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Preface

For almost forty years the Institute for Theoretical Physics of the University of
Wroclaw has organized winter schools devoted to current problems in theoretical
physics. The XXXV International Winter School on Theoretical Physics, “From
Cosmology to Quantum Gravity”, was held in Polanica, a little town in south-
west Poland, between 2nd and 11th February, 1999. The aim of the school was to
gather together world-leading scientists working on the field of quantum gravity,
along with a number of post-graduate students and young post-docs and to offer
young scientists with diverse backgrounds in astrophysics and particle physics
the opportunity to learn about recent developments in gravitational physics. The
lectures covered macroscopic phenomena like relativistic binary star systems,
gravitational waves, and black holes; and the quantum aspects, e.g., quantum
space-time and the string theory approach.

This volume contains a collection of articles based on lectures presented dur-
ing the School. They cover a wide spectrum of topics in classical relativity,
quantum gravity, black hole physics and string theory. Unfortunately, some of
the lecturers were not able to prepare their contributions, and for this reason
I decided to entitle this volume “Towards Quantum Gravity”, the title which
better reflects its contents.

I would like to thank all the lecturers for the excellent lectures they gave
and for the unique atmosphere they created during the School. Thanks are due
to Professor Jan Willem van Holten and Professor Jerzy Lukierski for their
help in organizing the School and preparing its scientific programme. Dobromila
Nowak worked very hard, carrying out virtually all administrative duties alone.
I would also like to thank the Institute for Theoretical Physics of the Univer-
sity of Wroctaw, the University of Wroctaw, the Foundation for Karpacz Winter
Schools, and the Polish Committee for Scientific Research (KBN) for their fi-
nancial support.

Wroctaw, November, 1999 Jerzy Kowalski - Glikman



Contents

Are We at the Dawn of Quantum-Gravity Phenomenology?

Giovanni Amelino-Camelia . . .......... .. 1
1 Introduction. ......... ... 1
2 First the Conclusions: What Has This Phenomenology Achieved? ... .. 3
3 Addendum to Conclusions: Any Hints to Theorists

from Experiments? . ... ... .. 6
4 Interferometry and Fuzzy Space-Time .............. ... .. ... ...... 8
5 Gamma-Ray Bursts and In-vacuo Dispersion ....................... 15
6 Other Quantum-Gravity Experiments ........... ... ... .. .. ... .. 20
7 Classical-Space-Time-Induced Quantum Phases

in Matter Interferometry ....... ... .. .. . 24
8 Estimates of Space-Time Fuzziness from Measurability Bounds . ...... 25
9 Relations with Other Quantum Gravity Approaches ................. 36
10 Quantum Gravity, No Strings Attached ............................ 39
11 Conservative Motivation and Other Closing Remarks ................ 44

Classical and Quantum Physics of Isolated Horizons: A Brief
Overview

Abhay AShtekar. .. ... ... 50
1T Motivation .. ... 50
2 Key Issues .. ... 52
3 SUIMINATY . .ottt et e e e e e 55
4 DiSCUSSION . oottt 65

Old and New Processes of Vorton Formation

Brandon Carter ...... ... . 71
Anti-de Sitter Supersymmetry

Bernard de Wit, Tvan Herger .......... ... uiineniinenineinenn.. 79
1 Introduction.......... ... i 79
2 Supersymmetry and Anti-de Sitter Space ......... ... ... .. ... 80
3 Anti-de Sitter Supersymmetry and Masslike Terms .. ................ 83
4 The Quadratic Casimir Operator........ ..., 85
5 Unitary Representations of the Anti-de Sitter Algebra ............... 87
6 The Oscillator Construction .. .............o i, 92
7 The Superalgebra OSp(1|4) .. ..ottt 95



VIII Contents

8 ConClUSIONS . .ottt 98
References . ... 99

Combinatorial Dynamics and Time in Quantum Gravity

Stuart Kauffman, Lee Smolin . .. ... ... i, 101
1 Introduction......... ... 101
2 Combinatorial Descriptions of Quantum Spacetime .................. 104
3 The Problem of the Classical Limit and its Relationship

to Critical Phenomena. . ....... ... ... . i 108
4 Is There Quantum Directed Percolation? ........................... 111
5 Discrete Superspace and its Structure ........... ... .. .. ... ... ... 112
6 Some Simple Models . ..... ... 114
7 The Classical Limit of the Frozen Models .......................... 115
8 Dynamics Including the Parameters .......... ... .. ... ... .. .. .. 116
9 A New Approach to the Problem of Time .......................... 117
Non-commutative Extensions of Classical Theories in Physics
Richard Kerner . .. .. ... e e e 130
1 Deformations of Space-Time and Phase Space Geometries............ 130
2 Why the Coordinates Should not Commute at Planck’s Scale ......... 133
3 Non-commutative Differential Geometry .......... ... .. ... ... ... 134
4 Non-commutative Analog of Kaluza-Klein and Gauge Theories ....... 137
5 Minkowskian Space-Time as a Commutative Limit .................. 142
6 Quantum Spaces and Quantum Groups . .................ooui... 149
T ConcClUuSION . . .ot 155
References ... ... i 155
Conceptual Issues in Quantum Cosmology
Claus Kiefer ... ... e 158
1 Introduction. ........ ... 158
2 Lessons from Quantum Theory ......... ... .. ... .. .. ... 159
3 Quantum CoSmOlogy ... ...ttt 167
4 Emergence of a Classical World ......... .. .. .. .. .. . .. ... 176
5 Acknowledgements . .. ... 184
References .. ... .. 185
Single-Exterior Black Holes
Jorma Louko . .. ... 188
1 Introduction. ........ ... 188
2 Kruskal Manifold and the RP? Geon..............coouiiieinoiiii .. 189
3 Vacua on Kruskal and on the RP® Geon ........................... 192
4 Entropy of the RP? Geon? ............ooiuiiiii .. 194
5 AdSs, the Spinless Nonextremal BTZ Hole, and the RP? Geon........ 195
6 Vacua on the Conformal Boundaries.............. .. ... .. .. .. ... 198
7 Holography and String Theory.............coo ... 200
8 Concluding Remarks . ..... ... i 201

References . ... 201



Contents X

Dirac-Bergmann Observables for Tetrad Gravity
Luca LuSanna . ... ... 203

Meaning of Noncommutative Geometry
and the Planck-Scale Quantum Group

Shahn Magid .. ... ... 227
1 Introduction......... ... 227
2 The Meaning of Noncommutative Geometry ............. ... ... .... 231
3 Fourier Theory .. ... ... 242
4 Bicrossproduct Model of Planck-Scale Physics ................... ... 251
5 Deformed Quantum Enveloping Algebras .......................... 260
6 Noncommutative Differential Geometry

and Riemannian Manifolds . ........... ... ... ... .. .. .. ... ... .. .. 268
References ... ... ... 274

Loop Quantum Gravity
and the Meaning of Diffeomorphism Invariance

Carlo Rovelli, Marcus Gaul ....... .. .. . . i, 277
1 Introduction........ ... ... i 277
2 Basic Formalism of Loop Quantum Gravity ........................ 281
3 Quantization of the Area....... ... .. .. . 300
4 The Physical Contents of Quantum Gravity

and the Meaning of Diffeomorphism Invariance ..................... 303
5 Dynamics, True Observables and Spin Foams ....................... 311
6 Open Problems and Future Perspectives ........... ... .. ... .. ... 322
Black Holes in String Theory
Kostas Skenderis. . .. ..o 325
1 Introduction. ............ . e 325
2 String Theory and Dualities . .......... . i i 329
3 Brane Solutions. ...... ... . 335
4 Black Holes in String Theory ... ... 341
Gravitational waves and massless particle fields
Jan Willem van Holten .. ... ... . i 365
1 Planar Gravitational Waves . ............iuiiiiiennan.. 365
2 Einstein-Scalar Waves . ........... . 368
3 Einstein-Dirac Waves ... ... 370

4 Einstein-Maxwell Waves .. ... 372



Are We at the Dawn
of Quantum-Gravity Phenomenology?

Giovanni Amelino-Camelial

Theory Division, CERN, CH-1211, Geneva, Switzerland**

Abstract. A handful of recent papers has been devoted to proposals of experiments
capable of testing some candidate quantum-gravity phenomena. These lecture notes
emphasize those aspects that are most relevant to the questions that inevitably come
to mind when one is exposed for the first time to these research developments: How
come theory and experiments are finally meeting in spite of all the gloomy forecasts
that pervade traditional quantum-gravity reviews? Is this a case of theorists having
put forward more and more speculative ideas until a point was reached at which con-
ventional experiments could rule out the proposed phenomena? Or has there been such
a remarkable improvement in experimental techniques and ideas that we are now ca-
pable of testing plausible candidate quantum-gravity phenomena? These questions are
analysed rather carefully for the recent proposals of tests of space-time fuzziness using
modern interferometers and tests of dispersion in the quantum-gravity vacuum using
observations of gamma rays from distant astrophysical sources. I also briefly discuss
other proposed quantum-gravity experiments, including those exploiting the properties
of the neutral-kaon system for tests of quantum-gravity-induced decoherence and those
using particle-physics accelerators for tests of models with large extra dimensions.

1 Introduction

Traditionally the lack of experimental input [1] has been the most important
obstacle in the search for “quantum gravity”, the new theory that should pro-
vide a unified description of gravitation and quantum mechanics. Recently there
has been a small, but nonetheless encouraging, number of proposals [2-9] of
experiments probing the nature of the interplay between gravitation and quan-
tum mechanics. At the same time the “COW-type” experiments on quantum
mechanics in a strong (classical) gravitational environment, initiated by Colella,
Overhauser and Werner [10], have reached levels of sophistication [11] such that
even gravitationally induced quantum phases due to local tides can be detected.
In light of these developments there is now growing (although still understand-
ably cautious) hope for data-driven insight into the structure of quantum gravity.

The primary objective of these lecture notes is the one of giving the reader
an intuitive idea of how far quantum-gravity phenomenology has come. This
is somewhat tricky. Traditionally experimental tests of quantum gravity were
believed to be not better than a dream. The fact that now (some) theory and
(some) experiments finally “meet” could have two very different explanations:

** Marie Curie Fellow (permanent address: Dipartimento di Fisica, Universitd di Roma

“La Sapienza”, Piazzale Moro 2, Roma, Italy

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp.11-49, 2000.
O Springer-Verlag Berlin Heidelberg 2000



2 Giovanni Amelino-Camelia

it could be that experimental techniques and ideas have improved so much that
now tests of plausible quantum-gravity effects are within reach, but it could also
be that theorists have had enough time in their hands to come up with scenarios
speculative enough to allow testing by conventional experimental techniques.
I shall argue that experiments have indeed progressed to the point were some
significant quantum-gravity tests are doable. I shall also clarify in which sense the
traditional pessimism concerning quantum-gravity experiments was built upon
the analysis of a very limited set of experimental ideas, with the significant
omission of the possibility (which we now find to be within our capabilities) of
experiments set up in such a way that very many of the very small quantum-
gravity effects are somehow summed together. Some of the theoretical ideas that
can be tested experimentally are of course quite speculative (decoherence, space-
time foam, large extra dimensions, ...) but this is not so disappointing because
it seems reasonable to expect that the new theory should host a large number
of new conceptual /structural elements in order to be capable of reconciling the
(apparent) incompatibility between gravitation and quantum mechanics. [An
example of motivation for very new structures is discussed here in Section 10,
which is a “theory addendum” reviewing some of the arguments [12] in support of
the idea [13] that the mechanics on which quantum gravity is based might not be
exactly the one of ordinary quantum mechanics, since it should accommodate
a somewhat different (non-classical) concept of “measuring apparatus” and a
somewhat different relationship between “system” and “measuring apparatus”.]

The bulk of these notes gives brief reviews of the quantum-gravity experi-
ments that can be done. The reader will be asked to forgive the fact that this
review is not very balanced. The two proposals in which this author has been
involved [5,7] are in fact discussed in greater detail, while for the experiments
proposed in Refs. [2-4,8,9] T just give a very brief discussion with emphasis on
the most important conceptual ingredients.

The students who attended the School might be surprised to find the mate-
rial presented with a completely different strategy. While my lectures in Polanica
were sharply divided in a first part on theory and a second part on experiments,
here some of the theoretical intuition is presented while discussing the experi-
ments. It appears to me that this strategy might be better suited for a written
presentation. I also thought it might be useful to start with the conclusions,
which are given in the next two sections. Section 4 reviews the proposal of using
modern interferometers to set bounds on space-time fuzziness. In Section 5 I
review the proposal of using data on GRBs (gamma-ray bursts) to investigate
possible quantum-gravity induced in vacuo dispersion of electromagnetic radia-
tion. In Section 6 I give brief reviews of other quantum-gravity experiments. In
Section 7 I give a brief discussion of the mentioned “COW-type” experiments
testing quantum mechanics in a strong classical gravity environment. Section 8
provides a “theory addendum” on various scenarios for bounds on the measur-
ability of distances in quantum gravity and their possible relation to properties
of the space-time foam. Section 9 provides a theory addendum on other works
which are in one way or another related to (or relevant for) the content of these
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notes. Section 10 gives the mentioned theory addendum concerning ideas on a
mechanics for quantum gravity that be not exactly of the type of ordinary quan-
tum mechanics. Finally in Section 11 I give some comments on the outlook of
quantum-gravity phenomenology, and I also emphasize the fact that, whether or
not they turn out to be helpful for quantum gravity, most of the experiments con-
sidered in these notes are intrinsically significant as tests of quantum mechanics
and/or tests of fundamental symmetries.

2 First the conclusions:
what has this phenomenology achieved?

Let me start by giving an intuitive idea of how far quantum-gravity phenomenol-
ogy has gone. Some of the views expressed in this section are supported by anal-
yses which will be reviewed in the following sections. The crucial question is:
Can we just test some wildly speculative ideas which have somehow surfaced in
the quantum-gravity literature? Or can we test even some plausible candidate
quantum-gravity phenomena?

Before answering these questions it is appropriate to comment on the general
expectations we have for quantum gravity. It has been realized for some time now
that by combining elements of gravitation with elements of quantum mechanics
one is led to “interplay phenomena” with rather distinctive signatures, such as
quantum fluctuations of space-time [14-16], and violations of Lorentz and/or
CPT symmetries [17-23], but the relevant effects are expected to be very small
(because of the smallness of the Planck length). Therefore in this “intuition-
building” section the reader must expect from me a description of experiments
with a remarkable sensitivity to the new phenomena.

Let me start from the possibility of quantum fluctuations of space-time. A
prediction of nearly all approaches to the unification of gravitation and quantum
mechanics is that at very short distances the sharp classical concept of space-time
should give way to a somewhat “fuzzy” (or “foamy”) picture, possibly involving
virulent geometry fluctuations (sometimes depicted as wormholes and black holes
popping in and out of the vacuum). Although the idea of space-time foam re-
mains somewhat vague and it appears to have significantly different incarnations
in different quantum-gravity approaches, a plausible expectation that emerges
from this framework is that the distance between two bodies “immerged” in
the space-time foam would be affected by (quantum) fluctuations. If urged to
give a rough description of these fluctuations at present theorists can only guess
that they would be of Planck length L, (L, ~ 1072°m) magnitude and occur-
ring at a frequency of roughly one per Planck time T, (T, = L,/c ~ 107%5).
One should therefore deem significant for space-time-foam research any exper-
iment that monitors the distances between two bodies with enough sensitiv-
ity to test this type of fluctuations. This is exactly what was achieved by the
analysis reported in Refs. [7,24], which was based on the observation that the
most advanced modern interferometers (the ones normally used for detection of
classical gravity waves) are exactly the natural instruments to study the fuzzi-
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ness of distances. While I postpone to Section 4 a detailed discussion of these
interferometry-based tests of fuzziness, let me emphasize already here that mod-
ern interferometers have achieved such a level of sensitivity that we are already
in a position to rule out fluctuations in the distances of their test masses of the
type discussed above, i.e. fluctuations of Planck-length magnitude occurring at a
rate of one per each Planck time. This is perhaps the simplest way for the reader
to picture intuitively the type of objectives already reached by quantum-gravity
phenomenology.

Another very intuitive measure of the maturity of quantum-gravity phe-
nomenology comes from the studies of in vacuo dispersion proposed in Ref. [5]
(also see the more recent purely experimental analyses [25,26]). Deformed disper-
sion relations are a rather natural possibility for quantum gravity. For example,
they emerge naturally in quantum gravity scenarios requiring a modification of
Lorentz symmetry. Modifications of Lorentz symmetry could result from space-
time discreteness (e.g. a discrete space accommodates a somewhat different con-
cept of “rotation” with respect to the one of ordinary continuous spaces), a
possibility extensively investigated in the quantum gravity literature (see, e.g.,
Ref. [22]), and it would also naturally result from an “active” quantum-gravity
vacuum of the type advocated by Wheeler and Hawking [14,15] (such a “vacuum”
might physically label the space-time points, rendering possible the selection of
a “preferred frame”). The specific structure of the deformation can differ sig-
nificantly from model to model. Assuming that the deformation admits a series
expansion at small energies F, and parametrizing the deformation in terms of an
energy! scale Fgq (a scale characterizing the onset of quantum-gravity disper-
sion effects, often identified with the Planck energy E, = hic/L, ~ 109GeV),
for a massless particle one would expect to be able to approximate the deformed
dispersion relation at low energies according to

vee() o () )

where c is the conventional speed-of-light constant. The scale Eq¢q, the power
«a and the sign ambiguity & = 4+1 would be fixed in a given dynamical frame-
work; for example, in some of the approaches based on dimensionful quantum
deformations of Poincaré symmetries [21,27,28] one encounters a dispersion re-

c2p2 ~ F?

(1)

lation ¢’p® = Ejq [1 - eE/EQG]2, which implies € = o = 1. Because of the
smallness of 1/Eqg¢q it was traditionally believed that this effect could not be
seriously tested experimentally (i.e. that for Egg ~ E, experiments would only
be sensitive to values of & much smaller than 1), but in Ref. [5] it was observed
that recent progress in the phenomenology of GRBs [29] and other astrophys-
ical phenomena should soon allow us to probe values of Egg of the order of

1 I parametrize deformations of dispersion relations in terms of an energy scale Epa,
which is implicitly assumed to be rather close to E,, while I later parametrize the
proposals for distance fuzziness with a length scale Lo, which is implicitly assumed
to be rather close to L,. This is sometimes convenient in formulas, but it is of course
somewhat redundant, since E, = hc/Ly.



Quantum-gravity phenomenology 5

(or even greater than) E, for values of a as large as 1. As discussed later in
these notes, @ = 1 appears to be the smallest value that can be obtained with
plausible quantum-gravity arguments and several of these arguments actually
point us toward the larger value o = 2, which is still very far from present-day
experimental capabilities. While of course it would be very important to achieve
sensitivity to both the @ = 1 and the o = 2 scenarios, the fact that we will soon
test « = 1 is a significant first step.

Another recently proposed quantum-gravity experiment concerns possible
violations of CPT invariance. This is a rather general prediction of quantum-
gravity approaches, which for example can be due to elements of nonlocality
(locality is one of the hypotheses of the “CPT theorem”) and/or elements of
decoherence present in the approach. At least some level of non-locality is quite
natural for quantum gravity as a theory with a natural length scale which might
also host a “minimum length” [30-32,12,33]. Motivated by the structure of “Li-
ouville strings” [19] (a non-critical string approach to quantum gravity which
appears to admit a space-time foam picture) a phenomenological parametriza-
tion of quantum-gravity induced CPT violation in the neutral-kaon system has
been proposed in Refs. [17,34]. (Other studies of the phenomenology of CPT
violation can be found in Ref. [20,35].) In estimating the parameters that ap-
pear in this phenomenological model the crucial point is as usual the overall
suppression given by some power of the Planck length. For the case in which the
Planck length enters only linearly in the relevant formulas, experiments investi-
gating the properties of neutral kaons are already setting significant bounds on
the parameters of this phenomenological approach [2].

In summary, experiments are reaching significant sensitivity with respect to
all of the frequently discussed features of quantum gravity that I mentioned at
the beginning of this section: space-time fuzziness, violations of Lorentz invari-
ance, and violations of CPT invariance. Other quantum-gravity experiments,
which I shall discuss later in these notes, can probe other candidate quantum-
gravity phenomena, giving additional breadth to quantum-gravity phenomenol-
ogy.

Before closing this section there is one more answer I should give: how could
this happen in spite of all the gloomy forecasts which one finds in most quantum-
gravity review papers? The answer is actually simple. Those gloomy forecasts
were based on the observation that under ordinary conditions the direct detec-
tion of a single quantum-gravity phenomenon would be well beyond our capabil-
ities if the magnitude of the phenomenon is suppressed by the smallness of the
Planck length. For example, in particle-physics contexts this is seen in the fact
that the contribution from “gravitons” (the conjectured mediators of quantum-
gravity interactions) to particle-physics processes with center-of-mass energy &
is expected to be penalized by overall factors given by some power of the ra-
tio £/(10'°GeV), which is an extremely small ratio even for an ideal particle
accelerators ring built all around the Earth. However, small effects can become
observable in special contexts and in particular one can always search for an
experimental setup such that a very large number of the very small quantum-
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gravity contributions are effectively summed together. This later possibility is
not unknown to the particle-physics community, since it has been exploited in
the context of investigations of the particle-physics theories unifying the strong
and electroweak interactions, were one encounters the phenomenon of proton
decay. By finding ways to keep under observation very large numbers of pro-
tons, experimentalists have managed? to set highly significant bounds on proton
decay [37], even though the proton-decay probability is penalized by the fourth
power of the small ratio between the proton mass, which is of order 1GeV, and
the mass of the vector bosons expected to mediate proton decay, which is conjec-
tured to be of order 101GeV . Just like proton-decay experiments are based on
a simple way to put together very many of the small proton-decay effects® the
experiments using modern interferometers to study space-time fuzziness and the
experiments using GRBs to study violations of Lorentz invariance exploit simple
ways to put together very many of the very small quantum-gravity effects. I shall
explain this in detail in Sections 4 and 5.

3 Addendum to conclusions:
any hints to theorists from experiments?

In the preceding section I have argued that quantum-gravity phenomenology,
even being as it is in its infancy, is already starting to provide the first signif-
icant tests of plausible candidate quantum-gravity phenomena. It is of course
just “scratching the surface” of whatever “volume” contains the full collection
of experimental studies we might wish to perform, but we are finally getting
started. Of course, a phenomenology programme is meant to provide input to
the theorists working in the area, and therefore one measure of the achieve-
ments of a phenomenology programme is given by the impact it is having on
theory studies. In the case of quantum-gravity experiments the flow of informa-
tion from experiments to theory will take some time. The primary reason is that
most quantum-gravity approaches have been guided (just because there was no
alternative guidance from data) by various sorts of formal intuition for quan-
tum gravity (which of course remain pure speculations as long as they are not
confirmed by experiments). This is in particular true for the two most popular
approaches to the unification of gravitation and quantum mechanics, i.e. “criti-
cal superstrings” [38,39] and “canonical/loop quantum gravity” [40]. Because of
the type of intuition that went into them, it is not surprising that these “formal
quantum gravity approaches” are proving extremely useful in providing us new
ideas on how gravitation and quantum mechanics could resolve the apparent con-
flicts between their conceptual structures, but they are not giving us any ideas

2 This author’s familiarity [36] with the accomplishments of proton-decay experiments
has certainly contributed to the moderate optimism for the outlook of quantum-
gravity phenomenology which is found in these notes.

3 For each of the protons being monitored the probability of decay is extremely small,
but there is a significantly large probability that at least one of the many monitored
protons decay.
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on which experiments could give insight into the nature of quantum gravity. The
hope that these formal approaches could eventually lead to new intuitions for
the nature of space-time at very short distances has been realized only rather
limitedly. In particular, it is still unclear if and how these formalisms host the
mentioned scenarios for quantum fluctuations of space-time and violations of
Lorentz and/or CPT symmetries. The nature of the quantum-gravity vacuum
(in the sense discussed in the preceding section) appears to be still very far ahead
in the critical superstring research programme and its analysis is only at a very
preliminary stage within canonical/loop quantum gravity. In order for the exper-
iments discussed in these notes to affect directly critical superstring research and
research in canonical/loop quantum gravity it is necessary to make substantial
progress in the analysis of the physical implications of these formalisms.

Still, in an indirect way the recent results of quantum-gravity phenomenology
have already started to have an impact on theory work in these formal quantum
gravity approaches. The fact that it is becoming clear that (at least a few)
quantum-gravity experiments can be done has reenergized efforts to explore the
physical implications of the formalisms. The best example of this way in which
phenomenology can influence “pure theory” work is provided by Ref. [41], which
was motivated by the results reported in Ref. [5] and showed that canonical/loop
quantum gravity admits (under certain conditions, which in particular involve
some parity breaking) the phenomenon of deformed dispersion relations, with
deformation going linearly with the Planck length.

While the impact on theory work in the formal quantum gravity approaches
is still quite limited, of course the new experiments are providing useful input
for more intuitive/phenomelogical theoretical work on quantum gravity. For ex-
ample, the analysis reported in Refs. [7,24], by ruling out the scheme of distance
fluctuations of Planck length magnitude occurring at a rate of one per Planck
time, has had significant impact [24,42] on the line of research which has been
deriving intuitive pictures of properties of quantum space-time from analyses
of measurability and uncertainty relations [12,43-45]. Similarly the “Liouville
string” [19] inspired phenomenological approach to quantum gravity [34,46] has
already received important input from the mentioned studies of the neutral-kaon
system and will receive equally important input from the mentioned GRB exper-
iments, once these experiments (in a few years) reach Planck-scale sensitivity.

It is possible that the availability of quantum-gravity experiments might also
affect quantum-gravity theory in a more profound way: by leading to an increase
in the amount of work devoted to intuitive phenomenological models. As men-
tioned the fact that until very recently no experiments were possible has caused
most theoretical work on quantum gravity to be guided by formal intuition.
Among all scientific fields quantum gravity is perhaps at present the one with
the biggest unbalance between theoretical research devoted to formal aspects and
theoretical research devoted to phenomenological aspects. In the next few years
there could be an opportunity to render more balanced the theoretical effort
on quantum gravity. This might happen not only because of the availability of
an experimental programme but also because some of the formal approaches to



8 Giovanni Amelino-Camelia

quantum gravity have recently made such remarkable progress that they might
soon be in a position to make the final leap toward physical predictions.

4 Interferometry and fuzzy space-time

In the preceding two sections I have described the conclusions which I believe
to be supported by the present status of quantum-gravity phenomenology. Let
me now start providing some support for those conclusions by reviewing my
proposal [7,24] of using modern interferometers to set bounds on space-time
fuzziness. I shall articulate this in subsections because some preliminaries are in
order. Before going to the analysis of experimental data it is in fact necessary to
give a proper (operative) definition of fuzzy distance and give a description of
the type of stochastic properties one might expect of quantum-gravity-induced
fluctuations of distances.

4.1 Operative definition of fuzzy distance

While nearly all approaches to the unification of gravity and quantum mechanics
appear to lead to a somewhat fuzzy picture of space-time, within the various
formalisms it is often difficult to characterize physically this fuzziness. Rather
than starting from formalism, I shall advocate an operative definition of fuzzy
space-time. More precisely for the time being I shall just consider the concept of
fuzzy distance. I shall be guided by the expectation that at very short distances
the sharp classical concept of distance should give way to a somewhat fuzzy
distance. Since interferometers are ideally suited to monitor the distance between
test masses, I choose as operative definition of quantum-gravity induced fuzziness
one which is expressed in terms of quantum-gravity induced noise in the read-out
of interferometers.

In order to properly discuss this proposed definition it will prove useful to
briefly review some aspects of the physics of modern Michelson-type interferom-
eters. These are schematically composed [47] of a (laser) light source, a beam
splitter and two fully-reflecting mirrors placed at a distance L from the beam
splitter in orthogonal directions. The light beam is decomposed by the beam
splitter into a transmitted beam directed toward one of the mirrors and a re-
flected beam directed toward the other mirror; the beams are then reflected by
the mirrors back toward the beam splitter, where [47] they are superposed?.
The resulting interference pattern is extremely sensitive to changes in the posi-
tions of the mirrors relative to the beam splitter. The achievable sensitivity is

4 Although all modern interferometers rely on the technique of folded interferometer’s
arms (the light beam bounces several times between the beam splitter and the mirrors
before superposition), I shall just discuss the simpler “no-folding” conceptual setup.
The readers familiar with the subject can easily realize that the observations here
reported also apply to more realistic setups, although in some steps of the derivations
the length L would have to be understood as the optical length (given by the actual
length of the arms multiplied by the number of foldings).
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so high that planned interferometers [48,49] with arm lengths L of 3 or 4 Km
expect to detect gravity waves of amplitude h as low as 3 - 10722 at frequencies
of about 100H z. This roughly means that these modern gravity-wave interfer-
ometers should monitor the (relative) positions of their test masses (the beam
splitter and the mirrors) with an accuracy [50] of order 10~ *¥m and better.

In achieving this remarkable accuracy experimentalists must deal with clas-
sical physics displacement noise sources (e.g., thermal and seismic effects induce
fluctuations in the relative positions of the test masses) and displacement noise
sources associated to effects of ordinary quantum mechanics (e.g., the combined
minimization of photon shot noise and radiation pressure noise leads to an irre-
ducible noise source which has its root in ordinary quantum mechanics [47]). The
operative definition of fuzzy distance which I advocate characterizes the corre-
sponding quantum-gravity effects as an additional source of displacement noise.
A theory in which the concept of distance is fundamentally fuzzy in this operative
sense would be such that even in the idealized limit in which all classical-physics
and ordinary-quantum-mechanics noise sources are completely eliminated the
read-out of an interferometer would still be noisy as a result of quantum-gravity
effects.

Upon adopting this operative definition of fuzzy distance, interferometers are
of course the natural tools for experimental tests of proposed distance-fuzziness
scenarios.

I am only properly discussing distance fuzziness although ideas on space-
time foam would also motivate investigations of time fuzziness. It is not hard
to modify the definition here advocated for distance fuzziness to describe time
fuzziness by replacing the interferometer with some device that keeps track of the
synchronization of a pair of clocks® I shall not pursue this matter further since
I seem to understand® that sensitivity to time fluctuations is still significantly
behind the type of sensitivity to distance fluctuations achievable with modern
Michelson-type experiments.

4.2 Random-walk noise from random-walk models
of quantum space-time fluctuations

As already mentioned in Section 2, it is plausible that a quantum space-time
might involve in particular the fact that a distance D would be affected by
fluctuations of magnitude L, ~ 1073°m occurring at a rate of roughly one per
each time interval of magnitude t, = L,/c ~ 10~%4s. Experiments monitoring
the distance D between two bodies for a time T, (in the sense appropriate, e.g.,

5 Actually, a realistic analysis of ordinary Michelson-type interferometers is likely to
lead to a contribution from space-time foam to noise levels that is the sum (in some
appropriate sense) of the effects due to distance fuzziness and time fuzziness (e.g.
associated to the frequency/time measurements involved).

6 This understanding is mostly based on recent conversations with G. Busca and
P. Thomann who are involved in the next generation of ultra-precise clocks to be
realized in microgravity (outer space) environments.
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for an interferometer) could involve a total effect amounting to nps = Tops/tp
randomly directed fluctuations of magnitude L,. An elementary analysis allows
to establish that in such a context the root-mean-square deviation op would be

proportional to /T pps:

OpD "~ 4/ CLpTObS . (2)

From the type of Tpps-dependence of Eq. (2) it follows [7] that the correspond-
ing quantum fluctuations should have displacement amplitude spectral density
S(f) with the f~! dependence” typical of “random walk noise” [51]:

S(f)=f"eLy . (3)

In fact, there is a general connection between o ~ \/Tops and S(f) ~ f~1, which
follows [51] from the general relation

fmaz

o= [ isorar ()
1/Tops

valid for a frequency band limited from below only by the time of observation

Tops-

The displacement amplitude spectral density (3) provides a very useful char-
acterization of the random-walk model of quantum space-time fluctuations pre-
scribing fluctuations of magnitude L, occurring at a rate of roughly one per each
time interval of magnitude L,/c. If somehow we have been assuming the wrong
magnitude of distance fluctuations or the wrong rate (also see Subsection 4.4)
but we have been correct in taking a random-walk model of quantum space-time
fluctuations Eq. (3) should be replaced by

S(f)=f"elqa , (5)

where Lgg is the appropriate length scale that takes into account the correct
values of magnitude and rate of the fluctuations.

If one wants to be open to the possibility that the nature of the stochastic
processes associated to quantum space-time be not exactly (also see Section 8)
the one of a random-walk model of quantum space-time fluctuations, then the
f-dependence of the displacement amplitude spectral density could be different.
This leads one to consider the more general parametrization

S(f)=fP 5 (Lg)i " (6)

In this general parametrization the dimensionless quantity 3 carries the infor-
mation on the nature of the underlying stochastic processes, while the length

7 Of course, in light of the nature of the arguments used, one expects that an f!

dependence of the quantum-gravity induced S(f) could only be valid for frequencies f
significantly smaller than the Planck frequency ¢/L, and significantly larger than the
inverse of the time scale over which, even ignoring the gravitational field generated
by the devices, the classical geometry of the space-time region where the experiment
is performed manifests significant curvature effects.
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scale L3 carries the information on the magnitude and rate of the fluctuations. I
am assigning an index 3 to L3 just in order to facilitate a concise description of
experimental bounds; for example, if the fluctuations scenario with, say, 3 = 0.6
was ruled out down to values of the effective length scale of order, say, 10~2"m I
would just write £s—0.6 < 1072"m. As I will discuss in Section 8, one might be
interested in probing experimentally all values of 3 in the range 1/2 < 8 < 1,
with special interest in the cases 3 =1 (the case of random-walk models whose
effective length scale I denominated with Log = Lg=1), 8 =5/6, and 5 =1/2.

4.3 Comparison with gravity-wave interferometer data

Before discussing experimental bounds on Lz from gravity-wave interferome-
ters, let us fully appreciate the significance of these bounds by getting some
intuition on the actual magnitude of the quantum fluctuations I am discussing.
One intuition-building observation is that even for the case 8 = 1, which among
the cases I consider is the one with the most virulent space-time fluctuations,
the fluctuations predicted are truly minute: the § = 1 relation (2) only predicts
fluctuations with standard deviation of order 10~°m on a time of observation
as large as 1019 years (the size of the whole observable universe is about 10'°
light years!!). In spite of the smallness of these effects, the precision [47] of mod-
ern interferometers (the ones whose primary objective is the detection of the
classical-gravity phenomenon of gravity waves) is such that we can obtain sig-
nificant information at least on the scenarios with values of 3 toward the high
end of the interesting interval 1/2 < 8 < 1, and in particular we can investigate
quite sensitively the intuitive case of the random-walk model of space-time fluc-
tuations. The operation of gravity-wave interferometers is based on the detection
of minute changes in the positions of some test masses (relative to the position
of a beam splitter). If these positions were affected by quantum fluctuations of
the type discussed above, the operation of gravity-wave interferometers would
effectively involve an additional source of noise due to quantum gravity.

