in terms
of the Entropy of the Universe. During the Radiation Dominated epoch the
entropy density s and the entropy S of a comoving volume R3 are given by

s =
2π2Q

45
T 3 , S ≡ sR3 =

2π2Q

45
(RT )3 . (1.79)

Estimating the present time entropy density from the background of photons
and neutrinos as s0 ∼ nγ ∼ 103 cm−3, we obtain for the entropy the huge
number

S ∼ 1087 . (1.80)

This number is an initial condition of the Standard Cosmological Model.
The fact that there are so much more photons than baryons is something
determined at the beginning.
4 The characteristic scale of gravitation, Newton’s gravitational constant G defines

a characteristic mass, the Planck mass MP ∼ 1018GeV , a characteristic length,
the Planck length, and a characteristic time, the Planck time.
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Rewriting the Friedman equation in terms of temperature and entropy,
we obtain (

Ṫ

T

)2

=
(

4π3QG

45

)
T 4 − k

S2/3

(
2π2Q

45

)2/3

. (1.81)

It is clear that the curvature term at high temperature is negligible since
S is a large number. The Friedmann equation can also be written as (Λ is
negligible at early times)

H2R2|1 −Ω| = |k| ⇒ |1 −Ω|
Ω

=
1
S2/3

(
45

2Qπ2

)1/3 1
2πGT 2 . (1.82)

Inserting numbers, one finds

|1 −Ω|
Ω

∼ 10−59
(
MP

T

)2

. (1.83)

This shows in a dramatic way that Ω must have been terribly close to 1 at
early epochs. For instance

T = 1MeV → |1 −Ω|
Ω

≤ 10−15

T = 1014GeV → |1 −Ω|
Ω

≤ 10−49 .

This feature of the Standard Cosmological Model, that Ω is close to 1 at
all times, is called the Flatness Problem or, sometimes, the Entropy Problem,
referring to the large value of the entropy. It is not a problem in an ordinary
sense. It relates however the specific properties of our present Universe to
rather special initial data, like the very large value of the entropy, or having
Ω ∼ 1 at early times. A theory of the Early Universe that could start with S
of order 1 and arrive, via physical processes, to the present number, would be
considered an improvement because it would not require very specific initial
data.

1.9 Phase Transitions in the Early Universe

The SU(3)C × SU(2)L × U(1)Y Standard Model of Strong and Electroweak
interactions incorporates the concept of Spontaneous Symmetry Breaking ac-
cording to which, although, the Laws of Nature are symmetric under a given
(local) gauge symmetry, the vacuum state is not. As a result, the vacuum
expectation values of certain operators in the theory violate the symmetry.
The way this is achieved in the Standard Model is through the vacuum ex-
pectation value of a scalar (Higgs) field that is an SU(2)L-doublet and carries
weak hypercharge. In the broken SU(3)C × U(1)em vacuum three out of the
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Fig. 1.4. Finite Temperature Effective Potential.

four gauge bosons (W±, Z0) of SU(2)L × U(1)Y obtain a mass, while the
fourth (photon) remains massless, corresponding to the intact electromag-
netic U(1)em gauge interaction.

In the Early Universe matter corresponds to a system in thermodynamic
equilibrium with a heat bath. The thermodynamics of this system is de-
scribed by the Hamiltonian of the SU(3)C × SU(2)L × U(1)Y gauge field
theory. The vacuum energy of the system is determined by the minimization
of the Free Energy, roughly corresponding to the so-called Effective Poten-
tial, which depends on the temperature. At very high temperatures, the global
vacuum state is the symmetric one, in contrast to low temperatures, where
the global vacuum is the broken one. As the Universe cools down during the
Radiation-Dominated epoch it makes a transition from the high temperature
symmetric phase to the broken low temperature phase, or it undergoes a
phase transition. This is shown in Fig. 1.4 where the effective potential at
finite temperature is plotted in terms of the Higgs field vev. This behaviour
is in agreement with what happens in certain condensed matter systems. For
example, a ferromagnet, when heated loses its magnetism, while at zero tem-
perature it is characterized by a non-vanishing magnetization that breaks
rotational symmetry. A more appropriate analogue is that of the phase tran-
sition from water to ice. Normally, the water-ice phase transition occurs at
the freezing point of 00C. Nevertheless, undisturbed pure water supercools
to a temperature lower than the freezing point before it transforms into ice.
When the transition finally occurs, after the supercooling period, the Uni-
verse is reheated due to the release of the false vacuum latent heat. Depending
on the details of the theory, symmetry breaking will occur via a first order
phase transition in which the field tunnels through a potential barrier, or via
a second order phase transition in which the field evolves smoothly from one
state to the other.
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1.10 Inflation

In a phase transition of the type discussed in the previous section where the
Universe spends a lot of time in the false vacuum with < φ >≈ 0, the energy
density (ρ = 1

2 φ̇
2 + V (φ)) can be dominated by the vacuum contribution

ρ ≈ V (0) . (1.84)

A scalar potential that could lead to such a behaviour is shown in Fig. 1.5.
During the period of the evolution in the false vacuum state the equation

of state will be that of negative pressure

p = −ρ = V (0) , (1.85)

and the Friedmann equation predicts a constant Hubble parameter and an
exponentially growing scale factor

H2 ≈ 8πG
3
ρ⇒ R(t) = R(ti) eH(t−ti) . (1.86)

Assuming that the transition to the true vacuum < φ >
= 0 is completed, the
latent energy stored in the false vacuum will be released and the Universe will
be heated up to a temperature comparable to the initial temperature. The
product RT would increase during this period proportionally to the scale
factor

RfTf ≈ RfTi =
(
Rf

Ri

)
RiTi = eηRiTi , (1.87)

where
eη ≡ Rf

Ri
.

Consequently the entropy would increase by a factor e3η. Thus, for a value of
this parameter η ∼ 60−70, the presently huge magnitude of the entropy 1087

could have arisen from an initial entropy magnitude of O(1). This essentially
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Fig. 1.5. Slow evolution in the “false vacuum”.
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would explain the entropy puzzle. The, equivalent, flatness problem is seen
to be explained in a straightforward fashion by considering the Friedmann
equation written as k = R2H2(Ω−1). Note that Λ plays no role in the Early
Universe but can always be included in Ω as ΩΛ = Λ/3H2. Thus, we obtain

k = R2
fH

2(Ωf − 1) = R2
iH

2(Ωi − 1) ⇒ Ωf = 1 + e−2η(Ωi − 1) . (1.88)

For the choice of η that explains away entropy we get Ωf = 1+10−58(Ωi −1)
which is ridiculously close to 1, whatever the initial value Ωi is. Note that,
as we remarked when discussing the horizon problem, exponential expansion
is sufficient to explain this puzzle as well.

This is the main idea behind the Inflationary Scenario proposed in 1982
by A. Guth [10]. Nevertheless, this so-called Old Inflation does not represent
a viable scenario. The way the transition proceeds is through the creation of
bubbles of the true (broken) vacuum in the inflating background of the false
(unbroken) vacuum. The rate at which these bubbles coalesce cannot keep
up pace with the expansion of the surrounding Universe. Concentrations of
bubbles form which are finally dominated by one bubble. In this way a very
inhomogeneous picture appears.

Another scenario [15] (New Inflation), which stems from the same ba-
sic idea but follows a modified line of events, was proposed by A. Linde and,
independently, P. Steindhard. In the New Inflationary Scenario the whole ob-
servable Universe evolves out of a single fluctuation region. Two ingredients
of the original inflationary scenario were abandoned, namely, the assumption
that the Universe spends a long time in the supercooled < φ >≈ 0 phase and
that the phase transition is completed through bubble nucleation. Instead,
inflation occurs during the time of the slow growth of the so-called inflaton
from its initial value to its equilibrium value. This time must be much longer
than H−1, something that could be achieved with a suitably flat potential
near the origin. In this scenario the Universe is heated up after inflation not
because of bubble wall collisions but by particle creation from the oscilla-
tions of the classical inflaton. Bubbles, if formed, will be separated by such
distances that forbid any causal interaction and the observable part of the
Universe will not be in danger from inhomogeneities. Implementation of the
new inflationary scenario [16] in a realistic Particle Physics theory has faced a
number of problems that have forced cosmologists to abandon the framework
of high temperature phase transitions and formulate inflation assuming that
the Universe is filled with a chaotically distributed inflaton (Chaotic Infla-
tion) . The requirements on the classical theory for the dilaton that can lead
to inflation (q < 0 or, equivalently, ρ+ 3p < 0) are

H2 =
8πG

3

(
V (φ) +

1
2
φ̇2
)

≈ 8πG
3
V (φ)

φ̈+ 3φ̇H + V ′(φ) = 0 ≈ 3φ̇H + V ′(φ) .

This is the slow-roll approximation quantified in terms of the parameters
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ε(φ) ≡ 1
16πG

(
V ′

V

)2

<< 1 , |η(φ)| ≡ 1
8πG

∣
∣
∣
∣
V ′′

V

∣
∣
∣
∣ << 1 .

Note that the last two conditions (slow-roll conditions) are necessary but not
sufficient. The slow-roll approximation requires φ̇ to satisfy 3Hφ̇ ∼ −V ′. The
amount of inflation is N = ln R(tend)

R(t) ∼ 8πG
∫ φ

φend
dφ V

V ′ ..
The historical motivation for inflation arose mostly on the questions con-

cerning the initial conditions required for a Hot Big Bang phase. Nevertheless,
in the modern view, by far the most important property of inflation is that it
can generate irregularities in the Universe which may lead to the formation
of structure.

1.11 The Baryon Asymmetry in the Universe

Relativistic Quantum Theory predicts that for each elementary particle state
there is another, in general different, state characterizing its antiparticle.
Antiparticles have the same spacetime properties (mass, spin) of particles and
opposite electric charge. Global quantum numbers, like Baryon and Lepton
Number, are also of opposite sign. Thus, the antiparticle of the electron e is
the positron e+, with positive charge, while the antiparticle of the neutrino is
a distinct neutral particle the antineutrino. The two particle wave functions
are related by a symmetry operator

ψe(x) ⇒ C {ψe(x)} = ψe+(x) .

The term Antimatter refers to the collection of antiparticles. The Universe
is almost exclusively filled with matter while existing antimatter is of sec-
ondary origin resulting from relativistic collisions of matter. This is true not
only of the antiparticles produced in accelerators but also of the antiparticles
encountered in Cosmic Rays. The evidence against primary forms of anti-
matter in the Universe is quite strong. The observed number of Baryons in
the Universe, over the number of photons, is

η =
NB

Nγ
∼ 10−10 . (1.89)

As first pointed out by A. D. Sakharov [17], the explanation of this asymme-
try of matter (Baryon Asymmetry) requires interactions that violate Baryon
Number B, the particle-antiparticle symmetry C (Charge Conjugation) and
Parity P. In addition, there should be a departure from thermodynamic equi-
librium. P and CP non-conservation is a well established fact of the Stan-
dard Model. Baryon violation can be found either in Grand Unified Theories
(GUTs) or in the non-perturbative sector of the Standard Model. The last
requirement can be realized in the expanding Universe where the various in-
teractions come in and out of equilibrium. The oldest proposed scenario is
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that of the out of equilibrium decays of superheavy Higgs bosons of GUTs
[18]. Another scenario uses the non-perturbative effects (sphalerons) of the
Standard Model and generates the Baryon Asymmetry at the Electroweak
scale [19]. Since B + L is conserved by these modes, it is possible to generate
first a Lepton Asymmetry by the out of equilibrium decay of a superheavy
right-handed neutrino [20] (Leptogenesis).
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2 Cosmological Perturbation Theory

Ruth Durrer

Université de Genève, Département de Physique Théorique, 24 Quai E. Ansermet,
1211 Genève, Switzerland

Abstract. This is a review on cosmological perturbation theory. After an intro-
duction, it presents the problem of gauge transformation. Gauge invariant variables
are introduced and the Einstein and conservation equations are written in terms
of these variables. Some examples, especially perfect fluids and scalar fields are
presented in detail. The generation of perturbations during inflation is studied.
Lightlike geodesics and their relevance for CMB anisotropies are briefly discussed.
Perturbation theory in braneworlds is also introduced.

2.1 Introduction

The idea that the large scale structure of our Universe might have grown out
of small initial fluctuations via gravitational instability goes back to Newton
(letter to Bentley, 1692 [1]).

The first relativistic treatment of linear perturbations in a Friedmann-
Lemâıtre universe was given by Lifshitz (1946) [2]. There he found that the
gravitational potential cannot grow within linear perturbation theory and he
concluded that galaxies have not formed by gravitational instability.

Today we know that it is sufficient that matter density fluctuations can
grow. Nevertheless, considerable initial fluctuations with amplitudes of the
order of 10−5 are needed in order to reproduce the cosmic structures observed
today. These are much larger than typical statistical fluctuations on scales of
galaxies and we have to propose a mechanism to generate them. Furthermore,
the measurements of anisotropies in the cosmic microwave background show
that the amplitude of fluctuations is constant over a wide range of scales, the
spectrum is scale independent. As we shall see, standard inflation generically
produces such a spectrum of nearly scale invariant fluctuations.

In this review I present gauge invariant cosmological perturbation theory.
I shall start by defining gauge invariant perturbation variables. Then I present
the basic perturbation equations. As examples for the matter equations we
shall consider perfect fluids and scalar fields. Then we briefly discuss lightlike
geodesics and CMB anisotropies (this section will be very brief since it is
complemented by the review on CMB anisotropies by A. Challinor). Finally,
I shall make some brief comments on perturbation theory for braneworlds, a
topic which is still wide open in my opinion.

R. Durrer, Cosmological Perturbation Theory, Lect. Notes Phys. 653, 31–69 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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2.2 The Background

I shall not come back to the homogeneous universe which has been discussed
in depth by K. Tamvakis. I just specify our notation which is as follows:

A Friedmann-Lemâıtre universe is a homogeneous and isotropic solution
of Einstein’s equations. The hyper-surfaces of constant time are homogeneous
and isotropic, i.e. spaces of constant curvature with metric a2(η)γijdx

idxj ,
where γij is the metric of a space with constant curvature κ. This metric can
be expressed in the form

γijdx
idxj = dr2 + χ2(r)

(
dϑ2 + sin2ϑdϕ2) (2.1)

where χ(r) was defined in (1.9) and we have rescaled a(η) such that κ = ±1
or 0. (With this normalization the scale factor a has the dimension of a length
and η and r are dimensionless for κ 
= 0.) The four-dimensional metric is then
of the form

gµνdx
µdxν = −a2(η)dη2 + a2(η)γijdx

idxj . (2.2)

Here η is called the conformal time. The physical or cosmological time is given
by dt = adη.

Einstein’s equations reduce to ordinary differential equations for the func-
tion a(η) (with ˙≡ d/dη):

(
ȧ

a

)2

+ κ = H2 + κ =
8πG

3
a2ρ+

1
3
Λa2 (2.3)

(
ȧ

a

)·
= Ḣ = −4πG

3
a2 (ρ+ 3p) +

1
3
Λa2 =

(
ä

a

)
−
(
ȧ

a

)2

, (2.4)

where ρ = −T 0
0 , p = T i

i (no sum!) and all other components of the energy
momentum tensor have to vanish by the requirement of isotropy and homo-
geneity. Λ is the cosmological constant. We have introduced H = ȧ/a. The
Hubble parameter is defined by

H =
da/dt

a
=
ȧ

a2
= H/a .

Energy momentum “conservation” (which is also a consequence of (2.3)
and (2.4) due to the contracted Bianchi identity) reads

ρ̇ = −3
(
ȧ

a

)
(ρ+ p) = −3(1 + w)H, (2.5)

where w ≡ p/ρ. Later we will also use c2s ≡ ṗ/ρ̇. From the definition of w and
ρ together with (2.5) one finds

ẇ = 3(1 + w)(w − c2s)H . (2.6)
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From the Friedmann equations one easily concludes that for κ = Λ = 0 and
w =const. the scale factor behaves like a power law,

a ∝ η 2
1+3w ∝ t 2

3(1+w) . (2.7)

Important examples are

a ∝ ηq with






q = 2 for dust w = 0
q = 1 for radiation w = 1/3
q = −1 for inflation (or a cosm. const.) w = −1

(2.8)

We also define

Ωρ =
(

8πGρa2

3H2

)

η=η0

ΩΛ =
Λa2

3H2

∣
∣
∣
∣
η=η0

(2.9)

Ωκ =
−κ
H2

∣
∣
∣
∣
η=η0

,

where the index 0 indicates the value of a given variable today. Friedmann’s
equation (2.3) then requires

1 = Ωρ +ΩΛ +Ωκ. (2.10)

One often also uses Ω = Ωρ +ΩΛ = 1 −Ωκ.

2.3 Gauge Invariant Perturbation Variables

The observed Universe is not perfectly homogeneous and isotropic. Matter is
arranged in galaxies and clusters of galaxies and there are large voids in the
distribution of galaxies. Let us assume, however, that these inhomogeneities
lead only to small variations of the geometry which we shall treat in first
order perturbation theory. For this we define the perturbed geometry by

gµν = ḡµν + εa2hµν , (2.11)

ḡµν being the unperturbed Friedmann metric. We conventionally set (absorb-
ing the “smallness” parameter ε into hµν)

gµν = ḡµν + a2hµν , ḡ00 = −a2, ḡij = a2γij |hµν | 
 1

Tµ
ν = T

µ

ν + θµ
ν , T

0
0 = −ρ̄, T

i

j = p̄δij |θµ
ν |/ρ̄
 1.

(2.12)
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2.3.1 Gauge Transformation, Gauge Invariance

The first fundamental problem we want to discuss is the choice of gauge in
cosmological perturbation theory:

For linear perturbation theory to apply, the spacetime manifold M with
metric g and the energy momentum tensor T of the real, observable universe
must be in some sense close to a Friedmann universe, i.e. the manifold M
with a Robertson–Walker metric ḡ and a homogeneous and isotropic energy
momentum tensor T . It is an interesting, non–trivial unsolved problem how
to construct ‘the best’ ḡ and T from the physical fields g and T in practice.
There are two main difficulties: First, spatial averaging procedures depend
on the choice of a hyper–surface of constant time and they do not commute
with derivatives, so that averaged fields ḡ and T will in general not satisfy
Einstein’s equations. Secondly, averaging is in practice impossible over super–
horizon scales.

Even though we cannot give a constructive prescription, we now as-
sume that there exists an averaging procedure which leads to a Friedmann
universe with spatially averaged tensor fields Q, such that the deviations
(Tµν−Tµν)/max{αβ}{|Tαβ |} and (gµν−gµν)/max{αβ}{gαβ} are small, and ḡ
and T satisfy Friedmann’s equations. Let us call such an averaging procedure
‘admissible’. There may be many different admissible averaging procedures
(e.g. over different hyper–surfaces) leading to slightly different Friedmann
backgrounds. But since |g − ḡ| is small of order ε, the difference of the two
Friedmann backgrounds must also be small of order ε and we can regard it
as part of the perturbation.

We consider now a fixed admissible Friedmann background (ḡ, T̄ ) as cho-
sen. Since the theory is invariant under diffeomorphisms (coordinate transfor-
mations), the perturbations are not unique. For an arbitrary diffeomorphism
φ and its push forward φ∗, the two metrics g and φ∗(g) describe the same
geometry. Since we have chosen the background metric ḡ we only allow dif-
feomorphisms which leave ḡ invariant i.e. which deviate only in first order
form the identity. Such an ‘infinitesimal’ diffeomorphism can be represented
as the infinitesimal flow of a vector field X, φ = φX

ε . Remember the defini-
tion of the flow: For the integral curve γx(s) of X with starting point x, i.e.,
γx(s = 0) = x we have φX

s (x) = γx(s). In terms of the vector field X, to first
order in ε, its pullback is then of the form

φ∗ = id+ εLX

(LX denotes the Lie derivative in direction X 1. The transformation g →
φ∗(g) is equivalent to ḡ + εa2h → ḡ + ε(a2h + LX ḡ) + O(ε2), i.e. under
1 The Lie derivative is geometrically just the derivative in the direction of the

vector field. To define it in a coordinate independent manner, we consider a
vector field X and its flux φs(x), i.e. the solution of the equation dxds = X(x)
with starting point x. For small enough values of s this is well defined. The Lie
derivative of a tensor field T is then defined by
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an ‘infinitesimal coordinate transformation’ the metric perturbation h trans-
forms as

h→ h+ a−2LX ḡ . (2.13)

In the context of cosmological perturbation theory, infinitesimal coordinate
transformations are called ‘gauge transformations’. The perturbation of a
arbitrary tensor field Q = Q̄+ εQ(1) obeys the gauge transformation law

Q(1) → Q(1) + LXQ̄ . (2.14)

Since every vector field X generates a gauge transformation φ = φX
ε ,

we can conclude that only perturbations of tensor fields with LXQ = 0 for
all vector fields X, i.e. with vanishing (or constant) ‘background contribu-
tion’ are gauge invariant. This simple result is sometimes referred to as the
‘Stewart-Walker Lemma’ [4].

The gauge dependence of perturbations has caused many controversies
in the literature, since it is often difficult to extract the physical meaning
of gauge dependent perturbations, especially on super–horizon scales. This
has led to the development of gauge invariant perturbation theory which we
are going to use throughout this review. The advantage of the gauge invari-
ant formalism is that the variables used have simple geometric and physical
meanings and are not plagued by gauge modes. Although the derivation re-
quires somewhat more work, the final system of perturbation equations is
usually simple and well suited for numerical treatment. We shall also see,
that on sub-horizon scales, the gauge invariant matter perturbation variables
approach the usual, gauge dependent ones. Since one of the gauge invariant
geometrical perturbation variables corresponds to the Newtonian potential,
the Newtonian limit can be performed easily.

First we note that since all relativistic equations are covariant (i.e. can be
written in the form Q = 0 for some tensor field Q), it is always possible to
express the corresponding perturbation equations in terms of gauge invariant
variables [5, 6, 7].

2.3.2 Harmonic Decomposition of Perturbation Variables

Since the {η = const} hyper-surfaces are homogeneous and isotropic, it is
sensible to perform a harmonic analysis: A (spatial) tensor field Q on these
hyper-surfaces can be decomposed into components which transform irre-
ducibly under translations and rotations. All such components evolve inde-
pendently. For a scalar quantity f in the case κ = 0 this is nothing else than
its Fourier decomposition:

f(x, η) =
∫
d3kf̂(k)eikx. (2.15)

LXT = lims→0 (φ∗
sT − T ) /s.

Here φ∗
s denotes the pullback with the (local) diffeomorphism φs [3].
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(The exponentials Yk(x) = eikx are the unitary irreducible representations of
the Euclidean translation group.) For κ = 1 such a decomposition also exists,
but the values k are discrete, k2 = �(�+2) and for κ = −1, they are bounded
from below, k2 > 1. Of course, the functions Yk are different for κ 
= 0.

They form the complete orthogonal set of eigenfunctions of the Laplacian,

∆Y
(S)
k = −k2Y

(S)
k . (2.16)

In addition, a tensorial variable (at fixed position x) can be decomposed into
irreducible components under the rotation group SO(3).

For a vector field, this is its decomposition into a gradient and a rotation,

Vi = ∇iϕ+Bi , (2.17)

where
Bi

|i = 0 , (2.18)

where we used X|i to denote the three–dimensional covariant derivative of
X. Here ϕ is the spin 0 and B is the spin 1 component of the vector field V.

For a symmetric tensor field we have

Hij = HLγij +
(

∇i∇j − 1
3
∆γij

)
HT +

1
2

(
H

(V )
i|j +H(V )

j|i
)

+H(T )
ij , (2.19)

where
H

(V )|i
i = H(T )i

i = H(T )j

i|j = 0. (2.20)

Here HL and HT are spin 0 components, H(V )
i is a spin 1 component and

H
(T )
ij is a spin 2 component.

We shall not need higher tensors (or spinors). As a basis for vector and
tensor modes we use the vector and tensor type eigenfunctions of the La-
placian,

∆Y
(V )
j = −k2Y

(V )
j and (2.21)

∆Y
(T )
ji = −k2Y

(T )
ji , (2.22)

where Y (V )
j is a transverse vector, Y (V )|j

j = 0 and Y (T )
ji is a symmetric trans-

verse traceless tensor, Y (T )j
j = Y (T )|i

ji = 0.
According to (2.17) and (2.19) we can construct scalar type vectors and

tensors and vector type tensors. To this goal we define

Y
(S)
j ≡ −k−1Y

(S)
|j (2.23)

Y
(S)
ij ≡ k−2Y

(S)
|ij +

1
3
γijY

(S) (2.24)

Y
(V )
ij ≡ − 1

2k
(Y (V )

i|j + Y (V )
j|i ) . (2.25)



2 Cosmological Perturbation Theory 37

In the following we shall extensively use this decomposition and write down
the perturbation equations for a given mode k. The decomposition of a vector
field is then of the form

Bi = BY (S)
i +B(V )Y

(V )
i . (2.26)

The decomposition of a tensor field is given by (compare (2.19))

Hij = HLY
(S)γij +HTY

(S)
ij +H(V )Y

(V )
ij +H(T )Y

(T )
ij . (2.27)

Here B, B(V ), HL, HT , H(V ) and H(T ) are functions of η and k.

2.3.3 Metric Perturbations

Perturbations of the metric are of the form

gµν = ḡµν + a2hµν . (2.28)

We parameterize them as

hµνdx
µdxν = −2Adη2 − 2Bidηdx

i + 2Hijdx
idxj , (2.29)

and we decompose the perturbation variables Bi and Hij according to (2.26)
and (2.27).

Let us consider the behavior of hµν under gauge transformations. We set
the vector field defining the gauge transformation to

X = T∂η + Li∂i. (2.30)

Using simple identities from differential geometry like LX(df) = d(LXf) and
(LXγ)ij = Xi|j +Xj|i, we obtain

LXḡ = a2
[
−2
(
ȧ

a
T + Ṫ

)
dη2 + 2

(
L̇i − T,i

)
dηdxi

+
(

2
ȧ

a
Tγij + Li|j + Lj|i

)
dxidxj

]
. (2.31)

Comparing this with (2.29) and using (2.13) we obtain the following be-
haviour of our perturbation variables under gauge transformations (we de-
compose the vector Li = LY (S)

i + L(V )Y
(V )
i ):

A → A+
ȧ

a
T + Ṫ (2.32)

B → B − L̇− kT (2.33)
B(V ) → B(V ) − L̇(V ) (2.34)

HL → HL +
ȧ

a
T +

k

3
L (2.35)

HT → HT − kL (2.36)
H(V ) → H(V ) − kL(V ) (2.37)
H(T ) → H(T ). (2.38)
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Two scalar and one vector variable can be set to zero by a cleverly chosen
gauge transformations.

One often chooses kL = HT and kT = B + L̇, so that the variables HT

and B vanish. In this gauge (longitudinal gauge), scalar perturbations of the
metric are of the form (HT = B = 0):

h(S)
µν = −2Ψdη2 − 2Φγijdx

idxj . (2.39)

Ψ and Φ are the so called Bardeen potentials. In a generic gauge they are
given by

Ψ = A− ȧ

a
k−1σ − k−1σ̇ (2.40)

Φ = −HL − 1
3
HT +

ȧ

a
k−1σ, (2.41)

with σ = k−1ḢT − B. A short calculation using (2.32) to (2.36) shows that
Ψ and Φ are gauge invariant.

In a Friedmann universe the Weyl tensor vanishes. It therefore is a gauge
invariant perturbation. For scalar perturbations one finds

C0
i0j =

1
2

[
(Ψ + Φ)|ij − 1

3
�(Ψ + Φ)γij

]
. (2.42)

All other components vanish.
For vector perturbations it is convenient to set kL(V ) = H(V ) so that

H(V ) vanishes and we have

h(V )
µν dx

µdxν = 2σ(V )Y
(V )
i dηdxi. (2.43)

We shall call this gauge the “vector gauge”. In general σ(V ) = k−1Ḣ(V )−B(V )

is gauge invariant2. The Weyl tensor from vector perturbation is given by

C0
i0j =

1
2
σ̇(V )Y

(V )
ij (2.44)

C0
jlm =

1
2
σ(V )[Y (V )

jl|m − Y (V )
jm|l − 1

3
γjlY

(V )
m|k

k +
1
3
γjmY

(V )
l|k

k]. (2.45)

Clearly there are no tensorial (spin 2) gauge transformation and hence H(T )
ij

is gauge invariant. The expression for the Weyl tensor from tensor perturba-
tion is identical to the one for vector perturbation upon replacement of σ(V )

ij

by Ḣ(T )
ij .

2 Y
(V )

ij σ(V ) is the shear of the hyper-surfaces of constant time.
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2.3.4 Perturbations of the Energy Momentum Tensor

Let Tµ
ν = T

µ

ν + θµ
ν be the full energy momentum tensor. We define its en-

ergy density ρ and its energy flow 4-vector u as the time-like eigenvalue and
eigenvector of Tµ

ν :
Tµ

ν u
ν = −ρuµ, u2 = −1. (2.46)

We then parameterize their perturbations by

ρ = ρ̄ (1 + δ) , u = u0∂t + ui∂i. (2.47)

u0 is fixed by the normalization condition,

u0 =
1
a
(1 −A). (2.48)

We further set
ui =

1
a
vi = vY (S)i + v(V )Y (V )i. (2.49)

We define Pµ
ν ≡ uµuν + δµν , the projection tensor onto the part of tangent

space normal to u and set the stress tensor

τµν = Pµ
αP

ν
β T

αβ . (2.50)

In the unperturbed case we have τ0
0 = 0, τ i

j = p̄δij . Including perturba-
tions, to first order we still obtain

τ0
0 = τ0

i = τ i
0 = 0. (2.51)

But τ i
j contains in general perturbations. We set

τ i
j = p̄

[
(1 + πL) δij +Πi

j

]
, with Πi

i = 0. (2.52)

We decompose Πi
j as

Πi
j = Π(S)Y

(S) i
j +Π(V )Y

(V ) i
j +Π(T )Y

(T ) i
j . (2.53)

We shall not derive the gauge transformation properties of these pertur-
bation variables in detail, but just state some results which can be obtained
as an exercise (see also [6]):

– Of the variables defined above only the Π(S,V,T ) are gauge invariant; they
describe the anisotropic stress tensor, Πµ

ν = τµ
ν − 1/3τα

α δ
µ
ν . They are gauge

invariant due to the Stewart–Walker lemma, since Π̄ = 0. For perfect
fluids Πµ

ν = 0.
– A second gauge invariant variable is

Γ = πL − c2s
w
δ, (2.54)

where c2s ≡ ṗ/ρ̇ is the adiabatic sound speed and w ≡ p/ρ is the enthalpy.
One can show that Γ is proportional to the divergence of the entropy flux
of the perturbations. Adiabatic perturbations are characterized by Γ = 0.
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– Gauge invariant density and velocity perturbations can be found by com-
bining δ, v and v(V )

i with metric perturbations.

We shall use

V ≡ v − 1
k
ḢT = v(long) (2.55)

Ds ≡ δ + 3(1 + w)
ȧ

a
(k−2ḢT − k−1B) ≡ δ(long) (2.56)

D ≡ δ(long) + 3(1 + w)
(
ȧ

a

)
V

k
(2.57)

Dg ≡ δ + 3(1 + w)
(
HL +

1
3
HT

)
= δ(long) − 3(1 + w)Φ (2.58)

V (V ) ≡ v(V ) − 1
k
Ḣ(V ) = v(vec) (2.59)

Ω ≡ v(V ) −B(V ) = v(vec) −B(V ) (2.60)
Ω − V (V ) = σ(V ). (2.61)

Here v(long), δ(long) and v(vec)i are the velocity (and density) perturbations
in the longitudinal and vector gauge respectively, and σ(V ) is the metric
perturbation in vector gauge (see (2.43)). These variables can be interpreted
nicely in terms of gradients of the energy density and the shear and vorticity
of the velocity field [8].

Here I just want to show that on scales much smaller than the Hubble
scale, kη � 1, the metric perturbations are much smaller than δ and v and
we can thus “forget them” (which will be important when comparing experi-
mental results with calculations in this formalism): The perturbations of the
Einstein tensor are given by second derivatives of the metric perturbations.
Einstein’s equations yield the following order of magnitude estimate:

O
(
δT

T

)
O (8πGT )
︸ ︷︷ ︸

O( ȧ
a )2

=O(η−2)

= O
(

1
η2h+

k

η
h+ k2h

)
(2.62)

O
(
δT

T

)
= O (h+ kηh+ (kη)2h

)
. (2.63)

For kη � 1 this gives O(δ, v) = O ( δT
T

) � O(h). On sub-horizon scales the
difference between δ, δ(long), Dg and D is negligible as well as the difference
between v and V or v(V ), V (V ) and Ω(V ).
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2.4 Einstein’s Equations

We do not derive the first order perturbations of Einstein’s equations. This
can be done by different methods, for example with Mathematica. We just
write down those equations which we shall need later.

2.4.1 Constraint Equations

4πGa2ρD = −(k2 − 3κ)Φ (00)
4πGa2(ρ+ p)V = k

((
ȧ
a

)
Ψ + Φ̇

)
(0i)

}

(scalar) (2.64)

8πGa2(ρ+ p)Ω =
1
2
(
2κ− k2)σ(V ) (0i) (vector) (2.65)

2.4.2 Dynamical Equations

k2 (Φ− Ψ) = 8πGa2pΠ(S) (scalar) (2.66)

k

(
σ̇(V ) + 2

(
ȧ

a

)
σ(V )

)
= 8πGa2pΠ(V ) (vector) (2.67)

Ḧ(T ) + 2
(
ȧ

a

)
Ḣ(T ) +

(
2κ+ k2)H(T ) = 8πGa2pΠ(T )

ij (tensor) (2.68)

There is a second dynamical scalar equation, which is somewhat cumbersome
and not really needed, since we may use one of the conservation equations
given below instead. Note that for perfect fluids, where Πi

j ≡ 0, we have
Φ = Ψ , σ(V ) ∝ 1/a2 and H(T ) obeys a damped wave equation. The damping
term can be neglected on small scales (over short time periods) when η−2 <∼
2κ + k2, and Hij represents propagating gravitational waves. For vanishing
curvature, these are just the sub-horizon scales, kη >∼ 1. For κ < 0, waves
oscillate with a somewhat smaller frequency, ω =

√
2κ+ k2, while for κ > 0

the frequency is somewhat larger than k.

2.4.3 Energy Momentum Conservation

The conservation equations, Tµν
;ν = 0 lead to the following perturbation equa-

tions

Ḋg + 3
(
c2s − w) ( ȧ

a

)
Dg + (1 + w)kV + 3w

(
ȧ
a

)
Γ = 0

V̇ +
(

ȧ
a

) (
1 − 3c2s

)
V = k

(
Ψ + 3c2sΦ

)
+ c2

sk
1+wDg

+ wk
1+w

[
Γ − 2

3

(
1 − 3κ

k2

)
Π
]





(scalar) (2.69)

Ω̇i +
(
1 − 3c2s

)
(
ȧ

a

)
Ωi =

p

2(ρ+ p)

(
k − 2κ

k

)
Π

(V )
i (vector) (2.70)
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These can of course also be obtained from the Einstein equations since they
are equivalent to the contracted Bianchi identities. For scalar perturbations
we have 4 independent equations and 6 variables. For vector perturbations
we have 2 equations and 3 variables, while for tensor perturbations we have
1 equations and 2 variables. To close the system we must add some matter
equations. The simplest prescription is to set Γ = Πij = 0. This matter
equation, which describes adiabatic perturbations of a perfect fluid gives us
exactly two additional equations for scalar perturbations and one each for
vector and tensor perturbations.

Another simple example is a universe with matter content given by a
scalar field. We shall discuss this case in the next section. More complicated
examples are those of several interacting particle species of which some have
to be described by a Boltzmann equation. This is the actual universe at late
times, say z <∼ 107.

2.4.4 A Special Case

Here we want to rewrite the scalar perturbation equations for a simple but
important special case. We consider adiabatic perturbations of a perfect fluid.
In this case Π = 0 since there are no anisotropic stresses and Γ = 0.
Equation (2.66) then implies Φ = Ψ . Using the first equation of (2.64) and
(2.58,2.57) to replace Dg in the second of (2.69) by Ψ and V , finally replacing
V by (2.64) one can derive a second order equation for Ψ , which is, in this
case the only dynamical degree of freedom

Ψ̈ + 3H(1 + c2s)Ψ̇ + [(1 + 3c2s)(H2 − κ) − (1 + 3w)H2 + c2sk
2]Ψ = 0 . (2.71)

Another interesting case (especially when discussing inflation) is the scalar
field case. There, as we shall see in Sect. 2.6, Π = 0, but in general Γ 
= 0
since δp/δρ 
= ṗ/ρ̇. Nevertheless, since this case again has only one dynamical
degree of freedom, we can express the perturbation equations in terms of one
single second order equation for Ψ . In Sect. 2.6 we shall find the following
equation for a perturbed scalar field cosmology

Ψ̈ + 3H(1 + c2s)Ψ̇ + [(1 + 3c2s)(H2 − κ) − (1 + 3w)H2 + k2]Ψ = 0 . (2.72)

The only difference between the perfect fluid and scalar field perturbation
equation is that the latter is missing the factor c2s in front of the oscillatory
k2 term. Note also that for κ = 0 and w = c2s = constant, the time dependent
mass term m2(η) = −(1 + 3c2s)(H2 − κ) + (1 + 3w)H2 vanishes. It is useful
to define also the variable [12]

u = a
[
4πG(H2 − Ḣ + κ)

]−1/2
Ψ, (2.73)

which satisfies the equation
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ü+ (Υk2 − θ̈/θ)u = 0, (2.74)

where Υ = c2s or Υ = 1 for a perfect fluid or a scalar field background
respectively, and

θ =
3H

2a
√

H2 − Ḣ + κ
. (2.75)

Another interesting variable is

ζ ≡ 2(H−1Ψ̇ + Ψ)
3(1 + w)

+ Ψ . (2.76)

Using (2.71) and (2.72) respectively one obtains

ζ̇ = −k2 ΥH
H2 − ḢΨ , (2.77)

hence on super horizon scales, k/H 
 1, this variable is conserved.
The evolution of ζ is closely related to the canonical variable v defined by

v = −a
√

H2 − Ḣ√
4πGΥH ζ . (2.78)

which satisfies the equation

v̈ + (Υk2 − z̈/z)v = 0 , (2.79)

for

z =
a
√

H2 − Ḣ + κ
ΥH . (2.80)

More details on the significance of the canonical variable v will be found in
Sects. 2.6 and 2.7.

2.5 Simple Examples

We first discuss two simple applications which are important to understand
the CMB anisotropy spectrum.

2.5.1 The Pure Dust Fluid for κ = 0, Λ = 0

We assume the dust to have w = c2s = p = 0 and Π = Γ = 0. (2.71) then
reduces to

Ψ̈ +
6
η
Ψ̇ = 0 , (2.81)

with the general solution
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Ψ = Ψ0 + Ψ1
1
η5 , (2.82)

with arbitrary constants Ψ0 and Ψ1. Since the perturbations are supposed to
be small initially, they cannot diverge for η → 0, and we have therefore to
choose the growing mode, Ψ1 = 0. Another way to argue is as follows: If the
mode Ψ1 has to be small already at some early initial time ηin, it will be even
much smaller later and may hence be neglected at late times. But also the
Ψ0 mode is only constant. This fact led Lifshitz who was the first to analyze
cosmological perturbations to the conclusions that linear perturbations do
not grow in a Friedman universe and cosmic structure cannot have evolved
by gravitational instability [2]. However, the important point to note here
is that, even if the gravitational potential remains constant, matter density
fluctuations do grow on sub-horizon scales and therefore inhomogeneities,
structure can evolve on scales which are smaller than the Hubble scale. To
see that we consider the conservation equations (2.69), (2.66) and the Poisson
equation (2.64). For the pure dust case, w = c2s = Π = Γ = 0, they reduce to

Ḋg = −kV (energy conservation) (2.83)

V̇ +
(
ȧ

a

)
V = kΨ (gravitational acceleration) (2.84)

−k2Ψ = 4πGa2ρ
(
Dg + 3

(
Ψ +

(
ȧ

a

)
k−1V

))
(Poisson), (2.85)

where we have used the relation

D = Dg + 3(1 + w)
(

−Φ+
(
ȧ

a

)
k−1V

)
. (2.86)

The Friedmann equation for dust gives 4πGρa2 = 3/2(ȧ/a)2 = 6/η2. Setting
kη = x and ′ = d/dx, the system (2.83-2.85) becomes

D′
g = −V (2.87)

V ′ +
2
x
V = Ψ (2.88)

6
x2

(
Dg + 3

(
Ψ +

2
x
V

))
= −Ψ. (2.89)

We use (2.89) to eliminate Ψ and (2.87) to eliminate Dg, leading to

(
18 + x2)V ′′ +

(
72
x

+ 4x
)
V ′ −

(
72
x2 + 4

)
V = 0. (2.90)

The general solution of (2.90) is

V = V0x+
V1

x4 . (2.91)
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The V1 mode is the decaying mode (corresponding to Ψ1) which we neglect.
The perturbation variables are then given by

V = V0x (2.92)

Dg = −15V0 − 1
2
V0x

2 (2.93)

V0 = Ψ0/3 . (2.94)

We distinguish two regimes:
i) super-horizon, x
 1 where we have

V =
1
3
Ψ0x (2.95)

Dg = −5Ψ0 (2.96)
Ψ = Ψ0 . (2.97)

Note that even though V is growing, it always remains much small than Ψ
or Dg on super-horizon scales. Hence the largest fluctuations are of order Ψ
which is constant.
ii) Sub-horizon, x� 1 where the solution is dominated by the terms

V =
1
3
Ψ0x (2.98)

Dg = −1
6
Ψ0x

2 (2.99)

Ψ = Ψ0 = constant. (2.100)

Note that for dust

D = Dg + 3Ψ +
6
x
V = −1

6
Ψ0x

2 .

In the variable D the constant term has disappeared and we have D 
 Ψ on
super-horizon scales, x
 1.

On sub-horizon scales, the density fluctuations grow like the scale fac-
tor ∝ x2 ∝ a. Nevertheless, Lifshitz’ conclusion [2] that pure gravitational
instability cannot be the cause for structure formation has some truth: If
we start from tiny thermal fluctuations of the order of 10−35, they can only
grow to about 10−30 due to this mild, power law instability during the matter
dominated regime. Or, to put it differently, if we want to form structure by
gravitational instability, we need initial fluctuations of the order of at least
10−5, much larger than thermal fluctuations. One possibility to create such
fluctuations is quantum particle production in the classical gravitational field
during inflation. The rapid expansion of the universe during inflation quickly
expands microscopic scales at which quantum fluctuations are important to
cosmological scales where these fluctuations are then “frozen in” as classical
perturbations in the energy density and the geometry. We will discuss the
induced spectrum on fluctuations in Sect. 2.7.
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2.5.2 The Pure Radiation Fluid, κ = 0, Λ = 0

In this limit we set w = c2s = 1/3 and Π = Γ = 0 so that Φ = −Ψ . We
conclude from ρ ∝ a−4 that a ∝ η. For radiation, the u–equation (2.74)
becomes

ü+ (
1
3
k2 − 2

η2 )u = 0, (2.101)

with general solution

u(x) = A
(

sin(x)
x

− cos(x)
)

+B
(

cos(x)
x

− sin(x)
)
, (2.102)

where we have set x = kη/
√

3 = cskη. For the Bardeen potential we obtain
with (2.73), up to constant factors,

Ψ(x) =
u(x)
x2 . (2.103)

On super-horizon scales, x
 1, we have

Ψ(x) � A

3
+
B

x3 . (2.104)

We assume that the perturbations have been initialized at some early time
xin 
 1 and that at this time the two modes have been comparable. If this
is the case then B 
 A and we may neglect the B-mode at later times.

To determine the density and velocity perturbations and for illustration,
we also solve the radiation equations using the conservation and Poisson
equations like the dust case. In the radiation case the perturbation equations
become (with the same notation as above, x = cskη)

D′
g = − 4√

3
V (2.105)

V ′ = 2
√

3Ψ +
√

3
4
Dg (2.106)

−2x2Ψ = Dg + 4Ψ +
4√
3x
V . (2.107)

The general solution of this system is

Dg = D2

[
cos(x) − 2

x
sin(x)

]

+D1

[
sin(x) +

2
x

cos(x)
]

(2.108)

V = −
√

3
4
D′

g (2.109)

Ψ = −
Dg + 4√

3x
V

4 + 2x2 . (2.110)
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Again, regularity at x = 0 requires D1 = 0. Comparing with (2.102,2.103)
gives D2 = 2A. In the super-horizon regime, x
 1, we obtain

Ψ =
A

3
, Dg = −2A− A

3
√

3
x2, V =

A

2
√

3
x . (2.111)

On sub-horizon scales, x � 1, we find oscillating solutions with constant
amplitude and with frequency of k/

√
3:

V =
√

3A
2

sin(x) (2.112)

Dg = 2A cos(x) , Ψ = −A cos(x)/x2 . (2.113)

Note that also for radiation perturbations

D = − A

3
√

3
x2 
 Ψ

is small on super horizon scales, x
 1. The perturbation amplitude is given
by the largest gauge invariant perturbation variable. We conclude therefore
that perturbations outside the Hubble horizon are frozen to first order. Once
they enter the horizon they start to collapse, but pressure resists the grav-
itational force and the radiation fluid fluctuations oscillate at constant am-
plitude. The perturbations of the gravitational potential oscillate and decay
like 1/a2 inside the horizon.

2.5.3 Adiabatic Initial Conditions

Adiabaticity requires that the perturbations of all contributions to the energy
density are initially in thermal equilibrium. This fixes the ratio of the density
perturbations of different components. There is no entropy flux and thus
Γ = 0. Here we consider as a simple example non relativistic matter and
radiation perturbations. Since the matter and radiation perturbations behave
in the same way on super-horizon scales,

D(r)
g = A+Bx2, D(m)

g = A′ +B′x2, V (r) ∝ V (m) ∝ x, (2.114)

we may require a constant ratio between matter and radiation perturbations.
As we have seen in the previous section, inside the horizon (x > 1) radiation
perturbations start to oscillate while matter perturbations keep following
a power law. On sub-horizon scales a constant ratio can thus no longer be
maintained. There are two interesting possibilities: adiabatic and isocurvature
perturbations. Here we concentrate on adiabatic perturbations which seem
to dominate the observed CMB anisotropies.

From Γ = 0 one easily derives that two components with pi/ρi =
wi =constant, i = 1, 2, are adiabatically coupled if (1 + w1)D

(2)
g = (1 +
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w2)D
(1)
g . Energy conservation then implies that also their velocity fields agree,

V (1) = V (2). This result is also a consequence of the Boltzmann equation in
the strong coupling regime. We therefore require

V (r) = V (m), (2.115)

so that the energy flux in the two fluids is coupled initially.
We restrict ourselves to a matter dominated backgrounds, the situation

relevant in the observed universe after equality. We first have to determine the
radiation perturbations during a matter dominated era. Since Ψ is dominated
by the matter contribution (it is proportional to the background density of
a given component), we have Ψ � const. = Ψ0. We neglect the contribution
from the sub-dominant radiation to Ψ . Energy–momentum conservation for
radiation then gives, with x = kη,

D(r)′
g = −4

3
V (r) (2.116)

V (r)′ = 2Ψ +
1
4
D(r)

g . (2.117)

Now Ψ is just a constant given by the matter perturbations, and it acts
like a constant source term. The general solution of this system is then

D(r)
g = A cos(csx) − 4√

3
B sin(csx) + 8Ψ [cos(csx) − 1] (2.118)

V (r) = B cos(csx) +
√

3
4
A sin(csx) + 2

√
3Ψ sin(csx), (2.119)

where cs = 1/
√

3 is the sound speed of radiation. Our adiabatic initial con-
ditions require

lim
x→0

V (r)

x
= V0 = lim

x→0

V (m)

x
<∞. (2.120)

Therefore B = 0 and V0 = A/4−2Ψ . Using in addition Ψ = 3V0 (see (2.100))
we obtain

D(r)
g =

4
3
Ψ cos

(
x√
3

)
− 8Ψ (2.121)

V (r) =
1√
3
Ψ sin

(
x√
3

)
(2.122)

D(m)
g = −Ψ(5 +

1
6
x2) (2.123)

V (m) =
1
3
Ψx . (2.124)

On super-horizon scales, x
 1 we have
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D(r)
g � −20

3
Ψ and V (r) � 1

3
xΨ , (2.125)

note that D(r)
g = (4/3)D(m)

g and V (r) = V (m) for adiabatic initial conditions.
Another possibility for the initial condition would be isocurvature initial

conditions, where you have non-vanishing D(r), D(m) and V (r), V (m) which
compensate each other in such a way that Ψ = 0 on super-horizon scales.
The simplest inflationary models do not lead to such perturbations and the
observations imply that they are not dominating the observed anisotropies
in the CMB even though they may contribute which could seriously hamper
the determination of cosmological parameters with CMB anisotropies (see
e.g. [9, 10]).

2.6 Scalar Field Cosmology

We now consider the special case of a Friedmann universe filled with self
interacting scalar field matter. The action is given by

S =
1

16πG

∫
d4x
√

|g|R+
∫
d4x
√

|g|
(

1
2
∂µϕ∂

µϕ−W (ϕ)
)
, (2.126)

where ϕ denotes the scalar field and W is the potential. The energy mo-
mentum tensor is obtained by varying the action in respect of the metric
gµν ,

Tµν = ∂µϕ∂νϕ−
[
1
2
∂λϕ∂

λϕ+W
]
gµν . (2.127)

The energy density ρ and the energy flux u are defined by

Tµ
ν u

ν = −ρuµ . (2.128)

For the Friedmann background this gives

ρ =
1

2a2
ϕ̇2 +W , (uµ) =

1
a
(1,0) . (2.129)

The pressure is given by

T i
j = pδij , p =

1
2a2

ϕ̇2 −W . (2.130)

We now define the scalar field perturbation,

ϕ = ϕ̄+ δϕ . (2.131)

Clearly, the scalar field only generates scalar perturbations (to first order).
Inserting (2.131) in the definition of the energy velocity perturbation v,
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(uµ) =
1
a
(1 −A,−v,i ) (2.132)

and the energy density perturbation δρ,

ρ = ρ̄+ δρ , (2.133)

we obtain
δρ =

1
a2

˙̄ϕδϕ̇− 1
a2

˙̄ϕ2A+W,ϕ δϕ, (2.134)

and
v =

k
˙̄ϕ
(
δϕ+ ˙̄ϕk−1B

)
. (2.135)

From the stress tensor, Tij = ϕ,i ϕ,j − [ 12∂λϕ∂
λϕ+W

]
gij we find

pπL =
1
a2

˙̄ϕδϕ̇− 1
a2

˙̄ϕ2A−W,ϕ δϕ and Π = 0 . (2.136)

We now define the gauge invariant scalar field perturbation as the value
of δϕ in longitudinal gauge

δϕ(gi) = δϕ(long) = δϕ+ ˙̄ϕ
(
B − k−1ḢT

)
= δϕ− ˙̄ϕσ . (2.137)

The last expression gives δϕ(gi) in a generic gauge. It is clear that this com-
bination is gauge–invariant. This variable is very simply related to the other
gauge–invariant scalar variables. Short calculations give

V = kδϕ(gi)/ ˙̄ϕ (2.138)

Dg = (1 + w)
[
2
ȧ

a
δϕ(gi)/ ˙̄ϕ+

d

dη
δϕ(gi)/ ˙̄ϕ

]
(2.139)

Ds = Dg + (1 + w)Ψ (2.140)

Γ =
2W,ϕ
pρ̇

[
˙̄ϕρDs − ρ̇δϕ(gi)

]
(2.141)

Π = 0 . (2.142)

The last equation shows that the two Bardeen potentials are equal for scalar
field perturbations, Φ = Ψ . With this we can write the perturbed Einstein
equations fully in terms of the Bardeen potential Ψ and V . Since we will need
them mainly to discuss inflation where curvature plays a minor role, we write
them down here only for the case of vanishing spatial curvature. From (2.64)
and (2.66) one can easily generalize to the case with curvature.

−3HΨ̇ − (Ḣ + H2 − k2)Ψ = 4πGϕ̇k−1(ϕ̇V + a2W,ϕ V ) (2.143)

Ψ̇ + HΨ = 4πGϕ̇2k−1V (2.144)
Ψ̈ + 3HΨ̇ + (Ḣ + 2H2)Ψ = 4πGϕ̇k−1(ϕ̇V̇ − ϕ̈V − a2W,ϕ V ). (2.145)
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These lead to the following second order equation for the Bardeen potential
which we have discussed above:

Ψ̈ + 3(H − ϕ̈/ϕ̇)Ψ̇ + (2Ḣ − 2Hϕ̈/ϕ̇+ k2)Ψ = 0 (2.146)

or, using the definition c2s = ṗ/ρ̇,

Ψ̈ + 3H(1 + c2s)Ψ̇ + (2Ḣ + (1 + 3c2s)H2 + k2)Ψ = 0 . (2.147)

As already mentioned above, this equation differs from the Ψ equation for a
perfect fluid only in the last term proportional to k2. This comes from the
fact that the scalar field is not in a thermal state with fixed entropy, but it
is in a fully coherent state (Γ 
= 0) and field fluctuations propagate with the
speed of light. On large scales, kη 
 1 this difference is not relevant, but on
sub–horizon scales it does play a certain role.

2.7 Generation of Perturbations During Inflation

So far we have simply assumed some initial fluctuation amplitude A, without
investigating where it came from or what the k–dependence of A might be.
In this section we discuss the most common idea about the generation of
cosmological perturbations, namely their production from the quantum vac-
uum fluctuations during an inflationary phase. The treatment here is focused
mainly on getting the correct result with as little effort as possible; we ignore
several subtleties related, e.g. to the transition from quantum fluctuations of
the field to classical fluctuations in the energy momentum tensor. The idea
is of course that the source of metric fluctuations are the expectation values
of the energy momentum tensor operator of the scalar field.

The basic idea is simple: A time dependent gravitational field very gener-
ically leads to particle production, analogously to the electron positron pro-
duction in a classical, time dependent electromagnetic field.

2.7.1 Scalar Perturbations

The main result is the following: During inflation, the produced particles in-
duce a perturbed gravitational field with a (nearly) scale invariant spectrum,

k3|Ψ(k, η)|2 = kn−1 × const. with n � 1 . (2.148)

The quantity k3|Ψ(k, η)|2 is the squared amplitude of the metric pertur-
bation at comoving scale λ = π/k. To insure that this quantity is small on a
broad range of scales, so that neither black holes are formed on small scales
nor there are large deviation from homogeneity and isotropy on large scales,
we must require n � 1. These arguments have been put forward for the first
time by Harrison and Zel’dovich [11] (still before the advent of inflation),
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leading to the name ‘Harrison-Zel’dovich spectrum’ for a scale invariant per-
turbation spectrum.

To derive the above result we consider a scalar field background dominated
by a potential, hence a ∝ |η|q with q ∼ −1. Looking at the action of this
system,

S =
∫
dx4
√

|g|
(

R

16πG
+

1
2
(∇ϕ)2

)
,

it can be shown (see [12]) that the second order perturbation of this action
around the Friedmann solution is given by

δS =
∫
dx4
√

|g|1
2
(∂µv)2 , (2.149)

up to some total differential. Here v is the perturbation variable

v = −a
√

H2 − Ḣ√
4πGH ζ (2.150)

introduced in (2.78). Via the Einstein equations, this variable can also be
interpreted as representing the fluctuations in the scalar field. Therefore, we
quantize v and assume that initially, on small scales, k|η| 
 1, v is in the
(Minkowski) quantum vacuum state of a massless scalar field with mode
function

vin =
v0√
k

exp(ikη) . (2.151)

The pre-factor v0 is a k-independent constant which depends on convention,
but is of order unity. From (2.77) we can derive

(v/z)· =
k2u

z
,

where z ∝ a is defined in (2.80) and u ∝ aηΨ is given in (2.73). On small
scales, k|η| 
 1, this results in the initial condition for u

uin =
−iv0
k3/2 exp(ikη) . (2.152)

The evolution equation for u, (2.101), reduces in the case of power law
expansion, a ∝ |η|q to

ü+ (k2 − q(q + 1)
η2 )u = 0 . (2.153)

The solutions to this equation are of the form (k|η|)1/2H
(i)
µ (kη), where µ =

q + 1/2 and H(i)
µ is the Hankel function of the ith kind (i = 1 or 2) of order

µ. The initial condition (2.152) requires that only H(2)
µ appears, so that we

obtain
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u =
α

k3/2 (k|η|)1/2H(2)
µ (kη) ,

where again α is a constant of order unity. We define the value of the Hubble
constant during inflation, which is nearly constant by Hi. With H = H/a �
1/(|η|a) we then obtain a ∼ 1/Hi|η|. (2.73) with the Planck mass defined by
8πG =M−2

P , then gives

Ψ =
Hi

2MP
u � Hi

MP
k−3/2(k|η|)1/2H(2)

µ (kη) . (2.154)

On small scales this is a simple oscillating function while on large scales
k|η| 
 1 it can be approximated by a power law,

Ψ � Hi

MP
k−3/2(k|η|)1+q � Hi

MP
k−3/2 , for k|η| 
 1 . (2.155)

Here we have used µ = 1/2 + q < 0 and q ∼ −1. This yields

k3|Ψ |2 �
(
Hi

MP

)2

, (2.156)

hence n = 1. Detailed studies have shown that even though the amplitude of
Ψ can still be severely affected by the transition from inflation to the subse-
quent radiation era, the obtained spectrum is very stable. Simple deviations
from de Sitter inflation (like e.g. power law inflation), q > −1 lead to slightly
blue spectra, n >∼ 1.

2.7.2 Vector Perturbations

In the simplest models of inflation where the only degrees of freedom are the
scalar field and the metric, no vector perturbations are generated. But even
if they are, subsequent evolution after inflation will lead to their decay. In a
perfect fluid background, Πij = 0, vector perturbations evolve according to
(2.70) which implies

Ω ∝ a3c2
s−1. (2.157)

For a radiation fluid, ṗ/ρ̇ = c2s ≤ 1/3, this leads to a non–growing vorticity.
The dynamical Einstein equation (2.67) gives

σ(V ) ∝ a−2 , (2.158)

and the constraint (2.65) reads (at early times, so that we can neglect curva-
ture)

Ω ∼ (kη)2σ(V ). (2.159)

Therefore, even if they are created in the very early universe on super–horizon
scales during an inflationary period, vector perturbations of the metric decay
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and become soon entirely negligible. Even if Ωi remains constant in a radia-
tion dominated universe, it has to be so small on relevant scales at formation
(kηin 
 1) that we may safely neglect it.

Vector perturbations are irrelevant if perturbations have been created at
some early time, e.g. during inflation. This result changes completely when
considering ‘active perturbations’ like for example topological defects where
vector perturbations contribute significantly to the CMB anisotropies on large
scales, see [13]. Furthermore, it is interesting to note that vector perturbations
do not satisfy a wave equation and therefore will in no case show oscillations.
Vorticity simply decays with time.

2.7.3 Tensor Perturbations

The situation is different for tensor perturbations. Again we consider the
perfect fluid case, Π(T )

ij = 0. Equation (2.68) implies, if κ is negligible,

Ḧij +
2ȧ
a
Ḣij + k2Hij = 0 . (2.160)

If the background has a power law evolution, a ∝ ηq this equation can be
solved in terms of Bessel or Hankel functions. The less decaying mode solution
to (2.160) is Hij = eijx1/2−βJ1/2−q(x), where Jν denotes the Bessel function
of order ν, x = kη and eij is a transverse traceless polarization tensor. This
leads to

Hij = const. for x 
 1 (2.161)

Hij =
1
a

for x >∼ 1 . (2.162)

One may also quantize the tensor fluctuations which represent gravitons.
Doing this, one obtains (up to log corrections a scale invariant spectrum
of tensor fluctuations from inflation: For tensor perturbations the canonical
variable is simply given by hij = MPaHij . The evolution equation for hij =
heij is of the form

ḧ+ (k2 +m2(η))h = 0 , (2.163)

where m2(η) = −ä/a. During inflation m2 = −q(q−1) is negative, leading to
particle creation. Like for scalar perturbations, the vacuum initial conditions
are given on scales which are inside the horizon k2 � |m2|,

hin =
1√
k

exp(kη) for k|η| � 1.

Solving (2.163) with this initial condition, gives

h =
1√
k

(k|η|)1/2H
(2)
q−1/2(kη) ,



2 Cosmological Perturbation Theory 55

where H(2)
ν is the Hankel function of degree ν of the second kind. On super

horizon scales, H(2)
q−1/2(kη) ∝ (k|η|)q−1/2 this results in |h|2 � |η|(k|η|)2q−1.

Using the relation between hij = heij and Hij one obtains the spectrum
of tensor perturbation generated during inflation. For exponential inflation,
q � −1 one finds again a scale invariant spectrum for Hij on super-horizon
scales

k3|HijH
ij | � (Hin/MP )2 ∝ knT with nT � 0 . (2.164)

2.8 Lightlike Geodesics and CMB Anisotropies

After decoupling, η > ηdec, photons follow to a good approximation light-like
geodesics. The temperature shift of a Planck distribution of photons is equal
to the energy shift of any given photon, which is independent of the photon
energy (gravity is ‘achromatic’).

The unperturbed photon trajectory follows

(xµ(η)) ≡ (η,
∫ η0

η

n(η′)dη′ + x0) ,

where x0 is the photon position at time η0 and n is the (parallel transported)
photon direction. With respect to a geodesic basis (e)3i=1, the components of
n are constant. If κ = 0 we may choose ei = ∂/∂xi; if κ 
= 0 these vector
fields are no longer parallel transported and therefore do not form a geodesic
basis (∇eiej = 0).