This observation allows to set interesting bounds already using existing
noise-level data obtained at the Caltech 40-meter interferometer, which has
achieved displacement noise levels with amplitude spectral density lower than
10~8m/v/Hz for frequencies between 200 and 2000 Hz [50]. While this is still
very far from the levels required in order to probe significantly the lowest values
of B (for Lg—1/2 ~ L, and f ~ 1000Hz the quantum-gravity noise induced
in the 3 = 1/2 scenario is only of order 10~%6m/v/Hz), these sensitivity lev-
els clearly rule out all values of Log (i.e. £3=1) down to the Planck length.
Actually, even values of Lgg significantly smaller than the Planck length are
inconsistent with the data reported in Ref. [50]; in particular, from the observed
noise level of 3 - 10719 /v/Hz near 450 Hz, which is the best achieved at the
Caltech 40-meter interferometer, one obtains [7] the bound Lo < 107%m. As
discussed above, the simplest random-walk model of distance fluctuations, the
one with fluctuations of magnitude L, occurring at a rate of one per each t,
time interval, would correspond to the prediction Lgg ~ Lp ~ 1073%m and it
is therefore ruled out by these data. This experimental information implies
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that, if one was to insist on this type models, realistic random-walk models
of quantum space-time fluctuations would have to be significantly less noisy
(smaller prediction for Lge) than the intuitive one which is now ruled out.
Since, as I shall discuss, there are rather plausible scenarios for significantly less
noisy random-walk models, it is important that experimentalists keep pushing
forward the bound on Lgg. More stringent bounds on Lgg are within reach of
the LIGO/VIRGO [48,49] generation of gravity-wave interferometers.®

In planning future experiments, possibly taylored to test these effects (un-
like LIGO and VIRGO which were tailored around the properties needed for
gravity-wave detection), it is important to observe that an experiment achieving
displacement noise levels with amplitude spectral density S* at frequency f*
will set a bound on Lg of order

2/(3-2P)
Ls < [S* (f*)ﬁ C(1*25)/2} ,

(7)
which in particular for random-walk models takes the form

* * 2
ﬁ@ < |:S / :| .
Ve
The structure of Eq. (7) (and Eq. (8)) shows that there can be instances in which
a very large interferometer (the ideal tool for low-frequency studies) might not
be better than a smaller interferometer, if the smaller one achieves a very small
value of S*.
The formula (7) can also be used to describe as a function of 8 the bounds on
Lz achieved by the data collected at the Caltech 40-meter interferometer. Using
again the fact that a noise level of only S* ~ 3- 10’19m/\/Fz near f* ~ 450 Hz
was achieved [50], one obtains the bounds

(8)

3. 10719 2/(3—28)
Wm (450 Hz)P (1-26)/2 . 9)

Let me comment in particular on the case § = 5/6 which might deserve
special attention because of its connection (which was derived in Refs. [7,24]
and will be reviewed here in Section 8) with certain arguments for bounds on
the measurability of distances in quantum gravity [24,45,43]. From Eq. (9) we

[Eﬁ]caltech <

8 Besides allowing an improvement on the bound on Lgg intended as a universal prop-
erty of Nature, the LIGO/VIRGO generation of interferometers will also allow us to
explore the idea that Log might be a scale that depends on the experimental context
in such a way that larger interferometers pick up more of the space-time fluctuations.
Based on the intuition coming from the Salecker-Wigner limit (here reviewed in Sec-
tion 8), or just simply on phenomenological models in which distance fluctuations
affect equally each L,-long segment of a given distance, it would not be surprising
if Log was a growing function of the length of the arms of the interferometer. This
gives added significance to the step from the 40-meter arms of the existing Caltech
interferometer to the few-Km arms of LIGO/VIRGO interferometers.
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find that L£3_5/6 is presently bound to the level L3_5/6 < 10~2m. This bound
is remarkably stringent in absolute terms, but is still quite far from the range of
values one ordinarily considers as likely candidates for length scales appearing
in quantum gravity. A more significant bound on £3_5/6 should be obtained by
the LIGO/VIRGO generation of gravity-wave interferometers. For example, it is
plausible [48] that the “advanced phase” of LIGO achieve a displacement noise
spectrum of less than 10~20m/v/Hz near 100 Hz and this would probe values of
Ls—5/6 as small as 1073*m.

In closing this subsection on interferometry data analysis relevant for space-
time fuzziness scenarios, let me clarify how it happened that such small effects
could be tested. As I already mentioned, one of the viable strategies for quantum-
gravity experiments is the one finding ways to put together very many of the
very small quantum-gravity effects. In these interferometric studies that I pro-
posed in Ref. [7] one does indeed effectively sum up a large number of quantum
space-time fluctuations. In a time of observation as long as the inverse of the
typical gravity-wave interferometer frequency of operation an extremely large
number of minute quantum fluctuations could affect the distance between the
test masses. Although these fluctuations average out, they do leave traces in the
interferometer. These traces grow with the time of observation: the standard de-
viation increases in correspondence of increases of the time of observation, while
the amplitude spectral density of noise increases in correspondence of decreases
of frequency (which again effectively means increases of the time of observation).
From this point of view it is not surprising that plausible quantum-gravity sce-
narios (1/2 < 8 < 1) all involve higher noise at lower frequencies: the observation
of lower frequencies requires longer times and is therefore affected by a larger
number of quantum-gravity fluctuations.

4.4 Less noisy random-walk models of distance fluctuations?

The most significant result obtained in Refs. [7,24] and reviewed in the preceding
subsection is that we can rule out the intuitive picture in which the distances
between the test masses of the interferometer are affected by fluctuations of
magnitude L, occurring at a rate of one per each ¢, time interval. Does this rule
out completely the possibility of a random-walk model of distance fluctuations?
or are we just learning that the most intuitive/naive example of such a model
does not work, but there are other plausible random-walk models?

Without wanting to embark on a discussion of the plausibility of less noisy
random-walk models, I shall nonetheless discuss some ideas which could lead to
this noise reduction. Let me start by observing that certain studies of measura-
bility of distances in quantum gravity (see Ref. [24] and the brief review of those
arguments which is provided in parts of Section 8) can be interpreted as suggest-
ing that Loe might not be a universal length scale, i.e. it might depend on some
specific properties of the experimental setup (particularly the energies/masses
involved), and in some cases Lga could be significantly smaller than L,,.

Another possibility one might want to consider [24] is the one in which the
quantum properties of space-time are such that fluctuations of magnitude L,
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would occur with frequency somewhat lower than 1/¢,. This might happen for
various reasons, but a particularly intriguing possibility® is the one of theories
whose fundamental objects are not pointlike, such as the popular string theories.
For such theories it is plausible that fluctuations occurring at the Planck-distance
level might have only a modest impact on extended fundamental objects charac-
terized by a length scale significantly larger than the Planck length (e.g. in string
theory the string size, or “length”, might be an order of magnitude larger than
the Planck length). This possibility is interesting in general for quantum-gravity
theories with a hierarchy of length scales, such as certain “M-theory motivated”
scenarios with an extra length scale associated to the compactification from 11
to 10 dimensions.

Yet another possibility for a random-walk model to cause less noise in inter-
ferometers could emerge if somehow the results of the schematic analysis adopted
here and in Refs. [7,24] turned out to be significantly modified once we become
capable of handling all of the details of a real interferometer. To clarify which
type of details I have in mind let me mention as an example the fact that in my
analysis the structure of the test masses was not taken into account in any way:
they were essentially treated as point-like. It would not be too surprising if we
eventually became able to construct theoretical models taking into account the
interplay between the binding forces that keep together (“in one piece”) a macro-
scopic test mass as well as some random-walk-type fundamental fluctuations of
the space-time in which these macroscopic bodies “live”. The interference pat-
tern observed in the laboratory reflects the space-time fluctuations only filtered
through their interplay with the mentioned binding forces of the macroscopic test
masses. These open issues are certainly important and a lot of insight could be
gained through their investigation, but there is also some confusion that might
easily result'® from simple-minded considerations (possibly guided by intuition
developed using rudimentary table-top interferometers) concerning the macro-

¥ This possibility emerged in discussions with Gabriele Veneziano. In response to my
comments on the possibility of fluctuations with frequency somewhat lower than
1/t, Gabriele made the suggestion that extended fundamental objects might be less
susceptible than point particles to very localized space-time fluctuations. It would
be interesting to work out in some detail an example of dynamical model of strings
in a fuzzy space-time.

In particular, these and other elements of confusion are responsible for the incorrect
conclusions on the Salecker-Wigner measurability limit which were drawn in the very
recent Ref. [52]. The analysis reported in Ref. [52] relies on assumptions which are
unjustified in the context of the Salecker-Wigner analysis (while they would be justi-
fied in the context of certain measurements using rudimentary table-top experimental
setups). Contrary to the claim made in Ref. [52], the source of v/T,ps uncertainty
considered by Salecker and Wigner cannot be truly eliminated; unsurprisingly, it can
only be traded for another source of v/Tops uncertainty. Some of the comments made
in Ref. [52] also ignore the fact that, as already emphasized in Ref. [24] (and reviewed
in Section 8 of these notes), only a relatively small subset of the quantum-gravity
ideas that can be probed with modern interferometers is directly motivated by the
Salecker-Wigner limit, while the bulk of the insight we can expect from such interfer-

10
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scopic nature of the test masses used in modern interferometers. In closing this
section let me try to offer a few relevant clarifications. I need to start by adding
some comments on the stochastic processes I have been considering. In most
physical contexts a series of random steps does not lead to /1,5 dependence of
o because often the context is such that through the fluctuation-dissipation theo-
rem the source of v/Tpps dependence is (partly) compensated (some sort of restor-
ing effect). The hypothesis explored in these discussions of random-walk models
of space-time fuzziness is that the type of underlying dynamics of quantum
space-time be such that the fluctuation-dissipation theorem be satisfied without
spoiling the +/T,ps dependence of o. This is an intuition which apparently is
shared by other authors; for example, the study reported in Ref. [53] (which
followed by a few months Ref. [7], but clearly was the result of completely inde-
pendent work) also models some implications of quantum space-time (the ones
that affect clocks) with stochastic processes whose underlying dynamics does not
produce any dissipation and therefore the “fluctuation contribution” to the Ty
dependence is left unmodified, although the fluctuation-dissipation theorem is
fully taken into account. Since a mirror of an interferometer of LIGO/VIRGO
type is in practice an extremity of a pendulum, another aspect that the reader
might at first find counter-intuitive is that the /1,55 dependence of o, although
coming in with a very small prefactor, for extremely large T,5s would seem to
give values of o too large to be consistent with the structure of a pendulum.
This is a misleading intuition which originates from the experience with ordi-
nary (non-quantum-gravity) analyses of the pendulum. In fact, the dynamics of
an ordinary pendulum has one extremity “fixed” to a very heavy macroscopic
and rigid body, while the other extremity is fixed to a much lighter (but, of
course, still macroscopic) body. The usual stochastic processes considered in the
study of the pendulum affect the heavier body in a totally negligible way, while
they have strong impact on the dynamics of the lighter body. A pendulum an-
alyzed according to a random-walk model of space-time fluctuations would be
affected by stochastic processes which are of the same magnitude both for its
heavier and its lighter extremity. [The bodies are fluctuating along with intrin-
sic space-time fluctuations, rather than fluctuating as a result of, say, collisions
with air particles occurring in a conventional space-time.] In particular, in the
directions orthogonal to the vertical axis the stochastic processes affect the po-
sition of the center of mass of the entire pendulum just as they would affect
the position of the center of mass of any other body (the spring that connects
the two extremities of the pendulum would not affect the motion of the overall
center of mass of the pendulum).

5 Gamma-ray bursts and in-vacuo dispersion

Let me now discuss the proposal put forward in Ref. [5] (also see Ref. [54]),
which exploits the recent confirmation that at least some gamma-ray bursters

ometric studies concerns the stochastic properties of ”foamy” models of space-time,

which are intrinsically interesting independently of the Salecker-Wigner limit.
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are indeed at cosmological distances [55-58], making it possible for observations
of these to provide interesting constraints on the fundamental laws of physics.
In particular, such cosmological distances combine with the short time structure
seen in emissions from some GRBs [59] to provide ideal features for tests of possi-
ble in vacuo dispersion of electromagnetic radiation from GRBs, of the type one
might expect based on the intuitive quantum-gravity arguments reviewed in Sec-
tion 2. As mentioned, a quantum-gravity-induced deformation of the dispersion
relation for photons would naturally take the form ¢?p? = E?[1 + F(E/Eqc)),
where Egg is an effective quantum-gravity energy scale and F is a model-
dependent function of the dimensionless ratio E/Egq. In quantum-gravity sce-
narios in which the Hamiltonian equation of motion &; = 9 H/0p; is still valid
(at least approximately valid; valid to an extent sufficient to justify the analysis
that follows) such a deformed dispersion relation would lead to energy-dependent
velocities for massless particles, with implications for the electromagnetic signals
that we receive from astrophysical objects at large distances. At small energies
E < Fgg, it is reasonable to expect that a series expansion of the dispersion
relation should be applicable leading to the formula (1). For the case o = 1,
which is the most optimistic (largest quantum-gravity effect) among the cases
discussed in the quantum-gravity literature, the formula (1) reduces to

*p? ~ E? (1 +§i> . (10)
EQG

Correspondingly one would predict the energy-dependent velocity formula

v:%—f~c<1—§%>. (11)

To elaborate a bit more than I did in Section 2 on the intuition that leads to this
type of candidate quantum-gravity effect let me observe that [5] velocity disper-
sion such as described in (11) could result from a picture of the vacuum as a
quantum-gravitational ‘medium’, which responds differently to the propagation
of particles of different energies and hence velocities. This is analogous to propa-
gation through a conventional medium, such as an electromagnetic plasma [60].
The gravitational ‘medium’ is generally believed to contain microscopic quan-
tum fluctuations, such as the ones considered in the previous sections. These
may [61] be somewhat analogous to the thermal fluctuations in a plasma, that
occur on time scales of order ¢t ~ 1/T, where T is the temperature. Since it is
a much ‘harder’ phenomenon associated with new physics at an energy scale
far beyond typical photon energies, any analogous quantum-gravity effect could
be distinguished by its different energy dependence: the quantum-gravity effect
would increase with energy, whereas conventional medium effects decrease with
energy in the range of interest [60].

Also relevant for building some quantum-gravity intuition for this type of in
vacuo dispersion and deformed velocity law is the observation [46,23] that this
has implications for the measurability of distances in quantum gravity that fit
well with the intuition emerging from heuristic analyses [12] based on a combi-
nation of arguments from ordinary quantum mechanics and general relativity.
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[This connection between dispersion relations and measurability bounds will be
here reviewed in Section 8.]

Notably, recent work [41] has provided evidence for the possibility that the
popular canonical/loop quantum gravity [40] might be among the theoretical
approaches that admit the phenomenon of deformed dispersion relations with
the deformation going linearly with the Planck length (L, ~ 1/E,). Similarly,
evidence for this type of dispersion relations has been found [46] in Liouville (non-
critical) strings [19], whose development was partly motivated by an intuition
concerning the “quantum-gravity vacuum” that is rather close to the one tra-
ditionally associated to the works of Wheeler [14] and Hawking [15]. Moreover,
the phenomenon of deformed dispersion relations with the deformation going
linearly with the Planck length fits rather naturally within certain approaches
based on non-commutative geometry and deformed symmetries. In particular,
there is growing evidence [23,27,28] for this phenomenon in theories living in
the non-commutative Minkowski space-time proposed in Refs. [62,63,21], which
involves a dimensionful (presumably Planck-length related) deformation param-
eter.

Equation (11) encodes a minute modification for most practical purposes,
since Fqg is believed to be a very high scale, presumably of order the Planck
scale E, ~ 109 GeV. Nevertheless, such a deformation could be rather signif-
icant for even moderate-energy signals, if they travel over very long distances.
According to (11) two signals respectively of energy E and E + AFE emitted
simultaneously from the same astrophysical source in traveling a distance L ac-
quire a “relative time delay” |6t| given by

AE L
QG

Such a time delay can be observable if AE and L are large while the time scale
over which the signal exhibits time structure is small. As mentioned, these are the
respects in which GRBs offer particularly good prospects for such measurements.
Typical photon energies in GRB emissions are in the range 0.1 — 100 MeV [59],
and it is possible that the spectrum might in fact extend up to TeV energies [64].
Moreover, time structure down to the millisecond scale has been observed in the
light curves [59], as is predicted in the most popular theoretical models [65]
involving merging neutron stars or black holes, where the last stages occur on
the time scales associated with grazing orbits. Similar time scales could also occur
in models that identify GRBs with other cataclysmic stellar events such as failed
supernovae Ib, young ultra-magnetized pulsars or the sudden deaths of massive
stars [66]. We see from equations (11) and (12) that a signal with millisecond
time structure in photons of energy around 10 MeV coming from a distance of
order 1010 light years, which is well within the range of GRB observations and
models, would be sensitive to Egg of order the Planck scale.

In order to set a definite bound on Fgg it is necessary to measure L and
to measure the time of arrival of different energy/wavelength components of a
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sharp peak within the burst. From Eq. (12) it follows that one could set a bound

L
E, AE — 13
QG > T (13)

by establishing the times of arrival of the peak to be the same up to an uncer-
tainty 7 in two energy channels F and E+ AFE. Unfortunately, at present we have
data available only on a few GRBs for which the distance L has been determined
(the first measurements of this type were obtained only in 1997), and these are
the only GRBs which can be reliably used to set bounds on the new effect. More-
over, mostly because of the nature of the relevant experiments (particularly the
BATSE detector on the Compton Gamma Ray Observatory), for a large ma-
jority of the GRBs on record only the portion of the burst with energies up to
the MeV energy scale was observed, whereas higher energies would be helpful for
the study of the phenomenon of quantum-gravity induced dispersion here consid-
ered (which increases linearly with energy). We expect significant improvements
in these coming years. The number of GRBs with attached distance measure-
ment should rapidly increase. A new generation of orbiting spectrometers, e.g.
AMS [67] and GLAST [68], are being developed, whose potential sensitivities
are very impressive. For example, assuming a E~2 energy spectrum, GLAST
would expect to observe about 25 GRBs per year at photon energies exceeding
100 GeV, with time resolution of microseconds. AMS would observe a similar
number at £ > 10 GeV with time resolution below 100 nanoseconds.

While we wait for these new experiments, preliminary bounds can already
be set with available data. Some of these bounds are “conditional” in the sense
that they rely on the assumption that the relevant GRB originated at distances
corresponding to redshift of O(1) (corresponding to a distance of ~ 3000 Mpc),
which appears to be typical. Let me start by considering the “conditional” bound
(first considered in Ref. [5]) which can be obtained from data on GRB920229.
GRB920229 exhibited [69] micro-structure in its burst at energies up to ~
200 KeV. In Ref. [5] it was estimated conservatively that a detailed time-series
analysis might reveal coincidences in different BATSE energy bands on a time-
scale ~ 1072 s, which, assuming redshift of O(1) (the redshift of GRB920229
was not measured) would yield sensitivity to Egg ~ 106 GeV (it would allow
to set a bound Egg > 1016 GeV).

As observed in Ref. [54], a similar sensitivity might be obtainable with
GRB980425, given its likely identification with the unusual supernova 1998bw
[70]. This is known to have taken place at a redshift z = 0.0083 corresponding to
a distance D ~ 40 Mpc (for a Hubble constant of 65 kmsec™'Mpc~!) which is
rather smaller than a typical GRB distance. However GRB980425 was observed
by BeppoSAX at energies up to 1.8 MeV, which gains back an order of magni-
tude in the sensitivity. If a time-series analysis were to reveal structure at the
At ~ 1073 s level, which is typical of many GRBs [71], it would yield the same
sensitivity as GRB920229 (but in this case, in which a redshift measurement is
available, one would have a definite bound, whereas GRB920229 only provides
a “conditional” bound of the type discussed above).
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Ref. [54] also observed that an interesting (although not very “robust”) bound
could be obtained using GRB920925¢, which was observed by WATCH [72]
and possibly in high-energy ~ rays by the HEGRA/AIROBICC array above
20 TeV [73]. Several caveats are in order: taking into account the appropriate
trial factor, the confidence level for the signal seen by HEGRA to be related to
GRB920925¢ is only 99.7% (~ 2.70), the reported directions differ by 9°, and
the redshift of the source is unknown. Nevertheless, the potential sensitivity is
impressive. The events reported by HEGRA range up to E ~ 200 TeV, and the
correlation with GRB920925¢ is within At ~ 200 s. Making the reasonably con-
servative assumption that GRB920925¢ occurred no closer than GRB980425,
viz. ~ 40Mpc, one finds a minimum sensitivity to Egg ~ 10'° GeV, mod-
ulo the caveats listed above. Even more spectacularly, several of the HEGRA
GRB920925¢ candidate events occurred within At ~ 1 s, providing a potential
sensitivity even two orders of magnitude higher.

As illustrated by this discussion, the GRBs have remarkable potential for the
study of in vacuo dispersion, which will certainly lead to impressive bounds/tests
as soon as improved experiments are put into operation, but at present the best
GRB-based bounds are either “conditional” (example of GRB92022) or “not
very robust” (example of GRB920925¢). As a result, at present the best (reliable)
bound has been extracted [74] using data from the Whipple telescope on a TeV
~-ray flare associated with the active galaxy Mrk 421. This object has a redshift
of 0.03 corresponding to a distance of ~ 100 Mpc. Four events with y-ray energies
above 2 TeV have been observed within a period of 280 s. These provide [74] a
definite limit Ege > 4 x 1016 GeV.

In passing let me mention that (as observed in Ref. [5,46]) pulsars and super-
novae, which are among the other astrophysical phenomena that might at first
sight appear well suited for the study of in vacuo dispersion, do not actually
provide interesting sensitivities. Although pulsar signals have very well defined
time structure, they are at relatively low energies and are presently observable
over distances of at most 10* light years. If one takes an energy of order 1 eV
and postulates generously a sensitivity to time delays as small as 1 usec, one
nevertheless reaches only an estimated sensitivity to Egg ~ 102 GeV. With new
experiments such as AXAF it may be possible to detect X-ray pulsars out to 106
light years, but this would at best push the sensitivity up to Egg ~ 10 GeV.
Concerning supernovae, it is important to take into account that neutrinos from
Type II events similar to SN1987a, which should have energies up to about
100 MeV with a time structure that could extend down to milliseconds, are
likely to be detectable at distances of up to about 10° light years, providing
sensitivity to Egg ~ 10'® GeV, which is remarkable in absolute terms, but is
still significantly far from the Planck scale and anyway cannot compete with the
type of sensitivity achievable with GRBs.

It is rather amusing that GRBs can provide such a good laboratory for inves-
tigations of in vacuo dispersion in spite of the fact that the short-time structure
of GRB signals is still not understood. The key point of the proposal in Ref. [5]
is that sensitive tests can be performed through the serendipitous detection of
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short-scale time structure [69] at different energies in GRBs which are established
to be at cosmological distances. Detailed features of burst time series enable (as
already shown in several examples) the emission times in different energy ranges
to be put into correspondence. Any time shift due to quantum-gravity would
increase with the photon energy, and this characteristic dependence is separable
from more conventional in-medium-physics effects, which decrease with energy.
To distinguish any quantum-gravity induced shift from effects due to the source,
one can use the fact that the quantum-gravity effect here considered is linear in
the GRB distance.

This last remark applies to all values of a;, but most of the observations and
formulas in this section are only valid in the case & = 1 (linear suppression).
The generalization to cases with a # 1 is however rather simple; for example,
Eq. (13) takes the form (up to coefficients of order 1)

I 1/«
Egag > [(E+ AE)* — E] m . (14)
Notice that here, because of the non-linearity, the right-hand side depends both
on F and AFE.

Before moving on to other experiments let me clarify what is the key ingre-
dient of this experiment using observations of gamma rays from distant astro-
physical sources that allowed to render observable the minute quantum-gravity
effects. The ingredient is very similar to the one relevant for the studies of space-
time fuzziness using modern interferometers, which I discussed in the preceding
section; in fact, the gamma rays here considered are affected by a very large
number of the minute quantum-gravity effects. Each of the dispersion-inducing
quantum-gravity effect is very small, but the gamma rays emitted by distant
astrophysical sources travel for a very long time before reaching us and can
therefore be affected by an extremely large number of such effects.

6 Other quantum-gravity experiments

In this section I provide brief reviews of some other quantum-gravity experi-
ments. The fact that the discussion here provided for these experiments is less
detailed than the preceding discussions of the interferometry-based and GRB-
based experiments is not to be interpreted as indicating that these experiments
are somehow less significant: it is just that a detailed discussion of a couple of
examples was sufficient to provide to the reader some general intuition on the
strategy behind quantum-gravity experiments and it was natural for me to use
as examples the ones I am most familiar with. For the experiments discussed in
this section I shall just give a rough idea of the quantum-gravity scenarios that
could be tested and of the experimental procedures which have been proposed.

6.1 Neutral kaons and CPT violation

One of the formalisms that has been proposed [17,2] for the evolution equations
of particles in the space-time foam relies on a density-matrix picture. The foam
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is seen as providing a sort of environment inducing quantum decoherence even
on isolated systems (i.e. systems which only interact with the foam). A given
non-relativistic system (such as the neutral kaons studied by the CPLEAR col-
laboration at CERN) is described by a density matrix p that satisfies an evolu-
tion equation analogous to the one ordinarily used for the quantum mechanics
of certain open systems:

Op =ilp, H + ¢H p (15)

where H is the ordinary Hamiltonian and 6H, which has a non-commutator
structure [2], represents the effects of the foam. 8H is expected to be extremely
small, suppressed by some power of the Planck length. The precise form of 6H
(which in particular would set the level of the new physics by establishing how
many powers of the Planck length suppress the effect) has not yet been de-
rived from some full-grown quantum gravity'!, and therefore phenomenological
parametrizations have been introduced (see Refs. [17,75,20,35]). For the case in
which the effects are only suppressed by one power of the Planck length (lin-
ear suppression) recent neutral-kaon experiments, such as the ones performed by
CPLEAR, have set significant bounds [2] on the associated CPT-violation effects
and forthcoming experiments are likely to push these bounds even further.
Like the interferometry-based and the GRB-based experiments, these ex-
periments (which have the added merit of having started the recent wave of
quantum-gravity proposals) also appear to provide significant quantum-gravity
tests. As mentioned, the effect of quantum-gravity induced decoherence certainly
qualifies as a traditional quantum-gravity subject, and the level of sensitivity
reached by the neutral-kaon studies is certainly significant (as in the case of in
vacuo dispersion and GRBs, one would like to be able to explore also the case
of a quadratic Planck-length suppression, but it is nonetheless very significant
that we have at least reached the capability to test the case of linear suppres-
sion). Also in this case it is natural to ask: how come we could manage this?
What strategy allowed this neutral-kaon studies to evade the traditional gloomy
forecasts for quantum-gravity phenomenology? While, as discussed above, in the
interferometry-based and the GRB-based experiments the crucial element in the
experimental proposal is the possibility to put together many quantum gravity
effects, in the case of the neutral-kaon experiments the crucial element in the
experimental proposal is provided by the very delicate balance of scales that
characterizes the neutral-kaon system. In particular, it just happens to be true
that the dimensionless ratio setting the order of magnitude of quantum-gravity
effects in the linear suppression scenario, which is My, s/FE, ~ 2-107', is not
much smaller than some of the dimensionless ratios characterizing the neutral-
kaon system, notably the ratio |Mp — Mg|/Mps ~ 7-107'% and the ratio
|, — I's|/Mp,s ~ 1.4-107*. This renders possible for the quantum-gravity
effects to provide observably large corrections to the physics of neutral kaons.

11 Within the quantum-gravity approach here reviewed in Subsection 10.2, which only
attempts to model certain aspects of quantum gravity, such a direct calculation might
soon be performed.
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6.2 Interferometry and string cosmology

Up to this point I have only reviewed experiments probing foamy properties of
space-time in the sense of Wheeler and Hawking. A different type of quantum-
gravity effect which might produce a signature strong enough for experimental
testing has been discussed in the context of studies of a cosmology based on criti-
cal superstrings [76]. While for a description of this cosmology and of its physical
signatures I must only refer the reader to the recent reviews in Ref. [77], T want
to briefly discuss here the basic ingredients of the proposal [3] of interferometry-
based tests of the cosmic gravitational wave background predicted by string
cosmology.

In string cosmology the universe starts from a state of very small curva-
ture, then goes through a long phase of dilaton-driven inflation reaching nearly
Plankian energy density, and then eventually reaches the standard radiation-
dominated cosmological evolution [76,77]. The period of nearly Plankian energy
density plays a crucial role in rendering the quantum-gravity effects observable.
In fact, this example based on string cosmology is quite different from the exper-
iments I discussed earlier in these lectures also because it does not involve small
quantum-gravity effects which are somehow amplified (in the sense for exam-
ple of the amplification provided when many effects are somehow put together).
The string cosmology involves a period in which the quantum-gravity effects are
actually quite large. As clarified in Refs. [76,77] planned interferometers such as
LIGO might be able to detect the faint residual traces of these strong effects
occurred in a far past.

As mentioned, the quantum-gravity effects that, within string cosmology,
leave a trace in the gravity-wave background are not of the type that requires an
active Wheeler-Hawking foam. The relevant quantum-gravity effects live in the
more familiar vacuum which we are used to encounter in the context of ordinary
gauge theory. (Actually, for the purposes of the analyses reported in Refs. [76,77]
quantum gravity could be seen as an ordinary gauge theory, although with un-
usual gauge-field content.) In the case of the Wheeler-Hawking foam one is
tempted to visualize the vacuum as reboiling with (virtual) worm-holes and
black-holes. Instead the effects relevant for the gravity-wave background pre-
dicted by string cosmology are more conventional field-theory-type fluctuations,
although carrying gravitational degrees of freedom, like the graviton. Also from
this point of view the experimental proposal discussed in Refs. [76,77] probes
a set of candidate quantum-gravity phenomena which is complementary to the
ones I have reviewed earlier in these notes.

6.3 Matter interferometry and primary state diffusion

The studies reported in Ref. [4] (and references therein) have considered how
certain effectively stochastic properties of space-time would affect the evolution
of quantum-mechanical states. The stochastic properties there considered are
different from the ones discussed here in Sections 2, 3 and 4, but were introduced
within a similar viewpoint, i.e. stochastic processes as effective description of
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quantum space-time processes. The implications of these stochastic properties
for the evolution of quantum-mechanical states were modeled via the formalism
of “primary state diffusion”, but only rather crude models turned out to be
treatable.

The approach proposed in Ref. [4] actually puts together some of the un-
knowns of space-time foam and the specific properties of “primary state dif-
fusion”. The structure of the predicted effects cannot be simply discussed in
terms of elementary properties of space-time foam and a simple interpretation
in terms of symmetry deformations does not appear to be possible. Those effects
appear to be the net result of the whole formalism that goes into the approach.
Moreover, as also emphasized by the authors, the crudeness of the models is
such that all conclusions are to be considered as tentative at best. Still, the
analysis reported in Ref. [4] is very significant as an independent indication of
a mechanism, based on matter-interferometry experiments, that could unveil
Planck-length-suppressed effects.

6.4 Colliders and large extra dimensions

It was recently suggested [78,79] that the characteristic quantum-gravity length
scale might be given by a length scale Lp much larger than the Planck length
in theories with large extra dimensions. It appears plausible that there exist
models that are consistent with presently-available experimental data and have
Lp as large as the (TeV)™! scale and (some of) the extra dimensions as large
as a millimiter [79]. In such models the smallness of the Planck length is seen
as the result of the fact that the strength of gravitation in the ordinary 3+1
space-time dimensions would be proportional to the square-root of the inverse of
the large volume of the external compactified space multiplied by an appropriate
(according to dimensional analysis) power of Lp.

Several studies have been motivated by the proposal put forward in Ref. [79],
but only a small percentage of these studies considered the implications for
quantum-gravity scenarios. Among these studies the ones reported in Refs. [8,9]
are particularly significant for the objectives of these lectures, since they illus-
trate another completely different strategy for quantum-gravity experiments. It
is there observed that within the realm of the ordinary 3+1 dimensional space-
time an important consequence of the existence of large extra dimensions would
be the presence of a tower of Kaluza-Klein modes associated to the gravitons.
The weakness of the coupling between gravitons and other particles can be com-
pensated by the large number of these Kaluza-Klein modes when the experi-
mental energy resolution is much larger than the mass splitting between the
modes, which for a small number of very large extra dimensions can be a weak
requirement (e.g. for 6 millimiter-wide extra dimensions [79,8] the mass split-
ting is of a few MeV'). This can lead to observably large [8,9] effects at planned
particle-physics colliders, particularly CERN’s LHC.

In a sense, the experimental proposal put forward in Refs. [8,9] is another
example of experiment in which the smallness of quantum gravity effects is com-
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pensated by putting together a large number of such effects (putting together
the contributions of all of the Kaluza-Klein modes).

Concerning the quantum-gravity aspects of the models with large extra di-
mensions proposed in Ref. [79], it is important to realize that, as emphasized
in Ref. [24], if anything like the space-time foam here described in Sections 2,
3, 4 and 5 was present in such models the effective reduction of the quantum-
gravity scale would naturally lead to foamy effects that are too large for consis-
tency with available experimental data. Preliminary estimates based solely on
dimensional considerations appear to suggest that [24] linear suppression by the
reduced quantum-gravity scale would certainly be ruled out and even quadratic
suppression might not be sufficient for consistency with available data. These ar-
guments should lead to rather stringent bounds on space-time foam especially in
those models in which some of the large extra dimensions are accessible to non-
gravitational particles (see, e.g., Ref. [80]), and should have interesting (although
smaller) implications also for the popular scenario in which only the gravitational
degrees of freedom have access to the large extra dimensions. Of course, a final
verdict must await detailed calculations analysing space-time foam in these mod-
els with large extra dimensions. The first examples of this type of computations
are given by the very recent studies in Refs. [81,82], which considered the impli-
cations of foam-induced light-cone deformation for certain examples of models
with large extra dimensions.

7 Classical-space-time-induced quantum phases
in matter interferometry

While of course the quantum properties of space-time are the most exciting
effects we expect of quantum gravity, and probably the ones which will prove
most useful in gaining insight into the fundamental structure of the theory, it
is important to investigate experimentally all aspects of the interplay between
gravitation and quantum mechanics. Among these experiments the ones that
could be expected to provide fewer surprises (and less insight into the structure
of quantum gravity) are the ones concerning the interplay between strong-but-
classical gravitational fields and quantum matter fields. However, this is not
necessarily true as I shall try to clarify within this section’s brief review of the
experiment performed nearly a quarter of a century ago by Colella, Overhauser
and Werner [10], which, to my knowledge, was the first experiment probing
some aspect of the interplay between gravitation and quantum mechanics. That
experiment has been followed by several modifications and refinements (often
labeled “COW experiments” from the initials of the scientists involved in the
first experiment) all probing the same basic physics, i.e. the validity of the
Schrodinger equation

Op(t,r)
ot

(16)
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for the description of the dynamics of matter (with wave function ¥(¢,7)) in
presence of the Earth’s gravitational potential ¢ (7). [In (16) M; and Mg denote
the inertial and gravitational mass respectively.]

The COW experiments exploit the fact that the Earth’s gravitational poten-
tial puts together the contribution of so many particles (all of those composing
the Earth) that it ends up being large enough to introduce observable effects
in rotating table-top interferometers. This was the first example of a physi-
cal context in which gravitation was shown to have an observable effect on a
quantum-mechanical system in spite of the weakness of the gravitational force.

The fact that the original experiment performed by Colella, Overhauser and
Werner obtained results in very good agreement [10] with Eq. (16) might seem
to indicate that, as generally expected, experiments on the interplay between
strong-but-classical gravitational fields and quantum matter fields should not
lead to surprises and should not provide insight into the structure of quantum
gravity. However, the confirmation of Eq. (16) does raise some sort of a puzzle
with respect to the Equivalence Principle of general relativity; in fact, even for
M7 = Mg the mass does not cancel out in the quantum evolution equation (16).
This is an observation that by now has also been emphasized in textbooks [83],
but to my knowledge it has not been fully addressed even within the most pop-
ular quantum-gravity approaches, i.e. critical superstrings and canonical/loop
quantum gravity. Which role should be played by the Equivalence Principle
in quantum gravity? Which version/formulation of the Equivalence Principle
should/could hold in quantum gravity?

Additional elements for consideration in quantum-gravity models will emerge
if the small discrepancy between (16) and data reported in Ref. [84] (a refined
COW experiment) is confirmed by future experiments. The subject of gravi-
tationally induced quantum phases is also expanding in new directions [6,85],
which are likely to provide additional insight.