Our metric is of the form ds̃2 = a2ds2, with

ds2 = (γµν + hµν) dxµdxν , γ00 = −1, γi0 = 0, γij = γji, (2.165)

as before.
We make use of the fact that light-like geodesics are conformally invari-

ant. More precisely, ds2 and ds̃2 have the same light-like geodesics, only the
corresponding affine parameters are different. Let us denote the two affine pa-
rameters by λ and λ̃ respectively, and the tangent vectors to the geodesic by

n =
dx

dλ
, ñ =

1
a
n =

dx

dλ̃
, n2 = ñ2 = 0 , n0 = 1 , n2 = 1. (2.166)

We set n0 = 1 + δn0. The geodesic equation for the perturbed metric

ds2 = (γµν + hµν)dxµdxν (2.167)

yields, to first order,
d

dλ
δnµ = −δΓµ

αβn
αnβ . (2.168)

For the energy shift, we have to determine δn0. Since g0µ = −1 · δ0µ +
first order, we obtain δΓ 0

αβ = −1/2(hα0|β + hβ0|α − ḣαβ), so that



56 Ruth Durrer

d

dλ
δn0 = hα0|βnβnα − 1

2
ḣαβn

αnβ . (2.169)

Integrating this equation we use hα0|βnβ = d
dλ (hα0n

α), so that the change of
n0 between some initial time ηi and some final time ηf is given by

δn0|fi =
[
h00 + h0jn

j
]f
i

− 1
2

∫ f

i

ḣµνn
µnνdλ . (2.170)

On the other hand, the ratio of the energy of a photon measured by some
observer at tf to the energy emitted at ti is

Ef

Ei
=

(ñ · u)f

(ñ · u)i
=
Tf

Ti

(n · u)f

(n · u)i
, (2.171)

where uf and ui are the four-velocities of the observer and emitter respec-
tively, and the factor Tf/Ti is the usual (unperturbed) redshift, which relates
n and ñ. The velocity field of observer and emitter is given by

u = (1 −A)∂η + vi∂i . (2.172)

An observer measuring a temperature T0 receives photons that were emit-
ted at the time ηdec of decoupling of matter and radiation, at the fixed tem-
perature Tdec. In first order perturbation theory, we find the following relation
between the unperturbed temperatures Tf , Ti, the measurable temperatures
T0 = Tf + δTf , Tdec = Ti + δTi, and the photon density perturbation:

Tf

Ti
=
T0

Tdec

(
1 − δTf

Tf
+
δTi

Ti

)
=
T0

Tdec

(
1 − 1

4
δ(r)|fi

)
, (2.173)

where δ(r) is the intrinsic density perturbation in the radiation and we have
used ρ(r) ∝ T 4 in the last equality. Inserting the above equation and (2.170)
into (2.171), and using (2.29) for the definition of hµν , one finds, after inte-
gration by parts [7] the following result for scalar perturbations:

Ef

Ei
=
T0

Tdec

{

1 −
[
1
4
D(r)

g + V (b)
j nj + Ψ + Φ

]f

i

+
∫ f

i

(Ψ̇ + Φ̇)dλ

}

. (2.174)

Here D(r)
g denotes the density perturbation in the radiation fluid, and V (b)

is the peculiar velocity of the baryonic matter component (the emitter and
observer of radiation).

Evaluating (2.174) at final time η0 (today) and initial time ηdec, we ob-
tain the temperature difference of photons coming from different directions
n and n′

∆T

T
≡ ∆T (n)

T
− ∆T (n′)

T
≡ Ef

Ei
(n) − Ef

Ei
(n′). (2.175)
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Direction independent contributions to Ef

Ei
do not contribute to this differ-

ence. We also do not want to include the term Vj(η0)nj which simply describes
the dipole due to our motion with respect to the emission surface and which
is much larger than the contributions from the higher multipoles. Therefore
we can set

∆T (n)
T

=
[
1
4
D(r)

g + V (b)
j nj + Ψ + Φ

]
(ηdec,xdec) +

∫ η0

ηdec

(Ψ̇ + Φ̇)(η,x(η))dη ,

(2.176)
where x(η) is the unperturbed photon position at time η for an observer at
x0, and xdec = x(ηdec) (If κ = 0 we simply have x(η) = x0 − (η0 −η)n.). The
first term in (2.176) is the one we have discussed in the previous chapter. It
describes the intrinsic inhomogeneities on the surface of last scattering, due to
acoustic oscillations prior to decoupling. Depending on the initial conditions,
it can contribute significantly also on super-horizon scales. This is especially
important in the case of adiabatic initial conditions. As we have seen in
(2.125), in a dust + radiation universe withΩ = 1, adiabatic initial conditions
implyD(r)

g (k, η) = − 20
3 Ψ(k, η) and V (b) = V (r) 
 D

(r)
g for kη 
 1. With Φ =

Ψ the the square bracket of (2.176) therefore gives for adiabatic perturbations

(
∆T (n)
T

)(OSW )

adiabatic
=

1
3
Ψ(ηdec,xdec)

on super-horizon scales. The contribution to δT
T from the last scattering sur-

face on very large scales is called the ‘ordinary Sachs–Wolfe effect’ (OSW).
It has been derived for the first time by Sachs and Wolfe [14] in 1967. For
isocurvature perturbations, the initial condition D(r)

g (k, η) → 0 for η → 0 is
satisfied and the contribution of Dg to the ordinary Sachs–Wolfe effect can
be neglected

(
∆T (n)
T

)(OSW )

isocurvature
= 2Ψ(ηdec,xdec) .

The second term in (2.176) describes the relative motion of emitter and ob-
server. This is the Doppler contribution to the CMB anisotropies. It appears
on the same angular scales as the acoustic term; we call the sum of the
acoustic and Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geom-
etry; the first contribution determines the change in the photon energy due
to the difference of the gravitational potential at the position of emitter and
observer. Together with the part contained in D(r)

g they represent the “or-
dinary” Sachs-Wolfe effect. The integral accounts for red-shift or blue-shift
caused by the time dependence of the gravitational field along the path of
the photon, and represents the so-called integrated Sachs-Wolfe (ISW) effect.
In a Ω = 1, pure dust universe, the Bardeen potentials are constant and
there is no integrated Sachs-Wolfe effect; the blue-shift which the photons
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acquire by falling into a gravitational potential is exactly cancelled by the
redshift induced by climbing out of it. This is no longer true in a universe
with substantial radiation contribution, curvature or a cosmological constant.

The sum of the ordinary Sachs–Wolfe term and the integral is the full
Sachs-Wolfe contribution (SW).

For vector perturbations δ(r) and A vanish and (2.171) leads to

(Ef/Ei)(V ) = (ai/af )[1 − V (m)
j nj |fi +

∫ f

i

σ̇jn
jdλ] . (2.177)

We obtain a Doppler term and a gravitational contribution. For tensor per-
turbations, i.e. gravitational waves, only the gravitational part remains:

(Ef/Ei)(T ) = (ai/af )[1 −
∫ f

i

Ḣljn
lnjdλ] . (2.178)

Equations (2.174), (2.177) and (2.178) are the manifestly gauge invariant re-
sults for the energy shift of photons due to scalar, vector and tensor perturba-
tions. Disregarding again the dipole contribution due to our proper motion,
(2.177,2.178) imply the vector and tensor temperature fluctuations

(
∆T (n)
T

)(V )

= V
(m)
j (ηdec,xdec)nj +

∫ f

i

σ̇j(η,x(η))njdλ (2.179)

(
∆T (n)
T

)(T )

= −
∫ f

i

Ḣlj(η,x(η))nlnjdλ . (2.180)

Note that for models where initial fluctuations have been laid down in the
very early universe, vector perturbations are irrelevant as we have already
pointed out. In this sense (2.179) is here mainly for completeness. However,
in models where perturbations are sourced by some inherently inhomoge-
neous component (e.g. topological defects, see [13]) vector perturbation can
be important.

2.9 Power Spectra

One of the basic tools to compare models of large scale structure having
stochastic initial fluctuations with observations are power spectra. They are
the “harmonic transforms” of the two point correlation functions. If the per-
turbations of the model under consideration are Gaussian (a relatively generic
prediction from inflationary models), then the power spectra contain the full
statistical information of the model.

Let us first consider the power spectrum of dark matter,

PD(k) =
〈∣
∣
∣D(m)

g (k, η0)
∣
∣
∣
2
〉
. (2.181)
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Here 〈 〉 indicates a statistical average, ensemble average, over “initial condi-
tions” in a given model. PD(k) is usually compared with the observed power
spectrum of the galaxy distribution. This is clearly problematic since it is by
no means evident what the ratio of these two spectra should be. This problem
is known under the name of ‘biasing’ and it is very often simply assumed that
the dark matter and galaxy power spectra differ only by a constant factor.
The hope is also that on sufficiently large scales, since the evolution of both,
galaxies and dark matter is governed by gravity, their power spectra should
not differ too much. This hope seems to be reasonably justified [15].

The power spectrum of velocity perturbations satisfies the relation

PV (k) =
〈
|V (k, η0)|2

〉
� H2

0Ω
1.2PD(k)k−2 . (2.182)

For � we have used that |kV |(η0) = Ḋ
(m)
g (η0) ∼ H0Ω

0.6Dg on sub-horizon
scales (see e.g. [16]).

The spectrum we can be both, measured and calculated to the best accu-
racy is the CMB anisotropy power spectrum. It is defined as follows: ∆T/T is
a function of position x0, time η0 and photon direction n. We develop the n–
dependence in terms of spherical harmonics. We will suppress the argument
η0 and often also x0 in the following calculations. All results are for today
(η0) and here (x0). By statistical homogeneity statistical averages over an
ensemble of realisations (expectation values) are supposed to be independent
of position. Furthermore, we assume that the process generating the initial
perturbations is statistically isotropic. Then, the off-diagonal correlators of
the expansion coefficients a�m vanish and we have

∆T

T
(x0,n, η0) =

∑

�,m

a�m(x0)Y�m(n), 〈a�m · a∗
�′m′〉 = δ��′δmm′C�. (2.183)

The C�’s are the CMB power spectrum.
The two point correlation function is related to the C�’s by
〈
∆T

T
(n)
∆T

T
(n′)
〉

n·n′=µ

=
∑

�,�′,m,m′
〈a�m · a∗

�′m′〉Y�m(n)Y ∗
�′m′(n′) =

∑

�

C�

�∑

m=−�

Y�m(n)Y ∗
�m(n′)

︸ ︷︷ ︸
2�+1
4π P�(n·n′)

=
1
4π

∑

�

(2�+ 1)C�P�(µ) , (2.184)

where we have used the addition theorem of spherical harmonics for the last
equality; the P�’s are the Legendre polynomials.

Clearly the alm’s from scalar, vector and tensor perturbations are uncor-
related, 〈

a
(S)
�m a

(V )
�′m′

〉
=
〈
a
(S)
�m a

(T )
�′m′

〉
=
〈
a
(V )
�m a

(T )
�′m′

〉
= 0 . (2.185)
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Since vector perturbations decay, their contributions, the C(V )
� , are neg-

ligible in models where initial perturbations have been laid down very early,
e.g. , after an inflationary period. Tensor perturbations are constant on super-
horizon scales and perform damped oscillations once they enter the horizon.

Let us first discuss in somewhat more detail scalar perturbations. We spe-
cialize to the case κ = 0 for simplicity. We suppose the initial perturbations
to be given by a spectrum,

〈
|Ψ |2
〉
k3 = A2kn−1ηn−1

0 . (2.186)

We multiply by the constant ηn−1
0 , the actual comoving size of the horizon,

in order to keep A dimensionless for all values of n. A then represents the
amplitude of metric perturbations at horizon scale today, k = 1/η0.

On super-horizon scales we have, for adiabatic perturbations:

1
4
D(r)

g = −5
3
Ψ + O((kη)2), V (b) = V (r) = O(kη) . (2.187)

The dominant contribution on super-horizon scales (neglecting the inte-
grated Sachs–Wolfe effect

∫
Φ̇− Ψ̇ ) is then

∆T

T
(x0,n, η0) =

1
3
Ψ(xdec, ηdec). (2.188)

The Fourier transform of (2.188) gives

∆T

T
(k,n, η0) =

1
3
Ψ(k, ηdec) eikn(η0−ηdec) . (2.189)

Using the decomposition

eikn(η0−ηdec) =
∞∑

�=0

(2�+ 1)i�j�(k(η0 − ηdec))P�(k̂ · n) ,

where j� are the spherical Bessel functions, we obtain
〈
∆T

T
(x0,n, η0)

∆T

T
(x0,n′, η0)

〉
(2.190)

=
1
V

∫
d3x0

〈
∆T

T
(x0,n, η0)

∆T

T
(x0,n′, η0)

〉

=
1

(2π)3

∫
d3k

〈
∆T

T
(k,n, η0)

(
∆T

T

)∗
(k,n′, η0)

〉

=
1

(2π)39

∫
d3k
〈
|Ψ |2
〉 ∞∑

�,�′=0

(2�+ 1)(2�′ + 1)i�−�′

·j�(k(η0 − ηdec))j�′(k(η0 − ηdec))P�(k̂ · n) · P�′(k̂ · n′) . (2.191)
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In the second equal sign we have used the unitarity of the Fourier transfor-
mation. Inserting

P�(k̂n) =
4π

2�+ 1

∑

m

Y ∗
�m(k̂)Y�m(n)

P�′(k̂n′) =
4π

2�′ + 1

∑

m′
Y ∗

�′m′(k̂)Y�′m′(n′) ,

integration over the directions dΩk̂ gives δ��′δmm′
∑

m Y
∗
�m(n)Y�m(n′).

Using as well
∑

m Y
∗
�m(n)Y�m(n′) = 2�+1

4π P�(µ), where µ = n · n′, we find
〈
∆T

T
(x0,n, η0)

∆T

T
(x0,n′, η0)

〉

nn′=µ

=

∑

�

2�+ 1
4π

P�(µ)
2
π

∫
dk

k

〈
1
9
|Ψ |2
〉
k3j2� (k(η0 − ηdec)). (2.192)

Comparing this equation with (2.184) we obtain for adiabatic perturba-
tions on scales 2 ≤ � 
 χ(η0 − ηdec)/ηdec ∼ 100

C
(SW )
� � C(OSW )

� � 2
π

∫ ∞

0

dk

k

〈∣
∣
∣
∣
1
3
Ψ

∣
∣
∣
∣

2
〉

k3j2� (k (η0 − ηdec)) . (2.193)

If Ψ is a pure power law as in (2.186) and we set k(η0 − ηdec) ∼ kη0,
the integral (2.193) can be performed analytically. For the ansatz (2.186) one
finds

C
(SW )
� =

A2

9
Γ (3 − n)Γ (�− 1

2 + n
2 )

23−nΓ 2(2 − n
2 )Γ (�+ 5

2 − n
2 )

for − 3 < n < 3 . (2.194)

Of special interest is the scale invariant or Harrison–Zel’dovich spectrum,
n = 1 (see Sect. 2.7). It leads to

�(�+ 1)C(SW )
� = const. �

〈(
∆T

T
(ϑ�)
)2
〉

, ϑ� ≡ π/� . (2.195)

This is precisely (within the accuracy of the experiment) the behavior ob-
served by the DMR experiment aboard the satellite COBE [17], as shown in
Fig. 2.1.

Inflationary models predict very generically a HZ spectrum (up to small
corrections). The DMR discovery has therefore been regarded as a great
success, if not a proof, of inflation. There are other models like topological
defects [18, 19, 20] or certain string cosmology models [21] which also predict
scale–invariant, i.e. Harrison Zel’dovich spectra of fluctuations. These models
do however not belong to the class investigated here, since in these models
perturbations are induced by seeds which evolve non–linearly in time.
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Fig. 2.1. A COBE normalized sample adiabatic (solid line) and isocurvature
(dashed line) CMB anisotropy spectrum, �(� + 1)C�, are shown on the top panel.
The quantity shown in the bottom panel is the ratio of temperature fluctuations
for fixed value of A (From Kanazawa et al. [22]).

For isocurvature perturbations, the main contribution on large scales
comes from the integrated Sachs–Wolfe effect and (2.193) is replaced by

C
(ISW )
� � 8

π

∫
dk

k
k3

〈∣
∣
∣
∣

∫ η0

ηdec

Ψ̇(k, η)j2� (k(η0 − η))dη
∣
∣
∣
∣

2
〉

. (2.196)

Inside the horizon Ψ is roughly constant (matter dominated). Using the
ansatz (2.186) for Ψ inside the horizon and setting the integral in (2.196)
∼ 2Ψ(k, η = 1/k)j2� (kη0), we obtain again (2.194), but with A2/9 replaced
by 4A2. For a fixed amplitude A of perturbations, the Sachs–Wolfe tempera-
ture anisotropies coming from isocurvature perturbations are therefore about
a factor of 6 times larger than those coming from adiabatic perturbations.

On smaller scales, � >∼ 100 the contribution to ∆T/T is usually dominated
by acoustic oscillations, the first two terms in (2.176). Instead of (2.196) we
then obtain

C
(AC)
� �
2
π

∫ ∞

0

dk

k
k3

〈∣
∣
∣
∣
1
4
D(r)(k, ηdec)j�(kη0) + V (r)(k, ηdec)j′�(kη0)

∣
∣
∣
∣

2
〉

(2.197)
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To remove the SW contribution from D
(r)
g we have simply replaced it

by D(r) which is much smaller than Ψ on super-horizon scales and therefore
does not contribute to the SW terms. On sub-horizon scales D(r) � D

(r)
g

and V (r) are oscillating like sine or cosine waves depending on the initial
conditions. Correspondingly the C(AC)

� will show peaks and minima. On very
small scales they are damped by the photon diffusion which takes place during
the recombination process (see A. Challinor’s contribution).

For gravitational waves (tensor fluctuations), a formula analogous to
(2.194) can be derived,

C
(T )
� =

2
π

∫
dkk2

〈∣
∣
∣
∣

∫ η0

ηdec

dηḢ(η, k)
j�(k(η0 − η))
(k(η0 − η))2

∣
∣
∣
∣

2
〉

(�+ 2)!
(�− 2)!

. (2.198)

To a very crude approximation we may assume Ḣ = 0 on super-horizon
scales and

∫
dηḢj�(k(η0 − η)) ∼ H(η = 1/k)j�(kη0). For a pure power law,

k3
〈
|H(k, η = 1/k)|2

〉
= A2

T k
nT η−nT

0 , (2.199)

one obtains

C
(T )
� � 2

π

(�+ 2)!
(�− 2)!

A2
T

∫
dx

x
xnT

j2� (x)
x4

=
(�+ 2)!
(�− 2)!

A2
T

Γ (6 − nT )Γ (�− 2 + nT

2 )
26−nT Γ 2( 7

2 − nT )Γ (�+ 4 − nT

2 )
. (2.200)

For a scale invariant spectrum (nT = 0) this results in

�(�+ 1)C(T )
� � �(�+ 1)

(�+ 3)(�− 2)
A2

T

8
15π

. (2.201)

The singularity at � = 2 in this crude approximation is not real, but there is
some enhancement of �(�+ 1)C(T )

� at � ∼ 2 (see Fig. 2.2).
Since tensor perturbations decay on sub-horizon scales, � >∼ 60, they are

not very sensitive to cosmological parameters.
Again, inflationary models (and topological defects) predict a scale in-

variant spectrum of tensor fluctuations (nT ∼ 0).
On very small angular scales, � >∼ 800, fluctuations are damped by col-

lisional damping (Silk damping). This effect has to be discussed with the
Boltzmann equation for photons which is presented in detail by A. Challinor
in his contribution to this volume.
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Fig. 2.2. Adiabatic scalar and tensor CMB anisotropy spectra are shown (top
panels). The bottom panels show the corresponding polarization spectra (see A.
Challinor’s contribution). (From [23]).

2.10 Some Remarks on Perturbation Theory
in Braneworlds

Since there has been so much interest in them recently, let me finally make
some remarks on perturbation theory of five dimensional braneworlds. I shall
just present some relatively simple aspects without derivation. A thorough
discussion of braneworlds is given by R. Maartens in this volume. Different
aspects of the perturbation theory of braneworlds can be found in the growing
literature on the subject [24, 25].

The bulk background metric of a five dimensional braneworld has three
dimensional spatial slices which are homogeneous and isotropic, hence spaces
of constant curvature. Its line element is therefore of the form

ds2 = −n2(t, y)dt2 + a2(t, y)γijdx
idxj + b2(t, y)dy2 = gABdx

AdxB . (2.202)

Perturbations of such a spacetime can be decomposed into scalar, vector and
tensor modes with respect to the three dimensional spatial slices of constant
curvature. One can always choose the so-called generalized longitudinal
gauge such that the perturbations of the metric are given as follows:

ds2 = −n2(1 + 2Ψ)dt2 + a2 [(1 − 2Φ)γij + 2Hij ] dxidxj + b2(1 + 2C)dy2

−2nbBdtdy − 2naΣidx
idt+ ab2Eidx

idy . (2.203)
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Here Σi and Ei are divergence free vector fields, vector perturbations and
Hij is a divergence free traceless symmetric tensor, the tensor perturbation,
while Ψ,Φ,C and B are four scalar perturbations.

It can be shown that this choice determines the gauge completely. One
can actually define gauge invariant perturbation variables which reduce to
the ones above in the generalized longitudinal gauge [25]. Writing down the
perturbed Einstein equations for these variables in the most general case is
quite involved. These equations can be found in [25], but I don’t want to
repeat them here. I just discuss their general structure in the case of an
empty bulk. It is clear that Ψ and Φ correspond to the Bardeen potentials of
four dimensional cosmology, Σi is the four dimensional vector perturbation
and Hij represents four dimensional gravitational waves. C and B as well as
Ei are new degrees of freedom which are not present in the four dimensional
theory.

If we assume vanishing perturbations of the bulk energy momentum tensor
e.g. if the bulk is anti de Sitter like in the Randall Sundrum model [26]
called RSII in what follows (see R. Maartens’ contribution), the perturbation
equations reduce to

�5(Ψ + Φ) = 0 (2.204)
�5Σi = 0 (2.205)

�5Hij = 0 , (2.206)

and all the other perturbation variables are determined by constraint equa-
tions. Here �5 is the five dimensional d’Alembertian with respect to the
background metric (2.202). This structure of the equations is to be expected:
Gravitational waves in d spacetime dimensions are a spin 2 field with respect
to the group of rotations SO(d − 2) since they are massless (see e.g. [27]).
For d = 5, d − 2 = 3 they therefore have 5 degrees of freedom. These cor-
respond exactly to the one scalar (2.204), two vector (2.205) and two tensor
(2.206) degrees of freedom with respect to the 3-dimensional slices of constant
curvature. These free massless degrees of freedom obey the wave equations
above.

The perturbed Israel junction conditions (see R. Maartens’ contribution)
then determine boundary conditions for the behaviour of the perturbations
at the brane position(s).

As an example, I write down the vector and tensor perturbation equations
and their bulk solutions for the RSII model which has only one brane. There
the bulk is a five dimensional anti-de Sitter spacetime, and we can choose
coordinates so that the background metric has the form

ds2 =
(
L

y

)2 [−dt2 + δijdxidxj + dy2
]

(2.207)

and
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�5 = −∂2
t + � + ∂2

y − 3
y
∂y , (2.208)

where � denotes the three dimensional spatial Laplacian. For an arbitrary
mode which satisfies this wave equation we make the ansatz

φ(t,x, y) = exp(i(k · x − ωt))φ(ω,k, y) .
We then obtain a Bessel differential equation for φ(ω,k, y) with general so-
lution

φ = A(ω,k)(ym)2J2(my) +B(ω,k)(ym)2Y2(my) , m2 = ω2 − k2 ,

= φA + φB . (2.209)

These modes are normalizable in the sense that
∫ ∞

yb

|φ|2√−gdy < ∞ .

Here yb > 0 is the brane position. The Israel junction condition for the vector
and tensor modes for RSII become

−∂yHij(y = yb) = κ2
5Πij(yb) (2.210)

−Σi(yb) = κ2
5Πi(yb) , (2.211)

where Πij respectively Πi are the tensor respectively vector contribution
to the anisotropic stresses on the brane. If the latter vanish, the junction
condition simple requires

B(ω,k) = A(ω,k)J2(myb)/Y2(myb) .

This result has been derived for the tensor mode by Randall and Sun-
drum [26]. For scalar perturbations the situation is somewhat more com-
plicated since there is an additional degree of freedom which is the perturbed
position of the brane, yb → yb + ε. It is rather subtle to take this brane bend-
ing correctly into account. A very interesting work showing that this effect
is actually most relevant to obtain the correct Newtonian limit in the RSII
model can be found in [28].

Let us also briefly discuss the zero–mode. From the brane point of view,
the modes discussed here represent waves (particles) which couple only to the
energy momentum tensor of the brane and which obey a dispersion relation
ω2 − k2 = m2, hence the parameter m of the solutions (2.211) is their mass.
In the limit m→ 0 the solutions turn into power laws in y,

φ0(y) = Ay4 +B . (2.212)

Of these modes, for tensor and vector perturbations, the B mode is normaliz-
able. For scalar perturbations the situation is more complicated. For a mode
to be ‘normalizable’ we want all the perturbations to be normalizable,



2 Cosmological Perturbation Theory 67
∫ ∞

yb

|φ|2√−gdy < ∞ for φ = Φ , Ψ , C and B .

But from the constraints one obtains for m = 0 C ∝ y2 which is not nor-
malizable. This mode diverges logarithmically and only converges due to the
oscillations of the Bessel functions if m 
= 0.

If all the five graviton zero–modes are normalizable, like in all compact
braneworlds, e.g. in models with two branes, the vector and scalar mode lead
to three additional degrees of freedom (to the usual two four-dimensional
graviton modes) which couple via the junction conditions to the brane energy
momentum tensor and spoil the phenomenology of the model. The resulting
four dimensional gravity is not Einstein gravity but Brans–Dicke or even more
complicated. As an example, in [29] the contribution from the scalar zero–
mode (2.204) to the gravity wave emission from a binary pulsar is calculated
and shown to be in contradiction with observations. This problem is well-
known from Kaluza Klein theories, it is the so called moduli problem. The
way out of it is usually to render the modes massive. There are different
suggestions how this can be achieved for the scalar mode. One possibility
is the so called Goldberger–Wise mechanism [30] which shows that under
certain circumstances a bulk scalar field can do the job. But certainly, a
physically acceptable braneworld is defined only together with its mechanism
how to get rid of such unwanted modes (see also [31]).

The advantage of the RSII model is that the scalar gravity wave zero–
mode is not normalizable in this model and therefore it does not contribute.
This very promising property of the RSII model has let to its popularity. It
seems to induce the correct four dimensional Einstein gravity on the brane,
in the cosmological context this property is still maintained at sufficiently
low energies.

2.11 Conclusions

In this contribution I have given an introduction to cosmological perturba-
tion theory. Perturbation theory is an important tool especially to calculate
CMB anisotropies and polarisation since these are very small and can be
determined reliably within linear cosmological perturbation theory. To deter-
mine the evolution of the cosmic matter density, linear perturbation theory
has to be complemented with the theory of weakly non-linear Newtonian
gravity and with N-body simulations. To finally understand the formation of
galaxies, non-gravitational highly non-linear physics, like heating and cooling
mechanisms, dissipation, nuclear reactions etc. have to be taken into account.
This very difficult subject is still in its infancy.

To make progress in our understanding of braneworlds, linear perturba-
tion theory can also be most helpful. We can use it to determine e.g. the
propagating modes of the gravitational field on the brane, light deflection
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and redshift in weak gravitational fields and the Newtonian limit. The condi-
tion that linear perturbations on the brane at low energy and large distances
reduce to those resulting from Einstein gravity is non–trivial and has, to my
knowledge, not yet been fully explored to limit braneworld models.
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3 Cosmic Microwave Background Anisotropies

Anthony Challinor
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Abstract. The linear anisotropies in the temperature of the cosmic microwave
background (CMB) radiation and its polarization provide a clean picture of fluctu-
ations in the universe some 370 kyr after the big bang. Simple physics connects these
fluctuations with those present in the ultra-high-energy universe, and this makes
the CMB anisotropies a powerful tool for constraining the fundamental physics
that was responsible for the generation of structure. Late-time effects also leave
their mark, making the CMB temperature and polarization useful probes of dark
energy and the astrophysics of reionization. In this review we discuss the simple
physics that processes primordial perturbations into the linear temperature and
polarization anisotropies. We also describe the role of the CMB in constraining
cosmological parameters, and review some of the highlights of the science extracted
from recent observations and the implications of this for fundamental physics.

3.1 Introduction

The cosmic microwave background (CMB) radiation has played an essential
role in shaping our current understanding of the large-scale properties of the
universe. The discovery of this radiation in 1965 by Penzias and Wilson [1],
and its subsequent interpretation as the relic radiation from a hot, dense
phase of the universe [2] put the hot big bang model on a firm observational
footing. The prediction of angular variations in the temperature of the radia-
tion, due to the propagation of photons through an inhomogeneous universe,
followed shortly after [3], but it was not until 1992 that these were finally de-
tected by the Differential Microwave Radiometers (DMR) experiment on the
Cosmic Background Explorer (COBE) satellite [4]. The fractional tempera-
ture anisotropies are at the level of 10−5, consistent with structure formation
in cold dark matter (CDM) models [5, 6], but much smaller than earlier pre-
dictions for baryon-dominated universes [3, 7]. Another experiment on COBE,
the Far InfraRed Absolute Spectrophotometer (FIRAS), spectacularly con-
firmed the black-body spectrum of the CMB and determined the (isotropic)
temperature to be 2.725 K [8, 9].

In the period since COBE, many experiments have mapped the CMB
anisotropies on a range of angular scales from degrees to arcminutes (see [10]
for a recent review), culminating in the first-year release of all-sky data from
the Wilkinson Microwave Anisotropy Probe (WMAP) satellite in February

A. Challinor, Cosmic Microwave Background Anisotropies, Lect. Notes Phys. 653, 71–103 (2005)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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2003 [11]. The observed modulation in the amplitude of the anisotropies with
angular scale is fully consistent with predictions based on coherent, acous-
tic oscillations [7], derived from gravitational instability of initially adiabatic
density perturbations in a universe with nearly-flat spatial sections. The am-
plitude and scale of these acoustic features has allowed many of the key
cosmological parameters to be determined with unprecedented precision [12],
and a strong concordance with other cosmological probes has emerged.

In this review article we describe the essential physics of the temperature
anisotropies of the CMB, and its recently-detected polarization [13], and dis-
cuss how these are used to constrain cosmological models. For reviews that
are similar in spirit, but from the pre-WMAP era see e.g. [14, 15]. We begin
in Sect. 3.2 with the fundamentals of CMB physics, presenting the kinetic
theory of the CMB in an inhomogeneous universe, and the various physical
mechanisms that process initial fluctuations in the distribution of matter and
spacetime geometry into temperature anisotropies. Sect. 3.3 discusses the ef-
fect of cosmological parameters on the power spectrum of the temperature
anisotropies, and the limits to parameter determination from the CMB alone.
The physics of CMB polarization is reviewed in Sect. 3.4, and the additional
information that polarization brings over temperature anisotropies alone is
considered. Finally, in Sect. 3.5 we describe some of the scientific highlights
that have emerged from recent CMB observations, including the detection of
CMB polarization, implications for inflation, and the direct signature of dark
energy through correlations between the large-scale anisotropies and tracers
of the mass distribution in the local universe. Throughout, we illustrate our
discussion with computations based on ΛCDM cosmologies, with baryon den-
sity Ωbh

2 = 0.023 and cold dark matter density Ωch
2 = 0.111. For flat models

we take the dark-energy density parameter to be ΩΛ = 0.75 giving a Hubble
parameter H0 = 73 km s−1 Mpc−1. We adopt units with c = 1 throughout,
and use a spacetime metric signature + − −−.

3.2 Fundamentals of CMB Physics

In this section we aim to give a reasonably self-contained review of the es-
sential elements of CMB physics.

3.2.1 Thermal History and Recombination

The high temperature of the early universe maintained a low equilibrium
fraction of neutral atoms, and a correspondingly high number density of
free electrons. Coulomb scattering between the ions and electrons kept them
in local kinetic equilibrium, and Thomson scattering of photons tended to
maintain the isotropy of the CMB in the baryon rest frame. As the universe
expanded and cooled, the dominant element hydrogen started to recombine
when the temperature fell below ∼ 4000 K – a factor of 40 lower than might
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be anticipated from the 13.6-eV inoization potential of hydrogen, due to the
large ratio of the number of photons to baryons. The details of recombina-
tion are complicated since the processes that give rise to net recombination
occur too slowly to maintain chemical equilibrium between the electrons,
protons and atoms during the later stages of recombination [16, 17] (see [18]
for recent refinements). The most important quantity for CMB anisotropy
formation is the visibility function – the probability that a photon last scat-
tered as a function of time. The visibility function peaks around ∼ 370 kyr
after the big bang, and has a width ∼ 115 kyr, a small fraction of the current
age ∼ 13.5 Gyr [12]. After recombination, photons travelled mostly unim-
peded through the inhomogeneous universe, imprinting fluctuations in the
radiation temperature, the gravitational potentials, and the bulk velocity of
the radiation where they last scattered, as the temperature anisotropies that
we observe today. A small fraction of CMB photons (current results from
CMB polarization measurements [19] indicate around 20 per cent; see also
Sect. 3.5.1) underwent further scattering once the universe reionized due to
to the ionizing flux from the first non-linear structures (see also R. Sander’s
review).

3.2.2 Statistics of CMB Anisotropies

The spectrum of the CMB brightness along any direction n̂ is very nearly
thermal with a temperature T (n̂). The temperature depends only weakly on
direction, with fluctuations ∆T (n̂) at the level of 10−5 of the average tem-
perature T = 2.725 K. It is convenient to expand the temperature fluctuation
in spherical harmonics,

∆T (n̂)/T =
∑

lm

almYlm(n̂) , (3.1)

with a∗
lm = (−1)mal−m since the temperature is a real field. The sum in

(3.1) runs over l ≥ 1, but the dipole (l = 1) is usually removed explicitly
when analysing data since it depends linearly on the velocity of the observer.
Multipoles at l encode spatial information with characteristic angular scale
∼ π/l (see R. Durrer’s contribution).

The statistical properties of the fluctuations in a perturbed cosmology can
be expected to respect the symmetries of the background model. In the case
of Robertson–Walker models, the rotational symmetry of the background
ensures that the multipoles alm are uncorrelated for different values of l
and m:

〈alma
∗
l′m′〉 = Clδll′δmm′ , (3.2)

which defines the power spectrum Cl. The angle brackets in this equation
denote the average over an ensemble of realisations of the fluctuations. The
simplest models of inflation predict that the fluctuations should also be Gaus-
sian at early times, and this is preserved by linear evolution of the small fluc-
tuations. If Gaussian, the alms are also independent, and the power spectrum
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Fig. 3.1. Compilation of CMB anisotropy measurements (as of February 2004)
from WMAP (black filled circles), the Very Small Array (VSA [20]; shaded circles
representing two interleaving binning schemes), the Cosmic Background Imager
(CBI [21, 22]; open and filled squares for two different binning schemes) and the
Arcminute Cosmology Bolometer Array Receiver (ACBAR [23]; triangles). (Figure
reproduced, with permission, from [20].)

provides the complete statistical description of the temperature anisotropies.
For this reason, measuring the anisotropy power spectrum has, so far, been
the main goal of observational CMB research. Temperature anisotropies have
now been detected up to l of a few thousand; a recent compilation of current
data as of February 2004 is given in Fig. 3.1.

The correlation between the temperature anisotropies along two directions
evaluates to

〈∆T (n̂1)∆T (n̂2)〉 = T 2
∑

l

2l + 1
4π

ClPl(cos θ) , (3.3)

which depends only on the angular separation θ as required by rotational
invariance. Here, Pl(x) are the Legendre polynomials. The mean-square tem-
perature anisotropy is

〈∆T 2〉 = T 2
∑

l

2l + 1
4π

Cl ≈ T 2
∫
l(l + 1)

2π
Cl d ln l , (3.4)

so that the quantity l(l+1)Cl/2π, which is conventionally plotted, is approx-
imately the power per decade in l of the temperature anisotropies.

3.2.3 Kinetic Theory

The CMB photons can be described by a one-particle distribution function
f(xa, pa) that is a function of the spacetime position xa and four-momentum
pa of the photon. It is defined such that the number of photons contained
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in a proper three-volume element d3x and with three-momentum in d3p is
fd3xd3p. The phase-space volume element d3xd3p is Lorentz-invariant and
is conserved along the photon path through phase space (see, e.g. [24]). It
follows that f is also frame-invariant, and is conserved in the absence of
scattering. To calculate the anisotropies in the CMB temperature, we must
evolve the photon distribution function in the perturbed universe.

To avoid over-complicating our discussion, we shall only consider spatially-
flat models here, and, for the moment, ignore the effects of polarization. For a
more complete discussion, including these complications, see e.g. [25, 26]. Cur-
vature mostly affects the CMB through the geometrical projection of linear
scales at last scattering to angular scales on the sky today, but has a negligible
impact on pre-recombination physics and hence much of the discussion in this
section. The subject of cosmological perturbation theory is rich in method-
ology, but, for pedagogical reasons, we adopt here the most straightforward
approach which is to work directly with the metric perturbations. This is also
the most prevalent in the CMB literature. The (1+3)-covariant approach [27]
is a well-developed alternative that is arguably more physically-transparent
than metric-based techniques. It has also been applied extensively in the con-
text of CMB physics [26, 28, 29, 30, 31, 32]. The majority of our discussion will
be of scalar perturbations, where all perturbed three-tensors can be derived
from the spatial derivatives of scalar functions, although we discuss tensor
perturbations briefly in Sect. 3.2.5.

For scalar perturbations in spatially-flat models we can choose a gauge
such that the spacetime metric is [33]

ds2 = a2(η)[(1 + 2ψ)dη2 − (1 − 2φ)dx2] , (3.5)

where η is conformal time (related to proper time t by dt = adη), a is the
scale factor in the background model and, now, x is comoving position. This
gauge, known as the conformal Newtonian or longitudinal gauge, has the
property that the congruence of worldlines with constant x have zero shear.
The two scalar potentials φ and ψ constitute the scalar perturbation to the
metric, with φ playing a similar role to the Newtonian gravitational potential.
In the absence of anisotropic stress, φ and ψ are equal. We parameterise the
photon four-momentum with its energy ε/a and direction e (with e2 = 1),
as seen by an observer at constant x, so that

pµ = a−2ε[1 − ψ, (1 + φ)e] . (3.6)

Free photons move on the geodesics of the perturbed metric, pµ∇µp
ν = 0, so

the energy and direction evolve as

dε/dη = −εdψ/dη + ε(φ̇+ ψ̇) (3.7)
de/dη = −∇⊥(φ+ ψ) , (3.8)

where dots denote ∂/∂η and ∇⊥ is the three-gradient projected perpendicular
to e. We see immediately that ε is conserved in the absence of perturbations,
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so that the energy redshifts in proportion to the scale factor in the background
model. The change in direction of the photon due to the projected gradient
of the potentials in the perturbed universe gives rise to gravitational lensing
(see e.g. [34] for a review).

The dominant scattering mechanism to affect CMB anisotropies is clas-
sical Thomson scattering off free electrons, since around recombination the
average photon energy is small compared to the rest mass of the electron.
Furthermore, the thermal distribution of electron velocities can be ignored
due to the low temperature. The evolution of the photon distribution function
in the presence of Thomson scattering is

df
dη

= −a(1 + ψ)neσTf +
3

16π
a(1 + ψ)neσT

∫
f(ε, e′)[(1 + (e · e′)2] de′

− aneσTe · vbε
∂f

∂ε
, (3.9)

where ne is the electron (proper) number density, σT is the Thomson cross
section, and the electron peculiar velocity is vb = dx/dη. The derivative on
the left of (3.9) is along the photon path in phase space:

df
dη

=
∂f

∂η
+ e · ∇f + (φ̇− e · ∇ψ)ε

∂f

∂ε
(3.10)

to first order, where we have used (3.7) and (3.8) and the fact that the
anisotropies of f are first order. The first term on the right of (3.9) describes
scattering out of the beam, and the second scattering into the beam. The
final term arises from the out-scattering of the additional dipole moment in
the distribution function seen by the electrons due to the Doppler effect. In
the background model f is isotropic and the net scattering term vanishes, so
that f is a function of the conserved ε only: f = f̄(ε). Thermal equilibrium
ensures that f̄ is a Planck function.

The fluctuations in the photon distribution function inherit an energy
dependence ε∂f̄/∂ε from the source terms in the Boltzmann equation (3.9).
Separating out the background contribution to f , and its energy dependence,
we can write

f(η,x, ε,e) = f̄(ε)[1 − Θ(η,x, e)d ln f̄/d ln ε], (3.11)

so that the CMB spectrum is Planckian but with a direction-dependent tem-
perature ∆T/T = Θ. Using the Lorentz invariance of f , it is not difficult to
show that the quadrupole and higher moments of Θ are gauge-invariant. If
we now substitute for f in (3.9), we find the Boltzmann equation for Θ:

∂(Θ + ψ)
∂η

+ e · ∇(Θ + ψ) = −aneσTΘ +
3

16π
aneσT

∫
Θ(e′)[(1 + (e · e′)2] de′

+ aneσTe · vb + φ̇+ ψ̇ . (3.12)
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The formal solution of this equation is an integral along the line of sight
n̂ = −e,

[Θ(n̂) + ψ]R = e−τ [Θ(n̂) + ψ)]E +
∫ R

E

e−τS dη , (3.13)

where R is the reception event, E is the emission event, and τ ≡ ∫ aneσT dη is
the optical depth back from R. The source term S is given by the right-hand
side of (3.12), but with Θ replaced by −ψ in the first term.

We gain useful insight into the physics of anisotropy formation by ap-
proximating the last scattering surface as sharp (which is harmless on large
angular scales), and ignoring the quadrupole CMB anisotropy at last scat-
tering. In this case (3.13) reduces to

[Θ(n̂) + ψ]R = Θ0|E + ψ|E − n̂ · vb|E +
∫ R

E

(ψ̇ + φ̇) dη , (3.14)

where Θ0 is the isotropic part of Θ, and is proportional to the fluctuation in
the photon energy density. The various terms in this equation have a simple
physical interpretation. The temperature received along direction n̂ is the
isotropic temperature of the CMB at the last scattering event on the line
of sight, Θ0, corrected for the gravitational redshift due to the difference in
potential between E and R, and the Doppler shift e · vb|E resulting from
scattering off moving electrons. Finally, there is an additional gravitational
redshift contribution arising from evolution of the gravitational potentials [3].

Machinery for an Accurate Calculation

An accurate calculation of the CMB anisotropy on all scales where linear
perturbation theory (see also R. Durrer’s contribution) is valid requires a full
numerical solution of the Boltzmann equation. The starting point is to expand
Θ(θ,x, e) in appropriate basis functions. For scalar perturbations, these are
the contraction of the (irreducible) trace-free tensor products e〈i1 . . . eil〉 (the
angle brackets denoting the trace-free part) with trace-free (spatial) tensors
derived from derivatives of scalars [28, 31, 35]. Fourier expanding the scalar
functions, we end up forming contractions between e〈i1 . . . eil〉 and k̂〈i1 . . . k̂il〉
where k̂ is the wavevector. These contractions reduce to Legendre polynomi-
als of k̂ · e, and so the normal-mode expansion of Θ for scalar perturbations
takes the form

Θ(η,x, e) =
∑

l≥0

∫
d3k

(2π)3/2 (−i)lΘl(η,k)Pl(k̂ · e)eik·x . (3.15)

It is straightforward to show that the implied azimuthal symmetry about
the wavevector is consistent with the Boltzmann equation (3.12). Inserting
the expansion of Θ into this equation gives the Boltzmann hierarchy for the
moments Θl:
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Θ̇l + k
(
l + 1
2l + 3

Θl+1 − l

2l − 1
Θl−1

)
= aneσT

[
(δl0 − 1)Θl − δl1vb +

1
10

Θ2

]

+ δl0φ̇+ δl1kψ , (3.16)

where vb =
∫

ik̂vb(k)eik·x d3k/(2π)3/2, and φ and ψ are the Fourier trans-
forms of the potentials. This system of ordinary differential equations can be
integrated directly with the linearised Einstein equations for the metric per-
turbations, and the fluid equations governing perturbations in the other mat-
ter components, as in the publically-available COSMICS code [33]. Careful
treatment of the truncation of the hierarchy is necessary to avoid unphysical
reflection of power back down through the moments.

A faster way to solve the Boltzmann equation numerically is to use the
line-of-sight solution (3.13), as in the widely-used CMBFAST code [36] and
its parallelised derivative CAMB [37]. Inserting the expansion (3.15) gives
the integral solution to the hierarchy

Θl|η0 = (2l + 1)
∫ η0

0
dη e−τ

[
(φ̇+ ψ̇)jl(k∆η)

− τ̇(Θ0 + ψ)jl(k∆η) + τ̇ vbj′l(k∆η) − 1
20
τ̇Θ2(3j′′l + jl)(k∆η)

]
(3.17)

where ∆η ≡ η0 − η, jl is a spherical Bessel function, and primes denote
derivatives with respect to the argument. Using the integral solution, it is
only necessary to evolve the Boltzmann hierarchy to modest l to compute ac-
curately the source terms that appear in the integrand. The integral approach
is thus significantly faster than a direct solution of the hierarchy.

The spherical multipoles alm of the temperature anisotropy can be ex-
tracted from (3.15) as

alm = 4πil
∫

d3k

(2π)3/2

Θl

2l + 1
Y ∗

lm(k̂)eik·x . (3.18)

Statistical homogeneity and isotropy imply that the equal-time correlator

〈Θl(η,k)Θ∗
l (η,k

′)〉 =
2π2

k3 Θ2
l (η, k)δ(k − k′) , (3.19)

so forming the correlation 〈alma
∗
l′m′〉 gives the power spectrum

Cl =
4π

(2l + 1)2

∫
Θ2

l (k) d ln k . (3.20)

If we consider (pure) perturbation modes characterised by a single indepen-
dent stochastic amplitude per Fourier mode (such as the comoving curvature
for the adiabatic mode; (see Sect. 3.2.4), the power Θ2

l (k) is proportional
to the power spectrum of that amplitude. The spherical Bessel functions in
(3.17) peak sharply at k∆η = l for large l, so that multipoles l are mainly
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probing spatial structure with wavenumber k ∼ l/∆η at last scattering. The
oscillatory tails of the Bessel functions mean that some power from a given k
does also enter larger scale anisotropies. Physically, this arises from Fourier
modes that are not aligned with their wavevector perpendicular to the line of
sight. As we discuss in the next section, the tightly-coupled system of photons
and baryons undergoes acoustic oscillations prior to recombination on scales
inside the sound horizon. For the pure perturbation modes, all modes with
a given wavenumber reach the maxima or minima of their oscillation at the
same time, irrespective of the direction of k, and so we expect modulation
in the Cls on sub-degree scales. The first three of these acoustic peaks have
now been measured definitively; see Fig. 3.1.

3.2.4 Photon–Baryon Dynamics

Prior to recombination, the mean free path of CMB photons is ∼ 4.9 ×
104(Ωbh

2)−1(1+z)−2 Mpc. On comoving scales below this length the photons
and baryons behave as a tightly-coupled fluid, with the CMB almost isotropic
in the baryon frame. In this limit, only the l = 0 and l = 1 moments of the
distribution function are significant.

The stress-energy tensor of the photons is given in terms of the distribu-
tion function by

Tµν = a−2
∫
f(η,x, ε,e)pµpνεdεde , (3.21)

so that the Fourier modes of the fractional over-density of the photons are
δγ = 4Θ0 and the photon (bulk) velocity vγ = −Θ1. The anisotropic stress is
proportional to Θ2. In terms of these variables, the first two moment equa-
tions of the Boltzmann hierarchy become

δ̇γ − 4
3
kvγ − 4φ̇ = 0 (3.22)

v̇γ +
1
4
kδγ − 2

5
kΘ2 + kψ = τ̇(vγ − vb) . (3.23)

Here, the derivative of the optical depth τ̇ = −aneσT (and so is negative). The
momentum exchange between the photons and baryons due to the drag term
in (3.23) gives rise to a similar term in the Euler equation for the baryons:

v̇b + Hvb + kψ = R−1τ̇(vb − vγ) , (3.24)

where we have ignored baryon pressure. The ratio of the baryon energy den-
sity to the photon enthalpy is R ≡ 3ρb/4ργ and is proportional to the scale
factor a, and H ≡ ȧ/a is the conformal Hubble parameter.

In the tightly-coupled limit |τ̇−1| 
 k−1 and H−1. In this limit, we can
treat the ratios of the mean-free path to the wavelength and the Hubble time
as small perturbative parameters. Equations (3.23) and (3.24) then imply
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that vγ = vb to first order in the small quantities k/|τ̇ | and H/|τ̇ |. Comparing
the continuity equation for the baryons,

δ̇b − kvb − 3φ̇ = 0 , (3.25)

with that for the photons, we see that δ̇γ = 4δ̇b/3, so the evolution of the
photon–baryon fluid is adiabatic, preserving the local ratio of the number
densities of photons to baryons. Combining (3.23) and (3.24) to eliminate
the scattering terms, and then using vγ = vb, we find the evolution of the
photon velocity to leading order in tight coupling:

v̇γ +
R

1 +R
Hvγ +

1
4(1 +R)

kδγ + kψ = 0 . (3.26)

The l > 1 moments of the photon distribution function arise from the balance
between isotropisation by scattering and their generation by photons free
streaming over a mean free path; these moments are suppressed by factors
(k/|τ̇ |)l−1. In particular, during tight coupling Θ2 ≈ (20/27)kτ̇−1vγ ignoring
polarization. (The factor 20/27 rises to 8/9 if we correct for polarization [38].)

Combining (3.26) with the photon continuity equation (3.22) shows that
the tightly-coupled dynamics of δγ is that of a damped, simple-harmonic
oscillator driven by gravity [39]:

δ̈γ +
HR

1 +R
δ̇γ +

1
3(1 +R)

k2δγ = 4φ̈+
4HR
1 +R

φ̇− 4
3
k2ψ . (3.27)

The damping term arises from the redshifting of the baryon momentum in an
expanding universe, while photon pressure provides the restoring force which
is weakly suppressed by the additional inertia of the baryons. The WKB
solutions to the homogeneous equation are

δγ = (1 +R)−1/4 cos krs , and δγ = (1 +R)−1/4 cos krs , (3.28)

where the sound horizon rs ≡ ∫ η

0 dη′/
√

3(1 +R). Note also that for static
potentials, and ignoring the variation of R with time, the mid-point of the
oscillation of δγ is shifted to −4(1+R)ψ. The dependence of this shift on the
baryon density produces a baryon-dependent modulation of the height of the
acoustic peak in the temperature anisotropy power spectrum; see Sect. 3.3.

The driving term in (3.27) depends on the evolution of the gravitational
potentials. If we ignore anisotropic stress, φ and ψ are equal, and their Fourier
modes evolve as

φ̈+ 3H
(

1 +
ṗ

ρ̇

)
φ̇+

[
2Ḣ +

(
1 + 3

ṗ

ρ̇

)
H2
]
φ +

ṗ

ρ̇
k2φ

=
1
2
κa2
(
δp− ṗ

ρ̇
δρ

)
(3.29)

in a flat universe, which follows from the perturbed Einstein field equations.
Here, ρ and p are the total density and pressure in the background model,
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Fig. 3.2. Evolution of the potential φ in adiabatic and CDM-isocurvature models
for wavenumbers k = 0.001, 0.01 and 0.1 Mpc−1 (top to bottom respectively in
matter domination). The conformal time at matter–radiation equality ηeq and last
scattering η∗ are marked by arrows.

δρ and δp are the Fourier modes of their perturbations, and κ ≡ 8πG. The
source term is gauge-invariant; it vanishes for mixtures of barotropic fluids
[pi = pi(ρi)] with δρi/(ρi + pi) the same for all components. For adiabatic
perturbations, this latter condition holds initially and is preserved on super-
Hubble scales. It is also preserved in the tightly-coupled photon–baryon fluid
as we saw above. For adiabatic perturbations, the potential is constant on
scales larger than the sound horizon when p/ρ is constant, but decays during
transitions in the equation of state, such as from matter to radiation dom-
ination. Above the sound horizon in flat models, it can be shown that the
quantity

R ≡ −φ− 2
Hφ̇+ H2

κa2(ρ+ p)
(3.30)

is conserved even through such transitions. The perturbation to the intrin-
sic curvature of comoving hypersurfaces (i.e. those perpendicular to the the
four-velocity of observers who see no momentum density) is given in terms
of R as 4(k2/a2)R. Using the constancy of R on large scales, the poten-
tial falls by a factor of 9/10 during the transition from radiation to matter
domination. The evolution of the potential is illustrated in Fig. 3.2 in a flat
ΛCDM model with parameters given in Sect. 3.1. The potential oscillates in-
side the sound horizon during radiation domination since the photons, which
are the dominant component at that time, undergo acoustic oscillations on
such scales.

The behaviour of the potentials for isocurvature perturbations is quite
different on large scales during radiation domination [40], since the source
term in (3.29) is then significant. In isocurvature fluctuations, the initial per-
turbations in the energy densities of the various components compensate each
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other in such a way that the comoving curvature R = 0. Figure 3.2 shows
the evolution of CDM-isocurvature modes, in which there is initially a large
fractional perturbation in the dark matter density, with a small compensat-
ing fractional perturbation in the radiation. (The full set of possibilities for
regular isocurvature modes are discussed in [41].) On large scales in radiation
domination the potential grows as a, the scale factor.

Adiabatic Fluctuations

For adiabatic fluctuations, the photons are initially perturbed by δγ(0) =
−2ψ(0) = 4R(0)/3, i.e. they are over-dense in potential wells, and their
velocity vanishes vγ(0) = 0. If we consider super-Hubble scales at last scat-
tering, there has been insufficient time for vγ to grow by gravitational infall
and the action of pressure gradients and it remains small. The photon con-
tinuity equation (3.22) then implies that δγ − 4φ remains constant, and the
decay of φ through the matter–radiation transition leaves (δγ/4 + ψ)(η∗) ≈
φ(η∗)/3 = −3R(0)/5 on large scales (k < 3 × 10−3 Mpc−1) at last scat-
tering. The combination δγ/4 + ψ = Θ0 + ψ is the dominant contribution
to the large-scale temperature anisotropies produces at last scattering; see
(3.14). The evolution of the photon density and velocity perturbations for
adiabatic initial conditions are show in Fig. 3.3, along with the scale depen-
dence of the fluctuations at last scattering. The plateau in (δγ/4 +ψ)(η∗) on
large scales ensures that a scale-invariant spectrum of curvature perturba-
tions translates into a scale-invariant spectrum of temperature anisotropies,
l(l + 1)Cl = constant, for small l.

On scales below the sound horizon at last scattering, the photon–baryon
fluid has had time to undergo acoustic oscillation. The form of the photon

Fig. 3.3. Evolution of the combination δγ/4+ψ (top left) and the photon velocity
vγ (bottom left) which determine the temperature anisotropies produced at last
scattering (denoted by the arrow at η∗). Three modes are shown with wavenum-
bers k = 0.001, 0.1 and 0.2 Mpc−1, and the initial conditions are adiabatic. The
fluctuations at the time of last scattering are shown as a function of linear scale in
the right-hand plot.
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initial condition, and the observation that the driving term in (3.27) mimics
the cosine WKB solution of the homogeneous equation (see Fig. 3.2), set
the oscillation mostly in the cos krs mode. The midpoint of the oscillation
is roughly at δγ/4 = −(1 + R)ψ. This behaviour is illustrated in Fig. 3.3.
Modes with krs(η∗) = π have undergone half an oscillation at last scattering,
and are maximally compressed. The large value of Θ0 + ψ at this particular
scale gives rise to the first acoustic peak in Fig. 3.1, now measured to be
at l = 220.1 ± 0.8 [42]. The subsequent extrema of the acoustic oscillation
at krs(η∗) = nπ give rise to the further acoustic peaks. The angular spac-
ing of the peaks is almost constant and is set by the sound horizon at last
scattering and the angular diameter distance to last scattering. The acous-
tic part of the anisotropy spectrum thus encodes a wealth of information on
the cosmological parameters; see Sect. 3.3. The photon velocity vγ oscillates
as sin krs, so the Doppler term in (3.14) tends to fill in power between the
acoustic peaks. The relative phase of the oscillation of the photon velocity
has important implications for the polarization properties of the CMB as
discussed in Sect. 3.4. The contributions of the various terms in (3.14) to the
temperature-anisotropy power spectrum are shown in Fig. 3.4 for adiabatic
perturbations.

Fig. 3.4. Contribution of the various terms in (3.14) to the temperature-anisotropy
power spectrum from adiabatic initial conditions. At high l, the contributions are
(from top to bottom): total power; δγ/4 + ψ (denoted SW for Sachs–Wolfe [3]);
Doppler effect from vb; and the integrated Sachs–Wolfe effect (ISW) coming from
evolution of the potential along the line of sight.
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Isocurvature Fluctuations

For the CDM-isocurvature mode1 the photons are initially unperturbed, as
is the geometry: δγ(0) = 0 = φ(0) and vγ = 0. On large scales δγ/4 = φ is
preserved, so the growth in φ during radiation domination is matched by a
growth in δγ and the photons are under-dense in potential wells. It follows
that at last scattering (δγ/4 + ψ)(η∗) ≈ 2φ(η∗) for k < 3 × 10−3 Mpc−1.
Note that the redshift climbing out of a potential well enhances the intrinsic
temperature fluctuation due to the photon under-density there. The evolution
of the photon fluctuations for isocurvature initial conditions are shown in
Fig. 3.5.

The evolution of the potential for isocurvature modes makes the driving
term in (3.27) mimic the sine solution of the homogeneous equation, and so δγ
follows suit oscillating as sin ∼ krs about the equilibrium point −4(1 +R)ψ.
The acoustic peaks are at krs(η∗) ∼ nπ/2, and the photons are under-dense
in the potential wells for the odd-n peaks, while over-dense in the even n.
The various contributions to the temperature-anisotropy power spectrum for
isocurvature initial conditions are shown in Fig. 3.6. The different peak po-
sitions for isocurvature initial conditions allow the CMB to constrain their
relative contribution to the total fluctuations. Current constraints are rather
dependent on whether one allows for correlations between the adiabatic and
isocurvature modes (as are generic in the multi-field inflation models that
might have generated the initial conditions), and the extent to which addi-
tional cosmological constraints are employed; see [44] for a recent analysis
allowing for the most general correlations but a single power-law spectrum.

Fig. 3.5. As Fig. 3.3 but for CDM-isocurvature initial conditions.

1 It is also possible to have the dominant fractional fluctuation in the baryon
density rather than the cold dark matter. However, this mode is nearly indis-
tinguishable from the CDM mode since, in the absence of baryon pressure, they
differ only by a constant mode in which the radiation and the geometry remain
unperturbed, but the CDM and baryon densities have compensating density
fluctuations [43].
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Fig. 3.6. As Fig. 3.4 but for CDM-isocurvature initial conditions. The initial spec-
trum of entropy perturbations is scale-invariant.

Beyond Tight-Coupling

On small scales it is necessary to go beyond tight-coupling of the photon–
baryon system since the photon diffusion length can become comparable to
the wavelength of the fluctuations. Photons that have had sufficient time
to diffuse of the order of a wavelength can leak out of over-densities, thus
damping the acoustic oscillations and generating anisotropy [45]. A rough
estimate of the comoving scale below which diffusion is important is the
square root of the geometric mean of the particle horizon (or conformal age)
and the mean-free path of the photons, i.e.

√
η/|τ̇ |. Converting this to a

comoving wavenumber defines the damping scale

k−2
D ∼ 0.3(Ωmh

2)−1/2(Ωbh
2)−1(a/a∗)5/2 Mpc2 (3.31)

when the scale factor is a. Here, a∗ is the scale factor at last scattering, and
the expression is valid well after matter–radiation equality but well before
recombination. The effect of diffusion is to damp the photon (and baryon)
oscillations exponentially by the time of last scattering on comoving scales
smaller than ∼ 3 Mpc. The resulting damping effect on the temperature power
spectrum has now been measured by several experiments [20, 22, 23].

To describe diffusion damping more quantitatively, we consider scales that
were already sub-Hubble during radiation domination. The gravitational po-
tentials will then have been suppressed during their oscillatory phase when
the photons (which are undergoing acoustic oscillations themselves) domi-
nated the energy density, and so we can ignore gravitational effects. Fur-
thermore, the dynamical timescale of the acoustic oscillations is then short
compared to the expansion time and we can ignore the effects of expansion.
In this limit, the Euler equations for the photons and the baryons can be it-
erated to give the relative velocity between the photons and baryons to first
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order in k/|τ̇ |:
(1 +R−1)(vγ − vb) =

1
4
kτ̇−1δγ . (3.32)

Using momentum conservation for the total photon–baryon system gives

v̇γ +Rv̇b +
1
4
kδγ − 2

5
kΘ2 = 0 , (3.33)

which can be combined with the derivative of (3.32) to give a new Euler
equation for the photons correct to first order in tight coupling:

(1 +R)v̇γ ≈ −1
4
kδγ +

R2

4(1 +R)
kτ̇−1δ̇γ +

16
45
k2τ̇−1vγ . (3.34)

Here, we have used Θ2 ≈ 8kτ̇−1vγ/9 which includes the correction due to
polarization. In the limit of perfect coupling, (3.34) reduces to (3.26) on
small scales. The continuity equation for the photons, δ̇γ = 4kvγ/3 (+4φ̇),
shows that the last two terms on the right of (3.34) are drag terms, and on
differentiating gives

δ̈γ − k2τ̇−1

3(1 +R)

(
16
15

+
R2

1 +R

)
δ̇γ +

k2

3(1 +R)
δγ = 0 . (3.35)

The WKB solution is

δγ ∝ e±ikrse−k2/k2
D , where

1
k2
D

≡ 1
6

∫ η

0

|τ̇−1|
1 +R

(
16
15

+
R2

1 +R

)
dη′

(3.36)
is the damping scale.

The finite mean-free path of CMB photons around last scattering has
an additional effect on the temperature anisotropies. The visibility function
−τ̇eτ has a finite width ∼ 80 Mpc and so along a given line of sight photons
will be last scattered over this interval. Averaging over scattering events will
tend to wash out the anisotropy from wavelengths short compared to the
width of the visibility function. This effect is described mathematically by
integrating the oscillations in the spherical Bessel functions in (3.17) against
the product of the visibility function and the (damped) perturbations.

Boltzmann codes such as CMBFAST [36] and CAMB [37] use the tight-
coupling approximation at early times to avoid the numerical problems asso-
ciated with integrating the stiff Euler equations in their original forms (3.23)
and (3.24).

3.2.5 Other Features of the Temperature-Anisotropy
Power Spectrum

We end this section on the fundamentals of the physics of CMB temperature
anisotropies by reviewing three additional effects that contribute to the linear
anisotropies.
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Integrated Sachs–Wolfe Effect

The integrated Sachs–Wolfe (ISW) effect is described by the last term on the
right of (3.14). It is an additional source of anisotropy due to the temporal
variation of the gravitational potentials along the line of sight: if a potential
well deepens as a CMB photon crosses it then the blueshift due to infall will
be smaller than redshift from climbing out of the (now deeper) well. (The
combination φ+ ψ has a direct geometric interpretation as the potential for
the electric part of the Weyl tensor [46].) The ISW receives contributions
from late times as the potentials decay during dark-energy domination, and
at early times around last scattering due to the finite time since matter–
radiation equality.

The late-time effect contributes mainly on large angular scales since there
is little power in the potentials at late times on scales that entered the Hubble
radius during radiation domination. The late ISW effect is the only way to
probe late-time structure growth (and hence e.g. distinguish between differ-
ent dark-energy models) with linear CMB anisotropies, but this is hampered
by cosmic variance on large angular scales. The late ISW effect produces cor-
relations between the large-scale temperature fluctuations and other tracers
of the potential in the local universe, and with the advent of the WMAP data
these have now been tentatively detected [47, 48, 49]; see also Sect. 3.5.