8 Estimates of space-time fuzziness
from measurability bounds

In the preceding Sections 4, 5, 6 and 7 I have discussed the experimental propos-
als that support the conclusions anticipated in Sections 2 and 3. This Section 8
and the following two sections each provide a “theoretical-physics addendum”.
In this section I discuss some arguments that appear to suggest properties of
the space-time foam. These arguments are based on analyses of bounds on the
measurability of distances in quantum gravity. The existence of measurability
bounds has attracted the interest of several theorists, because these bounds ap-
pear to capture an important novel element of quantum gravity. In ordinary
(non-gravitational) quantum mechanics there is no absolute limit on the accu-
racy of the measurement of a distance. [Ordinary quantum mechanics allows
6A = 0 for any single observable A, since it only limits the combined measura-
bility of pairs of conjugate observables.]
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The quantum-gravity bound on the measurability of distances (whatever final
form it actually takes in the correct theory) is of course intrinsically interesting,
but here (as in previous works [7,24,12,86,13]) I shall be interested in the pos-
sibility that it might reflect properties of the space-time foam. This is of course
not necessarily true: a bound on the measurability of distances is not necessar-
ily associated to space-time fluctuations, but guided by the Wheeler-Hawking
intuition on the nature of space-time one is tempted to interpret any measurabil-
ity bound (which might be obtained with totally independent arguments) as an
indicator of the type of irreducible fuzziness that characterizes space-time. One
has on one hand some intuition about quantum gravity which involves stochastic
fluctuations of distances and on the other hand some different arguments lead
to intuition for absolute bounds on the measurability of distances; it is natural
to explore the possibility that the two might be related, i.e. that the intrinsic
stochastic fluctuations should limit the measurability just to the level suggested
by the independent measurability arguments. Different arguments appear to lead
to different measurability bounds, which in turn could provide different intuition
for the stochastic properties of space-time foam.

8.1 Minimum-length noise

In many quantum-gravity approaches there appears to be a length scale L,ip,
often identified with the Planck length or the string length Lgtping (which, as
mentioned, should be somewhat larger than the Planck length, plausibly in the
neighborhood of 10734m), which sets an absolute bound on the measurability of
distances (a minimum uncertainty):

6D 2 Lmin . <17)

This property emerges in approaches based on canonical quantization of Ein-
stein’s gravity when analyzing certain gedanken experiments (see, e.g., Refs. [30],
[33] and references therein). In critical superstring theories, theories whose me-
chanics is still governed by the laws of ordinary quantum mechanics but with
one-dimensional (rather than point-like) fundamental objects, a relation of type
(17) follows from the stringy modification of Heisenberg’s uncertainty princi-
ple [31]

Sz 8p>1+ L2, .. 6D . (18)

string

In fact, whereas Heisenberg’s uncertainty principle allows éx = 0 (for ép — o0),
for all choices of ép the uncertainty relation (18) gives 6z > Lgtring. The relation
(18) is suggested by certain analyses of string scattering [31], but it might have
to be modified when taking into account the non-perturbative solitonic struc-
tures of superstrings known as Dirichlet branes [38]. In particular, evidence has
been found [87] in support of the possibility that “Dirichlet particles” (Dirichlet
0 branes) could probe the structure of space-time down to scales shorter than
the string length. In any case, all evidence available on critical superstrings is
consistent with a relation of type (17), although it is probably safe to say that
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some more work is still needed to firmly establish the string-theory value of
Lmin~

Having clarified that a relation of type (17) is a rather common prediction of
theoretical work on quantum gravity, it is then natural to wonder whether such
a relation is suggestive of stochastic distance fluctuations of a type that could
significantly affect the noise levels of an interferometer. As mentioned relations
such as (17) do not necessarily encode any fuzziness; for example, relation (17)
could simply emerge from a theory based on a lattice of points with spacing L,in
and equipped with a measurement theory consistent with (17). The concept
of distance in such a theory would not necessarily be affected by the type of
stochastic processes that lead to noise in an interferometer. However, if one
does take as guidance the Wheeler-Hawking intuition on space-time foam it
makes sense to assume that relation (17) might encode the net effect of some
underlying physical processes of the type one would qualify as quantum space-
time fluctuations. This (however preliminary) network of intuitions suggests that
(17) could be the result of fuzziness for distances D of the type associated to
stochastic fluctuations with root-mean-square deviation op given by

op NLmin- (19)

The associated displacement amplitude spectral density S, (f) should roughly
have a 1/+/f behaviour

Lmin
\/7 )

which (using notation set up in Section 4) can be concisely described stating
that Lyin ~ Lz—1/2- Eq. (20) can be justified using the general relation (4).
Substituting the Spmin(f) of Eq. (20) for the S(f) of Eq. (4) one obtains a o
that approximates the op of Eq. (19) up to small (logarithmic) T,ps-dependent
corrections. A more detailed description of the displacement amplitude spectral
density associated to Eq. (19) can be found in Refs. [88,89]. For the objectives
of these lectures the rough estimate (20) is sufficient since, if indeed Lpip, ~ Ly,
from (20) one obtains Spin(f) ~ 1073%m/\/f, which is still very far from the
sensitivity of even the most advanced modern interferometers, and therefore 1
shall not be concerned with corrections to Eq. (20).

Smm(f) ~ (20)

8.2 Random-walk noise motivated by the analysis
of a Salecker-Wigner gedanken experiment

Let me now consider a measurability bound which is encountered when tak-
ing into account the quantum properties of devices. It is well understood (see,
e.g., Refs. [12,13,90,44,4532]) that the combination of the gravitational proper-
ties and the quantum properties of devices can have an important role in the
analysis of the operative definition of gravitational observables. Since the anal-
yses [30,33,31,87] that led to the proposal of Eq. (17) only treated the devices
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in a completely idealized manner (assuming that one could ignore any contribu-
tion to the uncertainty in the measurement of D due to the gravitational and
quantum properties of devices), it is not surprising that analyses taking into ac-
count the gravitational and quantum properties of devices found more significant
limitations to the measurability of distances.

Actually, by ignoring the way in which the gravitational properties and the
quantum properties of devices combine in measurements of geometry-related
physical properties of a system one misses some of the fundamental elements
of novelty we should expect for the interplay of gravitation and quantum me-
chanics; in fact, one would be missing an element of novelty which is deeply
associated to the Equivalence Principle. In measurements of physical properties
which are not geometry-related one can safely resort to an idealized description
of devices. For example, in the famous Bohr-Rosenfeld analysis [91] of the mea-
surability of the electromagnetic field it was shown that the accuracy allowed
by the formalism of ordinary quantum mechanics could only be achieved using
idealized test particles with vanishing ratio between electric charge and inertial
mass. Attempts to generalize the Bohr-Rosenfeld analysis to the study of grav-
itational fields (see, e.g., Ref. [90]) are of course confronted with the fact that
the ratio between gravitational “charge” (mass) and inertial mass is fixed by the
Equivalence Principle. While ideal devices with vanishing ratio between electric
charge and inertial mass can be considered at least in principle, devices with van-
ishing ratio between gravitational mass and inertial mass are not admissible in
any (however formal) limit of the laws of gravitation. This observation provides
one of the strongest elements in support of the idea [13] that the mechanics on
which quantum gravity is based must not be exactly the one of ordinary quantum
mechanics, since it should accommodate a somewhat different relationship be-
tween “system” and “measuring apparatus” and should not rely on the idealized
“measuring apparatus” which plays such a central role in the mechanics laws of
ordinary quantum mechanics (see, e.g., the “Copenhagen interpretation”).

In trying to develop some intuition for the type of fuzziness that could affect
the concept of distance in quantum gravity, it might be useful to consider the
way in which the interplay between the gravitational and the quantum prop-
erties of devices affects the measurability of distances. In Refs. [12,13] T have
argued'? that a natural starting point for this type of analysis is provided by
the procedure for the measurement of distances which was discussed in influential
work by Salecker and Wigner [92]. These authors “measured” (in the “gedanken”
sense) the distance D between two bodies by exchanging a light signal between
them. The measurement procedure requires attaching'® a light-gun (i.e. a de-
12T shall comment later in these notes on the measurability analysis reported in

Ref. [45], which also took as starting point the mentioned work by Salecker and
Wigner, but advocated a different viewpoint and reached different conclusions.

13 Of course, for consistency with causality, in such contexts one assumes devices to be
“attached non-rigidly,” and, in particular, the relative position and velocity of their
centers of mass continue to satisfy the standard uncertainty relations of quantum
mechanics.
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vice capable of sending a light signal when triggered), a detector and a clock to
one of the two bodies and attaching a mirror to the other body. By measuring
the time T,ps (time of observation) needed by the light signal for a two-way
journey between the bodies one also obtains a measurement of the distance D.
For example, in flat space and neglecting quantum effects one simply finds that
D = ¢Tops/2. Within this setup it is easy to realize that the interplay between
the gravitational and the quantum properties of devices leads to an irreducible
contribution to the uncertainty 6 D. In order to see this it is sufficient to consider
the contribution to 6D coming from the uncertainties that affect the motion of
the center of mass of the system composed by the light-gun, the detector and
the clock. Denoting with z* and v* the position and the velocity of the center of
mass of this composite device relative to the position of the body to which it is
attached, and assuming that the experimentalists prepare this device in a state
characterised by uncertainties éz* and év*, one easily finds [92,13]

1 1 hTobs hTobS 1
5D > 62" + Topsb0™ > 60" +  — + — > s 2 (g
= ow bv_$+<Mb+Md>26:c*_ > a0 2V

where M is the mass of the body, My is the total mass of the device composed
of the light-gun, the detector, and the clock, and I also used the fact that Heisen-
berg’s Uncertainty Principle implies §z*év* > (1/Mp + 1/Mg)h/2. [The reduced
mass (1/My + 1/My)~1 is relevant for the relative motion.] Clearly, from (21)
it follows that in order to reduce the contribution to the uncertainty coming
from the quantum properties of the devices it is necessary to take the formal
“classical-device limit,” i.e. the limit'# of infinitely large M.

Up to this point I have not yet taken into account the gravitational prop-
erties of the devices and in fact the “classical-device limit” encountered above
is fully consistent with the laws of ordinary quantum mechanics. From a phys-
ical/phenomenological and conceptual viewpoint it is well understood that the
formalism of quantum mechanics is only appropriate for the description of the
results of measurements performed by classical devices. It is therefore not sur-
prising that the classical-device (infinite-mass) limit turns out to be required in
order to match the prediction mindéD = 0 of ordinary quantum mechanics.

If one also takes into account the gravitational properties of the devices,
a conflict with ordinary quantum mechanics immediately arises because the

14 A rigorous definition of a “classical device” is beyond the scope of these notes. How-
ever, it should be emphasized that the experimental setups being here considered
require the devices to be accurately positioned during the time needed for the mea-
surement, and therefore an ideal/classical device should be infinitely massive so that
the experimentalists can prepare it in a state with 6z év ~ h/M ~ 0. It is the fact
that the infinite-mass limit is not accessible in a gravitational context that forces
one to consider only “non-classical devices.” This observation is not inconsistent
with conventional analyses of decoherence for macroscopic systems; in fact, in ap-
propriate environments, the behavior of a macroscopic device will still be “closer to
classical” than the behavior of a microscopic device, although the limit in which a
device has exactly classical behavior is no longer accessible.
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classical-device (infinite-mass) limit is in principle inadmissible for measurements
concerning gravitational effects.!® As the devices get more and more massive
they increasingly disturb the gravitational/geometrical observables, and well
before reaching the infinite-mass limit the procedures for the measurement of
gravitational observables cannot be meaningfully performed [12,13,45]. In the
Salecker-Wigner measurement procedure the limit My — oo is not admissible
when gravitational interactions are taken into account. At the very least the
value of My is limited by the requirement that the apparatus should not turn
into a black hole (which would not allow the exchange of signals required by the
measurement procedure).

These observations render unavoidable the y/T,ps-dependence of Eq. (21). Tt
is important to realize that this v/T,s-dependence of the bound of the measura-
bility of distances comes simply from combining elements of quantum mechanics
with elements of classical gravity. As it stands it is not to be interpreted as
a quantum-gravity effect. However, as clarified in the opening of this section,
if one is interested in modeling properties of the space-time foam it is natural
to explore the possibility that the foam be such that distances be affected by
stochastic fluctuations with this typical /T,ps-dependence. The logic is here the
one of observing that stochastic fluctuations associated to the foam would any-
way lead to some form of dependence on T,,s and in guessing the specific form
of this dependence the measurability analysis reviewed in this subsection can be
seen as providing motivation for a +/T,ps-dependence. From this point of view
the measurability analysis reviewed in this subsection provides additional mo-
tivation for the study of random-walk-type models of distance fuzziness, whose
fundamental stochastic fluctuations are characterized (as already discussed in
Section 4) by root-mean-square deviation op given by'6

oD ~ / LQG CTobs (22)

!5 This conflict between the infinite-mass classical-device limit (which is implicit in the
applications of the formalism of ordinary quantum mechanics to the description of the
outcome of experiments) and the nature of gravitational interactions has not been
addressed within any of the most popular quantum gravity approaches, including
critical superstrings [38,39] and canonical/loop quantum gravity [40]. In a sense
somewhat similar to the one appropriate for Hawking’s work on black holes [93], this
“classical-device paradox” appears to provide an obstruction [13] for the use of the
ordinary formalism of quantum mechanics for a description of quantum gravity.

As discussed in Refs. [12,13,24], this form of op also implies that in quantum grav-
ity any measurement that monitors a distance D for a time Tps is affected by
an uncertainty 6D > y/Lga ¢Tops. This must be seen as a minimum uncertainty
that takes only into account the quantum and gravitational properties of the mea-
suring apparatus. Of course, an even tighter bound can emerge when taking into
account also the quantum and gravitational properties of the system under obser-
vation. According to the estimates provided in Refs. [30,33] the contribution to the
uncertainty coming from the system is of the type 6D > L,, so that the total contri-
bution (summing the system and the apparatus contributions) might be of the type

6D > Lp =+ \/LQG cTops.

16
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and by displacement amplitude spectral density S(f) given by

S(f)=f"VLqce. (23)

Here the scale Lge plays exactly the same role as in Section 4 (in particular
Lo = Lp=1 in the sense of Section 4). However, seeing Lo as the result of
Planck-length fluctuations occurring at a rate of one per Planck time immedi-
ately leads us to Log ~ Lp, whereas the different intuition which has gone into
the emergence of Lo in this subsection leaves room for different predictions.
As already emphasized, by mixing elements of quantum mechanics and elements
of gravitation one can only conclude that there must be some +/T,s-dependent
irreducible contribution to the uncertainty in the measurement of distances. One
can then guess that space-time foam might reflect this v/T,ps-dependence and one
can parametrize our ignorance by introducing Lgg in the formula /Log ¢ Tops.
Within such an argument the estimate Lgg ~ L, could only be motivated on
dimensional grounds (L, is the only length scale available), but there is no di-
rect estimate of Log within the argument advocated in this subsection. We only
have (in the specific sense intended above) a lower limit on Lge which is set
by the bare analysis using straightforward combination of elements of ordinary
quantum mechanics and elements of ordinary gravity. As seen above, this lower
limit on Lgg is set by the minimum allowed value of 1/My. Our intuition for
Lo might benefit from trying to establish this minimum allowed value of 1/Mj.
As mentioned, a conservative (possibly very conservative) estimate of this min-
imum value can be obtained by enforcing that M, be at least sufficiently small
to avoid black hole formation. In leading order (e.g., assuming corresponding
spherical symmetries) this amounts to the requirement that My < hSy/ (CLZQ)),
where the length S; characterizes the size of the region of space where the matter
distribution associated to My is localized. This observation implies

1 ch, 1
1o 24
L h oS, (24)
which in turn suggests [12] that Log ~ min[L2/Sa]:
6D > miny | Lo Lot 25
> min [P . (25)

Of course, this estimate is very preliminary since a full quantum gravity would
be needed here; in particular, the way in which black holes were handled in my
argument might have missed important properties which would become clear
only once we have the correct theory. However, it is nevertheless striking to ob-
serve that the guess Lgg ~ Ly, appears to be very high with respect to the lower
limit on Lgg which we are finding from this estimate; in fact, Lgg ~ L, would
correspond to the maximum admissible value of Sq being of order L,. Since my
analysis only holds for devices that can be treated as approximately rigid'” and

17 The fact that I have included only one contribution from the quantum properties of
the devices, the one associated to the quantum properties of the motion of the center
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any non-rigidity could introduce additional contributions to the uncertainties,
it is reasonable to assume that max[S;] be some small length (small enough
that any non-rigidity would negligibly affect the measurement procedure), but
it appears unlikely that maxz[Sg] ~ L,. This observation might provide some
encouragement for values of Lgg smaller than L,, which after all is the only
way to obtain random-walk models consistent with the data analysis reported
in Refs. [7,24].

Later in this section I will consider a particular class of estimates for maz[Sq]:
if the correct quantum gravity is such that something like (25) holds but with
max[Sy] that depends on 8§D, one would have a different Tpps-dependence (and
corresponding f-dependence), as I shall show in one example.

8.3 Random-walk noise motivated by linear deformation
of dispersion relation

Besides the analysis of the Salecker-Wigner measurement procedure also the
mentioned possibility of quantum-gravity-induced deformation of dispersion re-
lations [5,46,41,21,27] would be consistent with the idea of random-walk distance
fuzziness. The sense in which this is true is clarified by the arguments that follow.

Let me start by going back to the general relation (already discussed in
Section 2):

’p? ~ E? [1 +¢ <%G)T . (26)

Scenarios (26) with o = 1 are consistent with random-walk noise, in the sense
that an experiment involving as a device (as a probe) a massless particle satis-
fying the dispersion relation (26) with v = 1 would be naturally affected by a
device-induced uncertainty that grows with v/1ps. From the deformed dispersion

of mass, implicitly relies on the assumption that the devices and the bodies can be
treated as approximately rigid. Any non-rigidity of the devices could introduce addi-
tional contributions to the uncertainty in the measurement of D. This is particularly
clear in the case of detector screens and mirrors, whose shape plays a central role
in data analysis. Uncertainties in the shape (the relative position of different small
parts) of a detector screen or of a mirror would lead to uncertainties in the mea-
sured quantity. For large devices some level of non-rigidity appears to be inevitable
in quantum gravity. Causality alone (without any quantum mechanics) forbids rigid
attachment of two bodies (e.g., two small parts of a device), but is still consistent
with rigid motion (bodies are not really attached but because of fine-tuned initial
conditions their relative position and relative orientation are constants of motion).
When Heisenberg’s Uncertainty Principle is introduced rigid motion becomes pos-
sible only for bodies of infinite mass, whose trajectories can still be deterministic
because of 6z 6v ~ h/M ~ 0. Rigid devices are still available in ordinary quantum
mechanics but they are peculiar devices, with infinite mass. When both gravitation
and quantum mechanics are introduced rigid devices are no longer available since
the infinite-mass limit is then inconsistent with the nature of gravitational devices.
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relation (26) one is led to energy-dependent velocities [24]

N .

and consequently when a time T,,s has lapsed from the moment in which the
observer (experimentalist) set off the measurement procedure the uncertainty in
the position of the massless probe is given by

1 E*16F
6x ~ cot + v Typs ~ cOt + —|—oza cTops (28)
2 E3e

where 6t is the quantum uncertainty in the time of emission of the probe, év
is the quantum uncertainty in the velocity of the probe, 6 F is the quantum
uncertainty in the energy of the probe, and I used the relation between év and 6 E
that follows from (27). Since the quantum uncertainty in the time of emission of
a particle and the quantum uncertainty in its energy are related!® by 6t §E > h,
Eq. (28) can be turned into an absolute bound on the uncertainty in the position
of the massless probe when a time T,;s has lapsed from the moment in which
the observer set off the measurement procedure [24]

o1 Eo-16E 2 E \*' 2hTy,.
oz ol | Lta B Tobszﬂw)( )
oF 2 B3¢ 9 Eoa Eoa

For @ = 1 the E-dependence on the right-hand side of Eq. (29) disappears
and one is led again to a éx of the type (constant) - /Tops:

C2hTObS

ox >
EQG

> (30)

When massless probes are used in the measurement of a distance D, as in the
Salecker-Wigner measurement procedure, the uncertainty (30) in the position of
the probe translates directly into an uncertainty on D:

2hT s
6D > (| L Tobs (31)
EQG

This was already observed in Refs. [46,23,27] which considered the implications
of deformed dispersion relations (26) with @ = 1 for the Salecker-Wigner mea-
surement procedure.

18 1t is well understood that the 6t §E > h relation is valid only in a weaker sense than,
say, Heisenberg’s Uncertainty Principle 6z ép > h. This has its roots in the fact
that the time appearing in quantum-mechanics equations is just a parameter (not
an operator), and in general there is no self-adjoint operator canonically conjugate
to the total energy, if the energy spectrum is bounded from below [94,53]. However,
the 6t 6F > h relation does relate 6t intended as quantum uncertainty in the time
of emission of a particle and 6 F intended as quantum uncertainty in the energy of
that same particle.
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Since deformed dispersion relations (26) with a = 1 have led us to the same
measurability bound already encountered both in the analysis of the Salecker-
Wigner measurement procedure and the analysis of simple-minded random-walk
models of quantum space-time fluctuations, if we assume again that such mea-
surability bounds emerge in a full quantum gravity as a result of corresponding
quantum fluctuations (fuzziness), we are led once again to random-walk noise:

Cthobs
op ~ . 32
D~y Fac (32)

8.4 Noise motivated by quadratic deformation of dispersion relation

In the preceding subsection I observed that quantum-gravity deformed dispersion
relations (26) with o = 1 can also motivate random-walk noise op ~ (constant)-
V1ops- If we use the same line of reasoning that connects a measurability bound
to a scenario for fuzziness when a # 1 we appear to find op ~ G(E/Eqa) v Tobs,
where G(E/Eqg¢) is a (a-dependent) function of E/Egg. However, in these
cases with a # 1 clearly the connection between measurability bound and fuzzy-
distance scenario cannot be this simple; in fact, the energy of the probe E which
naturally plays a role in the context of the derivation of the measurability bound
does not have a natural counter-part in the context of the conjectured fuzzy-
distance scenario.

In order to preserve the conjectured connection between measurability bounds
and fuzzy-distance scenarios one can be tempted to envision that if a # 1 the in-
terferometer noise levels induced by space-time fuzziness might be of the type [24]

2 Ex \“7' KT,
o ~ (a+a)< ) M, (33)
2 Eoc Eoc

where E* is some energy scale characterizing the physical context under consid-
eration. [For example, at the intuitive level one might conjecture that E* could
characterize some sort of energy density associated with quantum fluctuations
of space-time or an energy scale associated with the masses of the devices used
in the measurement process.]

Since a > 1 in all Quantum-Gravity approaches believed to support deformed
dispersion relations it appears likely that the factor (E*/Egg)* ™! would sup-
press the random-walk noise effect in all contexts with E* < Egg. Besides the
case a = 1 (linear deformation) also the case o = 2 (quadratic deformation)
deserves special interest since it can emerge quite naturally in quantum-gravity
approaches (see, e.g., Ref. [22]).

8.5 Noise with f—5/¢ amplitude spectral density

In Subsection 8.2 a bound on the measurability of distances based on the Salecker-
Wigner procedure was used as motivation for experimental tests of interferometer
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noise of random-walk type, with f~! amplitude spectral density and /7,45 root-
mean-square deviation. In this subsection I shall pursue further the observation
that the relevant measurability bound could be derived by simply insisting that
the devices do not turn into black holes. That observation allowed to derive
Eq. (25), which expresses the minimum uncertainty 6D on the measurement of
a distance D (i.e. the measurability bound for D) as proportional to v/T,ps and
\/1/54. Within that derivation the minimum uncertainty is obtained in corre-
spondence of max[Sg], the maximum value of Sy consistent with the structure of
the measurement procedure. I was therefore led to consider how large Sy could
be while still allowing to disregard any non-rigidity in the quantum motion of
the device (which would introduce additional contributions to the uncertainties).
Something suggestive of the random-walk noise scenario emerged by simply as-
suming that maxz[Sy] be independent of the accuracy 6§D that the observer would
wish to achieve. However, as mentioned, the same physical intuition that moti-
vates some of the fuzzy space-time scenarios here considered also suggests that
quantum gravity might require a novel measurement theory, possibly involving
a new type of relation between system and measuring apparatus. Based on this
intuition, it seems reasonable to contemplate the possibility that maxz[Ss] might
actually depend on 6D.

It is such a scenario that I want to consider in this subsection. In particular
I want to consider the case maxz[Sy] ~ 6D, which, besides being simple, has
the plausible property that it allows only small devices if the uncertainty to be
achieved is small, while it would allow correspondingly larger devices if the ob-
server was content with a larger uncertainty. This is also consistent with the idea
that elements of non-rigidity in the quantum motion of extended devices could
be neglected if anyway the measurement is not aiming for great accuracy, while
they might even lead to the most significant contributions to the uncertainty if
all other sources of uncertainty are very small. [Salecker and Wigner [92] would
also argue that “large” devices are not suitable for very accurate space-time
measurements (they end up being “in the way” of the measurement procedure)
while they might be admissible if space-time is being probed rather softly.]

In this scenario with max[Sg] ~ 6D, Eq. (25) takes the form

1 L2 CTobs L2 CTobs
6D > [ —-L >4/ = 4
- Sq 2 - 26D (3 )

which actually gives
1 1/3
6D > (ELgcTobs> . (35)

As done with the other measurability bounds, I have proposed [7,24] to take
Eq. (35) as motivation for the investigation of a corresponding fuzziness scenario
characterised by

~ 1/3
op ~ (LQQGcTobs) . (36)
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Notice that in this equation I replaced L, with a generic length scale ng, since
it is possible that the heuristic argument leading to Eq. (36) might have captured
the qualitative structure of the phenomenon while providing an incorrect esti-
mate of the relevant length scale. Also notice that Eq. (35) has the same form as
the relations emerged in other measurability analyses [45,43], even though those
analyses adopted a very different viewpoint (and even the physical role of the
elements of Eq. (35) was different, as explained in the next section).

As observed in Refs. [7,24] the T 1/3 dependence of op is associated with

obs
displacement amplitude spectral density with f~5/¢ behaviour:

S(f) = f5(Lyg o). (37)

Therefore the measurability analyses discussed in this subsection provides mo-
tivation for the investigation of the case 8 = 5/6 (using again the notation set
up in Section 4).

9 Relations with other quantum gravity approaches

In this section I comment on the connections and the differences between some
of the ideas which I reviewed in these notes and other quantum-gravity ideas.

9.1 Canonical Quantum Gravity

One of the most popular quantum-gravity approaches is the one in which the
ordinary canonical formalism of quantum mechanics is applied to (some formu-
lation of) Einstein’s Gravity. Especially in light of the fact that [13] some of
the observations reviewed in the previous sections suggest that quantum gravity
should require a new mechanics, not exactly given by ordinary quantum mechan-
ics, it is very interesting that some of the phenomena considered in the previous
sections have also emerged in studies of canonical quantum gravity.

As mentioned, the most direct connection was found in the study reported in
Ref. [41], which was motivated by Ref. [5]. In fact, Ref. [41] shows that the pop-
ular canonical/loop quantum gravity [40] admits the phenomenon of deformed
dispersion relations, with the deformation going linearly with the Planck length.

Concerning the bounds on the measurability of distances it is probably fair
to say that the situation in canonical/loop quantum gravity is not yet clear be-
cause the present formulations do not appear to lead to a compelling candidate
“length operator.” This author would like to interpret the problems associated
with the length operator as an indication that perhaps something unexpected
might actually emerge in canonical/loop quantum gravity as a length operator,
possibly something with properties fitting the intuition of some of the scenar-
ios for fuzzy distances which I reviewed. Actually, the random-walk space-time
fuzziness model might have a (somewhat weak, but intriguing) connection with
“quantum mechanics applied to gravity” at least to the level seen by comparison
with the scenario discussed in Ref. [95], which was motivated by the intuition
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that is emerging from investigations of canonical/loop quantum gravity. The
“moves” of Ref. [95] share many of the properties of the “random steps” of the
random-walk models.

9.2 Critical and non-critical string theories

Unfortunately, in the popular quantum-gravity approach based on critical super-
strings'® not many results have been derived concerning directly the quantum
properties of space-time. Perhaps the most noticeable such results are the ones on
limitations on the measurability of distances emerged in the scattering analyses
reported in Refs. [31,87], which I already mentioned.

A rather different picture is emerging (through the difficulties of this rich
formalism) in Liouville (non-critical) strings [19], whose development was partly
motivated by intuition concerning the quantum-gravity vacuum that is rather
close to the one traditionally associated to the mentioned works of Wheeler
and Hawking. Evidence has been found [46] in Liouwville strings supporting the
validity of deformed dispersion relations, with the deformation going linearly
with the Planck/string length. In the sense clarified in Section 8.3 this approach
might also host a bound on the measurability of distances which grows with

VI ops.

9.3 Other types of measurement analyses

Because of the lack of experimental input, it is not surprising that many authors
have been seeking some intuition on quantum gravity by formal analyses of the
ways in which the interplay between gravitation and quantum mechanics could
affect measurement procedures. A large portion of these analyses produced a
“min[6D]” with D denoting a distance; however, the same type of notation was
used for structures defined in significantly different ways. Also different mean-
ings have been given by different authors to the statement “absolute bound on
the measurability of an observable.” Quite important for the topics here dis-
cussed are the differences (which might not be totally transparent as a result of
this unfortunate choice of overlapping notations) between the approach advo-
cated in Refs. [7,12,13,24] and the approaches advocated in Refs. [92,44,45,43]. In
Refs. [7,12,13,24] “min[6D]” denotes an absolute limitation on the measurabil-
ity of a distance D. The studies [92,44,43] analyzed the interplay of gravity and
quantum mechanics in defining a net of time-like geodesics, and in those stud-
ies “min[6D]” characterizes the maximum “tightness” achievable for the net
of time-like geodesics. Moreover, in Refs. [92,44,45,43] it was required that the
measurement procedure should not affect/modify the geometric observable be-
ing measured, and “absolute bounds on the measurability” were obtained in this

19 As already mentioned the mechanics of critical superstrings is just an ordinary quan-
tum mechanics. All of the new structures emerging in this exciting formalism are the
result of applying ordinary quantum mechanics to the dynamics of extended funda-
mental objects, rather than point-like objects (particles).
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specific sense. Instead, in Refs. [12,13,24] it was envisioned that the observable
which is being measured might depend also on the devices (the underlying view
is that observables in quantum gravity would always be, in a sense, shared prop-
erties of “system” and “apparatus”), and it was only required that the nature of
the devices be consistent with the various stages of the measurement procedure
(for example if a device turned into a black-hole some of the exchanges of signals
needed for the measurement would be impossible). The measurability bounds of
Refs. [12,13,24] are therefore to be intended from this more fundamental per-
spective, and this is crucial for the possibility that these measurability bounds be
associated to a fundamental quantum-gravity mechanism for “fuzziness” (quan-
tum fluctuations of space-time). The analyses reported in Refs. [92,44,45,43] did
not include any reference to fuzzy space-times of the type operatively defined in
terms of stochastic processes, as reviewed in Section 4.

The more fundamental nature of the bounds obtained in Refs. [12,13,24] is
also crucial for the arguments suggesting that quantum gravity might require a
new mechanics, not exactly given by ordinary quantum mechanics. The analyses
reported in Refs. [92,44,45,43] did not include any reference to this possibility.

Having clarified that there is a “double difference” (different “min” and dif-
ferent “6D”) between the meaning of min[é D] adopted in Refs. [7,12,13,24] and
the meaning of min[6D] adopted in Refs. [92,44,45,43], it is however important
to notice that the studies reported in Refs. [44,45,43] were among the first studies
which showed how in some aspects of measurement analysis the Planck length
might appear together with other length scales in the problem. For example, a
quantum gravity effect naturally involving something of length-squared dimen-
sions might not necessarily go like Lf,: in some cases it could go like AL,, with
A some other length scale in the problem.

Interestingly, the analysis of the interplay of gravity and quantum mechanics
in defining a net of time-like geodesics reported in Ref. [44] concluded that the
maximum “tightness” achievable for the geodesics would be characterized by

L2R~'s, where R is the radius of the (spherically symmetric) clocks whose
world lines define the network of geodesics, and s is the characteristic distance
scale over which one is intending to define such a network. The L}%R—ls max-

imum tightness discussed in Ref. [44] is formally analogous to Eq. (25), but, as
clarified above, this “maximum tightness” was defined in a very different (“dou-
bly different”) way, and therefore the two proposals have completely different
physical implications. Actually, in Ref. [44] it was also stated that for a single
geodesic distance (which might be closer to the type of distance measurability
analysis reported in Refs. [12,13,24]) one could achieve accuracy significantly

better than the formula /L2 R~1s, which was interpreted in Ref. [44] as a direct

result of the structure of a network of geodesics.

Relations of the type min[§D] ~ (L2D)1/® which are formally analogous
to Eq. (35), were encountered in the analysis of maximum tightness achievable
for a geodesics network reported in Ref. [43] and in the analysis of measurability
of distances reported in Ref. [45]. Although once again the definitions of “min”
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and “6D” used in these studies are completely different from the ones relevant
for the “min[6D]” of Eq. (35).

10 Quantum gravity, no strings attached

Some of the arguments reviewed in these lecture notes appear to suggest that
quantum gravity might require a mechanics not exactly of the type of ordinary
quantum mechanics. In particular, the new mechanics might have to accommo-
date a somewhat different relationship (in a sense, “more democratic”) between
“system” and “measuring apparatus”, and should take into account the fact
that the limit in which the apparatus behaves classically is not accessible once
gravitation is turned on. The fact that the most popular quantum-gravity ap-
proaches, including critical superstrings and canonical/loop quantum gravity,
are based on ordinary quantum mechanics but seem inconsistent with the cor-
respondence between formalism and measurability bounds of the type sought
and found in non-gravitational quantum mechanics (through the work of Bohr,
Rosenfeld, Landau, Peierls, Einstein, Salecker, Wigner and many others), repre-
sents, in this author’s humble opinion, one of the outstanding problems of these
approaches. Still, it is of great importance for quantum-gravity research that
these approaches continue to be pursued very aggressively: they might eventu-
ally encounter along their development unforeseeable answers to these questions
or else, as they are “pushed to the limit”, they might turn out to fail in a way
that provides insight on the correct theory. However, the observations pointing
us toward deviations from ordinary quantum-mechanics could provide motiva-
tion for the parallel development of alternative quantum-gravity approaches. But
how could we envision quantum gravity with no strings (or“canonical loops”)
attached? More properly, how can we devise a new mechanics when we have no
direct experimental data on its structure? Classical mechanics was abandoned
for quantum mechanics only after a relatively long period of analysis of physical
problems such as black-body spectrum and photoelectric effect which contained
very relevant information. We don’t seem to have any such insightful physical
problem. At best we might have identified the type of conceptual shortfall which
Mach had discussed with respect to Newtonian gravity. It is amusing to no-
tice that the analogy with Machian conceptual analyses might actually be quite
proper, since at the beginning of this century we were invited to renounce to the
comfort of the reference to “fixed stars” and now that we are reaching the end
of this century we might be forced to renounce to the comfort of an idealized
classical measuring apparatus.

Our task is that much harder in light of the fact that (unless something like
large extra dimensions is verified in Nature) we must make a gigantic leap from
the energy scales we presently understand to Planckian energy scales. While of
course we must all hope someone clever enough can come up with the correct
recipe for this gigantic jump, one less optimistic strategy that might be worth
pursuing is the one of trying to come up with some effective theory useful for the
description of new space-time-related phenomena occurring in an energy-scale
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range extending from somewhere not much above presently achievable energies
up to somewhere safely below the Planck scale. These theories might provide
guidance to experimentalists, and in turn (if confirmed by experiments) might
provide a useful intermediate step toward the Planck scale. For those who are
not certain that we can make a lucky guess of the whole giant step toward the
Planck scale?? this strategy might provide a possibility to eventually get to the
Planck regime only after a (long and painful) series of intermediate steps. Some
of the ideas discussed in the previous sections can be seen as examples of this
strategy. In this section I collect additional relevant material.

10.1 A low-energy effective theory of quantum gravity

While the primary emphasis has been on experimental tests of quantum-gravity-
motivated candidate phenomena, some of the arguments (which are based on
Refs. [12,13,24]) reviewed in these lecture notes can be seen as attempts to in-
dentify some of the properties that one could demand of a theory suitable for
a first stage of partial unification of gravitation and quantum mechanics. This
first stage of partial unification would be a low-energy effective theory captur-
ing only some rough features of quantum gravity. In particular, as discussed in
Refs. [23,13,24], it is plausible that the most significant implications of quan-
tum gravity for low-energy (large-distance) physics might be associated with the
structure of the non-trivial “quantum-gravity vacuum”. A satisfactory picture
of this vacuum is not available at present, and therefore we must generically
characterize it as the appropriate new concept that in quantum gravity takes
the place of the ordinary concept of “empty space”; however, it is plausible that
some of the arguments by Wheeler, Hawking and others, attempting to develop
an intuitive description of the quantum-gravity vacuum, might have captured
at least some of its actual properties. Therefore the experimental investigations
of space-time foam discussed in some of the preceding sections could be quite
relevant for the search of a theory describing a first stage of partial unification
of gravitation and quantum mechanics.

Other possible elements for the search of such a theory come from stud-
ies suggesting that this unification might require a new (non-classical) concept
of measuring apparatus and a new relationship between measuring apparatus
and system. I have reviewed some of the relevant arguments [12,13] through
the discussion of the Salecker-Wigner setup for the measurement of distances,
which manifested the problems associated with the infinite-mass classical-device
limit. As mentioned, a similar conclusion was already drawn in the context of
attempts (see, e.g., Ref. [90]) to generalize to the study of the measurability of
gravitational fields the famous Bohr-Rosenfeld analysis [91] of the measurability

20 Understandably, some are rendered prudent by the realization that the ratio between
the Planck length and the length scales which will be probed by LHC and LIGO is
actually somewhat smaller than, say, the ratio between the typical lengths charac-
terizing the size of small insects and the distance between the planet Pluto and the
Sun.
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of the electromagnetic field. It seems reasonable to explore the possibility that
already the first stage of partial unification of gravitation and quantum mechan-
ics might require a new mechanics. A (related) plausible feature of the correct
effective low-energy theory of quantum-gravity is (some form of) a novel bound
on the measurability of distances. This appears to be an inevitable consequence
of relinquishing the idealized methods of measurement analysis that rely on the
artifacts of the infinite-mass classical-device limit. If indeed one of these novel
measurability bounds holds in the physical world, and if indeed the structure of
the quantum-gravity vacuum is non-trivial and involves space-time fuzziness, it
appears also plausible that this two features be related, i.e. that the fuzziness of
space-time would be ultimately responsible for the measurability bounds. It is
also plausible [23,13] that an effective large-distance description of some aspects
of quantum gravity might involve quantum symmetries and noncommutative ge-
ometry (while at the Planck scale even more novel geometric structures might
be required).

The intuition emerging from these considerations on a novel relationship be-
tween measuring apparatus and system and by a Wheeler-Hawking picture of
the quantum-gravity vacuum has not yet been implemented in a fully-developed
new formalism describing the first stage of partial unification of gravitation and
quantum mechanics, but one can use this emerging intuition for rough estimates
of certain candidate quantum-gravity effects. Some of the theoretical estimates
that I reviewed in the preceding sections, particularly the ones on distance fuzzi-
ness, can be seen as examples of this.

Besides the possibility of direct experimental tests (such as some of the ones
here reviewed), studies of low-energy effective quantum-gravity models might
provide a perspective on quantum gravity that is complementary with respect
to the one emerging from approaches based on proposals for a one-step full
unification of gravitation and quantum mechanics. On one side of this comple-
mentarity there are the attempts to find a low-energy effective quantum gravity
which are necessarily driven by intuition based on direct extrapolation from
known physical regimes; they are therefore rather close to the phenomelogical
realm but they are confronted by huge difficulties when trying to incorporate
this physical intuition within a completely new formalism. On the other side
there are the attempts of one-step full unification of gravitation and quantum
mechanics, which usually start from some intuition concerning the appropriate
formalism (e.g., canonical /loop quantum gravity or critical superstrings) but are
confronted by huge difficulties when trying to “come down” to the level of phe-
nomenological predictions. These complementary perspectives might meet at the
mid-way point leading to new insight in quantum gravity physics. One instance
in which this mid-way-point meeting has already been successful is provided by
the mentioned results reported in Ref. [41], where the candidate phenomenon
of quantum-gravity induced deformed dispersion relations, which had been pro-
posed within phenomenological analyses [46,23,5] of the type needed for the
search of a low-energy theory of quantum gravity, was shown to be consistent
with the structure of canonical/loop quantum gravity.



42 Giovanni Amelino-Camelia

10.2 Theories on non-commutative Minkowski space-time

At various points in these notes there is a more or less explicit reference to
deformed symmetries and noncommutative space-times?!. Just in the previous
subsection I have recalled the conjecture [23,13] that an effective large-distance
description of some aspects of quantum gravity might involve quantum sym-
metries and noncommutative geometry. The type of in vacuo dispersion which
can be tested [5] using observations of gamma rays from distant astrophysical
sources is naturally encoded within a consistent deformation of Poincaré sym-
metries [23,27,28].

A useful structure (at least for toy-model purposes, but perhaps even more
than that) appears to be the noncommutative (so-called “x”) Minkowski space-
time [62,63,21]

[°,t] =\z", [2',27] =0 (38)

where 7,5 = 1,2,3 and A (commonly denoted?? by 1/k) is a free length scale.
This simple noncommutative space-time could be taken as a basis for an effec-
tive description of phenomena associated to a nontrivial foamy quantum-gravity
vacuum?®. When probed very softly such a space would appear as an ordinary
Minkowski space-time?*, but probes of sufficiently high energy would be affected
by the properties of the quantum-gravity foam and one could attempt to model
(at least some aspects of) the corresponding dynamics using a noncommutative
Minkowski space-time. In light of this physical motivation it is natural to assume
that A be related to the Planck length.

The so-called k-deformed Poincaré quantum group [99] acts covariantly [63]
on the k-Minkowski space-time (38). The dispersion relation for massless spin-0
particles

A2 (M e M —2) — ke M =0, (39)

which at low energies describes a deformation that is linearly suppressed by
A (and therefore, if indeed A ~ L,, is of the type discussed in Section 5),

21 The general idea of some form of connection between Planck-scale physics and quan-
tum groups (with their associated noncommutative geometry) is of course not new,
see e.g., Refs. [96-98,7,21,100-103]. Moreover, some support for noncommutativity
of space-time has also been found within measurability analyses [32,23].

As for the notations Log and Egg, this author is partly responsible [28] for the
redundant convention of using the notation A when the reader is invited to visualize
a length scale and going back to the x notation when instead it might be natural for
the reader to visualize a length scale.

In particular, within one particular attempt to model space-time foam, the one of
Liouville non-critical strings [19], the time “coordinate” appears [104] to have prop-
erties that might be suggestive of a xk-Minkowski space-time.

Generalizations would of course be necessary for a description of how the quantum-
gravity foam affects spaces which are curved (non-Minkowski) at the classical level,
and even for spaces which are Minkowski at the classical level a full quantum gravity
of course would predict phenomena which could not be simply encoded in noncom-
mutativity of Minkowski space.

22

23

24
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emerges [21,27,28] as the appropriate Casimir of the xk-deformed Poincaré group.
Rigorous support for the interpretation of (39) as a bona fide dispersion relation
characterizing the propagation of waves in the xk-Minkowski space-time was re-
cently provided in Ref. [28].

In Ref. [28] it was also observed that, using the quantum group Fourier trans-
form which was worked out for our particular algebra in Ref. [105], there might
be a rather simple approach to the definition of a field theory on the xk-Minkowski
space-time. In fact, through the quantum group Fourier transform it is possible
to rewrite structures living on noncommutative space-time as structures living
on a classical (but nonAbelian) “energy-momentum” space. If one is content to
evaluate everything in energy-momentum space, this observation gives the op-
portunity to by-pass all problems directly associated with the non-commutativity
of space-time. While waiting for a compelling space-time formulation of field the-
ories on noncommutative geometries to emerge, it seems reasonable to restrict
all considerations to the energy-momentum space. This approach does not work
for any noncommutative space-time but for all those where the space-time co-
ordinate algebra is the enveloping algebra of a Lie algebra, with the Lie algebra
generators regarded ‘up side down’ as noncommuting coordinates [106].2°

Within this viewpoint a field theory is not naturally described in terms
of a Lagrangian, but rather it is characterized directly in terms of Feynman
diagrams. In principle, according to this proposal a given ordinary field the-
ory can be “deformed” into a counterpart living in a suitable noncommutative
space-time not by fancy quantum-group methods but simply by the appropriate
modification of the momentum-space Feynman rules to those appropriate for a
nonAbelian group. Additional considerations can be found in Ref. [28], but, in
order to give at least one example of how this nonAbelian deformation could
be applied, let me observe here that the natural propagator of a massless spin-0
particle on k-Minkowski space-time should be given in energy-momentum space
by the inverse of the operator in the dispersion relation (39), i.e. in place of
D = (w? — k* —m?)~! one would take

Dy= (A2 4e ™ —2) — e k)T (40)

As discussed in Ref. [28] the elements of this approach to field theory appear to
lead naturally to a deformation of CPT symmetries, which would first show up
in experiments as a violation of ordinary CPT invariance. The development of
realistic field theories of this type might therefore provide us a single formalism
in which both in vacuo dispersion and violations of ordinary CPT invariance
could be computed explicitly (rather than being expressed in terms of unknown
parameters), connecting all of the aspects of these candidate quantum-gravity
phenomena to the value of A = 1/k. One possible “added bonus” of this approach
could be associated to the fact that also loop integration must be appropriately
deformed, and it appears plausible [28] that (as in other quantum-group based

25 Another (partly related, but different) x-Minkowski motivated proposal for field
theory was recently put forward in Ref. [107]. I thank J. Lukierski for bringing this
paper to my attention.
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approaches [98]) the deformation might render ultraviolet finite some classes of
diagrams which would ordinarily be affected by ultraviolet divergences.

11 Conservative motivation and other closing remarks

Since this paper started off with the conclusions, readers might not be too sur-
prised of the fact that I devote most of the closing remarks to some additional
motivation. These remarks had to be postponed until the very end also because
in reviewing the experiments it would have been unreasonable to take a con-
servative viewpoint: those who are so inclined should find in the present lecture
notes encouragement for unlimited excitement. However, before closing I must
take a step back and emphasize those reasons of interest in this emerging phe-
nomenology which can be shared even by those readers who are approaching all
this from a conservative viewpoint.

In reviewing these quantum-gravity experiments I have not concealed my
(however moderate) optimism regarding the prospects for data-driven advances
in quantum-gravity research. I have reminded the reader of the support one
finds in the quantum-gravity literature for the type of phenomena which we can
now start to test, particularly distance fuzziness and violations of Lorentz and /or
CPT symmetries and I have also emphasized that it is thanks to recent advances
in experimental techniques and ideas that these phenomena can be tested (see,
for example, the role played by the remarkable sensitivities recently achieved
with modern interferometers in the experimental proposal reviewed in Section 4
and the role played by very recent break-throughs in GRB phenomenology in
the experimental proposal reviewed in Section 5). But now let me emphasize
that even from a conservative viewpoint these experiments are extremely sig-
nificant, especially those that provide tests of quantum mechanics and tests of
fundamental symmetries. One would not ordinarily need to stress this, but since
these lectures are primarily addressed to young physics students let me observe
that of course this type of tests is crucial for a sound development of our science.
Even if there was no theoretical argument casting doubts on them, we could not
possibly take for granted (extrapolating ad infinitum) ingredients of our under-
standing of Nature as crucial as its mechanics laws and its symmetry structure.
We should test quantum mechanics and fundamental symmetries anyway, we
might as well do it along the directions which appear to be favoured by some
quantum-gravity ideas.

A somewhat related observation can be made concerning the fact that most
of these experiments actually test only one of the two main branches of quantum-
gravity proposals: the proposals in which (in one or another fashion) quantum
decoherence is present. There is in fact a connection (whose careful discussion I
postpone to future publications) between decoherence and the type of violations
of Lorentz and CPT symmetries and the type of power-law dependence on Tpps
of distance fuzziness here considered. The portion of our community which finds
appealing the arguments supporting the decoherence-inducing Wheeler-Hawking
space-time foam (and certain views on the so-called “black-hole information
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paradox”) finds in these recent developments in quantum-gravity phenomenology
an opportunity for direct tests of some of its intuition. The rest of our community
has developed an orthogonal intuition concerning the quantum-gravity realm, in
which there is no place for quantum decoherence. Even this second group might
be looking forward to the outcome of experiments on quantum decoherence,
since the results are going to put under serious test the alternative approach.
Moreover, the fact that we are finally at least at the point of testing decoherence-
involving quantum-gravity approaches (something which was also supposed to
be impossible) should be seen as encouragement for the hope that even other
quantum-gravity approaches will eventually be tested experimentally.

Even though there is of course no guarantee that this new phenomenology
will be able to uncover important elements of the structure of quantum grav-
ity, the fact that such a phenomenological programme exists suffices to make a
legitimate (empirical) science of quantum gravity, a subject often derided as a
safe heaven for theorists wanting to speculate freely without any risk of being
proven wrong by experiments. As emphasized in Refs. [85,108] (and even in the
non-technical press [109]) this can be an important turning point in the devel-
opment of the field. Concerning the future of quantum-gravity phenomenology
let me summarize my expectations in the form of a response to the question
posed by the title of these notes: I believe that we are indeed at the dawn of
quantum-gravity phenomenology, but the forecasts call for an extremely long
and cloudy day with only a few rare moments of sunshine. Especially for those
of us motivated by theoretical arguments suggesting that at the end of the road
there should be a wonderful revolution of our understanding of Nature (perhaps
a revolution of even greater magnitude than the one undergone during the first
years of this 20th century), it is crucial to profit fully from the few glimpses of
the road ahead which quantum-gravity phenomenology will provide.
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Abstract. The arena normally used in black holes thermodynamics was recently gen-
eralized to incorporate a broad class of physically interesting situations. The key idea is
to replace the notion of stationary event horizons by that of ‘isolated horizons.” Unlike
event horizons, isolated horizons can be located in a space-time quasi-locally. Further-
more, they need not be Killing horizons. In particular, a space-time representing a
black hole which is itself in equilibrium, but whose exterior contains radiation, admits
an isolated horizon. In spite of this generality, the zeroth and first laws of black hole
mechanics extend to isolated horizons. Furthermore, by carrying out a systematic, non-
perturbative quantization, one can explore the quantum geometry of isolated horizons
and account for their entropy from statistical mechanical considerations. After a gen-
eral introduction to black hole thermodynamics as a whole, these recent developments
are briefly summarized.

1 DMotivation

In the seventies, there was a flurry of activity in black hole physics which brought
out an unexpected interplay between general relativity, quantum field theory
and statistical mechanics [1-4]. That analysis was carried out only in the semi-
classical approximation, i.e., either in the framework of Lorentzian quantum
field theories in curved space-times or by keeping just the leading order, zero-
loop terms in Euclidean quantum gravity. Nonetheless, since it brought together
the three pillars of fundamental physics, it is widely believed that these results
capture an essential aspect of the more fundamental description of Nature. For
over twenty years, a concrete challenge to all candidate quantum theories of
gravity has been to derive these results from first principles, without invoking
semi-classical approximations.

Specifically, the early work is based on a somewhat ad-hoc mixture of clas-
sical and semi-classical ideas — reminiscent of the Bohr model of the atom —
and generally ignored the quantum nature of the gravitational field itself. For
example, statistical mechanical parameters were associated with macroscopic
black holes as follows. The laws of black hole mechanics were first derived in the
framework of classical general relativity, without any reference to the Planck’s
constant £ [2]. It was then noted that they have a remarkable similarity with the
laws of thermodynamics if one identifies a multiple of the surface gravity « of the
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black hole with temperature and a corresponding multiple of the area ayo, of its
horizon with entropy. However, simple dimensional considerations and thought
experiments showed that the multiples must involve /i, making quantum consid-
erations indispensable for a fundamental understanding of the relation between
black hole mechanics and thermodynamics [1]. Subsequently, Hawking’s inves-
tigation of (test) quantum fields propagating on a black hole geometry showed
that black holes emit thermal radiation at temperature T.q = hr/27 [3]. It
therefore seemed natural to assume that black holes themselves are hot and
their temperature Ty, is the same as T;,q. The similarity between the two sets
of laws then naturally suggested that one associate an entropy Spn = anor/4h
with a black hole of area aypo,. While this procedure seems very reasonable, it
does not provide a ‘fundamental derivation’ of the thermodynamic parameters
Tyn and Spp. The challenge is to derive these formulas from first principles, i.e.,
by regarding large black holes as statistical mechanical systems in a suitable
quantum gravity framework.

Recall the situation in familiar statistical mechanical systems such as a gas,
a magnet or a black body. To calculate their thermodynamic parameters such as
entropy, one has to first identify the elementary building blocks that constitute
the system. For a gas, these are molecules; for a magnet, elementary spins; for the
radiation field in a black body, photons. What are the analogous building blocks
for black holes? They can not be gravitons because the underlying space-times
were assumed to be stationary. Therefore, the elementary constituents must be
non-perturbative in the field theoretic sense. Thus, to account for entropy from
first principles within a candidate quantum gravity theory, one would have to:
i) isolate these constituents; ii) show that, for large black holes, the number of
quantum states of these constituents goes as the exponential of the area of the
event horizon; and, iii) account for the Hawking radiation in terms of processes
involving these constituents and matter quanta.

These are difficult tasks, particularly because the very first step —isolating the
relevant constituents— requires new conceptual as well as mathematical inputs.
Furthermore, in the semi-classical theory, thermodynamic properties have been
associated not only with black holes but also with cosmological horizons. There-
fore, ideally, the framework has to be sufficiently general to encompass these
diverse situations. It is only recently, more than twenty years after the initial
flurry of activity, that detailed proposals have emerged. The more well-known of
these comes from string theory [27] where the relevant elementary constituents
are associated with D-branes which lie outside the original perturbative sector of
the theory. The purpose of this contribution is to summarize the ideas and results
from another approach which emphasizes the quantum nature of geometry, us-
ing non-perturbative techniques from the very beginning. Here, the elementary
constituents are the quantum excitations of geometry itself and the Hawking
process now corresponds to the conversion of the quanta of geometry to quanta
of matter. Although the two approaches seem to be strikingly different from one
another, as I will indicate, in a certain sense they are complementary.
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2 Key Issues

In the last section, I focussed on quantum issues. However, the status of clas-
sical black hole mechanics, which provided much of the inspiration in quantum
considerations, has itself remained unsatisfactory in some ways. Therefore, in a
systematic approach, one has to revisit the classical theory before embarking on
quantization.

The zeroth and first laws of black hole mechanics refer to equilibrium situa-
tions and small departures therefrom. Therefore, in this context, it is natural to
focus on isolated black holes. However, in standard treatments, these are gen-
erally represented by stationary solutions of field equations, i.e, solutions which
admit a time-translation Killing vector field everywhere, not just in a small neigh-
borhood of the black hole. While this simple idealization is a natural starting
point, it seems to be overly restrictive. Physically, it should be sufficient to im-
pose boundary conditions at the horizon which ensure only the black hole itself
1s isolated. That is, it should suffice to demand only that the intrinsic geometry
of the horizon be time independent, whereas the geometry outside may be dy-
namical and admit gravitational and other radiation. Indeed, we adopt a similar
viewpoint in ordinary thermodynamics; in the standard description of equilib-
rium configurations of systems such as a classical gas, one usually assumes that
only the system under consideration is in equilibrium and stationary, not the
whole world. For black holes, in realistic situations one is typically interested
in the final stages of collapse where the black hole is formed and has ‘settled
down’ or in situations in which an already formed black hole is isolated for the
duration of the experiment (see figure 1). In such situations, there is likely to be
gravitational radiation and non-stationary matter far away from the black hole,
whence the space-time as a whole is not expected to be stationary. Surely, black
hole mechanics should incorporate in such situations.

A second limitation of the standard framework lies in its dependence on event
horizons which can only be constructed retroactively, after knowing the complete
evolution of space-time. Consider for example, Figure 2 in which a spherical star
of mass M undergoes a gravitational collapse. The singularity is hidden inside
the null surface Ay at »r = 2M which is foliated by a family of marginally
trapped surfaces and would be a part of the event horizon if nothing further
happens. Suppose instead, after a very long time, a thin spherical shell of mass
6M collapses. Then A; would not be a part of the event horizon which would
actually lie slightly outside A; and coincide with the surface r = 2(M + 6 M) in
distant future. On physical grounds, it seems unreasonable to exclude 4A; a priori
from thermodynamical considerations. Surely one should be able to establish the
standard laws of laws of mechanics not only for the event horizon but also for
A

Another example is provided by cosmological horizons in de Sitter space-
time [4]. In this case, there are no singularities or black-hole event horizons.
On the other hand, semi-classical considerations enable one to assign entropy
and temperature to these horizons as well. This suggests the notion of event
horizons is too restrictive for thermodynamical analogies. We will see that this
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0
(b)

Fig.1. (a) A typical gravitational collapse. The portion A of the horizon at late

times is isolated. The space-time M of interest is the triangular region bounded by A,

Z" and a partial Cauchy slice M. (b) Space-time diagram of a black hole which is

initially in equilibrium, absorbs a small amount of radiation, and again settles down

to equilibrium. Portions A; and Az of the horizon are isolated.

is indeed the case; as far as equilibrium properties are concerned, the notion of
event horizons can be replaced by a more general, quasi-local notion of ‘isolated
horizons’ for which the familiar laws continue to hold. The surface 4A; in figure
2 as well as the cosmological horizons in de Sitter space-times are examples of
isolated horizons.

At first sight, it may appear that only a small extension of the standard
framework, based on stationary event horizons, is needed to overcome the lim-
itations discussed above. However, this is not the case. For example, in the
stationary context, one identifies the black-hole mass with the ADM mass de-
fined at spatial infinity. In the presence of radiation, this simple strategy is no
longer viable since radiation fields well outside the horizon also contribute to
the ADM mass. Hence, to formulate the first law, a new definition of the black
hole mass is needed. Similarly, in the absence of a global Killing field, the notion
of surface gravity has to be extended in a non-trivial fashion. Indeed, even if
space-time happens to be static in a neighborhood of the horizon —already a
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[

Fig. 2. A spherical star of mass M undergoes collapse. Later, a spherical shell of mass
6M falls into the resulting black hole. While 4A; and A; are both isolated horizons,
only A is part of the event horizon.

stronger condition than contemplated above— the notion of surface gravity is
ambiguous because the standard expression fails to be invariant under constant
rescalings of the Killing field. When a global Killing field exists, the ambiguity
is removed by requiring the Killing field be unit at infinity. Thus, contrary to
intuitive expectation, the standard notion of the surface gravity of a stationary
black hole refers not just to the structure at the horizon, but also to infinity.
This ‘normalization problem’ in the definition of the surface gravity seems espe-
cially difficult in the case of cosmological horizons in (Lorentzian) space-times
whose Cauchy surfaces are compact. Apart from these conceptual problems, a
host of technical issues must also be resolved. In Einstein-Maxwell theory, the
space of stationary black hole solutions is three dimensional whereas the space of
solutions admitting isolated horizons is infinite-dimensional since these solutions
admit radiation near infinity. As a result, new techniques have to be used and
these involve some functional analytic subtleties.

This set of issues has a direct bearing on quantization as well. For, in a sys-
tematic approach, one would first extract an appropriate sector of the theory
in which space-time geometries satisfy suitable conditions at interior boundaries
representing horizons, then introduce a well-defined action principle tailored to
these boundary conditions, and, finally, use the resulting Lagrangian or Hamilto-
nian frameworks as points of departure for constructing the quantum theory. If
one insists on using event horizons, these steps are difficult to carry out because
the resulting boundary conditions do not translate in to (quasi-)local restrictions
on fields. Indeed, for event horizon boundaries, there is no action principle avail-
able in the literature. The restriction to globally stationary space-times causes
additional difficulties. For, by no hair theorems, the space of stationary solu-
tions admitting event horizons is finite dimensional and quantization of this
‘mini-superspace’ would ignore all field theoretic effects by fiat. Indeed, most
treatments of black hole mechanics are based on differential geometric identities
and field equations, and are not at all concerned with such issues related to
quantization.



Physics of Isolated Horizons 55

Thus, the first challenge is to find a new framework which achieves, in a single
stroke, three goals: i) it overcomes the two limitations of black hole mechanics
by finding a better substitute for stationary event horizons; ii) generalizes laws
of black hole mechanics to the new, more physical paradigm; and, iii) leads
to a well-defined action principle and Hamiltonian framework which can serve
as springboards for quantization. The second challenge is then to: i) carry out
quantization non-perturbatively; ii) obtain a quantum description of the horizon
geometry; and, iii) account for the the horizon entropy statistical mechanically
by counting the underlying micro-states. As discussed in the next section, these
goals have been met for non-rotating isolated horizons.

3 Summary

In this section, I will sketch the main ideas and results on the classical and
quantum physics of isolated horizons and provide a guide to the literature where
details can be found.

3.1 Isolated horizons

The detailed boundary conditions defining non-rotating isolated horizons were
introduced in [10,12]. Basically, an isolated horizon A is a null 3-surface, topo-
logically S? x R, foliated by a family of marginally trapped 2-spheres. Denote
the normal direction field to A by [¢¢]. Being null, it is also tangential to A.
The boundary conditions require that it be expansion-free, so that the area of
the marginally trapped surface remains constant ‘in time’. Assuming that the
matter fields under consideration satisfy a very weak ‘energy condition’ at A,
the Raychaudhuri equation then implies that there is no flux of matter across A.
More detailed analysis also shows that there is no flux of gravitational radiation.
(More precisely, the Newman-Penrose curvature component ¥, vanishes on A.)
These properties capture the idea that the horizon is isolated. Denote the sec-
ond null normal to the family of marginally trapped 2-spheres by [n?]. There are
additional conditions on the Newman-Penrose spin coefficients associated with
[n%] which ensure that A is a future horizon with no rotation.

Event horizons of static black holes of the Einstein-Maxwell-Dilaton theory
are particular examples of non-rotating isolated horizons. The cosmological hori-
zons in de Sitter space-time provide other examples. However, there are many
other examples as well; the space of solutions admitting isolated horizons is in
fact infinite dimensional [14,12].

All conditions in the definition are local to A whence the isolated horizon
can be located quasi-locally; unlike the event horizon, one does not have to know
the entire space-time to determine whether or not a given null surface is an
isolated horizon. Also, there may be gravitational or other radiation arbitrarily
close to A. Therefore, in general, space-times admitting isolated horizons need
not be stationary even in a neighborhood of A; isolated horizons need not be
Killing horizons [14]. In spite of this generality, the intrinsic geometry, several
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of the curvature components and several components of the Maxwell field at
any isolated horizon are the same as those at the event horizon of Reissner-
Nordstrom space-times [12,10,13]. This similarity greatly simplifies the detailed
analysis.

Finally, isolated horizons are special cases of Hayward’s trapping horizons
[18], the most important restriction being that the direction field [¢?] is assumed
to be expansion-free. Physically, as explained above, this restriction captures
the idea that the horizon is ‘isolated’, i.e., we are dealing with an equilibrium
situation. The restriction also gives rise to some mathematical simplifications
which, in turn, make it possible to introduce a well-defined action principle and
Hamiltonian framework. As we will see below, these structures play an essential
role in the proof of the generalized first law and in passage to quantization.

3.2 Mechanics

Let me begin by placing the present work on mechanics of isolated horizons in
the context of other treatments in the literature. The first treatments of the
zeroth and first laws were given by Bardeen, Carter and Hawking [2] for black
holes surrounded by rings of perfect fluid and this treatment was subsequently
generalized to include other matter sources [5]. In all these works, one restricted
oneself to globally stationary space-times admitting event horizons and consid-
ered transitions from one such space-time to a nearby one. Another approach,
based on Noether charges, was introduced by Wald and collaborators [19,6].
Here, one again considers stationary event horizons but allows the variations to
be arbitrary. Furthermore, this method is applicable not only for general relativ-
ity but for stationary black holes in a large class of theories. In both approaches,
the surface gravity x and the mass M of the hole were defined using the global
Killing field and referred to structure at infinity.

The zeroth and first laws were generalized to arbitrary, non-rotating isolated
horizons A in the Einstein-Maxwell theory in [11,12] and dilatonic couplings were
incorporated in [13]. In this work, the surface gravity x and the mass M of the
isolated horizon refer only to structures local to A.! As mentioned in section 3.1,
the space ZH of solutions admitting isolated horizons is infinite dimensional and
static solutions constitute only a finite dimensional sub-space S of ZH. Let us
restrict ourselves to the non-rotating case for comparison. Then, in treatments
based on the Bardeen-Carter-Hawking approach, one restricts oneself only to S
and variations tangential to S. In the Wald approach, one again restricts oneself
to points of S but the variations need not be tangential to S. In the present
approach, on the other hand, the laws hold at any point of ZH and any tangent

! In standard treatments, static solutions are parametrized by the ADM mass M,
electric and magnetic charges @ and P, dilatonic charge D, cosmological constant A
and the dilatonic coupling parameter . Of these, M and D are defined at infinity.
In the generalized context of isolated horizons, on the other hand, one must use
parameters that are intrinsic to A. Apriori, it is not obvious that this can be done.
It turns out that we can trade M with the area aa of the horizon and D with the
value ¢ of the dilaton field on A. Boundary conditions ensure that ¢a is a constant.
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vector at that point. However, so far, our results pertain only to mon-rotating
horizons in a restricted class of theories.

The key ideas in the present work can be summarized as follows. It is clear
from the setup that surface gravity should be related to the acceleration of [¢¢].
Recall, however, the acceleration is not a property of a direction field but of
a vector field. Therefore, to define surface gravity, we must pick out a specific
vector field % from the equivalence class [¢%]. Now, the shear, the twist, and the
expansion of the direction field [¢*] all vanish for any choice of normalization.
Therefore, we can not use these fields to pick out a preferred ¢*. However, it turns
out that the expansion O, of n® is sensitive to its normalization. Furthermore,
in static solutions, @, is determined entirely by the intrinsic parameters of
the horizon. Therefore, it is natural to require that ©,) be the same function
of the parameters on any isolated horizon. Although it is not apriori obvious,
the available rescaling freedom in fact suffices to meet this requirement on any
isolated horizon. Furthermore, the condition uniquely picks out a vector field n®
from the equivalence class [n*]. Having a preferred n® at our disposal, using the
standard normalization £-n = —1 we can then select an £* from the equivalence
class [¢%] uniquely. Finally, we define surface gravity s to be the acceleration of
this ‘properly normalized’ £; i.e., we set 2V ¢? = k¢® On A.

By construction, k, so defined, yields the ‘correct’ surface gravity in the six
parameter family of static, dilatonic black-holes. However, the key question is:
Do the zeroth and first laws hold for general isolated horizons? This is a key test
of our strategy of defining k in the general case. The answer is in the affirmative.

The zeroth law —constancy of k on isolated horizons— is established as follows.
First, our boundary conditions on [¢*] and [n?] directly imply that  is constant
on each trapped 2-surface. Next, one can show that x can be expressed in terms
of the Weyl curvature component ¥, and the expansion ©,,. Finally, the Bianchi
identity V[, Rpcjge = 0, the form of the Ricci tensor component @1, dictated by
our boundary conditions on the matter stress-energy, and our ‘normalization
condition” on O, imply that x is also constant along the integral curves of
£®. Hence k is constant on any isolated horizon. To summarize, even though
our boundary conditions allow for the presence of radiation arbitrarily close to
A, they successfully extract enough structure intrinsic to the horizons of static
black holes to ensure the validity of the zeroth law. Our derivation brings out
the fact that the zeroth law is really local to the horizon: Degrees of freedom of
the isolated horizon ‘decouple’ from excitations present elsewhere in space-time.

To establish the first law, one must first introduce the notion of mass Mx of
the isolated horizon. The idea is to define M A using the Hamiltonian framework.
For this, one needs a well-defined action principle. Fortunately, even though the
boundary conditions were designed only to capture the notion of an isolated
horizon in a quasi-local fashion, they turn out to be well-suited for the variational
principle. However, just as one must add a suitable boundary term at infinity
to the Einstein-Hilbert action to make it differentiable in the asymptotically flat
context, we must now add another boundary term at A. Somewhat surprisingly,
the new boundary term turns out to be the well-known Chern-Simons action
(for the self-dual connection). This specific form is not important to classical
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considerations. However, it plays a key role in the quantization procedure. The
boundary term at A is different from that at infinity. Therefore one can not
simultaneously absorb both terms in the bulk integral using Stokes’ theorem.
Finally, to obtain a well-defined variational principle for the Maxwell part of the
action, one needs a partial gauge fixing at A. One can follow a procedure similar
to the one given above for fixing the rescaling freedom in n® and ¢°. It turns out
that, not only does this strategy make the Maxwell action differentiable, but it
also uniquely fixes the scalar potential @ at the horizon.

Having the action at one’s disposal, one can pass to the Hamiltonian frame-
work.? Now, it turns out that the symplectic structure has, in addition to the
standard bulk term, a surface term at A. The surface term is inherited from the
Chern-Simons term in the action and is therefore precisely the Chern-Simons
symplectic structure with a specific coefficient (i.e., in the language of the Chern-
Simons theory, a specific value of the ‘level’ k). The presence of a surface term in
the symplectic structure is somewhat unusual; for example, the boundary term
at infinity in the action does not induce a boundary term in the symplectic
structure.

The Hamiltonian consists of a bulk integral and two surface integrals, one at
infinity and one at A. The presence of two surface integrals is not surprising; for
example one encounters it even in the absence of an internal boundary, if the
space-times under consideration have two asymptotic regions. As usual, the bulk
term is a linear combination of constraints and the boundary term at infinity is
the ADM energy. Using several examples as motivation, we interpret the surface
integral at horizon as the horizon mass M [12]. This interpretation is supported
by the following result: If the isolated horizon extends to future time-like infinity
i*, under suitable assumptions one can show that M is equal to the future
limit, along Z7, of the Bondi mass. Finally, note that M is not a fundamental,
independent attribute of the isolated horizon; it is a function of the area an and
charges Q A, Pa which are regarded as the fundamental parameters.

Thus, we can now assign to any isolated horizon, an area a A, a surface gravity
K, an electric potential @ and a mass Ma. The electric charge QA can be defined
using the electro-magnetic and dilatonic fields field at A [13]. All quantities are
defined in terms of the local structure at A. Therefore, one can now ask: if one
moves from any space-time in ZH to any nearby space-time through a variation
6, how do these quantities vary? An explicit calculation shows:

1
OMp = % kbaa + POQ A .
Thus, the first law of black hole mechanics naturally generalizes to isolated
horizons. (As usual, the magnetic charge can be incorporated via the standard

duality rotation.) This result provides additional support for our strategy of
defining x, @ and Ma.

2 This passage turns out not to be as straightforward as one might have imagined
because there are subtle differences between the variational principles that lead to
the Lagrangian and Hamiltonian equations of motion. See [12].
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In static space-times, the mass Ma of the isolated horizon coincides with the
ADM mass M defined at infinity. In general, M is the difference between M and
the ‘radiative energy’ of space-time. However, as in the static case, M A continues
to include the energy in the ‘Coulombic’ fields —i.e., the ‘hair'— associated with
the charges of the horizon, even though it is defined locally at A. This is a subtle
property but absolutely essential if the first law is to hold in the form given
above. To my knowledge, none of the quasi-local definitions of mass shares this
property with M. Finally, isolated horizons provide an appropriate framework
for discussing the ‘physical process version’ of the first law for processes in which
the charge of the black hole changes. The standard strategy of using the ADM
mass in place of M appears to run in to difficulties [12] and, as far as I am
aware, this issue was never discussed in the literature in the usual context of
context of static event horizons.

3.3 Quantum geometry in the bulk

In this sub-section, I will make a detour to introduce the basic ideas we need
from quantum geometry. For simplicity, I will ignore the presence of boundaries
and focus just on the structure in the bulk.