In adiabatic models the early-time ISW effect adds coherently with the
contribution δγ/4 + ψ to the anisotropies near the first peak, boosting this
peak significantly [39]; see Fig. 3.4. The reason is that the linear scales that
contribute here are maximally compressed with δγ/4 + ψ ∼ −ψ/2 which has
the same sign as φ̇ for decaying φ.

Reionization

Once structure formation had proceeded to produce the first sources of ultra-
violet photons, the universe began to reionize. The resulting free electron
density could then re-scatter CMB photons, and this tended to isotropise the
CMB by averaging the anisotropies from many lines of sight at the scattering
event. Approximating the bi-modal visibility function as two delta functions,
one at last scattering2 η∗ and one at reionization ηre, if the optical depth
through reionization is τre, the temperature fluctuation at x = 0 at η0 is

[Θ(n̂) + ψ]η0 ≈ (1 − e−τre)(Θ0 + ψ − n̂ · vb)[−n̂(η0 − ηre), ηre]
+ e−τre(Θ0 + ψ − n̂ · vb)[−n̂(η0 − η∗), η∗] . (3.37)

Here, we have used (3.13), neglected the ISW effect, and approximated the
scattering as isotropic. The first term on the right describes the effect of
2 We continue to refer to the last scattering event around recombination as last

scattering, even in the presence of re-scattering at reionization.
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blending the anisotropies from different lines of sight (to give Θ0) and the
generation of new anisotropies by re-scattering off moving electrons at reion-
ization; the second term is simply the temperature anisotropy that would
be observed with no reionization, weighted by the fraction of photons that
do not re-scatter. Since Θ0 + ψ at the re-scattering event is the average
of Θ0 + ψ − n̂′ · vb on the electron’s last scattering surface, on large scales
k(ηre −η∗) 
 1 it reduces to Θ0 +ψ at [−n̂(η0 −η∗), η∗], while on small scales
it vanishes. It follows that for scales that are super-horizon at reionization,
the observed temperature anisotropy becomes

Θ(n̂) → Θ(n̂) − (1 − e−τre)n̂ · ∆vb , (3.38)

where ∆vb is the difference between the electron velocity at the reionization
event and the preceding last scattering event on the line of sight. On such
scales the Doppler terms do not contribute significantly and the temperature
anisotropy is unchanged. For scales that are sub-horizon at reionization,

Θ(n̂) → e−τreΘ(n̂) − (1 − e−τre)n̂ · vb , (3.39)

where the Doppler term is evaluated at reionization. In practice, the visibility
function is not perfectly sharp at reionization and the integral through the
finite re-scattering distance tends to wash out the Doppler term since only
plane waves with their wavevectors near the line of sight contribute signifi-
cantly to n̂ · vb. Figure 3.7 shows the resulting effect Cl → e−2τreCl on the
anisotropy power spectrum on small scales. Recent results from WMAP [19]
suggest an optical depth through reionization τre ∼ 0.17. Such early reioniza-
tion cannot have been an abrupt process since the implied redshift zre ∼ 15
is at odds with the detection of traces of smoothly-distributed neutral hy-
drogen at z ∼ 6 via Gunn-Peterson troughs in the spectra of high-redshift
quasars [50, 51].

Tensor Modes

Tensor modes, describing gravitational waves, represent the transverse trace-
free perturbations to the spatial metric:

ds2 = a2(η)[dη2 − (δij + hij)dxidxj ] , (3.40)

with hi
i = 0 and ∂ih

i
j = 0. A convenient parameterisation of the photon

four-momentum in this case is

pµ =
ε

a2

[
1, ei − 1

2
hi

je
j

]
, (3.41)

where e2 = 1 and ε is a times the energy of the photon as seen by an
observer at constant x. The components of e are the projections of the photon
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Fig. 3.7. Effect of reionization on the temperature-anisotropy power spectrum.
The spectra are (from top to bottom) for no reionization, τre = 0.1 and 0.2.

direction for this observer on an orthonormal spatial triad of vectors a−1(∂i−
hj

i∂j/2). In the background e = dx/dη and is constant. The evolution of the
comoving energy ε in the perturbed universe is

1
ε

dε
dη

+
1
2
ḣije

iej = 0 , (3.42)

and so the Boltzmann equation for Θ(η,x, e) is

∂Θ
∂η

+ e · ∇Θ = −aneσTΘ +
3

16π
aneσT

∫
Θ(e′)[(1 + (e · e′)2] de′

− 1
2
ḣije

iej . (3.43)

Neglecting the anisotropic nature of Thomson scattering, the solution of this
equation is an integral along the unperturbed line of sight:

Θ(n̂) = −1
2

∫ η0

0
e−τ ḣij n̂

in̂j dη . (3.44)

The time derivative ḣij is the shear induced by the gravitational waves. This
quadrupole perturbation to the expansion produces an anisotropic redshifting
of the CMB photons and an associated temperature anisotropy.

Figure 3.8 compares the power spectrum due to gravitational waves (for a
review on gravitational waves see the article by N. Andersson and K. Kokko-
tas) with that from scalar perturbations for a tensor-to-scalar ratio r = 1
corresponding to an energy scale of inflation 3.3 × 1016 GeV. The constraints
on gravitational waves from temperature anisotropies are not very constrain-
ing since their effect is limited to large angular scales where cosmic variance
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Fig. 3.8. The temperature-anisotropy power spectrum from scalar perturbations
(density perturbations; top) and tensor perturbations (gravity waves; bottom) for
a tensor-to-scalar ratio r = 1.

from the dominant scalar perturbations is large. Gravitational waves damp
as they oscillate inside the horizon, so the only significant anisotropies are
from wavelengths that are super-horizon at last scattering, corresponding to
l ∼ 60. The current 95-per cent upper limit on the tensor-to-scalar ratio is
0.68 [20]. Fortunately, CMB polarization provides an alternative route to de-
tecting the effect of gravitational waves on the CMB which is not limited by
cosmic variance [52, 53]; see also Sect. 3.4.

3.3 Cosmological Parameters and the CMB

The simple, linear physics of CMB temperature anisotropies, reviewed in the
previous section, means that the CMB depends sensitively on many of the
key cosmological parameters. For this reason, CMB observations over the
past decade have been a significant driving force in the quest for precision
determinations of the cosmological parameters. It is not our intention here
to give a detailed description of the constraints that have emerged from such
analyses, e.g. [10], but rather to provide a brief description of how the key pa-
rameters affect the temperature-anisotropy power spectrum. More details can
be found in the seminal papers on this subject, e.g. [39, 40, 54] and references
therein.
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3.3.1 Matter and Baryons

The curvature of the universe and the properties of the dark energy are largely
irrelevant for the pre-recombination physics of the acoustic oscillations. Their
main contribution is felt geometrically through the angular diameter distance
to last scattering, DA, which controls the projection of linear scales there to
angular scales on the sky today. In contrast, those parameters that determine
the energy content of the universe before recombination, such as the physical
densities in (non-relativistic) matter Ωmh

2, and radiation Ωrh
2 (determined

by the CMB temperature and the physics of neutrinos), play an important
role in acoustic physics by determining the expansion rate and hence the
behaviour of the perturbations. In addition, the physical density in baryons,
Ωbh

2, affects the acoustic oscillations through baryon inertia and the depen-
dence of the photon mean-free path on the electron density. The effect of
variations in the physical densities of the matter and baryon densities on
the anisotropy power spectrum is illustrated in Fig. 3.9 for adiabatic initial
conditions.

The linear scales at last scattering that have reached extrema of their
oscillation are determined by the initial conditions (i.e. adiabatic or isocur-
vature) and the sound horizon rs(η∗). Increasing the baryon density holding
the total matter density fixed reduces the sound speed while preserving the
expansion rate (and moves last scattering to slightly earlier times). The ef-
fect is to reduce the sound horizon at last scattering and so the wavelength
of those modes that are at extrema of their oscillation, and hence push the
acoustic peaks to smaller scales. This effect could be confused with a change
in the angular diameter distance DA, but fortunately baryons have another
distinguishing effect. Their inertia shifts the zero point of the acoustic os-
cillations to ∼ −(1 + R)ψ, and enhances the amplitude of the oscillations.
In adiabatic models for modes that enter the sound horizon in matter domi-

Fig. 3.9. Dependence of the temperature-anisotropy power spectrum on the physi-
cal density in baryons (left) and all non-relativistic matter (right). From top to bot-
tom at the first peak, the baryon densities vary linearly in the range Ωbh

2 = 0.06–
0.005 (left) and the matter densities in Ωmh

2 = 0.05–0.5 (right). The initial condi-
tions are adiabatic.
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nation, δγ/4 starts out at −2ψ/3, and so the amplitude of the oscillation is
−ψ(1 + 3R)/3. The combination of these two effects is to enhance the am-
plitude of Θ0 + ψ at maximal compression by a factor of 1 + 6R over that
at minimal compression. The effect on the power spectrum is to enhance the
amplitude of the 1st, 3rd etc. peaks for adiabatic initial conditions, and the
2nd, 4th etc. for isocurvature. Current CMB data gives Ωbh

2 = 0.023±0.001
for power-law ΛCDM models [12], beautifully consistent with determinations
from big bang nucleosynthesis. Other effects of baryons are felt in the damp-
ing tail of the power spectrum since increasing the baryon density tends to
inhibit diffusion giving less damping at a given scale.

The effect of increasing the physical matter density Ωmh
2 at fixed Ωbh

2

is also two-fold (see Fig. 3.9): (i) a shift of the peak positions to larger scales
due to the increase in DA; and (ii) a scale-dependent reduction in peak height
in adiabatic models. Adiabatic modes that enter the sound horizon during
radiation domination see the potentials decay as the photon density rises
to reach maximal compression. This decay tends to drive the oscillation,
increasing the oscillation amplitude. Raising Ωmh

2 brings matter–radiation
equality to earlier times, and reduces the efficiency of the gravitational driving
effect for the low-order peaks. Current CMB data gives Ωmh

2 = 0.13 ± 0.01
for adiabatic, power-law ΛCDM models [12].

3.3.2 Curvature, Dark Energy and Degeneracies

The main effect of curvature and dark energy (see V. Sahni’s contribution) on
the linear CMB anisotropies is through the angular diameter distance and the
late-time integrated Sachs–Wolfe effect; see Fig. 3.10 for the case of adiabatic
fluctuations in cosmological-constant models. The ISW contribution is limited
to large scales where cosmic variance severely limits the precision of power

Fig. 3.10. Dependence of the temperature-anisotropy power spectrum on the cur-
vature ΩK (left) and cosmological constant ΩΛ (right) in adiabatic models. In both
cases, the physical densities in baryons and matter were held constant, thus pre-
serving the conditions on the last scattering surface. The curvature varies (left to
right) in the range -0.15–0.15 and the cosmological constant in the range 0.9–0.0.
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Fig. 3.11. The geometric degeneracy. A scale-invariant adiabatic ΛCDM model
with Ωbh

2 = 0.024, Ωmh
2 = 0.14 and ΩΛ = 0.73 and ΩK = 0 (close to the

WMAP best-fit values [12]) produces an almost identical spectrum to a closed
model ΩK = −0.288 with vanishing cosmological constant. However, the Hubble
constants are very different – h = 0.72 in the flat model and 0.33 in the closed
model – and so the latter is easily ruled out by external constraints. The shaded
region shows the 1σ cosmic variance errors ∆Cl/Cl =

√
2/(2l + 1) on the power

spectrum.

spectrum estimates. There is an additional small effect due to quantisation of
the allowed spatial modes in closed models (e.g. [55]), but this is also confined
to large scales (i.e. near the angular projection of the curvature scale). Most
of the information that the CMB encodes on curvature and dark energy is
thus locked in the angular diameter distance to last scattering, DA.

With the physical densities Ωbh
2 and Ωmh

2 fixed by the acoustic part of
the anisotropy spectrum, DA can be considered a function of ΩK and the
history of the energy density of the dark energy (often modelled through
its current density and a constant equation of state). In cosmological con-
stant models DA is particularly sensitive to the curvature: the 95-per cent
interval from WMAP alone (with the weak prior H0 > 50 km s−1 Mpc−1) is
−0.08 < ΩK < 0.02, so the universe is close to being spatially flat. The fact
that the impact of curvature and the properties of the dark energy on the
CMB is mainly through a single number DA leads to a geometrical degener-
acy in parameter estimation [56], as illustrated in Fig. 3.11. Fortunately, this
is easily broken by including other, complementary cosmological datasets.
The constraint on curvature from WMAP improves considerably when su-
pernovae measurements [57, 58], or the measurement of H0 from the Hubble
Space Telescope Key Project [59] are included. Other examples of near-perfect
degeneracies for the temperature anisotropies include the addition of gravity
waves and a reduction in the amplitude of the initial fluctuations mimicing
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the effect of reionization. This degeneracy is broken very effectively by the
polarization of the CMB.

3.4 CMB Polarization

The growth in the mean-free path of the CMB photons during recombination
allowed anisotropies to start to develop. Subsequent scattering of the radia-
tion generated (partial) linear polarization from the quadrupole anisotropy.
This linear polarization signal is expected to have an r.m.s. ∼ 5µK, and, for
scalar perturbations, to peak around multipoles l ∼ 1000 corresponding to the
angle subtended by the mean-free path around last scattering. The detection
of CMB polarization was first announced in 2002 by the Degree Angular Scale
Interferometer (DASI) team [13]; WMAP has also detected the polarization
indirectly through its correlation with the temperature anisotropies [19]. A
direct measurement of the polarization power from two-years of WMAP data
is expected shortly. Polarization is only generated by scattering, and so is a
sensitive probe of conditions at recombination. In addition, large-angle polar-
ization was generated by subsequent re-scattering as the universe reionized,
providing a unique probe of the ionization history at high redshift.

3.4.1 Polarization Observables

Polarization is conveniently described in terms of Stokes parameters I, Q,
U and V , where I is the total intensity discussed at length in the previous
section. The parameter V describes circular polarization and is expected to
be zero for the CMB since it is not generated by Thomson scattering. The
remaining parameters Q and U describe linear polarization. They are the
components of the trace-free, (zero-lag) correlation tensor of the electric field
in the radiation, so that for a quasi-monochromatic plane wave propagating
along the z direction

( 〈E2
x − E2

y〉 2〈ExEy〉
2〈ExEy〉 −〈E2

x − E2
y〉
)

=
1
2

(
Q U
U −Q

)
, (3.45)

where the angle brackets represent an average on timescales long compared
to the period of the wave. For diffuse radiation we define the polarization
brightness tensor Pab(n̂) to have components given by (3.45) for plane waves
within a bundle around the line of sight n̂ and around the specified frequency.
The polarization tensor is transverse to the line of sight, and, since it inherits
its frequency dependence from the the quadrupole of the total intensity, has
a spectrum given by the derivative of the Planck function (see (3.11)).

The polarization tensor can be decomposed uniquely on the sphere into
an electric (or gradient) part and a magnetic (or curl) part [52, 53]:

Pab = ∇〈a∇b〉PE − εc〈a∇b〉∇cPB , (3.46)
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Fig. 3.12. Polarization patterns for a pure-electric mode (left) and pure-magnetic
mode (right) on a small patch of the sky for potentials that are locally Fourier
modes. The shading denotes the amplitude of the potential. For the electric pat-
tern the polarization is aligned with or perpendicular to the Fourier wavevector
depending on the sign of the potential; for the magnetic pattern the polarization is
at 45 degrees.

where angle brackets denote the symmetric, trace-free part, ∇a is the covari-
ant derivative on the sphere, and εab is the alternating tensor. The divergence
∇aPab is a pure gradient if the magnetic part PB = 0, and a curl if the elec-
tric part PE = 0. The potential PE is a scalar under parity, but PB is a
pseudo-scalar. For a given potential P , the electric and magnetic patterns
it generates (i.e. with PE = P and PB = P respectively) are related by
locally rotating the polarization directions by 45 degrees. The polarization
orientations on a small patch of the sky for potentials that are locally Fourier
modes are shown in Fig. 3.12. The potentials can be expanded in spherical
harmonics (only the l ≥ 2 multipoles contribute to Pab) as

PE(n̂) =
∑

lm

√
(l − 2)!
(l + 2)!

ElmYlm(n̂) , PB(n̂) =
∑

lm

√
(l − 2)!
(l + 2)!

BlmYlm(n̂) .

(3.47)
(The normalisation is conventional.) Under parity Elm → (−1)lElm but
Blm → −(−1)lBlm. Assuming rotational and parity invariance, B is not
correlated with E or the temperature anisotropies T , leaving four non-
vanishing power spectra: CT

l , CE
l , CB

l and the cross-correlation CTE
l , where

e.g. 〈ElmT
∗
lm〉 = CTE

l .

3.4.2 Physics of CMB Polarization

For scalar perturbations, the quadrupole of the temperature anisotropies at
leading order in tight coupling is Θ2 ∼ kτ̇−1vγ . Scattering of this quadrupole
into the direction −n̂ generates linear polarization parallel or perpendicular
to the projection of the wavevector k onto the sky, i.e. Pij ∼ Θ2[k̂〈ik̂j〉]TT,
where TT denotes the transverse (to n̂), trace-free part. In a flat universe
the polarization tensor is conserved in the absence of scattering; for non-flat
models this is still true if the components are defined on an appropriately-
propagated basis (e.g. [26]). For a single plane wave perturbation, the polar-
ization on the sky is thus purely electric (see Fig. 3.12). For tensor perturba-
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Fig. 3.13. Power spectra produced by adiabatic scalar perturbations (left) and
tensor perturbations (right) for a tensor-to-scalar ratio r = 1. On large scales the
spectra from scalar perturbations are (from top to bottom) CT

l , CTE
l and CE

l . For
tensor perturbations, they are CT

l , CTE
l , CB

l and CE
l .

tions, the polarization Pij ∼ τ̇−1[ḣij ]TT since the tightly-coupled quadrupole
is proportional to the shear ḣij . The gravitational wave defines additional di-
rections on the sky when its shear is projected, and the polarization pattern
is not purely electric. Thus density perturbations do not produce magnetic
polarization in linear perturbation theory, while gravitational waves produce
both electric and magnetic [52, 53].

The polarization power spectra produced by scalar and tensor pertur-
bations are compared in Fig. 3.13. The scalar CE

l spectrum peaks around
l ∼ 1000 since this corresponds to the projection of linear scales at last scat-
tering for which diffusion generates a radiation quadrupole most efficiently.
The polarization probes the photon bulk velocity at last scattering, and so
CE

l peaks at the troughs of CT
l , while CTE

l is zero at the peaks and troughs,
and has its extrema in between. For adiabatic perturbations, the large-scale
cross-correlation changes sign at l ∼ 50, and, with the conventions adopted
here3 is positive between l = 50 and the first acoustic peak in CT

l . Isocur-

3 The sign of Elm for a given polarization field depends on the choice of conventions
for the Stokes parameters and their decomposition into electric and magnetic
multipoles. We follow [60], which produces the same sign of CTE

l as [25], but
note that the Boltzmann codes CMBFAST [36] and CAMB [37] have the opposite
sign.
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vature modes produce a negative correlation from l = 2 to the first acoustic
trough.

Tensor modes produce similar power in electric and magnetic polariza-
tion. As gravitational waves damp inside the horizon, the polarization peaks
just shortward of the horizon size at last scattering l ∼ 100 despite these
large scales being geometrically less efficient at transferring power to the
quadrupole during a mean-free time than smaller scales.

For both scalar and tensor perturbations, the polarization would be small
on large scales were it not for reionization, since a significant quadrupole
is only generated at last scattering when the mean-free path approaches the
wavelength of the fluctuations. However, reionization does produce significant
large-angle polarization [61] (see Fig. 3.13). The temperature quadrupole at
last scattering peaks on linear scales with k(ηre − η∗) ∼ 2, which then re-
projects onto angular scales l ∼ 2(η0 − ηre)/(ηre − η∗). The position of the
reionization feature is thus controlled by the epoch of reionization, and the
height by the fraction of photons that scatter there i.e. τre. The measure-
ment of τre with large-angle polarization allows an accurate determination of
the amplitude of scalar fluctuations from the temperature-anisotropy power
spectrum. In addition, the fine details of the large-angle polarization power
can in principle distinguish different ionization histories with the same op-
tical depth, although this is hampered by the large cosmic variance at low
l [62].

3.5 Highlights of Recent Results

In this section we briefly review some of the highlights from recent observa-
tions of the CMB temperature and polarization anisotropies. Analysis of the
former have entered a new phase with the release of the first year data from
the WMAP satellite [11]; a further three years worth of data are expected
from this mission. Detections of CMB polarization are still in their infancy,
but here too we can expect significant progress from a number of experiments
in the short term.

3.5.1 Detection of CMB Polarization

The first detection of polarization of the CMB was announced in September
2002 [13]. The measurements were made with DASI, a compact interferomet-
ric array operating at 30 GHz, deployed at the South Pole. The DASI team
constrained the amplitude of the E and B-mode spectra with assumed spec-
tral shapes derived from a concordant ΛCDM model. They obtained a ∼ 5-σ
detection of a non-zero amplitude for E with a central value perfectly consis-
tent with that expected from the amplitude of the temperature anisotropies.
DASI also detected the temperature–polarization cross-correlation at 95-per
cent significance, but no evidence for B-mode polarization was found. The
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Fig. 3.14. Current measurements (as of February 2004) of CTE
l (top) and CE

l

(bottom). The points with 1-σ errors are from the first one-year data release from
WMAP [63]. The error boxes are the flat band-power results from DASI [13] centred
on the maximum-likelihood band power and spanning the 68-per cent interval. The
solid lines are the predicted power from the best-fit model to all the WMAP data.

DASI results of a maximum-likelihood band-power estimation of the E and
TE power spectra are given in Fig. 3.14.

Measurements of CTE
l were also provided in the first-year data release

from WMAP, although polarization data itself was not released. These re-
sults are also shown in Fig. 3.14. The existence of a cross-correlation between
temperature and polarization on degree angular scales provides evidence for
the existence of super-horizon fluctuations on the last scattering surface at
recombination. This is more direct evidence for such fluctuations than from
the large-scale temperature anisotropies alone, since the latter could have
been generated gravitationally all along the line of sight. The sign of the
cross-correlation and the phase of its acoustic peaks relative to those in
the temperature-anisotropy spectrum is further strong evidence for adiabatic
fluctuations. The one surprise in the WMAP measurement of CTE

l is the be-
haviour on large scales. A significant excess correlation over that expected if
polarization were only generated at recombination is present on large scales
(l < 20). The implication is that reionization occurred early, 11 < zre < 30,
giving a significant optical depth for re-scattering: τre = 0.17 ± 0.04 at 68-
per cent confidence. As mentioned in Sect. 3.2.5, reionization at this epoch
is earlier than that expected from observations of quasar absorption spectra
and suggests a complex ionization history.
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3.5.2 Implications of Recent Results for Inflation

The generic predictions from simple inflation models are that: (i) the uni-
verse should be (very nearly) spatially flat; (ii) there should be a nearly
scale-invariant spectrum of Gaussian, adiabatic density perturbations giving
apparently-super-horizon fluctuations on the last scattering surface; and (iii)
there should be a stochastic background of gravitational waves with a nearly
scale-invariant (but necessarily not blue) spectrum. The amplitude of the
latter is a direct measure of the Hubble rate during inflation, and hence, in
slow-roll models, the energy scale of inflation.

As discussed in Sect. 3.3.2, the measured positions of the acoustic peaks
constrains the universe to be close to flat. The constraint improves further
with the inclusion of other cosmological data. There is no evidence for isocur-
vature modes in the CMB, although the current constraints are rather weak
if general, correlated modes are allowed in the analysis [44]. Several of the
cosmological parameters for the isocurvature models most favoured by CMB
data are violently at odds with other probes, most notably the baryon den-
sity which is pushed well above the value inferred from the abundances of
the light-elements. There is also no evidence for primordial non-Gaussianity
in the CMB (see e.g. [64])4.

Within flat ΛCDM models with a power-law spectrum of curvature fluc-
tuations, the spectral index is constrained by the CMB to be close to scale
invariant [12], although the inclusion of the latest data from small-scale ex-
periments, such as CBI [70] and VSA [71], tends to pull the best fit from
WMAP towards redder power-law spectra: e.g. ns = 0.97+0.06

−0.03 at 68-per cent
confidence combining WMAP and VSA [71]. Slow-roll inflation predicts that
the fluctuation spectrum should be close to a power law, with a run in the
spectral index that is second order in slow roll: dns/d ln k ∼ (ns − 1)2. The
WMAP team reported weak evidence for a running spectral index by includ-
ing small-scale data from galaxy redshift surveys and the Lyman-α forest, but
modelling uncertainties in the latter have led many to question the reliability
of this result (e.g. [72]). New data from CBI and VSA now provide indepen-
dent evidence for running in flat ΛCDM models at the 2-σ level from the CMB
alone. This reflects the tension between the spectral index favoured by the
low-l CMB data (which is anomalously low for l < 10, favouring bluer spec-
tra) and the high-l data from the interferometers. The evidence for running
is weakened considerably with the inclusion of external priors from large-
scale structure data. The best-fit values for the run in ns obtained with the
CMB alone are uncomfortably large for slow-roll inflation models, and give
low power on small scales that is difficult to reconcile with the early reioniza-
tion implied by the WMAP polarization data. However, a recent analysis [73]
4 The WMAP data does appear to harbour some statistically-significant depar-

tures from rotational invariance [65, 66, 67, 68, 69]. The origin of these effects,
i.e. primordial or systematic due to instrument effects or imperfect foreground
subtraction, is as yet unclear.
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argues that the evidence for running depends crucially on the techniques em-
ployed to estimate the low-l power from WMAP data, and that the running
is strongly suppressed if exact likelihood techniques are adopted. A definitive
answer on whether departures from power-law spectra are significant must
probably await further data on both large and small scales.

The final prediction of slow-roll inflation – the generation of nearly scale-
invariant background of gravitational waves – is yet to be verified. The current
limits on the tensor-to-scalar ratio are only weak: [71] report r < 0.68 at
95-per cent confidence from all CMB data in general, non-flat, adiabatic
ΛCDM models. Despite this, observations are beginning to place interesting
constraints on specific models of inflation in the r–ns plane [74, 75]. Already,
large-field models with power-law potentials steeper than V ∝ φ6 are ruled
out due to their red scalar spectra and comparatively large tensor-to-scalar
ratio. Future programmes targeting B-mode polarization may ultimately be
able to detect gravitational waves down to an inflationary energy scale of a
few × 1015 GeV. Such observations will sharpen constraints in the r–ns plane
considerably, and should allow fine selection amongst the many proposed
models of inflation.

3.5.3 Detection of Late-Time Integrated Sachs–Wolfe Effect

The late-time ISW effect arises from the decay of the gravitational po-
tentials once the universe becomes dark-energy dominated, and so should
produce large-angle (positive) correlations between the CMB temperature
anisotropies and other tracers of the potential in the local universe. With the
advent of the WMAP data, a number of groups have reported the detection
of such a correlation. In [47], WMAP data was cross-correlated with data
on the hard X-ray background (which is dominated by emission from active
galaxies) from the HEAO-1 satellite, and the number density of radio sources
from the NVSS catalogue. In each case a positive correlation was detected
at significance 3σ and 2.5σ respectively. The correlation with NVSS has also
been carried out independently by the WMAP team [48], who also note that
the observed positive correlation can be used to rule out the closed, Λ = 0
model that is a good fit to the CMB data in isolation (see Fig. 3.11). Several
groups have now also detected the cross-correlation on large scales between
the CMB and optical galaxy surveys, e.g. [49].

3.6 Conclusions

The linear anisotropies of the cosmic microwave background have been stud-
ied theoretically for over three decades. The physics, which is now well un-
derstood, employs linearised radiative transfer, general relativity, and hydro-
dynamics to describe the propagation of CMB photons and the evolution of
the fluid constituents in a perturbed Friedmann-Robertson-Walker universe.
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A number of bold predictions have emerged from this theoretical activity,
most notably the existence of acoustic peaks in the anisotropy power spec-
trum due to oscillations in the photon–baryon plasma prior to recombination.
Observers have risen to the challenge of verifying these predictions, and their
detection is proceeding at a staggering rate. The large-scale Sachs–Wolfe ef-
fect, acoustic peak structure, damping tail, late-time integrated Sachs–Wolfe
effect, polarization and reionization signature have all been detected, and the
first three have been measured in considerable detail. Already, the size and
scale of these effects is allowing cosmological models to be constrained with
unprecedented precision. The results are beautifully consistent with almost-
scale-invariant adiabatic initial conditions evolving passively in a spatially
flat, ΛCDM universe.

Much work still remains to be done to exploit fully the information con-
tained in the CMB anisotropies. The Planck satellite, due for launch in 2007,
should provide definitive mapping of the linear CMB anisotropies, and a
cosmic-variance limited measurement of the power spectrum up to multi-
poles l ∼ 2000. This dataset will be invaluable in assessing many of the issues
hinted at in the first-year release of WMAP data, such as the apparent lack of
power on large scales and possible violations of rotational (statistical) invari-
ance. Prior to Planck, a number of ground-based programmes should shed
further light on the issue of whether departures from a power-law primordial
spectrum are required on cosmological scales, and the implications of this
for slow-roll inflation. In addition, these small-scale observations will start to
explore the rich science of secondary anisotropies, due to e.g. scattering in
hot clusters [76] or bulk flows modulated by variations in the electron density
in the reionized universe [77, 78], and the weak lensing effect of large-scale
structure [79].

Detections of CMB polarization are in their infancy, but we can expect
rapid progress on this front too. Accurate measurements of the power spectra
of E-mode polarization, and its correlation with the temperature anisotropies,
can be expected from a number of ground and balloon-borne experiments, as
well as from Planck. The ultimate goal for CMB polarimetry is to detect the
B-mode signal predicted from gravitational waves. This would give a direct
measure of the energy scale of inflation, and, when combined with measure-
ments of the spectrum density perturbations, place tight constraints on the
dynamics of inflation. Plans are already being made for a new generation
of polarimeters with the large numbers of detectors and exquisite control of
instrument systematics needed to detect the gravity-wave signal if the energy
scale of inflation is around 1016 GeV. Ultimately, confusion due to imperfect
subtraction of astrophysical foregrounds and the effects of weak lensing on
the polarization limit will limit the energy scales that we can probe with
CMB polarization; see [80] and references therein.



102 Anthony Challinor

Acknowledgments

The author acknowledges a Royal Society University Research Fellowship.

References

1. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965).
2. R.H. Dicke et al, Astrophys. J. 142, 414 (1965).
3. R.K. Sachs, A.M. Wolfe, Astrophys. J. 147, 73 (1967).
4. G.F. Smoot et al, Astrophys. J. Lett. 396, 1 (1992).
5. P.J.E. Peebles, Astrophys. J. Lett. 263, 1 (1982).
6. J.R. Bond, G. Efstathiou, Astrophys. J. Lett. 285, 45 (1984).
7. P.J.E. Peebles J.T. Yu, Astrophys. J. 162, 815 (1970).
8. J.C. Mather et al, Astrophys. J. 420, 439 (1994).
9. J.C. Mather et al, Astrophys. J. 512, 511 (1999).

10. J.R. Bond, C.R. Contaldi, D. Pogosyan, Phil. Trans. Roy. Soc. Lond. A 361,
2435 (2003).

11. C.L. Bennett et al, Astrophys. J. Suppl. 148, 1 (2003).
12. D.N. Spergel et al, Astrophys. J. Suppl. 148, 175 (2003).
13. J.M. Kovac et al, Nature 420, 772 (2002).
14. W. Hu, S. Dodelson, Ann. Rev. Astron. Astrophys. 40, 171 (2002).
15. W. Hu, Ann. Phys. 303, 203 (2003).
16. P.J.E. Peebles, Astrophys. J. 153, 1 (1968).
17. Y.B. Zeldovich, V.G. Kurt, R.A. Syunyaev, Journal of Experimental and

Theoretical Physics 28, 146 (1969).
18. S. Seager, D.D. Sasselov, D. Scott, Astrophys. J. Suppl. 128, 407 (2000).
19. A. Kogut et al, Astrophys. J. Suppl. 148, 161 (2003).
20. C. Dickinson et al, preprint astro-ph/0402498, (2004).
21. B.S. Mason et al, Astrophys. J. 591, 540 (2003).
22. T.J. Pearson et al, Astrophys. J. 591, 556 (2003).
23. C.L. Kuo et al, Astrophys. J. 600, 32 (2004).
24. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, (W. H. Freeman and

Company, San Francisco 1973) pp 583–590.
25. W. Hu et al, Phys. Rev. D 57, 3290 (1998).
26. A. Challinor, Phys. Rev. D 62, 043004 (2000).
27. G.F.R. Ellis, J. Hwang, M. Bruni, Phys. Rev. D 40, 1819 (1989).
28. A. Challinor, A. Lasenby, Astrophys. J. 513, 1 (1999).
29. A. Challinor, Class. Quantum Grav. 17, 871 (2000).
30. R. Maartens, T. Gebbie, G.F.R. Ellis, Phys. Rev. D 59, 083506 (1999).
31. T. Gebbie, G.F.R. Ellis, Ann. Phys. 282, 285 (2000).
32. T. Gebbie, P.K.S. Dunsby, G.F.R. Ellis, Ann. Phys. 282, 321 (2000).
33. C. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)
34. M. Bartelmann, P. Schneider: Phys. Rep. 340, 291 (2001).
35. M.L. Wilson, Astrophys. J. 273, 2 (1983).
36. U. Seljak, M. Zaldarriaga, Astrophys. J. 469, 437 (1996).
37. A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538, 473 (2000).
38. N. Kaiser, Mon. Not. R. Astron. Soc. 202, 1169 (1983).
39. W. Hu, N. Sugiyama, Astrophys. J. 444, 489 (1995).



3 Cosmic Microwave Background Anisotropies 103

40. W. Hu, N. Sugiyama, Phys. Rev. D 51, 2599 (1995).
41. M. Bucher, K. Moodley, N. Turok, Phys. Rev. D 62, 083508 (2000).
42. L. Page et al, Astrophys. J. Suppl. 148, 233 (2003).
43. C. Gordon, A. Lewis, Phys. Rev. D 67, 123513 (2003).
44. M. Bucher et al, preprint astro-ph/0401417, (2004).
45. J. Silk, Astrophys. J. 151, 459 (1968).
46. J.M. Stewart, Class. Quantum Grav. 7, 1169 (1990).
47. S. Boughn, R. Crittenden, Nature 427, 45 (2004).
48. M.R. Nolta et al, preprint astro-ph/0305097, (2003).
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4 Observational Cosmology

Robert H. Sanders

Kapteyn Astronomical Institute, Groningen, The Netherlands

Abstract. I discuss the classical cosmological tests, i.e., angular size-redshift, flux-
redshift, and galaxy number counts, in the light of the cosmology prescribed by the
interpretation of the CMB anisotropies. The discussion is somewhat of a primer
for physicists, with emphasis upon the possible systematic uncertainties in the ob-
servations and their interpretation. Given the curious composition of the Universe
inherent in the emerging cosmological model, I stress the value of searching for
inconsistencies rather than concordance, and suggest that the prevailing mood of
triumphalism in cosmology is premature.

4.1 Introduction

The traditional cosmological tests appear to have been overshadowed by ob-
servations of the anisotropies in the cosmic microwave background (CMB).
We are told that these observations accurately measure the geometry of the
Universe, its composition, its present expansion rate, and the nature and form
of the primordial fluctuations [1]. The resulting values for these basic param-
eters are very similar to those deduced earlier from a variety of observations,
the so-called “concordance model”, with about 30% of the closure density of
the Universe comprised of matter (mostly a pressureless, non-baryonic dark
matter), the remainder being in negative pressure dark energy [2]. Given the
certainty and precision of these assertions, any current discussion of observa-
tional cosmology must begin with the question: Is there any room for doubt?
Why should we bother with lower precision cosmological tests when we know
all of the answers anyway?

While the interpretation of the CMB anisotropies has emerged as the
single most important cosmological tool, we must bear in mind that the con-
clusions drawn do rest upon a number of assumptions, and the results are
not altogether as robust as we are, at times, led to believe. One such as-
sumption, for example, is that of adiabatic initial fluctuations, that is 100%
adiabatic. A small admixture of correlated isocurvature fluctuations, an as-
pect of braneworld scenarios [3], can affect peak amplitudes and thus, the
derived cosmological parameters. A more fundamental assumption is that of
the validity of traditional Friedmann-Robertson-Walker (FRW) cosmology in
the post-decoupling universe. Is the expansion of the universe described by
the Friedmann equation? Even minimal changes to the right-hand-side, such
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http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005



106 Robert H. Sanders

as the equation of state of the dark energy component, can alter the angular
size distance to the last scattering surface at z=1000 and the luminosity dis-
tance to distant supernovae. But even more drastic changes to the Friedmann
equation, resulting from modified gravitational physics, have been proposed
in attempts to remove the unattractive dark energy [4, 5].

Such suggestions reflect a general unease with the concordance model, a
model that presents us with a universe that is strange in its composition. The
most abundant form of matter consists of, as yet, undetected non-baryonic
particles originally postulated to solve the problems of structure formation
and of the missing mass in bound gravitational systems such as galaxies and
clusters of galaxies. In this second respect, it is fair to say that it has failed or,
to be generous, not yet succeeded, because the predicted density distribution
of dark halos which emerge from cosmic N-body [6] simulations appears to
be inconsistent with observations of spiral galaxies [7] or with strong lensing
in clusters of galaxies [8].

Even more mysterious is the “dark energy”, the pervasive homogeneous
fluid with a negative pressure which may be identified with the cosmological
constant, the zero-point energy density of the vacuum. The problem of this
unnaturally low energy density, 10−122 in Planck units, is well-known, as
is the cosmic coincidence problem: why are we observing the Universe at a
time when the cosmological constant has, fairly recently, become dynamically
important [9]? To put it another way, why are the energy densities of matter
and dark energy so comparable at the present epoch? This is strange because
the density of matter dilutes with the expanding volume of the Universe
while the vacuum energy density does not. It is this problem which has led to
the proposal of dynamic dark energy, quintessence (a dark energy, possibly
associated with a light scalar field), with an energy density that evolves with
cosmic time possibly tracking the matter energy density [10, 11]. Here the
difficulty is that the field would generally be expected to have additional
observational consequences, such as violations of the equivalence principle at
some level, possibly detectable in fifth force experiments [9].

For these reasons, it is even more important to pursue cosmological tests
that are independent of the CMB, because one might expect new physics
to appear as observations inconsistent with the concordance model. In this
sense, discord is more interesting than concord; to take a Hegelian point of
view– ideas progress through dialectic, not through concordance. It is with
this in mind that I will review observational cosmology with emphasis upon
CMB-independent tests.

Below I argue that the evolution of the early, pre-recombination universe
is well-understood and tightly constrained by considerations of primordial
nucleosynthesis. If one wishes to modify general relativity to give deviations
from Friedmann expansion, then such modifications are strongly constrained
at early times, at energies on the order of 1 MeV. However, cosmological
evolution is much less constrained in the post-recombination universe where
there is room for deviation from standard Friedmann cosmology and where
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the more classical tests are relevant. I will discuss three of these classical tests:
the angular size distance test where I am obliged to refer to its powerful
modern application with respect to the CMB anisotropies; the luminosity
distance test and its application to observations of distant supernovae; and
the incremental volume test as revealed by faint galaxy number counts.

These classical tests yield results that are consistent, to lower precision,
with the parameters deduced from the CMB. While one can make minimal
changes to standard cosmology, to the equation of state of the dark energy
for example, which yield different cosmological parameters, there is no com-
pelling observational reason to do so. It remains the peculiar composition
and the extraordinary coincidences embodied by the concordance model that
call for deeper insight. Such motivations for questioning a paradigm are not
unprecedented; similar worries led to the inflationary scenario which, unques-
tionably, has had the dominant impact on cosmological thought in the past
25 years and which has found phenomenological support in the recent CMB
observations.

I am not going to discuss tests, such as the form of the luminous matter
power spectrum [12] or the amplitude of the present mass fluctuations [13],
that are based upon the standard model for structure formation. I do not
mean to imply that such such tests are unimportant; it is only that I restrict
myself here to the classical tests because these address more directly the
issues of the global curvature and expansion history of the Universe.

I am also going to refrain, in so far as possible, from discussion of theory of
new gravitational physics or of any other sort. The theoretical issues presented
by dark matter that can only be detected gravitationally or by an absurdly
small but non-zero cosmological constant are essentially not problems for
the interpretive astronomer. The primary task is to realistically access the
reliability of conclusions drawn from the observations, and that is what I
intend to do.

4.2 Astronomy Made Simple (for Physicists)

I think that it is fair to assume that most of you are physicists, so I begin
by defining some of the units and terminology used by astronomers. I do this
because much of this terminology is arcane for those not in the field.

First of all there is the peculiar logarithmic scale of flux magnitudes,
whereby a factor of 100 in flux is divided into five equal logarithmic intervals.
The system is ancient and has its origin in the logarithmic response of the
human eye. The ratio of the flux of two objects is then given by a difference
in magnitudes, i.e.,

m2 −m1 = −2.5 log(F2/F1) (4.1)

where, one will notice, smaller magnitude means larger flux. The zero-point
of this logarithmic scale is set by some standard star such as Vega. Because
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this is related to the flux, and not the luminosity of an object, it is called the
“apparent” magnitude. Distant galaxies have apparent magnitudes, in visible
light, of greater than 20, and the galaxies in the Hubble Deep Field, go down
to magnitudes of 30. The magnitude is typically measured over a specified
wavelength range or color band, such as blue (B), visual (V), or infrared (K),
and these are designated mB , mV , and mK , or sometimes just B,V, and K.
This is made more confusing by the fact that there are several competing
photometric systems (or sets of filters) and conversion between them is not
always simple.

With a particular photometric system one can measure the color of an
astronomical object, expressed as difference in magnitudes in two bands, or
color index; e.g.,

B − V = 2.5 log(FV /FB) . (4.2)

Here a larger B-V color index means that an object is relatively redder; a
smaller B-V that the object is bluer. Unlike the apparent magnitude, this is an
intrinsic property of the object. Or rather, it is intrinsic once the astronomer
corrects the magnitudes in the various bands to the zero-redshift (z = 0)
frame. This is called the “K-correction” and requires a knowledge of the
intrinsic spectral energy distribution (SED) of the source, which could be a
galaxy or a distant supernova.

The luminosity of an object is also an intrinsic property and is usually
expressed by astronomers as an “absolute” magnitude. This is the apparent
magnitude an object would have if it were placed at a standard distance,
taken to be 10 parsecs, i.e., 3 × 1017 m (more on parsecs below). Because
this distance is small by extragalactic standards the absolute magnitudes of
galaxies turn out to be rather large negative numbers: MG ≈ -18 to -21.
The luminosity of a galaxy LG in units of the solar luminosity L� can be
determined from the relation

MG −M� = −2.5 log(LG/L�) , (4.3)

where the absolute magnitude of the sun (in the V band) is 5.5. The lumi-
nosities of galaxies typically range from 108 to 1011 L�. The peak absolute
magnitude of a type I supernova (SNIa) is about -19.5, or comparable to an
entire galaxy. This is one reason why these objects are such ideal extragalactic
distance probes.

The unit of distance used by astronomers is also archaic: the parsec which
is about 3× 1016 m or about 3 light years. This is the distance to a star with
an semi-annual parallax of 1 arc second and is not a bad unit when one is
discussing the very local region of the galaxy. Our galaxy has a diameter
between 10 to 20 kiloparsecs, so the kiloparsec is an appropriate unit when
discussing galactic structure. The appropriate unit of extragalactic distance,
however, is the “megaparsec” or Mpc, with nearby galaxies being those at
distances less than 10 Mpc. The nearest large cluster of galaxies, the Virgo
cluster, is at a distance of 20 Mpc, and very distant galaxies are those further
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than 100 Mpc, although here one has to be careful about how distance is
operationally defined.

We all know that the Universe is uniformly expanding and the Hubble
parameter, H, is the recession velocity of galaxies per unit distance, with Ho

being its value in the present Universe. It is typically measured in units of
km s−1Mpc−1 or inverse time. A number of observations point to Ho ≈ 70
km s−1Mpc−1 . The Hubble time is defined as tH = Ho

−1 which is about
9.8× 109 h−1 years, and this must be comparable to the age of the Universe.
The definition h = Ho/100 km s−1Mpc−1 is a relic of the recent past when
the Hubble parameter was less precisely determined, but I keep using it below
because it remains convenient as a unit-less quantity. We can also define a
characteristic scale for the universe which is the Hubble radius or rH = c/Ho

and this is 3000 h−1 Mpc. This would be comparable to the “distance” to
the horizon.

Just for interest, one could also define a Hubble acceleration or aH =
cHo ≈ 7 × 10−10 m/s2. This modest acceleration of 7 angstroms/second
squared is, in effect, the acceleration of the Hubble flow at the horizon if
we live in a Universe dominated by a cosmological constant as observations
seem to suggest. It is also comparable to the acceleration in the outer parts
of galaxies where the need for dark matter first becomes apparent [14]. In
some sense, it is remarkable that such a small acceleration has led to a major
paradigm shift.

4.3 Basics of FRW Cosmology

The fundamental assumption underlying the construction of cosmological
models is that of the cosmological principle: The Universe appears spatially
isotropic in all its properties to all observers. The only metric which is con-
sistent with this principle is the Robertson-Walker metric:

ds2 = c2dt2 − a2(t)dr2

[1 − r2/Ro
2]

− a2(t)r2(dθ2 + sin2(θ)dφ2), (4.4)

where r is the radial comoving coordinate, a(t) is the dimensionless scale
factor by which all distances vary as a function of cosmic time, and Ro

−2

is a parameter with dimensions of inverse length squared that describes the
curvature of the Universe and may be positive, zero, or negative (see [15] for
a general discussion).

This is the geometry of the Universe, but dynamics is provided by General
Relativity, the Einstein field equations (see K. Tamvakis’ review), which yield
ordinary differential equations for a(t). The time-time component leads to a
second order equation:

ä = −4πG
3
a(ρ+ 3p/c2), (4.5)
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where ρ is the density, p is the pressure and the quantity in parenthesis is
the active gravitational mass density. Considering conservation of energy for
a perfect fluid

d(ρV ) = −pdV /c2, (4.6)

with an equation of state
p = wρc2, (4.7)

we have ρ ∝ a−1(1+w). The equation of state combined with (4.5) tells us
that the Universe is accelerating if w < −1/3.

The space-space components combined with the time-time component
yield the usual first-order Friedmann equation

( H
Ho

)2
− Ωk

a2
=
∑

i

Ωia
−3(1+wi) , (4.8)

where H = ȧ/a is the running Hubble parameter, the summation is over the
various fluids comprising the Universe and

Ωi =
8πGρi

3Ho
2 (4.9)

with Ωk = −(rH/Ro)2. We often see (4.8) written in terms of redshift where
a = (1 + z)−1. Each component has its own equation of state parameter, wi:
w = 0 for non-relativistic matter (baryons, CDM); w = 1/3 for radiation
or other relativistic fluid; w = −1 for a cosmological constant; and −1 <
w < −1/3 for “quintessence”, dynamic dark energy resulting in ultimate
acceleration of the universal expansion. I will not consider w < −1 which has
been termed “phantom” dark energy [16]; here the effective density increases
as the Universe expands (this could be realized by a ghost field, a scalar with
a kinetic term in the Lagrangian having the wrong sign so it rolls up rather
than down a potential hill).

Given a universe composed of radiation, non-relativistic matter, and
quintessence, the Friedmann equation takes its familiar form:

( H
Ho

)2
− Ωk

a2
= Ωra

−4 +Ωma
−3 +ΩQa

−3(1+w). (4.10)

Here it is evident that radiation drives the expansion at early times (a << 1),
non-relativistic matter at later times, a non-vanishing curvature (Ωk 
= 0) at
later times still, and, if w < −1/3, the vacuum energy density ultimately
dominates. I refer to (4.10) with w = −1 (the usual cosmological constant)
as standard FRW cosmology, while 0 > w 
= −1 would represent a minimal
modification to FRW cosmology. Moreover, when w = −1, I replace ΩQ by
ΩΛ. I will not consider changes to the Friedmann equation which might result
from modified gravitational physics.

Because the subject here is observational cosmology we must discuss the
operational definitions of distance in an FRW Universe. If there exists a
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standard meter stick, an object with a known fixed linear size d which does
not evolve with cosmic time, then one could obviously define an angular size
distance:

DA =
d

θ
, (4.11)

where θ would be the observed angle subtended by this object. If there exists
a standard candle, an object with a known fixed luminosity L which does not
vary with cosmic time, then one could also define a luminosity distance:

DL =
( L
4πF

) 1
2 (4.12)

where F is the measured flux of radiation.
For a RW universe both the angular size distance and the luminosity

distance are related to the radial comoving coordinate,

r = |Ro|χ
[ rH
|Ro|

∫ τ

τo

dτ

a(τ)

]
(4.13)

where τ = tHo, Ro
2 = −rH2/Ωk, and χ(x) is defined by (1.9) in Tamvakis’

introductory contribution. Then it is the case that

DA = r a(τ) = r/(1 + z) (4.14)

and
DL = r/a(τ) = r(1 + z). (4.15)

It is evident that both the angular size distance and the luminosity distance
depend upon the expansion history (through

∫
dτ/a(τ)) and the curvature

(through χ(x)).
The same is true of a comoving volume element:

dV = r2drdΩ , (4.16)

where here dΩ is an incremental solid angle. Therefore, if there exists a class
of objects with a non-evolving comoving density, then this leads to another
possible cosmological test: simply count those objects as a function of redshift
or flux.

Below, I am going to consider these measures of distance and volume in
the form of three classical cosmological tests:

– Angular size tests which essentially involve the determination of DA(z).
Here one measure θ for objects with a known and (hopefully) standard
linear size (such as compact radio sources).

– Luminosity distance tests which involve the measurement of F (z) for pre-
sumably standard candles (such as supernova type Ia, SNIa).

– dV/dz test which involve the counts of very faint galaxies as a function
of flux and redshift.

But before I come to these classic tests, I want to discuss the evidence
supporting the validity of the standard hot Big Bang, as an appropriate
description of the early pre-recombination Universe.
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4.4 Observational Support for the Standard Model
of the Early Universe

The discovery 40 years ago of the cosmic microwave background radiation
(CMB) ended, for most people, the old debate about Steady-State vs. the
Hot Big Bang. Ten years ago, support for the Hot Big Bang was fortified by
the COBE satellite which demonstrated that the CMB has a Planck spectrum
to extremely high precision; it is, quite literally, the most perfect black body
observed in nature [17]. This makes any model in which the CMB is produced
by some secondary process, such as thermal re-radiation of starlight by hot
dust, seem extremely difficult, if not impossible, to contrive.

Not only does the background radiation have a thermal spectrum, it is
now evident that this radiation was hotter in the past than now as expected
for adiabatic expansion of the Universe. This is verified by observations of
neutral carbon fine structure lines as well as molecular hydrogen rotational
transitions in absorption line systems in the spectra of distant quasars. Here,
the implied population of different levels, determined primarily by the back-
ground radiation field, is an effective thermometer for that radiation field.
One example is provided by a quasar with an absorption line system at z =
3.025 which demonstrates that the temperature of the CMB at this redshift
was 12.1+1.7

−8.2 K, consistent with expectations (T ∝ 1 + z) [18].
However, the most outstanding success story for the Hot Big Bang is

generally considered to be that of Big Bang Nucleosynthesis (BBN) which,
for a given number of relativistic particle species, predicts the primordial
abundances of the light isotopes with, effectively, one free parameter: the
ratio of baryons-to-photons, η [19]. I want to review this success story, and
point out that there remains one evident inconsistency which may be entirely
observational, but which alternatively may point to new physics.

We saw above in the Friedmann equation (4.10) that radiation, if present,
will always dominate the expansion of the Universe at early enough epochs
(roughly at z ≈ 2×104Ωm.) This makes the expansion and thermal history of
the Universe particularly simple during this period. The Friedmann equation
becomes

H2 =
4πGaT 4N(T )

3c2
, (4.17)

here a is the radiation constant and N(T ) is the number of degrees of freedom
in relativistic particles. The scale factor is seen to grow as t1/2 which means
that the age of the Universe is given by t = 1/2H. This implies, from (4.17),
an age-temperature relation of the form t ∝ T−2. Putting in numbers, the
precise relation is

t =
2.5

TMeV
2N(T )

1
2

s , (4.18)

where the age is given in seconds and TMeV is the temperature measured in
MeV. It is only necessary to count the number of relativistic particle species:
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N(T ) =
∑

gB +
7
8

∑
gF , (4.19)

where the sums are over the number of bosonic degrees of freedom (gB) and
fermionic degrees of freedom (gF ). The factor 7/8 is due to the difference in
Bose-Einstein and Fermi-Dirac statistics. Adding in all the known species,
photons, electrons-positrons (when TMeV > 0.5), three types of neutrinos
and anti-neutrinos, we find

t ≈ TMeV
−2 s (4.20)

for the age-temperature relation in the early Universe.
When the Universe is less than one second old (T > 1 MeV) the weak

interactions

p+ e− ↔ n+ νe

n+ e+ ↔ p+ νe

n ↔ p+ e− + νe ,

are rapid enough to establish equilibrium between these various species. But
when T falls below 1 MeV, the reaction rates become slower than the expan-
sion rate of the Universe, and neutrons “freeze out”, they fall out of thermal
equilibrium, as do the neutrinos. This means the equilibrium ratio of neutrons
to protons at T ≈ 1 MeV is frozen into the expanding soup: n/p ≈ 0.20−0.25.
You all know that neutrons outside of an atomic nucleus are unstable parti-
cles and decay with a half-life of about 15 minutes. But before that happens
there is a possible escape route:

n+ p↔ D + γ

that is to say, a neutron can combine with a proton to make a deuterium
nucleus and a photon. However, so long as the mean energy of particles and
photons is greater than the binding energy of deuterium, about 86 KeV, the
inverse reaction happens as well; as soon as a deuterium nucleus is formed it is
photo-dissociated. This means that it is impossible to build up a significant
abundance of deuterium until the temperature of the Universe has fallen
below 86 KeV or, looking back at (4.20), until the Universe has become
older than about 2.5 minutes. Then all of the remaining neutrons are rapidly
processed into deuterium. But the deuterium doesn’t stay around for long
either. Given the temperature and particle densities prevailing at this epoch,
there are a series of two-body reactions by which two deuterons combine to
make He4 and trace amounts of lithium and He3. These reactions occur at
a rate which depends upon the overall abundance of baryons, the ratio of
baryons to photons:

η = nb/nγ = 274Ωbh
2 × 10−10 . (4.21)
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Fig. 4.1. The predicted abundances of the light isotopes as a function of η [19].
Here Yp is the predicted mass fraction of helium and is based upon the assumption
of three neutrino types. The widths of the bands show the theoretical uncertainty.

So essentially all neutrons which survive until T = 86 KeV become locked
up in He4. Therefore, the primordial abundance of helium depends primarily
upon the expansion rate of the Universe: the faster the expansion (due, say, to
more neutrino types or to a larger constant of gravity) the more helium. The
abundance of remaining deuterium, however, depends upon the abundance
of baryons, η: the higher η the less deuterium. This is why it is sometimes
said [19] that the abundance of primordial helium is a good chronometer (it
measures the expansion rate), while the abundance of deuterium is a good
baryometer (it measures Ωb). This is evident in Figs. 4.1 and 4.2 where we
see first the predicted abundances of various light isotopes as a function of η,
and secondly, the predicted abundance of He vs. that of deuterium for two,
three and four neutrino types.

The determination of primordial abundances is not a straightforward mat-
ter because the abundance of these elements evolves due to processes occur-
ring within stars (“astration”). In general, the abundance of helium increases
(hydrogen is processed to helium providing the primary energy source for
stars), while deuterium is destroyed by the same process. This means that
astronomers, when trying to estimate primordial abundances of deuterium
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Fig. 4.2. The predicted abundance, Yp, of helium (the mass fraction) as a function
of the predicted deuterium abundance for two, three, and four neutrino types [19].
The point with error bars is the observed abundances of helium and deuterium.

or helium, must try to find pristine, unprocessed material, in so far as possi-
ble. One way to find unprocessed material is to look back at early times, or
large redshift, before the baryonic material has been recycled through gener-
ations of stars. This can be done with quasar absorption line systems, where
several groups of observers have been attempting to identify very shallow
absorption lines of deuterium at the same redshift as the much stronger hy-
drogen Lyman alpha absorption line systems [20, 21, 22, 23]. It is a difficult
observation requiring the largest telescopes; the lines identified with deu-
terium might be mis-identified weak hydrogen or metal lines (incidentally,
for an astronomer, any element heavier than helium is a metal). Taking the
results of various groups at face value, the weighted mean value [19] is D/H
≈ 2.6±0.3×10−5. Looking back at Fig. 4.1, we see that this would correspond
to η = 6.1 ± 0.6 × 10−10 or Ωbh

2 = 0.022 ± 0.003.
A word of caution is necessary here: the values for the deuterium abun-

dance determined by the different groups scatter by more than a factor of
two, which is considerably larger than the quoted statistical errors (≈ 25%).
This indicates that significant systematic effects are present. But it is note-
worthy that the angular power spectrum of the CMB anisotropies also yields
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an estimate of the baryon abundance; this is encoded in the ratio of the
amplitudes of the second to first peak. The value is Ωbh

2 = 0.024 ± 0.001.
In other words, the two determinations agree to within their errors. This
is quite remarkable considering that the first determination involves nuclear
processes occurring within the first three minutes of the Big Bang, and the
second involves oscillations of a photon-baryon plasma on an enormous scale
when the Universe is about 500,000 years old. If this is a coincidence, it is
truly an astounding one.

So much for the baryometer, but what about the chronometer helium?
Again astronomers are obliged to look for unprocessed material in order to
estimate the primordial abundance. The technique of looking at quasar ab-
sorption line systems doesn’t work for helium because the absorption lines
from the ground state are far in the ultraviolet, about 600 A for neutral
helium and, more likely, 300 A from singly ionized helium. This is well be-
yond the Lyman limit of hydrogen, where the radiation from the background
quasar is effectively absorbed [24]. Here the technique is to look for He emis-
sion lines from HII regions (ionized gas around hot stars) in nearby galaxies
and compare to the hydrogen emission lines. But how does one know that the
gas is unprocessed? The clue is in the fact that stars not only process hydro-
gen into helium, but they also, in the late stages of their evolution, synthesize
heavier elements (metals) in their interiors. Therefore the abundance of heav-
ier elements, like silicon, is an indicator of how much nuclear processing the
ionized gas has undergone. It is observed that the He abundance is correlated
with the metal abundance; so the goal is to find HII regions with as low a
metal abundance as possible, and then extrapolate this empirical correlation
to zero metal abundance [25, 26]. The answer turns out to be He/H ≈ 0.24,
which is shown by the point with error bars in Fig. 4.2.

This value is embarrassingly low, given the observed deuterium abun-
dance. It is obviously more consistent with an expansion rate provided by
only two neutrino types rather than three, but we know that there are cer-
tainly three types. Possible reasons for this apparent anomaly are:

1) Bad astronomy: There are unresolved systematic errors in determina-
tion of the relative He abundance in HII regions indicated by the fact that the
results of different groups differ by more than the quoted statistical errors [19].
The derivation of the helium to hydrogen ratio from the observed He+/H+

ratio requires some understanding of the structure of the HII regions. If there
are relatively cool ionizing stars (T < 35000 K) spatially separated from the
hotter stars, there may be relatively less He+ associated with a given abun-
dance of H+. Lines of other elements need to be observed to estimate the
excitation temperature; it is a complex problem.

2) New neutrino physics: There may be an asymmetry between neutrinos
and anti-neutrinos (something like the baryon- antibaryon asymmetry which
provides us with the observed Universe). This would manifest itself as a
chemical potential in the Boltzmann equation giving different equilibrium
ratios of the various neutrino species [27].
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3) New gravitational physics: any change in the gravitational interaction
which is effective at early epochs (braneworld effects?) could have a pro-
nounced effect on nucleosynthesis. For example, a lower effective constant of
gravity would yield a lower expansion rate and a lower He abundance. The
standard minimal braneworld correction term, proportional to the square of
the density [28], goes in the wrong direction.

It is unclear if the low helium abundance is a serious problem for the stan-
dard Big Bang. But it is clear that the agreement of the implied baryon abun-
dance with the CMB determination is an impressive success, and strongly
supports the assertion that the Hot Big Bang is the correct model for the
pre-recombination Universe.

4.5 The Post-recombination Universe:
Determination of Ho and to

Certainly the most basic of the cosmological parameters is the present ex-
pansion rate, Ho , because this sets the scale of the Universe. Until a few
years ago, there was a factor of two uncertainty in Ho ; with two separate
groups claiming two distinct values, one near 50 km s−1Mpc−1 and the other
nearer 100 km s−1Mpc−1, and the errors quoted by both groups were much
smaller than this factor of two difference. This points out a problem which is
common in observational cosmology (or indeed, astronomy in general). Often
the indicated statistical errors give the impression of great precision, whereas
the true uncertainty is dominated by poorly understood or unknown system-
atic effects. That was true in the Hubble constant controversy, and there is
no less reason to think that this problem is absent in modern results. I will
return to this point several times below.

The great leap forward in determination of Ho came with the Hubble
Space Telescope (HST) program on the distance scale. Here a particular kind
of variable stars, Cepheid variables, were observed in twenty nearby spiral
galaxies. Cepheids exhibit periodic variations in luminosity by a factor of two
on timescales of 2-40 days. There is a well-determined empirical correlation
between the period of Cepheids and their mean luminosity– the longer the pe-
riod the higher the luminosity. Of course, this period-luminosity relation must
be calibrated by observing Cepheids in some object with a distance known
by other techniques and this remains a source of systematic uncertainty. But
putting this problem aside, the Hubble Space telescope measured the peri-
ods and the apparent magnitudes, without confusion from adjacent bright
stars, of a number of Cephieds in each of these relatively nearby galaxies,
which yielded a distance determination (4.12). These galaxies are generally
too close (less than 15 Mpc) to sample the pure Hubble flow, (the Hubble
flow on these scales is contaminated by random motion of the galaxies and
systematic cosmic flows) but these determinations do permit a calibration
of other secondary distance indicators which reach further out, such as su-
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pernovae type Ia (SNIa) and the Tully-Fisher relation (the observed tight
correlation between the rotation velocities of a spiral galaxies and their lumi-
nosities). After an enormous amount of work by a number of very competent
astronomers [29], the answer turned out to be h = 0.72 ± .10.