There is a common expectation that the continuum picture of space-time,
used in macroscopic physics, would break down at the Planck scale. This ex-
pectation has been shown to be correct within a non-perturbative, background
independent approach to quantum gravity (see [7] and references therein).® The
approach is background independent in the sense that, at the fundamental level,
there is neither a classical metric nor any other field to perturb around. One only
has a bare manifold and all fields, whether they represent geometry or matter,
are quantum mechanical from the beginning. Because of the subject matter now
under consideration, I will focus on geometry.

Quantum mechanics of geometry has been developed systematically over the
last three years and further exploration continues [7]. The emerging theory is ex-
pected to play the same role in quantum gravity that differential geometry plays
in classical gravity. That is, quantum geometry is not tied to a specific gravita-
tional theory. Rather, it provides a kinematic framework or a language to formu-
late dynamics in a large class of theories, including general relativity and super-
gravity. In this framework, the fundamental excitations of gravity/geometry are
one-dimensional, rather like ‘polymers’ and the continuum picture arises only
as an approximation involving coarse-graining on semi-classical states. The one
dimensional excitations can be thought of as flux lines of area [21]. Roughly,
each line assigns to a surface element it crosses one Planck unit of area. More

3 The necessity of a non-perturbative approach is illustrated by the following simple
example. The energy levels of a harmonic oscillator are discrete. However, it would
be difficult to see this fundamental discreteness if one were to solve the problem
perturbatively, starting from the Hamiltonian of a free particle. Similarly, if one
begins with a continuum background geometry and then tries to incorporate the
quantum effects perturbatively, it would be difficult to unravel discreteness in the
spectra of geometric operators such as areas of surfaces or volumes of regions.
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precisely, the area assigned to a surface is obtained by algebraic operations (in-
volving group-representation theory) at points where the flux lines intersect the
surface. As is usual in quantum mechanics, quantum states of geometry are rep-
resented by elements of a Hilbert space [20]. I will denote it by Hpui. The basic
object for spatial Riemannian geometry continues to be the triad, but now rep-
resented by an operator(-valued distribution) on Hyyuik [21]. All other geometric
quantities —such as areas of surfaces and volumes of regions— are constructed
from the triad and represented by self-adjoint operators on Hyyx. The eigen-
values of all geometric operators are discrete; geometry is thus quantized in the
same sense that the energy and angular momentum of the hydrogen atom are
quantized [21].

There is however, one subtlety: there is a one-parameter ambiguity in this
non-perturbative quantization [22]. The parameter is positive, labeled v and
called the Immirzi parameter. This ambiguity is similar to the # ambiguity in
the quantization of Yang-Mills theories. For all values of ~, one obtains the same
classical theory, expressed in different canonical variables. However, quantiza-
tion leads to a one-parameter family of inequivalent representations of the basic
operator algebra. In particular, in the sector labeled by y the spectra of the triad
—and hence, all geometric— operators depend on  through an overall multi-
plicative factor. Therefore, while the qualitative features of quantum geometry
are the same in all 7 sectors, the precise eigenvalues of geometric operators
vary from one sector to another. The y-dependence itself is simple —effectively,
Newton’s constant G is replaced by vG in the «y-sector. Nonetheless, to obtain
unique predictions, it must be eliminated and this requires an additional input.
Note however that since the ambiguity involves a single parameter, as with the ¢
ambiguity in QCD, one judiciously chosen experiment would suffice to eliminate
it. Thus, for example, if we could measure the quantum of area , i.e., smallest
non-zero value that area of any surface can have, we would know which value of
~ is realized in Nature. Any further experiment would then be a test of the the-
ory. Of course, it is not obvious how to devise a feasible experiment to measure
the area quantum directly. However, we will see that it is possible to use black
hole thermodynamics to introduce suitable thought experiments. One of them
can determine the value of v and the other can then serve as consistency checks.

3.4 Quantum geometry of horizon and entropy

Ideas introduced in the last three sub-sections were combined and further devel-
oped to systematically analyze the quantum geometry of isolated horizons and
calculate their statistical mechanical entropy in [10,15,16]. (For earlier work, see
[23,24].) In this discussion, one is interested in space-times with an isolated hori-
zon with fized values a,, Q, and ¢, of the intrinsic horizon parameters, the area,
the electric charge, and the value of the dilaton field.

The presence of an isolated horizon A manifests itself in the classical theory
through boundary conditions. As usual, we can use some of the boundary condi-
tions to eliminate certain gauge degrees of freedom at A. The remaining, ‘true’
degree of freedom are coded in an Abelian connection V' defined intrinsically on
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A. V is constructed from the self-dual spin connection in the bulk. It is interest-
ing to note that there are no surface degrees of freedom associated with matter:
Given the intrinsic parameters of the horizon, boundary conditions imply that
matter fields defined intrinsically on A can be completely expressed in terms
of geometrical (i.e., gravitational) fields at A. One can also see this feature in
the symplectic structure. While the gravitational symplectic structure acquires
a surface term at A, matter symplectic structures do not. We will see that this
fact provides a simple explanation of the fact that, among the set of intrinsic
parameters natural to isolated horizons, entropy depends only on area.

Of particular interest to the present Hamiltonian approach is the pull-back
of V to the 2-sphere Sa (orthogonal to ¢* and n®) at which the space-like 3-
surfaces M used in the phase space construction intersect A. (See figure 1(a).)
This pull-back —which I will also denote by V' for simplicity— is precisely the
U(1) spin-connection of the 2-sphere Sa. Not surprisingly, the Chern-Simons
symplectic structure for the non-Abelian self-dual connection that I referred to in
Section 3.2 can be re-expressed in terms of V. The result is unexpectedly simple
[10]: the surface term in the total symplectic structure is now just the Chern-
Simons symplectic structure for the Abelian connection V! The only remaining
boundary condition relates the curvature F' = dV of V' to the triad vectors. This
condition is taken over as an operator equation. Thus, in the quantum theory,
neither the intrinsic geometry nor the curvature of the horizon are frozen; neither
is a classical field. Each is allowed to undergo quantum fluctuations but because
of the operator equation relating them, they have to fluctuate in tandem.

To obtain the quantum description in presence of isolated horizons, there-
fore, one begins with a fiducial Hilbert space H = Hpuix ® Hsurface Where Hpuik
is the Hilbert space associated with the bulk polymer geometry and Hgurface 1S
the Chern-Simons Hilbert space for the connection V.* The quantum boundary
condition says that only those states in H are allowed for which there is a precise
intertwining between the bulk and the surface parts. However, because the re-
quired intertwining is ‘rigid’, apriori it is not clear that the quantum boundary
conditions would admit any solutions at all. For solutions to exist, there has
to be a very delicate matching between certain quantities on Hypyx calculated
from the bulk quantum geometry and certain quantities on Hsyrface calculated
from the Chern-Simons theory. The precise numerical coefficients in the surface
calculation depend on the numerical factor in front of the surface term in the
symplectic structure (i.e., on the Chern-Simons level k) which is itself determined
in the classical theory by the coefficient in front of the Einstein-Hilbert action
and our classical boundary conditions. Thus, the existence of a coherent quan-
tum theory of isolated horizons requires that the three corner stones —classical
general relativity, quantum mechanics of geometry and Chern-Simons theory—

4 In the classical theory, all fields are smooth, whence the value of any field in the bulk
determines its value on A by continuity. In quantum theory, by contrast, the measure
is concentrated on generalized fields which can be arbitrarily discontinuous, whence
surface states are no longer determined by bulk states. A compatibility relation does
exist but it is introduced by the quantum boundary condition. It ensures that the
total state is invariant under the permissible internal rotations of triads.
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be united harmoniously. Not only should the three conceptual frameworks fit
together seamlessly but certain numerical coefficients, calculated independently
within each framework, have to match delicately. Fortunately, these delicate con-
straints are met and there the quantum boundary conditions admit a sufficient
number of solutions.

Because we have fixed the intrinsic horizon parameters, is is natural to con-
struct a microcanoniocal ensemble from eigenstates of the corresponding oper-
ators with eigenvalues in the range (g, — 6q,q, + 8¢q) where 6q is very small
compared to the fixed value g, of the intrinsic parameters. Since there are no
surface degrees of freedom associated with matter fields, let us focus on area,
the only gravitational parameter available to us. Then, we only have to consider
those states in Hpux whose polymer excitations intersect Sa in such a way that
they endow it with an area in the range (a, — da,a, + da) where éa is of the
order of /2, (with ¢p;, the Planck length). Denote by P the set of punctures that
any one of these polymer states makes on S, each puncture being labeled by
the eigenvalue of the area operator at that puncture. Given such a bulk state,
the quantum boundary condition tells us that only those Chern-Simons surface
states are allowed for which the curvature is concentrated at punctures and the
range of allowed value of the curvature at each puncture is dictated by the area
eigenvalue at that puncture. Thus, for each P, the quantum boundary condition
picks out a sub-space Hsurface of the surface Hilbert space Hsurface- Thus, the
quantum geometry of the isolated horizon is effectively described by states in

HPhs
burface @ Hsurface

as P runs over all possible punctures and area-labels at each puncture, com-
patible with the requirement that the total area assigned to Sa lie in the given
range.

One can visualize this quantum geometry as follows. Given any one state in
HP .o, the connections V are flat everywhere except at the punctures and the
holonomy around each puncture is fixed. Using the classical interpretation of V'
as the metric compatible spin connection on S we conclude that, in quantum
theory, the intrinsic geometry of the horizon is flat except at the punctures.
At each puncture, there is a deficit angle, whose value is determined by the
holonomy of V' around that puncture. Since each puncture corresponds to a
polymer excitation in the bulk, polymer lines can be thought of as ‘pulling’ on
the horizon, thereby producing deficit angles in an otherwise flat geometry (see
figure 3). Each deficit angle is quantized and the angles add up to 27 as in
a discretized model of a 2-sphere geometry. Thus, the quantum geometry of an
isolated horizon is quite different from its smooth classical geometry. In addition,
of course, each polymer line endows the horizon with a small amount of area and
these area elements add up to provide the horizon with total area in the range
(ap — da,a, + da). Thus, one can intuitively picture the quantum horizon as
the surface of a large, water-filled balloon which is suspended with a very large
number of wires, each exerting a small tug on the surface at the point of contact
and giving rise to a ‘conical singularity’ in the geometry.
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Ji

Fig. 3. (a) Quantum geometry around an isolated horizon. The i-th polymer excita-
tion of the bulk geometry carries a 1/2-integer label 7. Upon puncturing the horizon
2-sphere Sa, it induces 87y+4/Ji(j; + 1) Planck units of area. At each puncture, in the
intrinsic geometry of Sa, there is a deficit angle of 27wm; /k, where m; is a 1/2-integer
in the interval [—j;, j;] and k the ‘level’ of the Chern-Simons theory. (b) Magni-
fied view of a puncture p;. The holonomy of the U(1) connection V around a loop ~
surrounding any puncture p; determines the deficit angle at p;. Each deficit angle is
quantized and they add up to 2x.
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Finally, one can calculate the entropy of the quantum micro-canonical en-
semble. We are not interested in the full Hilbert space since the ‘bulk-part’
includes, e.g., states of gravitational radiation and matter fields far away from
A. Rather, we wish to consider only the states of the isolated horizon A itself.
Therefore, we are led to trace over the ‘bulk states’ to construct a density ma-
trix prp describing a maximum-entropy mixture of surface states for which the
intrinsic parameters lie in the given range. The statistical mechanical entropy is
then given by S = —Tr priy In prg. As usual, the trace can be obtained simply by

counting states, i.e., by computing the dimension A of Hfff}ice. We have:

In2

70:71—\/5

Thus, the number of micro-states does go exponentially as area. This is a non-
trivial result. For example if, as in the early treatments, one ignores boundary
conditions and the Chern-Simons term in the symplectic structure and does a
simple minded counting, one finds that the exponent in N is proportional to
\/@o. However, our numerical coefficient in front of the exponent depends on the
Immirzi parameter v. The appearance of 7 can be traced back directly to the
fact that, in the ~«-sector of the theory, the area eigenvalues are proportional
to 7. Thus, because of the quantization ambiguity, the y-dependence of N is
inevitable.

We can now adopt the following ‘phenomenological’ viewpoint. In the infinite
dimensional space ZH, one can fix one space-time admitting isolated horizon, say
the Schwarzschild space-time with mass M, >> Mpi, (or, the de Sitter space-
time with the cosmological constant A, << 1/¢%)). For agreement with semi-
classical considerations, in these cases, entropy should be given by S = (a,/4¢3,)
which can happen only in the sector v = ~, of the theory. The theory is now
completely determined and we can go ahead and calculate the entropy of any
other isolated horizon in this theory. Clearly, we obtain:

N =exp (% 43%)1) where

Sy = — =2
TH = 7 2

for all isolated horizons. Furthermore, in this ~y-sector, the statistical mechan-
ical temperature of any isolated horizon is given by Hawking’s semi-classical
value kh/27 [8,23]. Thus, we can do one thought experiment —observe the tem-
perature of a large black black hole from far away— to eliminate the Immirzi
ambuguity and fix the theory. This theory then predicts the correct entropy and
temperature for all isolated horizons in ZH with a, >> (2.

The technical reason behind this univerality is trivial. However, the concep-
tual argument is not because it is quite non-trivial that A depends only on
the area and not on values of other charges. Furthermore, the space ZTH is in-
finite dimensional and it is not apriori obvious that one should be able to give
a statistical mechanical account of entropy of all isolated horizons in one go.
Indeed, values of fields such as ¥, and ¢o can be vary from one isolated horizon
to another even when they have same intrinsic parameters. This freedom could
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well have introduced obstructions, making quantization and entropy calculation
impossible. That this does not happen is related to but independent of the fact
that this feature did not prevent us from extending the laws of mechanics from
static event horizons to general isolated horizons.

4 Discussion

Perhaps the most pleasing aspect of this analysis is the existence of a single
framework to encompass diverse ideas at the interface of general relativity, quan-
tum theory and statistical mechanics. In the classical domain, this framework
generalizes laws of black hole mechanics to physically more realistic situations.
At the quantum level, it provides a detailed description of the quantum geometry
of horizons and leads to a statistical mechanical calculation of entropy. In both
domains, the notion of isolated horizons provides an unifying arena enabling
us to handle different types of situations —e.g., black holes and cosmological
horizons— in a single stroke. In the classical theory, the same line of reason-
ing allows one to establish the zeroth and first laws for all isolated horizons.
Similarly, in the quantum theory, a single procedure leads one to quantum ge-
ometry and entropy of all isolated horizons. By contrast, in other approaches,
fully quantum mechanical treatments seem to be available only for stationary
black holes. Indeed, to my knowledge, even in the static case, a complete statis-
tical mechanical calculation of the entropy of cosmological horizons has not been
available. Finally, our extension of the standard Killing horizon framework sheds
new light on a number of issues, particularly the notion of mass of associated to
an horizon and the physical process version of the first law [12].

However, the framework presented here is far from being complete and pro-
vides promising avenues for future work. First, while some of the motivation
behind our approach is similar to the considerations that led to the interesting
series of papers by Brown and York, not much is known about the relation be-
tween the two frameworks. It would be interesting to explore this relation, and
more generally, to relate the isolated horizon framework to the semi-classical
ideas based on Euclidean gravity. Second, while the understanding of the micro-
states of an isolated horizon is fairly deep by now, work on a quantum gravity
derivation of the Hawking radiation has just begin [17]. Using general arguments
based on Einstein’s A and B coefficients [1] and the known micro-states of an
isolated horizon, one can argue that the envelope of the line spectrum emitted
by a black hole should be thermal. However, further work is necessary to make
sure that the details are correct. As far as the zeroth and first laws and the
entropy calculation are concerned, the obvious open problem is the extension to
incorporate non-zero angular momentum. As indicated in [10,12], the extension
of the classical theory should be relatively straightforward, although it may well
pose some technical challenges. To incorporate rotation, only one condition (on
spin-coefficients associated with n®) in the present definition of non-rotating iso-
lated horizon needs to be weakened. Work has already begun on this problem.
The extension of the entropy calculation, on the other hand, may turn out to
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be trickier for it may well require a new technical insight. On a long range, the
outstanding challenge is to obtain a deeper understanding of the Immirzi ambi-
guity and the associated issue of renormalization of Newton’s constant. For any
value of =y, one obtains the ‘correct’ classical limit. However, as far as black hole
thermodynamics is concerned, it is only for v = ~, that one seems to obtain
agreement with quantum field theory in curved space-times. Is this value of
robust? Can one make further semi-classical checks? A pre-requisite for this in-
vestigation is a better handle on the issue of semi-classical states. A major effort
will soon be devoted to this issue.

Let me conclude with a comparison between the entropy calculation in this
approach and those performed in string theory. First, there are some obvious
differences. In the present approach, one begins with the sector of the classi-
cal theory containing space-times with isolated horizons and then proceeds with
quantization. consequently, one can keep track of the physical, curved geome-
try. In particular, one can see that, as required by physical considerations, the
degrees of freedom which account for entropy can interact with the physical
exterior of the black hole. In string theory, by contrast, actual calculations are
generally performed in flat space and non-renormalization arguments and/or du-
ality conjectures are then invoked to argue that the results so obtained refer to
macroscopic black holes. Therefore, relation to the curved space geometry and
physical meaning of the degrees of freedom which account for entropy is rather
obscure. More generally, lack of direct contact with physical space-time can also
lead to practical difficulties while dealing with macroscopic situations. For ex-
ample, in string theory, it may be difficult to account for the entropy normally
associated with de Sitter horizons. On the other hand, in the study of genuinely
quantum, Planck size black holes, this ‘distance’ from the curved space-time
geometry may turn out to be a blessing, as classical curved geometry will not
be an appropriate tool to discuss physics in these situations. In particular, a
description which is far removed from space-time pictures may be better suited
in the discussion of the last stages of Hawking evaporation and the associated
issue of ‘information loss’.

Another advantage of the string-theory approach is that entropy calculations
have been carried out in a number of space-time dimensions. By contrast, so far
the framework presented here is applicable only to four dimensions.® Also, our
quantization procedure has an inherent ambiguity which trickles down to the
entropy calculation. By contrast, calculations in string theory are free of this
problem. On the other hand, almost all detailed calculations in string theory
have been carried out only for (a sub-class of) extremal or near-extremal black
holes. While these black holes are especially simple to deal with mathematically,
unfortunately, they are not of direct relevance to astrophysics, i.e., to the phys-
ical world we live in. More recently, using the Maldecena conjecture, stringy
calculations have been extended to non-extremal black holes with B3, >> 1/A4,
where Rgep is the Schwarzschild radius. However, the numerical coefficient in

5 However, an extension of the underlying non-perturbative framework to higher di-
mensions was recently proposed by Freidel, Krasnov and Puzzio.
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front of the entropy turns out to be incorrect and it is not yet clear whether
inclusion of non-Abelian interactions, which are ignored in the current calcula-
tions, would restore the numerical coefficient to its correct value. Furthermore,
it appears that a qualitatively new strategy may be needed to go beyond the
R%Ch >> 1/A approximation. Finally, as in other results based on the Maldecena
conjecture, the underlying boundary conditions at infinity are quite unphysical
since the radius of the compactified dimensions is required to equal the cosmo-
logical radius. Hence the relevance of these mathematically striking results to
our physical world remains unclear. In the current approach, by contrast, ordi-
nary, astrophysical black holes in the physical, four space-time dimensions are
included from the beginning.

In spite of this differences, there are some striking similarities. Our polymer
excitations resemble stings. Our horizon looks like a ‘gravitational 2-brane’. Our
polymer excitations ending on the horizon, depicted in figure 3, closely resemble
strings with end points on a membrane. As in string theory, our ‘2-brane’ carries
a natural gauge field. Furthermore, the horizon degrees of freedom arise from this
gauge field. These similarities seem astonishing. However, a closer look brings
out a number of differences as well. In particular, being horizon, our ‘2-brane’
has a direct interpretation in terms of the curved space-time geometry and our
U (1) connection is the gravitational spin-connection on the horizon. Nonetheless,
it may well be that, when quantum gravity is understood at a deeper level, it
will reveal that the striking similarities are not accidental, i.e., that the two
decriptions are in fact closely related.
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Old and New Processes of Vorton Formation

Brandon Carter!

D.A.R.C., Observatoire de Paris 92 Meudon, France

Abstract. Among the likely consequences of cosmic string formation, one of the most
important possibilities is the formation of equilibrium configurations, known as vortons,
for current carrying loops. This article provides a concise review of available quanti-
tative estimates of the vorton population that would be produced in various cosmic
string scenarios. Attention is drawn to previously unconsidered mechanisms that might
give rise to much more prolific vorton formation that has been envisaged hitherto.

This review is an updated version of a previous very brief overview[1] of the
theory of vortons, meaning equilibrium states of cosmic string loops, and of the
cosmological processes by which they can be produced in various scenarios. The
main innovation here is to draw attention to the possibility of greatly enhanced
vorton formation in cases for which the cosmic string current is of the strictly
chiral type [2] that arises naturally in certain kinds of supersymmetric field
theory.

It is rather generally accepted|[3] that among the conceivable varieties of local
topological defects of the vacuum that might have been generated at early phase
transitions, the vortexr type defects describable on a macrosopic scale as cosmic
strings are the kind that is most likely to actually occur — at least in the post
inflationary epoch — because the other main categories, namely walls and local
monopoles, would produce a catastrophic cosmological mass excess. Even a single
wall stretching accross a Hubble radius would by itself be too much, while in
the case of monopoles it is their collective density that would be too high unless
the relevant phase transition occurred at an energy far below that of the G.U.T.
level, a possibility that is commonly neglected on the grounds that no monopole
formation occurs in the usual models for the transitions in the relevant range,
of which the most important is that of electroweak symmetry breaking.

The case of cosmic strings is different. One reason is that — although they are
not produced in the standard electroweak model — strings are indeed produced
at the electroweak level in many of the commonly considered (e.g. supersymmet-
ric) alternative models. A more commonly quoted reason why the case of strings
is different, even if they were formed at the G.U.T level, is that — while it may
have an important effect in the short run as a seed for galaxy formation — such a
string cannot be cosmologically dangerous just by itself, while a distribution of
cosmic strings is also cosmologically harmless because (unlike “local” as opposed
to “global” monopoles) they will ultimately radiate away all their energy and
disappear. However while this latter consideration is indeed valid in the case of
ordinary Goto-Nambu type strings, it was pointed out by Davis and Shellard[4]
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that it need not apply to “superconducting” current-carrying strings of the kind
originally introduced by Witten[5]. This is because the occurrence of stable cur-
rents allows loops of string to be stabilized in states known as “vortons”, so that
they cease to radiate.

The way this happens is that the current, whether timelike or spacelike,
breaks the Lorentz invariance along the string worldsheet [6-9], thereby leading
to the possibility of rotation, with velocity v say. The centrifugal effect of this
rotation, may then compensate the string tension 7" in such a way as to produce
an equilibrium configuration, i.e. what is known as a vorton, in which

T =%U, (1)

where U is the energy per unit length in the corotating rest frame[10,11]. Such
a vorton state will be stable, at least classically, if it minimises the energy for
given values of the pair of conserved quantities characterising the current in the
loop, namely the phase winding number N say, and the corresponding particle
number Z say, whose product determines the mass M of the ensuing vorton
state according to a rough order of magnitude formula of the form

M ~ |NZ|"?my (2)

where my is the relevant Kibble mass, whose square is the zero current limit
value of both T" and U. If the current is electromagnetically coupled, with charge
coupling constant e, then there will be a corresponding vorton charge Q = Ze.

Whereas the collective energy density of a distribution of non-conducting
cosmic strings will decay in a similar manner to that of a radiation gas, in
contrast for a distribution of relic vortons the energy density will scale like that of
ordinary matter. Thus, depending on when and how efficiently they were formed,
and on how stable they are in the long run, such vortons might eventually come
to dominate the density of the universe. It has been rigorously established[12—-
14] that circular vorton configurations of this kind will commonly (though not
always) be stable in the dynamic sense at the classical level, but very little is
known so far about non-circular configurations or about the question of stability
against quantum tunnelling effects, one of the difficulties being that the latter
is likely to be sensitively model dependent.

In the earliest crude quantitative estimates[4,15] of the likely properties of a
cosmological vorton distribution produced in this way, it was assumed not only
that the Witten current was stable against leakage by tunnelling, but also that
the mass scale m, characterising the relevant carrier field was of the same order
of magnitude as the Kibble mass scale m, characterising the string itself, which
will normally be given approximately by the mass of the Higgs field responsible
for the relevant vacuum symmetry breaking. The most significant development
in the more detailed investigations carried out more recently[16,17] was the ex-
tension to cases in which m, is considerably smaller than m,. A rather extreme
example that immediately comes to mind is that for which m, is postulated to
be at the G.U.T. level, while m, is at the electroweak level in which case it was
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found that the resulting vorton density would be far too low to be cosmologically
significant.

The simplest scenarios are those for which (unlike the example just quoted)
the relation

g

g

o 21 )
is satisfied in dimensionless Planck units as a rough order of magnitude inequal-
ity. In this case the current condensation would have ocurred during the regime
in which (as pointed out by Kibble[18] in the early years of cosmic string theory)
the dynamics was dominated by friction damping. Under these circumstances,
acording to the standard picture[3], the string distribution will consist of wiggles
and loops of which the most numerous will be the shortest, characterised by a
length scale ¢ say below which smaller scale structure will have been smoothed
out by friction damping. The number density n of these smallest and most nu-
merous loops will be given by the (dimensionally obvious) formula

1

in which the smoothing length scale £ itself is given by
¢~ Vir, (5)

where 7 is the relevant friction damping timescale and ¢ is the cosmological
time, which, using Planck units, will be expressible in terms of the cosmological
temperature © by

t~ — (6)

in the radiation dominated epoch under consideration. According to the usual de-
scription of the friction dominated epoch [19,3], the relevant damping timescale
will be given by

m2

7%6_27 (7)

from which it can be seen that the smoothing lengthscale ¢ that characterises
the smallest and most numerous string loops will be given roughly by the well
known formula

mx

@5/2 . (8)

At the time of condensation of the current carrier field on the strings, when
the temperature reaches a value © ~ m,, the corresponding thermal fluctuation
wavelength A will be given by

&~

A —, (9)
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Taken around the circumference, of order &, of a typical small string loop, the
number of such fluctuation wavengths will be of order £/\. In the cases consid-
ered previously [16,17] it was assumed that the fluctuations would be randomly
orientated and would therefore tend to cancel each other out so that, by the
usual kind of random walk process the net particle and winding numbers taken
around the loop as a whole would be expected to be of the order of the square
root of this number of wavelengths, i.e. one would typically obtain

~ 7]
NNZN\/:. (10)

However a new point to which I would like to draw attention here is that the
random walk cancellation effect will not apply in case for which the current is
of strictly chiral type so that the string dynamics is of the kind whose special
integrability properties have recently been pointed out [2]. This case arises [5]
when the string current is attributable to (necessarily uncharged) fermionic zero
modes moving in an exlusively rightwards (or exclusively leftwards) direction.
In such a case, the possibility of cancellation between left moving and right
moving fluctuations does not arise, so that (as in the ordinary kind of diode
rectifier circuit used for converting alternating current to direct curent) there
is an effective filter ensuring that the fluctuations induced on the string will all
have the same orientation. In such a case only one of the quantum numbers in the
formula (2) will be independent, i.e. they will be restricted by a relation of the
form N = Z, and their expected value will be of the order of the total number
of fluctuation wavelengths round the loop (not just the square root thereof as
in the random walk case). In such a strictly chiral case the formula (2) should
therefore be evaluated using an estimate of the form

N=7~= 3 (11)
instead of (10)

Whereas even smaller loops will have been entirely destroyed by the friction
damping process, those that are present at the time of the current condensation
can survive as vortons, whose number density will be reduced in inverse pro-
portion to the comoving volume, i.e. proportionally to @3, relative to the initial
number density value given by (4) when © ~ m,. Thus (assuming the current
on each string is strictly conserved during the subsequent evolution) when the
cosmological temperature has fallen to a lower value ® < m,, the expected
number density n of the vortons will be given as a constant fraction of the cor-
responding number density ~ @3 of black body photons by the rough order of
magnitude formula

n VMe\3 3
@N(mz)m”' (12)

In the previously considered cases [16,17], for which the random walk formula
(10) applies, the typical value of the quantum numbers of vortons in the resulting
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population will be given very roughly by

2 72, Mx
NNZNT/Q. (13)

According to (2), this implies a typical vorton mass given by

M ~ ( Ma )3/27

N

which, in view of (3), will never exceed the Planck mass. It follows in this case
that, in order to avoid producing a cosmological mass excess, the value of m, in
this formula should not exceed a limit that works out to be of the order of 1077,
and the limit is even be smaller, m, < 107!, when the two scales m, and m,
are comparable.

The new point to which I wish to draw attention here is that for the strictly
chiral case, as characterised by (11) instead of (10), the formula (2) for the vorton
mass gives a typical value

(14)

m2

Y (15)

M~
Mme

which is greater than what is given by the usual formula (14) by a factor
mi / 2m; 3/ 4 Although the vorton to photon number density ratio (12) will not
be affected, the corresponding mass density p = Mn of the vorton distribution

will be augmented by the same factor My /2

be expressible simply as mo /4 when the two scales me and m, are compara-
ble, in which case the requirement that a cosmological mass excess should be
avoided leads to the rather severe limit m, < 107!, This mass limit works out
to be of the order of a hundred TeV, which is within the range that is commonly
envisaged for the electroweak symmetry breaking transition.

The foregoing conclusion can be construed as meaning that if strictly chiral
current carrying strings were formed (within the framework of some generalised,
presumably supersymmetric, version of the Standard electroweak model) during
the electroweak symmetry breaking phase transition, then the ensuing vorton
population might conceivably constitute a significant fraction of the cosmolog-
ical dark matter distribution in the universe. Although, according to (12), the
number density of such chiral vortons would be rather low, their typical mass,
as given according to (15) by M =~ ,/m, would be rather large, about 10~7 in
Planck units, which works out as about 10° TeV.

An alternative kind of scenario that naturally comes to mind is that in which
the cosmic strings themselves were formed at an energy scale my in the GUT
range (of the order of 1073 in Planck units) but in which the current did not
condense on the string until the thermal energy scale had dropped to a value
m, that was nearer the electroweak value (below the order of 107! in Planck
units). Since this very much lower condensation temperature would be outside
the friction dominated range characterised by (3), the reasonning summarised

Mo 3/4 This augmentation factor will
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above would not be applicable. Preliminary evaluations of the (relatively ineffi-
cient) vorton production that would arise from current condensation after the
end of the friction dominated period are already available [17] for the usual ran-
dom walk case, but analogous estimates for aumentation that might arise in the
strictly chiral case have not yet been carried out. The reason why it is not so easy
to evaluate the consequences of current condensation after the end of the fric-
tion dominated epoch (when radiation damping becomes the main dissipation
mechanism) is that most of the loops present at the time of the current con-
densation would have been be too small to give vortons stable against quantum
decay processes, a requirement which imposes a lower limit

2
M2 T (16)

Mme
on the mass of a viable vorton. This condition is satisfied automatically by the
masses estimated in the manner described above for vortons formed by con-
densation during the friction dominated era characterised by (3). On the other
hand when (3) is not satisfied — in which case the lower limit (16) will evidently
exceed the Planck mass — then the majority of loops present at the time of the
carrier condensation phase transition at the temperature © ~ m, will not ac-
quire the rather large quantum number values that would be needed to make
them ultimately viable as vortons. It is not at all easy to obtain firmly conclusive
estimates of the small fraction that will satisfy this viability condition. However
it should not be too difficult to carry out an adaptation to the strictly chiral
case of the kind of tentative provisional estimates (based on simplifying assump-
tions whose confirmation will require much future work) that have already been
provided [17] for the generic case of currents built up by the usual random walk

process.

The possibility of strictly chiral current formation is not the only mechanism
whereby vorton formation might conceivably be augmented relative to what was
predicted on the basis [17] of the previous estimates, which took no account
of electromagnetic effects. There cannot be any electromagnetic coupling in the
strictly chiral case [2], and in other cases where electromagnetic coupling will be
typically be present it has been shown [20] that it will usually have only a minor
perturbing effect on the vorton equilibrium states. However it has recently been
remarked [21] that even though the averaged “direct” current that is relevant
for vorton formation may be small, the local “alternating” current can have a
sufficiently large amplitude, I say, for its interaction with the surrounding black
body radiation plasma to provide the dominant friction damping mechanism,
with a damping time scale that instead of (7) will be given in rough order of
magnitude by

2

mX
ey (17)

TR

As can be seen from (6), this means that instead of being restricted to the very
early epoch when cosmological temperature was above Kibble limit value, i.e.
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when © 2> /My, the period of friction domination can be extended indefinitely
if the current amplitude satisfies

IZ>m?2, (18)
a requirement that is easily compatible with Witten’s [5] bosonic current satura-
tion bound I < em, (where e ~ 1/4/137 is the electromagnetic charge coupling
constant), and that is in most cases compatible even with the more severe limit
I < em, that applies in cases for which instead of arising as a bosonic conden-
sate, the current is due to femionic zero modes. Such a tendency to prolonga-
tion of friction dominance will presumably delay the decay of small scale loop
structure and so may plausibly be expected to augment the efficiency of vorton
formation in cases when m, is below the limit given by (3), but a quantitative
estimate of just how large this effect is likely to be will require a considerable
amount of future work.

Despite the possibility that the effciency of vorton formation may have been
underestimated by previous work, it still seems unlikely that vortons can consti-
tute more than a small fraction of the missing matter in the universe. However
this does not mean that vortons could not give rise to astrophysically interesting
effects: in particular it has recently been suggested by Bonazzola and Peter[22]
that they might account for otherwise inexplicable cosmic ray events.

The author is grateful to many colleagues, particularly Patrick Peter and
Anne Davis, for helpful discussions on numerous occasions.
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Anti-de Sitter Supersymmetry
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Institute for Theoretical Physics, Utrecht University
3508 TA Utrecht, Netherlands

Abstract. We give a pedagogical introduction to certain aspects of supersymmetric
field theories in anti-de Sitter space. Among them are the presence of masslike terms
in massless wave equations, irreducible unitary representations and the phenomenon
of multiplet shortening.

1 Introduction

Recently the study of field theory in anti-de Sitter space has received new im-
petus by the observation that the near-horizon geometry of black branes, which
usually involves anti-de Sitter space as a factor, is related to a field theory as-
sociated with the massless modes of open strings that are attached to a certain
number n of parallel Dirichlet branes, separated by small distances [1]. In certain
cases there thus exists a connection between superconformal field theories in flat
space, living on the boundary of an anti-de Sitter space-time, and gauged super-
gravity. The most striking example is that of N = 4 supersymmetric Yang-Mills
theory in four space-time dimensions with gauge group U(n), and IIB super-
gravity or superstring theory compactified on the five-dimensional sphere.

In these lectures we intend to give a pedagogical introduction to field theories
and supersymmetry in anti-de Sitter space. The subject is not new. Already in
the thirties Dirac considered wave equations that are invariant under the anti-de
Sitter group [2]. Later, in 1963, he discovered the ‘remarkable representation’
which is now known as the singleton [3]. Shortly afterwards there was a series of
papers by Fronsdal and collaborators discussing the representations of the anti-
de Sitter group [4]. Quantum field theory in anti-de Sitter space was studied, for
instance in [5,6]. Many new developments were inspired by the discovery that
gauged supergravity theories have ground states corresponding to anti-de Sitter
spacetimes [7—16]. This led to a study of the stability of these ground states
with respect to fluctuations of the scalar fields [17] as well as to an extended
discussion of supermultiplets in anti-de Sitter space [17-22].

In these notes we will be able to cover only a few of these topics. We restrict
ourselves to an introduction to supersymmetry in anti-de Sitter space and discuss
the presence of the so-called masslike terms in wave equations for various fields in
anti-de Sitter space. Then we will analyze the various irreducible representations
of the anti-de Sitter isometry group, using a variety of techniques, and at the end
we will consider the consequences for supermultiplets. We emphasize the issue
of multiplet shortening for both multiplets of given spin and for supermultiplets.