As I mentioned there is the known systematic uncertainty of calibrat-
ing the period-luminosity relation, but there are other possible systematic
effects that are less well-understood: How can we be certain that the period-
luminosity relation for Cepheids is the same in all galaxies? For example, is
this relation affected by the concentration of elements heavier than helium
(the metallicity)? In view of such potential problems, other more direct phys-
ical methods, which by-pass the traditional “distance ladder” are of interest.
Chief among these is the Sunyaev-Zeldovich (S-Z) effect which is relevant to
clusters of galaxies [30]. The baryonic mass of clusters of galaxies is primarily
in the form of hot gas, which typically exceeds the mass in the visible galaxies
by more than a factor of two. This gas has a temperature between 107 and
108 K (i.e., the sound speed is comparable to the one-dimensional velocity
dispersion of the galaxies) and is detected by satellite X-ray telescopes with
detectors in the range of several KeV. The S-Z effect is a small change in
the intensity of the CMB in the direction of such clusters due to Compton
scattering of CMB photons by thermal electrons (classical electron scattering
would, of course, produce no intensity change). Basically, CMB photons are
moved from the Rayleigh-Jeans part of the black body spectrum to the Wien
part, so the effect is observable as a spectral distortion of the black body
spectrum in the range of 100 to 300 GHz. It is a small effect (on the order of
0.4 milli Kelvin) but still 5 to 10 times larger than the intrinsic anisotropies
in the CMB.

By measuring the amplitude of the S-Z effect one determines an optical
depth

τ = σnel , (4.22)

where σ is the frequency dependent cross section, l is the path length, and ne

is the electron density. Because these same clusters emit X-rays via thermal
bremsstrahlung, we may also determine, from the observed X-ray intensity,
an emission measure:

E = ne
2l , (4.23)

Here we have two equations for two unknowns, ne and l. This is simplifying
the actual calculation because ne is a function of radius in the cluster. Know-
ing l and the angular diameter of the cluster θ we can then calculate the
angular size distance to the cluster via (4.11). Hence, the Hubble parameter
is given by Ho = v/DA where v is the observed recession velocity of the clus-
ter. All of this assumes that the clusters have a spherical shape on average,
so the method needs to be applied to a number of clusters. Even so biases are
possible if clusters have more typically a prolate shape or an oblate shape,
or if the X-ray emitting gas is clumpy. Overall, for a number of clusters [31]
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the answer turns out to be h = 0.6, somewhat smaller than the HST distance
ladder method, but the systematic uncertainties remain large.

A second direct method relies on time delays in gravitational lenses [32].
Occasionally, a distant quasar (the source) is lensed by an intervening galaxy
(the lens) into multiple images; that is to say, we observe two or more images
of the same background object separated typically by one or two seconds of
arc. This means that there are two or more distinct null geodesics connecting
us to the quasar with two or more different light travel times. Now a number of
these quasars are intrinsically variable over time scales of days or months (not
periodic but irregular variables). Therefore, in two distinct images we should
observe the flux variations track each other with a time delay. This measured
delay is proportional to the ratio DlDs/Dls where these are the angular size
distances to the lens, the source, and the lens to the source. Since this ratio is
proportional to Ho

−1, the measured time delay, when combined with a mass
model for the lens (the main source of uncertainty in the method), provides
a determination of the Hubble parameter. This method, applied to several
lenses [33, 34], again tends to yield a value of h that is somewhat smaller than
the HST value, i.e., ≈ 0.6. In a recent summary [35] it is claimed that, for
four cases where the lens is an isolated galaxy, the result is h = 0.48 ± .03,
if the overall mass distribution in each case can be represented by a singular
isothermal sphere. On the other hand, in a well-observed lens where the
mass distribution is constrained by observations of stellar velocity dispersion
[36], the implied value of h is 0.75+.07

−.06. Such supplementary observations are
important because the essential uncertainty with this technique is in the
adopted mass model of the lens.

It is probably safe to say that h ≈ 0.7, with an uncertainty of 0.10 and
perhaps a slight bias toward lower values, but the story is not over as S-Z and
gravitational lens determinations continue to improve. This is of considerable
interest because the best fit to the CMB anisotropies observed by WMAP
implies that h = 0.72 ± .05 in perfect agreement with the HST result. With
the S-Z effect and lenses, there remains the possibility of a contradiction.

With h = .70, we find a Hubble time of tH = 14 Gyr. Now in FRW
cosmology, the age of the Universe is to = ftH where f is a number depend-
ing upon the cosmological model. For an Einstein-de Sitter Universe (i.e.,
Ωk = 0, ΩQ = 0, Ωm = 1) f = 2/3 which means that to = 9.1 Gyr. For
an empty negatively curved Universe, f = 1 which means that the age is
the Hubble time. Generally, models with a dominant vacuum energy den-
sity (ΩQ ≈ 1, w ≈ −1) are older (f ≥ 1) and for the concordance model,
f = 0.94. Therefore, independent determinations of the age of the Universe
are an important consistency test of the cosmology.

It is reasonable to expect that the Universe should be older than the oldest
stars it contains, so if we can measure the ages of the oldest stars, we have, at
least, a lower limit on the age of the Universe. Globular star clusters are old
stellar systems in the halo of our own galaxy; these systems are distributed in
a roughly spherical region around the galactic disk and have low abundances



120 Robert H. Sanders

of heavy elements suggesting they were formed before most of the stars in
the disk. If one can measure the luminosity of the most luminous, Lu, un-
evolved stars in a globular cluster (that is, stars still burning hydrogen in
their cores), then one may estimate the age. That is because this luminosity
is correlated with age: a higher Lu means a lower age. Up to about five years
ago, this method yielded globular cluster ages of tgc ≈ 14 ± 2 Gyr, which,
combined with the Hubble parameter discussed above, would be in direct
contradiction with the Einstein-de Sitter Ωm = 1 Universe. But about five
years ago the Hipparchus satellite began to return accurate parallaxes for
hundreds of nearby stars which led to a recalibration of the entire distance
scale. All distances outside the solar system increased by about 10% (in fact,
the entire Universe suddenly grew by this same factor leading to a decrease
in the HST value for the Hubble parameter from about 80 to 72). This meant
that the globular clusters were further away, that Lu was 20% larger larger,
and the globular clusters were correspondingly younger: tgc ≈ 11.5 ± 1.3
Gyr. If we assume that the Universe is about 1 Gyr older than the globular
clusters, then the age of the Universe becomes 12.5 ± 2 Gyr [37] which is
almost consistent with the Einstein-de Sitter Universe. At least there is no
longer any compelling time scale argument for a non zero vacuum energy
density, ΩQ > 0.

A second method for determining the ages of stars is familiar to all physi-
cists, and that is radioactive dating. This has been done recently by observa-
tions of a U238 line in a metal-poor galactic star (an old star). Although the
iron abundance in this star is only 1/800 that of the sun, the abundances of
a group of rare earth metals known as r-process elements are enhanced. The
r-process is rapid neutron absorption onto iron nuclei (rapid compared to the
timescale for subsequent β decay) which contributes to certain abundance
peaks in the periodic table and which occurs in explosive events like super-
novae. This means that this old star was formed from gas contaminated by
an even older supernova event; i.e., the uranium was deposited at a definite
time in the past. Now U238 is unstable with a half life of 4.5 Gyr which makes
it an ideal probe on cosmological times scales. All we have to do is compare
the observed abundance of U238 to that of a stable r-process element (in this
case osmium), with what is expected from the r-process. The answer for the
age of this star (or more accurately, the SN which contaminated the gas out
of which the star formed) is 12.5 ±3 Gyr, which is completely consistent with
the globular cluster ages [38].

If we take 0.6 < h < 0.7, and 9.5 Gyr < to < 15.5 Gyr this implies that
0.59 < Hoto < 1.1. This is consistent with a wide range of FRW cosmologies
from Einstein-de Sitter to the concordance model. That is to say, indepen-
dent measurements of Ho and to are not yet precise enough to stand as a
confirmation or contradiction to the WMAP result.
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4.6 Looking for Discordance: The Classical Tests

4.6.1 The Angular Size Test

The first of the classical cosmological tests we will consider is the angular size
test. Here one measures the angular size of a standard meter stick (hopefully)
as a function of redshift; different FRW cosmologies make different predic-
tions, but basically, for all FRW models θ(z) first decreases as 1/z (as would
be expected in a Euclidean universe) and then increases with z. This is be-
cause the angular size distance is given by DA = r/(1 + z) but the radial
comoving coordinate approaches a finite value as z → ∞. The angular size
distance reaches a maximum at a redshift between 1 and 2 and then decreases
again.

When giant radio galaxies at large redshift were discovered in the 1960’s
there was considerable optimism that these could be used as an angular size
cosmological probe. Radio galaxies typically have a double-lobe structure
with the radio emitting lobes straddling the visible galaxy; these lobes can
extend hundreds of kpc beyond the visible object. Such a linear structure
may be oriented at any angle to the observer’s line-of-sight, so one needs to
measure the angular sizes of a number of radio galaxies in a given redshift bin
and only consider the largest ones, i.e., those likely to be nearly perpendicular
to the line-of-sight.

The result of all this work was disappointing. It appeared that the angular
size of radio sources kept decreasing with redshift just as one would expect for
a pure Euclidean universe [39]. The obvious problem, that plagues all classical
tests, is that of evolution. Very likely, these radio galaxies are not standard
meter sticks at all, but that they were actually smaller at earlier epochs than
now. This would be expected, because such objects are thought to result from
jets of relativistic particles ejected from the nucleus of the parent galaxy in
opposite directions. The jets progress through the surrounding intergalactic
medium at a rate determined by the density of that medium, which, of course,
was higher at larger redshift.

But there is another class of radio sources that would be less susceptible to
such environmental effects: the compact radio sources. These are objects, on
a scale of milli-arc-seconds, typically associated with distant quasars, that are
observed with radio interferometers having global baselines. The morphology
is that of a linear jet with lengths typically less than 30 or 40 pc, so these
would presumably be emission from the jets of relativistic particles deep in
the galactic nucleus near the central engine producing them. The intergalactic
medium, and its cosmological evolution, would be expected to have no effect
here [40].

The result of plotting the median angular size of about 150 of these sources
as a function of redshift is shown on a log-log plot in Fig. 4.3 [41]. Also shown
are the predicted relations for three flat cosmologies (Ωk = 0) with Ωm = 0.9,
0.3, 0.1, the remainder being in a cosmological constant (the middle curve
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Fig. 4.3. The median angular size vs. redshift (log-log plots) for 145 compact
radio sources in 12 redshift bins. The curves are the three flat cosmological models:
dashed, ΩΛ = 0.9; solid, ΩΛ = 0.7 (concordance), dotted, ΩΛ = 0.1. The physical
size of the sources (20-40 pc) has been chosen for the best fit.

is the concordance model). In each case the linear size of the compact radio
sources was chosen to achieve the best fit to the data.

It is evident that the general property of FRW models (that the angu-
lar size of a standard meter stick should begin to increase again beyond a
redshift of about 1.5) is present in this data. However, no statistical test or
maximum likelihood analysis is necessary to see that all three models fit the
data equally well. This is basically an imprecise cosmological test and cannot
be improved, particularly considering that these objects may also evolve in
some unknown way with cosmic time. Looking at the figure, one may notice
that measurement of angular sizes for just a few objects at lower redshift
might help distinguish between models. However, there are very few such
objects at lower redshift, and these have a much lower intrinsic radio power
than those near redshift one. It is dangerous to include these objects on such
a plot because they are probably of a very different class.

4.6.2 The Modern Angular Size Test: CMB-ology

Although it is not my purpose here to discuss the CMB anisotropies (see A.
Challinor’s contribution), it is necessary to say a few words on the preferred
angular scale of the longest wavelength acoustic oscillations, the “first peak”,
because this is now the primary evidence for a flat Universe (Ωk = 0). In
Fig. 4.4 we see again the now very familiar plot of the angular power spectrum
of anisotropies as observed by WMAP [43] (in my opinion, of all the WMAP
papers, this reference provides the clearest discussion of the physics behind
the peak amplitudes and positions). The solid line is the concordance model,
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Fig. 4.4. The angular power spectrum of CMB anisotropies observed by WMAP
[43]. The solid line is not a fit but the is the concordance model proposed earlier [2].

not a fit, but just the predicted angular power spectrum (via CMBFAST
[42]) from the Ωm = 0.3, ΩΛ = 0.7 model Universe with an optical depth of
τ ≈ 0.17 to the surface of last scattering. I must admit that the agreement
is impressive.

I remind you that the harmonic index on the horizontal axis is related to
angular scale as

l ≈ π/θ , (4.24)

so the first peak, at l ≈ 220, would correspond to an angular scale of about
one degree. I also remind you that the first peak corresponds to those density
inhomogeneities which entered the horizon sometime before decoupling (at
z = 1000); enough before so that they have had time to collapse to maximum
compression (or expand to maximum rarefaction) just at the moment of hy-
drogen recombination. Therefore, the linear scale of these inhomogeneities is
very nearly given by the sound horizon at decoupling, that is

lh ≈ ctdec/
√

3 , (4.25)

where tdec is the age of the Universe at decoupling.
So one might say, the test is simple: we have a known linear scale lh which

corresponds to an observed angular scale (θ ≈ 0.014 rad) so we can determine
the geometry of the Universe. It is not quite so simple because the linear scale,
lh depends, via tdec on the matter content of the Universe (Ωm); basically,
the larger Ωm, the sooner matter dominates the expansion, and the earlier
decoupling with a correspondingly smaller lh. This comoving linear scale is
shown in Fig. 4.5 as a function of Ωm (ΩΛ hardly matters here, because the
vacuum energy density which dominates today has no effect at the epoch of
decoupling). Another complication is that the angular size distance to the
surface of last scattering not only depends upon the geometry, but also upon
the expansion history. This is evident in Fig. 4.6 which shows the comoving
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Fig. 4.5. The comoving linear scale of the perturbation corresponding to the first
peak as a function of Ωm

Fig. 4.6. The angular size distance (Gpc) to the last scattering surface (z = 1000)
as a function of Ωm for various values of Ωtot.

angular size distance (in Gpc) to the surface of last scattering as a function
of Ωm for three values of Ωtot = Ωm +ΩΛ (i.e., Ωk = 1−Ωtot). Note that the
comoving angular size distance, DA(1+z), is the same as the radial comoving
coordinate r.

We can combine Figs. 4.5 and 4.6 to plot the expected angular size (or
harmonic index) of the first peak as a function of Ωm and Ωtot, and this
is shown in Fig. 4.7 with the dashed line giving the observed l of the first
peak. We see that a model with Ωtot ≥ 1.1 (a closed universe) is clearly
ruled out, but it would be possible to have an open model with Ωtot = 0.9
and Ωm = 0.8 from the position of the first peak alone; the predicted peak
amplitude, however, would be about 40% too low. The bottom line of all of
this is that the position of the first peak does not uniquely define the geometry
of the Universe because of a degeneracy with Ωm (I haven’t mentioned the
degeneracy with h taken here to be 0.72). To determine whether or not we
live in a flat Universe we need an independent handle on Ωm and that is
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Fig. 4.7. The harmonic index expected for the first peak as a function of Ωm for
various values of Ωtot.

provided, in WMAP data, by the amplitudes of the first two peaks (the more
non-baryonic matter, the deeper the forming potential wells, and the lower
the amplitudes). From this it is found that Ωm ≈ 0.3, and from Fig. 4.7 we
see that the model Universe should be near flat (Ωtot ≈ 1.0). Of course if the
Universe is near flat with Ωm = 0.3 then the rest must be in dark energy;
this is the indirect evidence from the CMB anisotropies for dark energy.

I just add here that the observed peak amplitudes (given the optical depth
to z = 1000 determined from WMAP polarization results [44]), is taken now
as definitive evidence for CDM. However, alternative physics which affects
the amplitude and positions of peaks (e.g. [3]) could weaken this conclusion,
as well as affect the derived cosmological parameters. Even taking the peak
amplitudes as prima facie evidence for the existence of cold dark matter, it is
only evidence for CDM at the epoch of recombination (z = 1000) and not in
the present Universe. To address the cosmic coincidence problem, models have
been suggested in which dark matter transmutes into dark energy (e.g. [45]).

Now I turn to the direct evidence for dark energy.

4.6.3 The Flux-Redshift Test: Supernovae Ia

Type I supernovae are thought to be nuclear explosions of carbon/oxygen
white dwarfs in binary systems. The white dwarf (a stellar remnant supported
by the degenerate pressure of electrons) accretes matter from an evolving
companion and its mass increases toward the Chandrasekhar limit of about
1.4 M� (this is the mass above which the degenerate electrons become rel-
ativistic and the white dwarf unstable). Near this limit there is a nuclear
detonation in the core in which carbon (or oxygen) is converted to iron. A
nuclear flame propagates to the exterior and blows the white dwarf apart
(there are alternative models but this is the favored scenario [46]).

These events are seen in both young and old stellar populations; for ex-
ample, they are observed in the spiral arms of spiral galaxies where there is
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active star formation at present, as well as in elliptical galaxies where vigor-
ous star formation apparently ceased many Gyr ago. Locally, there appears
to be no difference in the properties of SNIa arising in these two different pop-
ulations, which is important because at large redshift the stellar population
is certainly younger.

The peak luminosity of SNIa is about 1010 L� which is comparable to that
of a galaxy. The characteristic decay time is about one month which, in the
more distant objects, is seen to be stretched by 1+z as expected. The light
curve has a characteristic form and the spectra contain no hydrogen lines, so
given reasonable photometric and spectroscopic observations, they are easy
to identify as SNIa as opposed to type II supernovae; these are thought to be
explosions of young massive stars and have a much larger dispersion in peak
luminosity [47].

The value of SNIa as cosmological probes arises from the high peak lumi-
nosity as well as the observational evidence (locally) that this peak luminosity
is the sought-after standard candle. In fact, the absolute magnitude, at peak,
varies by about 0.5 magnitudes which corresponds to a 50%-60% variation in
luminosity; this, on the face of it, would make them fairly useless as standard
candles. However, the peak luminosity appears to be well-correlated with de-
cay time: the larger Lpeak, the slower the decay. There are various ways of
quantifying this effect [47], such as

MB ≈ 0.8(∆m15 − 1.1) − 19.5 , (4.26)

where MB is the peak absolute magnitude and ∆ m15 is the observed change
in apparent magnitude 15 days after the peak [48]. This is an empirical re-
lationship, and there is no consensus about the theoretical explanation, but,
when this correction is applied it appears that ∆Lpeak < 20%. If true, this
means that SNIa are candles that are standard enough to distinguish between
cosmological models at z ≈ 0.5.

In a given galaxy, supernovae are rare events (on a human time scale,
that is), with one or two such explosions per century. But if thousands of
galaxies can be surveyed on a regular and frequent basis, then it is possible
to observe several events per year over a range of redshift. About 10 years
ago two groups began such ambitious programs [49, 50]; the results have been
fantastically fruitful and have led to a major paradigm shift.

The most recent results are summarized in [51]: at present, about 230
SNIa have been observed out to z = 1.2. The bottom line is that SNIa are
10% to 20% fainter at z ≈ 0.5 than would be expected in an empty (Ωtot = 0)
non-accelerating Universe. But, significantly, at z ≥ 1 the supernovae appear
to become brighter again relative to the non-accelerating case; this should
happen in the concordance model at about this redshift because it is here
that the cosmological constant term in the Friedmann equation (4.10) first
begins to dominate over the matter term. This result is shown in Fig. 4.8
which is a plot of the median ∆m, the observed deviation from the non-
accelerating case, in various redshift bins as a function of redshift (i.e., the
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Fig. 4.8. The Hubble diagram for SNIa normalized to an empty non-accelerating
Universe. The points are binned median values for 230 supernovae [51] The curves
show the predictions for three flat (Ωtot = 0) cosmological models: The dashed line
is the model dominated by a cosmological constant (ΩΛ = 0.9), the solid curve is
the concordance model (ΩΛ = 0.7), and the dotted curve is the matter dominated
model (ΩΛ = 0.1).

horizontal line at ∆m = 0 corresponds to the empty universe). The solid
curves show the prediction for various flat (Ωtot = 1) models with the value
of the cosmological term indicated. It is evident that models dominated by
a cosmological term or by matter are inconsistent with the observations at
extremely high levels of significance, while the concordance model agrees
quite well with the observations.

It is also evident from the figure that the significance of the effect is not
large, perhaps 3 or 4 σ (quite a low level of significance on which to base a
paradigm shift). When all the observed supernovae are included on this plot,
it is quite a messy looking scatter with a minimum χ2 per degree of free-
dom (for flat models) which is greater than one. Moreover the positive result
depends entirely upon the empirical peak luminosity-decay rate relationship
and, of course, upon the assumption that this relation does not evolve. So,
before we become too enthusiastic we must think about possible systematic
effects and how these might affect the conclusions. These effects include:

1) Dust: It might be that supernovae in distant galaxies are more (or less)
dimmed by dust than local supernovae. But normal dust, with particle sizes
comparable to the wavelength of light, not only dims but also reddens (for
the same reason, Rayleigh scattering, that sunsets are red). This is quantified
by the so-called color excess. Remember I said that astronomers measure the
color of an object by its B-V color index (the logarithm of a flux ratio). The
color excess is defined as



128 Robert H. Sanders

E(B − V ) = (B − V )obs − (B − V )int , (4.27)

where obs means the observed color index and int means the intrinsic color
index (the color the object would have with no reddening). In our own galaxy
it is empirically the case that the magnitudes of absorption is proportional
to this color excess, i.e.,

AV = RV E(B − V ) , (4.28)

where RV is roughly constant and depends upon average grain properties.
So assuming that the dust in distant galaxies is similar to the dust in our
own, it should be possible to estimate and correct for the dust obscuration.
Significantly [49], it appears that there is no difference between E(B-V) for
local and distant supernovae. This implies that the distant events are not
more or less obscured than the local ones.

2) Grey dust: It is conceivable (but unlikely) that intergalactic space con-
tains dust particles which are significantly larger than the wavelength of light.
Such particles would dim but not redden the distant supernovae and so would
be undetectable by the method described above [52]. It is here that the very
high redshift supernovae (z > 1) play an important role. If this is the cause
of the apparent dimming we might expect that the supernovae would not
become brighter again at higher redshift.

3) Evolution: It is possible that the properties of these events may have
evolved with cosmic time. As I mentioned above, the SN exploding at high
redshift come from a systematically younger stellar population than the ob-
jects observed locally. Moreover, the abundance of metals was smaller in the
earlier Universe than now; this evolving composition, by changing the opac-
ity in the outer layers or the composition of the fuel itself could lead to a
systematic evolution in peak luminosity. Here it is important to look for ob-
servational differences between local and distant supernovae, and there seem
to be no significant differences in most respects, the spectrum or the light
curve. There is, however, a suggestion that distant supernovae are intrinsi-
cally bluer than nearby objects [47]. If this effect is verified, then it could not
only point to a systematic difference in the objects themselves, but could also
have lead to an underestimate of the degree of reddening in the distant SN. It
is difficult, in general, to eliminate the possibility that the events themselves
were different in the past and that this could mimic the effect of a cosmolog-
ical constant [53]; a deeper theoretical understanding of the SNIa process is
required in order to realistically access this possibility.

4) Sample evolution: The sample of SN selected at large redshift may dif-
fer from the nearby sample that is used, for example, to calibrate the peak
luminosity-decline rate correlation. There does appear to be an absence, at
large redshift, of SN with very slowly declining light curves– which is to say,
very luminous SN that are seen locally. Perhaps a class of more luminous
objects is missing in the more distant Universe due to the fact that these SN
emerge from a systematically younger stellar population. One would hope
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that the luminosity-decline rate correlation would correct for this effect, as-
suming, of course, that this relation itself does not evolve.

5) Selection biases: There is a dispersion in the luminosity-decline rate
relationship, and in a flux-limited sample, one tends to select the higher lu-
minosity objects. Astronomers call this sort of bias the “Malmquist effect”
and it is always present in such observational data. Naively, one would expect
such a bias to lead to an underestimate of the true luminosity, and, there-
fore an underestimate luminosity distance; the bias actually diminishes the
apparent acceleration. But there is another effect which is more difficult to
access: The most distant supernovae are being observed in the UV of their
own rest frame. SNIa are highly non-uniform in the UV, and K-corrections
are uncertain. This could introduce systematic errors at the level of a few
hundredths of a magnitudes [51].

We see that there are a number of systematic effects that could bias these
results. A maximum likelihood analysis over the entire sample [51], confirms
earlier results that the confidence contours in Ωm-ΩΛ space are stretched
along a line ΩΛ = 1.4Ωm + 0.35 and that the actual best fit is provided by a
model with Ωm ≈ 0.7 and ΩΛ ≈ 1.3, not the concordance model. Of course, if
we add the condition that Ωtot = 1 (a flat Universe) then the preferred model
becomes the concordance model. In [51] it is suggested that this apparent
deviation is due to the appearance of one or more of the systematic effects
discussed above near z = 1 at the level of 0.04 magnitudes.

The result that SNIa are systematically dimmer near z = 0.5 than ex-
pected in a non-accelerating Universe is robust. At the very least it can be
claimed with reasonable certainty that the Universe is not decelerating at
present. However, given the probable presence of systematic uncertainties at
the level of a few hundredths of a magnitude, it is difficult to constrain the
equation of state (w) of the dark energy or its evolution (dw/dt) until these
effects are better understood. I will just mention that lines of constant age,
toHo, are almost parallel to the best fit line in the Ωm-ΩΛ plane mentioned
above. This then gives a fairly tight constraint on the age in Hubble times
[51]; i.e. toHo = 0.96 ± 0.4, which is consistent with the WMAP result. In a
near flat Universe this rules out the dominance of matter and requires a dark
energy term.

4.6.4 Number Counts of Faint Galaxies

The final classical test I will discuss is that of number counts of distant
objects, what radio astronomers call the log(N)-log(S) test. Basically one
counts the number of galaxies N brighter than a certain flux limit S. If we lived
in a static Euclidean universe, then the number of galaxies out to distance R
would be N ∝ R3 but the flux is related to R as S ∝ R−2. This implies that
N ∝ S−3/2 or log(N) = −3/2 log(S) + const = 0.6m+ const. where m is the
magnitude corresponding to the flux S.
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Fig. 4.9. The log of the incremental volume per incremental redshift (in units of
the Hubble volume) as a function of redshift for the three flat cosmological models.

But we do not live in a static Euclidean universe; we live in an evolving
universe with a non-Euclidean geometry where the differential number counts
probe dV(z), the comoving volume as a function of redshift. In Fig. 4.9 we see
log(dV/dz) as a function of redshift for three different(Ωtot = 1) cosmological
models: the matter dominated Universe, the cosmological constant dominated
Universe, and the concordance model. For small z, dV/dz increases as z2 for
all models as would be expected in a Euclidean Universe, but by redshift one,
the models are obviously diverging, with the models dominated by a cosmo-
logical constant having a larger comoving incremental volume. Therefore if
we can observe faint galaxies extending out to a redshift of one or two, we
might expect number counts to provide a cosmological probe.

There is a long history of counting objects as a function of flux or red-
shift. Although cosmological conclusions have been drawn (see, e.g. [54]), the
overall consensus is that this is not a very good test because the galaxy popu-
lation evolves strongly with redshift. Galaxies evolve because stars evolve. In
the past, the stellar populations were younger and contained relatively more
massive, luminous stars. Therefore we expect galaxies to be more luminous at
higher redshift. It is also possible that the density of galaxies evolves because
of merging, as would be consistent with the preferred model of hierarchical
structure formation in the Universe.

The distribution of galaxies by redshift can be used, to some extent, to
break this degeneracy between evolution and cosmology. If we can measure
the redshifts of galaxies with infrared magnitudes between 23 and 26, for
example, that distribution will be skewed toward higher redshift if there is
more luminosity evolution.
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Fig. 4.10. The solid points are the faint galaxy number counts from the Hubble
Deep Fields (north and south [56, 57]) and the star shaped points are the number
counts from ground based data. The curves are the no-evolution predictions from
three flat cosmological models.

I have recently reconsidered the number counts of the faint galaxies in the
Hubble Deep Fields, north and south [56, 57]. These are two separate small
patches of empty sky observed with the Hubble Space Telescope down to a
very low flux limit– about mI = 30 (the I band is a far red filter centered
around 8000 angstroms). The differential number counts are shown by the
solid round points in Fig. 4.10 where ground based number counts at fainter
magnitudes are also shown by the starred points.

For this same sample of galaxies, there are also estimates of the redshifts
based upon the galaxy colors, the so called photometric redshifts [58]. In
order to calculate the expected number counts and redshift distribution one
must have some idea of the form of the luminosity function, the distribution
of galaxies by redshift. Here, like everyone else, I have have assumed that this
form is given by the Schechter function [59]:

N(L)dL = No(L/L∗)−αexp(−L/L∗)dL , (4.29)

which is characterized by three parameters: α, a power law at low luminosi-
ties, L∗ a break-point above which the number of galaxies rapidly decreases,
and No a normalization. I take this form because the overall galaxy distri-
bution by luminosity at low redshifts is well fit by such a law [60], so I am
assuming that at least the form of the luminosity function does not evolve
with redshift.

But when I consider faint galaxies at high redshift in a particular band
I have to be careful to apply the K-correction mentioned above; that is, I
must correct the observed flux in that band to the rest frame. Making this
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Fig. 4.11. The cumulative redshift distribution for galaxies between apparent I-
band magnitudes of 23 and 26 (photometric redshifts from [58]). The curves are
the predicted no-evolution distributions for the three cosmological models.

correction [61], but assuming no luminosity or density evolution, I find the
differential number counts appropriate to our three flat cosmological models
shown by the indicated curves in Fig. 4.10. We see that the predicted number
counts all fall short of the observed counts, but that the cosmological constant
dominated model comes closest to matching the observations. However, the
distribution by redshift of HDF galaxies between I-band magnitudes of 22 and
26 is shown in Fig. 4.11 (this is obviously the cumulative distribution). Here
we see that all three models seriously fail to match the observed distribution,
in the sense that the predicted mean redshift is much too small.

This problem could obviously be solved by evolution. If galaxies are
brighter in the past, as expected, then we would expect to shift this distribu-
tion toward higher redshifts. One can conceive of very complicated evolution
schemes, involving initial bursts of star formation with or without continu-
ing star formation, but it would seem desirable to keep the model as simple
as possible; let’s take a “minimalist” model for galaxy evolution. A simple
one parameter scheme with the luminosity brightening proportional to the
look-back time squared, i.e., every galaxy brightens as

∆MI = q (Hotlb)
2
, (4.30)

where q is the free parameter, can give a reasonable match to evolution models
for galaxies [61]. (we also assume that all galaxies are the same, they are not
divided into separate morphological classes). I choose the value of q such
that the predicted redshift distribution most closely matches the observed
distribution for all three models, and the results are shown in Fig. 4.12.

The required values of q (in magnitudes per tH2) for the three cosmological
models are: q = 2.0 (ΩΛ = 1.0), q = 3.0 (ΩΛ = 0.7), and q = 11.0 (ΩΛ = 0.0).
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Fig. 4.12. As in Fig. 4.10 above the observed galaxy number counts and the pre-
dictions for the cosmological models with luminosity evolution sufficient to explain
the number counts.

Obviously, the matter-dominated model requires the most evolution, and
with this simple evolution scheme, cannot be made to perfectly match the
observed distribution by redshift (this in itself is not definitive because one
could always devise more complicated schemes which would work). For the
concordance model, the required evolution would be about two magnitudes
out to z = 3.

For these same evolutionary models, that is, with evolution sufficient to
match the number counts, the predicted redshift distributions are shown in
Fig. 4.13. Here we see that the model dominated by a cosmological constant
predicts too many low redshift galaxies, the matter dominated model predicts
too few, and the model that works perfectly is very close to the concordance
model! Preforming this operation for a number of flat models with variable
ΩΛ, I find that 0.59 < ΩΛ < 0.71 to 90% confidence.

Now there are too many assumptions and simplifications to make this
definitive. The only point I want to make is that faint galaxy number counts
and redshift distributions are completely consistent with the concordance
model when one considers the simplest minimalist model for pure luminosity
evolution. One may certainly conclude that number counts provide no con-
tradiction to the generally accepted cosmological model of the Universe (to
my disappointment).

4.7 Conclusions

In this contribution I have been looking for discord, but have not found
it. The classical tests return results for cosmological parameters that are
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Fig. 4.13. The cumulative redshift distribution for galaxies between apparent i-
band magnitudes of 22 and 26 (photometric redshifts from [58]). The curves are the
predicted distributions for the three cosmological models with evolution sufficient
to explain the number counts.

consistent with but considerably less precise than those implied by the CMB
anisotropies, given the usual assumptions. It is fair to say that the numbers
characterizing the concordance model, Ωm ≈ 0.3, ΩΛ ≈ 0.7 are robust in
the context of the framework of FRW cosmology. It is, in fact, the peculiar
composition of the Universe embodied by these numbers which calls that
framework into question.

Rather small changes in the assumptions underlying pure FRW cosmol-
ogy (with only an evolving vacuum energy density in addition to more fa-
miliar fluids) can make a difference. For example, allowing w = −0.6 brings
the number counts and z-distribution of faint galaxies into agreement with
a Universe strongly dominated by dark energy (ΩQ = 0.9). The same also
true of the high-z supernovae observations [51]. Allowing a small component
of correlated iso-curvature initial perturbations, as expected in braneworld
cosmologies, can affect the amplitudes and positions of the peaks in the an-
gular power spectrum of the CMB anisotropies [3], and therefore the derived
cosmological parameters.

But even more drastic changes have been suggested. Certain braneworld
scenarios, for example, in which 4D gravity is induced on the brane [62]
imply that gravity is modified at large scale where gravitons begin to leak
into the bulk [63]. It is possible that the observed acceleration is due to such
modifications and not to dark energy. More ad hoc modifications of General
Relativity [5] have also been proposed because of a general unease with dark
energy, proposals whereby gravity is modified in the limit of small curvature
scalar. My own opinion is that we should also feel uneasy with the mysterious
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non-baryonic cold dark matter, because the only evidence for its existence, at
present, is its gravitational influence; when the theory of gravity is modified
to eliminate dark energy, it might also be found that the need for dark matter
vanishes.

In general, more attention is being given to so-called infrared modifica-
tions of gravity (e.g. [64]), and this is a positive development. High energy
modifications, that affect the evolution of the early Universe, are, as we have
seen, strongly constrained by considerations of primordial nucleosynthesis
(now, in combination with the CMB results). It is more likely that mod-
ifications play a role in the late, post-recombination evolution of the Uni-
verse, where the peculiarities of the concordance model suggest that they are
needed. The fact that the same rather un-natural values for the comparable
densities of dark energy and matter keep emerging in different observational
contexts may be calling attention to erroneous underlying assumptions rather
than to the actual existence of these “ethers”.

Convergence toward a parameterized cosmology is not, without deeper
understanding, sufficient reason for triumphalism. Rather, it should be a
motivation to look more carefully at the possible systematic effects in the
observations and to question more critically the underlying assumptions of
the models.
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Abstract. I briefly review our current understanding of dark matter and dark
energy. The first part of this review focusses on issues pertaining to dark matter
including observational evidence for its existence, current constraints and the ‘abun-
dance of substructure’ and ‘cuspy core’ issues which arise in CDM. I also briefly
describe MOND. The second part of this review focusses on dark energy. In this
part I discuss the significance of the cosmological constant problem which leads to
a predicted value of the cosmological constant which is almost 10123 times larger
than the observed value λ/8πG � 10−47GeV4. Setting λ to this small value ensures
that the acceleration of the universe is a fairly recent phenomenon giving rise to
the ‘cosmic coincidence’ conundrum according to which we live during a special
epoch when the density in matter and λ are almost equal. Anthropic arguments are
briefly discussed but more emphasis is placed upon dynamical dark energy mod-
els in which the equation of state is time dependent. These include Quintessence,
Braneworld models, Chaplygin gas and Phantom energy. Model independent meth-
ods to determine the cosmic equation of state and the Statefinder diagnostic are
also discussed. The Statefinder has the attractive property

...
a /aH3 = 1 for LCDM,

which is helpful for differentiating between LCDM and rival dark energy models.
The review ends with a brief discussion of the fate of the universe in dark energy
models.

5.1 Dark Matter

Observations of the cosmic microwave background (CMB) and the deuterium
abundance in the Universe suggest that ωbaryonh

2 � 0.02, or ωbaryon � 0.04
if the current Hubble expansion rate is h = H0/100km/sec/Mpc = 0.7. Al-
though ωbaryon is much larger than the observed mass in stars, ωstars � 0.005
1, it is nevertheless very much smaller than the total energy density in the
universe inferred from the observed anisotropy in the cosmic microwave back-
ground [193]

Ωtotal ≡ 8πGρtotal
3H2 = 1.02 ± 0.02 . (5.1)

Both dark matter and dark energy are considered essential missing pieces in
the cosmic jigsaw puzzle
1 This suggests that most of the baryonic matter at z = 0 is not contained in stars

but might be contained in hot gas [30].
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Ωtotal − ωbaryons = ? (5.2)

Although the nature of neither dark matter (DM) nor dark energy (DE) is
currently known, it is felt that both DM and DE are non-baryonic in origin,
and that DM is distinguished from DE by the fact that the former clus-
ters on sub-Megaparsec scales (in order to explain galactic rotation curves)
whereas the latter has a large negative pressure (and can make the universe
accelerate). In addition there is strong evidence to suggest that

Ωm � 1/3 , ΩDE � 2/3 . (5.3)

In this contribution I will briefly review some properties of both dark matter
and dark energy.

Though the observational evidence favouring a flat Universe with Ωtotal �
1 is fairly recent, the nature of the ‘unseen’ component of the universe (which
dominates its mass density), is a long-standing issue in modern cosmology.
Indeed, the need for dark matter was originally pointed out by Zwicky (1933)
who realized that the velocities of individual galaxies located within the Coma
cluster were quite large, and that this cluster would be gravitationally bound
only if its total mass substantially exceeded the sum of the masses of its
component galaxies. For clusters which have relaxed to dynamical equilibrium
the mean kinetic and potential energies are related by the virial theorem [50]

K +
U

2
= 0 , (5.4)

where U � −GM2/R is the potential energy of a cluster of radius R, K �
3M〈v2r〉/2 is the kinetic energy and 〈v2r〉1/2 is the dispersion in the line-of-
sight velocity of cluster galaxies. (Clusters in the Abell catalogue typically
have R � 1.5h−1 Mpc.) This relation allows us to infer the mean gravitational
potential energy if the kinetic energy is accurately known. The mass-to-light
ratio in clusters can be as large as M/L � 300M�/L�. However since most
of the mass in clusters is in the form of hot, x-ray emitting intracluster gas,
the extent of dark matter in these objects is estimated to be M/Mlum � 20,
where Mlum is the total mass in luminous matter including stars and gas.

In individual galaxies the presence of dark matter has been convincingly
established through the use of Kepler’s third law

v(r) =

√
GM(r)
r

(5.5)

to determine the ‘rotation curve’ v(r) at a given radial distance from the
galactic center. Observations of galaxies taken at distances large enough for
there to be no luminous galactic component indicate that, instead of declin-
ing at the expected rate v ∝ r−1/2 true if M � constant, the velocity curves
flattened out to v � constant implying M(r) ∝ r (see Fig. 5.1). This ob-
servation suggests that the mass of galaxies continues to grow even when
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Fig. 5.1. The observed rotation curve of the dwarf spiral galaxy M33 extends
considerably beyond its optical image (shown superimposed); From Roy [164].

there is no luminous component to account for this increase. Velocity curves
have been compiled for over 1000 spiral galaxies usually by measuring the 21
cm emission line from neutral hydrogen (HI) [148, 191]. The results indicate
that M/L = (10 − 20)M�/L� in spiral galaxies and in ellipticals, while this
ratio can increase to M/L � (200 − 600)M�/L� in low surface brightness
galaxies (LSB’s) and in dwarfs. For instance, a recent measurement of the
Draco dwarf spheroidal galaxy located at a distance of only 79 kpc from
the Milky Way shows the presence of a considerable amount of dark matter
M/L|Draco = (440 ± 240)M�/L� [97] ! It is interesting that the total mass
of an individual galaxy is still somewhat of an unknown quantity since a
turn around to the v ∝ r−1/2 law at large radii has not been convincingly
observed.

An important difference between the distribution of dark matter in galax-
ies and clusters needs to be emphasised: whereas dark matter appears to in-
crease with distance in galaxies, in clusters exactly the reverse is true, the
dark matter distribution actually decreases with distance. Indeed, for certain
dwarfs (such as DD0154) the rotation curve has been measured to almost 15
optical length scales indicating that the dark matter surrounding this object
is extremely spread out (see also Fig. 5.1). A foreground cluster, on the other
hand, acts as a gravitational lens which focuses the light from background
objects such as galaxies and QSO’s thereby allowing us to determine the
depth of the cluster potential well. Observations of strong lensing by clusters
indicate that dark matter is strongly concentrated in central regions with a



144 Varun Sahni

projected mass of (1013 − 1014)M� being contained within (0.2 - 0.3) Mpc
of the central region. As we shall see later, this observation may prove to
be problematic for alternatives to the dark matter hypothesis such as the
Modified Newtonian Dynamics (MOND) approach of Milgrom [122].

As discussed earlier, the fact that only 4% of the cosmic density is bary-
onic suggests that the dark matter which we are observing could well be non-
baryonic in origin. The need for non-baryonic forms of dark matter gets indi-
rect support from the fact that baryonic models find it difficult to grow struc-
ture from small initial conditions and hence to reconcile the existence of a well
developed cosmic web of filaments, sheets and clusters at the present epoch
with the exceedingly small amplitude of density perturbations (δρ/ρ ∼ 10−5

at z � 1, 100) inferred from COBE measurements and more recent CMB
experiments. Indeed, it is well known that, if the effects of pressure are ig-
nored, linearized density perturbations in a spatially flat matter dominated
universe grow at the rate δ ∝ t2/3 ∝ (1 + z)−1, where 1 + z = a0/a(t) is the
cosmological redshift. (Contrast this relatively slow growth rate with the ex-
ponential ‘Jeans instability’ of a static matter distribution δ ∝ exp

√
4πGρt.)

In a baryonic universe, the large radiation pressure (caused by Thompson
scattering of CMB photons off electrons) ensures that density perturbations
in the baryonic component can begin growing only after hydrogen recombines
at z � 1, 100 at which point of time baryons and radiation decouple. Requir-
ing δ > 1 today implies δ > 10−3 at recombination, which contradicts CMB
observations by over an order of magnitude ! In non-baryonic models on the
other hand, the absence of any significant coupling between dark matter and
radiation allows structure to grow much earlier, significantly before hydrogen
in the universe has recombined. After recombination baryons simply fall into
the potential wells created for them by the dominant non-baryonic compo-
nent. As a result a universe with a substantial non-baryonic component can
give rise to the structure which we see today from smaller initial fluctuations.

The growth of structure via gravitational instability depends both upon
the nature of primordial perturbations (adiabatic/isocurvature) and upon
whether the dark matter species is hot or cold. The issue of density pertur-
bations has been discussed in considerable detail by R. Durrer in her contri-
bution to this volume and I shall not touch upon this important topic any
further. Let me instead say a few words about hot and cold dark matter. Non-
baryonic Hot Dark Matter (HDM) particles are assumed to have decoupled
from the rest of matter/radiation when they were relativistic and so have a
very large velocity dispersion (hence called ‘hot’). Cold Dark Matter (CDM)
particles, on the other hand, have a very small velocity dispersion and de-
couple from the rest of matter/radiation when they are non-relativistic. The
free-streaming (collisionless phase mixing) of non-baryonic particles as they
travel from high density to low density regions (and vice versa) introduces
an important length scale called the ‘free-streaming distance’ λfs – which is
the mean distance travelled by a relativistic particle species until its momen-
tum becomes non-relativistic. In both HDM and CDM the processed final
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spectrum of density perturbations differs from its initial form. In the case
of HDM this difference arises because fluctuations on scales smaller than λfs
are wiped out due to free streaming with the result that the processed final
spectrum has a well defined cutoff on scales smaller than λ ∼ λfs. Perhaps the
best example of HDM is provided by a light neutrino of mass about 30 eV. In
this case λfs � 41(30eV/mν) Mpc with the result that large proto-pancakes
having masses comparable to those of rich clusters of galaxies M ∼ 1015M�
are the first objects to form in HDM. Smaller objects (galaxies) are formed by
the fragmentation of the proto-pancake. This top-down scenario for structure
formation was originally suggested by Zeldovich and coworkers in connection
with adiabatic baryonic models and subsequently applied to HDM. It has
since fallen out of favour mainly due to the strong observational constraints
on the mass of the neutrino

∑
νi
mνi

< 0.7 eV and on the relic neutrino den-
sity 10−3 <∼ Ωνh

2 <∼ 10−1 [61, 193, 63, 123]. It also faces considerable difficulty
in forming structure sufficiently early to explain the existence of galaxies and
QSO’s at high redshifts.

In contrast to HDM, constituents of CDM have a much smaller free-
streaming distance. Because of this small scales are the first to go non-linear
and gravitational clustering proceeds in a bottom up fashion in this scenario.
A key quantity defining gravitational clustering is the power spectrum of
density perturbations P (k) ≡ |δk|2, which is related to the mean square
density fluctuation via

〈(
δρ

ρ

)2〉
= 4π

∫ ∞

0
P (k)k2dk . (5.6)

Inflationary models predict Pi(k) ∝ kn, n � 1, at an early epoch. As the
universe expands the power spectrum gets modified. The ‘processed’ final
spectrum depends upon the nature of dark matter, the epoch of matter-
radiation equality and other cosmological quantities. The final and initial
spectra are related through a transfer function

Pf (k) = Pi(k) × T 2(k) . (5.7)

CDM-type spectra have the following approximate form of the transfer func-
tion [165, 194, 166]

T (k) =
(

1 +
Ak2

log (1 +Bk)

)−1

. (5.8)

Equations (5.7) and (5.8) illustrate the ‘turn around’ of the power spectrum
from its primordial scale invariant form P (k) ∝ k on the largest scales to
P (k) ∝ k−3 log2 k on small scales. (The precise location of the turn-around
and the amplitude of P (k) depend upon specific details of the cosmological
model, see for instance [16].)

The ‘standard’ cold dark matter (SCDM) paradigm, which assumed that
ΩCDM = 1, was introduced during the early 1980’s at roughly the same time
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when HDM was perceived to be in trouble (see [101, 96, 50, 166] for references
to earlier work on this subject). Although SCDM was very successful in ex-
plaining a host of observational details, it was clear already a decade ago, that
the processed power spectrum of SCDM lacked sufficient power on large scales
and so fell short of explaining the angular two point correlation function for
galaxies on scales ∼ 50 Mpc [60]. The relevant cosmological quantity in this
case is the shape of the power spectrum of density perturbations, which for
CDM-like models, can be characterised by the ‘shape parameter’ Γ = Ωmh.
SCDM models with Ωm = 1 and the HST-determined value h � 0.7 predict
Γ � 0.5 which is much larger than the observed value Γ = 0.207 ± 0.030
inferred from observations of galaxy clustering in the sloan digital sky survey
(SDSS) [154]. A modification of SCDM called LCDM assumes that, in addi-
tion to CDM the universe consists of a smoothly distributed component called
a cosmological constant or a Lambda-term. LCDM models with h � 0.7 and
Ωm = 0.3 predict a smaller value for the shape parameter, Γ � 0.2, and the
resulting amplitude and shape of the power spectrum is in excellent agree-
ment with several different sets of observations as demonstrated in Fig. 5.2.

From (5.6), (5.7) and (5.8) we find that on small scales, the contribution
to the rms density fluctuation from a given logarithmic interval in k is

(
δρ

ρ

)2

k

∼ k3Pf (k) ∝ log2 k , (5.9)

which illustrates the fact that, although the smallest scales are the first to go
non-linear, there is significant power to drive gravitational instability rapidly
to larger scales in this model. Indeed, detailed N-body simulations of large
scale structure show that filaments defining the cosmic web first form on the
smallest scales. The scale-length characterizing the cosmic web grows as the
universe expands, until at the present epoch the cosmic web consists of a
fully developed supercluster-void network with a scale-length of several tens
of Megaparsec [181, 183, 119, 206].

Promising candidates for cold dark matter include a (100 − 1000) GeV
particle called a neutralino. The neutralino is a weakly interacting massive
particle (WIMP). As its name suggests it is neutral and is a fermionic partner
to the gauge and Higgs bosons (usually called the ‘bino, wino and higgsino’).
It is believed that the lightest supersymmetric particle will be stable due
to R-parity which makes the neutralino an excellent candidate for cold dark
matter (see [163, 89] for reviews of particle dark matter). A radically different
particle candidate for cold dark matter is an ultra-light pseudo-Goldstone bo-
son called an axion with a mass of onlyma ∼ 10−5±1 eV. Although ultralight,
the axion is ‘cold’ because it was created as a zero-momentum condensate.
Its existence is a by-product of an attempt to resolve QCD of what is com-
monly called the ‘strong CP problem’ which arises because non-perturbative
effects in QCD give rise to an electric dipole moment for the neutron, in
marked contrast with observations [101]. Other candidates for non-baryonic
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Fig. 5.2. The power spectrum inferred from observations of large scale structure,
the Lymanα forest, gravitational lensing and the CMB. The solid line shows the
power spectrum prediction for a flat scale-invariant LCDM model with Ωm = 0.28,
Ωb/Ωm = 0.16, h = 0.72. From Tegmark et al. [200].

cold dark matter include string theory motivated modulii fields [32]; non-
thermally produced super-heavy particles having a mass ∼ 1014 GeV and
dubbed Wimpzillas [100]; as well as axino’s and gravitino’s, superpartners of
the axion and graviton respectively [163].

Since WIMP’s cluster gravitationally, one should expect to find a flux
of these particles in our own solar system and attempts are being made
to determine dark matter particles by measuring the scattering of WIMP’s
on target nucleii through nuclear recoils. Now the earth orbits the sun (see
Fig. 5.3) with a velocity � 30 km/sec, even as the sun orbits the galaxy with
vM� � 220 km/sec. Furthermore the plane of the Earth’s orbit is inclined
at an angle of 60◦ to the glactic plane, because of which the dark matter
flux on Earth is expected to be larger in June (when the Earth’s velocity
and the Sun’s velocity add together) than in December (when these two
velocities subtract). The resulting rate variation is about 7% between the flux
measured during summer and winter. Precisely such a signal was reported
by the DAMA experiment whose data (collected since 1996) appears to show
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220 km/sSun

Earth 
30 km/s

Fig. 5.3. The Earth’s motion around the Sun; From Khalil and Munoz (2001).

a yearly modulation with greater events reported in June than in December
[17]. However results obtained by the DAMA group remain controversial since
they have not been substantiated by other groups which report negative
results for similar searches (see [129, 95] for recent reviews on this subject).

Despite the excellent agreement of LCDM with large scale observations,
some concerns have recently been expressed about the ability of this model to
account for a number of smaller scale observations which can be summarized
as follows:

– The substructure problem

It is used to describe the fact that the cold dark matter model (with or
without a cosmological constant) predicts an excessive number of dark
matter subhaloes (or substructure) within a larger halo. If one (perhaps
naively) associates each halo with a gravitationally bound baryonic ob-
ject then the predicted number of dwarf-galaxy satellites within the local
group exceeds the observed number by over an order of magnitude. In-
deed, detailed N-body simulations as well as theoretical estimates predict
around 1000 dark matter satellites in our local group which is much larger
than the 40 or so observed at present [98, 126, 94, 35, 192, 24, 120, 199, 64].

– The cuspy core problem

CDM predicts a universal density profile for dark matter halos in the
wide range (107 − 1015)M� which applies both to galaxy clusters as well
as individual galaxies including dwarfs and LSB’s. 2 The density profile

2 Low Surface Brightness Galaxies (LSB’s) are dominated by their dark matter
content and therefore provide particularly good astrophysical objects with which
to test dark matter models.
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originally suggested by Navarro, Frenk and White [133] is

ρ(r) = ρ0 (rs/r)
[
1 +
(
r

rs

)]−2

, (5.10)

which gives ρ ∝ r−1 for r 
 rs and ρ ∝ r−3 for r � rs, where rs is the
scale radius and ρ0 is the characteristic halo density. (Other groups using
higher resolution computations found somewhat steeper density profiles
at small radii, such as ρ ∝ r−1.5 [127, 87].)
The cuspy core problem refers to the apparent contradiction between N-
body experiments, which show that the density profile in CDM halos has
a 1/r (or steeper) density cusp at the center, and observations, which
appear to favour significantly shallower density cores in galaxy clusters as
well as in individual dwarf and LSB galaxies (see [69, 36, 28, 37, 155, 199,
103, 162, 179, 109] for detailed discussions of this issue).

Although disconcerting, given the very considerable success of LCDM
in explaining gravitational clustering on large scales, it may at this point
be premature to condemn this model on the basis of small scale observa-
tions alone. It could be that the difficulties alluded to above are a result of
an oversimplification of the complex physical processes involved and that a
more careful analysis of the baryonic physics on small scales including the
hydrodynamical effects of star formation and supernova feedback needs to be
undertaken. For instance both dwarfs and LSB’s have very shallow potential
wells, a strong burst of star formation and supernova activity may therefore
empty dark matter halos of their baryonic content resulting in a large num-
ber of ‘failed galaxies’ and providing a possible resolution to the ‘satellite
catastrophe’. (The failed galaxies will act as gravitational lenses and should
therefore be detectable through careful observations.) Other explanations in-
clude the effects of tidal stripping recently discussed in [103]. Likewise issues
involving beam smearing, the influence of bars and the interaction of baryons
and dark matter in the central regions of galaxies and clusters could be in-
tricately linked with the central cusp issue and must be better understood if
one wishes to seriously test the CDM hypothesis on small scales.

In concluding this discussion on dark matter I would like to briefly men-
tion Modified Newtonian Dynamics (MOND) which, in some circles, is re-
garded as an alternative to the dark matter hypothesis. As the name suggests,
MOND is a modification of Newtonian physics which proposes to explain the
flat rotation curves of galaxies without invoking any assumptions about dark
matter. Briefly, MOND assumes that Newtons law of inertia (F = ma) is
modified at sufficiently low accelerations (a < a0) to

F = maµ(a/a0) , (5.11)

where µ(x) = x when x 
 1 and µ(x) = 1 when x � 1 [122, 180]. It is easy
to see that this results in the modification of the conventional formula for
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gravitational acceleration F = mgN, resulting in the following relation be-
tween the true acceleration and the Newtonian value: a =

√
gNa0. For a body

orbiting a point mass M , gN = GM/r2. Since the centripetal acceleration
a = v2/r now equals the true acceleration a, one gets

v4 = GMa0 , (5.12)

i.e. for sufficiently low values of the acceleration the rotation curve of an
isolated body of mass M does not depend upon the radial distance r at
which the velocity is measured, in other words not only does this theory pre-
dict flat rotation curves it also suggests that the individual halo associated
with a galaxy is infinite in extent ! (This latter prediction may be a prob-
lem for MOND since recent galaxy-galaxy lensing results [82] suggest that
galaxy halo’s may have a maximum extent of about 0.5 Mpc.) The value of a0
needed to explain observations is a0 ∼ 10−8cm/s2 which is of the same order
as cH0 ! This has led supporters of this hypothesis to conjecture that MOND
may reflect “the effect of cosmology on local particle dynamics” [180]. Al-
though MOND gives results which are in good agreement with observations
of individual galaxies, it is not clear whether it is as successful for explaining
clusters for which strong gravitational lensing indicates a larger mass con-
centration at cluster centers than accounted for by MOND [180, 52]. Another
difficulty with MOND is that it is problematic to embed this theory within a
more comprehensive relativistic theory of gravity and hence, at present, it is
not clear what predictions a MOND-type theory may make for gravitational
lensing and other curved space-time effects. For some recent developments in
this direction see [23].

To summarise, current observations make a strong case for clustered, non-
baryonic dark matter to account for as much as a third of the total matter
density in the Universe Ωm � 1/3. The remaining two-thirds is thought to
reside in a relative smooth component having large negative pressure and
called Dark Energy.

5.2 Dark Energy

5.2.1 The Cosmological Constant and Vacuum Energy

Type Ia supernovae, when treated as standardized candles, suggest that the
expansion of the universe is speeding up rather than slowing down. The case
for an accelerating universe also receives independent support from CMB and
large scale structure studies. All three data sets can be simultaneously satified
if one postulates that the dominant component of the universe is relatively
smooth, has a large negative pressure and ΩDE � 2/3.

The simplest example of dark energy is a cosmological constant, intro-
duced by Einstein in 1917. The Einstein equations, in the presence of the
cosmological constant, aquire the form
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Rik − 1
2
gikR =

8πG
c4
Tik + λgik . (5.13)

Although Einstein originally introduced the cosmological constant (λ) into
the left hand side of his field equations, it has now become conventional to
move the λ-term to the RHS, treating it as an effective form of matter. In
a homogeneous and isotropic Friedmann-Robertson-Walker (FRW) universe
consisting of pressureless dust (dark matter) and λ, the Raychaudhury equa-
tion, which follows from (5.13), takes the form

ä = −4πG
3
aρm +

λ

3
. (5.14)

Equation (5.14) can be rewritten in the form of a force law:

F = −GM
R2 +

λ

3
R, (R ≡ a) (5.15)

which demonstrates that the cosmological constant gives rise to a repulsive
force whose value increases with distance. The repulsive nature of λ could be
responsible for the acceleration of the universe as demonstrated in (5.14).

Although introduced into physics in 1917, the physical basis for a cosmo-
logical constant remained a bit of a mystery until the 1960’s, when it was
realised that zero-point vacuum fluctuations must respect Lorenz invariance
and therefore have the form 〈Tik〉 = λgik [214]. As it turns out, the vacuum
expectation value of the energy momentum is divergent both for bosonic and
fermionic fields, and this gives rise to what is known as ‘the cosmological
constant problem’. Indeed the effective cosmological constant generated by
vacuum fluctuations is

λ

8πG
= 〈T00〉vac ∝

∫ ∞

0

√
k2 +m2k2dk , (5.16)

since the integral diverges as k4 one gets an infinite value for the vacuum
energy. Even if one chooses to ‘regularize’ 〈Tik〉 by imposing an ultraviolet
cutoff at the Planck scale, one is still left with an enormously large value for
the vacuum energy 〈T00〉vac � c5/G2

� ∼∼ 1076GeV4 which is 123 orders of
magnitude larger than the currently observed ρλ � 10−47GeV4. A smaller
ultraviolet cut-off does not fare much better since a cutoff at the QCD scale
results in Λ4

QCD ∼ 10−3GeV4, which is still forty orders of magnitude larger
than observed.

In the 1970’s the discovery of supersymmetry led to the hope that, since
bosons and fermions (of identical mass) contribute equally but with opposite
sign to the vacuum expectation value of physical quantities, the cosmological
constant problem may be resolved by a judicious balance between bosons
and fermions in nature. However supersymmetry (if it exists) is broken at
the low temperatures prevailing in the universe today and on this account
one should expect the cosmological constant to vanish in the early universe,
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but to reappear during late times when the temperature has dropped below
TSUSY. This is clearly an undesirable scenario and almost the very opposite
of what one is looking for, since, a large value of λ at an early time is useful
from the viewpoint of inflation, whereas a very small current value of λ is in
agreement with observations [172, 171].

In the absence of a resolution to the cosmological constant problem the fol-
lowing possibility connecting the vacuum energy with the SUSY and Planck
scales may be worth exploring [172, 171]. The mass scale associated with the
scale of supersymmetry breaking in some models, MSUSY ∼ 1 TeV, lies mid-
way between the Planck scale and 10−3 eV. One could conjecture that the
small observed value of the cosmological constant ρλ � (10−3eV )4 is asso-
ciated with the vacuum in a theory which had a fundamental mass scale
MX �M2

SUSY/MPl, such that ρvac ∼M4
X ∼ (10−3eV )4.

The cosmological constant is also relevant from the perspective of mod-
els with spontaneous symmetry breaking [209]. Indeed, if one examines the
Lagrangian

L =
1
2
gij∂iφ∂jφ− V (φ)

V (φ) = V0 − 1
2
µ2φ2 +

1
4
λφ4, (5.17)

one notices that the symmetric state at φ = 0 is unstable and the system
settles in the ground state φ = +σ or φ = −σ, where σ =

√
µ2/λ, thereby

breaking the reflection symmetry φ ↔ −φ present in the Lagrangian. For
V0 = 0 this potential gives rise to a large negative cosmological constant
λeff = V (φ = σ) = −µ4/4λ in the broken symmetry state. This embarrassing
situation can be avoided only if one chooses a value for V0 which almost
exactly cancels λeff , namely V0 � +µ4/4λ so that λeff/8πG = V0−µ4/4λ �
10−47GeV 4.

The cosmological consequences of this rather ad-hoc ‘regularization’ ex-
ercise are instructive. Unless the value of λeff lies in a very small window,
the universe will be a very different place from the one we are used to. For
instance a negative value of the λ-term λeff/8πG < −10−43GeV 4 will cause
the universe to recollapse (the effect of λ is attractive now instead of being
repulsive) less than a billion years after the big bang – a period which is
much too short for galaxies to form and for life (as we know it) to emerge.
On the other hand a large positive λeff/8πG > 10−43GeV4 makes the uni-
verse accelerate much before the present epoch, thereby inhibiting structure
formation and precluding the emergence of life.

The very small window in λ which allows life to emerge has led some
cosmologists to propose anthropic arguments for the existence of a small
cosmological constant [20, 118, 76, 210]. One such possibility is the following
“if our big bang is just one of many big bangs, with a wide range of vacuum
energies, then it is natural that some of these big bangs should have a vacuum
energy in the narrow range where galaxies can form, and of course it is just
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Fig. 5.4. Spontaneous symetry breaking in many field theory models takes the
form of the Mexican top hat potential shown above. The dashed line shows the
potential before the cosmological constant has been ‘renormalized’ and the solid
line after. (From Sahni and Starobinsky 2000.)

these big bangs in which there could be astronomers and physicists wondering
about the vacuum energy” [210].

I will not discuss the anthropic argument any further in this review but
will point the interested reader to [118, 76, 210] for further discussion of this
issue.

It is important to note that there is no known fundamental symmetry in
nature which will set the value of λ to zero. In its absence, the small observed
value of the dark energy remains somewhat of a dilemma which remains to
be fully understood and resolved. 3

5.2.2 Dynamical Models of Dark Energy

The cosmological constant is but one example of a form of matter (dark
energy) which could drive an accelerated phase in the history of our universe.
Indeed, (5.14) is easily generalised to

ä

a
= −4πG

3

∑

i

(ρi + 3pi) = −4πG
3

∑

i

ρi(1 + 3wi) , (5.18)

3 The important role played by symmetries is illustrated by the U(1) gauge sym-
metry of electrodynamics whose presence implies a zero rest mass for the photon.
No analogous symmetry exists for the neutrino and recent experiments do indi-
cate that neutrino’s could have a small mass.
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where the summation is over all forms of matter present in the universe with
equation of state wi = pi/ρi. Equation (5.18) together with its companion
equation

H2 ≡
(
ȧ

a

)2

=
8πG

3

∑

i

ρi − k

a2
(5.19)

completely describes the dynamics of a FRW universe (k/a2 is the Gaussian
curvature of space).

Clearly a universe consisting of only a single component will accelerate if
w < −1/3. Fluids satisfying ρ + 3p ≥ 0 or w ≥ −1/3 are said to satisfy the
‘strong energy condition’ (SEC). We therefore find that, in order to acceler-
ate, ‘dark energy’ must violate the SEC. Another condition which is usually
assumed to be sacrosanct, but has recently been called into question is the
‘weak energy condition’ (WEC) ρ + p ≥ 0 or w ≥ −1. Failure to satisfy the
WEC can result in faster-than-exponential expansion for the universe and in
a cosmic ‘Big Rip’, which we shall come to in a moment.

It is often more convenient to rewrite (5.18) in terms of the ‘deceleration
parameter’

q = − ä

aH2 =
∑

i

(
4πGρi

3H2 )(1 + 3wi) =
(1 + 3wXΩX)

2
, (5.20)

where Ωi = 8πGρi/3H2 and we have assumed a flat universe with Ωm+ΩX =
1 (ΩX ≡ ΩDE). The condition for accelerated expansion (q < 0) is equivalent
to

wX < − 1
3(1 −Ωm)

, (5.21)

which leads to

w < −1
3

for Ωm = 0 (5.22)

w < −1
2

for Ωm = 1/3 . (5.23)

Equation (5.19) can be used to develop an expression for the Hubble
parameter H ≡ ȧ/a in terms of the cosmological redshift z = a0/a(t) − 1:

H(z) = H0

[
Ωm(1 + z)3 +ΩX(1 + z)3(1+w)

]1/2
, (5.24)

where H0 = H(z = 0) is the present value of the Hubble parameter, Ωm =
8πGρ0m/3H2

0 , ΩX = 8πGρ0DE/3H2
0 , describe the dimensionless density of

matter and dark energy respectively, (w ≡ wDE), and we have made the
assumption of a flat universe so that Ωm +ΩX = 1.

In LCDM cosmology w = −1, ΩΛ = λ/3H2
0 , and the expansion factor has

the elegant form [172]
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a(t) ∝
(

sinh
3
2

√
Λ

3
ct

)2/3

, (5.25)

which smoothly interpolates between a matter dominated universe in the past

(a ∝ t2/3) and accelerated expansion in the future (a ∝ exp
√

Λ
3 t).

We are now in a position to appreciate the evidence for an accelerating
universe which originates in observations of the light flux from high redshift
type Ia supernovae. Type Ia supernovae are extremely bright objects, (MB �
−19.5) which makes them ideally suited for studying the properties of the
universe at large distances.

The light flux received from a distant supernova is related to its absolute
luminosity L and its ‘luminosity distance’ dL through the relation

F =
L

4πd2L
. (5.26)

If one views this problem from within the Newtonian perspective then, since
the geometry of space is Euclidean, dL =

√
x2 + y2 + z2. In general relativity,

on the other hand, the geometry of space can be non-Euclidean, and the
luminosity distance to an object located at redshift z will, in general, depend
both upon the geometry of space as well as the expansion history of the
universe. Indeed, it can be shown that in a spatially flat and expanding FRW
universe, the luminosity distance has the form

dL(z) = (1 + z)
∫ z

0

dz′

H(z′)
. (5.27)

The luminosity distance is shown in Fig. 5.5 for a number of cosmological
models with varying amounts of Ωm and ΩΛ. The limiting case Ωm = 1,
ΩΛ = 0 corresponds to standard cold dark matter (SCDM) in which the
universe decelerates as a weak power law a(t) ∝ t2/3. The other extreme
example ΩΛ = 1, Ωm = 0 describes the de Sitter universe (also known as

steady state cosmology) which accelerates at the steady rate a(t) ∝ exp
√

Λ
3 t.

From Fig. 5.5 we see that a supernova at redshift z = 3 will appear 9 times
brighter in SCDM than it will in de Sitter space !

Systematic studies of type Ia supernovae have revealed that:

– Type Ia Sn are excellent stadardized candles. The dispersion in peak su-
pernova luminosity is small: ∆m � 0.3, and the corresponding change in
intensity is about 25%. In addition the light curve of a type Ia supernova
is correlated with its peak luminosity [149] to a precision of ∼ 7%, so
that brighter supernovae take longer to fade. (Type Ia Sn take roughly
20 days to rise from relative obscurity to maximum light.) This allows
us to ‘standardize’ supernova light curves thereby reducing the scatter
in their luminosities to ∼ 12% which turns type Ia supernovae into very
good standard candles.



156 Varun Sahni

Fig. 5.5. The luminosity distance dL (in units of H−1
0 ) is shown as a function

of cosmological redshift z for spatially flat cosmological models with Ωm + ΩΛ =
1. Heavier lines correspond to larger values of Ωm. The dashed line shows the
luminosity distance in the spatially flat de Sitter universe (ΩΛ = 1). From Sahni
and Starobinsky [172].

– Type Ia supernovae at higher redshifts are consistently dimmer than their
counterparts at lower redshifts relative to what might be expected in
SCDM cosmology. If type Ia supernovae are treated as standard candles
then, assuming systematic effects such as cosmological evolution and dim-
ming by intergalactic dust are either not vitally important or have been
corrected for, the systematic dimming of high−z Sn can be interpreted as
evidence for an accelerated expansion of the universe caused by a form of
‘dark energy’ having large negative pressure.

The evidence for an accelerating universe from high redshift type Ia super-
novae has now received independent support from an analysis of CMB fluc-
tuations (see A. Challinor’s contribution) together with the HST key project
determination of the Hubble parameter. Interestingly, the degeneracy in pa-
rameter space {Ωm, Ωλ} arising from Sn observations is almost orthogonal
to the degeneracy which arises from CMB measurements. This principle of
‘cosmic complementarity’ serves to significantly reduce the errors on Ωm and
Ωλ when the two sets of observations are combined, as shown in Fig. 5.6.

If dark energy is described by an unevolving equation of state w = pX/ρX ,
then the transition between deceleration and acceleration (ä = 0) occurs at
the redshift

(1 + za)−3w = −(1 + 3w)
ΩX

Ωm
w < 0. (5.28)
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Fig. 5.6. Constraints on the density of dark matter Ωm and dark energy in the form
of a cosmological constant Ωλ, determined using WMAP (upper left), WMAP +
other CMB experiments (WMAPext; upper right), WMAPext + HST key project
data (lower left) and WMAPext + HST + supernova data (lower right); from
Spergel et al (2003).

Another important redshift describes the epoch when the densities in dark
matter and dark energy are equal

(1 + zeq)3w =
(
Ωm

ΩX

)
. (5.29)

Substituting ΩΛ = 0.7, Ωm = 0.3 we find za � 0.73, zeq � 0.37 for LCDM.
The fact that the acceleration of the universe is a fairly recent phenomenon il-
lustrates the ‘cosmic coincidence’ puzzle according to which we appear to live
during a special epoch when the densities in dark energy and in dark matter
are almost equal. A recent origin for the acceleration epoch is supported by
supernova observations which suggest a decelerating universe at z >∼ 0.5 [160].
It is important to note that dark energy models with an unevolving equa-
tion of state need to have their initial conditions properly ‘tuned’ in order to
dominate the universe at precisely the present epoch. This problem is most
acute for the cosmological constant. Since the cosmological constant does not
evolve while both matter and radiation evolve rapidly (ρm ∝ a−3, ρr ∝ a−4),
it follows that the small current value ρΛ = λ/8πG � 10−47 GeV4 implies
ρΛ/ρr � 10−123 at the Planck time (when the temperature of the universe
was T ∼ 1019 GeV), or ρΛ/ρr � 10−55 at the time of the electroweak phase
transition (T ∼ 100 GeV). Thus an extreme fine-tuning of initial conditions
is required in order to ensure that ρΛ/ρm ∼ 1 today !
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The fine tuning problem which plagues λ also affects DE models in which
w = constant 
= −1. A combined analaysis of CMB, galaxy clustering and
supernovae data indicates that a constant equation of state for dark energy
must satisfy w < −0.82 at the 95% confidence level [193, 201], and it is
easy to show that for these models the fine tuning (and cosmic coincidence)
problems are almost as acute as they are for the cosmological constant. This
constraint on w also virtually rules out two interesting DE candidates based
on topological defect models: a tangled network of cosmic strings w � −1/3
and domain walls w � −2/3.

5.2.3 Quintessence

It is interesting that the fine tuning problem facing dark energy models with a
constant equation of state can be alleviated if we assume that the equation of
state is time dependent. An important class of models having this property
are scalar fields (quintessence)4 which couple minimally to gravity so that
their Lagrangian density and energy momentum tensor is

L =
1
2
φ̇2 − V (φ) (5.30)

ρ ≡ T 0
0 =

1
2
φ̇2 + V (φ), p ≡ −Tα

α =
1
2
φ̇2 − V (φ) , (5.31)

where we have assumed, for simplicity, that the field is homogeneous. Po-
tentials which are sufficiently steep to satisfy Γ ≡ V ′′V/(V ′)2 ≥ 1 have the
interesting property that scalar fields rolling down such a potential approach
a common evolutionary path from a wide range of initial conditions [217] (see
Fig. 5.7). In these so-called ‘tracker’ models the scalar field density (and its
equation of state) remains close to that of the dominant background matter
during most of cosmological evolution. An excellent example of a tracker po-
tential is provided by V (φ) = V0/φ

α [157]. During tracking the ratio of the
energy density of the scalar field (quintessence) to that of radiation/matter
gradually increases ρφ/ρB ∝ t4/(2+α) while its equation of state remains
marginally smaller than the background value wφ = (αwB − 2)/(α+ 2). For
large values of φ this potential becomes flat ensuring that the scalar field rolls
sufficiently slowly (φ̇2 
 V (φ)) to allow the universe to accelerate. Note that
for quintessence fields the condition’s (5.22) and (5.23) translate into

wφ < −1
3

⇒ φ̇2 < V (φ)

wφ < −1
2

⇒ φ̇2 <
2
3
V (φ) . (5.32)

(Current observations imply α < 2.)
4 Quintessence is named after the all pervasive fifth element of ancient philosoph-

ical thought. Note that the quintessence Lagrangian is the same as that used for
Inflationary model building.
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Fig. 5.7. The quintessence Q-field while rolling an inverse power law potential
tracks first radiation then matter, before coming to dominate the energy density
of the universe at present. If the initial value of the Q-field density is small then
ρQ remains constant until ρQ ∼ ρrad, and then follows the tracker trajectory. From
Zlatev, Wang and Steinhardt [217].

An extreme example of quintessence is provided by the exponential po-
tential V (φ) = V0 exp (−√

8πλφ/Mp) [157, 213], where Mp = 1/
√
G is the

Planck mass. In this case

ρφ

ρB + ρφ
=

3(1 + wB)
λ2 = constant < 0.2, (5.33)

ρB is the background energy density while wB is the associated background
equation of state. The lower limit ρφ/ρtotal < 0.2 arises because of nucle-
osynthesis constraints which prevent the energy density in quintessence from
being large initially (at t ∼ few sec.). Equation (5.33) suggests that the
exponential potential will remain subdominant if it was so initially. An in-
teresting potential which interpolates between an exponential and a power
law can however give rise to late time acceleration from tracker-like initial
conditions [168]

V (φ) = V0[coshλφ− 1]p, (5.34)

has the property that wφ � wB at early times whereas 〈wφ〉 = (p−1)/(p+1)
at late times. Consequently (5.34) describes quintessence for p ≤ 1/2 and
pressureless ‘cold’ dark matter (CDM) for p = 1. Thus the cosine hyperbolic
potential (5.34) is able to describe both dark matter and dark energy within
a tracker framework (also see [204, 12]).

Remarkably, quintessence can even accommodate a constant equation of
state (w = constant) by means of the potential [172, 173, 203]
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Table 5.1.

Quintessence Potential Reference

V0 exp (−λφ) Ratra and Peebles (1988), Wetterich (1988),
Ferreira and Joyce (1998)

m2φ2, λφ4 Frieman et al (1995)

V0/φ
α, α > 0 Ratra and Peebles (1988)

V0 exp (λφ2)/φα Brax and Martin (1999, 2000)

V0(coshλφ− 1)p Sahni and Wang (2000)

V0 sinh−α (λφ) Sahni and Starobinsky (2000),
Ureña-López & Matos (2000)

V0(eακφ + eβκφ) Barreiro, Copeland and Nunes ( 2000)

V0(expMp/φ− 1) Zlatev, Wang and Steinhardt (1999)

V0[(φ−B)α +A]e−λφ Albrecht and Skordis (2000)

V (φ) ∝ sinh
2(1+w)

w (Cφ+D) , (5.35)

with suitably chosen values of C,D.
Quintessence models can be divided into two categories: models which

roll to large values of φ/mP >∼ 1 and models for which φ/mP 
 1 at the
present epoch. An important concern for the former is the effect of quantum
corrections which, if large, could alter the shape of the quintessence potential
[102, 33, 59, 182]. An important related issue is that the coupling between
standard model fields and quintessence must be small in order to have evaded
detection. Moreover even small couplings between quintessence and standard
model fields can give rise to interesting changes in cosmology as shown in
[6, 114].

I would like to end this section by mentioning that, due to the short-
age of time I have not been able to cover all of the DE models suggested in
the literature (a number that is growing rapidly !) For this reason this re-
view will not discuss DE due to vacuum polarization[167, 141], k-essence [13],
Cardassian expansion [73], Quasi-Steady State Cosmology [132], scalar-tensor
models [5, 26, 45, 145, 205, 146, 161, 29, 147]. For other interesting approaches
see [15, 83, 84, 62, 137, 80, 104, 105, 125, 187, 215]. A partial list of some pop-
ular quintessence models is given in Table 1, and the reader is also referred
to the dark energy reviews in [172, 41, 143, 171, 140].
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5.2.4 Dark Energy in Braneworld Models

Inspired by the Randall-Sundrum [156] scenario, braneworld cosmology sug-
gests that we could be living on a three dimensional ‘brane’ which is embed-
ded in a higher (usually four) dimensional bulk. According to such a scheme,
all matter fields are confined to the brane whereas the graviton if free to
propagate in the brane as well as in the bulk (see R. Maartens’s contribu-
tion to this volume and [110] for a comprehensive discussion of Braneworld
cosmology.) Within the RS setting the equation of motion of a scalar field
propagating on the brane is

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (5.36)

where [184]

H2 =
8π

3m2 ρ(1 +
ρ

2σ
) +

Λ4

3
+

E
a4

ρ =
1
2
φ̇2 + V (φ) . (5.37)

E is an integration constant which transmits bulk graviton influence onto
the brane. The brane tension σ provides a relationship between the four
dimensional Planck mass (m) and the five-dimensional Planck mass (M)

m =

√
3
4π
(M3
√
σ

)
. (5.38)

σ also relates the four-dimensional cosmological constant Λ4 on the brane to
the five-dimensional (bulk) cosmological constant Λb through

Λ4 =
4π
M3

(
Λb +

4π
3M3σ

2
)
. (5.39)

Note that (5.37) contains an additional term ρ2/σ whose presence can
be attributed to junction conditions imposed at the bulk-brane boundary.
Because of this term the damping experienced by the scalar field as it rolls
down its potential dramatically increases so that inflation can be sourced
by potentials which are normally too steep to produce slow-roll. Indeed the
slow-roll parameters in braneworld models (for V/σ � 1) are [111]

ε � 4εFRW(V/σ)−1, η � 2ηFRW(V/σ)−1, (5.40)

illustrating that slow-roll (ε, η 
 1) is easier to achieve when V/σ � 1.
Inflation can therefore arise for the very steep potentials associated with
quintessence such as V ∝ e−λφ, V ∝ φ−α etc. This gives rise to the intriguing
possibility that both inflation and quintessence may be sourced by one and
the same scalar field. Termed ‘quintessential inflation’, these models have
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Fig. 5.8. The post-inflationary density parameter Ω is plotted for the scalar
field (solid line) radiation (dashed line) and cold dark matter (dotted line) in the
quintessential-inflationary model decribed by (5.34) with p = 0.2. Late time oscil-
lations of the scalar field ensure that the mean equation of state turns negative
〈wφ〉 � −2/3, giving rise to the current epoch of cosmic acceleration with a(t) ∝ t2

and present day values Ω0φ � 0.7, Ω0m � 0.3. From Sahni, Sami and Souradeep
[169].

been examined in [142, 53, 85, 169, 116, 66, 106, 57, 185, 178, 177]. An example
of quintessential inflation is shown in Fig. 5.8.

A radically different way of making the Universe accelerate was sug-
gested in [55, 170]. The braneworld model developed by Deffayet, Dvali and
Gabadadze (DDG) was radically different from the RS model in that both
the bulk cosmological constant and the brane tension were set to zero, while
a curvature term was introduced in the brane action so that the theory was
described by

S =M3
∫

bulk
R +m2

∫

brane
R+

∫

brane
Lmatter . (5.41)

The rationale for the
∫
braneR term is that quantum effects associated with

matter fields are likely to give rise to such a term in the Einstein action as
discussed by Sakharov in his development of induced gravity [176].

The resulting Hubble parameter in the DDG braneworld is

H =

√
8πGρm

3
+

1
l2c

+
1
lc
, (5.42)

where lc = m2/M3 is a new length scale determined by the four dimensional
Planck mass m and and the five dimensional Planck mass M respectively.
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An important property of this model is that the acceleration of the universe
is not caused by the presence of any ‘dark energy’. Instead, since gravity
becomes five dimensional on length scales R > lc = 2H−1

0 (1 − Ωm)−1, one
finds that the expansion of the universe is modified during late times instead
of early times as in the RS model.

A more general class of braneworld models which includes RS cosmology
and the DDG brane as subclasses was developed in [51, 189] and is described
by the action

S =M3
∫

bulk
(R − 2Λb) +

∫

brane

(
m2R− 2σ

)
+
∫

brane
Lmatter . (5.43)

For σ = λb = 0 (5.43) reduces to the action describing the DDG model,
whereas for m = 0 it describes the Randall-Sundrum model.

As demonstrated by Sahni and Shtanov [170] the braneworld which follows
from the action (5.43) describes an accelerating universe at late times with
the Hubble parameter

H2(z)
H2

0
= Ωm(1+z)3 +Ωσ + 2Ωl ∓

2
√
Ωl

√
Ωm(1+z)3 +Ωσ +Ωl +Ωλb , (5.44)

where

Ωl =
1

l2cH
2
0
, Ωm =

ρ0m

3m2H2
0
, Ωσ =

σ

3m2H2
0
, Ωλb = − λb

6H2
0
. (5.45)

(The ∓ signs refer to the two different ways in which the brane can be embed-
ded in the bulk, both signs give rise to interesting cosmology [170].) As in the
DDG model lc ∼ H−1

0 if M ∼ 100 MeV. On short length scales r 
 lc and
at early times, one recovers general relativity, whereas on large length scales
r � lc and at late times brane-related effects begin to play an important
role. Indeed by setting M = 0 (Ωl = 0) (5.44) reduces to the LCDM model

H2(z)
H2

0
= Ωm(1+z)3 +Ωσ , (5.46)

whereas for σ = λb = 0 (5.44) reduces to the DDG braneworld. An important
feature of the braneworld (5.44) is that it can lead to an effective equation
of state of dark energy weff ≤ −1. This is easy to see from the expression for
the current value of the effective equation of state [170]

w0 =
2q0 − 1

3 (1 −Ωm)
= −1 ± Ωm

1 −Ωm

√
Ω�

Ωm +Ωσ +Ω� +ΩΛb

, (5.47)

we find that w0 < −1 when we take the lower sign in (5.47), which corre-
sponds to choosing one of two possible embeddings of this braneworld in the
higher dimensional bulk. (The second choice of embedding gives w0 > −1.)
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It is also possible, in this model, for the acceleration of the universe to
be a transient phenomenon which ends once the universe returns to matter
dominated expansion after the current accelerating phase. As discussed in
[170] such a braneworld will not have an event horizon and may therefore
help in reconciling an accelerating universe with the demands of string/M-
theory. Other possibilities of obtaining dark energy from extra dimensions
have been discussed in [7, 144, 44, 150, 151, 117, 34, 138]. The possibility that
DE could arise due to modifications of gravitational physics has also been
examined in [108, 40, 43, 58, 124, 135, 136].

5.2.5 Chaplygin Gas

A completely different route to dark energy is provided by the Chaplygin gas
[92] which obeys the equation of state

pc = −A/ρc . (5.48)

The conservation equation dE = −pdV ⇒ d(ρa3) = −pd(a3) immediately
gives

ρc =

√

A+
B

a6
=
√
A+B(1 + z)6 , (5.49)

where B is a constant of integration. Thus the Chaplygin gas behaves like
pressureless dust at early times and like a cosmological constant during very
late times.

The Hubble parameter for a universe containing cold dark matter and the
Chaplygin gas is given by

H(z) = H0

[

Ωm(1 + z)3 +
Ωm

κ

√
A

B
+ (1 + z)6

]1/2

, (5.50)

where κ = ρ0m/
√
B and it is easy to see from (5.50) that

κ =
ρ0m

ρc
(z → ∞) . (5.51)

Thus, κ defines the ratio between CDM and the Chaplygin gas energy densi-
ties at the commencement of the matter-dominated stage. It is easy to show
that

A = B

{

κ2
(

1 −Ωm

Ωm

)2

− 1

}

. (5.52)

It is interesting that the Chaplygin gas can be derived from an underlying
Lagrangian in two distinct ways:

– One can derive it from a quintessence Lagrangian (5.30) with the potential
[92]

V (φ) =
√
A

2

(
cosh 3φ+

1
cosh 3φ

)
. (5.53)
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– The Chaplygin gas can also be derived from the Born-Infeld form of the
Lagrangian density

L = −V0
√

1 − φ,µφ,µ , (5.54)

where φ,µ ≡ ∂φ/∂xµ. For time-like φ,µ one can define a four velocity

uµ =
φ,µ

√
φ,αφ,α

, (5.55)

this leads to the standard form for the hydrodynamical energy-momentum
tensor

Tµν = (ρ+ p)uµuν − pgµν , (5.56)

where [75]

ρ =
V0√

1 − φ,µφ,µ
, p = −V0

√
1 − φ,µφ,µ , (5.57)

i.e. we have recovered (5.48) with A = V 2
0 .

The fact that the properties of the Chaplygin gas interpolate between
those of CDM and a λ-term led to the hope that the CG might provide a
conceptual framework for a unified model of dark matter and dark energy. It
should however be noted that in contrast to CDM and baryons, the sound
velocity in the Chaplygin gas vc =

√
dpc/dρc =

√
A/ρc quickly grows ∝ t2

during the matter-dominated regime and becomes of the order of the velocity
of light at present (it approaches light velocity asymptotically in the distant
future). Thus, when one examines classical inhomogeneities, the properties of
the Chaplygin gas during the matter-dominated epoch appear to be rather
unusual and resemble those of hot dark matter rather than CDM, despite the
fact that the Chaplygin gas formally carries negative pressure [2].

A ‘generalized Chaplygin gas’ has also been proposed for which p ∝
−1/ρα. The equation of state in this case is

w(a) = − |w0|
[|w0| + 1−|w0|

a3(1+α)

] , (5.58)

which interpolates between w = 0 at early times (a
 1) and w = −1 at late
times (a� 1); w0 is the current equation of state at a = 1. (The constant α
regulates the transition time in the equation of state.) WMAP, supernovae
and large scale sructure data have all been used to test Chaplygin gas models;
see [27, 65, 78, 9, 14, 22, 115, 128, 56, 25].

5.2.6 Is Dark Energy a Phantom?

In an influential paper Caldwell [38] noticed that a very good fit to the
supernova-derived luminosity distance was provided by dark energy which



166 Varun Sahni

violated the weak energy condition so that w < −1. He called this Phantom
dark energy.5 Indeed, a study of high-z Sn [99] finds that the DE equation
of state has a 99% probability of being < −1 if no priors are placed on
Ωm ! When these Sn results are combined with CMB and 2dFGRS the 95%
confidence limits on an unevolving equation of state are −1.61 < w < −0.78
[99], which is consistent with estimates made by other groups [193, 201].

A universe filled with Phantom energy has some interesting but bizarre
properties.

– If teq marks the epoch when the densities in matter and phantom energy
are equal then the expansion factor of a universe dominated by phantom
energy grows as

a(t) � a (teq)
[
(1 + w)

t

teq
− w
]2
/

3(1+w)

, w < −1 , (5.59)

and therefore diverges in a finite amount of cosmic time

a(t) → ∞ as t→ tBR =
(

w

1 + w

)
teq . (5.60)

By substituting w < −1 into (5.24) we immediately find that the Hubble
parameter also diverges as t → tBR, implying that an infinitely rapid
expansion rate for the universe has been reached in a finite time. The
divergence of the Hubble parameter is associated with the divergence of
phantom density which grows without bound

ρ(t) ∝
[
(1 + w)

t

teq
− w
]−2

, (5.61)

and reaches a singular value in a finite interval of time ρ(t) → ∞, t→ tBR.
Thus a universe dominated by Phantom energy culminates in a future cur-
vature singularity (‘Big Rip’) at which the notion of a classical space-time
breaks down. (See also [196, 47, 38, 121, 39, 42, 71, 72, 186, 88, 10, 93].)

– The ultra-negative phantom equation of state suggests that the effective
velocity of sound in the medium v =

√|dp/dρ| can become larger than
the velocity of light in this model.

– Although a dynamical model of phantom energy can be constructed with
the ‘wrong’ sign of the kinetic term, see (5.31), such models are plagued
with instabilities at the quantum level [49] which makes their existence
suspected.
It should be pointed out that phantom is not the only way to get w < −1.
A model with similar properties but sharing none of phantom’s patholo-
gies is the braneworld model of [170, 1], which has weff < −1 today but
does not run into a ‘Big Rip’ in the future.

5 Phantom takes its name from Part I of the Star Wars movie series – the Phantom
Menace.
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5.2.7 Reconstructing Dark Energy and the Statefinder Diagnostic

In view of the considerable number of dark energy models suggested in the
literature, it becomes meaningful to ask whether we can reconstruct the prop-
erties of DE from observations in a model independent manner. This indeed
may be possible if one notices that the Hubble parameter is related to the
luminosity distance [195, 175]

H(z) =
[
d

dz

(
dL(z)
1 + z

)]−1

, (5.62)

and that, in the case of quintessence, the scalar field potential as well as its
equation of state can be directly expressed in terms of the Hubble parameter
and its derivative [195, 175]

8πG
3H2

0
V (x) =

H2

H2
0

− x

6H2
0

dH2

dx
− 1

2
Ωm x

3 (5.63)

8πG
3H2

0

(
dφ

dx

)2

=
2

3H2
0x

d lnH
dx

− Ωmx

H2 , x = 1 + z (5.64)

(5.65)

wφ(x) ≡ p

ε
=

(2x/3)d lnH/dx− 1
1 − (H2

0/H
2)Ωmx3 . (5.66)

Both the quintessence potential V (φ) as well as the equation of state wφ(z)
may therefore be reconstructed provided the luminosity distance dL(z) is
known to reasonable accuracy from observations.

In practice it is useful to have an ansatz for either one of three cosmological
quantities: dL(z), H(z) or w(z), which can then be used for cosmological
reconstruction [175, 131, 112, 211]. Popular fitting functions discussed in the
literature include:
(i) An ansatz for the dark energy [173]

ρDE(x) =
N∑

i=0

Aix
i, x = 1 + z . (5.67)

(ii) Fitting functions to the dark energy equation of state [212, 107]:

w(z) =
N∑

i=0

wiz
i

w(z) = w0 +
w1z

1 + z
. (5.68)

The fitting parameters wi, Ai are obtained by matching to observations. In
practice the first few terms in either series (5.67), (5.68) is sufficient since
the current Sn data is quite noisy; see [46, 212, 54, 77, 113, 2] for a discussion
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Fig. 5.9. The relative difference between the Hubble parameter reconstructed from
Sn data and the LCDM value is shown as a function of redshift. Sn data from Tonry
et al (2003) were used for the reconstruction. The best-fit is represented by the thick
solid line assuming Ωm = 0.3. The light (dark) grey contours represents the 1σ (2σ)
confidence levels around the best-fit. The dashed horizontal line shows LCDM. From
Alam, Sahni, Saini and Starobinsky [4].

of these issues. An example of cosmological reconstruction of the Hubble
parameter from Sn data is shown in Fig. 5.9; see also [208, 134].

The Sn inventory is increasing dramatically every year and so are increas-
ingly precise measurements of galaxy clustering and the CMB. To keep pace
with the better quality observational data which will soon become available
and the increasing sophistication of theoretical modelling, a new diagnostic
of DE called ‘Statefinder’ was introduced in [173].

The statefinder probes the expansion dynamics of the universe through
higher derivatives of the expansion factor

...
a and is a natural companion to

the deceleration parameter which depends upon ä (5.20). The statefinder pair
{r, s} is defined as follows:

r ≡
...
a

aH3 = 1 +
9w
2
ΩX(1 + w) − 3

2
ΩX

ẇ

H
, (5.69)

s ≡ r − 1
3(q − 1/2)

= 1 + w − 1
3
ẇ

wH
. (5.70)

Inclusion of the statefinder pair {r, s}, increases the number of cosmological
parameters to four6: H, q r, s. The Statefinder is a ‘geometrical’ diagnostic
in the sense that it depends upon the expansion factor and hence upon the
metric describing space-time. An important property of the Statefinder is
that spatially flat LCDM corresponds to the fixed point
6 r has also been called ‘cosmic jerk’ in [207].
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Fig. 5.10. The time evolution of the statefinder pair {r, s} for quintessence models
and the Chaplygin gas. Solid lines to the right of LCDM represent tracker potentials
V = V0/φ

α, while those to the left correspond to the Chaplygin gas. Dot-dashed
lines represent DE with a constant equation of state w. Tracker models tend to
approach the LCDM fixed point (r = 1, s = 0) from the right at t → ∞, whereas
the Chaplygin gas approaches LCDM from the left. For Chaplygin gas κ is the ratio
between matter density and the density of the Chaplygin gas at early times. The
dashed curve in the lower right is the envelope of all quintessence models, while the
dashed curve in the upper left is the envelope of Chaplygin gas models (the latter
is described by κ = Ωm/1−Ωm). The region outside the dashed curves is forbidden
for both classes of dark energy models. The ability of the Statefinder to differentiate
between dark energy models is clearly demonstrated. From Alam, Sahni, Saini and
Starobinsky [2].

{r, s}
∣
∣
∣
∣
LCDM

= {1, 0} . (5.71)

Departure of a given DE model from this fixed point provides a good way
of establishing the ‘distance’ of this model from LCDM [2]. As demonstrated
in [173, 2, 78, 216] the Statefinder can successfully differentiate between a wide
variety of DE models including the cosmological constant, quintessence, the
Chaplygin gas, braneworld models and interacting DE models; an example
is provided in Fig. 5.10.
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5.2.8 Big Rip, Big Crunch or Big Horizon? –
The Fate of the Universe in Dark Energy Models

The nature of dark energy affects the future of our Universe in a very sig-
nificant way. If DE is simply the cosmological constant, then the universe
will accelerate for ever. Of great importance is the fact that an accelerating
LCDM universe developes an event horizon similar to the one surrounding a
black hole [196]. Consider an event (r1, t1) which we wish to observe at our
location at r = 0. Setting ds2 = 0 we get

∫ r1

0

dr√
1 − κr2 =

∫ t

t1

cdt′

a(t′)
. (5.72)

Any event in the universe will one day be observed by us if the integral in
the RHS of (5.72) diverges as t → ∞. For power law expansion this clearly
implies a ∝ tp, p < 1, i.e. a decelerating universe. In an accelerating universe
exactly the opposite is true, the integral in the RHS converges signalling the
presence of an event horizon. In this case our civilization will receive signals
only from those events which satisfy [172]

∫ r1

0

dr√
1 − κr2 ≤

∫ ∞

t1

cdt′

a(t′)
. (5.73)

For de Sitter-like expansion a = a1 expH(t− t1), H =
√
λ/3, we get r1 =

c/a1H, so that the proper distance to the event horizon is RH = a1r1 = c/H.
In LCDM cosmology,

H ≡ H(t→ ∞) =
√
λ/3 = H0

√
1 −Ωm , (5.74)

and the proper distance to the horizon is

RH =
c

H0
√

1 −Ωm

� 3.67h−1 Gpc , (5.75)

if Ωm � 1/3. Thus our observable universe will progressively shrink as as-
trophysical bodies which are not gravitationally bound to the local group
get pushed to distances beyond RH . (More generally, horizons exist in a
universe which begins to perpetually accelerate after a given point of time
[81, 68, 171]. To this category belong models of dark energy with equation of
state −1 < w < −1/3, as well as ‘runaway scalar fields’ [198] which satisfy
V, V ′, V ′′ → 0 and V ′/V, V ′′/V → 0 as φ→ ∞.)

The presence of an event horizon implies that, at any given moment of
time t0, there is a ‘sphere of influence’ around our civilization. This sphere
has an associated redshift zH , and a celestial body having z > zH will be
unreachable by any signal emitted by our civilization now or in the future;
zH � 1.8 in LCDM cosmology with Ωλ � 2Ωm � 2/3. Thus all celestial
bodies with z > 1.8 lie beyond our event horizon and there is no possibility
of causal contact with any of them.
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Interestingly, an N-body simulation tracking the future of an LCDM uni-
verse has shown that ∼ 100 billion years from now the observable universe will
consist of only a single massive galaxy within our event horizon, the merger
product of the Milky Way and Andromeda galaxies [130]. Furthermore, since
the growth of large scale structure freezes in an accelerating universe, the
mass distribution of bound objects will cease to evolve after about 30 billion
years.

This somewhat gloomy future scenario is not absolutely essential and can
be avoided if the currently observed acceleration of the universe is a tran-
sient phenomenon.7 Just such a possibility exists in a class of braneworld
models [170] in which the current accelerating phase is succeeded by a decel-
erating matter dominated regime. Quintessence potentials can also have this
property, as discussed in [21]. An interesting class of transiently accelerating
DE models is constructed around a scalar field potential which decays with
time and becomes negative at late times [74, 48, 139, 90, 91, 3]. An example
is V = V0 cosφ/f which describes axionic quintessence [74, 48, 139, 3]. Such
a universe recollapses in the future when H(t0 + ∆T ) = 0, and contracts
thereafter towards a ‘Big Crunch’ singularity. Supernova observations indi-
cate that, for typical decaying potentials, the universe will not collapse for at
least ∆T � 20 Gyrs [3].

DE models have also been proposed which encounter a ‘quiescent singu-
larity’ while expanding. At the ‘quiescent singularity’ the second derivative of
the expansion factor diverges while its first derivative remains finite [190, 79]
(i.e. ä → −∞, ȧ � constant). In such models the expansion of the universe
‘brakes’ to a virtual standstill as the universe approaches the singular regime
at which invariants of the space-time metric diverge (RiklmR

iklm → ∞) while,
curiously, the Hubble parameter and the energy density remain finite. Cosmo-
logical consequences of models which encounter a future quiescent singularity
(or a ‘Big Break’ [79]) have been briefly discussed in [1, 190, 79] but need to
be examined in more detail.

Finally, as discussed in Sect. 5.2.6, Phantom models with w < −1 expand
towards a Big Rip, at which the density and all curvature invariants become
infinite. As in the case of the Big Crunch singularity, the Big Rip will occur
only in the very distant future (if it occurs at all). For instance, if w =
constant ≥ −1.5, H0 = 70km/sec/Mpc and Ωm = 0.3, the time to the Big
Rip exceeds 22 Gyr [196].

7 Accelerating cosmologies without event horizons are important in a different
context. Since the conventional S-matrix approach may not work in a universe
with an event horizon, models with horizons may pose a serious challenge to a
fundamental theory of interactions such as string/M-theory.
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5.3 Conclusions and Future Directions

From the theoretical standpoint the single most important question to be
asked of dark energy is

Is w = −1 ?
Rephrased in terms of the Statefinder diagnostic the question is:

Is
...
a /aH3 = 1 ?

If future observations do answer this question in the affirmative8 then, in all
likelyhood the cosmological constant is the vacuum energy, and one will need
to review the cosmological constant problem again, in order to fathom why
the formally infinite quantity 〈Tik〉 is in fact so very small.

If on the other hand, either w 
= −1 or if the DE density is shown to be
time dependent, then the cosmological constant problem may need to be de-
coupled from the DE conundrum and searches for evolving DE models which
produce ρDE � 10−47GeV4 without exacerbating ‘cosmic coincidence’ will
need to be examined deeply in the light of developments both in high energy
physics and in gravitation theory (superstring/M-theory, extra dimensions
etc.). In either case the key to determining the properties of DE to great
precision clearly lies with ongoing and future astrophysical experiments and
observations.

Since the original discovery of an accelerating universe [152, 153, 159] the
Sn data base has grown considerably and data pertaining to ∼ 200 type Ia
supernovae are avaliable in the literature [202, 99, 19, 160]. Although system-
atic effects such as luminosity evolution, dimming by intervening extragalac-
tic material (alternatively brightening due to gravitational lensing) continue
to be a cause of some concern, recall that a luminosity evolution of ∼ 25%
over a lookback time of ∼ 5 Gyr is sufficient to nullify the DE hypothesis
[158], it is reassuring that recent observations of CMB anisotropies and es-
timates of galaxy clustering in the 2dF and SDSS surveys, make a strong
and independent case for dark energy [193, 200, 201]. Indeed, a joint analysis
of CMB data from WMAP + HST Key Project determination of H0 imply
wDE < −0.5 at the 95% confidence level [193].

It is of paramount importance that Sn observations continue to be supple-
mented by other investigations which are sensitive to the geometry of space
and can be used as independent tests of the DE hypothesis. The volume-
redshift test, Sunyaev-Zeldovich surveys, the Alcock-Paczynski test, the an-
gular size-redshift test and gravitational lensing have all been suggested as
possible probes of dark energy, and will doubtless enrich the theory vs obser-
vations debate in the near future. In addition, the proposed SNAP satellite
which aims to measure light curves of ∼ 2000 supernovae within a single year
[219], should provide a big step forward in our understanding of type Ia su-
pernovae and help determine the cosmological parameters to great precision,
as shown in Fig. 5.11.
8 i.e. if w = −1 is measured to satisfyingly high accuracy.
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Abstract. This review provides a non-technical introduction into time dependent
phenomena in string theory and their possible applications to cosmology, mainly
within the context of string low energy effective theories. Particular emphasis is
placed on the relation between string theory and inflation. We also discuss certain
topology changing processes in string theory in the context of cosmology.

6.1 Introduction

At present, M-theory represents the most promising candidate for a funda-
mental theory. It includes both gauge theories and gravity and is capable of
reproducing at least the generic features of the standard model of particle
physics. It is a natural question, therefore, if M-theory cosmology may pro-
vide a coherent picture of the evolution of the early universe and possibly
lead to prediction which can be tested observationally. Despite suggestions
of a low string scale of order TeV [1, 2], it seems likely to the author that
the string scale is actually of the order of the Planck scale or at least not
much smaller. Hence cosmology may be the only way in which M-theory can
eventually be tested.

The theoretical development of M-theory is by no means a closed sub-
ject and a complete, satisfying formulation of the theory is still outstanding.
String theory became popular as a candidate fundamental theory around
1985 after it had been realized that it is free of quantum anomalies and al-
ways contains among its states a spin-2 particle which can be interpreted as
the graviton. For some time after that, string theory seemed to be a fairly
coherent and well-founded subject dealing mostly with the perturbative for-
mulation of the five consistent ten-dimensional string theories. However, it
was realized around 1995 [3, 4, 5] that all five string theories plus eleven-
dimensional supergravity were related and had to be viewed as different limits
of a unique underlying theory. This hypothetical theory was named M-theory.
Currently, M-theory is accessible mainly through these six limiting theories
and the relations between them. It was also realized [6] that, in addition to
strings, M-theory contains extended objects, so-called p-branes, of all spatial
dimensions p. This state of affairs has to be kept in mind when discussing
M-theory cosmology.
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In practise, M-theory cosmology is nowhere near being able to provide a
coherent picture of the early universe or make reliable predictions, at present,
although this situation may well change in the future. Consequently, this
review will not present specific detailed scenarios for M-theory cosmology
but rather discuss time-dependent solutions of M-theory and their possible
applications in some generality. For applications, we will focus on inflation
which seems to be the most likely link between particle physics and cosmology.
We will also attempt to work in a context which takes requirements from
particle physics into consideration. The discussion will be non-technical and
mostly in the language of low-energy effective supergravity theories which is
the conceptually simplest approach and probably also the most coherent one,
at present.

In the next section, we start with a brief informal overview explaining
the structure of M-theory and its compactifications to lower dimensions. In
Sect. 6.3 we discuss a number of time-dependent M-theory solutions and their
application to inflation is the topic of Sect. 6.4. Section 6.5 deals with the
phenomenon of topology change in M-theory and its possible cosmological
significance and we conclude in Sect. 6.6.

6.2 M-Theory Basics

This section introduces the basic structure of M-theory and a number of
concepts which will be relevant in the context of cosmology. The level of
the discussion is kept as informal and non-technical as possible. For more
extensive reviews of string- and M-theory see, for example [7, 8, 9, 5, 10].

6.2.1 The Main Players

Currently, no fundamental formulation of M-theory which would be com-
pletely satisfying from a theoretical point of view is known. While one would
hope such a formulation is found eventually, the best one can do at present
is to “define” M-theory through a patchwork of different theories, all thought
to be limiting cases of the complete theory, which are related by a web of
so-called duality transformations. We begin by describing this structure in
some detail.

M-theory can be described in terms of six constituent theories, five of
them ten-dimensional theories and one eleven-dimensional. These six theo-
ries can be uniformly understood as supergravity theories, a viewpoint which
we will adopt for now. Generically, the field content of these supergravity the-
ories is given by a metric (in the appropriate space-time dimension), possibly
scalar fields, anti-symmetric tensor fields of various degrees and correspond-
ing fermions as required by supersymmetry. The associated supergravity ac-
tions can be thought of as higher-dimensional generalizations of the Einstein-
Hilbert action to include the other fields and respect supersymmetry. Let us
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now describe thesse theories in more detail, focusing on the bosonic fields and
beginning with the single theory in eleven dimensions, eleven-dimensional su-
pergravity. This theory is the unique supergravity theory in eleven dimensions
and its field content is given by a metric gIJ , a three-form CIJK and associ-
ated fermions (the gravitino, in this case), where I, J, · · · = 0, . . . , 10, 11. The
bosonic part of the action is given by

S11 = −1
2
κ2

11

∫ [√−gR+G ∧ "G+
2
3
C ∧G ∧G

]

+(fermions and higher order terms) , (6.1)

where G = dC is the four-form field strength of C and κ11 is the eleven-
dimensional Newton constant. The theory has thirty two supersymmetries
corresponding the the minimal, N = 1 supersymmetry in eleven dimensions.

The five ten-dimensional constituent theories of M-theory can be de-
scribed as the five consistent (that is, anomaly-free) supergravity theories
in this dimension. They split into two theories with thirty two supersymme-
tries, corresponding to extended N = 2 supersymmetry in ten dimensions,
referred to as type IIA and IIB, and three theories with sixteen supersym-
metries, that is N = 1 supersymmetry in ten dimensions, called E8 × E8
heterotic , SO(32) heterotic and type I. All five theories have a common sec-
tor of fields called the NSNS (for (Neveu-Schwarz Neveu-Schwarz)2) sector
which consists of the ten-dimensional metric gAB , a two-form BAB (with in-
dices A,B, · · · = 0, . . . , 9) and a scalar Φ, the dilaton. The associated part of
the action, also common to all five theories, reads

SNS = − 1
2κ10

∫ √−ge−2Φ

[
R+ 4∂AΦ∂

AΦ+
1
12
HABCH

ABC

]

+(fermions and higher order terms) . (6.2)

In addition to the NSNS sector, type II theories have anti-symmetric tensor
fields in the so-called RR (for Ramond Ramond) sector. For type IIA these are
odd-degree forms, specifically a one-form A(1) and a three form A(3) while for
type IIB we have even-degree forms, specifically a zero-form A(0) (a scalar),
a two-form A(2) and a (self-dual) four-form A(4). In addition to the terms
in (6.2) the actions for type II theories contain kinetic terms F(p) ∧ "F(p)
for the RR forms A(p), where F(p) = dA(p) is the field strength and certain
topological (that is, metric-independent) Chern-Simons terms involving the
RR forms and the NS two-form B.

The three ten-dimensional theories with N = 1 supersymmetry contain
non-Abelian gauge fields in addition to the NSNS sector. For the two heterotic
theories the associated gauge groups are precisely as indicated by their names,
while the gauge group for type I is SO(32). The NS action (6.2) has to be
supplemented by the kinetic terms for these non-Abelian gauge fields and a
few other modifications.
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Fig. 6.1. Relation between the six constituent theories of M-theory, following [5].

These six supergravity theories should be thought of as low-energy effec-
tive theories which describe certain limits of the full M-theory in a low-energy
approximation where all energies are small compared to the fundamental scale
MF set by the ten- or eleven-dimensional Newton constants. The various re-
lations between those six theories (or, rather, their M-theory counterparts)
via duality maps are indicated in Fig. 6.1. For example, Type IIA theory is
(believed to be) equivalent to eleven-dimensional part of M-theory by com-
pactifying one of the ten spatial dimensions on a small circle S1. A simple
indication why this may be true follows from a Kaluza-Klein reduction of
eleven-dimensional supergravity on S1. Splitting up the eleven-dimensional
indices into the S1 direction (identified with I = 11) and the remaining non-
compact ten directions, labelled by I = A, we find the metric components
gAB , gA11 and g11,11 while the three-form splits into CABC and CAB11. These
fields match the particle content of IIA, roughly identifying gAB with the
ten-dimensional metric, gA11 → A(1)A, R11 → g11,11 → Φ, CABC → A(3)ABC

and CAB11 → BAB . Indeed, the full IIA supergravity can be shown to follow
from a Kalaza-Klein reduction of 11-dimensional supergravity on S1. It is
instructive to look at the more precise relation

gS ≡ eΦ ∼ R3/2
11 (6.3)

between the radius R11 of S1 and the dilaton. Here gS is the string coupling
and it represents the coupling constant of IIA, as we will discuss below. Rela-
tion (6.3) tells us we should think of the eleven-dimensional theory on a large
circle S1 as the strong-coupling limit of IIA. Similarly, D = 11 supergravity
on the orbifold S1/Z2 constitutes the strong coupling limit of the E8 × E8
heterotic theory with the relation between the heterotic string coupling gS
and the radius of the orbi-circle similar to (6.3).

The other relations in Fig. 6.1 can be described in a similar way. Type
IIA and IIB are related via a T-duality transformation, which amounts to
compactifying both theories on circles S1 with respective radii RIIA and RIIB
and subsequently identifying RIIA = 1/RIIB. The T-duality relation between
the two heterotic theories has an analogous structure. Finally, the SO(32)-
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heterotic theory is related to type I by an S-duality transformation which
inverts the coupling constant gS = eΦ. Hence, type I can be interpreted as
strong coupling limit of SO(32) heterotic and vice versa.

6.2.2 Branes

The supergravity fields listed in the previous subsection are not the only de-
grees of freedom within M-theory. There exist a variety of extended object
of diverse dimensions [6], called p-branes, where p denotes the number of
spatial dimension of these objects. Such p-dimensional “sheets” are param-
eterized by p + 1 worldvolume coordinates σa, where a, b, · · · = 0, . . . , p and
σ0 corresponds to world-sheet time, and their embedding into D-dimensional
space-time can be described byD functionsXI = XI(σa) (see Fig. 6.2). Most
directly, the p-branes can be obtained as specific solutions of the supergrav-
ity theories of the previous subsection. As a general rule, a D-dimensional
supergravity theory with a (p + 1)-form anti-symmetric tensor field C(p+1)
has an “elementary” p-brane solution charged under C(p+1) and a “solitonic”
(D−p−4)-brane solution charged under the Hodge-dual of C(p+1). The fluc-
tuations of a p-brane can be described by a world-volume theory which (for
elementary p-branes) takes the typical form

S(p) = −Tp

∫ [
dp+1σ

√−γ + C(p+1)
]
+ . . . . (6.4)

Here the dots stand for terms involving other possible fields, such as world-
volume gauge fields or fermions. The constant Tp is called the p-brane tension
and is typically of the order Mp+1

F . Further, γab is the induced metric on the
brane world-volume defined as

γab = ∂aX
I∂bX

JgIJ . (6.5)

Hence, the first term in the action (6.4) measures the volume of the p-brane
with respect to the induced metric. The second term, called the Wess-Zumino

D dim. space−time

D−p−1 transverse 

p+1 dim.
world−
volume

aσ dimensions

I
embedding X (σa )

Fig. 6.2. A p-brane embedded into D-dimensional space-time.
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term, indicates that the p-brane is charged under the (p+1)-form C(p+1) and
it can be seen as the generalization of the term

∫
A in the world-line action

of a particle which carries charge under the U(1) gauge field A.
Let us discuss the types of p-branes which arise in the various supergravity

limits of M-theory, starting with eleven-dimensional supergravity. The only
form of eleven-dimensional supergravity is the three-form C which couples
to an elementary two-brane, also called M2-brane or M-theory membrane,
and a solitonic five-brane, also called M5-brane. The five ten-dimensional
supergravities all contain the NSNS two-form B which leads to an elementary
one-brane or string and a solitonic five-brane. In addition, in a type II theory
with a RR form A(p+1) we have an elementary p-brane and a solitonic 6 − p
branes. These p branes charged under RR forms are called Dp-branes (where
D is for Dirichlet). Type IIA has odd-degree RR forms and, hence, Dp-branes
for even p while type IIB contains even-degree forms and, hence Dp-branes
for odd p.

The elementary strings which couple to the NSNS two-forms B play a
particularly important role for the five 10-dimensional theories. Their two-
dimensional world-volume theories can be consistenly quantized leading to a
spectrum with a finite number of zero-mass states and an infinite tower of
massive modes with masses of the order n/

√
α′, where n is an integer and

α′ is the Regge slope, related to the string tension TS by TS = 1/(2πα′).
It turns out that the spectrum of zero modes for each of these five string
theories coincides with the spectrum of the five 10-dimensional supergravities.
Moreover, the 10-dimensional supergravities can be shown to be the correct
low-energy theories for the string zero modes. More precisely, they can be
derived in string perturbation theory and represent the lowest-order terms
arising in a double expansion in the string coupling gS = eΦ, controlling loop
corrections and the Regge-slope α′, controlling higher-derivative corrections.
Within this framework of perturbative string theory Dp-branes can also be
characterized as locations where open strings can end [9].

Analogously, eleven-dimensional supergravity can be viewed as an effec-
tive theory for the zero modes of the quantized worldvolume theory of the
M2-brane which corresponds to the theory of a collection of D0-branes and is
known under the name of M-theory matrix model [11]. However, the M-theory
matrix model and the relation to its effective theory is less well understood
than its string counterparts.

In this review we will mostly focus on the low-energy effective supergravity
approach since it provides the most direct and intuitive way to make contact
with cosmology. However, some basic questions in string cosmology, such as
the one about the fate of the initial singularity of standard cosmology, can
probably not be resolved within the context of effective field theories but
require the more fundamental viewpoint of quantized world-volume theories
or even a proper understanding of M-theory at a fundamental level. We will
return to this point later.
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6.2.3 Compactification

While there may be a number of cosmological problems which can be studied
in the context of a ten- or eleven-dimensional toy model it is quite clear that
a successful model of string cosmology must evolve towards an effectively
four-dimensional state at late time. Moreover, this effective four-dimensional
theory should reproduce the known features of particle physics, that is, the
particle physics standard model or some suitable (perhaps supersymmetric)
extension thereof. In this review, I will discuss string cosmology in this spirit,
aiming at combing the desired properties both from cosmology and particle
physics.

Let us begin by introducing some of the basic concepts of compactifi-
cation. For more detailed accounts see, for example, [7]. Starting point is
a particular class of solutions of one of the six supergravity theories which
must respect four-dimensional Poincaré invariance. Accordingly, the metric
for such solutions has the general structure

ds2 = e2A(y)dxµdxνηµν + gmn(y)dymdyn , (6.6)

where µ, ν, · · · = 0, 1, 2, 3 are four-dimensional indices and y = (ym) are the
coordinates of a six- or seven-dimensional internal compact spaceX with met-
ric gmn. Note that four-dimensional Poincaré invariance is compatible with
the so called warp factor exp(2A(y)) which multiplies the four-dimensional
part of the metric, as long as this factor only depends on the internal coor-
dinates y.

If all other background fields vanish the above metric must, to lowest or-
der, be a solution of the free Einstein equations, that is, it must be Ricci-flat.
This implies that the warp factor must be trivial, A = 0, and that the in-
ternal metric gmn must be Ricci-flat. The simplest example for an internal
space is then a torus T 6 or T 7 with a flat metric. While such torus compact-
ifications are interesting to study on theoretical grounds they do not break
any of the supersymmetries of the higher-dimensional theory and, therefore,
lead to unrealistic four-dimensional models with sixteen or thirty two su-
percharges, corresponding to N = 4 or N = 8, respectively. However, there
exist more complicated Ricci-flat spaces, namely Calabi-Yau three-folds [12]
(six-dimensional manifolds with holonomy SU(3)) or G2 spaces [13] (seven-
dimensional spaces with holonomy G2) which reduce the amount of super-
symmetry to 1/4 or 1/8, respectively. Hence, such manifolds or suitable sin-
gular (orbifold) limits thereof, reduce the four-dimensional supersymmetry
to a more suitable N = 1 or N = 2.

In more complicated cases, when fields other than the metric are non-
trivial in the background, the warp-factor A can be non-vanishing and the
internal metric will be no longer Ricci-flat. Particularly interesting examples
are provided by flux compactifications [14, 16, 17, 18, 19, 20], where the field
strengths G(p) = dC(p) of anti-symmetric tensor fields are non-trivial on the
internal space.
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Fig. 6.3. The orbifold S1/Z2.

Branes can well be part of such a compactification background. In order
to preserve four-dimensional Poicaré invariance they must span the four-
dimensional space and, hence, only p-branes with p ≥ 3 are suitable. In
addition, for p > 3, these p-branes must wrap a (p − 3)-dimensional cycle
inside the internal manifold X. Such compactifications with branes can be
described by combining one of the supergravity “bulk” actions (6.1), (6.2)
with p-branes actions (6.4). Anti-symmetric tensor field charges on a com-
pact manifold must add up to zero. This cannot be achieved with p-branes
alone since their charge has to be always positive for supersymmetric com-
pactifications 1. The internal charge can be balanced by allowing the space
X to develop orbifold (or orientifold) singularities which can carry negative
charge without breaking supersymmetry. The simplest example of such an
orbifold is given by S1/Z2 (see Fig. 6.3) where the circle coordinate y is
restricted to the range [−πρ,+πρ] (with endpoints identified) and the Z2
action is defined by y → −y. Orbifolding by this Z2 identifies points y on
the upper half of the circle with corresponding points −y on the lower half
while y = 0 and y = πρ are fixed points. Alternatively, this space can also be
seen as line [0, πρ] with the endpoints corresponding to the fix points. Despite
the singular structure of orbifolds at their fixed points string/M-theory can
be frequently consistently defined on such spaces. Moreover, as mentioned
before, negative form-field charges can arise at the singularities which can
counterbalance the positive brane charges while preserving some supersym-
metry. Formally, such singularities can be included by adding to the bulk
action a term −T ∫ √−gind (plus appropriate couplings to forms to account
for their charge) where gind is the induced metric on the fixed location and
T is the tension which, unlike brane tensions, can be negative.

Backgrounds suitable for compactifications as described above typically
come in continuous families. More precisely, the metric (6.6) should then be
written as
1 Non-supersymmetric compactifications, for example, of type II theories with

branes have been considered [21, 22], however, there is serious doubts about the
stability of such models.
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ds2 = e2A(y,bi)dxµdxνgµν + gmn(y, bi)dymdyn , (6.7)

where gµν is the four-dimensional metric and bi are a number of continuous
parameters or moduli. Geometrically, the moduli bi can usually be interpreted
as the radii or cycle volumes of the internal manifold X. Further such moduli
can arise from zero modes of the form-fields and we will generically denote
these by νi. Zero modes can also arise from branes which are part of the
background. They can be, for example, brane positions in the internal space or
zero modes of other brane-world volume fields. All these zero modes become
fields in the four-dimensional effective theory and we now turn to discuss its
generic structure.

6.2.4 The Four-Dimensional Effective Theory

The four-dimensional effective theory can be viewed as a theory for the zero
modes (or collective modes) of a class of background geometries, In this re-
view, I will focus on backgrounds which preserve four-dimensional N = 1
supersymmetry which is the right amount to guarantee some degree of sta-
bility of the backgrounds and allow for contact with particle physics. Hence,
the effective theory must be a four-dimensional N = 1 supergravity theory.
In the following I will assume familiarity with such supergravity theories. For
a pedagogical introduction see, for example, [23, 15].

The four-dimensional fields can be split into two groups according to their
higher-dimensional origin. First, there are field which originate from the bulk
and they account for gravity and all gravity-like fields, such as the bulk
moduli bi and νi. Secondly, there are four-dimensional fields which descend
from branes and they should account for all the gauge and gauge matter
fields. Accordingly, we split the chiral multiplets into two types 2, the moduli
multiplets T i, typically containing a geometrical “radius” modulus bi and an
axion νi

T i = bi + iνi , (6.8)

and the brane gauge matter fields Ca. For a successful particle physics model,
those latter fields should contain the spectrum of the (supersymmetric) stan-
dard model. At the perturbative level and without flux, the Kähler potential
K, the superpotential W and the gauge-kinetic function f take the generic
form

K = Kmod(T i, T̄ i) + Zab(T i, T̄ i)CaC̄b (6.9)
W = dabc(T i)CaCbCc (6.10)
f = f(T i) , (6.11)

2 However, not quite respecting our previous distinction we will also denote brane
moduli, such as internal brane positions, as T i.
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where Kmod is the moduli Kähler potential, Zab is the (moduli-dependent)
matter field Kähler metric and dabc are (moduli-dependent) Yukawa cou-
plings. Higher order terms in C from both K and W have been dropped.
When flux or non-perturbative effects are included the most important ad-
dition to the above structure is the introduction of an additional moduli
superpotential Wmod(T i). The validity of the effective theory is restricted by
whatever restricted the validity of the original higher-dimensional theory it
descended from, by possible constraints from the validity of the background
solutions plus the requirement that all energies be smaller than 1/Rc, where
Rc is the typical compactification radius.

Before going into more detail, it is worth noting that the above theories
provide plenty of scope for time-varying coupling constants, a topic of some
interest in cosmology. In this review, we will not discuss this subject in any
detail.

A central issue for cosmology as well as particle physics is the dynamics
of the moduli fields T i. Let us, therefore, consider some typical expressions
for the moduli Kähler potential and superpotential. For a generic modulus
T = b+ iν the Kähler potential frequently takes the form

Kmod = −k ln(T + T̄ ) , (6.12)

where k is a constant. The associated kinetic terms for b and ν are then

k

b2
(∂µb∂

µb+ ∂µν∂
µν) . (6.13)

This implies the canonically normalized field is β defined by

b = exp
(
β√
k

)
. (6.14)

Typical moduli superpotentials contain terms

Wmod ∼
{
e−cT

T
, (6.15)

where the upper contribution originates from non-perturbative sources such
as gaugino-condensation [14, 15] or brane instantons [24, 25] and the lower
contribution originates from flux3. Note that in terms of the canonically
normalized field β non-perturbative terms are double-exponential while flux
terms are single-exponential.

Recall that the scalar potential in four-dimensional N = 1 supergravity
for a collection {φI} of chiral multiplets is given by

V = eK
[
KIJFI F̄J − 3|W |2] , (6.16)

3 Flux superpotentials can be more complicated functions of the moduli but, unlike
non-perturbative contributions, they are not exponential in T .
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Fig. 6.4. Typical shape of the potential in the direction of a radius modulus b.

where
FI =

∂W

∂φI
+
∂K

∂φI
W , (6.17)

and KIJ is the inverse of the Kähler metric

KIJ =
∂2K

∂φI∂φ̄J
. (6.18)

This can be used to calculate the potential for moduli Kähler potentials of the
type (6.12) and moduli superpotentials which are a sum of the possible con-
tributions in (6.15). In the axion direction ν, such potentials usually have a
number of substantial minima (in the absence of flux the potential is, in fact,
periodic in ν). A typical shape in the b direction has been sketched in Fig. 6.4.
Such a runaway shape without a minimum arises for a single non-perturbative
term [14] a sum of such terms unless carefully tuned [26] or simple flux-only
superpotentials (the tail falling off double-exponential or exponential in β de-
pending on the case). A more interesting situation with a minimum at finite
b and a negative cosmological constant can be achieved for a carefully tuned
superposition of non-perturbative contributions [26] or, much more generi-
cally, by the superposition of a non-perturbative and a flux term entering W
with different signs [14, 27]. Such a shape has been sketched in Fig. 6.5. Note
that the value of b at the minimum normally corresponds to compactification
radii not too far away from the fundamental length scale 1/MF of the theory.
From our current understanding it seems unlikely, therefore, that scenarios
with very large additional dimensions [1, 2] can be embedded into M-theory.
There are indications [27] that the minimum in Fig. 6.5 can be lifted to a pos-
itive cosmological constant by inclusion of certain supersymmetry breaking
effects, such as anti-branes and that all moduli can be stabilized for certain
constructions. This would result in a shape as shown in Fig. 6.6. A major
problem in extracting concrete predictions from string theory is its large vac-
uum degeneracy. One manifestation of this degeneracy is the presence of the
moduli which, we recall, parameterize classes of background solutions. As
we have seen above, through the inclusion of moduli potentials one can at
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b
0

V(b)

Fig. 6.5. Potential with negative cosmological constant minimum in the direction
of a radius modulus b.

b
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V(b)

Fig. 6.6. Potential with positive cosmological constant minimum in the direction
of a radius modulus b.

least begin to address the dynamics of these fields and, perhaps, single out
a background geometry by fixing the moduli. We will return to this point in
Sect. 6.4 when we discuss inflation. However, a different type of degeneracy
arises from the existence of a large number of topologically different classes
of backgrounds (see Fig. 6.7). They arise, for example, from topogically dif-
ferent internal manifold X or topologically different brane configurations.
Low-energy theories associated to different topologies can be vastly different,
such as in their particle spectrum or gauge group. The problem how to single
out a specific topology is largely unsolved even in principle. We will return
to this issue in Sect. 6.5 when we discuss topology change.