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp[Z9-100, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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2 Supersymmetry and anti-de Sitter space

Let us start with simple supergravity in an unspecified number of space-time
dimensions. Two important terms in any supergravity Lagrangian are the Ein-
stein Lagrangian of general relativity and the Rarita-Schwinger Lagrangian for
the gravitino field(s),

L= ~}eR(w) - b TP D)y + -+ (1
where the covariant derivative on a spinor 1 reads
D#(w)w = (au - iw#ab Fab) w, (2)

and w, is the spin-connection field defined such that the torsion tensor (or
a supercovariant version thereof) vanishes. The action corresponding the above
Lagrangian is locally supersymmetric up to terms cubic in the gravitino field.
The supersymmetry transformations contain the terms,

be,t = g€, 6t = Dy(w)e. (3)

Extending this Lagrangian to a fully supersymmetric one is not always possible.
It may require additional fields and only when the dimension of space-time is
less than twelve does one know solutions for interacting theories.

Let us now include a cosmological term into the above Lagrangian as well as
a suitably chosen masslike term for the gravitino field,

L= *%6 R(w) — %QQL# FHVPDV(W)T/)p
+1g(d—2)e ", + 3g*(d —1)(d—2) e+ (@)

As it turns out the corresponding action is still locally supersymmetric, up to
terms that are cubic in the gravitino field, provided that we introduce an extra
term to the transformation rules,

ey = %gpawu ) oy = (Du(w) + %QFH) €. (5)

This demonstrates that, a priori, supersymmetry does not forbid a cosmological
term, but it must be of definite sign (at least, if the ground state is to preserve
supersymmetry). For a discussion see [23,24] and references therein. Again, to
construct a fully supersymmetric field theory is difficult and in this case there are
even stronger restrictions on the number of space-time dimensions than in the
case without a cosmological term. The Lagrangian (4) was first written down in
[25] in four space-time dimensions and the correct interpretation of the masslike
term was given in [26].

The Einstein equation corresponding to (4) reads (suppressing the gravitino
field),

Ruy = 39u R+ 59°(d = 1)(d = 2) g =0, (6)
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which implies,
Ruw=9¢*d-1)guw, R=g%dd-1). (7)

Hence we are dealing with a d-dimensional Einstein space. The maximally sym-
metric solution of this equation is an anti-de Sitter space, whose Riemann cur-
vature equals

RWab =2¢° eH[“ e, V. (8)

This solution leaves all the supersymmetries intact just as flat Minkowski space
does. One can verify this directly by considering the supersymmetry variation of
the gravitino field and by requiring that it vanishes in the bosonic background.
This happens for spinors €(z) satisfying

(Dp(w) + 39I,) e=0. (9)

Spinors satisfying this equation are called Killing spinors. Consequently also
(Dp(w)+391,)(Dy(w) + 29I, )e must vanish. Antisymmetrizing this expression
in p and v then yields the integrability condition

( — 1R, Iy + 1g? Fw)e -0, (10)

which is precisely satisfied in anti-de Sitter space.

Because anti-de Sitter space is maximally symmetric, it has %d(dJr 1) isome-
tries which constitute the group SO(d — 1,2). As we have just seen, anti-de
Sitter space is consistent with supersymmetry. This is just as for flat Minkowski
space, which has the same number of isometries but now corresponding to the
Poincaré group, and which is also consistent with supersymmetry. The two cases
are clearly related since flat space is obtained in the limit ¢ — 0. The algebra of
the combined bosonic and fermionic symmetries will be called the anti-de Sitter
superalgebra. Note again that the above derivation is based on an incomplete
theory and in general one will need to introduce additional fields. The structure
of the anti-de Sitter algebra changes drastically for dimensions d > 7 (see [27]
and references cited therein). For d < 7 the bosonic subalgebra coincides with the
anti-de Sitter algebra. There are N-extended versions, where we introduce N su-
persymmetry generators, each transforming as a spinor under the anti-de Sitter
group. These IV generators transform under a compact group, whose generators
appear in the {Q,Q} anticommutator. For d > 7 the bosonic subalgebra can no
longer be restricted to the anti-de Sitter algebra and the algebra corresponding to
a compact group, but one needs extra bosonic generators that transform as high-
rank antisymmetric tensors under the Lorentz group. In contrast to this, there
exists an (IN-extended) super-Poincaré algebra associated with flat Minkowski
space of any dimension, whose bosonic generators correspond to the Poincaré
group, possibly augmented with the generators of a compact group associated
with rotations of the supercharges.

It is possible to describe anti-de Sitter space as a hypersurface embedded
into a (d + 1)-dimensional embedding space. Denoting the extra coordinate
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of the embedding space by Y ~, so that we have coordinates Y4 with A =
—,0,1,2,... ,d — 1, this hypersurface is defined by

(V)P =Y+ Y2 =nap VY P = g2 (11)

Obviously, the hypersurface is invariant under linear transformations that leave
the metric nap = diag (—, —, +,+, ... , +) invariant. These transformations con-
stitute the group SO(d — 1,2). The 1d(d + 1) generators denoted by Map act
on the embedding coordinates by

0 0
Map=Ya—= —Yp— 12
AB AGYE BayA (12)
where we lower and raise indices by contracting with nsp and its inverse n4%.
It is now easy to evaluate the commutation relations for the Map,

[Mag, Mcp| =nBc Map —nac Mep —np Mac +nap Mpc . (13)

Anti-de Sitter space is a homogeneous space, which means that any two points
on it can be related via an isometry. It has the topology of S* [time] x R~!.
When unwrapping S! one finds the universal covering space denoted by Cads,
which has the topology of R%. There are many ways to coordinatize anti-de
Sitter space but we will try to avoid using specific coordinates.

On spinors, the anti-de Sitter algebra can be realized by the following com-
bination of gamma matrices,

%Fab for A,B=a,b,
Map =3iIup = (14)
%Fa forA=—,B=a

with a,b = 0,1,...,d — 1. Our gamma matrices satisfy the Clifford property
{re, '’} = 2n%1, where n? = diag (—, +,... , +).

The commutator of two supersymmetry transformations yields an infinitesi-
mal general-coordinate transformation and a tangent-space Lorentz transforma-
tion. For example, we obtain for the vielbein,

[(51,(52] eua = %52 e 511% — %él e 621/}#
= D#(%Egpa€1)+%g (€2Fab61)e#b. (15)

Again we remind the reader of the fact that we are dealing with an incomplete
theory. For a complete theory the above result should hold uniformly on all the
fields (possibly modulo field equations). As before we have ignored terms pro-
portional to the gravitino field. In the anti-de Sitter background the vielbein is
left invariant by the combination of symmetries on the right-hand side. Conse-
quently the metric is invariant under these coordinate transformations and we
have the so-called Killing equation,

09y = Dp&y + D& =0, (16)
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where £, = %62 I', €1 is a Killing vector and where €; » are Killing spinors. Since
D.¢& = %g€2FI_“,617 the right-hand side of (15) vanishes for this choice of su-
persymmetry parameters, and " satisfies the Killing equation (16). As for all
Killing vectors, higher derivatives can be decomposed into the Killing vector and
its first derivative, e.g. D, (g€}, €1) = —g? 9ulpéy)- The Killing vector can be
decomposed into the %d(d + 1) Killing vectors of the anti-de Sitter space.

For later use we record the anti-de Sitter superalgebra, which in addition to
(13) contains the (anti-)commutation relations,

{QaaQ,@} = 7%(FAB)O¢Q MABa
[Mag, Qo] = 2(QLaB)a - (17)

As we alluded to earlier this algebra changes its form when considering N su-
persymmetry generators, which rotate under the action of a compact group.
The generators of this group will then also appear on the right-hand side of the
{Q, Q} anticommutator. Beyond d = 7 there are extra bosonic charges associ-
ated with higher-rank Lorentz tensors. However, in these lectures, we will mainly
be dealing with the case N = 1 and we will always assume that d < 7.

3 Anti-de Sitter supersymmetry and masslike terms

In flat Minkowski space we know that all fields belonging to a supermultiplet
are subject to field equations with the same mass. This must be so because the
momentum operators commute with the supersymmetry charges, so that P? is
a Casimir operator. For supermultiplets in anti-de Sitter space this is not longer
the case, so that masslike terms will not necessarily be the same for different fields
belonging to the same multiplet. This phenomenon will be illustrated below in a
specific example, namely a chiral supermultiplet in four spacetime dimensions.
Further clarification will be given later in sections 4 and 7.

A chiral supermultiplet in four spacetime dimensions consists of a scalar field
A, a pseudoscalar field B and a Majorana spinor field . In anti-de Sitter space
the supersymmetry transformations of the fields are proportional to a spinor
parameter ¢(x), which is a Killing spinor in the anti-de Sitter space, i.e. e(x)
must satisfy the Killing spinor equation (9). We allow for two constants a and b
in the supersymmetry transformations, which we parametrize as follows,

6A = jey, 6B = Lieysy,
69 = d(A+ivsB)e — (a A+ ibvy;B)e. (18)

The coefficient of the first term in 67 has been chosen such as to ensure that
[61,62] yields the correct coordinate transformation {#D,, on the fields A and
B. To determine the constants a and b and the field equations of the chiral
multiplet, we consider the closure of the supersymmetry algebra on the spinor
field. After some Fierz reordering we find

(61, 82]0) = €M Dyp + 1 (a — b) @7 €1 Yapth — 367y, [dep + 2(a+ b)) (19)
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We point out that derivatives acting on e(x) occur in this calculation at an in-
termediate stage and should not be suppressed in view of (9). However, they
produce terms proportional to g which turn out to cancel in the above com-
mutator. Now we note that the right-hand side should constitute a coordinate
transformation and a Lorentz transformation, possibly up to a field equation.
Obviously, the coordinate transformation coincides with (15) but the correct
Lorentz transformation is only reproduced provided that a — b = 2g. If we now
denote the mass of the fermion by m = %(a + b), so that the last term is just
the Dirac equation with mass m, then we find

a=m+yg, b=m-—g. (20)
Consequently, the supersymmetry transformation of the i equals
6 =d(A+ivsB)e — m(A+ivsB)e — g(A —iysB) e, (21)

and the fermionic field equation equals (d + m)y = 0. The second term in
(21), which is proportional to m, can be accounted for by adding an auxiliary
field to the supermultiplet. The third term, which is proportional to g, can be
understood as a compensating S-supersymmetry transformation associated with
auxiliary fields in the supergravity sector (see, e.g., [28]). In order to construct
the corresponding field equations for A and B, we consider the variation of the
fermionic field equation. Again we have to take into account that derivatives on
the supersymmetry parameter are not equal to zero. This yields the following
second-order differential equations,

[Daas + 29> —m(m —g)] A =0,
[Oaas + 29> —m(m +g)] B=0,
[Dags + 3g% — m?] ¢ =0. (22)

The last equation follows from the Dirac equation. Namely, one evaluates (d —
m)(d + m)i, which gives rise to the wave operator Ouqs + [d,d] — m?. The
commutator yields the Riemann curvature of the anti-de Sitter space. In an
anti-de Sitter space of arbitrary dimension d this equation then reads,

[Daas + 3d(d — 1)g> = m?| =0, (23)

which, for d = 4 agrees with the last equation of (22). A striking feature of the
above result is that the field equations (22) all have different mass terms, in spite
of the fact that they belong to the same supermultiplet. Consequently, the role
of mass is quite different in anti-de Sitter space as compared to flat Minkowski
space. This will be elucidated later.

For future applications we also evaluate the Proca equation for a massive
vector field,

DH(9,A, — 0, A,) —m* A, =0. (24)
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This leads to D*A,, = 0, so that the field equation reads D?A, — [D*, D,]A,, —
m? A, = 0 or, in anti-de Sitter space,

[Qads + (d = 1)g° —m?] A, = 0. (25)

The g2 term in the field equations for the scalar fields can be understood from
the observation that the scalar D’Alembertian can be extended to a conformally
invariant operator (see e.g. [28]),

1d—2
O+-——R=0+1d(d-2)¢* 26
+ 4 d -1 + 4 ( )g ) ( )
which seems the obvious candidate for a massless wave operator for scalar fields.
Indeed, for d = 4, we do reproduce the g% dependence in the first two equations
(22). Observe that the Dirac operator d is also conformally invariant and so is
the wave equation associated with the Maxwell field.

4 The quadratic Casimir operator

To make contact between the masslike terms in the wave equations and the
properties of the irreducible representations of the anti-de Sitter group, it is
important that we establish a relation between the D’Alembertian in anti-de
Sitter space and the quadratic Casimir operator Co of the isometry group. We
will use C; later on in our discussion of the unitary irreducible representations
of the anti-de Sitter algebra. In this section, we will use the (d 4 1)-dimensional
flat embedding space, introduced in section 2, to obtain such a relation for the
scalar D’Alembertian. In the embedding space, the latter is equal to to

ap 0 0
YA Y B~
Denoting 94 = 9/0Y4 and Y2 = nagY4Y B, we straightforwardly derive an

expression for the quadratic Casimir operator associated with the anti-de Sitter
group SO(d — 1,2),

Uiy1 =1 (27)

Co=—3 M*P Map
= YA 9B(Ya0p — YBO,a)
= Y2041+ Y404 (YPOg +d—1). (28)
The group SO(d — 1, 2) has more Casimir operators but the others are of higher
order in the generators and will not play a role in the following. We now introduce

different coordinates. We express the Y4 in terms of coordinates X4, where
XH =gt with p=0,1,... ,d—1and X~ is defined by

X =p=+-napYAYB. (29)

Furthermore, we require the p-dependence to be such that

YAX) = py’(a), (30)
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so that y*(z) y®(z) nap = —1. With this choice of coordinates one readily de-
rives the following relations (04 = 9/0X4),

~ 1 ~
I_YA=2Y4, O_YAnapYE = —p,
p
Y AnapYE =0, YA napd_YB =0, (31)
~ 9 A B 1
0. ==—=0.Y'—==-Y40,.
op ay4  p A

In the new coordinate system the metric is given by

~ ~ a 20, 0
Gap = 0aYnop 0pYP = <p g“ 1) (32)

where g, is the induced metric on the d-dimensional anti-de Sitter space (with
radius equal to unity). Note that § = det gap = —p>? det Guv = —p*ig.

The D’Alembertian of the embedding space in the new coordinates is equal
to (observe that derivatives act on all quantities on the right)

1 ~ —
_AaAgAB\/gaB
g

1

U1 =

%

{8— g g0+ 9,9" p" V=g ay}

T
0? d 0 _
**a—fﬂ*;a—erP%jadS» (33)

where O,qs is the D’Alembertian for the anti-de Sitter space of unit radius.
Combining this with the expression (28) for the Casimir operator, we find

CQ:p2Dd+1+p§p(p{%+d71>:Dads. (34)
Hence the 9/0p terms cancel as expected and the Casimir operator is just equal
to the normalized anti-de Sitter D’Alembertian with unit anti-de Sitter radius.
Note that this result cannot be used for other than spinless fields.

Let us now return to the wave equation for massless scalars (26). According
to this equation, massless s = 0 fields lead to representations whose Casimir
operator is equal to

Co=—Ld(d—2). (35)

Indeed, later in these lectures we will see that the Casimir operator for a massless
s = 0 representation in four spacetime dimensions is equal to —2.
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5 Unitary representations of the anti-de Sitter algebra

In this section we discuss unitary representations of the anti-de Sitter algebra.
For definiteness we will mainly look at the case of four spacetime dimensions. We
refer to [4] for some of the original work, and to [19,20] where some of this work
was reviewed. In order to underline the general features we start in d spacetime
dimensions. Obviously, the group SO(d — 2,2) is noncompact. This implies that
unitary representations will be infinitely dimensional. The generators are then
all anti-hermitean,

My =—Mag. (36)

Note that the covering group of SO(d — 1,2) has the generators %Fw and %Fu-
They act on spinors, which are finite-dimensional objects. These generators,
however, have different hermiticity properties from the ones above.

The compact subgroup of the anti-de Sitter group is SO(2) x SO(d — 1) cor-
responding to rotations of the compact anti-de Sitter time and spatial rotations.
It is convenient to decompose the %d(d + 1) generators as follows. First, the
generator M_ is related to the energy operator when the radius of the anti-de
Sitter space is taken to infinity. The eigenvalues of this generator, which is as-
sociated with motions along the circle, are quantized in integer units in order to
have single-valued functions, unless one goes to the covering space CadS. So we
define the energy operator H by

H=—iM_,. (37)

Obviously the generators of the spatial rotations are the operators My, with
a,b=1,...,d—1. Note that we have changed notation: here and henceforth the
indices a, b, . .. refer only to spacelike indices. The remaining 2(d — 1) generators
M_, and My, are combined into pairs of mutually conjugate operators,

M* = —iMoy, + M_,, (38)

and we have (M;)" = M . The anti-de Sitter commutation relations now read

[H,MF] =+MZF,
[Maia Ml;t} = 07
[ij Mb_} = 72(H6ab + Mab) . (39)

Obviously, the M, (;t play the role of raising and lowering operators: when applied
to an eigenstate of H with eigenvalue E, application of M yields a state with
eigenvalue F + 1.

In this section we restrict ourselves to the bosonic case. Nevertheless, let us
already briefly indicate how some of the other (anti-)commutators of the anti-de
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Fig. 1. States of the s = 0 representation in terms of the energy eigenvalues E and the
angular momentum j. Each point has a (2j 4+ 1)-fold degeneracy.

Sitter superalgebra decompose c.f. (17),
{Qa s Qb} = Héup — 5iMay (1T 1)
+I(MF T +4I%) + My I (1—40%)ag,
=3I Q)a,
FLULL(LFiI0) Q)a . (40)

[H,Qa]
M, Qu]

For the anti-de Sitter superalgebra, all the bosonic operators can be expressed
as bilinears of the supercharges, so that in principle one could restrict oneself
to fermionic operators only and employ the projections (14 iI"°)Q as the basic
lowering and raising operators. However, this is not quite what we will be doing
later in section 7.

Let us now assume that the spectrum of H is bounded from below,

H > Ey, (41)

so that in mathematical terms we are considering lowest-weight irreducible uni-
tary representations. The lowest eigenvalue Ej is realized on states that we de-
note by |Ey, s), where FEj is the eigenvalue of H and s indicates the value of the
total angular momentum operator. Of course there are more quantum numbers,
e.g. associated with the angular momentum operator directed along some axis
(in d = 4 there are thus 2s + 1 degenerate states), but this is not important for
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Fig. 2. States of the s = % representation in terms of the energy eigenvalues E and the
angular momentum j. Each point has a (2§ + 1)-fold degeneracy. The small circles de-
note the original s = 0 multiplet from which the spin—% multiplet has been constructed
by taking a direct product.

the construction and these quantum numbers are suppressed. Since states with
E < FEj should not appear, ground states are characterized by the condition,

M7 |Eo,s) =0. (42)

The representation can now be constructed by acting with the raising operators
on the vacuum state |Ep,s). To be precise, all states of energy E = Ey +n
are constructed by an n-fold product of creation operators M In this way one
obtains states of higher eigenvalues F/ with higher spin. The simplest case is the
one where the vacuum has no spin (s = 0). For given eigenvalue E, the highest
spin state is given by the traceless symmetric product of E — Ey operators M
on the ground state. These states are shown in Fig. 1.

Henceforth we specialize to the case d = 4 in order to keep the aspects related
to spin simple. To obtain spin—% is trivial; one simply takes the direct product
with a spin—% state. That implies that every point with spin j in Fig. 1 generates
two points with spin j + %7 with the exception of points associated with j = 0,
which will simply move to j = % The result of this is shown in Fig. 2.

Likewise one can take the direct product with a spin-1 state, but now the
situation is more complicated as the resulting multiplet is not always irreducible.
In principle, each point with spin j now generates three points, associated with
7 and j £ 1, again with the exception of the 7 = 0 points, which simply move to
j = 1. The result of this procedure is shown in Fig. 3.
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Fig. 3. States of the s = 1 representation in terms of the energy eigenvalues E and
the angular momentum j. Observe that there are now points with double occupancy,
indicated by the circle superimposed on the dots. These points could combine into
an s = 0 multiplet with ground state |Ey + 1,s = 0). This s = 0 multiplet becomes
reducible and can be dropped when Ey = 2, as is explained in the text. The remaining
points then constitute a massless s = 1 multiplet, shown in Fig. 4.

Let us now turn to the quadratic Casimir operator, which for d spacetime
dimensions can be written as

Co=—3M*PMyp
= H? — 5{M; My} — 5(Ma)*
— H(H —d 1) — H(M)? — MFM (13)

Applying the last expression on the ground state |Ep, s) and assuming d = 4 we
derive

Cy = E()(EO — 3) + S(S + 1) R (44)

and, since Cq is a Casimir operator, this result holds for any state belonging to
the corresponding irreducible representation. Note, that the angular momentum
operator is given by J? = —1(Mq)?%.

We can apply this result to an excited state (which is generically present in
the spectrum) with £ = Ep+1 and j = s — 1. Here, we assume that the ground
state has s > 1. In that case we find

2
CQZ(E0+1)(E072)+S(571)7 M(I_|E0+17871>

= E()(EO —3) +S(S+1), (45)
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Fig. 4. States of the massless s = 1 representation in terms of the energy eigenvalues E
and the angular momentum j. Now Ej is no longer arbitrary but it is fixed to Ey = 2.

so that

2
Ey—s—1=4|M;|Eg+1,s—1)| . (46)

This shows that Ey > s+1 in order to have a unitary multiplet. When Ey = s+1,
however, the state |Fog + 1,s — 1) is itself a ground state, which decouples from
the original multiplet, together with its corresponding excited states. This can
be interpreted as the result of a gauge symmetry and therefore we call these
multiplets massless. Hence massless multiplets with s > 1 are characterized by

Ey=s+1, for s>1. (47)
For these particular values the quadratic Casimir operator is
Co=2(s*—1). (48)

Although this result is only derived for s > 1, it also applies to massless s = 0
and s = % representations, as we shall see later. Massless s = 0 multiplets have
either £y = 1 or Ey = 2, while massless s = % multiplets have Fy = %

One can try and use the same argument again to see if there is a possibility
that even more states decouple. Consider for instance a state with the same spin

as the ground state, with energy F. In that case

E(E - 3) :EO(E0—3)+‘M;\E,3)‘2. (49)
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For spin s > 1, this condition is always satisfied in view of the bound Ey > s+1.
But for s = 0, one can apply (49) for the first excited s = 0 state which has
E = Ey + 2. In that case one derives

2
2(2Ey —1) = |M|Ey + 2,5 = 0] , (50)

so that

By > 1. (51)

D=

For Ey = % we have the so-called singleton representation, where we have only
one state for a given value of the spin. A similar result can be derived for s = %,
where one can consider the first excited state with s = %, which has £ = Ey+ 1.
One then derives

2
2(E0—1) = M |Eo+1,5=73)| (52)

so that
Eo>1. (53)

For Ey = 1 we have the spin—% singleton representation, where again we are
left with just one state for every spin value. The existence of these singleton
representations was first noted by Dirac [3]. They are shown in Fig. 5. Both
singletons have the same value of the Casimir operator,

Co=—

ot

(54)

From the above it is clear that we are dealing with the phenomenon of mul-
tiplet shortening for specific values of the energy and spin of the ground state.
This can be understood more generally from the fact that the [M;, M, ] com-
mutator acquires zero or negative eigenvalues for certain values of Fy and s. We
will return to this phenomenon in section 7 in the context of the anti-de Sitter
superalgebra.

6 The oscillator construction

There exists a constructive procedure for determining the unitary irreducible
representations of the anti-de Sitter algebra, which is known as the oscillator
method. This method can be used for any number of dimensions and also for
the supersymmetric extension of the anti-de Sitter algebra [29,30]. Here we will
demonstrate it for the case of four spacetime dimensions.

Consider an even n = 2p or an odd n = 2p + 1 number of bosonic harmonic
oscillators, whose creation and annihilation operators transform as doublets un-
der the compact subgroup U(1) x SU(2) of the covering group Sp(4) = SO(3, 2).
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Fig. 5. The spin-0 and spin—% singleton representations. The solid dots indicate the
states of the s = 0 singleton, the circles the states of the s = % singleton. It is obvious
that singletons contain much less degrees of freedom than a generic local field. The
value of Fp, which denotes the spin-0 ground state energy, is equal to Fy = % The

s = % singleton ground state has an energy equal to unity, as is explained in the text.

We introduce pairs of mutually commuting annihilation operators a;(r) and b;(r)
labeled by » = 1,... ,p and an optional annihilation operator ¢; when we wish
to consider an odd number of oscillators. The indices ¢ are the doublet indices
associated with SU(2). The nonvanishing commutation relations are

ai(r). ()] = 87 8.,
i) (5)) = 657 b1,

[ci, ] =67, (55)

where the creation operators carry upper SU(2) indices and are defined by a* =
(a;)t, b = (b;)" and ¢ = (¢;)T. The generators of U(1) x SU(2) are then given
by

Uj=da"-aj+bj b +3(ccj+c;c), (56)

where a; - @’ stands for Y a;(r)a?(r). The U(1) generator will be denoted by

Q= %U *; and can be expressed as

Q=

i i1 1. i
(a"-a; +b;-b" + 5c'ci + 5¢ic)
(a" - a; +b" b+ cle; +2p+1)
(N +n), (57)

N N[= N
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where N is the number operator for the oscillator states. Observe that @ is
associated with the generator that we previously identified with the energy op-
erator. The other generators, transforming according to the 3 4+ 3 representation
of SU(2), are defined by

S = (Si) =at b +al bt (58)

It is now easy to identify the raising and lowering operators by considering the
commutation relations of ) with all the other operators,

Q,U%] =0, [Q,57] = 5%, @, Si;] = —Si;. (59)
Together with

[S%, 8™ =[S, Sw] =0,
(S, Sp] = 6" UIy 4+ 6" Uy + 87, Ul + 69, U, (60)

we recover all commutation relations of SO(3,2). Obviously, the operators S%
raise the eigenvalue of (), when acting on its eigenstates, while their hermitian
conjugates S;; lower the eigenvalue. Let us, for the sake of completeness, write
down the commutation relations of ) with the oscillators,

[Q’ai] = %ai’ [Q7a’i] = _%ai' (61)

We see that a' raises the energy by half a unit whereas a; lowers it by the same
amount. The same relations hold of course true for the oscillators b* and ¢*. The
ground state |£2) is then defined by

Sii102) = 0. (62)

The representation is built by acting with an arbitrary product of raising op-
erators S on the ground state. Depending on the number of oscillators we
have chosen certain states will be present whereas others will not. In this way
the shortening of the multiplets will be achieved automatically. Experience has
taught us that the oscillator construction is complete in the sense that it yields
all unitary irreducible representations. However, it is not possible to describe
the construction for arbitrary dimension, as every case has its own characteristic
properties.

The obvious choice for |£2) is the vacuum state |0) of the oscillator algebra.
However, there are other possibilities. For example, we can act on |0) by any
number of different creation operators, i.e. a’(r1) a’(ra) b*(r3) - - -|0), as long as
we do not include a pair a’(r1) ¥/ (re) with 71 = 72, unless it is anti-ssymmetrized
in indices ¢ and j. The reason is that S;; consists of terms that are linear in both
a;(r1) and b;(re) annihilation operators with r; = ro and with symmetrized
SU(2) indices. Let us now turn to a number of relevant examples in order to
clarify the procedure.

Assume that we have a single harmonic oscillator (i.e. n = 1). Then there
are two possible ground states. One is |2) = |0). In that case we have Ey =
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Q = % and s = 0. The states take the form of products of even numbers of
creation operators, i.e. ¢! ¢/ ¢k ---|0), which are symmetric in the SU(2) indices
because the creation operators are mutually commuting. Obviously these states
comprise states of spin 1, 2, 3, ... with multiplicity one. This is the s = 0
singleton representation. The spin—% singleton follows from choosing the ground
state |2) = ¢'|0), which has Ey = @ = 1 and s = 1. The states are again
generated by even product of creation operators which lead to states of spin %,
%, ... with multiplicity one.

Let us now consider the case of two oscillators (n = 2). Here we distinguish

the following ground states and corresponding irreducible representations:

e One obvious ground state is the oscillator ground state, |£2) = |0). In that
case we have Fy = @ = 1 and s = 0. This is the massless s = 0 representa-

tion.

e Alternative ground states are |2) = @‘|0) or |£2) = b%|0). In that case the
ground state has Fy = @Q = % and s = % This is the massless s = %
representation.

e Yet another option is to choose |£2) equal to m annihilation operators exclu-
sively of the a-type or of the b-type, applied to |0). This ground state has
Eh=0Q=1+ %m and s = %m. From the values of Ey and s one deduces
that these are precisely the massless spin-s representations.

e Finally one may choose [£2) = (a'b/ — a’ b%)|0), which has Ey = Q = 2 and

s = 0. This is the second massless s = 0 representation.

To sum up, for a single oscillator one recovers the singleton representations
and for two oscillators one obtains all massless representations. The excited
states in a given representation are constructed by applying arbitrary products
of an even number of creation operators on the ground state. For more than two
oscillators, one obtains the massive representations. This pattern, sometimes
with small variations, repeats itself for other than four spacetime dimensions.

7 The superalgebra OSp(1|4)

In this section we return to the anti-de Sitter superalgebra. We start from the
(anti-)commutation relations already established in (39) and (40). For definite-
ness we discuss the case of four spacetime dimensions with a Majorana super-
charge @. This allows us to make contact with the material discussed in section 3.
These anti-de Sitter multiplets were discussed in [17-20].

We choose conventions where the gamma matrices are given by

Fo(éllpl), F“(%" 22“) a=1,23, (63)

and write the Majorana spinor () in the form

qo
7 (m qﬁ) 7 “
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where ¢® = ¢/, and the indices a, 3,... are two-component spinor indices. We
substitute these definitions into (40) and obtain

[H7Qa] :_% o
[H,q%] = 34%,
{Qayqﬁ} = (H]-Jr']'o')aﬁv

{Qa aQB} = Ma_ (0a02)aﬂa
{¢".¢"} = M (6°0*)*7, (65)

where we have defined the angular momentum operator J, = f% i €apeMP. We
see that the operators g, and ¢™ are lowering and raising operators, respectively.
They change the energy of a state by half a unit.

In analogy to the bosonic case, we study unitary irreducible representations
of the OSp(1]4) superalgebra. We assume that there exists a lowest-weight state
|Eo, s), characterized by the fact that it is annihilated by the lowering operators

q(Xa
4a|Eo,s) =0. (66)

In principle we can now choose a ground state and build the whole representation
upon it by applying products of raising operators ¢“. However, we only have to
study the antisymmetrized products of the ¢*, because the symmetric ones just
yield products of the operators M~ by virtue of (65). Products of the M, sim-
ply lead to the higher-energy states in the anti-de Sitter representations of given
spin that we considered in section 5. By restricting ourselves to the antisym-
metrized products of the ¢* we thus restrict ourselves to the ground states upon
which the full anti-de Sitter representations are build. These ground states are
|Eo, s), q¢“|Eo,s) and ¢[*¢?!|Eq, s). Let us briefly discuss these representations
for different s.

The s = 0 case is special since it contains less anti-de Sitter representations
than the generic case. It includes the spinless states |Ep, 0) and ¢l“¢®!|Ey, 0) with
ground-state energies Ey and Ey + 1, respectively. There is one spin—% pair of
ground states ¢%|FEp,0), with energy Ep + % As we will see below, these states
correspond exactly to the scalar field A, the pseudo-scalar field B and the spinor
field 1 of the chiral supermultiplet, that we studied in section 3.

For s > £ we are in the generic situation. We obtain the ground states |Ep, s)
and ¢(*¢?! | Eo, s) which have both spin s and which have energies Ey and Ep+ 1,
respectively. There are two more (degenerate) ground states, ¢*|Fo, s}, both with
energy Ey + %, which decompose into the ground states with spin j = s — % and
j=s+3.

As in the purely bosonic case of section 5, there can be situations in which
states decouple so that we are dealing with multiplet shortening associated with
gauge invariance in the corresponding field theory. The corresponding multiplets
are then again called massless. We now discuss this in a general way analogous to
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the way in which one discusses BPS multiplets in flat space. Namely, we consider
the matrix elements of the operator ¢, ¢° between the (2s+1)-degenerate ground
states |Ep, s),

(Eo, 5| 44" | Eo, 8) = (Eo, 5|{qa 4"} Eo, s)
= (Eo, s|(Bo 1+ J - 0)o"|Eo, ). (67)

This expression constitutes an hermitean matrix in both the quantum numbers
of the degenerate groundstate and in the indices o and (3, so that it is (4s42)-by-
(4s+ 2). Because we assume that the representation is unitary, this matrix must
be positive definite, as one can verify by inserting a complete set of intermediate
states between the operators ¢, and ¢” in the matrix element on the left-hand
side. Obviously, the right-hand side is manifestly hermitean as well, but in order
to be positive definite the eigenvalue Ey of H must be big enough to compensate
for possible negative eigenvalues of J - o, where the latter is again regarded as
a (4s + 2)-by-(4s + 2) matrix. To determine its eigenvalues, we note that J - o
satisfies the following identity,

(J-oa)?+(J-0)=s(s+1)1, (68)

as follows by straightforward calculation. This shows that J - o has only two
(degenerate) eigenvalues (assuming s # 0, so that the above equation is not
trivially satisfied), namely s and —(s+ 1). Hence in order for (67) to be positive
definite, Ey must satisfy the inequality

Ey>s+1, fors>1, (69)

If the bound is saturated, i.e. if Ey = s+ 1, the expression on the right-hand side
of (67) has zero eigenvalues so that there are zero-norm states in the multiplet
which decouple. In that case we must be dealing with a massless multiplet.
As an example we mention the case s = %7 Ey = %, which corresponds to the
massless vector supermultiplet in four spacetime dimensions. Observe that we
have multiplet shortening here without the presence of central charges.

One can also use the oscillator method discussed in the previous section to
construct the irreducible representations. This is, for instance, done in [21,22].

Armed with these results we return to the masslike terms of section 3 for
the chiral supermultiplet. The ground-state energy for anti-de Sitter multiplets
corresponding to the scalar field A, the pseudo-scalar field B and the Majorana
spinor field 1, are equal to Ey, Fo + 1 and FEy + %, respectively. The Casimir
operator therefore takes the values

C2(A) = Eo(Ep - 3),
C2(B) = (Eo + 1)(Eo — 2),
Ca(tp) = (Bo+ 3)(Eo—2) + 3. (70)

For massless anti-de Sitter multiplets, we know that the quadratic Casimir op-
erator is given by (48), so we present the value for Co — 2(s? — 1) for the three
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multiplets, i.e

Co(A)+2 = (Ey—1)(Ey—2),
C2(B) +2 = Eo(Eo — 1),
Cali) +3 = (Fo — 117, ()

The terms on the right-hand side are not present for massless fields and we should
therefore identify them somehow with the common mass parameter. Compar-
ison with the field equations (22) shows for ¢ = 1 that we obtain the correct
contributions provided we make the identification Fy = m + 1. Observe that we
could have made a slightly different identification here; the above result remains
the same under the interchange of A and B combined with a change of sign in
m (the latter is accompanied by a chiral redefinition of 1)).

Outside the context of supersymmetry, we could simply assign independent
mass terms with a mass parameter u for each of the fields, by equating Co —
2(s? — 1) to p2. In this way we obtain

Eo(Ey —3) — (s +1)(s — 2) = p?, (72)
which leads to
Ey=3+ /(s =4+, (73)

For s > 1 7 we must choose the plus sign in (73) in order to satisfy the unitarity
bound Ey > s + 1. For 5 = 0 both signs are acceptable as long as p? < ‘5
Observe, however, that u? can be negative but remains subject to the condltlon
pr > —(s — %)2 in order that Ejy remains real. For s = 0, this is precisely
the bound of Breitenlohner and Freedman for the stability of the anti-de Sitter
background against small fluctuations of the scalar fields [17].