6.2.5 A Specific Example: Heterotic M-Theory

Let us now illustrate the previous general discussion with a concrete class
of examples within heterotic M-theory [28]. The construction starts with
eleven-dimensional supergravity (6.1) on the orbifold S1/Z2 which has been
described in Sect. 6.2.3. In addition to the fields of eleven-dimensional super-
gravity, this introduces two ten-dimensional E8 super-Yang-Mills multiplets,
one an each of the ten-dimensional orbifold fixed planes (boundaries). This
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Fig. 6.7. Reduction of heterotic M-theory to five and four dimensions.

theory constitutes the strong coupling limit of the E8 × E8 heterotic string
(see Fig. 6.1) in much the same way eleven-dimensional supergravity is the
strong coupling limit of IIA.

Upon reduction of this theory on Calabi-Yau three-folds [29, 30] one ob-
tains a class of five-dimensional brane-world theories with a bulk described
by five-dimensional N = 1 supergravity and coupled to two four-dimensional
N = 1 theories localized on the two, now four-dimensional boundaries M1
and M2. There exist examples where the theory on one of the boundaries is
very close to the (supersymmetric) standard model of particle physics [31, 32]
and one expects a large number of such examples to exist. Further, one can
introduce M5-branes wrapping two-cycles within the Calabi-Yau three-fold
into the compactification. In the five-dimensional brane-world theory, they
become 3-branes which also carry a four-dimensional N = 1 theory. For
simplicity, we consider a single such 3-brane which (together with its Z2 mir-
ror) we denote by M3. Taking the radius of the orbifold sufficiently small
one can further derive an effective four-dimensional N = 1 theory. The two
steps of this reduction are summarized in Fig. 6.7. A minimal version of
five-dimensional heterotic M-theory is given by [30, 33]

S = Sbulk +
3∑

n=1

Sn , (6.19)
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where

Sbulk = − 1
2κ2

5

∫
d5x

√−g
[
1
2
R+

1
4
∂ϕ2 +

1
3
α2e−2ϕ

]
(6.20)

Sn = − 1
κ2

5

∫

Mn

d4x
√−g4αne

−ϕ for n = 1, 2 (6.21)

S3 = − 1
2κ2

5

∫

M3

√−γ|α3|e−ϕ . (6.22)

Here, we have only kept the minimal field content and have, in particular,
omitted gauge and matter fields from the boundary actions S1 and S2. More
complete actions can be found in [29, 34]. The parameter α which appears in
the bulk potential is defined by

α =
3∑

n=1

αnθ(Mn) , (6.23)

where θ is the theta function. The boundary charges α1, α2 and the 3-brane
charge α3 have to satisfy

3∑

n=1

αn = 0 , (6.24)

so that the total charge is zero. We note that the boundary tensions can be
negative (since α1 and α2 can be) while the three-brane tension is always
positive, as it should. For α3 > 0 we have a three-brane and the theory is
supersymmetric as described above. We can also consider the case of an anti
three-brane, taking α3 < 0. In this case supersymmetry is completely broken.
The scalar field ϕ is the five-dimensional dilaton and eϕ is proportional to
the volume of the internal Calabi-Yau three-fold.

The associated four-dimensional effective N = 1 theory (for α3 > 0)
can be obtained as the theory for the collective modes of a class of domain
wall solutions of the above five-dimensional action [30]. It contains three
geometrical moduli, namely β ∼ ln < g55 > measuring the radius of the
orbifold, φ ∼< ϕ > which measures the volume of the Calabi-Yau space and
z ∈ [0, 1] which specifies the position of the 3-brane (where z = 0 and z = 1
correspond to the boundaries M1 and M2, respectively). Along with these
fields go three chiral superfields

S = eφ + . . .
T = eβ + . . . (6.25)
Z = eβz + . . .

where the dots indicate axion and higher-order terms. The Kähler potential
for these moduli is given by [35, 34]
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Kmod = − ln
[
S + S̄ − q3 (Z + Z̄)2

T + T̄

]
− 3 ln(T + T̄ ) , (6.26)

where q3 is a constant proportional to α3. Non-perturbative potentials take
the general form

Wmod ∼ exp(−c1S + c2T + c3Z) , (6.27)

with positive constants cn while a flux superpotential is a constant 4 in S, T
and Z.

We stress that the above four-dimensional effective theory is in gen-
eral different from the four-dimensional “on-the-brane” theory obtained by
projecting the five-dimensional brane-world theory onto one of the bound-
aries. The four-dimensional effective theory provides a valid description of all
five-dimensional dynamics sufficiently close to the domain wall vacua of the
five-dimensional theory. The “on-the-brane” theory, on the other hand, pro-
vides an incomplete description of all solutions of the five-dimensional theory.
Therefore, working with the “on-the-brane” theory can be misleading in that
it suggests four-dimensional physics while, in fact, it may describe situations
for away from the effective four-dimensional limit required at late time.

We have argued above, that compact dimensions in M-theory are un-
likely to be much larger than the fundamental length scale of the theory.
Accordingly, most of the evolution can be safely described in terms of the
effective four-dimensional theory. Only in the very early universe, possibly
during inflation, and if the orbifold size is relatively large may working with
the five-dimensional theory be required.

6.3 Classes of Simple Time-Dependent Solutions

At the heart of cosmological models is a background solution with a four-
dimensional space-time metric of Friedmann-Robertson-Walker (FRW) type.
Finding FRW solutions in the context of M-theory, therefore, seems to be
a natural starting point for M-theory cosmology. In this section, we present
simple classes of such solutions and discuss their properties. For an extensive
list of references to the vast literature on the subject see, for example, [37].

6.3.1 Rolling Radii Solutions

We would now like to consider the free evolution (that is, the potential is set
to zero) of a number of four-dimensional moduli fields bi = exp(βi) which
measure radii of the internal manifold X. Such solutions are also referred
to as rolling radii solutions [38] and are the analogue of Kasner solutions in
4 However, it depends on another class of moduli, the complex structure moduli

which we have not discussed explicitly. Their values are usually fixed by the flux
potential [36].
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M-theory. As we have explained in Sect. 6.2.4, moduli potentials in M-theory
rapidly decrease for large values of the radius moduli. Hence, rolling radii
solutions should provide a good approximation to the dynamics at sufficiently
large values of the radii.

Let us start with a class of examples [39] which arises in the context
of compactifying eleven-dimensional supergravity on a manifold of G2 holon-
omy. The G2 manifolds under consideration have seven radius moduli βi with
associated chiral multiplet T i = exp(βi) + axion plus a number of additional
moduli which we suppress. The full model has been analyzed in [40]. The T i

part of the Kähler potential is simply

Kmod = −
7∑

i=1

ln(T i + T̄ i) , (6.28)

One can consistently set the axions in T i to constants which results in the
simple Lagrangian

L = −√−g
[

R+
7∑

i=1

∂βi∂βi

]

. (6.29)

Consider an Ansatz with time-dependent moduli βi = βi(t) and a FRW
metric

ds2 = −dt2 + e2α(t)dx2 (6.30)

with scale factor α and, for simplicity, flat spatial sections. The solutions are
then given by

a ≡ eα ∼ |t| 1
3 (6.31)

βi = pi ln |t| + ci . (6.32)

The expansion powers p = (pi) are constrained by

p2 =
4
3
, (6.33)

while ci are arbitrary constants. Note that the expansion power of the scale
factor a is 1/3, as expected for a kinetic energy driven expansion. Every
one of the above solutions exists on two branches, the positive-time branch,
t > 0, which begins in a curvature singularity and corresponds to sub-
luminal expansion of the universe and the negative-time branch, t < 0, which
ends in a curvature singularity and describes super-luminal contraction. Of
course, close to the singularity in either branch the four-dimensional effective
field theory breaks down as higher-derivative corrections become important.
Whether and how this singularity is regulated in the full M-theory must still
be viewed as an open question to which we return in Sect. 6.4.3. We also note
that the power-law evolution of the scalar fields βi describes the expansion
or contraction of the internal G2 space X.
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Another, similar class of rolling radii solutions can be obtained in the
context of four-dimensional heterotic M-theory without five-branes. We start
with the Kähler potential (6.26), drop the five-brane modulus Z and write
S = eφ + axion, T = eβ + axion. This leads to the Lagrangian

L = −√−g
[
R+

1
2
(∂φ)2 +

3
2
(∂β)2

]
. (6.34)

For a FRW metric (6.30) and time-dependent fields φ = φ(t), β = β(t) one
finds the solutions

a ∼ |t| 1
3

φ = pφ ln |t| + cφ (6.35)
β = pβ ln |t| + cβ .

The expansion powers cφ and cβ satisfy

3p2β + p2φ =
4
3
, (6.36)

while cφ and cβ are arbitrary constants. Recall that φ and β describe the
evolution of the Calabi-Yau volume and the radius of the orbifold S1/Z2,
respectively.

6.3.2 Including Axions

Recall that axions νi usually arise as zero modes of the anti-symmetric tensor
fields of M-theory and, at low energy, become the imaginary parts of the
moduli multiplets T i = exp(βi)+ iνi. Consider a single such axion ν coupled
to a number of radius moduli βi. The Lagrangian (6.29) is then modified to

L = −√−g
[

R+
∑

i

∂βi∂βi + exp

(
∑

i

qiβ
i

)

∂ν∂ν

]

. (6.37)

Here q = (qi) is a constant vector which depends on the specific case under
consideration. The general solution for this Lagrangian with time-dependent
scalar fields and a FRW metric (6.30) can be found [41, 42] analytically. Here
it will be sufficient to describe the qualitative behaviour of this solution.
In each branch a solution to (6.37) has an early and a late asymptotic re-
gion where ν is approximately constant and the evolution of βi is described
by a rolling radii solution (6.32) with expansion power p(i) for the initial
asymptotic state and a generally different expansion power p(f) for the final
asymptotic state. The two asymptotic regions are connected by an interme-
diate phase where the axion ν moves by a finite distance in field space. It can
be shown that the initial and final expansion powers are related by
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p(f) = p(i) − 2q · p(i)

|q|2 q . (6.38)

Hence the axion “mediates” between two rolling radii solutions. The structure
of curvature singularities is the same as for simple rolling radii solutions.
Further, it can be seen that the non-trivial kinetic function exp(

∑
i qiβ

i) for
ν in the Lagrangian (6.37) always increases asymptotically early and late.

6.3.3 Moving Branes

As we have mentioned before, in addition to bulk moduli there also generally
exist moduli which descend from brane world volume theories, for example,
scalar fields which indicate the position of a brane in the internal transverse
space. In the context of heterotic M-theory we have already encountered such
a modulus, namely the modulus Z which measures the position of a three-
brane in the orbifold direction. We will now study the cosmological evolution
of such brane moduli for the case of heterotic M-theory. However, many of
our conclusions are quite general and apply to other models as well.

Recall, that in heterotic M-theory we have the generic chiral moduli mul-
tiplets S, T and Z with associated Kähler potential (6.26). In terms of the
component fields φ, β and z defined in (6.25) and after truncating off the
axions this leads to the Lagrangian [34]

L = −√−g
[
R+

1
2
(∂φ)2 +

3
2
(∂β)2 + |q3|eβ−φ(∂z)2

]
, (6.39)

which is a generalization of (6.34) to include the position modulus z. We recall
that the three scalar fields in this Lagrangian have a well-defined interpre-
tation in terms of the underlying higher-dimensional geometry, as sketched
in Fig. 6.8. Specifically, eφ and eβ are proportional to the Calabi-Yau vol-
ume and the orbifold radius, respectively, while z measures the position of

1

CY CY CY

D=4
N=1

3
brane

D=4
N=1

e

z

φ

βe

D=5, N=1 SUGRA

0

Fig. 6.8. Interpretation of moduli φ, β and z in heterotic M-theory.
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the three-brane with z = 0 and z = 1 corresponding to the locations of the
boundaries.

An elementary observation about the Lagrangian (6.39) is the existence
of the non-trivial kinetic term for the brane position modulus z. This term
implies that the bulk moduli φ and β necessarily vary in time whenever z
does. As we will see this variation of the bulk moduli is actually important
and has important implications for the qualitative features of the solutions.
It would, therefore, be quite inappropriate, in this model as well as in other
brane models, to study the evolution of the brane in a static background.

We note that the Lagrangian (6.39) is a special case of the Lagrangian
(6.37) which couples radius moduli to an axion, with the position modulus
z formally playing the role of the axion. Hence, we conclude that the cosmo-
logical solutions [43] to (6.39) have two asymptotic regions where the brane
is approximately in rest and φ and β evolve as rolling radii with expansion
coefficients satisfying (6.36). These two asymptotic early and late regions are
connected by a period where the brane moves by a finite coordinate dis-
tance. In short, the brane evolution interpolates between two rolling radii
solutions. Since the brane moves by a finite distance it may or may not col-
lide with one of the boundaries depending on initial conditions. In the case
of collision, the system may undergo a topology-changing small instanton
transition [44, 45, 46] where the three-brane is “absorbed”. Some dynamical
aspects related to this transition have been studied in [47]. We also note that
the heterotic strong coupling expansion parameter defined by εS ∼ exp(β−φ)
always increases asymptotically for those solutions. Hence the effective the-
ory is always invalidated asymptotically, a fact one would have missed had
one set the bulk moduli to constants.

6.3.4 Duality Symmetries and Cosmological Solutions

Dualities are global, discrete transformations on the M-theory moduli space
which are thought to be exact symmetries of the theory. They can usually
be found as symmetries of low-energy effective theories and, at perturbative
level, they enlarge to continuous version of the symmetry. A typical example
for a Kähler simple potential

Kmod = −k ln(T + T̄ ) (6.40)

with a constant k would be given by the transformations

T → aT + ib
cT + id

, (6.41)

where ad − bc = 1 which form the group SL(2, R). The invariance of the
action can be seen by noting that these transformation can be generated by
T → aT+ib and T → 1/T where the former obviously leaves the above Kähler
potential invariant (up to an irrelevant constant) and the latter corresponds
to a Kähler transformation of Kmod which leaves the action unchanged.
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Such continuous versions of duality symmetries can be quite useful to
generate new cosmological solutions from old ones [37]. For example, the
above transformations mix the real and imaginary part of T and can, hence,
be used to generate solutions with a non-trivial axion (the imaginary part of
T ) from pure rolling radii solutions.

6.4 M-Theory and Inflation

The dynamics of scalar fields and inflation in particular constitutes proba-
bly the most important area in which one expects a close relation between
cosmology and particle physics (or fundamental theories in general). Let us,
therefore, discuss inflation in the context of M-theory in some detail.

6.4.1 Reminder Inflation

In this review, I will understand “inflation” as an era in the history of the
universe where modes leave the Hubble horizon. The ratio of the size of a
particular mode and the horizon size is proportional to |H|a where a = expα
is the scale factor in (6.30) and H = ȧ/a. Modes leave the Hubble horizon if
the time-derivative of |H|a is positive. For a power-law evolution with

a ∼ |t|p (6.42)

and some constant power p this implies that

d

dt
(|H|a) = sgn(t)ä ∼ sgn(t)p(p− 1)|t|p−2 (6.43)

must be positive for inflation. This leads to two different possibilities. First,
in the positive-time branch, t > 0, we should have p > 1. This case is realized
by potential-driven inflation [48] which can arise if the potential5 V = V (φ)
satisfies the slow-roll conditions

ε ∼
(
V ′

V

)2


 1 , η ∼ V ′′

V

 1 , (6.44)

in any part of fields space. Here the prime denotes the derivative with respect
to the (canonically normalized) field φ.

The second case, for which (6.43) is positive arises in the negative-time
branch, t < 0, if p ∈ [0, 1]. This possibility is realized by many solutions in
the negative-time branch and is also referred to as pre-big-bang inflation [49,
50]. Note, that in this case inflation evolves towards an apparent curvature
singularity which arises within the low-energy effective theory.
5 Here, φ is a generic scalar field.
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All proposed mechanisms (known to me) to solve the problems of standard
cosmology fall into one of these two categories. This includes more recent
proposals which involve moving branes such as the one in [51].

We will now discuss these two different types of inflation separately in the
context of M-theory.

6.4.2 Potential-Driven Inflation

M-theory low-energy effective theories typically contain a large number of
scalar fields and inflation, if realized at all, is unlikely to arise in the form
of one of the simple single-scalar field models which is commonly studied in
inflationary model-building. The possibilities can be broadly classified into
“bulk field inflation” where the inflaton is a combination of bulk scalar fields
and “brane field inflation” where inflation arises from the evolution of scalar
fields which originate from brane world-volume theories.

We start discussing bulk field inflation. The obvious problem in this case
is to find a suitable M-theory potential for bulk moduli which satisfies the
slow-roll conditions (6.44) at least in some part of moduli space. For multi-
field potentials these conditions have to be imposed on all directions in field
space which are not stabilized. In Sect. 6.2.4 we have discussed typical shapes
for such potentials in the direction of radius moduli. The generic problem is
that the potentials originating from superpotentials (6.15) are normally to
steep to be compatible with slow-roll. Hence, for potentials with a shape as
in Fig. 6.4 there is little hope for any relevant amount of inflationary ex-
pansion [52, 53], even though other directions in field space, such as some
of the axion directions, may well be compatible with slow-roll. The situa-
tion is somewhat more promising with potentials such as in Fig. 6.5 which
have a minimum with negative cosmological constant in the direction of the
radius moduli. Some inflation will be possible starting from the maximum
(although a sufficient amount is likely to require initial conditions fine-tuned
to the maximum) but the final state with negative cosmological constant is
unattractive given the observational evidence for a positive cosmological con-
stant in the late universe. There are indications for the existence of minima
with positive cosmological constant [27] such as in Fig. 6.6. In this case, the
most promising scenario may be to interpret the minimum as the true late-
time vacuum. Inflation may then be generated by fixing the radius moduli at
the minimum and use an axion direction or a brane field [54] as the inflaton.

With these remarks on bulk field inflation in mind we now turn to brane
field inflation. A recently much discussed example of this type is anti-brane
inflation [55], where the inflaton is the position modulus of an anti-brane. Let
us discuss this mechanism in the context of heterotic M-theory with an anti
5-brane. The effective four-dimensional theory for this situation is given by
(6.39) with an additional potential

V ∼ (|q3| − q3)e−φ−2β

[
1 − 2

3
q1e

β−φz

]−1

. (6.45)
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Recall that the anti-brane case corresponds to q3 < 0 where this potential
is indeed non-vanishing. Here, q1 is proportional to the charge α1 on the
boundary at y = 0. This potential satisfies the slow-roll conditions in the
z-direction as long as the strong coupling expansion parameter εS ∼ eβ−φ is
much smaller than one, a condition that is anyway required for the validity
of the effective theory. On would, therefore, hope for an inflationary period
while the anti-brane slowly moves along the orbifold direction which ends
when it collides with one of the boundaries. An obvious problem (which is
quite generic for such anti-brane models) is that the potential (6.45) is by
no means slow-roll in the direction of the radius moduli φ and β. Without
any additional mechanism to stabilize the radius moduli no inflation will be
generated, therefore. The obvious solution seems to be to combine a potential
as in Fig. 6.6 which stabilizes the radius moduli with (6.45). Unfortunately,
it turns out, the amount of inflation generated before the brane collides with
the boundary is too small. Roughly, this happens because the kinetic function
for z in (6.39) is identical to the parameter εS which controls the slow-roll
properties of the potential (6.45). Again this problem arises in many types
of anti-brane inflation models, although it can be avoided in some construc-
tions [56].

There is no need to insist on the anti-brane position modulus as the
inflaton. There will generically be many brane scalar fields, such as the scalar
partners of matter fields, with polynomial superpotentials as in (6.10), which
may be well-suited. These possibilities will now have to be examined for string
vacua with moduli potentials as in Fig. 6.6 and all moduli fixed.

So far we have exclusively focused on inflation in the context of an effective
four-dimensional theory. As mentioned before, the reason is that the existence
of very large additional dimensions seem unlikely given the known mechanism
of stabilizing moduli in M-theory. However, the energy scale during inflation
can be quite large (up to ∼ 1016GeV) and, hence, inflation may be able to
probe dimensions one or two orders of magnitude larger than the fundamental
length scale 1/MF . Such a possiblity may exist within heterotic M-theory [33]
where coupling unification suggest a “largish” orbfield size [57]. In this case,
the analysis should be carried out in the context of five-dimensional heterotic
M-theory reviewed in Sect. 6.2.5. For further discussions in this direction
see [58].

6.4.3 Pre-Big-Bang Inflation

The basic idea of pre-big-bang cosmology [49, 50, 37] is to use solutions in
the negative-time branch to generate inflation. We note that this mechanism
by itself is not particularly “stringy”. It simply relies on the existence of a
time-reflection symmetry of General Relativity and can, hence, be used in
any type of gravitational theory.

However, implementing the idea in a string context is rather straightfor-
ward. Consider the heterotic Lagrangian (6.34) for the moduli φ and β with
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its cosmological solutions (6.35). Since the expansion power of the scale fac-
tor is always 1/3 (and, hence, in the range [0, 1]) any of these solutions in
the negative time branch can be used to generate pre-big-bang inflation. The
original model [49] focused on the special case of constant β, that is, pβ = 0
which, from (6.36) implies a dilaton expansion power

pφ = ± 2√
3
. (6.46)

Of course, more complicated versions of the model with evolving β or with
an additional moduli potential added to (6.34) are possible.

The obvious problem of this proposal is the future curvature singularity
of negative-time branch solutions together with the necessity to generate a
transition from the negative-time branch with contracting universe to stan-
dard cosmology in the positive-time branch. Clearly, positive- and negative-
time branch solutions cannot be simply continuously matched together since
they correspond to opposite signs of the Hubble parameter. Hence, additional
physics not contained in simple effective Lagrangian such as (6.34) must be
responsible for this hypothetical transition which has also been called “grace-
ful exit” [59]. Let us briefly discuss why it is not easy to find a mechanism
for a graceful exit. Consider, the second order equation for the scale factor

Ḣ = −(ρ+ p) , (6.47)

where ρ and p are the total energy density and pressure for the model in-
cluding contributions from whatever is supposed to generate the exit. For the
required transition from a state with negative H to a state with positive H
one needs stress energy which satisfies ρ+ p < 0, at least for some period of
time around the transition. However, most “decent” sources of stress energy
such as scalar fields with potentials, gauge fields, forms etc. satisfy the null
energy condition ρ + p ≥ 0, simply from the algebraic form of their stress
energy tensor.

A form of stress energy which potentially does violate the null energy
condition are higher curvature terms, such as R2 terms. It is well-known that
such terms arise in string theory as higher-order α′ corrections. Clearly, such
terms will become important when the pre-big-bang phase approaches the
curvature singularity. The hope has, therefore, been that string theory will
somehow regulate the curvature singularity, thereby generating a graceful
exit.

The question whether and how string theory resolves cosmological singu-
larities has been addressed in different frameworks. Effective actions including
higher-order α′ corrections and loop corrections have been studied [60, 61].
Although, there are some indications that an exit can be achieved within this
framework there is an obvious problem with keeping only the lowest order
corrections of an infinite series when these lowest order corrections need to be
large to generate the exit. It is hard to see how this problem can be overcome
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in the context of an effective field theory approach. On a more fundamental
level, there have been studies of exact string backgrounds in the context of
Wess-Zumino-Witten models [62] and, more recently, a perturbative string
analysis of time-dependent orbifolds [63]. It is fair to say that none of these
approaches has led, so far, to conclusive results about the fate of cosmological
singularities in M-theory.

There has been some renewed interest [51] in pre-big-bang cosmology
in the context of negative-time branch solutions with a moving three-brane
within heterotic M-theory, based on the Lagrangian (6.39) (possibly with an
additional moduli potential). For example, one could use the negative-time
branch of the solutions described in Sect. 6.3.3 as the basis for a moving-
brane pre-big-bang cosmology. While this proposal is nothing new in terms
of the mechanism for inflation it contains an interesting new aspect related to
the exit problem. In the pre-big-bang phase, the three-brane can be arranged
to collide with one of the boundaries well before the system runs into large
curvature. The hope is that the brane-collision and the possible associated
topology change ends the pre-big-bang phase and generates a graceful exit.
This idea seems quite appealing in that it avoids the difficult problem of
dealing with the large-curvature region. However, it is far from clear at present
that such a brane-boundary collision can indeed lead to an exit from the pre-
big-bang phase.

A final remark on the calculation of scalar density perturbations in pre-
big-bang models is in order. As a general rule, while potential-driven inflation
generically leads to a scale-invariant spectrum with spectral index n close to
one, spectral indices in the context of pre-big-bang cosmology vary substan-
tially and depend on the particular solution. For example, the spectral index
for an axion field in a background of one of the solutions (6.35) depends on pφ

and pβ [37]. Frequently, n is substantially larger than one. Moreover, it is not
completely clear how to match perturbations across the transition from pre-
to post-big-bang cosmology, a fact which has been highlighted in the recent
debate [64]. Presumably, the question of how this should be done can only
be conclusively answered once a physical exit mechanism has been found.

6.5 Topology Change in Cosmology

As we have mentioned before, M-theory has a large number of topologically
different compactifications. At present, it is unclear what, if anything, will
choose one particular topology over the others. It may well be that the cos-
mological evolution has some role to play in this context. Fortunately, within
M-theory the topology of a compactification can change in a number of well-
defined processes. Hence, one can think of the M-theory moduli space as one
entity (or, at least few entities) which consists of a web of different topologies
connected by topology-changing processes. Indeed, such a picture seems to be
a pre-requisite for any mechanism which would single out a particular topol-
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ogy. One may hope that the closer analysis of topology-changing processes
and their cosmological implications leads to some clues as to the nature of this
mechanism. In this spirit we will now discuss the simplest topology-changing
process, the M-theory flop transition [65], and its cosmology [66, 67].

6.5.1 M-Theory Flops

The subsequent analysis will be in the context of eleven-dimensional super-
gravity (M-theory) on Calabi-Yau three folds, leading to an effective N = 1
supergravity in five dimensions. We consider transitions between two topo-
logically different Calabi-Yau spaces X and X̃. The Kähler moduli spaces of
these Calabi-Yau three-folds are parametrized by moduli bi and b̃i, respec-
tively. Their number is identical for the two topologies. One can think of
these moduli as measuring the volumes of two-cycles within the Calabi-Yau
spaces. Let us focus on a particular direction b = γib

i in moduli space, where
γi are constant coefficient. We think of b as measuring the size of a particular
two-sphere S2 with the Calabi-Yau space. When this two-sphere collapses to
zero size, b → 0, the Calabi-Yau space X becomes singular. The two-sphere
can then be blown up in a topologically different way to produce another
Calabi-Yau space X̃ with the modulus b now extending to negative values
(see Fig. 6.9). The important point is that this mathematical process, called
a flop, can be smoothly realized as a physical transition within M-theory.
The key for a smooth description of the transition is the inclusion of cer-
tain additional states q which have mass m ∼ b and, hence, become massless
at the transition point. These states, which we will call “transition states”,
originate from a membrane which wraps the collapsing two-sphere.

Once these states are included the transition can, in fact, be described in
terms of the low-energy effective five-dimensional supergravity. The relevant
terms in the supergravity action are [66]

flop at b=0

X X~

bi

b

bi~

Fig. 6.9. Adjacent Kähler moduli spaces of Calabi-Yau spaces X and X̃ and flop
transition.
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S = − 1
2κ2

5

∫
d5x

[
1
2
R+

1
4
Gij∂b

i∂bj + (∂q)2 + V
]
, (6.48)

where the metric Gij is defined by

Gij = −∂i∂j lnK , K = dijkb
ibjbk , (6.49)

where dijk are certain topological numbers (intersection numbers) of the
Calabi-Yau space X 6. They change under a flop transition to a new set
of numbers d̃ijk for X̃ and replacing dijk by d̃ijk (and bi with b̃i) is, in fact,
all that has to be done to the above action across the flop transition. The
moduli fields bi are subject to the constraint

K = 6 . (6.50)

Finally, the potential V is given by

V =
g2

4
[
b2q2 + (Gijγiγj − b2)q4] . (6.51)

Note that without transition states (setting q = 0 effectively) there would
be no potential and the moduli bi would be completely flat directions. The
first term in the above potential precisely represents the mass term for the
transition states.

6.5.2 Flops in Cosmology

We are now ready to consider a flop-transition in cosmology by studying
time-dependent solutions of the action (6.48). We focus on a specific pair X
and X̃ of Calabi-Yau three-folds related by a flop. The details of this example
are described in [66]. It contains three moduli fields which we call (T,U,W )
and the Kähler potential on X is given by

K =
9
4
U3 + 3T 2U −W 3 , (6.52)

while on X̃ it changes (as a result of the change in intersection numbers) to

K̃ =
5
4
U3 + 3U2W − 3UW 2 + 3T 2U . (6.53)

The moduli space of X is characterized by U > W and the one for X̃ by
U < W . The flop occurs precisely at U =W . Hence the field b which measures
the size of the collapsing two-sphere is given by b = U −W , in this particular
6 We are here using a canonical kinetic term for the transition states which we

can think off as the lowest order expansion of a non-trivial sigma-model metric.
Such a non-trivial metric has been included in [67].
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Fig. 6.10. Evolution for moduli U and W across a flop at U = W for vanishing
transition state q (upper plot) and non-vanishing transition state (lower plot).

example. By virtue of the constraint (6.50) only two of the three fields are
independent and we take these to be U and W . The flop then occurs at the
line U =W in this two-dimensional moduli space.

It is easy to set up initial conditions for the system so it evolves towards
the flop (basically by choosing the initial velocity ḃ negative) and perform
a numerical integration. The qualitative features of the result depend on
whether the transition state q is set to zero (which can be done consistently
in the action (6.48) by setting q and q̇ to zero initially) or whether it is non-
zero. Typical results for these two cases are shown in Fig. 6.10. These results
are easy to interpret. For a vanishing transition state q the potential (6.51)
is switched off and the moduli evolve freely. Starting out in X (U > W )
they cross the transition region and evolve into the moduli space of X̃ at
U < W . Hence, the topology indeed changes dynamically. However, when
the transition state is non-zero the potential (6.51) becomes important and
effects the evolution. From the lower plot we see that the system approaches
the flop and then oscillates around the transition region. It does not evolve
into the moduli space X̃ and, hence, the topology-changing transition is not
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completed. This behaviour which is quite generic and has been confirmed in
the analysis of [67] can be understood from the first term proportional to
b2q2 in the potential (6.51). Once q is non-zero it effectively corresponds to
a mass term for b and the system oscillates around the flop-line b = 0. It
is unlikely to “find” the flat direction in b which arises for q = 0 and the
topological transition remains incomplete. It is interesting that the dynamics
of flops singles out a particular region in moduli space close to the transition
region as the preferred state of the system. We also remark that the evolution
of fields is always smooth even in the transition region and at no time is there
a violation of the null energy condition. Hence, a transition from a negative-
to a positive-time branch cannot be generated by a flop. It remains to be seen
whether more severe topology-changing processes, such as the small-instanton
transition of heterotic M-theory, are similar in this respect.

6.6 Conclusions

We have seen that obtaining “successful” early universe cosmology from M-
theory is by no means straightforward. We have discussed the problems in
implementing potential driven-inflation which arise from the typical prop-
erties of moduli potentials in string theory. For pre-big-bang cosmology the
exit problem essentially remains an unresolved issue. Three key tasks in M-
theory cosmology are suggested by the current state of affairs. First, obtaining
a realistic and predictive model of potential-driven inflation within M-theory
would be a major step forward. Some progress in this direction has been made
through the systematic study of flux compactifications, as we have discussed.
Secondly, the question of whether and how M-theory resolves cosmological
curvature singularities should be answered. Thirdly, the relation between cos-
mological evolution, topology change and the choice of topology should be
investigated. A solution of the latter two problems may well require a more
satisfying, fundamental formulation of M-theory.
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Abstract. According to recent ideas from particle physics, the universe could be
a higher-dimensional spacetime, with our observable part of the universe being a
four-dimensional “brane” surface. In this picture, Standard Model particles and
fields are confined to the brane while gravity propagates freely in all dimensions.
If one of the extra spatial dimensions is very large relative to the Planck scale,
this lowers the fundamental gravity scale, possibly even down to electroweak scales
(∼TeV). At low energies, gravity is localized at the brane and general relativity is
recovered, but at high energies gravity “leaks” off the brane, leading to significant
corrections to general relativistic dynamics and perturbations. Here I review the
geometry, dynamics and perturbations of simple brane-world models for cosmology.

7.1 Introduction

Einstein’s theory of general relativity breaks down at high enough energies,
where quantum gravity theory takes over. The fully quantum regime entails
the breakdown of the space-time continuum, but even when spacetime can
be modelled as a continuum, significant corrections to general relativity will
arise at energies below, but near, the fundamental scale. Traditionally, the
fundamental scale has been thought to be the Planck scale, Mp ∼ 1019 GeV.
However, recent developments in M theory, a leading candidate quantum
gravity theory [1], indicate that the Mp may be an effective energy scale,
with the true fundamental scale being lower.

A fundamental aspect of string theory and M theory is the need for extra
spatial dimensions. If there are d extra (spatial) dimensions, then the gravita-
tional potential is V (r) ∝ 1/r1+d. If the length scale of the extra dimensions
is L, then on scales r � L, the potential is 4 + d-dimensional, while on scales
large relative to L, where the extra dimensions do not contribute to variations
in the potential, V behaves like a 4-dimensional potential, i.e. r ∼ L in the d
extra dimensions, and V ∼ L−dr−1. This means that the usual Planck scale
becomes an effective coupling constant, describing gravity on scales much
larger than the extra dimensions, and related to the fundamental scale via
the volume of the extra dimensions:

M2
p ∼M2+d

4+d L
d . (7.1)
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If the extra-dimensional volume is Planck scale, i.e. L ∼M−1
p , then M4+d ∼

Mp. But if the extra-dimensional volume is significantly above Planck scale,
then the true fundamental scale M4+d can be much less. In this case, we
understand the weakness of gravity as due to the fact that it “spreads” into
extra dimensions and only a part of it is felt in four dimensions. Experiments
in colliders and table-top tests of gravitational force [2, 3] imply the bounds
L � 0.1 mm and M4+d � 1 TeV.

String theory thus incorporates the possibility that the fundamental scale
is much less than the Planck scale felt in four dimensions. There are five
distinct (1+9)-dimensional superstring theories, all giving quantum theories
of gravity. Discoveries in the mid-90’s of duality transformations that relate
these superstring theories and the (1+10)-dimensional supergravity theory,
led to the conjecture that all of these theories arise as different limits of
a single theory, which has come to be known as M theory. The eleventh
dimension in M theory is related to the string coupling strength; the size
of this dimension grows as the coupling becomes strong. At low energies,
M theory can be approximated by (1+10)-dimensional supergravity.

It was also discovered that p-branes, which are extended objects of higher
dimension than strings (one-branes), play a fundamental role in the theory.
In the weak coupling limit, p-branes (p > 1) become infinitely heavy, so
that they do not appear in the perturbative theory. Of particular importance
among p-branes are the D-branes, on which open strings can end. Roughly
speaking, open strings, which describe the non-gravitational sector, are at-
tached at their endpoints to branes, while the closed strings of the gravita-
tional sector can move freely in the full spacetime (the “bulk”). Classically,
this is realised via the localization of matter and radiation fields on the brane,
with gravity propagating in the bulk (see Fig. 7.1).

In the Horava-Witten solution [4], gauge fields of the standard model are
confined on two (1+9)-branes (or domain walls) located at the end points
of an S1/Z2 orbifold, i.e. a circle folded on itself across a diameter. The six
extra dimensions on the branes are compactified on a very small scale, close
to the fundamental scale, and their effect on the dynamics is felt through
“moduli” fields, i.e. 5D scalar fields. A 5D realization of the Horava-Witten
theory and the corresponding brane-world cosmology is given in [5].

These solutions can be thought of as effectively five-dimensional, with an
extra dimension that can be large relative to the fundamental scale. They
provide the basis for the Randall-Sundrum type I models of five-dimensional
gravity [6]. The single-brane Randall-Sundrum type II models [7] with infinite
extra dimension arise when the orbifold radius tends to infinity. The RS mod-
els are not the only phenomenological realizations of M theory ideas. They
were preceded by the Arkani-Hamed-Dimopoulos-Dvali (ADD) [8] brane-
world models, which put forward the idea that a large volume for the compact
extra dimensions would lower the fundamental Planck scale, and thus address
the long-standing “hierarchy” problem, i.e. why there is such a large gap be-
tween the electroweak and Planck scales.
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Fig. 7.1. Schematic of confinement of matter to the brane, while gravity propagates
in the bulk (From [2]).

In the ADD models, more than one extra dimension is required for agree-
ment with experiments, and there is “democracy” amongst the equivalent
extra dimensions, which are furthermore flat. By contrast, the RS models
have a “preferred” extra dimension, with other extra dimensions treated as
ignorable (i.e., stabilized except at energies near the fundamental scale). Fur-
thermore, this extra dimension is curved or “warped” rather than flat: the
bulk is a portion of anti de Sitter (AdS5) spacetime. As in the Horava-Witten
solutions, the RS branes are Z2-symmetric (mirror symmetry), and have a
tension, which serves to counter the influence of the negative bulk cosmo-
logical constant on the brane. This also means that the self-gravity of the
branes is incorporated in the RS models. The novel feature of the RS models
compared to previous higher-dimensional models is that the observable three
dimensions are protected from the large extra dimension (at low energies) by
curvature rather than straightforward compactification.

The RS brane-worlds and their generalizations (to include matter on the
brane, scalar fields in the bulk, etc.) provide phenomenological models that
reflect at least some of the features of M theory, and that bring exciting new
geometric and particle physics ideas into play. The RSII models also provide
a framework for exploring holographic ideas that have emerged in M theory.
This review focuses mainly on RSII-type brane-worlds (see also [9, 10, 11]).

The dilution of gravity via extra dimensions weakens gravity, and it also
extends the range of graviton modes felt on the brane, beyond the massless
mode of four-dimensional gravity. For simplicity, consider a flat brane with
one flat extra dimension, compactified through the identification y ↔ y +
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2πnL, where n = 0, 1, 2, · · · . The perturbative 5D graviton amplitude can be
Fourier expanded as

f(xa, y) =
∑

n

einy/L fn(xa) , (7.2)

where fn are the amplitudes of the KK modes, i.e. the effective 4D modes of
the the 5D graviton. To see that these KK modes are massive from the brane
viewpoint, we start from the 5D wave equation that the massless 5D field f
satisfies (in a suitable gauge):

(5)�f = 0 ⇒ �f + ∂2
yf = 0 . (7.3)

It follows that the KK modes satisfy a 4D Klein-Gordon equation with an
effective 4D mass, mn,

�fn = m2
n fn , mn =

n

L
. (7.4)

The massless mode, f0, is the usual 4D graviton mode. But there is a tower
of massive modes, L−1, 2L−1, · · · , which imprint the effect of the 5D gravi-
tational field on the 4D brane. Compactness of the extra dimension leads to
discreteness of the spectrum. For an infinite extra dimension, L → ∞, the
separation between the modes disappears and the tower forms a continuous
spectrum.

Extra dimensions lead to new scalar and vector degrees of freedom on
the brane. In 5D, the spin-2 graviton is represented by a metric perturbation
(5)hAB that is transverse traceless:

(5)hA
A = 0 = ∂B

(5)hA
B . (7.5)

In a suitable gauge, (5)hAB contains a 3D transverse traceless perturbation
hij , a 3D transverse vector perturbation Σi and a scalar perturbation β,
each of which satisfies the 5D wave equation (7.3). The 5 degrees of freedom
(polarizations) in the 5D graviton are thus split into:
a 4D spin-2 graviton hij (2 polarizations); a 4D spin-1 gravi-vector (gravi-
photon) Σi (2 polarizations); a 4D spin-0 gravi-scalar β. The standard 4D
graviton corresponds to the massless zero-mode of hij .

In the general case of d extra dimensions, the number of degrees of freedom
in the graviton follows from the irreducible tensor representations of the
isometry group as 1

2 (d+ 1)(d+ 4).

7.2 Randall-Sundrum Brane-Worlds

RS brane-worlds do not use compactification to localize gravity at the brane,
but the curvature of the bulk. Gravity at low energies is prevented from
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leaking into the extra dimension by the gravitational effect of a negative bulk
cosmological constant,

Λ5 = − 6
�2

= −6µ2, (7.6)

where � is the curvature radius of AdS5:

(5)RABCD = − 1
�2

[
(5)gAC

(5)gBD − (5)gAD
(5)gBC

]
, (7.7)

and µ is the corresponding energy scale. In Gaussian normal coordinates
XA = (xµ, y), based on the brane at y = 0, the AdS5 metric takes the form

(5)ds2 = e−2|y|/�ηµνdx
µdxν + dy2 , (7.8)

with ηµν the Minkowski metric. The exponential warp factor reflects the
confining role of the bulk cosmological constant. The Z2-symmetry about
the brane at y = 0 is reflected via the |y| term. In the bulk, this metric is a
solution of the 5D Einstein equations,

(5)GAB = −Λ5
(5)gAB . (7.9)

The brane is a flat Minkowski spacetime, with self-gravity in the form of
brane tension. One can also use Poincare coordinates, which bring the metric
into manifestly conformally flat form:

(5)ds2 =
�2

z2
[
ηµνdx

µdxν + dz2
]
, z = �ey/� . (7.10)

The two RS models are distinguished as follows:

– RSI:
There are two branes in RSI [6], at y = 0 and y = L, with Z2-symmetry
about each. The branes have equal and opposite tensions, ±λ, where

λ =
3M2

p

4π�2
. (7.11)

The positive-tension “TeV” (or “hidden”) brane has fundamental scale
M5 ∼ 1 TeV. Standard Model fields are confined on the negative tension
“Planck” (or “visible”) brane. Because of the exponential warping factor,
the effective scale on the visible brane at y = L is Mp, where

M2
p =M3

5 �
[
1 − e−2L/�

]
. (7.12)

Thus RSI gives a new solution to the hierarchy problem. Because of the fi-
nite separation between the branes, the KK spectrum is discrete. In order
to recover 4D general relativity at low energies, a mechanism is required
to stabilize the inter-brane distance – a scalar field degree of freedom
known as the radion [12].
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– RSII:
In RSII [7], there is only one, positive tension, brane; the negative tension
brane is removed to infinity, L → ∞. Then the energy scales are related
via

M3
5 =

M2
p

�
. (7.13)

The infinite extra dimension makes a finite contribution to the 5D volume
because of the warp factor:

∫
d5X

√
− 5g = 2

∫
d4x

∫ ∞

0
dye−4y/� =

�

2

∫
d4x . (7.14)

Thus the effective size of the extra dimension probed by the 5D graviton
is �. The RSII models are the most simple and geometrically appealing
form of brane-world model, while at the same time providing a framework
for cosmology and for the AdS/CFT correspondence.

On the RSII brane, the negative Λ5 is balanced by the positive brane
tension λ. The fine-tuning in (7.11) ensures that there is zero effective cos-
mological constant on the brane, so that the brane has the induced geometry
of Minkowski spacetime. To see how gravity is localized at low energies, con-
sider the 5D graviton perturbations of the metric in RS gauge [7, 13]:

(5)gAB → (5)gAB + e−2|y|/� (5)hAB ,
(5)hAy = 0 = (5)hµ

µ = (5)hµν
,ν . (7.15)

(See Fig. 7.2.) The five polarizations of the 5D graviton are contained in the
five independent components of hµν in the RS gauge, which has no remaining
gauge freedom.

�
��

��

������

��

������

�	
�

Fig. 7.2. The gravitational field of a small point mass on the brane in RS gauge
(From [13]).
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We split the amplitude f of (5)hAB into 3D Fourier modes, and the lin-
earized 5D Einstein equations lead to the wave equation (y > 0)

e2y/�
[
f̈ + k2f

]
= f ′′ − 4

�
f ′ . (7.16)

Writing
f(t, y) =

∑

m

ϕm(t) fm(y) , (7.17)

the wave equation reduces to

ϕ̈m + (m2 + k2)ϕm = 0 (7.18)

f ′′
m − 4

�
f ′

m + e2y/�fm = 0 . (7.19)

The zero mode solution is

ϕ0(t) = A0+e
+ikt +A0−e−ikt (7.20)

f0(y) = B0 + C0e
4y/� , (7.21)

and the m > 0 solutions are

ϕm(t) = Am+ exp(+i
√
m2 + k2 t) +Am− exp(−i

√
m2 + k2 t) (7.22)

fm(y) = e2y/�
[
BmJ2

(
m�ey/�

)
+ CmY2

(
m�ey/�

)]
. (7.23)

The boundary condition follows from the junction conditions, see (7.41)
below, and leads to f ′(t, 0) = 0 (since the transverse traceless part of the
perturbed energy-momentum tensor on the brane vanishes). Thus

C0 = 0 , Cm = −J1(m�)
Y1(m�)

Bm . (7.24)

The zero mode contribution to the gravitational potential V = 1
2

(5)h00 gives
the 4D result, V ∝ r−1. The contribution of the massive KK modes sums to
a correction of the 4D potential. For r 
 �, one obtains

V (r) ≈ GM�

r2
, (7.25)

which simply reflects the fact that the potential becomes truly 5D on small
scales. For r � �,

V (r) ≈ GM

r

(
1 +

2�2

3r2

)
, (7.26)

which gives the small correction to 4D gravity at low energies from extra-
dimensional effects.

Table-top tests of Newton’s laws give � � 0.1 mm in (7.26). Then by
(7.11) and (7.13), this leads to lower limits on the RS brane tension and the
RS2 fundamental scale:

λ > (1 TeV)4 , M5 > 105 TeV . (7.27)
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7.3 Covariant Generalization of RS Brane-Worlds

The RS models and the subsequent generalization from a Minkowski brane
to a Friedmann-Robertson-Walker (FRW) brane [14, 15, 16], were derived as
solutions in particular coordinates of the 5D Einstein equations, together with
the junction conditions at the Z2-symmetric brane. The covariant Shiromizu-
Maeda-Sasaki approach [17], is independent of coordinates and applies for
general brane and bulk metrics. The basic idea is to use the Gauss-Codazzi
equations to project the 5D curvature along the brane.

The 5D field equations determine the 5D curvature tensor; in the bulk,
they are

(5)GAB = −Λ5
(5)gAB + κ2

5
(5)TAB , (7.28)

where (5)TAB represents any 5D energy-momentum of the gravitational sector
(e.g., dilaton-type scalar fields, form fields).

If y is a Gaussian normal coordinate orthogonal to the brane (at y = 0),
then nAdX

A = dy, with nA the unit normal. The 5D metric in terms of the
induced metric on {y = const} surfaces is

(5)gAB = gAB + nAnB ,
(5)ds2 = gµν(xα, y)dxµdxν + dy2 . (7.29)

The extrinsic curvature of {y = const.} surfaces is

KAB = gAC (5)∇CnB , K[AB] = 0 = KABn
B , (7.30)

where square brackets denote anti-symmetrization. The Gauss equation gives
the 4D curvature tensor as

RABCD = (5)REFGH gA
EgB

F gC
GgD

H + 2KA[CKD]B , (7.31)

and the Codazzi equation determines the change of KAB along {y = const}:

∇BK
B

A − ∇AK = (5)RBC gA
BnC , (7.32)

where K = KA
A.

7.3.1 Field Equations on the Brane

Using (7.28) and (7.31), it follows that

Gµν = −1
2
Λ5gµν +

2
3
κ2

5

[
(5)TABgµ

Agν
B +

{
(5)TABn

AnB − 1
4

(5)T

}
gµν

]

+KKµν −Kµ
αKαν +

1
2
[
KαβKαβ −K2] gµν − Eµν , (7.33)

where (5)T = (5)TA
A and

Eµν = (5)CACBD n
CnDgµ

Agν
B , (7.34)
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is the projection of the bulk Weyl tensor, with

EABn
B = 0 = E[AB] = EA

A . (7.35)

Evaluating (7.33) as y → ±0, gives the field equations on the brane.
First, we need to determineKµν at the brane from the junction conditions.

The total energy-momentum tensor on the brane is

T brane
µν = Tµν − λgµν , (7.36)

where Tµν is the energy-momentum tensor of particles and fields confined to
the brane (so that TABn

B = 0). The 5D field equations, including explicitly
the contribution of the brane, are then

(5)GAB = −Λ5
(5)gAB + κ2

5

[
(5)TAB + T brane

AB δ(y)
]
. (7.37)

Integrating along the extra dimension and taking the limit, this leads to the
junction conditions at the brane,

g+µν − g−
µν = 0 (7.38)

K+
µν −K−

µν = −κ2
5

[
T brane

µν − 1
3
T branegµν

]
, (7.39)

where T brane = gµνT brane
µν . The Z2 symmetry means that when you approach

the brane from one side and go through it, you emerge into a bulk that looks
the same, but with the normal reversed, nA → −nA. Then by (7.30)

K−
µν = −K+

µν , (7.40)

so that we can use the junction condition (7.39) to determine the extrinsic
curvature on the brane:

Kµν = −1
2
κ2

5

[
Tµν +

1
3

(λ− T ) gµν

]
, (7.41)

where T = Tµ
µ, we have dropped the (+) and we evaluate quantities on the

brane by taking the limit y → +0.
Finally we arrive at the induced field equations on the brane:

Gµν = −Λgµν + κ2Tµν + 6
κ2

λ
Sµν − Eµν + 4

κ2

λ
Fµν , (7.42)

where

κ2 ≡ κ2
4 =

1
6
λκ4

5 (7.43)

Λ ≡ Λ4 =
1
2
[
Λ5 + κ2λ

]
(7.44)

Sµν =
1
12
TTµν − 1

4
TµαT

α
ν +

1
24
gµν

[
3TαβT

αβ − T 2] (7.45)

Fµν = (5)TABgµ
Agν

B +
[
(5)TABn

AnB − 1
4

(5)T

]
gµν . (7.46)
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What about the conservation equations? Using (7.28), (7.32) and (7.41),
one obtains

∇νTµν = −2 (5)TABn
AgB

µ . (7.47)

Thus in general there is exchange of energy-momentum between the bulk and
the brane. From now on, we will assume that (5)TAB = 0 ⇒ Fµν = 0, so
that

(5)GAB = −Λ5
(5)gAB , (bulk) (7.48)

Gµν = −Λgµν + κ2Tµν + 6
κ2

λ
Sµν − Eµν , (brane) (7.49)

and one then recovers from (7.47) the standard 4D conservation equations,

∇νTµν = 0 . (7.50)

Then there is no exchange of energy-momentum between the bulk and the
brane; their interaction is purely gravitational. The 4D contracted Bianchi
identities (∇νGµν = 0), applied to (7.42), lead to

∇µEµν =
6κ2

λ
∇µSµν , (7.51)

which shows qualitatively how (1+3) spacetime variations in the matter-
radiation on the brane can source KK modes.

The induced field equations (7.42) show two key modifications to the
standard 4D Einstein field equations arising from extra-dimensional effects:

– Sµν ∼ (Tµν)2 is the high energy correction term, which is negligible for
ρ
 λ, but dominant for ρ� λ:

|κ2Sµν/λ|
|κ2Tµν | ∼ |Tµν |

λ
∼ ρ

λ
. (7.52)

– Eµν , the projection of the bulk Weyl tensor on the brane, encodes correc-
tions from 5D graviton effects (the KK modes in the linearized case).

From the brane-observer viewpoint, the energy-momentum corrections in
Sµν are local, whereas the KK corrections in Eµν are nonlocal, since they
incorporate 5D gravity wave modes. These nonlocal corrections cannot be
determined purely from data on the brane. In the perturbative analysis of
RSII which leads to the corrections in the gravitational potential, (7.26), the
KK modes that generate this correction are responsible for a nonzero Eµν ;
this term is what carries the modification to the weak-field field equations.
The nine independent components in the trace-free Eµν are reduced to five
degrees of freedom by (7.51); these arise from the five polarizations of the 5D
graviton.

Note that the covariant formalism applies also to the two-brane case.
In that case, the gravitational influence of the second brane is felt via its
contribution to Eµν .
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7.3.2 The Brane Observer’s Viewpoint

The effects of bulk gravity are conveyed, from a brane observer viewpoint, via
the local (Sµν) and nonlocal (Eµν) corrections to Einstein’s equations. (In the
more general case, bulk effects on the brane are also carried by Fµν , which
describes any 5D fields.) The Eµν term cannot in general be determined from
data on the brane, and the 5D equations above (or their equivalent) need to
be solved in order to find Eµν .

The general form of the brane energy-momentum tensor for any matter
fields (scalar fields, perfect fluids, kinetic gases, dissipative fluids, etc.), in-
cluding a combination of different fields, can be covariantly given in terms of
a chosen four-velocity uµ as

Tµν = ρuµuν + phµν + πµν + qµuν + qνuµ . (7.53)

Here ρ and p are the energy density and isotropic pressure, and

hµν = gµν + uµuν , (7.54)

projects into the comoving rest space orthogonal to uµ on the brane. The
momentum density obeys qµ = q〈µ〉, and the anisotropic stress obeys πµν =
π〈µν〉, where angled brackets denote the spatially projected, symmetric and
trace-free part:

V〈µ〉 = hµ
νVν , W〈µν〉 =

[
h(µ

αhν)
β − 1

3
hαβhµν

]
Wαβ . (7.55)

In an inertial frame at any point on the brane, we have

uµ = (1,0) , hµν = diag(0, 1, 1, 1) , qµ = (0, qi) , πµ0 = 0 =
∑

πii . (7.56)

The tensor Sµν , which carries local bulk effects onto the brane, may then
be irreducibly decomposed as

Sµν =
1
24
[
2ρ2 − 3παβπ

αβ
]
uµuν +

1
24
[
2ρ2 + 4ρp+ παβπ

αβ − 4qαqα
]
hµν

− 1
12

(ρ+ 2p)πµν + πα〈µπν〉α

+ q〈µqν〉 +
1
3
ρq(µuν) − 1

12
qαπα(µuν) . (7.57)

This simplifies for a perfect fluid or minimally-coupled scalar field:

Sµν =
1
12
ρ [ρuµuν + (ρ+ 2p)hµν ] . (7.58)

The trace free Eµν carries nonlocal bulk effects onto the brane, and con-
tributes an effective “dark” radiative energy-momentum on the brane, with
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energy density ρ∗, pressure ρ∗/3, momentum density q∗µ and anisotropic stress
π∗

µν :

− 1
κ2 Eµν = ρ∗

(
uµuν +

1
3
hµν

)
+ q∗µuν + q∗νuµ + π∗

µν . (7.59)

We can think of this as a KK or Weyl “fluid”. The brane “feels” the bulk
gravitational field through this effective fluid. More specifically:

– The KK (or Weyl) anisotropic stress π∗
µν incorporates the scalar or spin-0

(“Coulomb”), the vector (transverse) or spin-1 (gravimagnetic) and the
tensor (transverse traceless) or spin-2 (gravitational wave) 4D modes of
the spin-2 5D graviton.

– The KK momentum density q∗µ incorporates spin-0 and spin-1 modes, and
defines a velocity v∗

µ of the Weyl fluid relative to uµ via q∗µ = ρ∗v∗
µ.

– The KK energy density ρ∗, often called the “dark radiation”, incorporates
the spin-0 mode.

The RS models have a Minkowski brane in an AdS5 bulk. This bulk is also
compatible with an FRW brane. However, the most general vacuum bulk with
a Friedmann brane is Schwarzschild-anti de Sitter spacetime [18]. It follows
from the FRW symmetries that q∗µ = 0 = π∗

µν , where ρ∗ = 0 only if the mass
of the black hole in the bulk is zero. The presence of the bulk black hole
generates via Coulomb effects the dark radiation on the brane.

The brane-world corrections can conveniently be consolidated into an ef-
fective total energy density, pressure, momentum density and anisotropic
stress.

ρtot = ρ+
1
4λ
(
2ρ2 − 3πµνπ

µν
)

+ ρ∗ (7.60)

ptot = p+
1
4λ
(
2ρ2 + 4ρp+ πµνπ

µν − 4qµqµ
)

+
ρ∗

3
(7.61)

qtotµ = qµ +
1
2λ

(2ρqµ − 3πµνq
ν) + q∗µ (7.62)

πtot
µν = πµν +

1
2λ
[−(ρ+ 3p)πµν + 3πα〈µπν〉α + 3q〈µqν〉

]
+ π∗

µν . (7.63)

These general expressions simplify in the case of a perfect fluid (or minimally
coupled scalar field, or isotropic one-particle distribution function), i.e. for
qµ = 0 = πµν :

ρtot = ρ

(
1 +

ρ

2λ
+
ρ∗

ρ

)
(7.64)

ptot = p+
ρ

2λ
(2p+ ρ) +

ρ∗

3
(7.65)

qtotµ = q∗µ (7.66)

πtot
µν = π∗

µν . (7.67)
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Note that nonlocal bulk effects can contribute to effective imperfect fluid
terms even when the matter on the brane has perfect fluid form: there is in
general an effective momentum density and anisotropic stress induced on the
brane by the 5D graviton.

The effective total equation of state and sound speed follow from (7.64)
and (7.65) as

wtot ≡ ptot

ρtot
=
w + (1 + 2w)ρ/2λ+ ρ∗/3ρ

1 + ρ/2λ+ ρ∗/ρ
(7.68)

c2tot ≡ ṗtot

ρ̇tot
=
[
c2s +

ρ+ p
ρ+ λ

+
4ρ∗

9(ρ+ p)(1 + ρ/λ)

]

[
1 +

4ρ∗

3(ρ+ p)(1 + ρ/λ)

]−1

, (7.69)

where w = p/ρ and c2s = ṗ/ρ̇. At very high energies, i.e., ρ� λ, we can gen-
erally neglect ρ∗ (e.g., in an inflating cosmology), and the effective equation
of state and sound speed are stiffened:

wtot ≈ 2w + 1 , c2tot ≈ c2s + w + 1 . (7.70)

This can have important consequences in the early universe and during gravi-
tational collapse. For example, in a very high energy radiation era, w = 1

3 , the
effective cosmological equation of state is ultra-stiff: wtot ≈ 5

3 . In late-stage
gravitational collapse of pressureless matter, w = 0, the effective equation of
state is stiff, wtot ≈ 1, and the effective pressure is nonzero and dynamically
important.

7.3.3 Conservation Equations: Ordinary and “Weyl” Fluids

Conservation of Tµν gives the standard general relativity energy and momen-
tum conservation equations:

ρ̇+Θ(ρ+ p) + Dµqµ + 2Aµqµ + σµνπµν = 0 (7.71)

q̇〈µ〉 +
4
3
Θqµ + Dµp+ (ρ+ p)Aµ

+ Dνπµν +Aνπµν + σµνq
ν − εµναω

νqα = 0 . (7.72)

In these equations, an overdot denotes uν∇ν , Θ = ∇µuµ is the volume ex-
pansion rate of the uµ worldlines, Aµ = u̇µ = A〈µ〉 is their four-acceleration,
σµν = D〈µuν〉 is their shear rate, and ωµ = − 1

2εµαβDαuβ = ω〈µ〉 is their
vorticity rate. On a Friedmann brane,

Aµ = ωµ = σµν = 0 , Θ = 3H , (7.73)

where H = ȧ/a is the Hubble rate. Here Dµ is the spatially projected part
of the brane covariant derivative, defined by
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DµF
α······β = (∇µF

α······β)⊥ = hµ
νhα

γ · · ·hβ
δ∇νF

γ······δ . (7.74)

In a local inertial frame at a point on the brane, with uµ = δµ0, we have:
0 = A0 = ω0 = σ0µ = ε0αβ and DµF

α······β = δµ
iδαj · · · δβk∇iF

j······k, where
i, j, k = 1, 2, 3.

The absence of bulk source terms in the matter conservation equations is
a consequence of having Λ5 as the only 5D source in the bulk. For example, if
there is a bulk scalar field, then there is energy-momentum exchange between
the brane and bulk (in addition to the gravitational interaction) [19].

Equation (7.51) may be called the “nonlocal conservation equation for
the Weyl fluid”. Projecting along uµ gives the nonlocal energy conservation
equation [20], which is a propagation equation for ρ∗:

ρ̇∗ +
4
3
Θρ∗ + Dµq∗µ + 2Aµq∗µ + σµνπ∗

µν

=
1
4λ

[6πµν π̇µν + 6(ρ+ p)σµνπµν + 2Θ (2qµqµ + πµνπµν) + 2Aµqνπµν

− 4qµDµρ+ qµDνπµν + πµνDµqν − 2σµνπαµπν
α − 2σµνqµqν ] . (7.75)

Projecting into the comoving rest space gives the nonlocal momentum con-
servation equation, which is a propagation equation for q∗µ:

q̇∗〈µ〉 +
4
3
Θq∗µ +

1
3
Dµρ

∗ +
4
3
ρ∗Aµ + Dνπ∗

µν +Aνπ∗
µν + σµ

νq∗ν − εµναωνq
∗
α

=
1
4λ
[−4(ρ+ p)Dµρ+ 6(ρ+ p)Dνπµν + qν π̇〈µν〉 + πµ

νDν(2ρ+ 5p)

− 2
3
παβ (Dµπαβ + 3Dαπβµ) − 3πµαDβπ

αβ +
28
3
qνDµqν

+ 4ρAνπµν − 3πµαAβπ
αβ +

8
3
Aµπ

αβπαβ − πµασ
αβqβ

+ σµαπ
αβqβ + πµνε

ναβωαqβ − εµαβω
απβνqν + 4(ρ+ p)Θqµ

+ 6qµAνqν +
14
3
Aµq

νqν + 4qµσαβπαβ

]
. (7.76)

The (1+3)-covariant decomposition shows two key features:

– inhomogeneous and anisotropic effects from the 4D matter-radiation dis-
tribution on the brane are a source for the 5D Weyl tensor, which nonlo-
cally “backreacts” on the brane via its projection Eµν ;

– there are evolution equations for the dark radiative (nonlocal, Weyl) en-
ergy (ρ∗) and momentum (q∗µ) densities (carrying scalar and vector modes
from bulk gravitons), but there is no evolution equation for the dark ra-
diative anisotropic stress (π∗

µν) (carrying tensor, as well as scalar and
vector, modes), which arises in both evolution equations.

In particular cases, the Weyl anisotropic stress π∗
µν may drop out of the

nonlocal conservation equations, i.e. when we can neglect σµνπ∗
µν , Dνπ∗

µν
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and Aνπ∗
µν . This is the case when we consider linearized perturbations about

an FRW background (which remove the first and last of these terms) and
further when we can neglect gradient terms on large scales (which removes
the second term) [20]. But in general, on small scales in cosmology, and
especially in astrophysical contexts, the π∗

µν terms cannot be neglected.
All of the matter source terms on the right of these two equations, except

for the first term on the right of (7.76), are imperfect fluid terms, and most of
these terms are quadratic in the imperfect quantities qµ and πµν . For a single
perfect fluid or scalar field, only the Dµρ term on the right of (7.76) survives,
but in realistic cosmological and astrophysical models, further terms will
survive. For example, terms linear in πµν will carry the photon quadrupole
in cosmology or the shear viscous stress in stellar models. If there are two
fluids (even if both fluids are perfect), then there will be a relative velocity vµ
generating a momentum density qµ = ρvµ, which will serve to source nonlocal
effects.

In general, the four independent equations in (7.75) and (7.76) constrain
four of the nine independent components of Eµν on the brane. What is miss-
ing, is an evolution equation for π∗

µν (which has up to five independent compo-
nents). Thus in general, the projection of the five-dimensional field equations
onto the brane does not lead to a closed system, as expected, since there are
bulk degrees of freedom whose impact on the brane cannot be predicted by
brane observers. The Weyl or KK anisotropic stress π∗

µν encodes the nonlo-
cality.

In special cases the missing equation does not matter. For example, if
π∗

µν = 0 by symmetry, as in the case of an FRW brane, then the evolution of
Eµν is determined by (7.75) and (7.76). However, small perturbations of this
special case will immediately restore the problem of missing information.

If the matter on the brane has a perfect-fluid energy-momentum tensor,
the local conservation equations (7.71) and (7.72) reduce to

ρ̇+Θ(ρ+ p) = 0 (7.77)
Dµp+ (ρ+ p)Aµ = 0 , (7.78)

while the nonlocal conservation equations (7.75) and (7.76) reduce to

ρ̇∗ +
4
3
Θρ∗ + Dµq∗µ = 0 (7.79)

q̇∗〈µ〉 +
4
3
Θq∗µ +

1
3
Dµρ

∗ +
4
3
ρ∗Aµ + Dνπ∗

µν = − (ρ+ p)
λ

Dµρ , (7.80)

where we have also linearized about an FRW background.
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7.4 Brane-World Cosmology: Dynamics

In the FRW case, (7.80) is trivially satisfied, while (7.79) becomes

ρ̇∗ + 4Hρ∗ = 0 . (7.81)

This equation has the dark radiation solution

ρ∗ = ρ∗
0

(a0
a

)4
. (7.82)

In natural static coordinates, the Schwarzschild-AdS5 metric for an FRW
brane-world is

(5)ds2 = −F (R)dT 2 +
dR2

F (R)
+R2

(
dr2

1 −Kr2 + r2dΩ2
)

(7.83)

F (R) = K +
R2

�2
− m

R2 , (7.84)

where K = 0,±1 is the FRW curvature index and m is the mass parameter
of the black hole at R = 0 (note that the 5D gravitational potential has R−2

behaviour). The bulk black hole gives rise to dark radiation on the brane via
its Coulomb effect. The FRW brane moves radially along the fifth dimension,
with R = a(T ), where a is the FRW scale factor, and the junction conditions
determine the velocity via the Friedmann equation for a [18]. Thus one can
interpret the expansion of the universe as motion of the brane through the
static bulk. In the special case m = 0 and da/dT = 0, the brane is fixed and
has Minkowski geometry, i.e. the original RSII brane-world is recovered, in
different coordinates.

The velocity of the brane is coordinate-dependent, and can be set to zero.
We can use Gaussian normal coordinates, in which the brane is fixed but the
bulk metric is not manifestly static [14]:

(5)ds2 = −N2(t, y)dt2 +A2(t, y)
[

dr2

1 −Kr2 + r2dΩ2
]

+ dy2 . (7.85)

Here a(t) = A(t, 0) is the scale factor on the FRW brane at y = 0, and t may
be chosen as proper time on the brane, so that N(t, 0) = 1. In the case where
there is no bulk black hole (m = 0), the metric functions are

N =
Ȧ(t, y)
ȧ(t)

(7.86)

A = a(t)
[
cosh

(y
�

)
−
{

1 +
ρ(t)
λ

}
sinh

( |y|
�

)]
. (7.87)

Again, the junction conditions determine the Friedmann equation. The ex-
trinsic curvature at the brane is
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Kµ
ν = diag

(
N ′

N
,
A′

A
,
A′

A
,
A′

A

)

brane
. (7.88)

Then, by (7.41),

N ′

N

∣
∣
∣
brane

=
κ2

5

6
(2ρ+ 3p− λ) (7.89)

A′

A

∣
∣
∣
brane

= −κ
2
5

6
(ρ+ λ) . (7.90)

The field equations yield the first integral [14]

(AA′)2 − A2

N2 Ȧ
2 +

Λ5

6
A4 +m = 0 , (7.91)

where m is constant. Evaluating this at the brane, using (7.90), gives the
modified Friedmann equation

H2 =
κ2

3
ρ
(
1 +

ρ

2λ

)
+
m

a4
+

1
3
Λ− K

a2
. (7.92)

By (7.82),

m =
κ2

3
ρ∗
0a

4
0 . (7.93)

The Friedmann and matter energy conservation equations yield

Ḣ = −κ
2

2
(ρ+ p)

(
1 +

ρ

λ

)
− 2

m

a4
+
K

a2
. (7.94)

When the bulk black hole mass vanishes, the bulk geometry reduces to
AdS5 and ρ∗ = 0. In order to avoid a naked singularity, we assume that the
black hole mass is non-negative, so that ρ∗

0 ≥ 0. [By (7.84), it is possible to
avoid a naked singularity with negative m when K = −1, provided |m| ≤
�2/4.] This additional effective relativistic degree of freedom is constrained
by nucleosynthesis and CMB observations to be no more than ∼5% of the
radiation energy density [21, 22]:

ρ∗

ρrad

∣
∣
∣
∣
nuc

. � 0.05 (7.95)

The other modification to the Hubble rate is via the high energy correction
ρ/λ. In order to recover the observational successes of general relativity, the
high energy regime where significant deviations occur must take place before
nucleosynthesis, i.e., cosmological observations impose the lower limit

λ > (1 MeV)4 ⇒ M5 > 104 GeV . (7.96)

This is much weaker than the limit imposed by table-top experiments, (7.27).
Since ρ2/λ decays as a−8 during the radiation era, it will rapidly become
negligible after the end of the high energy regime, ρ = λ.
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If ρ∗ = 0 and K = 0 = Λ, then the exact solution of the Friedmann
equations for w = p/ρ = const. is [14]

a = const [t(t+ tλ)]1/3(w+1) , tλ =
Mp√

3πλ(1 + w)
� (1 + w)−110−9 sec ,

(7.97)
where w > −1. If ρ∗ 
= 0 (but K = 0 = Λ), then the solution for the radiation
era (w = 1

3 ) is

a = const [t(t+ tλ)]1/4 , tλ =
√

3Mp

4
√
πλ (1 + ρ∗/ρ)

. (7.98)

For t � tλ we recover from (7.97) and (7.98) the standard behaviour, a ∝
t2/3(w+1), whereas for t 
 tλ, we have the very different behaviour of the
high energy regime,

ρ� λ ⇒ µ ∝ t1/3(w+1) . (7.99)

When w = −1 we have ρ = ρ0 from the conservation equation. If K =
0 = Λ, we recover the de Sitter solution for ρ∗ = 0 and an asymptotically de
Sitter solution for ρ∗ > 0:

ρ∗ = 0 : a = a0 exp[H0(t− t0)] , H0 = κ
√
ρ0
3

(
1 +

ρ0
2λ

)
(7.100)

ρ∗ > 0 : a2 =
√
m

H0
sinh[2H0(t− t0)] . (7.101)

7.5 Brane-World Inflation

In RSII-type brane-worlds, where the bulk has only a vacuum energy, inflation
on the brane must be driven by a 4D scalar field trapped on the brane. In
more general brane-worlds, where the bulk contains a 5D scalar field, it is
possible that the 5D field induces inflation on the brane via its effective
projection [23].

More exotic possibilities arise from the interaction between two branes,
including possible collision, which is mediated by a 5D scalar field and which
can induce either inflation [24] or a hot big-bang radiation era, as in the
“ekpyrotic” or cyclic scenario [25]. Here we discuss the simplest case of a 4D
scalar field φ with potential V (φ).

High energy brane-world modifications to the dynamics of inflation on the
brane have been investigated [26, 27]. Essentially, the high energy corrections
provide increased Hubble damping, since ρ� λ impliesH is larger for a given
energy than in 4D general relativity. This makes slow-roll inflation possible
even for potentials that would be too steep in standard cosmology [26, 28, 29].

The field satisfies the Klein-Gordon equation
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φ̈+ 3Hφ̇+ V ′(φ) = 0 . (7.102)

In 4D general relativity, the condition for inflation, ä > 0, is φ̇2 < V (φ), i.e.,
p < − 1

3ρ, where ρ = 1
2 φ̇

2 + V and p = 1
2 φ̇

2 − V . The modified Friedmann
equation leads to a stronger condition for inflation: using (7.92), with m =
0 = Λ = K, and (7.102), we find that

ä > 0 ⇒ w < −1
3

[
1 + 2ρ/λ
1 + ρ/λ

]
, (7.103)

where the square brackets enclose the brane correction to the general relativ-
ity result. As ρ/λ/ → 0, the 4D result w < − 1

3 is recovered, but for ρ > λ, w
must be more negative for inflation. In the very high energy limit ρ/λ → ∞,
we have w < − 2

3 . When the only matter in the universe is a self-interacting
scalar field, the condition for inflation becomes

φ̇2 − V +

[
1
2 φ̇

2 + V
λ

(
5
4
φ̇2 − 1

2
V

)]

< 0 , (7.104)

which reduces to φ̇2 < V when ρφ = 1
2 φ̇

2 + V 
 λ.
In the the slow-roll approximation,

H2 ≈ κ2

3
V

[
1 +

V

2λ

]
(7.105)

φ̇ ≈ − V ′

3H
. (7.106)

The brane-world correction term V/λ in (7.105) serves to enhance the Hubble
rate for a given potential energy, relative to general relativity. Thus there is
enhanced Hubble ‘friction’ in (7.106), and brane-world effects will reinforce
slow-roll at the same potential energy. We can see this by defining slow-roll
parameters that reduce to the standard parameters in the low-energy limit:

ε ≡ − Ḣ

H2 =
M2

p

16π

(
V ′

V

)2 [ 1 + V/λ
(1 + V/2λ)2

]
(7.107)

η ≡ − φ̈

Hφ̇
=
M2

p

8π

(
V ′′

V

)[
1

1 + V/2λ

]
. (7.108)

Self-consistency of the slow-roll approximation then requires ε, |η| 
 1. At
low energies, V 
 λ, the slow-roll parameters reduce to the standard form.
However at high energies, V � λ, the extra contribution to the Hubble
expansion helps damp the rolling of the scalar field and the new factors in
square brackets become ≈ λ/V :

ε ≈ εgr
[
4λ
V

]
, η ≈ ηgr

[
2λ
V

]
, (7.109)
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where εgr, ηgr are the standard general relativity slow-roll parameters. In par-
ticular, this means that steep potentials which do not give inflation in general
relativity, can inflate the brane-world at high energy and then naturally stop
inflating when V drops below λ. These models can be constrained because
they typically end inflation in a kinetic-dominated regime and thus generate a
blue spectrum of gravitational waves, which can disturb nucleosynthesis [28].
They also allow for the novel possibility that the inflaton could act as dark
matter or quintessence at low energies [28, 30].

The number of e-folds during inflation, N =
∫
Hdt, is, in the slow-roll

approximation,

N ≈ − 8π
M2

p

∫ φf

φi

V

V ′

[
1 +

V

2λ

]
dφ . (7.110)

Brane-world effects at high energies increase the Hubble rate by a factor
V/2λ, yielding more inflation between any two values of φ for a given po-
tential. Thus we can obtain a given number of e-folds for a smaller initial
inflaton value φi. For V � λ, (7.110) becomes

N ≈ −128π3

3M6
5

∫ φf

φi

V 2

V ′ dφ . (7.111)

The key test of any modified gravity theory during inflation, will be the
spectrum of perturbations produced due to quantum fluctuations of the fields
about their homogeneous background values. We will discuss brane-world
cosmological perturbations in the next section. In general, perturbations on
the brane are coupled to bulk metric perturbations, and the problem is very
complicated. However on large scales on the brane, the density and curvature
perturbations decouple from the bulk metric perturbations [20, 21]. Thus we
are justified in neglecting the nonlocal effects carried by Eµν when computing
the density perturbations.

To quantify the amplitude of scalar (density) perturbations we evaluate
the usual gauge invariant quantity

ζ ≡ R − H

ρ̇
δρ , (7.112)

which reduces to the curvature perturbation, R, on uniform density hyper-
surfaces (δρ = 0). This is conserved on large scales for purely adiabatic
perturbations, as a consequence of energy conservation (independently of the
field equations) [31]. The curvature perturbation on uniform density hyper-
surfaces is given in terms of the scalar field fluctuations on spatially flat
hypersurfaces, δφ, by

ζ = H
δφ

φ̇
. (7.113)

The field fluctuations at Hubble crossing (k = aH) in the slow-roll limit are
given by 〈δφ2〉 ≈ (H/2π)2, a result for a massless field in de Sitter space that
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is also independent of the gravity theory [31]. For a single scalar field the
perturbations are adiabatic and hence the curvature perturbation ζ can be
related to the density perturbations when modes re-enter the Hubble scale
during the matter dominated era which is given by A2

s = 4〈ζ2〉/25. Using the
slow-roll equations and (7.113), this gives

A2
s ≈

(
512π
75M6

p

V 3

V ′2

)[
2λ+ V

2λ

]3∣∣
∣
∣
∣
k=aH

. (7.114)

Thus the amplitude of scalar perturbations is increased relative to the stan-
dard result at a fixed value of φ for a given potential.

The scale-dependence of the perturbations is described by the spectral
tilt

ns − 1 ≡ d lnA2
s

d ln k
≈ −6ε+ 2η , (7.115)

where the slow-roll parameters are given in (7.107) and (7.108). Because
these slow-roll parameters are both suppressed by an extra factor λ/V at
high energies, we see that the spectral index is driven towards the Harrison-
Zel’dovich spectrum, ns → 1, as V/λ → ∞; however, this does not necessarily
mean that the brane-world case is closer to scale-invariance than the general
relativity case.

In comparing the high energy brane-world case to the standard 4D case,
we implicitly require the same potential energy. However, precisely because of
the high energy effects, large scale perturbations will be generated at different
values of V than in the standard case, specifically at lower values of V , closer
to the reheating minimum. Thus there are two competing effects, and it
turns out that the shape of the potential determines which is the dominant
effect [32]. For the quadratic potential, the lower location on V dominates,
and the spectral tilt is slightly further from scale invariance than in the
standard case. The same holds for the quartic potential. Data from WMAP
and 2dF can be used to constrain inflationary models via their deviation from
scale invariance, and the high energy brane-world versions of the quadratic
and quartic potentials are thus under more pressure from data than their
standard counterparts [32].

Other perturbation modes are also generated in inflation:

– High energy inflation on the brane also generates a zero mode (4D gravi-
ton mode) of tensor perturbations, and stretches it to super-Hubble scales,
as will be discussed below. This zero mode has the same qualitative fea-
tures as in general relativity, remaining frozen at constant amplitude while
beyond the Hubble horizon. Its amplitude is enhanced at high energies,
although the enhancement is much less than for scalar perturbations [33]:
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A2
t ≈

(
32V

75M2
p

)[
3V 2

4λ2

]
(7.116)

A2
t

A2
s

≈
(
M2

p

16π
V ′2

V 2

)[
6λ
V

]
. (7.117)

Equation (7.117) means that brane-world effects suppress the large scale
tensor contribution to CMB anisotropies. The tensor spectral index at
high energy has a smaller magnitude than in general relativity,

nt = −3ε , (7.118)

but remarkably the same consistency relation as in general relativity
holds [29]:

nt = −2
A2

t

A2
s
. (7.119)

The massive KK modes of tensor perturbations remain in the vacuum
state during slow-roll inflation [33, 34]. The evolution of the super-Hubble
zero mode is the same as in general relativity, so that high energy brane-
world effects in the early universe serve only to rescale the amplitude.
However, when the zero mode re-enters the Hubble horizon, massive KK
modes can be excited.

– Vector perturbations in the bulk metric can support vector metric per-
turbations on the brane, even in the absence of matter perturbations.
However, there is no normalizable zero mode, and the massive KK modes
stay in the vacuum state during brane-world inflation [35]. Therefore, as
in general relativity, we can neglect vector perturbations in inflationary
cosmology.

7.6 Brane-World Cosmology: Perturbations

The background dynamics of brane-world cosmology are simple because the
FRW symmetries simplify the bulk and rule out nonlocal effects. But pertur-
bations on the brane in general release the nonlocal KK modes. Then the 5D
bulk perturbation equations must be solved in order to solve for perturba-
tions on the brane. These 5D equations are partial differential equations for
the three-Fourier modes, with complicated initial and boundary conditions.

The theory of gauge invariant perturbations in brane-world cosmology has
been extensively investigated and developed (see references given in the re-
views [9, 10, 11]) and is qualitatively well understood (for a general review on
cosmological perturbations see the review article by R. Durrer). The key re-
maining task is integration of the coupled brane-bulk perturbation equations.
Special cases have been solved, where these equations effectively decouple, as
in the previous section, and approximation schemes have recently been devel-
oped [36, 37, 38, 39, 40] for the more general cases where the coupled system
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must be solved. From the brane viewpoint, the bulk effects, i.e. the high
energy corrections and the KK modes, act as source terms for the brane per-
turbation equations. At the same time, perturbations of matter on the brane
can generate KK modes (i.e. emit 5D gravitons into the bulk) which propa-
gate in the bulk and can subsequently interact with the brane. This nonlocal
interaction amongst the perturbations is at the core of the complexity of the
problem. It can be elegantly expressed via integro-differential equations [41],
which take the form (assuming no incoming 5D gravitational waves)

Ak(t) =
∫
dt′ G(t, t′)Bk(t′) , (7.120)

where G is the bulk retarded Green’s function evaluated on the brane, and
Ak, Bk are made up of brane metric and matter perturbations and their
(brane) derivatives, and include high energy corrections to the background
dynamics. Solving for the bulk Green’s function which then determines G, is
the core of the 5D problem.

We can isolate the KK anisotropic stress π∗
µν as the term that must be

determined from 5D equations. Once π∗
µν is determined in this way, the per-

turbation equations on the brane form a closed system. The solution will be
of the form, expressed in Fourier modes:

π∗
k(t) ∝

∫
dt′ G(t, t′)Fk(t′) , (7.121)

where the functional Fk will be determined by the brane perturbation quanti-
ties and their derivatives. It is known in the case of a Minkowski background,
but not in the cosmological case.

7.6.1 Metric-Based Perturbations

A review of this approach is given in [42]. In an arbitrary gauge, and for a
flat FRW background, the perturbed metric has the form

δ (5)gAB =











−2N2ψ A2(∂iB − Si) Nα

A2(∂jB − Sj) A2 {2Rδij + 2∂i∂jC A2(∂iβ − χi)
+2∂(iFj) + fij

}

Nα A2(∂jβ − χj) 2ν











, (7.122)

where the background metric functions A,N are given by (7.86) and (7.87).
The scalars ψ,R, C, α, β, ν represent scalar perturbations. The vectors Si, Fi

and χi are transverse, so that they represent 3D vector perturbations, and
the tensor fij is transverse traceless, representing 3D tensor perturbations.

In the Gaussian normal gauge, the brane coordinate-position remains
fixed under perturbation,
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(5)ds2 =
[
g(0)µν (x, y) + δgµν(x, y)

]
dxµdxν + dy2 , (7.123)

where g(0)µν is the background metric, (7.85), so that

α = β = ν = χi = 0 . (7.124)

In the 5D longitudinal gauge,

−B + Ċ = 0 = −β + C′ . (7.125)

In this gauge, and for an AdS5 background, the metric perturbation quantities
can all be expressed in terms of a “master variable” [41] Ω which obeys a
wave equation. In the case of scalar perturbations, we have for example,

R =
1

6A

(
Ω′′ − 1

N2 Ω̈ − Λ5

3
Ω

)
, (7.126)

with similar expressions for the other quantities. All of the metric perturba-
tion quantities are determined once solution is found for the wave equation

(
1

NA3 Ω̇

)·
+
(
Λ5

6
+
k2

A2

)
N

A3 Ω =
(
N

A3 Ω
′
)′
. (7.127)

The junction conditions (7.41) relate the off-brane derivatives of metric
perturbations to the matter perturbations:

∂y δgµν = −κ2
5

[
δTµν +

1
3

{
λ− T (0)

}
δgµν − 1

3
g(0)µν δT

]
, (7.128)

where

δT 0
0 = −δρ , δT 0

i = a2qi (7.129)
δT i

j = δp δij + δπi
j . (7.130)

For scalar perturbations in the Gaussian normal gauge, this gives

∂yψ(x, 0) =
κ2

5

6
(2δρ+ 3δp) (7.131)

∂yB(x, 0) = κ2
5δp (7.132)

∂yC(x, 0) = −κ
2
5

2
δπ (7.133)

∂yR(x, 0) = −κ
2
5

6
δρ− ∂i∂

i C(x, 0) , (7.134)

where δπ is the scalar potential for the matter anisotropic stress,

δπij = ∂i∂jδπ − 1
3
δij ∂k∂

kδπ . (7.135)
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The perturbed nonlocal (dark radiation) stress tensor on the brane is given
by

δE0
0 = κ2δρ∗ , δE0

i = −κ2a2q∗i (7.136)

δE i
j = −κ

2

3
δρ∗ δij + δπ∗i

j . (7.137)

The evolution of the bulk metric perturbations is determined by the per-
turbed 5D field equations in the vacuum bulk,

δ (5)GA
B = 0 . (7.138)

Then the matter perturbations on the brane enter via the perturbed junction
conditions, (7.128).

For example, for scalar perturbations in Gaussian normal gauge,

δ (5)Gy
i = ∂i

{
−ψ′ +

(
A′

A
− N ′

N

)
ψ − 2R′

− A2

2N2

[

Ḃ′ +

(

5
Ȧ

A
− Ṅ

N

)

B′
]}

. (7.139)

For tensor perturbations (in any gauge), the only nonzero components of the
perturbed Einstein tensor are

δ (5)Gi
j = −1

2

{
− 1
N2 f̈

i
j + f ′′i

j − k2

A2 f
i
j

+
1
N2

(
Ṅ

N
− 3

Ȧ

A

)

ḟ i
j +
(
N ′

N
+ 3

A′

A

)
f ′i

j

}

. (7.140)

7.6.2 Curvature Perturbations and the Sachs–Wolfe Effect

The curvature perturbation R on uniform density surfaces is defined in
(7.122). The associated gauge-invariant quantity

ζ = R +
δρ

3(ρ+ p)
, (7.141)

may be defined for matter on the brane. Similarly, for the Weyl “fluid” if
ρ∗ 
= 0 in the background, the curvature perturbation on hypersurfaces of
uniform dark energy density is

ζ∗ = R +
δρ∗

4ρ∗ . (7.142)

On large scales, the perturbed dark energy conservation equation is [21]
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(δρ∗)· + 4Hδρ∗ + 4ρ∗Ṙ = 0 , (7.143)

which leads to
ζ̇∗ = 0 . (7.144)

For adiabatic matter perturbations, by the perturbed matter energy conser-
vation equation,

(δρ)· + 3H(δρ+ δp) + 3(ρ+ p)Ṙ = 0 (7.145)

we find
ζ̇ = 0 . (7.146)

This is independent of brane-world modifications to the field equations, since
it depends on energy conservation only. For the total, effective fluid, the
curvature perturbation is defined as follows [21]: if ρ∗ 
= 0 in the background,

ζtot = ζ +
[

4ρ∗

3(ρ+ p)(1 + ρ/λ) + 4ρ∗

]
(ζ∗ − ζ) , (7.147)

and if ρ∗ = 0 in the background,

ζ tot = ζ +
δρ∗

3(ρ+ p)(1 + ρ/λ)
(7.148)

δρ∗ =
δC∗

a4
, (7.149)

where δC∗ is a constant. It follows that the curvature perturbations on large
scales, like the density perturbations, can be found on the brane without
solving for the bulk metric perturbations.

Note that ζ̇ tot 
= 0 even for adiabatic matter perturbations; for example,
if ρ∗ = 0 in the background,

ζ̇ tot = H
(
c2tot − 1

3

)
δρ∗

(ρ+ p)(1 + ρ/λ)
. (7.150)

The KK effects on the brane contribute a non-adiabatic mode, although
ζ̇ tot → 0 at low energies.

Although the density and curvature perturbations can be found on super-
Hubble scales, the Sachs-Wolfe effect requires π∗

µν in order to translate from
density/ curvature to metric perturbations. In the 4D longitudinal gauge of
the metric perturbation formalism, the gauge invariant curvature and metric
perturbations on large scales are related by

ζtot = R − H

Ḣ

(
Ṙ
H

− ψ
)

(7.151)

R + ψ = −κ2a2δπ∗ , (7.152)
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where the radiation anisotropic stress on large scales is neglected, as in general
relativity, and δπ∗ is the scalar potential for π∗

µν (equivalent to the covariant
quantity Π). In 4D general relativity, the right hand side of (7.152) is zero.
The (non-integrated) Sachs-Wolfe formula has the same form as in general
relativity:

δT

T

∣
∣
∣
now

= (ζrad + ψ − R)|dec . (7.153)

The brane-world corrections to the general relativistic Sachs-Wolfe effect are
then given by [21]

δT

T
=
(
δT

T

)

gr
− 8

3

(
ρrad
ρcdm

)
S∗ − κ2a2δπ∗ +

2κ2

a5/2

∫
da a7/2 δπ∗ , (7.154)

where S∗ is the KK entropy perturbation (determined by δρ∗). The KK term
δπ∗ cannot be determined by the 4D brane equations, so that δT/T cannot be
evaluated on large scales without solving the 5D equations. Equation (7.154)
has been generalized to the two-brane case, in which the radion makes a
contribution to the Sachs-Wolfe effect [43].

The presence of the KK (Weyl, dark) component has essentially two pos-
sible effects.

– A contribution from the KK entropy perturbation S∗ that is similar to
an extra isocurvature contribution.

– The KK anisotropic stress δπ∗ also contributes to the CMB anisotropies.
In the absence of anisotropic stresses, the curvature perturbation ζtot is
sufficient to determine the metric perturbation R and hence the large
angle CMB anisotropies, via (7.151), (7.152) and (7.153). However bulk
gravitons can also generate anisotropic stresses which, although they do
not affect the large-scale curvature perturbation ζtot, can affect the rela-
tion between ζtot, R and ψ, and hence can affect the CMB anisotropies
at large angles.

7.7 Gravitational Wave Perturbations

The tensor perturbations are given by (7.122), i.e. (for a flat background
brane),

(5)ds2 = −N2(t, y)dt2 +A2(t, y) [δij + fij ] dxidxj + dy2 . (7.155)

The transverse traceless fij satisfies (7.140), which implies, on splitting fij

into Fourier modes with amplitude f(t, y),

1
N2

[

f̈ +

(

3
Ȧ

A
− Ṅ

N

)

ḟ

]

+
k2

A2 f = f ′′ +
(

3
A′

A
+
N ′

N

)
f ′ . (7.156)
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By the transverse traceless part of (7.128), the boundary condition is

f ′
ij

∣
∣
brane = π̄ij , (7.157)

where π̄ij is the tensor part of the anisotropic stress of matter-radiation on
the brane.

The wave equation (7.156) cannot be solved analytically except if the
background metric functions are separable, and this only happens for max-
imally symmetric branes, i.e. branes with constant Hubble rate H0. This
includes the RS case H0 = 0, already treated above. The cosmologically rel-
evant case is the de Sitter brane, H0 > 0. We can calculate the spectrum of
gravitational waves generated during brane inflation [33, 34, 44, 45], if we ap-
proximate slow-roll inflation by a succession of de Sitter phases. The metric
for a de Sitter brane, dS4, in AdS5 is given by (7.85)–(7.87) with

N(t, y) = n(y) , A(t, y) = a(t)n(y) (7.158)

n(y) = coshµy −
(
1 +

ρ0
λ

)
sinhµ|y| (7.159)

a(t) = a0 expH0(t− t0) , H2
0 =

κ2

3
ρ0

(
1 +

ρ0
2λ

)
, (7.160)

where µ = �−1.
The linearized wave equation (7.156) is separable. As before, we separate

the amplitude as f =
∑
ϕm(t)fm(y) where m is the 4D mass, and this leads

to:

ϕ̈m + 3H0ϕ̇m +
[
m2 +

k2

a2

]
ϕm = 0 (7.161)

f ′′
m + 4

n′

n
f ′

m +
m2

n2 fm = 0 . (7.162)

The general solutions for m > 0 are

ϕm(t) = exp
(

−3
2
H0t

)
Bν

(
k

H0
e−H0t

)
(7.163)

fm(y) = n(y)−3/2Lν
3/2

(√

1 +
µ2

H2
0
n(y)2

)

, (7.164)

where Bν is a linear combination of Bessel functions, Lν
3/2 is a linear combi-

nation of associated Legendre functions, and

ν = i

√
m2

H2
0

− 9
4
. (7.165)

It is more useful to reformulate (7.162) as a Schrödinger-type equation,
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Fig. 7.3. The graviton “volcano” potential around the dS4 brane, showing the
mass gap (From [11]).

d2Ψm

dz2
− V (z)Ψm = −m2Ψm , (7.166)

using the conformal coordinate

z = zb +
∫ y

0

dỹ

n(ỹ)
, zb =

1
H0

sinh−1
(
H0

µ

)
, (7.167)

and defining Ψm ≡ n3/2fm. The potential is given by (see Fig. 7.3)

V (z) =
15H2

0

4 sinh2(H0z)
+

9
4
H2

0 − 3µ
[
1 +

ρ0
λ

]
δ(z − zb) . (7.168)

The “volcano” shape of the potential shows how the 5D graviton is localized
at the brane at low energies.

The non-zero value of the Hubble parameter implies the existence of a
mass gap [16],

∆m =
3
2
H0 , (7.169)

between the zero mode and the continuum of massive KK modes. This result
has been generalized: for dS4 brane(s) with bulk scalar field, a universal lower
bound on the mass gap of the KK tower is [44] ∆m ≥√3/2H0.

The massive modes decay during inflation, according to (7.163), leaving
only the zero mode, which is effectively a 4D gravitational wave. The zero
mode, satisfying the boundary condition, f ′

0(x, 0) = 0, is given by

f0 =
√
µ F (H0/µ) , (7.170)

where the normalization condition

2
∫ ∞

zb

|Ψ2
0 |dz = 1 , (7.171)
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implies that the function F is given by

F (x) =

{
√

1 + x2 − x2 ln

[
1
x

+

√

1 +
1
x2

]}−1/2

. (7.172)

At low energies (H0 
 µ), we recover the general relativity amplitude: F → 1.
At high energies, the amplitude is considerably enhanced:

H0 � µ ⇒ F ≈
√

3H0

2µ
. (7.173)

The factor F determines the modification of the gravitational wave amplitude
relative to the standard 4D result:

A2
t =

[
8
M2

p

(
H0

2π

)2
]

F 2(H0/µ). (7.174)

This enhanced zero mode produced by brane inflation remains frozen
outside the Hubble radius, as in general relativity, but when it re-enters the
Hubble radius during radiation or matter domination, it will no longer be
separated from the massive modes, since H will not be constant. Instead,
massive modes will be excited during re-entry. In other words, energy will
be lost from the zero mode as 5D gravitons are emitted into the bulk, i.e.
as massive modes are produced on the brane. Self-consistent low energy ap-
proximations to compute this effect are developed in [39, 40].

At zero order, the low-energy approximation is based on the following.
In the radiation era, at low energy, the background metric functions obey
A(t, y) → a(t)e−µy and N(t, y) → e−µy. To lowest order, the wave equa-
tion therefore separates, and the mode functions can be found analytically.
The massive modes in the bulk, fm(y), are the same as for a Minkowski
brane. The massive modes decay on super-Hubble scales, unlike the zero-
mode. Expanding the wave equation in ρ0/λ, one arrives at the first order,
where mode-mixing arises. The numerical integration of the equations [39]
confirms the effect of massive mode generation and consequent damping of
the zero-mode, as shown in Fig. 7.4.

7.8 Brane-World CMB Anisotropies

Recently, the anisotropies in the CMB for RS-type brane-world cosmologies
have been calculated using a low-energy approximation [37] (for a review
on CMB anisotropies see A. Challinor’s contribution). The basic idea of the
low-energy approximation [36] is to use a gradient expansion to exploit the
fact that, during most of the history of the universe, the curvature scale on
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Fig. 7.4. The damping of cosmological gravity waves on horizon re-entry due to
massive mode generation. The solid curve is the numerical solution, the short-
dashed curve the low-energy approximation, and the long-dashed curve the standard
general relativity solution. ε∗ = ρ0/λ and γ is a parameter giving the location of
the regulator brane. (From [39]).

the observable brane is much greater than the curvature scale of the bulk
(� < 1 mm):

L ∼ |Rµναβ |−1/2 � � ∼ | (5)RABCD|−1/2 (7.175)
⇒ |∇µ| ∼ L−1 
 |∂y| ∼ �−1 . (7.176)

These conditions are equivalent to the low energy regime, since �2 ∝ λ−1 and
|Rµναβ | ∼ |Tµν |:

�2

L2 ∼ ρ

λ

 1 . (7.177)

Using (7.176) to neglect appropriate gradient terms in an expansion in �2/L2,
the low-energy equation

∇νEµν = 0 , (7.178)

can be solved. However, two boundary conditions are needed to determine
all functions of integration. This is achieved by introducing a second brane,
as in the RSI scenario. This brane is to be thought of either as a regulator
brane, whose backreaction on the observable brane is neglected (which will
only be true for a limited time), or as a shadow brane with physical fields,
which have a gravitational effect on the observable brane.
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The background is given by low energy FRW branes with tensions ±λ,
proper times t±, scale factors a±, energy densities ρ± and pressures p±, and
dark radiation densities ρ∗

±. The physical distance between the branes is �d̄(t),
and

d

dt−
= ed̄

d

dt+
, a− = a+e−d̄ , H− = ed̄

(
H+ − ˙̄d

)
, ρ∗

− = e4d̄ρ∗
+ . (7.179)

Then the background dynamics are given by

H2
± = ±κ

2

3
(
ρ± ± ρ∗

±
)

(7.180)

¨̄d+ 3H+
˙̄d− ˙̄d2 =

κ2

6

[
ρ+ − 3p+ + e2d̄(ρ− − 3p−)

]
. (7.181)

The dark energy obeys ρ∗
+ = C/a4+, where C is a constant. From now on, we

drop the (+) subscripts which refer to the physical, observed quantities.
The perturbed metric on the observable (positive tension) brane is de-

scribed, in longitudinal gauge, by the metric perturbations ψ and R, and
the perturbed radion is d = d̄ + N . The approximation for the KK (Weyl)
energy-momentum tensor on the observable brane is

Eµ
ν =

2
e2d − 1

[
−κ

2

2
(
Tµ

ν + e−2dTµ
− ν

)

− ∇µ∇νd+ δµν ∇2d−
{

∇µd∇νd+
1
2
δµν (∇d)2

}]
, (7.182)

and the field equations on the observable brane can be written in scalar-tensor
form as

Gµ
ν =

κ2

χ
Tµ

ν +
κ2(1 − χ)2

χ
Tµ

− ν +
1
χ

(∇µ∇νχ− δµν ∇2χ
)

+
ω(χ)
χ2

[
∇µχ∇νχ− 1

2
δµν (∇χ)2

]
, (7.183)

where
χ = 1 − e−2d , ω(χ) =

3
2

χ

1 − χ . (7.184)

The perturbation equations can then be derived as generalizations of the
standard equations. For example, the δG0

0 equation is [46]

H2ψ − HṘ − 1
3
k2

a2
R

= −1
6
κ2 e2d̄

e2d̄ − 1

(
δρ+ e−4d̄δρ−

)
+

2
3
κ2 e2d̄

e2d̄ − 1
ρ∗N

− 1
e2d̄ − 1

[(
˙̄d−H

)
Ṅ +

(
˙̄d−H

)2
N

− ˙̄d2ψ + 2H ˙̄dψ − ˙̄dṘ − 1
3
k2

a2
N

]
. (7.185)
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The trace part of the perturbed field equation shows that the radion pertur-
bation determines the crucial quantity, δπ∗:

R + ψ = − 2
e2d̄ − 1

N = −κ2a2δπ∗ , (7.186)

where the last equality follows from (7.152). The radion perturbation itself
satisfies the wave equation

N̈ +
(
3H − 2 ˙̄d

)
Ṅ −

(
2Ḣ + 4H2 + 2 ˙̄d2 − 6H ˙̄d− 2 ¨̄d

)
N +

k2

a2
N

− ˙̄dψ̇ + 3 ˙̄dṘ +
(
−2 ¨̄d− 6H ˙̄d+ 2 ˙̄d2

)
ψ

=
κ2

6

[
δρ− 3δp+ e−2d̄(δρ− − 3δp−)

]
. (7.187)

A new set of variables ϕ±, E turns out be very useful [43, 37]:

R = −ϕ+ − a2

k2HĖ +
1
3
E

ψ = −ϕ+ − a2

k2 (Ë + 2HĖ)

N = ϕ− − ϕ+ − a2

k2
˙̄dĖ . (7.188)

Equation (7.186) gives

Ë +

(

3H +
2 ˙̄d

e2d̄ − 1

)

Ė − 1
3
k2

a2
E = − 2e2d̄

e2d̄ − 1
k2

a2

(
ϕ+ − e−2d̄ϕ−

)
. (7.189)

The variable E determines the metric shear in the bulk, whereas ϕ± give
the brane displacements, in transverse traceless gauge. The latter variables
have a simple relation to the curvature perturbations on large scales [43, 37]
(restoring the (+) subscripts):

ζtot± = −ϕ± +
H2

±
Ḣ±

(
ϕ̇±
H±

+ ϕ±

)
, (7.190)

where ḟ± ≡ df±/dt±.
The simplest model is the one in which

ρ∗ = 0 = ˙̄d (7.191)

in the background, with p−/ρ=p/ρ. By (7.181), it follows that

ρ− = −ρe2d̄ , (7.192)
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Fig. 7.5. The CMB power spectrum with brane-world effects, encoded in the dark
radiation fluctuation parameter δC∗ as a proportion of the large-scale curvature
perturbation for matter (denoted ζ∗ in the plot). The dark radiation perturbation
δρ∗ is denoted δρε. (From [37]).

i.e. the shadow matter must have fine-tuned and negative energy density
to prevent the shadow brane from moving in the background. With these
assumptions, and further assuming adiabatic perturbations for the matter,
there is only one independent brane-world parameter, i.e. the parameter mea-
suring dark radiation fluctuations:

δC∗ =
δρ∗

ρrad
. (7.193)

This assumption has a remarkable consequence on large scales: the Weyl
anisotropic stress δπ∗ terms in the Sachs-Wolfe formula (7.154) cancel the
entropy perturbation from dark radiation fluctuations, so that there is no
difference on the largest scales from the standard general relativity power
spectrum. On small scales, beyond the first acoustic peak, the brane-world
corrections are negligible. On scales up to the first acoustic peak, brane-
world effects can be significant, changing the height and the location of the
first peak. These features are apparent in Fig. 7.5. However, it is not clear
to what extent these features are general brane-world features (within the
low energy approximation), and to what extent they are consequences of
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the simple assumptions imposed on the background. Further work remains
to be done. (A related low energy approximation, using the moduli space
approximation, has been developed for certain two-brane models with bulk
scalar field [38].)

7.9 Conclusions

Simple brane-world models of RS type provide a rich phenomenology for
exploring some of the ideas that are emerging from M theory. These models
are the simplest brane-worlds with curved extra dimension that allow for a
meaningful approach to cosmology. There are generalizations that attempt
to make these models more realistic, or that explore other aspects of higher-
dimensional gravity which are not probed by these simple models. Important
examples are:

– The inclusion of dynamical interaction between the brane(s) and a bulk
scalar field, described by the action [19, 23]

S =
∫
d5x
√

−(5)g

[ (5)R

2κ2
5

− 1
2
∂AΦ∂

AΦ− Λ5(Φ)
]

+
∫

brane(s)
d4x

√−g
[
−λ(Φ) +

K

κ2
5

+ Lmatter

]
. (7.194)

In two-brane models, the brane separation is described by the radion. For
general potentials of the scalar field which provide radion stabilization,
4D Einstein gravity is recovered at low energies on either brane. (By
contrast, in the absence of a bulk scalar, low energy gravity is Brans-
Dicke type [13].)
In particular, such models will allow some fundamental problems to be
addressed: the hierarchy problem of particle physics; an extra-dimensional
mechanism for initiating inflation (or the hot radiation era with super-
Hubble correlations) via brane interaction (building on the initial work
in [24, 25]); an extra-dimensional explanation for the dark energy (and
possibly also dark matter) puzzles: could dark energy or late time accel-
eration of the universe be a result of gravitational effects on the visible
brane of the shadow brane, mediated by the bulk dilaton?

– Moduli fields that encode the influence on the brane of further extra
dimensions (for example, the six extra dimensions in Horava-Witten type
solutions, in addition to the large extra dimension) [38, 47].

– Higher-order curvature invariants, which arise in the AdS/CFT corre-
spondence as next-to-leading order corrections in the CFT. These may
be thought of as stringy corrections to the Eisntein-Hilbert action. The
Gauss-Bonnet combination in particular has unique properties in 5D, giv-
ing field equations which are second-order in the bulk metric (and linear
in the second derivatives), and being ghost-free. The action is
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S =
∫
d5x
√

−(5)g

[ (5)R

2κ2
5

− Λ5

+ α
{

(5)R2 − 4(5)RAB
(5)RAB + (5)RABCD

(5)RABCD
}]

+
∫

brane
d4x

√−g
[
−λ+

K

κ2
5

+ Lmatter

]
, (7.195)

where α is the Gauss-Bonnet coupling constant, related to the string scale.
The cosmological dynamics of these brane-worlds is investigated in [48].
In the early universe, the Gauss-Bonnet corrections to the Friedmann
equation have the dominant form

H2 ∝ ρ2/3 , (7.196)

so that the high energy behaviour H2 ∝ ρ2 of the RS brane-world is
radically modified (although the big bang singularity is not removed).
Quantum field theory corrections to the action, arising from the coupling
between brane matter and bulk gravitons, and leading to an induced
4D Ricci term in the brane action. The original induced-gravity brane-
world [49] was put forward as an alternative to the RS mechanism: the
bulk was flat Minkowski 5D spacetime (and as a consequence there is
no normalizable zero-mode of the bulk graviton), and there was no brane
tension. Another viewpoint is to see the induced-gravity term in the action
as a correction to the RS action:

S =
∫
d5x
√

−(5)g

[ (5)R

2κ2
5

− Λ5

]

+
∫

brane
d4x

√−g
[
R

2κ2 − λ+
K

κ2
5

+ Lmatter

]
. (7.197)

Unlike the other brane-worlds discussed, these models lead to 5D be-
haviour on large scales rather than small scales. The cosmological models
have been analysed in [50]. The late-universe 5D behaviour of gravity
can naturally produce a late-time acceleration, even without dark energy,
although the fine-tuning problem is not evaded.
The effect of the induced-gravity correction at early times is to remove the
high energy ρ2 term in the early universe Friedmann equation; instead,
the Friedmann equation is close the standard general relativity form.
Thus we have a striking result that both forms of correction to the
gravitational action, i.e. Gauss-Bonnet and induced gravity, suppress the
Randall-Sundrum type high energy modifications to the Friedmann equa-
tion. (Cosmologies with both induced-gravity and Gauss-Bonnet correc-
tions to the RS action are considered in [51].)

Brane-world gravity opens up exciting prospects for subjecting M theory
ideas to the increasingly stringent tests provided by high-precision astronom-
ical observations. In addition, brane-world models provide a rich arena for
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probing the geometry and dynamics of the gravitational field and its interac-
tion with matter.
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Abstract. As several large scale interferometers are beginning to take data at sen-
sitivities where astrophysical sources are predicted, the direct detection of gravita-
tional waves may well be imminent. This would (finally) open the long anticipated
gravitational-wave window to our Universe, and should lead to a much improved
understanding of the most violent processes imaginable; the formation of black holes
and neutron stars following core collapse supernovae and the merger of compact
objects at the end of binary inspiral. Over the next decade we can hope to learn
much about the extreme physics associated with, in particular, neutron stars.

This contribution is divided in two parts. The first part provides a text-book
level introduction to gravitational radiation. The key concepts required for a dis-
cussion of gravitational-wave physics are introduced. In particular, the quadrupole
formula is applied to the anticipated “bread-and-butter” source for detectors like
LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second
part provides a brief review of high frequency gravitational waves. In the frequency
range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscil-
lations of the remnant compact objects are potentially important sources of grav-
itational waves. Significant and unique information concerning the various stages
of collapse, the evolution of protoneutron stars and the details of the supranu-
clear equation of state of such objects can be drawn from careful study of the
gravitational-wave signal. As the amount of exciting physics one may be able to
study via the detections of gravitational waves from these sources is truly inspir-
ing, there is strong motivation for the development of future generations of ground
based detectors sensitive in the range from hundreds of Hz to several kHz.

8.1 Introduction

One of the central predictions of Einsteins’ general theory of relativity is
that gravitational waves will be generated as masses are accelerated. De-
spite decades of effort these ripples in spacetime have still not been ob-
served directly. Yet we have strong indirect evidence for their existence from
the excellent agreement between the observed inspiral rate of the binary
pulsar PSR1913+16 and the theoretical prediction (better than 1% in the
phase evolution). This provides confidence in the theory and suggests that
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“gravitational-wave astronomy” should be viewed as a serious proposition.
Provided that i) detectors with the required sensitivity can be constructed,
and ii) the significant data analysis challenge can be dealt with, this new win-
dow to the Universe promises to bring unprecedented insights into the most
violent events imaginable; supernova explosions, binary mergers and the big
bang itself. A key reason for this expectation follows from a comparison be-
tween gravitational and electromagnetic waves:

– While electromagnetic waves are radiated by individual particles, gravi-
tational waves are due to non-spherical bulk motion of matter. In essence,
this means that the information carried by electromagnetic waves is
stochastic in nature, while the gravitational waves provide insights into
coherent mass currents.

– The electromagnetic waves will have been scattered many times. In con-
trast, gravitational waves interact weakly with matter and arrive at the
Earth in pristine condition. This means that gravitational waves can be
used to probe regions of space that are opaque to electromagnetic waves,
It is, of course, a blessing in disguise since the weak interaction with
matter also makes the gravitational waves fiendishly hard to detect.

– Standard astronomy is based on deep imaging of small fields of view, while
gravitational-wave detectors cover virtually the entire sky.

– Electromagnetic radiation has a wavelength smaller than the size of the
emitter, while the wavelength of a gravitational wave is usually larger
than the size of the source. This means that we cannot use gravitational-
wave data to create an image of the source. In fact, gravitational-wave
observations are more like audio than visual.

Morale: Gravitational waves carry information which would be very difficult
to glean by other means. By analysing gravitational-wave data we can expect
to learn a lot about the extreme physics governing compact objects. This
should lead to answers to many outstanding questions in astrophysics, for
example,

– What is the black-hole population of the Universe? Observations of the
nonlinear spacetime dynamics associated with binary merger, as well as
the quasinormal mode (QNM) ringing which is likely to dominate the
radiation at late times, should provide direct proof of the presence of a
black hole, as well as a measure of it’s mass and spin.

– Are astrophysical black holes, indeed, described by the Kerr metric? By
studying the inspiral of a low-mass object into a supramassive black hole
(as anticipated at the center of most galaxies) we can hope to construct
a detailed map of the exterior black-hole spacetime.

– What is the supranuclear neutron star equation of state? This is a
very difficult question, which potentially involves an understanding of
the role of exotic phases of matter, like deconfined quarks, superfluid-
ity/conductivity, extreme magnetic fields etcetera. At an immediate level,
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gravitational-wave observations of the various oscillation modes of a com-
pact star may be used to solve the “inverse problem” for parameters like
the mass and the radius of the star. At a more subtle level, the spectrum of
the star depends on the internal physics. For example, strong composition
gradients which affect the gravity g-modes significantly, and superfluidity
which leads to the existence of new classes of oscillations associated with
the more or less decoupled additional degrees of freedom of such a system.
Finally, the internal physics also plays a crucial role in determining the
extent to which various rotational instabilities will be able to grow to an
interesting amplitude. In the case of the Coriolis driven r-modes, their
instability may be severely suppressed by the presence of hyperons in the
stars core. A key role is also played by the internal magnetic fields.

At the time of writing, the new generation of interferometric gravitational-
wave detectors (in particular LIGO and GEO600) is already collecting data at
a sensitivity at least one order of magnitude better than that of the operating
resonant detectors. In the first instance, the broadband detectors will be
sensitive in a range of frequencies between 50 and a few hundred Hz. This
frequency window is of great interest since an inspiraling compact binary will
move through it during the last few minutes before merger. Such sources are
the natural “bread and butter” source for the detectors. The next generation
of interferometers will broaden the bandwidth somewhat but will still not be
very sensitive to frequencies above 500-600 Hz, unless they are operated in
a narrow-band configuration [1, 2]. There are also interesting suggestions for
wide band resonant detectors in the kHz band [3]. The move towards higher
frequencies is driven by the wealth of exciting sources that radiate in the
range from a few hundred Hz up to several kHz.

Our contribution to these proceedings is divided in two parts. The first
part describes gravitational-wave physics at an introductory level. The second
part provides a brief review of the main sources that radiate in the frequency
band above a few hundred Hz. We believe that these sources are the natural
targets for a third generation of ground based detectors. As we will discuss,
there are a variety of sources associated with very interesting physics in this
high-frequency window. These sources clearly deserve special attention, and
if either resonant or narrow-band interferometers can achieve the required
sensitivity, a plethora of unique information can be gathered.

8.2 Einstein’s Elusive Waves

The aim of the first part of our contribution is to provide a condensed text-
book level introduction to gravitational waves. Although in no sense complete
this description should prepare the reader for the discussion of high-frequency
sources which follows.
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8.2.1 The Nature of the Waves

The first aspect of gravitational waves that we need to appreciate is their tidal
nature. This is important because it implies that they can only be measured
through the relative motion of bodies. That this should be the case is easy
to understand. In general relativity we can always construct a local inertial
frame associated with a given observer. In this local frame, spacetime will
by construction be flat which means that we cannot hope to observe the
local deformations which would correspond to a gravitational wave. Consider
two test particles, A and B, that are initially at rest, as shown in Fig. 8.1.
Assume that they are separated by a purely spatial vector ξj (hereafter latin
indices are spatial and run from 1–3, while greek indices are spacetime and
run from 0–4), and use the local inertial frame in which particle A remains at
the origin for the calculation. In this case the equation of geodesic deviation
can be written

∂2ξj

∂t2
= −Rj

0k0ξ
k , (8.1)

where Rµνδγ is the Riemann tensor. Here it represents the curvature induced
by the gravitational wave. Letting ξj = xj

0 +δxj , with δxj the small displace-
ment away from the original position, we get

∂2δxj

∂t2
≈ −Rj

0k0x
k
0 = −Rj0k0x

k
0 . (8.2)

Now it is natural to define the gravitational wave-field hjk through

Rj0k0 ≡ −1
2
∂2hjk

∂t2
−→ ∂2δxj

∂t2
≈ 1

2
∂2hjk

∂t2
xk

0 (8.3)

which integrates to

δxj =
1
2
hjkx

k
0 or h ≈ ∆L

L
, (8.4)

x y

t

jξ

A

B

Fig. 8.1. An illustration of the two test particles discussed in the text. If a gravita-
tional wave passes through, particle A will observe particle B oscillating back and
forth.
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where h is the dimensionless gravitational-wave strain. From this exercise we
learn that, in order to detect gravitational waves we need to monitor (with
extreme precision) the relative motion of test masses. Let us now assume that
the waves propagate in the z-direction, i.e. that we have hjk = hjk(t − z).
Then one can show that we have only two independent components;

h+ = hTT
xx = −hTT

yy , h× = hTT
xy = hTT

yx . (8.5)

What effect does h+ have on matter? Consider a particle initially located at
(x0, y0) and let h× = 0 to find that

δx =
1
2
h+x0 , (8.6)

δy = −1
2
h+y0 . (8.7)

That is, if h+ is oscillatory (a wave!) then an object will first experience a
stretch in the x-direction accompanied by a squeeze in the y-direction. One
half-cycle later, the squeeze is in the x-direction and the stretch in the y-
direction. It is straightforward to show that the effect of h× is the same, but
rotated by 45 degrees. This is illustrated in Fig. 8.2. A general wave will be
a linear combination of the two polarisations.

But wait a second! We are discussing the effect of gravitational waves
without actually having proven that Einstein’s theory predicts their existence.
To remedy this, consider small perturbations away from a flat spacetime.
That is, use gαβ = ηαβ + hαβ to get the (linearised) Ricci tensor:

Rµν =
1
2
(h α

αν,µ + h ,α
µα ν − hα

α,µν − h α
µν,α ) . (8.8)

In vacuum, Einstein’s equations are equivalent to requiring that

Rµν = 0 . (8.9)

y

x

y

x

h h+ +
Fig. 8.2. The two gravitational-wave polarisations h+ and h×.
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Now consider what happens if we make a coordinate transformation. For

xα → xα + ξα (8.10)

we get
hµν → hµν − ξµ,ν − ξν,µ . (8.11)

Use this freedom to impose the harmonic gauge condition h ,α
µα = 0. Since

the gauge remains unchanged for any transformation such that �ξµ = 0, we
can impose further conditions. We take one of these to be h α

α = 0, to get

h α
µν,α = �hµν = 0 . (8.12)

That is, the metric variations are governed by a standard wave equation.
Finally, use h00 = hj0 = h0j = 0 to get hjk = hTT

jk as before. The set of
coordinates we have introduced is known as TT-gauge.

Before we move on to discuss the modelling of various gravitational-wave
sources, it is worth elucidating an issue that caused serious debate until the
late 1960s. We need to demonstrate that gravitational waves carry energy.
This is a tricky problem because, as we have already pointed out, one can
only deduce the presence of a wave from the relative effect on two (or more)
test particles. This means that one cannot localize the wave to individual
points in space, and hence cannot directly “measure” its energy. In order
to construct a meaningful energy expression we need to average over one
(or more) wavelengths. Defining perturbations with respect to an averaged
spacetime metric, i.e. using

g(B)
µν = 〈gµν〉 −→ gµν = g(B)

µν + hµν . (8.13)

and expanding in powers of h (which is presumed small), we have the
(schematic) Einstein equations,

〈Gµν〉 = GB
µν +

〈
G(1)

µν

〉

︸ ︷︷ ︸
O(hµν)

+
〈
G(2)

µν

〉

︸ ︷︷ ︸
O(h..h..)

= 0 . (8.14)

Here, the term that is linear in h will vanish if we average over a wavelength.
This means that we can deduce an expression for the stress energy-tensor for
gravitational waves:

GB
µν = −8π

〈
G

(2)
µν

8π

〉

≡ 8πTGW
µν . (8.15)

Working out the algebra one can show that, in TT-gauge we will have

TGW
µν =

1
32π

〈
hTT

ij,µh
TTij

,ν

〉
. (8.16)

In particular, the energy propagating in the z-direction then follows from
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TGW
0z = −TGW

00 = − 1
16π

〈
ḣ2

+ + ḣ2
×
〉

−→ Ė = −TGW
0z =

ω2

16π
〈
h2

+ + h2
×
〉
.

(8.17)
where the frequency of the wave is ω. Finally assuming that h+ ∼ h× ∼
h sinω(t− z), and integrating over a sphere with radius r, we get

Ė =
ω2r2

4
h2 → |ḣ|2 =

4G
c3r2

Ė . (8.18)

As we will now demonstrate, this is a very useful relation.

8.2.2 Estimating the Gravitational-Wave Amplitude

We can use the expression (8.18) to infer the gravitational-wave strain as-
sociated with typical gravitational-wave sources. Let us characterise a given
event by a timescale τ and assume that the signal is monochromatic (with
frequency f). Then we can use dE/dt ≈ E/τ and ḣ ≈ 2πfh to deduce that

h ≈ 5 × 10−22
(

E

10−3M�c2

)1/2 ( τ

1 ms

)−1/2
(

f

1 kHz

)−1(
r

15 Mpc

)−1

.

(8.19)
If the signal analysis is based on matched filtering, the effective amplitude
improves roughly as the square root of the number of observed cycles n.
Using n ≈ fτ we get

hc ≈ 5 × 10−22
(

E

10−3M�c2

)1/2(
f

1 kHz

)−1/2(
r

15 Mpc

)−1

. (8.20)

This is a crucial expression. We see that the “detector sensitivity” essentially
depends only on the radiated energy, the characteristic frequency and the
distance to the source. That is, in order to obtain a rough estimate of the
relevance of a given gravitational-wave source at a given distance we only
need to estimate the frequency and the radiated energy. Alternatively, if we
know the energy released can work out the distance at which these sources
can be detected.

It is quite easy to obtain a rough idea of the frequencies involved. The
dynamical frequency of any self-bound system with mass M and radius R is

f ≈ 1
2π

√
GM

R3 . (8.21)

Thus, the natural frequency of a (non-rotating) black hole should be

fBH ≈ 104
(
M�
M

)
Hz . (8.22)

Medium sized black holes, with masses in the range 10 − 100M�, will be
prime sources for ground-based interferometers, while black holes with masses
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∼ 106M� should radiate in the LISA bandwidth. Meanwhile, neutron stars,
with a mass of 1.4M� compressed inside a radius of 10 km, will radiate at

fNS ≈ 2 kHz . (8.23)

This means that one would expect neutron physics to be in the range for
ground based detectors. In fact, given the likely need to detect signals with
frequencies above 1 kHz, neutron star signals provide a strong motivation for
the development of (third generation) high-frequency detectors.

Given that the weak signals are going to be buried in detector noise, we
need to obtain as accurate theoretical models as possible. The rough order
of magnitude estimates we just derived will certainly not be sufficient, even
though they provide an indication as to whether it is worth spending the
time and effort required to build a detailed model. Such source models are
typically obtained using either

– approximate perturbation techniques, eg. expansions in small perturba-
tions away from a known solution to the Einstein equations, the archetypal
case being black-hole and neutron star oscillations.

– post-Newtonian approximations, essentially an expansion in the ratio be-
tween a characteristic velocity of the system and the speed of light, most
often used to model the inspiral phase of a compact binary system.

– numerical relativity, where the Einstein equations are formulated as an
initial-value problem and solved on the computer. This is the only way
to make progress in situations where the full nonlinearities of the theory
must be included, eg. in the merger of black holes and neutron stars or a
supernova core collapse.

Here we will only describe the first step beyond a Newtonian description,
where the gravitational radiation is described by the so-called quadrupole
formula. For a source with weak internal gravity we have (in TT-gauge)

�hµν = −16πTµν . (8.24)

We can solve this equation using the standard retarded Green’s function to
get

hµν(t,x) = 4
∫
Tµν(x′, t′ = t− |x − x′|)

|x − x′| d3x . (8.25)

Matching of the near-zone solution to an outgoing wave solution far away
leads to the expression

hTT
jk =

2G
rc4

Ï–TT
jk (t− r) , (8.26)

where

I–jk ≡
∫
ρ

(
xjxk − 1

3
r2δjk

)
d3x . (8.27)
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Fig. 8.3. A schematic illustration of a compact binary system.

is the reduced quadrupole moment of the source. Consider a system of mass
M with typical internal velocity v. Then we see that

h ≈
(

2GM
c2

)(v
c

)2 1
r

(8.28)

which shows (no surprise!) that in order to generate strong gravitational
waves we need large masses moving at high speeds.

From the formulas we derived earlier, we find that energy is radiated at
a rate

dE

dt
= − G

5c5
〈...I– jk

...I– jk
〉
. (8.29)

The radiated angular momentum follows from the (usually) weaker current
multipole radiation, which is governed by a similar expression. Let us now
apply the above results to the potentially most important gravitational-wave
source, a compact binary system. Gravitational waves are emitted as the
stars (or black holes) orbit each other and as a result the binary separation
decreases. Consider a binary system, as illustrated in Fig. 8.3, with individ-
ual masses M1 and M2 and separation 2R. Introduce the total and reduced
masses

M =M1 +M2 and µ =
M1M2

M
−→M1a1 =M2a2 = µR (8.30)

and work in the coordinate system illustrated in Fig. 8.3. Working out the
required (time-varying) components of the quadrupole moment, we have

I–xx = −I–yy =
µR2

2
cos 2φ and I–xy = I–yx =

µR2

2
sin 2φ (8.31)

and we find that

dE

dt
=
G

5c5
〈...I– jk

...I– jk
〉

=
32
5
G

c5
µ2R4Ω6 . (8.32)

Next, determining the orbital rotation frequency from Kepler’s law Ω2 =
M/R3, and introducing the so-called “chirp mass” M = µ3/5M2/5 we have
the final result
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Fig. 8.4. Estimated signal strengths for various inspiralling binaries relevant for
ground- and space-based detectors.

dE

dt
=

32
5
G4

c5
(MΩ)10/3 . (8.33)

Moreover, from

hTT
xx ≈ −2M5/3Ω2/3

r
cos 2Ω(t− r) , (8.34)

we can estimate the effective amplitude of the binary signal:

hc ≈
√
ft h ∼ M

r

(
R

M

)1/4

. (8.35)

This shows that, even though the actual signal gets stronger, its detectability
decreases as the orbit shrinks. Figure 8.4 compares our estimated gravita-
tional-wave strain to the predicted noise-curves for various gravitational-wave
detectors. Essentially, one would expect that

– Advanced LIGO may observe several binary systems per year.
– The space-based LISA detector may suffer an “embarrassment of riches”,

with a large number of known galactic binaries leading to detectable sig-
nals (most likely generating to a “binary noise” which will be difficult to
filter out).

To predict the rate at which the binary orbit shrinks as a result of
gravitational-wave emission we need to estimate to total energy of the system:

E =
M1v

2
1

2
+
M2v

2
2

2
− GM1M2

R
= −GµM

2R
= −GM5/3Ω2/3

2
. (8.36)
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From this we find that the period P of the system changes as

Ṗ

P
= −96

5
G3

c5
M5/3Ω8/3 . (8.37)

For the binary pulsar 1913+16, the predicted change in orbital period agrees
with the theoretical prediction to within 1%. This indirect proof that gravi-
tational waves exist led to Hulse and Taylor being awarded the 1993 Nobel
prize in physics.

Finally, note that that the chirp-mass M plays a key role in our various
expressions. From

Ṗ

P
∼ M5/3Ω8/3 and h ∼ M5/3Ω2/3

r
, (8.38)

we see that this is the only combination of the two masses that can be infered
from the signal (at this level of approximation: higher order post-Newtonian
corrections depend on the individual masses, the spins etcetera). Suppose that
we detect both the change in the amplitude h and the shift in the frequency.
Then one can infer both the chirp mass and the distance to the source, and in
effect coalescing binaries are standard candles which can be used to constrain
cosmological parameters.

One often classifies gravitational-wave sources by the nature of the waves.
This is convenient because the different classes require different approaches
to the data-analysis problem;

– Chirps. As a binary system radiates gravitational waves and loses energy
the two constituents spiral closer together. As the separation decreases the
gravitational-wave amplitude increases, leading to a characteristic “chirp”
signal.