We can also compare Co — 2(s*> — 1) to the conformal wave operator for
the corresponding spin. This shows that (again with unit anti-de Sitter radius),
Cy = Ougs + s, where 65 is a real number depending on the spin of the field.
Comparison with the field equations of section 3 shows that & equals 0, % and
3, for s =0, % and 1, respectively.

In the case of N-extended supersymmetry the supercharges transform under
an SO(NV) group and we are dealing with the so-called OSp(N|4) algebras. Their
representations can be constructed by the methods discussed in these lectures.
However, the generators of SO(N) will now also appear on the right-hand side
of the anticommutator of the two supercharges, thus leading to new possibilities
for multiplet shortening. For an explicit discussion of this we refer the reader to
[19].

8 Conclusions

In these lectures we discussed the irreducible representations of the anti-de Sitter
algebra and its superextension. Most of our discussion was restricted to four
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spacetime dimensions, but in principle the same methods can be used for anti-
de Sitter spacetimes of arbitrary dimension.

For higher-extended supergravity, the only way to generate a cosmological
constant is by elevating a subgroup of the rigid invariances that act on the
gravitini to a local group. This then leads to a cosmological constant, or to a
potential with possibly a variety of extrema, and corresponding masslike terms
which are quadratic and linear in the gauge coupling constant, respectively. So
the relative strength of the anti-de Sitter and the gauge group generators on
the right-hand side of the {Q,Q} anticommutator is not arbitrary and because
of that maximal multiplet shortening can take place so that the theory can
realize a supermultiplet of massless states that contains the graviton and the
gravitini. Of course, this is all under the assumption that the ground state is
supersymmetric. But these topics are outside the scope of these lectures and will
be reviewed elsewhere [31].

We thank M. Giinaydin for valuable comments. IH is supported by the Swiss
National Science Foundation through the graduate fellowship 83EU-053229. This
work is also supported by the European Commission TMR programme ERBFMRX-
CT96-0045.
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Abstract. We describe the application of methods from the study of discrete dynam-
ical systems to the study of histories of evolving spin networks. These have been found
to describe the small scale structure of quantum general relativity and extensions of
them have been conjectured to give background independent formulations of string
theory. We explain why the the usual equilibrium second order critical phenomena
may not be relevant for the problem of the continuum limit of such theories, and why
the relevant critical phenomena analogue to the problem of the continuum limit is in-
stead non-equilibrium critical phenomena such as directed percolation. The fact that
such non-equilibrium critical phenomena may be self-organized implies the possibility
that the classical limit of quantum theories of gravity may exist without fine tuning
of parameters. We note that dynamical theories of the kind described here may be
formulated so as not to employ the notion of a fixed configuration space, and so avoid
problems of constructibility of configuration spaces based on taking the quotient by
the diffeomorphism group. In such a theory time plays a necessarily fundamental role.

1 Introduction

The idea that space and time are fundamentally discrete is very old and has
often reappeared in the history of the search for a quantum theory of gravity'
However, it is only recently that concrete results from attempts to construct a
quantum theory have gravity have been found which suggest very strongly that
such a theory must be based on a discrete structure. These results come from the
quantization of general relativity[3,4], string theory[5] and the thermodynamics
of black holes[6-8]. (For reviews see[9-12].)

If space and time are discrete, then the study of the dynamics of the spacetime
may benefit from our understanding of other discrete dynamical systems such
as cellular automata[l4], froths[15] and binary networks[16]. The importance
of this may be seen once it is appreciated that a key problem in any discrete
theory of quantum gravity must be the recovery of continuous space time and
the fields that live on it as an approximation in an appropriate continuum limit.

! see, for example [1,2].
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This continuum limit, which will be also related to the classical limit of the
theory, (because the physical cutoff Ipjaner which marks the transition between
the discrete and continuous picture is proportional to k) is then a problem in
critical phenomena[13]. As one doesn’t want the existence of classical spacetime
to rest on some fine tunings of parameters, this must presumably be some kind
of spontaneous, or self-organized critical phenomena[17]?.

However, there is a key element which distinguishes quantum gravity from
other kinds of quantum and statistical systems This is that the causal structure
is dynamical. As a result, the usual second order equilibrium critical phenom-
ena may not be relevant for the continuum limit of quantum theories of gravity,
as its connection to quantum field theory relies on rotation from a Euclidean
to Lorentzian metric and this is not well defined when the fluctuating degrees
of freedom are the metric (or causal structure.) Instead, the relevant statistical
physics analogue to the problem of the classical limit will be non-equilibrium
critical phenomena[18]. To see why, let us consider the issue of critical behav-
ior for a discrete dynamical systems whose only attribute is causal structure.
Consider a set P of N events, such that for any two of them p and ¢ one may
have either p > ¢, (meaning p is to the causal future of ¢), or ¢ > p, or neither,
but never both. This gives the set P the structure of a partially ordered set, or
poset. In addition, if one assumes that there are no time like loops and that the
poset is locally finite (which means that there are only a finite number of events
in the intersection of the future of any event and the past of any other) one has
what is called a causal set. One may then invent an action which depend on the
causal relations and then study the quantum statistical physics of such a set, in
the limit of large N.

This program has been pursued by physicists interested in using it as a
model of quantum gravity, particularly by Myers, Sorkin[19], ‘tHooft[20] and
collaborators. This is motivated by the fact that the events of any Lorentzian
spacetime form a poset, where p < ¢ is the causal relation arising from the
lightcone structure of the metric. In fact, if the causal structure is given, the
spactime metric is determined up to an overall function.

Sorkin and collaborators have conjectured that the causal structure is suffi-
cient to define a satisfactory quantum theory of spacetime[19]. However, there
is reason to believe that this may not be the case, and that additional struc-
ture associated with what may loosely be called the properties of space, must
be introduced. One reason for this is that the models where the degrees of free-
dom are only causal structure do not seem, at least so far, to have yielded the
kinds of results necessary to answer the key questions about the emergence of
the classical limit.

As aresult, recently, Markopoulou proposed adding structure to poset models
of spacetime taken from results in other approaches to quantum gravity [21].
Her idea has been to combine the discrete causal structure of poset construction
with descriptions of a discrete quantum spatial geometry which has emerged

2 Indeed this is a general problem for particle physics, brought on by the hierarchy
problem, which is the existence of several widely separated scales.
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from the study of non-perturbative quantum gravity. These descriptions are
usually expressed in terms of spin networks, which are graphs whose edges are
labeled with half-integers, 1/2,1,3/2,... which represent quantum mechanical
spins. Originally invented by Penrose[l], more recently they have been shown
to represent faithfully a basis of exact non-perturbative states of the quantum
gravitational field[3,4]. Extensions of the spin network states have also been
constructed that are relevant for supergravity[29] and other extensions have been
proposed in the context of a conjectured background independent formulation
of string theory[25-27]

To show how the discrete causal structure of posets may be fitted to a discrete
description of both spacetime and spatial geometry we may need to describe the
structure of a causal set P in more detail. The Alexandrov neighborhood of two
events p and ¢, A(p, ¢), consist of all 2 such that p < x < ¢. 't Hooft has proposed
that the number of events in A(p, ¢) should be a measure of its volume, in Planck
units. If the poset is taken by events picked randomly from a Lorentzian manifold,
using the measure given by the volume element, there is then exactly enough
information in the poset to reconstruct the metric, in the limit of an infinite
number of events. Using the Alexandrov neighborhoods of a poset, we may then
construct a discrete model of a spacetime geometry. When the theory has a good
classical limit that should approximate a continuous spacetime geometry.

In classical general relativity it is possible to define an infinite number of spa-
tial slices, which have defined on them three dimensional Reimannian geometries.
There are an infinite number of ways to slice a spacetime into a sequence of spa-
tial slices, each of which may be associated with surfaces of simultaneity defined
by a family of observers and clocks moving in the spacetime. Because the choice
of how to slice spacetime into a series of spatial geometries is arbitrary time in
general relativity is referred to as being “many-fingered”.

A completely analogous notion of spatial geometry can be defined strictly in
terms of a poset. To do this we consider a set of events X C P which consists
of events y; such that no two of them are causally related (i.e. neither y; < y;
or y; < y; for all pairs in X.) These may be called “spacelike related”. If no
event of P may be added to X preserving the condition of no causal relations
it is a maximal set of spacelike related events. Such sets are called antichains
or discrete spacelike slices of P. The basic idea of [21] is then to endow the
antichains of causal sets with the properties of discrete quantum geometries
represented by spin networks. The result gives a notion of a quantum spacetime,
which is discrete but which has many of the attributes of continuous spacetime,
including causal structure, spacelike slices and many-fingered time. As described
in [21] discrete sets having these properties can be constructed by beginning with
a spin network and then altering it by a series of local moves.

The purpose of this paper is to raise several key issues involved in the study of
the continuum limits in this kind of formulation of quantum gravity. It is written
for statistical physicists, relativists and quantum field theorists. Our intention
in writing it is mainly to point the attention of people in these fields to the
existence of a class of problems in which methods used to study non-equilibrium
critical phenomena may play an important role in studies of quantum gravity.
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In the next section we describe the basic structure of a causally evolving
spin network, in language we hope is accessible to statistical physicists. We do
not give any details about how these structures are related to general relativity
or its quantization, these may be found elsewhere[3,4,22,23,10,9,11]. Section 3
and 4 then discuss the problem of the classical limit of this theory In section 5
some structures are defined on the set of quantum states of the theory, which are
then used in sections 6 and 7, in the context of a simplified model, to argue for
the existence of a classical limit that may reproduce general relativity. Section
8 then introduces a new question, which is how the dynamics of the theory is
to be chosen. We suggest that it may be reasonable for the dynamics to evolve
as the spacetime does, leading to the classical limit as a kind of self-organized
critical phenomena.

Finally, in section 9 we discuss a new issue concerning the problem of time
in quantum cosmology, which concerns the question of whether the physical
configuration space of the theory can be constructed by any finite procedure.

2 Combinatorial descriptions of quantum spacetime

There are actually several closely related versions of the spin network description
of quantum spatial geometry[24-26]. As our interest here is on the analysis of
their dynamics, we will consider only one kind of model, which is the easiest to
visualize. This is associated with combinatorial triangulations[21]3.

We describe first the quantum geometry of space, then how these evolve to
make combinatorial spacetimes.

2.1 Combinatorial description of spatial geometry

A combinatorial m-simplex is a set of m points, e, ...e,, called the vertices,
together with all the subsets of those points. Those subsets with two elements,
e12 = {e1,e2}... are called edges, those with three ejo3 = {e1, e, e3}... faces and
so on. A combinatorial tetrahedron is a combinatorial 4 simplex.

A three dimensional simplicial psuedomanifold, T', consists of a set of N
combinatorial tetrahedra joined such that each face is in exactly two tetrahedra.
Many such psuedomanifolds define manifolds, in which case the neighborhoods
of the edges and nodes are homeomorphic to the neighborhoods of edges and
nodes in triangulations of Euclidean three space. These are constraints on the
construction of the psuedomanifold, which are called the manifold conditions.
When they are not satisfied, we have a more general structure of a psuedoman-
ifold. Many psuedomanifolds can be constructed from manifolds by identifying
two or more edges or nodes.

The sets on which the manifold conditions fail to be satisfied constitute de-
fects in the topology defined by the combinatorial triangulation. Under suitable

3 Its exact relationship to the spin network states which arise in canonical quantum
gravity is complicated, due to some subtleties which need not concern us here. These
are discussed in [28].
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choices of the evolution rules these defects propagate in time, forming extended
objects, with dimension up to two less than the dimension of the spacetime.
When the discrete spacetime has a dynamics, as we will describe below, laws of
motion for the extended objects are induced. It is very interesting that string
theory in its present form has in it extended objects of various dimensions; the
relationship between those “branes” and the defects in psuedomanifolds is under
investigation[28].

A psuedomanifold may be labeled by attaching suitable labels to the faces
and tetrahedra. For quantum gravity it is useful to consider labels that come
from the representation theory of some algebra G, which may be a Lie algebra, a
quantum Lie algebra, a supersymmetry algebra, or something more general. Such
algebras are characterized by a set of representations, i, j, k... and by product
rules for decomposing products of representations, j ® k = ), fjl-kl, where the
f]l'k‘ are integers. Each such algebra has associated to it linear vector spaces
Vijki, which consists of the linear maps p: i ® j ® k ® l — 1, where 1 is the one
dimensional identity representation. It is then usual to label a model of quantum
gravity with algebra G by associating a representation k with each face and an
intertwinor p € Vi to each tetrahedra, where 4, j, k, [ label its four faces. The
pseudomanifold T', together with a set of labels is denoted I" and called a labeled
pseudomanifold.

It is particularly convenient to work with a quantum group at a root of
unity, as the label sets in these cases are finite. In canonical quantum gravity,
the quantum deformation is related to the cosmological constant[30,31].

To each labeled pseudomanifold I" we associate a basis state |[I" > of a quan-
tum theory of gravity. The set of such states spans the state space of the theory,
H, whose inner product is chosen so that the topologically distinct |I" >’s com-
prise an orthonormal basis.

Each labeled pseudomanifold is also dual to a spin network, which is a com-
binatorial graph constructed by drawing an edge going through each face and
joining the four edges that enter every tetrahedra at a vertex[1,4]. The edges are
then labeled by representations and the nodes by intertwinors®.

If one wants a simpler model one may simply declare all labels to be identical
and leave them out. These are called “frozen models[28]”. Frozen models are like
the dynamical triangulation models of Euclidean quantum gravity, except that
there are different kinds of simplices, corresponding to causal ordering. We may
also consider “partly frozen” models in which the spins on the faces are all equal,
but the intertwinors are allowed to vary over a set of allowed values.

One of the results of the canonical quantization of general relativity is a
geometrical interpretation for the spins and intertwinors of spin networks. Given

4 Note that the pseudomanifolds have more information than the spin networks, for
a given spin network may come from several combinatorial triangulations. The spin
network structure may be extended so as to code this additional information, for
example by extending the edges into tubes as in [25,26]. For simplicity in this pa-
per we stick to psuedomanifolds. In some papers these are also called “dual spin
networks”[21].
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the correspondence of labeled triangulations to spin networks, this interpretation
may be applied directly to the simplices of the labeled spin networks. Doing this,
we find that each face f,p. of the combinatorial triangulation has an area, which
is related to the spin jup. on the face by the formula[3],

Aabc - Z?Dlanck jabc(jabc + 1) (1)

There are also quanta of volume associated with the combinatorial tetra-
hedras of the combinatorial triangulations. This correspondence is more com-
plicated, and is motivated as well from canonical quantum gravity. Associated
with the finite dimensional space of intertwinors H,;_ at each node, where the
spins of the 4 incident edges are fixed to be j,, is a volume operator V;_[10,3].
These operators are constructed in canonical quantum gravity[10,3] and shown
to be hermitian[32]. They are also finite and diffeomorphism invariant, when
constructed through an appropriate regularization procedure[10,3]. Their spec-
tra have been computed[32], yielding a set of eigenvalues {fujl-a} and eigenstates
|Ujf.a >€ H;,. These eigenvalues are given, in units of /3, . by certain combina-
torial expressions found in [32]. Thus, a combinatorial triangulation represents
a quantum geometry where the faces have areas and the tetrahedra volumes,
which depend on the labelings in the way we have described.

2.2 Causal evolution of quantum geometries

We now follow the proposal of [21] and construct combinatorial quantum space-
times by applying a set of evolution rules to the states we have just described. A
basis state |I'y >€ H may evolve to one of a finite number of possible successor
states |[IY >. Each |[I{ > is derived from |l > by application of one of four
possible moves, called Pachner moves|]. These moves modify the state |5 > in
a local region involving one to four adjacent tetrahedra.

Consider any subset of I' consisting of n adjacent tetrahedra, where n is
between 1 and 4, which make up n out of the 5 tetrahedra of a four-simplex
Sy4. Then there is an evolution rule by which those n tetrahedra are removed,
and replaced by the other 5 — n tetrahedra in the Sy. This is called a Pachner
move. The different possible moves are called n — (5 —n) moves (Thus, there
are 1 — 4, 2 — 3, etc. moves. The new tetrahedra must be labeled, by new
representations j and intertwiners k. For each move there are 15 labels involved,
10 representations on the faces and 5 intertwinors on the tetrahedra. This is
because the labels involved in the move are exactly those of the four simplex
Sy. For each n there is then an amplitude A, _.5_, that is a function of the
15 labels. A choice of these amplitudes for all possible labels, for the four cases
1 —4,....,4 — 1, then constitutes a choice of the dynamics of the theory.

The application of one of the possible Pachner moves to Iy, together with
a choice of the possible labelings on the new faces and tetrahedra the move
creates, results in a new labeled pseudomanifold state I7. This differs from I
just in a region which consisted of between 1 and 4 adjacent tetrahedra. The
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process may be continued a finite number of times N, to yield successor labeled
pseudomanifold states I, ...IN.

Any particular set of N moves beginning with a state Iy and ending with
a state I'y defines a four dimensional combinatorial structure, which we will
call a history, M from Iy to I'y. Each history consists of N combinatorial
four simplices. The boundary of M, is a set of tetrahedra which fall into two
connected sets so that OM = Iy U I7. All tetrahedra not in the boundary of M
are contained in exactly two four simplices of M.

Each history M is a causal set, whose structure is determined as follows.
The tetrahedra of each four simplex, S; of M are divided into two sets, which
are called the past and the future set. This is possible because each four simplex
contains tetrahedra in two states I; and I;41 for some ¢ between 0 and N. Those
in I; were in the group that were wiped out by the Pachner move, which were
replaced by those in I541. Those that were wiped out are called the past set of
that four simplex, the new ones, those in [;;; are called the future set. With
the exception of those in the boundary, every tetrahedron is in the future set of
one four simplex and the past set of another.

The causal structure of M is then defined as follows. The tetrahedra of M
make up a causal set defined as follows. Given two tetrahedra T} and 75 in M,
we say T3 is to the future of T7 (written T > T1) iff there is a sequence of causal
steps that begin on 77 and end on Ts. A causal step is a step from a tetrahedron
which is an element of the past set of some four simplex, Sy to any tetrahedron
which is an element of the future set of the same four simplex. By construction,
there are no closed causal loops, so the partial ordering gives a causal set.

Each history M may also be foliated by a number of spacelike slices I'. These
are the anitchains that we defined in section 1

Each I in the original construction of M constitutes a spacelike slice of M.
But there are also many other spacelike slices in M that are not one of the I;.
In fact, given any spacelike slice I" in M there are a large, but finite, number of
slices which are differ from it by the application of one Pachner move. Because
of this, there is in this formulation a discrete analogue of the many fingered time
of the canonical picture of general relativity.

2.3 How the dynamics are specified

We have now defined quantum spatial geometry and quantum spacetime his-
tories, both completely combinatorially. To turn this structure into a physical
theory we must invent some dynamics. Although it is not the only possible start-
ing point (and we will discuss another in section 8) it is best to begin by being
conservative and using the standard notion of the path integral. We then assign
to each history M an amplitude A[M] given by

AM) =T 4l @

where the product is over the moves, or equivalently the 4-simplices, labeled by .
Ali] is the amplitude for that four simplex, which will be a function of its causal
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structure (1 — 4 or the others) and the labels on its faces and tetrahedra. The
dynamics is specified by giving the complex function A[i], which depends on the
possible causal structures and labels, a choice of such a function is equivalent to
a choice of an action.

The amplitude for the transition from an initial state |i > to a final state
|f >, both in H is then given by

Tli, f] = > AM] (3)

MI|OM=[i>U|f>

where the sum is over all histories from the given initial and final state.

The theory is then specified by giving the kinematics, which is the algebra
from which the label set is chosen and the dynamics, which is the choice of
functions A[i]. One important question, which we will now discuss, is whether
there are choices that lead to theories that have a good classical limit.

3 The problem of the classical limit and its relationship
to critical phenomena

Having defined the class of models we will study, we now turn to our main
subject, which is the problem of the classical limit and its relation to problems
in non-equilibrium critical phenomena. We begin by making the following ob-
servation: Suppose that the amplitudes of each move were real numbers of the
form,

Ali] = =50 (4)

Then the sum over histories can be considered to define a statistical system,
whose partition function is of the form,

Zli, f] = > e 2 (5)

MdM=[i>U|f>

Thus we have a statistical average over histories, each weighed by a probability,
just as in non-equilibrium systems such as percolation problems. In fact, there
is an exact relationship with directed percolation problems, as the following
example shows.

In Figure (1) we show the setup of a 1+ 1 directed percolation problem. The
degrees of freedom are the arrows, each of which points to the future, which is
upwards in the picture. The value or state of an arrow is whether it is on or off.
A history, M of a directed percolation problem is a record of which arrows are
on. One such history is shown in Figure (2).

In the simplest version of directed percolation, each arrow is turned on with
a probability p. There is a critical probability p* at which the percolation phase
transition takes place. Below p* the on arrows make up disconnected clusters
of finite size, whereas for p > p* the on arrows almost always form a single
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Fig.1. A 1 + 1 dimensional directed percolation problem.

Fig. 2. One history of a directed percolation system.
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connected cluster. At p* the system is just barely connected. At this point cor-
relation functions are scale invariant.

A more complicated version of directed percolation can be described as fol-
lows. Each diagonal link is turned on or off according to a rule which depends
on several parameters. To do this one introduces a time coordinate, which is
a label attached to the nodes which is increasing in the direction the arrows
point and so that all nodes that share a common time coordinate are causally
unrelated. We then apply the rule to each node at a given time, successively in
time, generating the evolution of the history from some initial state.

Each node has two arrows pointing towards it, which we will call the node’s
past arrows and two arrows leaving it, which we will call its future arrows. The
rule governs whether one or both of the future pointing arrows at the node are
on, as a function of the state of the past arrows. For our purposes the exact form
of the rules is not important, what matters is that there is a critical surface in the
space of parameters at which the behavior of the system is critical, corresponding
to the percolation phase transition. At the critical point the system is in the same
universality class as simple directed percolation depending on the one parameter
p. This second model will be called the dynamical model, as the histories evolve
in time, by applying the rule to the nodes at later and later times. A dynamical
model may be probabilistic or deterministic, depending on the nature of the rule
applied at each node.

Notice that a history M of a directed percolation problem is a causal set. We
will say that a node p is to the future of a node ¢ (and write p > ¢) in a given
history M if there is a chain of on arrows beginning at ¢ and ending at p. A
model of directed percolation in d + 1 dimensions is then a model of dynamical
causal structure for a discrete d + 1 dimensional spacetime. A history M of a
directed percolation model then has a causal structure and all its acutraments,
including discrete spacelike surfaces, light cones, future causal domains, past
causal domains, etc. In a percolation problem based on a fixed spacetime lattice
as in Figure (1 we may define the background causal structure to be the one
defined by the history in which all the arrows are on.

In particular, the values of the arrows (on or off) at one time ¢ make a state
[p >. If the model has n arrows in each constant time surface, the state space
is 4" dimensional. In the deterministic models an initial state |y > evolves to
a unique history M. Thus a deterministic model of directed percolation is a
cellular automata, called a Domany-Kunsel cellular automata model[33].

One way to understand what happens at the directed percolation critical
point is to use the concept of damage[16]. In a deterministic model of directed
percolation pick an initial state [ty >. Evolve the system to a history Mg. Then
change one arrow ag in the initial state and evolve to the corresponding history
M. Label any arrow whose value is different in the two histories as damaged.
The damaged arrows make a connected set D, called the damaged set, which lie
in the future causal domain of the arrow ay according to the background causal
structure.

Hence, we see that damage corresponds to a perturbation of the discrete
causal structure. It is interesting to ask how the morphology of the damaged
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region depends on the phase of the percolation system. Below the percolation
phase transition the causal domains are finite and isolated, and the same is true
for the damaged sets. Just at the phase transition point, damage is able to prop-
agate arbitrarily far, for the first time. However, the damage is constrained to
follow the background causal structure, which is the causal structure of the un-
perturbed history. Thus, if the theory has a continuum limit, the spread of the
damage will correspond to the propagation of some causal effect. But if there
is a continuum limit associated with the phase transition, then the correlation
functions that measure the spread of damage will be power-law. In this case they
should correspond in the continuum limit to the propagation of massless parti-
cles. Thus, if we think of the damage as the propagation of a perturbation in the
causal structure, it must correspond in the continuum limit to the propagation
of a graviton, which is how the propagation of a change in the causal structure
is described in the perturbative theory. If the theory has a good continuum limit
then the gravitons must travel arbitrarily far up the lightcones of the background
causal structure. We see that this will only be possible at the critical point of
the directed percolation model.

Thus, by identifying a directed percolation model with a dynamical theory
of causal structure, we see that if that theory is to have a continuum limit
corresponding to general relativity in 4 or more spacetime dimensions, the only
possibility for the existence of such a limit is at the critical point of the directed
percolation model. Thus we see that directed percolation critical phenomena
must play the same role for discrete models of dynamical causal structure that
ordinary second order critical behavior plays in Euclidean quantum field theory.

4 1Is there quantum directed percolation?

There is however an important difference between what is required for a theory of
quantum gravity and the directed percolation models so far studied by statistical
physicists. In a discrete model of quantum gravity each history M is assigned an
amplitude A[M], which is generally a complex number. All directed percolation
models so far studied (to the authors’ knowledge) are either deterministic or
probabilistic. In the latter case a probability p[M] is assigned to each history
M, which is of course a real number between 0 and 1. It is only in this case, in
which each history has a probability, that we know anything about the critical
phenomena associated to directed percolation. However, in quantum mechanics
paths are weighed by amplitudes,which are complex numbers. Thus, it would
thus be very interesting to know whether there are analogous critical phenomena
in models which are set up as directed percolation models, (for example as in
Figure (1), except that a complex amplitude Ale], rather than a probability, is
assigned to the state at each node. We may call such a model a quantum directed
percolation model. We believe that the study of such models could be very useful
for understanding the conditions required for discrete models of quantum gravity
to have good continuum limits.

One issue that must be stressed is that very little is actually known about the
continuum limit for Lorentzian path integrals where the histories are weighed
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by complex phases rather than probabilities. In quantum mechanics and conven-
tional quantum field theory the path integrals are normally defined by analytic
continuation from Euclidean field theory, where the weights can be considered
probabilities. In the absence of such a definition, one might try to define the
sum over histories directly. However, one faces a serious question of whether the
sums converge at all.

This problem cannot be avoided in a case such as the present, in which the
system is discrete. Of course, the usual wisdom is that the classical limit will exist
because the phases from histories which are far-from-classical paths interfere
destructively, leaving only the contributions near-classical histories, which add
constructively. The problem is that in a finite system, in which there are a finite
number of histories in the sum, the cancellation coming from the destructive
interference will not be complete. There will be a residue coming from the sum,
with a random phase and an absolute value of order /n, if there are n far-
from-classical histories®. This contribution must be much smaller than those
coming from close to classical paths, which will have an absolute value of order
m, where m is the number of close to classical paths. Thus, the existence of
the classical limit seems to require that m >> y/n, which means that there are
many more near classical paths than far-from-classical paths. Of course, in any
standard quantum system the actual situation is the opposite, there are many
more far-from-classical than near-classical paths.

This argument suggests that the existence of the classical limit may require
that a continuum limit has been taken in which the number of histories diverges.
In this case it may be possible to tune parameters to define a limit in which the
non-classical contribution to the amplitude cancels completely. In essence, this
is what is forced by defining the theory in terms of an analytic continuation from
a Euclidean field theory.

In the absence of a definition by an analytic continuation, the sums over
causal histories may fail to have a good classical limit because they lack both an
infinite sum over histories and a suitable definition of a corresponding Euclidean
theory. This is perhaps the key question concerning the classical limit of such
theories.

5 Discrete superspace and its structure

Having raised several issues concerned with the evaluation of the path integrals
that arise in studies of evolving spin networks, we would now like to describe
here a formalism and a language which may be useful for addressing them. It
is convenient to consider a superspace {2 consisting of all 3 dimensional psue-
domanifolds constructed with a finite number of tetrahedra. Associated to this
is 2¢, which is the space of all labeled pseudomanifolds based on the algebra
G. These spaces have intrinsic structure generated by the evolution under the
Pachner moves.

5 This has been verified in a numerical computation by Sameer Gupta.
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Consider an initial pseudomanifold I'°, with a finite number of tetrahedra.
We then consider all pseudomanifolds 7} that can be reached from I'° by one
instance of any of the 4 allowed moves n — 5 — n. They are finite in number,
and labeled by an arbitrary integer a. We will call this set 8“1“' Generalizing
this, it is natural then to consider the set Sﬁ, of all pseudomanifolds that can
be reached from I'° in N or less moves. Clearly we have S%_l C S%. We will
also want to speak about the “boundary” of Sﬂ%, which is B%, the set of all four
valent graphs that can be reached from 7° in N moves, but cannot be reached
from 7° by any path in fewer than N moves. A pseudomanifold in Bﬁ, will be
labeled 72’1 ...ay Where, for example, ’731@ , is the az’th labeled pseudomanifold
that can be reached from ~,, .

It is also convenient to use the following terminology, borrowed from con-
siderations of combinatorial chemistry[34]. We will call the set S, the adjacent
possible set of vy, as it consists of all the possible states that could directly fol-
low 9. More generally, for any N, the set Bi\g will be called the N'th adjacent
possible, since it contains all the possible new states available to the universe
after N steps that were not available after N — 1 steps.

It is clear that the for states composed of a large number of labeled tetrahe-
dra, the N’th adjacent possible sets grow quickly, as is typical for combinatorial
systems.

We may make some straightforward observations about the sets Si\{).

e Given two pseudomanifolds o and 3 in S%, we will say that o generates j if
there is a single move that takes o to 3. (For example 7, generates 72 L)
Sﬂ% then has the structure of a supergraph ny\é, which is a directed graph
whose nodes consist of the elements of Sﬂ%, connected by directed edges that
represent generation.

e A pathpin Sfy\é is a list of pseudomanifolds~yy, ..., each of whom generates
the next. If there exists a path p that runs from « to §, both elements of S%

then we may say that a < ¢, or “a precedes 6”. Sfy\é thus has the structure
of a partially ordered set.

There are corresponding statements for {2, the space of all finite labeled
pseudomanifolds. We may define the set Mﬁh an element of which is a la-
beled pseudomanifold I". This corresponds to all elements of {2 which may be
reached in IV steps from an initial labeled pseudomanifold . We may extend
the relations just defined to the elements of MZY,. Thus, given two labeled pseu-
domanifolds I" and A, we may say I generates A if the graph v of I' generates
the graph ¢ of A, with the obvious extensions to the notion of a path. Thus,
Mi\{) has as well the structure of a partially ordered set. In addition, we have
the “boundary” of Mi\{), consisting of all the labelings of the elements of Bﬁh
which we may call A%.

We may note that neither Mi\{) nor S % are causal sets, as for N large enough
there will be closed paths that may begin and end on a graph v € Sﬁ).
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We may note that there is an obvious map r : 2o — 2 in which labels are
erased.

We consider Mi\ﬁ to be then the discrete analogue of Wheelers superspace.
This is suggested by the fact that the labeled pseudomanifolds diagonalize ob-
servables that measure the three geometry. We may note that just as in the
continuum case we may put a metric on Mi\ﬁ If « > B or B > a then we may
say that a and (3 are causally related. In this case, the metric g(a, 8) = n, the
length of the shortest path that connects them. Thus, as in the continuum case,
the metric gives the superspaces a poset structure.

6 Some simple models

We will now illustrate some of the issues involved in the continuum limit, using
the frozen model as an example. This model is similar to dynamical triangulation
models of Euclidean quantum gravity, but it differs from those because of the role
of the causal structure. To write it down more explicitly, we let the index c take
values over the four types of causal structure: c € {1 — 4,2 — 3,3 — 2,4] — 1}

There are then four amplitudes A[c] that must be specified. We may write
them in terms of amplitudes and phases as,

Ald] = acet (6)
The amplitude for a history is then given by

AM] = [T(Al)™ (7)

where N, is the number of occurances of the ¢’th causal structure in the history.
These of course satisfy

N=>"N. (8)

The model has four parameters, which are the four complex numbers A[c]. It
can be further simplified so that it depends only on fewer parameters. One way
to do this is to insist that the amplitude are pure phases, so that all four moves
have equal probability, but with certain phases,

Alc] = et (9)

We can further simplify by insisting that each of the pair of moves that are time
reversals of each other have the same phase, this means that®

Al = 4] = A[l — 4] = e (10)

5 The reader may wonder why we assign the time reversed amplitude to be equal to
the original, rather than its complex conjugate. The answer is that we want a process
followed, by its time reversal, to be distinct from the process where nothing happens.
In general relativity a process and its time reversal are related by a diffeomorphism
and thus have equal actions, thus in the quantum theory they are given by equal
amplitudes.
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A2 = 3] = A3 — 2] = (11)

To write the amplitude let us then define A = 1(a + ) and p = (a — 3).
The total amplitude of a history M is then,

A[M] — el()\Ntotal+HNdiff) (12)
where
Naiff=N[1 =4+ N4 — 1] — N[2— 3] = N[3— 2] (13)

We see that as Nyyq; is proportional to the four volume, A plays the role
of a cosmological constant. It is interesting to compare this to the action for
dynamical triangulations, which is of the form SPT = ANyt + kN2 where
N5 is the number of two simplices which is a measure of the averaged spacetime
scalar curvature. This suggests that if there is a continuum limit Ng; 7 might also
be a measure of the averaged spacetime curvature scalar, suitable for spacetimes
of Minkowskian signature.

7 The classical limit of the frozen models

Of course, the actual behavior of the evolution described by the theory will
depend on the details of the amplitudes A[c]. However, it is useful to ask whether
any conclusions can be drawn about the evolution in the case that we have no
information about the actual forms of the amplitudes Let us make the simplest
possible assumption, which is that all the amplitudes are given by some random
real phase, so that A[c] = €?. Then the amplitude for any path p is exp[ifn(p)].

In this case we can draw some simple conclusions as follows. Consider the
amplitudes A[ly — I'y] for all labeled pseudomanifolds I'y € M]v\{’ It is clear

that for I'y € A% the amplitudes A[I) — I'f] = WeN | where W is the number
of inequivalent ways to reach I'; in N steps. Thus, the amplitudes evolve in such
a way that the amplitudes for the states on the boundary is always a coherent
phase.

On the other hand, consider a I'; which is in the interior of /\/li\{) Let this be

an element that is in A for some M << N. There will typically be a number
of different paths that reach [}, with a variety of different path lengths. The
number of such paths will grow rapidly with N, as long as M << N. The total
amplitudes for such labeled pseudomanifolds to be reached after N steps then
will by Ay — Iyl = 3, e" with r a finite set of integers M > r > N. As
N grows large this set grows, and there are typically no interesting correlations
amongst them. In this case, as N grows large then A[Iy — I'f] = 0.

This means that for IV large, most of the amplitude predicted by the path
integral (3) with these assumptions will be concentrated on A% and a narrow
shell trailing it.

This may be considered to be a form of the classical limit, because as N
grows, the amplitude to have evolved from Ij to a state I'y by an N step path
is concentrated on those states that can be reached in NV steps, but no fewer.
This means that as N increases the amplitude is evolving along geodesics of the
metric G defined in the discrete superspace.
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8 Dynamics including the parameters

In the class of theories we have formulated here the dynamics of the theory is
given by four functions A[¢] which give the amplitude for each four simplex which
is added to a history as the result of a Pachner move. These functions depend on
the causal structure ¢ and labels on the 4-simplices. By using the requirement
that the functions are invariant under permutations of the elements of the four
simplex that do not change the causal structure, we can reduce the functions
Ale, p] to particular forms which depend on a set of parameters, p, which live in a
parameter space P. The main dynamical problem is to find the set P* C P such
that the amplitudes defined by the sum over histories (3) has a good classical
limit.

However there is clearly something unsatisfactory about this formulation.
No fundamental theory can be considered acceptable if it has a large number of
parameters which must be finely tuned to some special values in order that the
theory reproduces the gross features of our world. Instead, we would prefer a
theory in which the critical behavior necessary for the existence of the classical
limit was achieved automatically. Theories of this kind are called “self-organized
critical systems”.