– Bursts. Many scenarios lead to burst-like gravitational waves. A typical
example would be black-hole oscillations excited during binary merger.

– Periodic. Systems where the gravitational-wave backreaction leads to
a slow evolution (compared to the observation time) may radiate per-
sistent waves with a virtually constant frequency. This would be the
gravitational-wave analogue of the radio pulsars.

– Stochastic. A stochastic (non-thermal) background of gravitational waves
is expected to have been generated following the Big Bang. One may also
have to deal with stochastic gravitational-wave signals when the sources
are too abundant for us to distinguish them as individuals.

8.3 High-Frequency Gravitational Wave Sources

Having introduced the key concepts required for a discussion of gravitational-
wave physics we will now focus our attention on sources that radiate above a
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hundred Hz or so, i.e. which may at least in principle be detectable from the
ground. As we will see there are strong motivations for constructing detectors
which are sensitive up to (ideally) several kHz.

8.3.1 Radiation from Binary Systems

It is easy to understand why binary systems are considered the “best” sources
of gravitational waves. They emit copious amounts or gravitational radiation,
and for a given system we know quite accurately the amplitude and frequency
of the gravitational waves in terms of the masses of the two bodies and their
separation (see Sect. 8.2.2).

The gravitational-wave signal from inspiraling binaries is approximately
sinusoidal, see equation (8.34), with a frequency which is twice the orbital
frequency of the binary. As the binary system evolves the orbit shrinks and
the frequency increases in the characteristic chirp. Eventually, depending
on the masses of the binaries, the frequency of the emitted gravitational
waves will enter the bandwidth of the detector at the low-frequency end
and will evolve quite fast towards higher frequencies. A system consisting
of two neutron stars will be detectable by LIGO when the frequency of the
gravitational waves is ∼10Hz until the final coalescence around 1 kHz. This
process will last for about 15 min and the total number of observed cycles will
be of the order of 104, which leads to an enhancement of the detectability
by a factor 100 (remember hc ∼ √

nh). Binary neutron star systems and
binary black hole systems with masses of the order of 50M� are the primary
sources for LIGO. Given the anticipated sensitivity of LIGO, binary black
hole systems are the most promising sources and could be detected as far as
200 Mpc away. For the present estimated sensitivity of LIGO the event rate
is probably a few per year, but future improvements of detector sensitivity
(the LIGO II phase) could lead to the detection of at least one event per
month. Supermassive black hole systems of a few million solar masses are
the primary source for LISA. These binary systems are rare, but due to the
huge amount of energy released, they should be detectable from as far away
as the boundaries of the observable universe. Finally, the recent discovery of
the highly relativistic binary pulsar J0737-3039 [4] enchanced considerably
the expected coalescence event rate of NS-NS binaries [5]. The event rate for
initial LIGO is in the best case 0.2 per year while advanced LIGO might be
able to detect 20-1000 events per year.

8.3.2 Gravitational Collapse

One of the most spectacular events in the Universe is the supernova (SN)
collapse to create a neutron star (NS) or a black hole (BH). Core collapse is
a very complicated event and a proper study demands a deep understanding
of neutrino emission, amplification of the magnetic fields, angular momen-
tum distribution, pulsar kicks, etc. There are many viable models for each of
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the above issues but it is still not possible to combine all of them together
into a consistent explanation. Gravitational waves emanating from the very
first moments of the core collapse might shed light on all the above problems
and help us understand the details of this dramatic event. Gravitational col-
lapse compresses matter to nuclear densities, and is responsible for the core
bounce and the shock generation. The event proceeds extremely fast, lasting
less than a second, and the dense fluid undergoes motions with relativistic
speeds (v/c ∼ 0.2 − 0.4). Even small deviations from spherical symmetry
during this phase can generate significant amounts of gravitational waves.
However, the size of these asymmetries is not known. From observations in
the electromagnetic spectrum we know that stars more massive than ∼ 8M�
end their evolution in core collapse and that ∼ 90% of them are stars with
masses ∼ 8 − 20M�. During the collapse most of the material is ejected and
if the progenitor star has a mass M � 20M� it leaves behind a neutron star.
If M � 20M� more than 10% falls back and pushes the proto-neutron-star
(PNS) above the maximum NS mass leading to the formation of a black hole
(type II collapsars). Finally, if the progenitor star has a mass M � 40M�
no supernova takes place. Instead, the star collapses directly to a BH (type I
collapsars).

A significant amount of the ejected material can fall back, subsequently
spinning up and reheating the nascent NS. Instabilities can be excited during
such a process. If a BH was formed, its quasi-normal modes (QNM) can be
excited for as long as the process lasts. “Collapsars” accrete material during
the very first few seconds, at rates ∼ 1−2M�/sec. Later the accretion rate is
reduced by an order of magnitude but still material is accreted for a few tenths
of seconds. Typical frequencies of the emitted gravitational waves are in the
range 1-3kHz for ∼ 3 − 10M� BHs. If the disk around the central object has
a mass ∼ 1M� self-gravity becomes important and gravitational instabilities
(spiral arms, bars) might develop and radiate gravitational waves. Toroidal
configurations can be also formed around the collapsed object. Their instabil-
ities and oscillations might be an interesting source of gravitational waves[7].
There is also the possibility that the collapsed material might fragment into
clumps, which orbit for some cycles like a binary system (fragmentation in-
stability [8]).

The supernova event rate is 1-2 per century per galaxy [6] and about 5-
40% of them produce BHs through the fallback material [9]. Conservation of
angular momentum suggests that the final objects should rotate close to the
mass shedding limit, but this is still an open question, since there is limited
knowledge of the initial rotation rate of the final compact object. Pulsar
statistics suggest that the initial periods are probably considerably shorter
than 20 ms. This strong increase of rotation during the collapse has been
observed in many numerical simulations (see e.g. [10, 11]).

Core collapse as a potential source of gravitational waves has been stud-
ied for more than three decades (some of the most recent calculations can
be found in [12, 13, 14, 15, 11, 16, 17, 18, 19]). All these numerical calculations
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show that signals from Galactic supernova (d ∼ 10kpc) are detectable even
with the initial LIGO/EGO sensitivity at frequencies �1kHz. Advanced inter-
ferometers can detect signals from distances of 1 Mpc but it will be difficult
with the designed broadband sensitivity to resolve signals from the Virgo
cluster (∼15Mpc). The typical gravitational wave amplitude from the 2D nu-
merical simulations [11, 16] for an observer located on the equatorial plane of
the source is

h ≈ 9 × 10−21ε

(
10kpc
d

)
, (8.39)

where ε ∼ 1 is the normalized gravitational wave amplitude. The total energy
radiated in gravitational waves during the collapse is � 10−6 − 10−8M�c2.
However, these numerical estimates are not yet conclusive, as important as-
pects such as 3D hydrodynamics combined with proper spacetime evolution
have been neglected. The influence of the magnetic fields have been ignored
in most calculations. The proper treatment of these issues might not change
the above estimates by orders of magnitude but it will provide a conclusive
answer. There are also issues that need to be understood such as the pulsar
kicks (velocities even higher than 1000 km/s) which suggest that in a frac-
tion of newly-born NSs (and BHs) the process may be strongly asymmetric
[20, 21, 22, 23, 24]. Also, the polarization of the light spectra in supernovae
indicates significant asymmetries [25]. Better treatment of the microphysics
and construction of accurate progenitor models for the angular momentum
distributions are needed. All these issues are under investigation by many
groups.

Accretion Incuded Collapse (AIC) is also a possible source of high fre-
quency gravitational waves. AIC takes place when a white dwarf (WD) ex-
ceeds the Chandrasekhar limit due to accretion of material and begins to
collapse. The cooling via neutrino emission does not reduce the heating sig-
nificantly and the collapsing WDs reach appropriate temperatures for ignition
of nuclear burning (Type Ia supernova). Estimates suggest that about 0.1M�
material is ejected. Since the WD is pushed over the Chandrasekhar limit due
to accretion, it will rotate fast enough to allow various types of instabilities
[26]. The galactic rate of accretion induced collapse is about 10−5/yr which
means that AIC are about 1000 times rarer than core collapse SN.

8.3.3 Rotational Instabilities

Newly born neutron stars are expected to rotate rapidly enough to be sub-
ject to rotation induced instabilities. These instabilities arise from non-
axisymmetric perturbations having angular dependence eimϕ. Early New-
tonian estimates have shown that a dynamical bar-mode (m = 2) instability
is excited if the ratio β = T/W of the rotational kinetic energy T to the
gravitational binding energy W is larger than βdyn = 0.27. The instability
develops on a dynamical time scale (the time that a sound wave needs to
travel across the star) which is about one rotation period, and may last from
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1 to 100 rotations depending on the degree of differential rotation in the PNS.
Another class of instabilities are those driven by dissipative effects such as
fluid viscosity or gravitational radiation. Their growth time is much longer
(many rotational periods) but they can be excited for significantly lower ro-
tational rates, β � 0.14 in the case of the fundamental modes of oscillation
of the star.

8.3.4 Bar-Mode Instability

The dynamical bar-mode instability can be excited in a hot PNS, a few
milliseconds after the core-bounce, given a sufficiently large β. It might also
be excited a few tenths of seconds later, when the NS cools enough due to
neutrino emission and contracts still further (β ∼ 1/R). The amplitude of the
emitted gravitational waves can be estimated as h ∼ MR2Ω2/d, where M
is the mass of the body, R its size, Ω the rotational rate and d the distance
from Earth. This leads to an estimate of the gravitational wave amplitude

h ≈ 9 × 10−23
( ε

0.2

)( f

3kHz

)2(15Mpc
d

)
M1.4R

2
10 . (8.40)

where ε measures the ellipticity of the bar. Note that the gravitational wave
frequency f is twice the rotational frequency Ω. Such a signal is detectable
only from sources in our galaxy or the nearby ones (our Local Group). If
the sensitivity of the detectors is improved in the kHz region, then signals
from the Virgo cluster may be detectable. If the bar persists for many (∼ 10-
100) rotation periods, then even signals from distances considerably larger
than the Virgo cluster could be detectable, cf. Fig. 8.5. The event rate is of
the same order as the SN rate (a few events per century per galaxy): this
means that given the appropriate sensitivity at frequencies between 1-3kHz
we might be able to observe a few events per year. The bar-mode instability
may also be excited during the merger of NS-NS, BH-NS, BH-WD and even
in type II collapsars (see discussion in [27]).

In general, the above estimates rely on Newtonian hydrodynamics calcu-
lations; GR enhances the onset of the instability slightly, βdyn ∼ 0.24 [28] and
βdyn may be even lower for large values of the compactness (larger M/R).
The bar-mode instability may be excited for significantly smaller β if centrifu-
gal forces produce a peak in the density off the sources rotational center[29].
Rotating stars with a high degree of differential rotation are also dynamically
unstable for significantly lower βdyn � 0.01 [30, 31]. In this scenario the un-
stable neutron star settles down to a non-axisymmetric quasistationary state
which is a strong emitter of quasi-periodic gravitational waves

heff ≈ 3 × 10−22
(
Req

30km

)(
f

800Hz

)1/2(100Mpc
d

)
M

1/2
1.4 . (8.41)
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Fig. 8.5. The estimated strength of gravitational waves from the dynamical bar-
mode instability and the CFS instability of the f- and r-modes. The estimates are
compared to the predicted noise of the various interferometers and also the possible
noise curve for a dual cylinder detector.

The bar-mode instability of differentially rotating neutron stars could be an
excellent source of gravitational waves provided that the dissipation of non-
axisymmetric perturbations by viscosity and magnetic fields is negligible.
That this is the case is far from clear. Magnetic fields might actually enforce
the uniform rotation of the star on a dynamical timescale and the persistent
non-axisymmetric structure might not have time to develop at all.

Numerical simulations have shown that the m = 1 one-armed spiral mode
might become dynamically unstable for considerably lower rotational rates
[29, 32]. This m = 1 instability depends critically on the softness of the equa-
tion of state (EoS) and the degree of differential rotation.

8.3.5 CFS Instability, f- and r-Modes

After the initial bounce, neutron stars may maintain a considerable amount
of deformation. They settle down to an axisymmetic configuration mainly
due to emission of gravitational waves, viscosity and magnetic fields. Dur-
ing this phase QNMs are excited. Technically speaking, an oscillating non-
rotating star has equal values ±|σ| (the frequency of a mode) for the forward
and backward propagating modes (corresponding to m = ±|m|). Rotation
changes the mode frequency by an amount δσ ∼ mΩ and both the prograde
and retrograde modes will be dragged forward by the stellar rotation. If the
star spins sufficiently fast, the originally retrograde mode will appear to be
moving forwards in the inertial frame (according to an observer at infinity),
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but still backwards in the rotating frame (for an observer rotating with the
star). Thus, an inertial observer sees gravitational waves with positive an-
gular momentum emitted by the retrograde mode, but since the perturbed
fluid rotates slower than it would in absence of the perturbation, the angu-
lar momentum of the mode itself is negative. The emission of gravitational
waves consequently makes the angular momentum of the mode increasingly
negative leading to an instability. From the above, one can easily conclude
that a mode will be unstable if it is retrograde in the rotating frame and
prograde for a distant observer measuring a mode frequency σ−mΩ i.e. the
criterion will be σ(σ −mΩ) < 0.

This class of frame-dragging instabilities is usually referred to as Chandra-
sekhar–Friedman–Schutz (CFS) [34, 35] instabilities. For the high frequency
(f and p) modes the instability is possible only for large values of Ω or for
quite large m. In general, for every mode there will always be a specific value
of Ω for which the mode will become unstable, although only modes with
|m| < 5 have an astrophysically significant growth time. The CFS mechanism
is not only active for fluid modes but also for the spacetime or the so-called
w-modes[33]. It is easy to see that the CFS mechanism is not unique to
gravitational radiation: any radiative mechanism will have the same effect.

In GR, the f-mode (l = m = 2) becomes unstable for β ≈ 0.06 − 0.08
[36]. If the star has significant differential rotation the instability is excited
for somewhat higher values of β (see e.g. [37, 38]). The f -mode instability is
an excellent source of gravitational waves. After the brief dynamical phase,
the PNS becomes unstable and the instability deforms the star into a non-
axisymmetric configuration via the l = 2 bar mode. Since the star loses an-
gular momentum it spins down, and the gravitational wave frequency sweeps
from 1 kHz down to about 100 Hz [39]. If properly modelled such a signal
can be detected from a distance of 100 Mpc (if the mode grows to a large
nonlinear amplitude).

Rotation not only shifts the frequencies of the various modes; it also gives
rise to the Coriolis force, and an associated new family of rotational or inertial
modes. Inertial modes are primarily velocity perturbations. Of special interest
is the quadrupole inertial mode (r-mode) with l = m = 2. The frequency of
the r-mode in the rotating frame of reference is σ = 2Ω/3. Using the CFS
criterion for stability we can easily show that the r-mode is unstable for
any rotation rate of the star. For temperatures between 107 − 109K and
rotation rates larger than 5-10% of the Kepler limit, the growth time of the
unstable mode is much shorter than the damping times due to bulk and
shear viscosity. The mode grows until it saturates due to non-linear effects
[40, 41, 42]. The strength of the emitted gravitational waves depends on the
saturation amplitude α. Mode coupling might not allow the growth of the
instability to amplitudes larger than α ≈ 10−2 − 10−3 [45]. The existence of
a crust [43, 44] or of hyperons in the core [47] and strong magnetic fields [46],
affect the efficiency of the instability (for extended reviews see [48, 49]). For
newly-born neutron stars the amplitude of gravitational waves might not be
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such that the signals will be detectable only from the local group of galaxies
(d < 1Mpc)

h(t) ≈ 10−21α

(
Ω

1kHz

)(
100kpc
d

)
, (8.42)

(see Fig. 8.5).
If the compact object is a strange star, then the r-mode instability will

not reach high amplitudes (α ∼ 10−3 − 10−4) but it will persist for a few
hundred years and in this case there might be up to ten unstable stars per
galaxy radiating gravitational waves at any time [54]. Integrating data for a
few weeks can then lead to an effective amplitude heff ∼ 10−21 for galactic
signals at frequencies ∼ 700 − 1000Hz. The frequency of the signal changes
only slightly on a timescale of a few months, so the radiation is practically
monochromatic.

Old accreting neutron stars, radiating gravitational waves due to the r-
mode instability, at frequencies 400-700Hz, are probably a better source [50,
51, 52, 53]. Still, the efficiency and the actual duration of the process depends
on the saturation amplitude α. If the accreting compact object is a strange
star or has a hyperon core then it might be a persistent source which radiates
gravitational waves for as long as accretion lasts [54, 55].

8.3.6 Oscillations of Black Holes and Neutron Stars

Black-hole ringing. The merger of two neutron stars or black holes or the
collapse of a supermassive star (collapsar of type I or II) will produces a
black hole. The newly formed black hole will ring, emitting a characteristic
signal until it settles down to the stationary Kerr state. This characteristic
signal, the so-called quasi-normal mode oscillation, will be a unique probe
of the black hole’s existence. Although the ringing phase does not last very
long (a few tenths of a ms), the ringing due to the excitation by the fallback
material might last for secs[56, 57]. The frequency and damping time of the
black-hole ringing for the l = m = 2 oscillation mode can be estimated via
the relations [58]

σ ≈ 3.2kHz M−1
10

[
1 − 0.63(1 − a/M)3/10

]
, (8.43)

Q = πστ ≈ 2 (1 − a)−9/20
. (8.44)

These relations together with similar ones either for the 2nd QNM or the
l = 2,m = 0,±1 can uniquely determine the massM and angular momentum
a of the BH if the frequency and the damping time of the signal have been
accurately extracted [59, 60]. The amplitude of the ring-down waves depends
on the BH’s initial distortion. If the excitation of the BH is due to infalling
material then the energy is roughly ∆E � εµc2(µ/M) where ε � 0.01 [61].
This leads to an effective gravitational wave amplitude
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heff ≈ 2 × 10−21
( ε

0.01

)(10Mpc
d

)(
µ

M�

)
. (8.45)

This approximate result has been verified by more detailed full non-linear
simulations [62]

Neutron star ringing. If the collapse leaves behind a compact star, vari-
ous types of oscillation modes might be excited which can help us estimate
parameters of the star such as radius, mass, rotation rate and EoS[63, 64, 65].
This gravitational wave asteroseismology is a unique way to find the radius
and the EoS of compact stars. One can derive approximate formulas in or-
der to connect the observable frequencies and damping times of the various
stellar modes to the stellar parameters. For example, for the fundamental
oscillation (l = 2) mode (f -mode) of non-rotating stars we get [63]

σ(kHz) ≈ 0.8 + 1.6M1/2
1.4 R

−3/2
10 + δ1mΩ̄ , (8.46)

τ−1(secs−1) ≈ M3
1.4R

−4
10

(
22.9 − 14.7M1.4R

−1
10

)
+ δ2mΩ̄ , (8.47)

where Ω̄ is the normalized rotation frequency of the star, and δ1 and δ2
are constants estimated by sampling data from various EoS. The typical
frequencies of the NS modes are higher than 1 kHz. On the other hand, 2D
simulations of rotating core-collapse have shown that if a rapidly rotating
NS is created, then the dominant mode is the quasi-radial mode (“l = 0”),
radiating through its l = 2 piece at frequencies ∼ 800Hz-1kHz [11]. Since
each type of mode is sensitive to the physical conditions where the amplitude
of the mode eigenfunction is greatest, the more information we get from the
various classes of modes the better we will understand the details of the star.

Concluding, we should mention that the tidal disruption of a NS by a
BH [66] or the merging of two NSs [67] may give valuable information for
the radius and the EoS if we can detect the signal at frequencies higher than
1 kHz.

8.4 Gravitational Waves of Cosmological Origin

The monumental discovery of the cosmological microwave background radi-
ation in the mid 1960s had catalytic influence on our understanding of the
early Universe. More recent data by COBE and WMAP provide a detailed
snapshot of the Universe about 400,000 years after the hot Big Bang, i.e. of
the time when the Universe became transparent to electromagnetic radiation.
Although this early picture of the Universe provides us with unprecedented
information, fundamental processes would have taken place at much earlier
times than the photon decoupling. In contrast to electromagnetic signals,
gravitational radiation can travel virtually unaffected even if it was produced
during the first seconds of the Universe’s existence. This is due to the weak
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interaction of gravitational waves with matter which is, of course, also a fun-
damental reason for our difficulty to detect them. A number of processes
during the very early stages of the Universe, including quantum fluctuations
during inflation, bubble collisions in a first-order phase transition, the decays
of cosmic strings and the processes that acted as seeds for galaxy formation,
can generate gravitational waves.

Gravitational waves produced in the early Universe will form a stochastic
background which can span a very wide range of frequencies. The intensity
of a stochastic gravitational-wave background is characterized by the dimen-
sionless quantity

Ω(f) =
1
ρc

dρgw
d log f

, (8.48)

where ρgw is the energy density of the gravitational waves, f is the frequency
and ρc is the critical energy density for closing the Universe. The critical
density is given as a function of the present value of the Hubble constant H0
i.e. ρc = 3H2

0/8πG. A particular gravitational-wave detector will measure the
quantity

hc(f) ≈ 1.3 × 10−20
√
Ω(f)h2

0

(
100Hz
f

)
, (8.49)

where h0 is the rescaled Hubble constant, expected to lie in the range 0.4 �
h0 � 0.9. For example, for Ω(f) ∼ 10−8 at a frequency of 100 Hz the strain in
a gravitational-wave detector is hc ∼ 10−24. It is obvious from equation (8.49)
that gravitational radiation with higher frequencies will be more difficult to
detect.

There are four frequency bands in which one can search for a stochastic
background. First, the detailed analysis of microwave background anisotropies
might reveal the existence of inflationary gravitational waves with frequencies
f � 10−16Hz. The data from COBE and WMAP were not detailed enough for
such an analysis, but future data from PLANCK might reveal the existence
of this gravitational-wave background. Analysis of pulsar data can provide
hints of the existence of a stochastic background at frequencies f ∼ 10−9Hz.
It will be detected as a timing noise in the electromagnetic signal and one may
be able to resolve stochastic noise of order h2

0Ω ∼ 10−8 . The space-based
gravitational wave detector LISA will be sensitive to stochastic gravitational
waves at frequencies of about 10−4 − 10−3Hz. By collecting data for about
one year LISA could detect h2

0Ω ∼ 10−10. Finally, combination of data by
ground based detectors can reveal the stochastic background at frequencies
10 − 103Hz with sensitivity h2

0Ω ∼ 5 × 10−9. Detailed reviews on the possi-
ble sources of cosmological gravitational waves and the probability of their
detection can be found in [68, 69].
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Abstract. Over the last decade, advances in computer hardware and numerical
algorithms have opened the door to the possibility that simulations of sources of
gravitational radiation can produce valuable information of direct relevance to grav-
itational wave astronomy. One source in particular is believed to be of extreme
importance: the inspiral and merger of a binary black hole system. Simulations of
binary black hole systems involve solving the Einstein equation in full generality.
Such a daunting task has been one of the primary goals of the numerical relativity
community. This review article focuses on the computational modelling of binary
black holes. It provides a basic introduction to the subject and is intended for
non-experts in the area of numerical relativity.

9.1 Introduction

A new era in astronomy will begin once gravitational wave interferometers
such as LIGO, GEO, VIRGO, TAMA and, in the future, LISA detect first
light. It is expected that these detectors will provide a revolutionary view of
the Universe, complementary to the electromagnetic perspective. In this new
astronomy, the messengers are gravitational waves, ripples in the fabric of
spacetime. These waves will have encoded detailed knowledge of the coher-
ent, bulk motions of matter and the vibrations in the curvature of spacetime
produced by a vast class of astrophysical sources; compact object binaries,
supernovae, spinning neutron stars, gamma ray bursts and stochastic back-
grounds are just a few examples of these sources.

Detection of the stochastic background of gravitational waves will revo-
lutionize early universe cosmology and high energy physics by tapping into
information unaccessible by any other means. Because gravitational waves
interact so weakly, they penetrate much deeper into the universe and its his-
tory. If these relic gravitational waves are observed, they will have imprinted
on them a snapshot of the very early universe at the time when they were
decoupled from the primordial plasma. This will provide the means to investi-
gate the origins of the universe and to measure cosmological parameters from
a new perspective. A summary of how ground based gravitational wave detec-
tors do cosmology can be found in [1]. This topic is of such importance that
NASA has developed a program to investigate it called “Beyond Einstein”,
details at http://universe.gsfc.nasa.gov/.

P. Laguna and D.M. Shoemaker, Computational Black Hole Dynamics, Lect. Notes Phys. 653,
277–298 (2005)
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The same reason that gravitational waves have such a long-reach in time
and space is the reason they are so difficult to detect. The detection is a
formidable undertaking, requiring innovative engineering, powerful data anal-
ysis tools and careful theoretical modelling. Our article focuses on the com-
putational modelling of binary black holes. It provides a basic introduction
to the subject and is intended for non-experts in the area of numerical rel-
ativity. The article is an expanded version of the lecture notes given by one
of us at the Second Aegean Summer School. For a comprehensive review, we
recommend the one by Baumgarte and Shapiro [2].

Among the sources of gravitational radiation, binary systems consisting
of black holes and/or neutron stars are expected to play a dominant role [3].
Over the last couple of decades, advances in numerical algorithms and com-
puter hardware have increased the impact that constructing numerical solu-
tions of the Einstein equation has on astrophysical systems such as black-hole
binaries. The ultimate goal is to develop generic numerical codes that, given
initial data and boundary conditions, will produce a spacetime representing
multiple black-hole singularities. The hope is that these codes will be capable
of modeling the dynamics of a binary black-hole collision, including inspiral,
merger, and ringdown phases.

This article is divided as follows: In Sect. 9.2 we presents the traditional
introduction to the (3+1) decomposition of the Einstein equation. Since the
primary focus is on black hole spacetimes, we will concentrate on the vac-
uum case. Also in this section, we will briefly discuss the two most popular
(3+1) formulations currently used by the numerical relativity community.
Section 9.3 is dedicated to black-hole horizons and the infrastructure devel-
oped around them that is used in numerical simulations. In particular, we will
describe the excision method to handle black hole singularities. In Sect. 9.4,
we review the Kerr-Schild form of a single black-hole spacetime and its use as
a building block for numerical evolutions. In Sect. 9.5, we review the current
status of black-hole simulations. Conclusions and a look at what lies ahead
in the near future are given in Sect. 9.6.

9.2 Einstein Equation and Numerical Relativity

The essence of Einstein equation is the notion that geometry is related to
matter-energy. Specifically,

Gab = 8πTab , (9.1)

where Gab is the Einstein tensor (geometry) and Tab is the stress-energy
tensor (matter-energy). The Einstein tensor Gab is an operator acting on
the spacetime metric (4)gab. This operator is nonlinear, involving first and
second derivatives of the metric. Since this review focuses on black holes, we
will concentrate on vacuum spacetimes and thus set Tab = 0. Also, Latin
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indices from the first part of the alphabet will denote spacetime indices, and
Latin indices from the middle of the alphabet will denote spatial indices.
Geometrical units are assumed.

When one expands the Einstein equation into each of its components,
one immediately finds that of the ten equations only six of them contain
second time derivatives. Consequently, if one views general relativity as an
initial value problem, namely initial data with subsequent unique dynamical
evolution, it appears that there are only enough equations for six of the metric
components or six combinations of metric components. What happens is that
the four components of the Einstein equation involving at the most first
time derivatives are constraint conditions that the initial data must satisfy.
There are then four metric components or combinations of metric components
for which the Einstein equation does not provide evolution equations. As a
consequence, one is free to introduce four conditions to fix those quantities.
As we shall see, this freedom encapsulates the property in general relativity of
performing coordinate transformations without affecting the physical content
of the solution.

In numerical relativity, the most popular approach to construct space-
times is based on a (3+1) decomposition of the Einstein equation. This is the
view called Geometrodynamics by J.A. Wheeler, referring to the history of
the geometry of space-like hypersurfaces. There are other ways to decompose
the Einstein equation including conformal and characteristic treatments. The
characteristic formulation has been tremendously successful in single black
hole and black hole plus matter calculations; however, there are serious com-
plications in applying this method to binary black hole computations. For de-
tails, we suggest a review of conformal and characteristic work by Lehner [4].

Under the (3+1) approach, the spacetime manifold M is sliced or foliated
into a sequence of space-like hypersurfaces Στ , parameterized by a scalar
function τ as illustrated in Fig. 9.1. The foliation is characterized by a closed
one-form Ωa ≡ ∇aτ such that

α−2 ≡ − (4)gabΩaΩb . (9.2)

The function α is called the lapse function. Its geometrical interpretation will
become clear later. Associated with Ωa, here is a dual vector Na such that
ΩaN

a = 1. It is straightforward to show that

Na = −α2 (4)gabΩb . (9.3)

Notice also that Na points in the direction of increasing τ and is a time-like
vector,

(4)gabN
aN b = −α2 < 0 . (9.4)

The unit-norm vector na associated with Na is na = α−1Na.
The vector Na is not the only dual vector to Ωa such that ΩaN

a = 1. In
general, any vector ta of the form
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Fig. 9.1. Sketch of the foliation of a three-dimensional spacetime manifold M into
space-like hypersurfaces, Στ , sliced in time.

ta = Na + βa = αna + βa , (9.5)

with βaΩa = 0 will yield Ωa t
a = 1. In particular, one can choose the vector

ta to be the tangent to the world lines of coordinates threading the family
of hypersurfaces Στ . With this choice, the scalar function α and vector βa

have the following interpretation. Given two hypersurfaces Στ and Στ+δτ ,
the proper time between these two hypersurfaces along the normal na is
α δτ , here the reason for the name lapse function. On the other hand, in a
general situation, a coordinate world-line intersecting Στ at a point P will
not intersect Στ+δτ at a point Q along the normal direction but instead at
a point R shifted a coordinate distance βa δτ from Q (see Fig. 9.2). That
is why βa is called the shift vector. It represents the freedom of relabeling
coordinate points in subsequent hypersurfaces.

Decomposing the Einstein equations into a (3+1) form reduces to projec-
tions into and perpendicular to Στ . This is accomplished with a projection
tensor

, x = constant

d iβ

atdt i

RQ

P

dt tt+

t

α

Σ

Σ

Fig. 9.2. Sketch of two adjacent hypersurfaces (Σt and Σt+dt).
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⊥a
b ≡ δab + nanb . (9.6)

Notice that by construction ⊥a
b n

b = 0. For instance, given an arbitrary
tensor T ....

..a.., the projection of the covariant index a is accomplished by
⊥b

a T
....

..b.., and similarly for other indices. The notation ⊥ preceding a
tensor implies projecting every free index in the tensor. In particular, the
projection of the spacetime metric is

gab ≡⊥ (4)gab = ⊥c
a ⊥d

b
(4)gcd = (4)gab + na nb . (9.7)

The tensor gab is the intrinsic metric to Στ . Because gab and βa are tensors
in Στ , one can also write gij = gab as well as βi = βa. The spacetime metric
given as a line element can then be decomposed as follows:

ds2 = −α2dt2 + gij(dxi + βidt)(dxj + βjdt) . (9.8)

The spatial metric gab induces a covariant differentiation operator Da in
Στ . That is, Dagab = 0 with Da =⊥ ∇a. For instance

DaT
b1...bl

c1...cm
= ⊥b1

d1 . . .⊥bl
dl

⊥e1
c1 . . .⊥em

cm
⊥f

a∇fT
d1...dl

e1...em
.
(9.9)

In order to completely characterize the spacetime from the point of view
of the (3+1) decomposition, it is not enough to have the intrinsic metric gab.
One needs in addition information on how the hypersurfaces are embedded
in the spacetime, namely the extrinsic curvature Kab of Στ . The extrinsic
curvature is defined as

Kab = − ⊥ ∇(anb) = −1
2

⊥ Lngab = −1
2
Ln

(4)gab , (9.10)

where Ln is the Lie derivative along the normal na. It is not difficult to show
that

Kab = −∇anb − na ab , (9.11)

where ab = na∇an
b is the 4-acceleration of coordinate observers.

Finally, given an arbitrary vectorW a inΣτ , the curvature Riemann tensor
Rabc

d is defined via the action of Da on Wa as:

(DaDb −DbDa)Wc = Rabc
dWd . (9.12)

Similarly, the spatial Ricci tensor Rab and the spatial Ricci scalar R are
obtained from Rab = Racb

c and R = Ra
a, respectively.

The relation between the curvature tensor Rabcd of the spacetime manifold
M and the curvature tensor Rabcd of hypersurface manifold Στ is given by
the Gauss, Codazzi and Ricci equations:

⊥ Rabcd = Rabcd +KacKbd −KadKbc (9.13)
⊥ Rabcn̂ = DaKac −DaKbc (9.14)

⊥ Ran̂bn̂ = LnKab +
1
α
DaDb α+Ka

cKab , (9.15)
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where we have used the following notation

na T ....
..a.. ≡ T ....

..n̂.. . (9.16)

We are now in the position of considering the decomposition of the Ein-
stein tensor Gab = Rab − gab R/2. Without loss of generality, this tensor can
be rewritten as:

Gab =⊥ Gab − 2n(a ⊥ Gb)n̂ + nanbGn̂n̂ . (9.17)

With the help of (9.13), it becomes

2Gn̂n̂ = R+K2 −Ka
bK

b
a . (9.18)

Similarly, making use of (9.14), one obtains

⊥ Gan̂ = −DbK
ab +DaK . (9.19)

The next step would be to write ⊥ Gab in terms of (3+1) quantities. However,
as originally pointed out by York [5], it is more convenient to use ⊥ Rab

instead. A straightforward but tedious calculation yields

⊥ Rab = LnKab +
1
α
DaDb α+ 2Ka

cKcb −KKab −Rab . (9.20)

Note that (9.18–9.20) involve only spatial tensors; therefore, they can equally
be written with spatial indices.

Since we are interested in the vacuum case, the Einstein equation simply
reads Gab = 0. Equations (9.18–9.20) reduce to

R+K2 −Ki
jK

j
i = 0 (9.21)

DjK
ij −DiK = 0 (9.22)
∂oKij = −DiDjα+ α (Rij +KKij − 2KilK

l
j) (9.23)

∂ogij = −2αKij , (9.24)

where we have introduced the following notation: ∂o ≡ ∂t − Lβ . Notice also
that we have added (9.24), which is basically the definition of the extrinsic
curvature (see (9.10)).

Equations (9.21) and (9.22) are known as the Hamiltonian and momentum
constraints. Equations (9.23) and (9.24) are also known as the K-dot and g-dot
equations or the ADM evolution equations. The ADM name was originated
because of the work on (3+1) decompositions of the Einstein equation by
Arnowitt, Deser, and Misner [6]. Strictly speaking calling (9.23) and (9.24)
the ADM equations is incorrect. The equations derived by Arnowitt, Deser,
and Misner use a extrinsic curvature density and the evolution equation for
the densitized extrinsic curvature is derived from ⊥ Gab. To our knowledge,
the system (9.21-9.24) as it stands was first introduced by York [5].

The traditional approach in numerical relativity to solve the system of
equations (9.21-9.24) for spacetimes containing black hole singularities re-
quires the following action items:
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– Specify spatial coordinates {xi} (e.g. Cartesian, spherical, etc.) and topol-
ogy of the initial slice.

– Construct initial data {gij , Kij} such that the constraints (9.21) and
(9.22) are satisfied.

– Prescribe a recipe to fix α and βi.
– Impose boundary conditions.
– Handling black hole singularities.
– Evolve or update in time the data {gij , Kij} via (9.23) and (9.24).

There are of course a series of important and complicated issues in han-
dling each of the items above. For instance regarding initial data, there are
twelve quantities in {gij , Kij} but only four constraint equations. How do
we select among these twelve quantities those that are derived from the con-
straints? York and collaborators [5], based on earlier work by Lichnerowicz,
developed an extremely powerful methodology that singles out those pieces
in {gij , Kij} that are to be obtained from the constraints (9.21) and (9.22).
This method is commonly known as the York conformal approach to the ini-
tial data problem in general relativity. For an excellent review and modern
variations, we encourage the reader to look at the review by Cook [7].

Similarly, there are important aspects to be considered in the choice of
the gauge variables α and βi as well as boundary conditions. Throughout the
various disciplines of physics, boundary conditions are often one of the most
demanding aspects. Recently in numerical relativity, a great deal of atten-
tion has been devoted to boundary conditions that are constraint preserving
[8]. This work is attempting to relieve the prevalence of constraint violation
during evolutions by applying explicit constraint preserving boundary condi-
tions. Regarding the choice of the lapse and the shift, the numerical relativity
community seems to be converging on gauge condition of the driver type [9].
The idea behind these gauge condition is to design evolution equations for
alpha and βi that drive certain quantities to a steady state. These conditions
have been successfully used in both black hole and neutron star calculations.

The most common procedure to evolve initial data in numerical relativity
is the so called free evolution. In a free evolution, the constraint equations are
only used to monitor the quality of the evolved data, namely the departures of
the numerically data from satisfying the constraints. Because of truncation or
discretization errors, the evolved data will satisfy at best the discrete version
of the constraints. More often, these errors drive the solutions rapidly away
from the constraint surface, rendering the simulation unstable. It is fair to say
that one of the primary tasks in numerical relativity has been the control of
these constraint violating modes [10, 11]. Recently there have been attempts
to explicitly solve the constraints as a way of projecting the evolved data
back into the constraint surface [12].

The ADM formulation is not unique. There are in principle an infinite
number of ways of formulating the Einstein equation with a (3+1) structure.
One can simply add terms to the evolution equations involving the constraints
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to create a different set of evolution equations. For instance,

∂ogij = r.h.s. Eq. (9.24) + Pij ρ+ Uk
ij Jk (9.25)

∂oKij = r.h.s. Eq. (9.23) +Qij ρ+ V k
ij Jk , (9.26)

where

ρ ≡ R+K2 −Ki
jK

j
i (9.27)

J i ≡ DjK
ij −DiK . (9.28)

Above, Pij , Qij , Uk
ij and V k

ij are tensors, symmetric in the ij indices in-
volving parameters as well as metric functions [13]. These types of adjustment
have a deep impact on the well-posedness properties of the system. Among
all the formulations that have been proposed, there are two that are cur-
rently enjoying widespread popularity. We will quickly summarize both. For
an extensive review on hyperbolic formulations of the Einstein equation the
reader should consult Reula’s review [14].

The first of the two formulations is the so called BSSN system. This is
a formulation re-introduced by Baumgarte and Shapiro [15] and originally
developed by Shibata and Nakamura [16]. The first step in obtaining the
BSSN formulation is to abandon gij and Kij as primary variables and work
instead with Φ, ĝij , K and Âij . The relationships between these and the
ADM variables are

Φ =
1
6

ln g1/2 (9.29)

ĝij = e−4Φ gij (9.30)

Âij = e−4ΦAij , (9.31)

where Aij = Kij − gij K/3. Given (9.29)-(9.31), it is not difficult to show
that the ADM system of evolution equations take the form

∂oΦ = −1
6
αK (9.32)

∂oĝij = −2α Âij (9.33)

∂oK = −∇i∇iα+ α (ÂijÂ
ij +K2/3) (9.34)

∂oÂij = e−4Φ (−∇i∇jα+ αRij)
TF

+ α (KÂij − 2ÂilÂ
l
j) . (9.35)

where in (9.35) the superscript TF denotes the trace free part of the tensor
between brackets, e.g. TTF

ij ≡ Tij − gijgklTkl/3 for any tensor Tij . The key
ingredient of the BSSN system is the introduction of a conformal connection

Γ̂ i ≡ ĝjkΓ̂ i
jk = −∂j ĝ

ij , (9.36)
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where the Γ̂ i
jk are the connection coefficients associated with ĝij . The moti-

vation for introducing these connections is to substitute in the Ricci tensor
R̂ij all the derivatives of ĝjkΓ̂ i

jk in favor of derivatives of Γ̂ i. In doing so, the
Ricci tensor yields a system of evolution equations with a hyperbolic flavor.

Expanding the number of primary variables in the system to include the
conformal connections implies the need of an additional evolution equation.
From definition (9.36), one can show that the evolution equation for Γ̂ i is
given by

∂oΓ̂
i = ĝjk∂jkβ

i +
1
3
ĝij∂jkβ

k − 2 Âij∂jα

+ 2αΓ̂ i
jkÂ

jk + 12αÂij∂jΦ− 4
3
α∇̂iK . (9.37)

In summary, the BSSN system involves conformal transformations, a trace-
free decomposition of the extrinsic curvature, the introduction of a conformal
connection and the use of constraints to eliminate the Ricci scalar and deriva-
tives of the trace-free extrinsic curvature.

The other currently most popular (3+1) formulation of the Einstein equa-
tion is the KST formulation developed by Kidder, Scheel and Teukolsky [17].
There are a number of ways to construct hyperbolic formulations [14], but
we only include the KST formulation in any detail. Strictly speaking this is a
family of hyperbolic formulations foliated by twelve parameters. This formu-
lation has been demonstrated to be successful in the evolution of single black
holes. It is expected that in the near future this success will be translated to
evolutions of binary black holes.

The first step in the derivation of the KST system consists of introducing
a new variable to eliminate second derivatives of the spatial metric. The new
variable (symmetric on its last two indices) is

dkij ≡ ∂kgij , (9.38)

and its traces dk ≡ gijdkij and bk ≡ gijdijk. An evolution equation for dkij

is obtained by taking a spatial derivative of (9.24). This yields

∂odkij = −2α∂kKij − 2Kij∂kα . (9.39)

In terms of the new variables, the evolution equation for the extrinsic curva-
ture becomes

∂oKij = α
[1
2
gkl
(
∂(idklj) + ∂kd(ij)l − ∂kdlij − ∂(idj)kl

)

+
1
2
bkdkij − 1

4
dkdkij − bkd(ij)k − 1

2
d l

kj d
k

li

+
1
2
dkd(ij)k +

1
4
d kl

i djkl +
1
2
dkl

idklj − 2KikK
k

j

+KKij

]
− ∂i∂jα− 1

2
dk

ij∂kα+ d k
(ij) ∂kα .
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By adding terms proportional to the constraints, the evolution equations
for Kij and dkij can be rewritten as

∂oKij = (. . .) + γαgijC + ζαgklCk(ij)l (9.40)
∂odkij = (. . .) + ηαgk(iCj) + χαgijCk , (9.41)

where (. . .) represents the right-hand side of either (9.39) or (9.40). The
parameters {γ, ζ, η, χ} are arbitrary constants. The evolution equations are
now given by

∂ogij � 0, (9.42)

∂oKij � −1
2
αgkl

[
∂kdlij − (1 + ζ)∂kd(ij)l

− (1 − ζ)∂(idklj) + (1 + 2σ)∂(idj)kl

−γgijgmn∂kdmnl + γgijgmn∂kdlmn] , (9.43)
∂odkij � −2α∂kKij + αglm

(
ηgk(i∂lKmj) + χgij∂lKmk

−ηgk(i∂j)Klm − χgij∂kKlm

)
, (9.44)

where � denotes equal to the principal part. In [17] it is shown that one can
find values of the parameters such that the system is weakly hyperbolic. It
is also found that densitizing the lapse is a necessary condition for strong
hyperbolicity, namely:

α = gσ eQ , (9.45)

with Q an arbitrary function and σ a parameter.
Finally, in order to arrive at the KST system, one introduces a generalized

extrinsic curvature Pij using the relation

Pij ≡ Kij + ẑgijK , (9.46)

where ẑ is an arbitrary parameter. Similarly one introduces a generalized
derivative of the metric, Mkij , using the relation

Mkij =
1
2

{
k̂dkij + êd(ij)k + gij

[
âdk + b̂bk

]

+gk(i

[
ĉdj) + d̂bj)

]}
, (9.47)

with k̂, ê, â, b̂, ĉ and d̂ additional parameters. With these definitions, the
principal parts of the evolution equations for Pij and Mkij are

∂ogij � 0 (9.48)
∂oPij � −αgkl

(
µ1∂kMlij + µ2∂kM(ij)l + µ3∂(iMklj)

+ µ4∂(iMj)kl + µ5gijg
mn∂kMmnl

+µ6gijg
mn∂kMlmn) (9.49)

∂oMkij � −α (ν1∂kPij + ν2∂(iPj)k + ν3gmngk(i∂mPnj)

+ ν4gijgmn∂mPnk + ν5gmngk(i∂j)Pmn

+ν6gijgmn∂kPmn) , (9.50)
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where µA and νA with A = 1...6 are parameters function of the 12 parameters
above.

9.3 Black Hole Horizons and Excision

Back hole horizons are of crucial importance in numerical simulations that
may either contain or lead to the formation of black holes. Specifically in
numerical relativity, horizons are used to identify the formation of a black
hole, to locate a black hole or to characterize properties of a black hole.
To successfully utilize horizons in computations, they must be formulated in
terms appropriate to numerical approximations. We will briefly review the
types of black hole horizons that have been used in connection with numerical
simulations.

A black hole is most often defined in terms of its event horizon, i.e. the
future boundary of the causal past of future null infinity. The event horizon
is a mathematically elegant and powerful definition of the black hole surface;
however, for the purposes of locating in a numerical simulation the position
of the black hole in the computational domain this definition is not always
useful. By definition, the event horizon is global in nature; meaning, the
entire spacetime must be known a priori in order to determine its location.
This is demanding the end product of the evolution before we even begin. In
practice, an alternative surface called apparent horizon is used to localize or
track the position of a black hole.

An apparent horizon is a closed two-sphere on Στ . Therefore, it is well
suited for numerical relativity since it only requires information available at
an instant of time. There is a price to pay however. Because they are defined
from quantities in Στ , they dependent on the way one chooses to foliate the
spacetime. One can in principle find foliations of a black hole spacetime in
which a hypersurface Στ does not contain an apparent horizon. Fortunately,
these type of slicings seem to be rare. Furthermore, the world tube connecting
apparent horizons from one time to the next could be discontinuous. This is
in contrast with an event horizon which is a continuous worldtube.

The apparent horizon is defined as the outermost marginally trapped
surface in Στ . As mentioned before, the definition of an apparent horizon
requires only knowledge of quantities on Στ . Following [18], let S be a surface
with S2 topology with ka and la respectively the outgoing and ingoing null
vectors to S, see Fig. 9.3. That is, kasa > 0 and lasa < 0, where sa is a
spacelike unit vector to S in Στ , namely sana = 0 with na the unit time-like
normal to Στ .

A trapped surface is defined as

Θ ≡ ∇ak
a ≤ 0 . (9.51)

By making use of ka = na + sa and the projector ⊥, (9.51) can be rewritten
in terms of quantities on Στ as follows:
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Σ
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kl

n

S

Fig. 9.3. Representation of a two-Sphere embedded in a hypersurface, Στ .

Θ = Dis
i −K + sisjKij , (9.52)

where as before Di denotes the covariant derivative associated with the 3-
metric gij in Στ . For a marginally trapped surface, Θ = 0. An apparent
horizon is the outermost marginally trapped surface. Thus, finding marginally
trapped surfaces involves finding solutions to

Dis
i −K + sisjKij = 0 . (9.53)

There are many ways to solve this equation, see reference [19] and those
therein.

The motivation for finding apparent horizons during numerical evolutions
of black hole spacetimes is to localize the singularity intrinsic to the black
hole on each space-like hypersurface. Numerically, the singularity must be
treated specially since infinite gradients are impossible to handle in calculat-
ing derivatives of the fields. Once the apparent horizon is located by solving
(9.53), a numerical code can use this information to avoid computing near the
singularity contained within the horizon. One approach to deal with the sin-
gularity is known as singularity avoidance. In this technique, one takes advan-
tage of the freedom in foliating the spacetime to construct coordinates that
avoid the singularity. Originally, this method encountered problems caused
by the increase in proper separation between neighboring points, also known
as grid stretching. However, the problem has been alleviated to some extent
through clever choice of shift [20].

An alternative and perhaps more robust method is to physically remove
or excise the singularity from the computational domain. Physically, this
procedure requires no boundary conditions as it respects the causality of
the spacetime, i.e. events inside the horizon are not in causal contact with
external events. This means that all physics information within the bound-
ary cannot escape and consequently can be ignored. However, this does not
apply to non-physical information such as gauge modes. Unless all the char-
acteristic speeds of the evolved fields are within the light code, these modes
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can propagate out and affect the numerical stability. Excision has been im-
plemented in many different formulations [21, 22, 23, 24, 25, 26, 27]. With the
recent work on formulations, excision algorithms have been stably coded in
hyperbolic and BSSN-type codes in stationary and dynamic back hole sys-
tems [28, 29, 30, 31, 32].

Invariant physical information contained in the source simulations must
be both extracted and interpreted if we are to construct a complete picture of
gravitational physics in the strong field regime. This is a daunting challenge
in general relativity where there is freedom in the choice of gauge and the
form of the equations.

Of particular interest is the quantification of the mass M and angular
momentum J of a black hole. One way to attribute a mass and an angular
momentum to a black hole is to calculate the corresponding ADM quantities
at infinity. The main difficulty is that the ADM mass and angular momentum
refer to the whole spacetime. In a dynamical situation, such a spacetime will
contain gravitational radiation and it is not clear how much of the mass or
angular momentum should be attributed to the black hole itself and, if there
is more than one black hole, to each individual black hole. It is desirable to
have a framework that combines the properties of apparent horizons with
the powerful tools available at infinity. In the regime when the black hole is
isolated in an otherwise dynamical spacetime, such a framework now exists
in the form of isolated horizons [33, 34]. Isolated horizons provide a way to
identify a black hole quasi-locally and allow for the calculation of M and
J . It has been shown recently that the formula for angular momentum and
mass arising from the isolated horizon formalism are valid even in dynamical
situations [35, 36].

The theory of dynamical and isolated horizons gives rise to definitions for
M and J that are similar in form to the ADM definitions, but are calculated
at the dynamical horizon ∆:

J∆ =
1
8π

∮

S

(ϕasbKab) d2V , (9.54)

where Kab is the extrinsic curvature on S and ϕa is a Killing vector related
to the fact that S must by axisymmetric in order for angular momentum to
be defined. In [37] a method for calculating ϕa based on the Killing transport
equation is detailed.

Given J∆, the horizon mass M∆ is obtained from [38, 39]

M∆ =
1

2R∆

√
R4

∆ + 4J2
∆ , (9.55)

where R∆ is the area radius of the horizon: R∆ = (A∆/4π)1/2. This formula
depends on R∆ and J∆ in the same way as in the Kerr solution. However,
this is a result of the calculation and not an assumption. Furthermore, under
some physically reasonable assumptions on fields near future time-like infinity
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(i+), one can show that M∆ −MADM is equal to the energy radiated across
future null-infinity if the isolated horizon extends all the way to i+. Thus,
M∆ is the mass left over after all the gravitational radiation has left the
system. This lends further support for identifying M∆ with the mass of the
black hole.

9.4 Initial Data and the Kerr-Schild Metric

There are two general approaches to represent black holes for the construction
of initial data. One is based on punctures [40] and the other on using the Kerr-
Schild form of the single back hole solution to Einstein’s equations [41]. They
both have advantages and disadvantages. There are two positive reasons for
using the Kerr-Schild form: (1) the metric is regular at the horizon and (2)
the metric is Lorentz form-invariant under boosts. We will concentrate the
discussion on the Kerr-Schild approach. For puncture data, see the review by
Cook [7].

The Kerr-Schild metric is given by
(4)gab = ηab + 2H la lb , (9.56)

with la a null vector with respect to both (4)gab and the flat metric ηab. In a
(3+1) form, this metric takes the form

gij = ηij + 2Hlilj (9.57)

α =
1

√
1 + 2Hl2t

(9.58)

βi = 2Hltli . (9.59)

The relation between the lapse and shift dictates that the horizon stays at a
constant coordinate location in a non-boosted Kerr-Schild solution.

The Kerr-Schild metric is form-invariant under a Lorentz transformation.
Consider the transformation matrix Λ

Λt̄
t = γ (9.60)
Λt̄

i = −vγv̂i (9.61)

Λī
j = (γ − 1)v̂iv̂j + ηi

j , (9.62)

with ηij v̂
iv̂j = 1 and γ = 1/

√
1 − v2. With this transformation, a new null

vector lµ and a new function H are determined

lµ = Λν̄
µ l̄ν̄ (9.63)

H = H̄(Λν̄
µx̄ν) . (9.64)

The form of the spacetime metric and its (3+1) decomposition remains un-
changed in terms of lµ and H. To give a specific example, consider the case of
a non-rotating black hole boosted with a velocity v in the x-direction. Then
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t̄ = γ(t− vx) (9.65)
x̄ = γ(x− vt) (9.66)
ȳ = y (9.67)
z̄ = z , (9.68)

where v is the boost velocity and γ = 1/
√

1 − v2 with c = 1. After the boost,
li becomes

li = ∂i(M/H) − γvi . (9.69)

Since H is a scalar, it is invariant under this transformation. The null vector
and scalar function become explicitly

r2 = γ2(x− vt)2 + y2 + z2 (9.70)
lt = γ(1 − vγ(x− vt)/r) (9.71)
lx = γ(γ(x− vt)/r − v) (9.72)
ly = y/r (9.73)
lz = z/r (9.74)
H = M/r . (9.75)

The new metric is given as before, namely (9.57–9.59) with lµ and H above.
Given the boosted solution of a single black hole in Kerr-Schild form, one

can construct data representing binary black holes by superposing two Kerr-
Schild solutions [42]. If the initial data is obtained following York’s conformal
approach [5], the freely specifiable data is the conformal metric ĝij , trace of
the extrinsic curvature K and the conformal, transverse, traceless part of the
extrinsic curvature Â∗

ij . One can then set the conformal metric to be

ĝij = (1)gij + (2)gij − ηij , (9.76)

with

(1)gij = ηij +H li lj |(1) (9.77)

(2)gij = ηij +H li lj |(2) , (9.78)

being the the isolated Kerr-Schild metric forms with li and H corresponding
to the single black holes. The arguments of H and lj are

r1
2 = (x− x1)i(x− x1)jηij (9.79)

r2
2 = (x− x2)i(x− x2)jηij , (9.80)

with x1
i and x2

j the coordinate positions of the holes on the initial slice.
Similarly the trace of the extrinsic curvature K can be obtained from

K̂i
j = (1)K̂

i
j + (2)K̂

i
j , (9.81)
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where (1)K̂
i
j and (2)K̂

i
j are the individual extrinsic curvatures associated with

the individual Kerr-Schild metrics. That is, one sets K = K̂(1)+K̂(2). Given
ĝij and K, one is in the position to apply York’s conformal approach.

While both the puncture and superposed Kerr-Schild methods have been
used to generate initial data for binary black hole evolutions, it is important to
note that posing astrophysically relevant initial data in numerical relativity
is very much an open question. Correct initial data would be supplied by
Post-Newtonian calculations with numerical evolutions taking over where
the Post-Newtonian approximations break down. This is not yet possible
with current codes and computer technology. For this reason, it is important
to develop physical insight about how much spurious radiation is present in
the initial data. Some preliminary work in this area has been done [43].

9.5 Black Hole Evolutions

The first milestone to be achieved for the successful orbit and merger of two
black holes is the stable, long term evolution of a single, static black hole.
Despite the fact that the solution for a charge free single black hole is known
to be either Schwarzschild or Kerr, the numerical relativity community has
been struggling to obtain a generic, three-dimensional stable evolution for
years. Early on in the effort, two types of evolutions were pursued, those using
the standard ADM formulation [44, 21, 22] and those using the characteristic
formulation [45, 23]. Characteristic formulations achieved astounding success
at evolving single black holes for arbitrary amounts of time while the (3+1)
suffered severe stability problems when applied in three spatial dimensions.

Over the last several years, the community has come to understand that
the problems were not solely numerical but originated in part from the struc-
ture of the equations. The result is that (3+1) codes can now evolve single
black holes stably in three dimensions. With a code based on the KST hy-
perbolic formulation, the Cornell/Caltech group has been able to achieve
evolution of a single black hole for (600 − 8000)M depending on the coordi-
nates chosen [17]. Here constraint violations were tracked and determined to
be the possible culprit in the failure to evolve a single black hole in (3+1) for
so many years. Similarly, several groups with codes based on the BSSN form
of equations carried out black hole evolutions for hundreds to thousands of
M [46, 47, 31]. A crucial aspect in these simulations has the use of dynamical
(driver) gauge conditions, as well as a densitized lapse [31].

In order to successfully compute the last few orbits and merger of two
black holes, it is highly likely that one would have to develop a code capa-
ble of moving excised black holes through the computational domain. While
much of the current effort on orbits and head-on collisions has been accom-
plished by holding the black holes fixed to the grid, it is our believe that
adding the flexibility for black holes to move or drift will greatly facilitate
coalescence simulations. This implies the development of excision algorithms
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that populate points on the numerical grid with field values where there were
none at the previous time step [30].

Characteristic formulations had early success at moving black holes
through the grid [23]. Although there was an early attempt at moving black
holes in (3+1) formulations [21], success depended on recent improvements
to the formulation of the (3+1) equations that has allowed the stable evo-
lution of a stationary black hole. As a test of moving excision, evolutions of
a scalar field in a static or boosted Kerr-Schild black hole background [29]
have been accomplished. Further, in [30, 31], full three-dimension evolutions
were performed of a single black hole in a coordinates systems in which the
coordinate location of the black hole did not remained fixed.

A truly dynamical test of codes designed to evolve black holes is the evo-
lution of distorted black hole spacetimes. Distorted black holes are dynamical
systems demanding many of the same technical and analytic developments
that binary black hole systems do. In addition there are interesting physics
regarding gravitational radiation and the dynamics of horizons that can be
investigated with these systems. Many three dimensional simulations of dis-
torted black holes have been carried out [48, 46, 49, 50, 51]. Typically, the
black hole is distorted by a wave, often a Brill wave [52]. The simulations
were primarily intended at testing gravitational wave extraction techniques
and the stability properties of the codes. Recently, distorted black holes [46]
were used to test gauge conditions. These results showed a match to the
lowest two quasi normal mode frequencies.

Highly distorted black holes provide a mechanism for a detailed charac-
terization of the transition from a highly, nonlinear distorted black hole to a
ringing black hole and to the onset of quasi normal mode frequencies. Allen
and collaborators [51] probed the nonlinear generation of harmonics for small
amplitudes of the ingoing wave. More recently, Papadopoulos [53] and Zlo-
chower and his collaborators [54] have evolved distorted black holes using the
Characteristic framework. Both report interesting nonlinear effects such as
mode mixing, larger phase shifts and amplitudes that may lend insight into
the observations of gravitational waves.

The effort on simulating head-on collisions provides a good picture of
the early history of vacuum numerical relativity. The first attempt to solve
this problem took place as early as 1964 [55]. This and subsequent efforts on
head-on collision were carried out in axisymmetry, namely as a (2+1) problem
[56, 25]. It was not until the late 90’s that computer speed and memory was
such that 3D simulations were possible [20].

Despite the early difficulties in evolving single black holes stably, some
groups were capable of carrying out evolutions of black hole grazing collisions.
Grazing collisions refer to collisions of slightly off-center head-on black hole
collisions. The initial separation of the black holes was limited by the onset
of instabilities. Separation of the black holes were such that a joint apparent
horizon formed early in the simulation. These tests, however, demonstrated
the ability to do non-axisymmetric dynamic binary black hole simulations.
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Grazing collisions continue to be a step toward the orbit and merger of two
black holes. Brügmann [57] completed the first grazing collision using the
Brandt and Brügmann puncture method [40] to avoid the singularities during
the computation. Although this evolution ended too prematurely to be of
astrophysical interest, it was the first three-dimensional binary black hole
evolution. The first attempt to use dynamic singularity excision in grazing
collisions was carried out by the Penn State/Pittsburgh/Texas collaboration
[22] using a code based on the standard ADM formulation. The initial data
for these simulations was the superposed Kerr-Schild data [42, 58]. These
simulations were successful in demonstrating the use of dynamic excision to
follow two back holes as they merge; however, the results were too short-lived
and affected by boundary effects to allow for gravitational wave extraction.
Soon after, a second grazing collision was completed by the AEI group at
Germany [59]. This grazing collision did not used excision but punctures
to handle the black hole singularities. A combination of large amount of
supercomputing power and coordinates to push outer boundaries sufficiently
far allowed wave extraction to be obtained in these simulations.

Given the limitations of performing long-lived binary evolutions, the
Lazarus group [60] developed a framework to extend the life of the simula-
tions by connecting at the end of fully nonlinear calculations a perturbative
calculation. Using an ADM code, the Lazarus effort was successful in con-
structing waveforms from head-on [61] and merger from ISCO [62]. What
appears to be the first fully nonlinear evolution of an orbit of two black holes
was performed only recently [63]. The simulation uses corotating coordinates
and dynamical shift conditions that force the black holes to stay fixed on the
grid. The simulation lasts about one orbital period before crashing. While
this works does not yet provide detailed waveforms useful to data analysis
effort, they however demonstrate the advances made over the last few years.

9.6 Conclusions and Future Work

Over the last decade or more, the numerical relativity community has focused
most of its attention to the binary black hole problem. Although early efforts
were seriously plagued by numerical instabilities, simulations in which these
instabilities are been tamed is gaining momentum. There are still many open
problems before simulations of orbits and mergers, such as the ones reported
above, can be enhanced to the point in which useful astrophysical predictions
are possible. One of the major obstacles is specifying the astrophysically rele-
vant initial data; this requires a framework for incorporating post-Newtonian
information into numerical source simulations. A second obstacle is accurate
wave extraction, namely the translation of numerically evolved quantities into
physical invariants. In addition, we are lacking good outer boundary condi-
tions although it is encouraging to see that there has been work toward the
design of constraint-preserving boundary conditions. There are more difficul-
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ties ahead, but the difference between today and five years ago is that today
the challenges are met with codes that can successfully evolve single black
hole, as well as modest binary black hole evolutions.

Of great significance has been the progress made in formulating the (3+1)
decomposition of the Einstein equation and dynamical gauge conditions.
With the advent of adaptive mesh refinements (AMR), the outlook for nu-
merical relativity is positive and fast paced. AMR is essential if one has any
hope of simulating astrophysical black hole orbits. Currently the effort has
been focused on fixed mesh refinement [63, 64, 65]. Adaptivity can be also
achieved by other means beside AMR. For instance, the groups at Meudon
and Caltech/Cornell have pioneered the use of pseudo-spectral methods hav-
ing this in mind [66, 67, 68]. Preliminary work is currently taking place also on
the use of finite element techniques, a method with a high degree of intrinsic
adaptivity.

The detection of gravitational radiation will supply us with means to
probe the fundamental nature of gravity. The information obtained from
source simulations will have a profound impact to the data analysis commu-
nity now searching for evidence of gravitational waves in the ground-based
detector’s data stream. With the possibility of high quality source simula-
tions, the community must begin to interface with data analysis. While it is
likely that the outcome from numerical simulations to be handed to the data
analysis community will not be an exhaustive collection of waveforms, source
simulations could nonetheless provide robust information (e.g. frequency evo-
lutions, mode content, etc.) of extremely high value to the observational ef-
fort.
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