One possibility is that the parameters p which determine the amplitudes for
the different evolution moves are themselves dynamical variables which evolve
during the course of the evolution of the system to values which define a critical
system with a good continuum limit.

Here is one form of such a theory. We associate to each tetrahedron in the
model, 7; a value of the parameters p;. When a move is made it involves n < 5
tetrahedra. We will assume that the amplitude of the move is given by Ale, < p >|
where < p > is the average of the p; among the n tetrahedra involved in the
move. The move creates 5—n new tetrahedra. We assign to each of them the new
parameters < p >. This rule guarantees that those choices of parameters that
spread the most widely through the population of tetrahedra govern the most
amplitudes. In this way, the system itself may discover and select the parameters
that lead to criticality, and hence a classical limit.

Other rules for the new parameters may be contemplated. Another choice is
the following. The set of parameters p, are divided randomly into n sets. The
new p,’s in each of these sets are taken from the corresponding values in one of
the n “parent” tetrahedra that were input into the move. This distribution of
the parameters is made separately for each of the 5 — n new tetrahedra.

The reader may object that the possibility for giving different rules for the
choices of parameters violates our intention that the system choose its own laws.
However, this is not the point. There is no way to avoid making a choice in
giving rules to the system. What we want to avoid is the circumstance that the
rules which result in a classical limit are so unlikely that it seems a miracle
that they be chosen properly. What would be more comfortable is an evolution
rule that has no sensitive dependence on a choice of parameters that results in
the system naturally having a classical limit. By making the system choose the
parameters itself, on the basis of a rule that selects those that lead to the most
efficient propagation of information, we may make it possible for the system to
tune itself to criticality.
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9 A new approach to the problem of time

The idea that the parameters in the laws of physics may vary opens up a new
possibility for the role of time in the laws of physics. If the laws evolve in time,
then time must play a prefered role in the world, it cannot be just another
dimension and it cannot dissapear in a timeless block universe or “wavefunction
of the universe.” Thus, such a possibility forces us to examine the problem of time
in quantum cosmology. The following remarks, suggest that the kind of dynamics
we have discussed in this paper may indeed lead to a profoundly different view
of the role of time in quantum cosmology”

The problem of time in quantum cosmology is one of the key conceptual
problems faced by theoretical physics at the present time. Although it was first
raised during the 1950’s, it has resisted solution, despite many different kinds of
attempts[35-39]. Here we would like to propose a new kind of approach to the
problem. Basically, we will argue that the problem is not with time, but with
some of the assumptions that lead to the conclusion that there is a problem.
These are assumptions that are quite satisfactory in ordinary quantum mechan-
ics, but that are problematic in quantum gravity, because they may not be
realizable with any constructive procedure. In a quantum theory of cosmology
this is a serious problem, because one wants any theoretical construction that we
use to describe the universe to be something that can be realized in a finite time,
by beings like ourselves that live in that universe. If the quantum theory of cos-
mology requires a non-constructible procedure to define its formal setting, it is
something that could only be of use to a mythical creature of infinite capability.
One of the things we would like to demand of a quantum theory of cosmology
is that it not make any reference to anything at all that might be posited or
imagined to exist outside the closed system which is the universe itself.

We believe that this requirement has a number of consequences for the prob-
lem of constructing quantum a good quantum theory of cosmology. These have
been discussed in detail elsewhere [38,40,41]. Here we would like to describe one
more implication of the requirement, which appears to bear on the problem of
time.

We begin by summarizing briefly the argument that time is not present in
a quantum theory of cosmology. In section 3 we introduce a worry that one of
the assumptions of the argument may not be realizable by any finite procedure.
(Whether this is actually the case is not known presently.) We explain how the
argument for the disappearance of time would be affected by this circumstance.
Then we explain how a quantum theory of cosmology might be made which
overcomes the problem, but at the cost of introducing a notion of time and
causality at a fundamental level. As an example we refer to recent work on the
path integral for quantum gravity[42], but the form of the theory we propose is
more general, and may apply to a wide class of theories beyond quantum general
relativity.

7 The remained of this paper originally appeared as a separate preprint, and was
published on the www.edge.com website. As it is closely related to the subject of
this paper, we append it here as a last section.
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9.1 The argument for the absence of time

The argument that time is not a fundamental aspect of the world goes like this®.
In classical mechanics one begins with a space of configurations C of a system S.
Usually the system S is assumed to be a subsystem of the universe. In this case
there is a clock outside the system, which is carried by some inertial observer.
This clock is used to label the trajectory of the system in the configuration space
C. The classical trajectories are then extrema of some action principle, 61 = 0.

Were it not for the external clock, one could already say that time has disap-
peared, as each trajectory exists all at once as a curve y on C. Once the trajectory
is chosen, the whole history of the system is determined. In this sense there is
nothing in the description that corresponds to what we are used to thinking of
as a flow or progression of time. Indeed, just as the whole of any one trajectory
exists when any point and velocity are specified, the whole set of trajectories
may be said to exist as well, as a timeless set of possibilities.

Time is in fact represented in the description, but it is not in any sense a
time that is associated with the system itself. Instead, the ¢ in ordinary classical
mechanics refers to a clock carried by an inertial observer, which is not part of
the dynamical system being modeled. This external clock is represented in the
configuration space description as a special parameterization of each trajectory,
according to which the equations of motion are satisfied. Thus, it may be said
that there is no sense in which time as something physical is represented in
classical mechanics, instead the problem is postponed, as what is represented is
time as marked by a clock that exists outside of the physical system which is
modeled by the trajectories in the configuration space C.

In quantum mechanics the situation is rather similar. There is a t in the
quantum state and the Schroedinger equation, but it is time as measured by an
external clock, which is not part of the system being modeled. Thus, when we
write,

d N
h—W(t) = HU(t) (14)
dt
the Hamiltonian refers to evolution, as it would be measured by an external
observer, who refers to the external clock whose reading is ¢

The quantum state can be represented as a function ¥ over the configuration
space, which is normalizable in some inner product. The inner product is another
a priori structure, it refers also to the external clock, as it is the structure that
allows us to represent the conservation of probability as measured by that clock.

When we turn to the problem of constructing a cosmological theory we face
a key problem, which is that there is no external clock. There is by definition
nothing outside of the system, which means that the interpretation of the the-
ory must be made without reference to anything that is not part of the system
which is modeled. In classical cosmological theories, such as general relativity
applied to spatially compact universes, or models such as the Bianchi cosmolo-
gies or the Barbour-Bertotti model[43,44], this is expressed by the dynamics

8 For more details and discussion see [35-39)
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having a gauge invariance, which includes arbitrary reparameterizations of the
classical trajectories. (In general relativity this is part of the diffeomorphism
invariance of the theory.) As a result, the classical theory is expressed in a way
that makes no reference to any particular parameterization of the trajectories.
Any parameterization is as good as any other, none has any physical meaning.
The solutions are then labeled by a trajectory, v, period, there is no reference
to a parameterization.

This is the sense in which time may be said to disappear from classical
cosmological theories. There is nothing in the theory that refers to any time at
all. At least without a good deal more work, the theory speaks only in terms of
the whole history or trajectory, it seems to have nothing to say about what the
world is like at a particular moment.

There is one apparently straightforward way out of this, which is to try to
define an intrinsic notion of time, in terms of physical observables. One may
construct parameter independent observables that describe what is happening
at a point on the trajectory if that point can be labeled intrinsically by some
physical property. For example, one might consider some particular degree of
freedom to be an intrinsic, physical clock, and label the points on the trajectory
by its value. This works in some model systems, but in interesting cases such as
general relativity it is not known if such an intrinsic notion of time exists which
is well defined over the whole of the configuration space.

In the quantum theory there is a corresponding phenomenon. As there is no
external ¢t with which to measure evolution of the quantum state one has instead
of (14) the quantum constraint equation

HY =0 (15)

where ¥ is now just a function on the configuration space. Rather than describ-
ing evolution, eq. (15) generates arbitrary parameterizations of the trajectories.
The wavefunction must be normalizable under an inner product, given by some
density p on the configuration space. The space of physical states is then given
by (15) subject to

1 :/Cpi/w (16)

We see that, at least naively time has completely disappeared from the for-
malism. This has led to what is called the “problem of time in quantum cos-
mology”, which is how to either A) find an interpretation of the theory that
restores a role for time or B) provide an interpretation according to which time
is not part of a fundamental description of the world, but only reappears in an
appropriate classical limit.

There have been various attempts at either direction. We will not describe
them here, except to say that, in our opinion, so far none has proved completely
satisfactory”. There are a number of attempts at A) which succeed when applied

9 For good critical reviews that deflate most known proposals, see [35,36].
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to either models or the semiclassical limit, but it is not clear whether any of them
overcome technical obstacles of various kinds when applied to the full theory.
The most well formulated attempt of type B), which is that of Barbour[39], may
very well be logically consistent. But it forces one to swallow quite a radical
point of view about the relationship between time and our experience.

Given this situation, we would like to propose that the problem may be
not with time, but with the assumptions of the argument that leads to time
being absent. Given the number of attempts that have been made to resolve
the problem, which have not so far led to a good solution, perhaps it might be
better to try to dissolve the issue by questioning one of the assumptions of the
argument that leads to the statement of the problem. This is what we would like
to do in the following.

9.2 A problem with the argument for the disappearance of time

Both the classical and quantum mechanical versions of the argument for the
disappearance of time begin with the specification of the classical configuration
space C. This seems an innocent enough assumption. For a system of N particles
in d dimensional Euclidean space, it is simply R¥?. One can then find the cor-
responding basis of the Hilbert space by simply enumerating the Fourier modes.
Thus, for cases such as this, it is certainly the case that the configuration space
and the Hilbert space structure can be specified a priori.

However, there are good reasons to suspect that for cosmological theories it
may not be so easy to specify the whole of the configuration or Hilbert space. For
example, it is known that the configuration spaces of theories that implement
relational notions of space are quite complicated. One example is the Barbour-
Bertotti model[43,44], whose configuration space consists of the relative distances
between N particles in d dimensional Euclidean space. While it is presumably
specifiable in closed form, this configuration space is rather complicated, as it is
the quotient of RV¢ by the Euclidean group in d dimensions[39)].

The configuration space of compact three geometries is even more compli-
cated, as it is the quotient of the space of metrics by the diffeomorphism group.
It is known not to be a manifold everywhere. Furthermore, it has a preferred
end, where the volume of the universe vanishes.

These examples serve to show that the configuration spaces of cosmological
theories are not simple spaces like RN?, but may be considerably complicated.
This raises a question: could there be a theory so complicated that its space of
configurations is not constructible through any finite procedure? For example, is
it possible that the topology of an infinite dimensional configuration space were
not finitely specifiable? And were this the case, what would be the implications
for how we understand dynamics'0?

10 There is an analogous issue in theoretical biology. The problem is that it does not
appear that a pre-specifiable set of “functionalities” exists in biology, where pre-
specifiable means a compact description of an effective procedure to characterize
ahead of time, each member of the set[45,41]. This problem seems to limit the pos-
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We do not know whether in fact the configuration space of general relativity is
finitely specifiable. The problem is hard because the physical configuration space
is not the space of three metrics. It is instead the space of equivalence classes of
three metrics (or connections, in some formalisms) under diffeomorphisms. The
problem is that it is not known if there is any effective procedure which will label
the equivalence classes.

One can in fact see this issue in one approach to describing the configuration
space, due to Newman and Rovelli[46]. There the physical configuration space
consists of the diffeomorphism equivalence classes of a set of three flows on a
three manifold. (These come from the intersections of the level surfaces of three
functions.) These classes are partially characterized by the topologies of the
flow lines of the vector fields. We may note that these flow lines may knot and
link, thus a part of the problem of specifying the configuration space involves
classifying the knotting and linking among the flow lines.

Thus, the configuration space of general relativity cannot be completely de-
scribed unless the possible ways that flow lines may knot and link in three
dimensions are finitely specifiable. It may be noted that there is a decision pro-
cedure, due to Hacken, for knots, although it is very cumbersome[47]. However,
it is not obvious that this is sufficient to give a decision procedure for configu-
rations in general relativity, because there we are concerned with smooth data.
In the smooth category the flow lines may knot and link an infinite number of
times in any bounded region. The resulting knots may not be classifiable. All
that is known is that knots with a finite number of crossings are classifiable.
If these is no decision procedure to classify the knotting and linking of smooth
flow lines then the points of the configuration space of general relativity may not
be distinguished by any decision procedure. This means that the configuration
space is not constructible by any finite procedure.

When we turn from the classical to the quantum theory the same issue arises.
First of all, if the configuration space is not constructible through any finite
procedure, then there is no finite procedure to define normalizable wave functions
on that space. One might still wonder whether there is some constructible basis
for the theory. Given the progress of the last few years in quantum gravity
we can investigate this question directly, as we know more about the space of
quantum states of general relativity than we do about the configuration space
of the theory. This is because it has been shown that the space of spatially
diffeomorphism invariant states of the quantum gravitational field has a basis
which is in one to one correspondence with the diffeomorphism classes of a
certain set of embedded, labeled graphs I'; in a given three manifold X [3,4].
These are arbitrary graphs, whose edges are labeled by spins and whose vertices
are labeled by the distinct ways to combine the spins in the edges that meet
there quantum mechanically. These graphs are called spin networks, they were

sibilities of a formal framework for biology in which there is a pre-specified space of
states which describe the functionalities of elements of a biological system. Similarly,
one may question whether it is in principle possible in economic theory to give in
advance an a priori list of all the possible kinds of jobs, or goods or services[45].
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invented originally by Roger Penrose[48], and then discovered to play this role
in quantum gravity!!.

Thus, we cannot label all the basis elements of quantum general relativity
unless the diffeomorphism classes of the embeddings of spin networks in a three
manifold Y may be classified. But it is not known whether this is the case.
The same procedure that classifies the knots is not, at least as far as is known,
extendible to the case of embeddings of graphs.

What if it is the case that the diffeomorphism classes of the embeddings of
spin networks cannot be classified? While it may be possible to give a finite
procedure that generates all the embeddings of spin networks, if they are not
classifiable there will be no finite procedure to tell if a given one produced is or is
not the same as a previous network in the list. In this case there will be no finite
procedure to write the completeness relation or expand a given state in terms
of the basis. There will consequently be no finite procedure to test whether an
operator is unitary or not. Without being able to do any of these things, we
cannot really say that we have a conventional quantum mechanical description.
If spin networks are not classifiable, then we cannot construct the Hilbert space
of quantum general relativity.

In this case then the whole set up of the problem of time fails. If the Hilbert
space of spatially diffeomorphism invariant states is not constructible, then we
cannot formulate a quantum theory of cosmology in these terms. There may be
something that corresponds to a “wavefunction of the universe” but it cannot
be a vector in a constructible Hilbert space. Similarly, if the configuration space
C of the theory is not constructible, then we cannot describe the quantum state
of the universe in terms of a normalizable function on C.

We may note that a similar argument arises for the path integral formulations
of quantum gravity. It is definitely known that four manifolds are not classifiable;
this means that path integral formulations of quantum gravity that include sums
over topologies are not constructible through a finite procedure[51].

Someone may object that these arguments have to do with quantum general
relativity, which is in any case unlikely to exist. One might even like to use
this problem as an argument against quantum general relativity. However, the
argument only uses the kinematics of the theory, which is that the configuration
space includes diffeomorphism and gauge invariant classes of some metric or
connection. It uses nothing about the actual dynamics of the theory, nor does
it assume anything about which matter fields are included. Thus, the argument
applies to a large class of theories, including supergravity.

9.3 Can we do physics without a constructible state space?

What if it is the case that the Hilbert space of quantum gravity is not con-
structible because embedded graphs in three space are not classifiable? How do

1 For a review of these developments see [11]. These results have also more recently
been formulated as theorems in a rigorous formulation of diffeomorphism invariant
quantum field theories[50,49].
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we do physics? We would like to argue now that there is a straightforward an-
swer to this question. But it is one that necessarily involves the introduction of
notions of time and causality.

One model for how to do physics in the absence of a constructible Hilbert
space is seen in a recent formulation of the path integral for quantum gravity in
terms of spin networks by Markopoulou and Smolin[42]'2. In this case one may
begin with an initial spin network Iy with a finite number of edges and nodes
(This corresponds to the volume of space being finite.) One then has a finite
procedure that constructs a finite set of possible successor spin networks 7,
where « labels the different possibilities. To each of these the theory associates
a quantum amplitude Ar, . ro.

The procedure may then be applied to each of these, producing a new set
I Here I's” labels the possible successors to each of the I'®. The procedure
may be iterated any finite number of times N, producing a set of spin networks
SII% that grow out of the initial spin network Iy after N steps. SII% is itself a
directed graph, where two spin networks are joined if one is a successor of the
other. There may be more than one path in 815; between I and some spin
network I'finq;. The amplitude for I to evolve to I'fina: is then the sum over
the paths that join them in S]F\[’), in the limit NV — oo of the products of the
amplitudes for each step along the way.

For any finite N, S% has a finite number of elements and the procedure
is finitely specifiable. There may be issues about taking the limit N — oo, but
there is no reason to think that they are worse than similar problems in quantum
mechanics or quantum field theory. In any case, there is a sense in which each
step takes a certain amount of time, in the limit N — oo we will be picking up
the probability amplitude for the transition to happen in infinite time.

Each step represents a finite time evolution because it corresponds to certain
causal processes by which information is propagated in the spin network. The
rule by which the amplitude is specified satisfies a principle of causality, by which
information about an element of a successor network only depends on a small
region of the its predecessor. There are then discrete analogues of light cones
and causal structures in the theory. Because the geometry associated to the spin
networks is discrete[3], the process by which information at two nearby nodes
or edges may propagate to jointly influence the successor network is finite, not
infinitesimal.

In ordinary quantum systems it is usually the case that there is a non-
vanishing probability for a state to evolve to an infinite number of elements
of a basis after a finite amount of time. The procedure we’ve just described
then differs from ordinary quantum mechanics, in that there are a finite number
of possible successors for each basis state after a finite evolution. The reason
is again causality and discreteness: since the spin networks represent discrete

!2 This followed the development of a Euclidean path integral by Reisenberger[52] and
by Reisenberger and Rovelli[53]. Very interesting related work has also been done by
John Baez[54]. We may note that the theory described in [42] involves non-embedded
spin networks, which probably are classifiable, but it can be extended to give a theory
of the evolution of embedded spin networks.
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quantum geometries, and since information must only flow to neighboring sites
of the graph in a finite series of steps, at each elementary step there are only a
finite number of things that can happen.

We may note that if the Hilbert space is not constructible, we cannot ask if
this procedure is unitary. But we can still normalize the amplitudes so that the
sum of the absolute squares of the amplitudes to evolve from any spin network
to its successors is unity. This gives us something weaker than unitarity, but
strong enough to guarantee that probability is conserved locally in the space of
configurations.

To summarize, in such an approach, the amplitude to evolve from the initial
spin network Iy to any element of SJFY) , for large finite IV is computable, even if
it is the case that the spin networks cannot be classified so that the basis itself
is not finitely specifiable. Thus, such a procedure gives a way to do quantum
physics even for cases in which the Hilbert space is not constructible.

We may make two comments about this form of resolution of the problem.
First, it necessarily involves an element of time and causality. The way in which
the amplitudes are constructed in the absence of a specifiable basis or Hilbert
structure requires a notion of successor states. The theory never has to ask about
the whole space of states, it only explores a finite set of successor states at each
step. Thus, a notion of time is necessarily introduced.

Second, we might ask how we might formalize such a theory. The role of the
space of all states is replaced by the notion of the successor states of a given
network. The immediate successors to a graph Iy may be called the adjacent
possible[41]. They are finite in number and constructible. They replace the ide-
alization of all possible states that is used in ordinary quantum mechanics. We
may note a similar notion of an adjacent possible set of configurations, reach-
able from a given configuration in one step, plays a role in formalizations of the
self-organization of biological and other complex systems[41].

In such a formulation there is no need to construct the state space a priori,
or equip it with a structure such as an inner product. One has simply a set of
rules by which a set of possible configurations and histories of the universe is
constructed by a finite procedure, given any initial state. In a sense it may be
said that the system is constructing the space of its possible states and histories
as it evolves.

Of course, were we to do this for all initial states, we would have constructed
the entire state space of the theory. But there are an infinite number of possible
initial states and, as we have been arguing, they may not be classifiable. In this
case it is the evolution itself that constructs the subspace of the space of states
that is needed to describe the possible futures of any given state. And by doing
so the construction gives us an intrinsic notion of time.

9.4 Implications

We must emphasize first of all that these comments are meant to be prelim-
inary. Their ultimate relevance rests partly on the issue of whether there is a
decision procedure for spin networks (or perhaps for some extension of them that



Combinatorial dynamics and time in quantum gravity 125

turns out to be relevant for real quantum gravity[11].). But more importantly,
it suggests an alternative type of framework for constructing quantum theories
of cosmology, in which there is no a priori configuration space or Hilbert space
structure, but in which the theory is defined entirely in terms of the sets of ad-
jacent possible configurations, accessible from any given configuration. Whether
such formulations turn out to be successful at resolving all the problems of quan-
tum gravity and cosmology is a question that must be left for the future!3.

There are further implications for theories of cosmology, if it turns out to be
the case that their configuration space or state space is not finitely constructible.
One is to the problem of whether the second law of thermodynamics applies at a
cosmological scale. If the configuration space or state space is not constructible,
then it is not clear that the ergodic hypothesis is well defined or useful. Neither
may the standard formulations of statistical mechanics be applied. What is then
needed is a new approach to statistical physics based only on the evolving set of
possibilities generated by the evolution from a given initial state. It is possible
to speculate whether there may in such a context be a “fourth law” of ther-
modynamics in which the evolution extremizes the dimension of the adjacent
possible, which is the set of states accessible to the system at any stage in its
evolution[41].

Finally, we may note that there are other reasons to suppose that a quan-
tum cosmological theory must incorporate some mechanisms analogous to the
self-organization of complex systems[40]. For example, these may be necessary
to tune the system to the critical behavior necessary for the existence of the
classical limit[56,42]. This may also be necessary if the universe is to have suffi-
cient complexity that a four manifolds worth of spacetime events are completely
distinguished by purely relational observables[38,40]. The arguments given here
are complementary to those, and provide yet another way in which notions of
self-organization may play a role in a fundamental cosmological theory.
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Abstract. We propose a short introductory overview of the non-commutative exten-
sions of several classical physical theories. After a general discussion of the reasons
that suggest that the non-commutativity is a major issue that will eventually lead to
the unification of gravity with other fundamental interactions, we display examples of
non-commutative generalizations of known geometries.

Finally we discuss the general properties of the algebras that could become gen-
eralizations of algebras of smooth functions on Minkowskian (Riemannian) manifolds,
needed for the description of Quantum Gravity.

1 Deformations of space-time and phase space geometries

The two most important branches of modern physics created in the beginning
of this century, the General Relativity and Quantum Theory, possess their well-
defined classical counterparts, the Newtonian gravity theory mechanics, which
are obtained as limits of these theories when the parameters ¢! or & The math-
ematical expression of this fact is formulated in terms of the deformations of the
respective structures. The notion of deformation plays the central réle in modern
attempts which try to generalize the geometrical description of physical realm.

To be more precise, we can cite the example of the relation existing between
the Lorentz and the Galilei groups: the Lorentz group can be considered as
deformation of the Galilei group, with the characteristic parameter ¢~'; when
this parameter tends to zero, the Lorentz group is said to undergo the contrac-
tion into the Galilei group. Similarly, the quantization procedure proposed by
J.E.Moyal [1] is a deformation of the usual Poisson algebra which is contracted
back to it when the characteristic parameter of deformation which is here the
Planck constant h tends to zero. Finally, Special Relativity may be considered as
a contraction of General Relativity when the characteristic parameter G tends to
zero (although some space-times different from the Minkowskian one can appear
when the Ricci tensor is put to zero).

Now, with three fundamental constants of Nature, h, G and ¢! serving as
deformation parameters, one can imagine seven different contractions of the hy-
pothetical unified theory that would deserve the name of “Relativistic Quantum
Gravity”, and which is yet to be invented. The seven contractions correspond to
the vanishing of:

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. £34-157, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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a) one of the three parameters, i.e h, G, or ¢~! only;
b) two parameters at once, i.e.(h and G), (h and ¢7!), and (G and ¢ 1);
c) all the three parameters at once, i.e. (h, G and ¢71).

The following Table shows the relations between the corresponding theories,
as well as their usual denominations (when we know them...). We did not take
into account the fact that taking the double limits might be non-commutative,
which cannot be excluded a priori and would have made our diagram even more
complicated.

Two of the theories displayed here have not found their realization yet: the
“Relativistic Quantum Gravity” and the “Non-Relativistic Quantum Gravity”.
It is not at all clear whether these hypothetical theories can be realized without
introducing some new deformation parameter depending on a new physical con-
stant, and whether this constant should be independent or related to the three
fundamental constants h, ¢ and G or not.

It is also amusing to note that our diagram is three-dimensional - is it just
a coincidence that we happen to live in three space dimensions, too? In the
figure, the contractions (symbolized by the arrows coinciding with the edges of
the cube) relate two-by-two different space-time or phase space geometries. The
best way to describe a geometry is, in our sense, to define the set of variables
(forming an algebra) that in a natural way would generalize the algebra of local
coordinates in these spaces.

P.A.M.Dirac was already aware of the possibility of a radical modification
of geometrical notions, and in his fundamental papers written in 1926 [2] he
evokes the possibility of describing the phase space physics in terms of a non-
commutative analogue of the algebra of functions, which he referred to as the
“quantum algebra”, together with its derivations, which he called “quantum
differentiations”. Of course, this kind of geometry seemed strange and even
useless from the point of view of General Relativity. Einstein thought that further
problems of physics should be solved by subsequent development of geometrical
ideas, and it seemed to him that to have a x b not equal to b x a was something
that does not fit very well with geometry as he understood it [3]

During several decades, mostly in the sixties and the seventies, a lot of ef-
forts have been made in order to find a unifying approach to both these great
theories.In doing so, people either tried to generalize one of the two theories so
that the other one would follow, or tried to merge them together via embedding
into some more general unified theory. Most of the activities in this field rather
belonged to the first category.

The Hamiltonian formulation of General Relativity by R.Arnowitt, S.Deser
and C.Misner [4], and later the Wheeler-De Witt equation which generalizes
Schrodinger’s equation for quantum wave functions describing the state of a 3-
dimensional geometry of the Universe [5] can be considered as a first attempt
to quantize the General Relativity. The geometric quantization developed by
J.M.Souriau, D.Simms, and B.Kostant ([6], [7], [8]) tried to derive the rules of
quantum mechanics by interpreting the observables and state vectors as elements
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of algebras of operators and functions defined on classical manifolds with suffi-
ciently rich geometry, (e.g. symplectic manifolds, fibre bundles, jet spaces).

“Non-Relativistic “Relativistic
Quantum <=0 Quantum
Gravity” Gravity”
h—0 h—0
G0
Newton’s Gravity ¢l =0 G—0
Em— General
and Relativity
Mechanics
Non-relativistic 1 ; Relativistic
c =0
Quantum —_— Quantum Field
G—0 Mechanics G—0 Theory
h—0 h—0
-1
Classical Mechanic c —0 Special
without gravity Relativity

Eight limits of fundamental physical theories

Two limits (marked in italics) are still to be invented

Simultaneous consideration of the two most important new physical theories
of this century, the General Relativity and Quantum Mechanics, did not bring
a common tool for the description of the nature of spacetime at the microscopic
level. The General Relativity develops our knowledge about global properties of
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space and time at very large distances, and raises the questions concerning the
global topology of the Universe.

The methods of Differential Geometry which are the best adapted as the
mathematical language of this theory, are very different from the methods of
Quantum Physics, in which one studies the properties of the algebra of observ-
ables, considering the state vectors, as well as geometric points and trajectories,
as artefacts and secondary notions. This approach has been inspired by the works
of John von Neumann [9], and has much in common with the non-commutative
geometry, where the very notion of a point loses its meaning.

A strong flavor of non-commutativity is also present in A. Ashtekar’s ap-
proach to quantum gravity, in which the notion of coordinates becomes sec-
ondary, the only intrinsic information being encoded in the loop space (see, e.g.
in A. Ashtekar [10], or C. Rovelli [11])

In the next section, we shall give a few arguments in favor of the hypothesis
that the realization of a theory taking into account quantum effects in gravitation
should also lead to the abandon of usual notion of coordinates and differential
manifolds and to the introduction of non-commutative extensions of algebras of
smooth functions on manifolds. We shall also see that such algebras can act on
free modules, which becomes a natural generalization of gauge theories described
mathematically as connections and curvatures on fibre bundles.

2 Why the coordinates should not commute
at Planck’s scale

There are several well-known arguments which suggest that the dynamical inter-
play between Quantum Theory and Gravitation should lead to a non-commutative
version of space-time. Let us recall the few ones that are cited most frequently:

* A semi-classical argument that involves black-hole creation at very small
distances: as a matter of fact, if the General Relativity remains valid at the
Planck scale, then any localization of events should become impossible at the

distances of the order of \p = \/'Z:Q . Indeed, according to quantum mechanical
principles, lo localize an event in space-time within the radius Aax* ~ a, one
need to employ the energy of the order a~!. When a becomes too small, the cre-
ation of a mini black hole becomes possible, thus excluding from the observation
that portion of the space-time and making further localization meaningless.

Therefore, the localization is possible only if we impose the following limita-
tion on the time interval:

Az% (D AzF) > X4 and  AzFAz™ > )%, (1)

in order to avoid the black hole creation at the microscopic level.

** The topology of the space-time should be sensitive to the states of
the fields which are in presence - and wvice versa, quantum evolution of any
field, including gravity, should take into account all possible field configurations,



134 Richard Kerner

also corresponding to the fields existing in space-times with radically different
topologies (a creation of a black hole is but the simplest example; one should
also take into account other “exotic” configurations, such as multiple Einstein-
Rosen bridges (the so-called “wormholes’, leading in the limit of great N to the
space-time foam.

Now, as any quantum measurement process may also lead to topological
modifications, again the coordinates of an event found before and after any
measurement can no more be compared, because they might refer to uncompati-
ble coordinate patches in different local maps. As a result, quantum measures of
coordinates themselves become non-commutative, and the algebra of functions
on the space-time, supposed to contain also all possible local coordinates, must
be replaced by its non-commutative extension, better adapted to describe the
space-time foam.

*** Since the coordinates x* are endowed with a length scale, the met-
ric must enter at certain stage in order to measure it. After quantization, the
components of the tensor g, become a set of dynamical fields, whose behaviour
is determined by the propagators and, at least at the lowest perturbative level,
by two-point correlation functions. As any other field, the components of the
metric tensor will display quantum fluctuations, making impossible precise mea-
surements of distances, and therefore, any precise definition of coordinates.

Our aim here is not to discuss all possible arguments suggesting that at the
Planck scale not only the positions and momenta do not commute anymore, but
also the coordinates themselves should belong to a non-commutative algebra. In
what follows, we shall take it for granted that such is the case, and shall expose
in a concise way, on the example of the simplest finite non-commutative algebra,
which is the algebra of complex n x n matrices, how almost all the notions of
usual differential geometry can be extended to the non-commutative case. We
shall also show how the gauge theories and the analogs of the fibre bundle spaces
and Kaluza-Klein geometries can be generalized in the non-commutative setting.

Finally, as our main subject is the hypothetical Quantum Gravity theory, and
because it has to have also a limit as Relativistic Field theory when gravity is
switched off, we shall analyze the conequences of the Poincaré invariance that
must be imposed on any theory of this type.

3 Non-commutative differential geometry

In the examples of non-commutative generalizations of spaces of states or of al-
gebras of observables, we have looked up to now only at the linear cases. A most
general non-commutative geometry should imitate the situations encountered in
the ordinary differential geometry of manifolds. Therefore, we should replace the
algebra of smooth functions on a manifold, (the maximal ideals of this algebra
can be identified as points of the corresponding manifold) by an more general
associative algebra, which can be non-commutative. The derivations of this al-
gebra will naturally generalize the notion of vector fields; their dual space will
generalize the fields of 1-forms, and one can continue as far as possible, trying to
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construct the analogues of a metric, integration, volume element, Hodge duality,
Lie derivatives, connection and curvature, and so forth. It is amazing how almost
all of these objects known from the classical version of differential geometry find
their counterparts in the non-commutative case.

The differential algebras of this type have been studied by A.Quillen [12],
A.Connes [13] and M.Dubois-Violette [14]; their application to new mathemat-
ical models of the gauge theories, including the standard model of electroweak
interactions of Weinberg and Salam, has been worked out by M.Dubois-Violette
et al [15],[16], by A.Connes and J.Lott [17], R.Coquereaux et al [18], and many
other authors since. Here we shall give the simplest example of realization of the
non-commutative geometry proposed in [15],[16], realized with the algebra of
complex n x n matrices, M, (C). Any element of M, (C) can be represented as
a linear combination of the unit n x n matrix 1 and (n? — 1) hermitian traceless
matrices Ey, k = 1,2, ... ,(n? — 1):

B=p3 1+)Y a"E (2)

One can choose the basis in which the following relations hold:
BB = (Mgun + S, B~ (D)CLE, )
with real coefficients satisfying Sim = ank, Sk =0, C’,zm = fC’fnk, ck =0,

and grm = C,flC}l,m. Then C}} are the structure constants of the Lie group
SL(n,C), and gi; its Killing-Cartan metric tensor. All the derivations of the
algebra M, (C) are interior, i.e. the basis of the derivations is given by the
operators O such that

OBy, = ad(iEy)Ep = i[Ey, Ep) = Ch,. By (4)
By virtue of the Jacobi identity, we have
OOm — OOk = Clp O (5)

The linear space of derivations of M,,(C), denoted by Der(M,(C), is not a left
module over the algebra M, (C) - this is the first important difference with re-
spect to the usual differential geometry, in which a vector field can be multiplied
on the left by a function, producing a new vector field. The canonical basis of
1-forms dual to the derivations Jy is defined formally by the relations

0% (8,) = 6k 1 (6)

These 1-forms span a left module over M,,(C), i.e. E0% is also a well-defined
1-form; indeed, Ei0%(0n) = Ei6% 1 = E;6F,
The exterior differential d is defined as usual, first on the 0-forms (“functions”)

by the identity

df(X) = X, (7)
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with f a function, X an arbitrary vector field. Here we have

(d1)(Om) = Oml = ad(iEp)1 = i[Epm, 1] =0 (8)
so that d1 =0, and

dEy(0m) = Om(Ey) = i[Ey, En] = Cpyi By 9)

Because the Lie algebra SL(n,C) is semi-simple, the matrices C’fcm are non-
degenerate, and the above relation can be solved in 6*’s giving the explicit ex-
pression

dEy = C},, B 0™ (10)

The fact that d?> = 0 follows then directly from the Jacobi identity. The Grass-
mann algebra of p-forms is defined as usual, with the wedge product

1
ekAem=(§)(9k®em—9m®9k) (11)
We have then
1
do* + (5)Crra0™0" =0 (12)

If we define the canonical 1-form 0 =Y Ex0%, we can easily prove that it is
coordinate-independent. Moreover, it satisfies the important relation

d9+0AN0=0 (13)

Let w be a p -form. The anti-derivation ix with respect to a vector field X can
be defined as usual,

(’in)(Xl, X27 e 7Xp71) = w(X, X17X2, v 7Xp71) (14)
The Lie derivative of a p -form w with respect to a vector field X is defined as
Lxw = (iX d+d iX)w (15)

It is easy to check now that the 2-form {2 = df is invariant with respect to the
derivations of A, i.e. that

Lx2=0 (16)

for any vector field X belonging to Der(M,(C)). The 2-form {2 is also non-
degenerate, and it is a closed 2-form by definition, because

AR =d* =0 (17)

The 2-form (2 defines a Hamiltonian structure in the algebra M, (C) in the
following sense:
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Let f € M, (C) be an element of our algebra; then Hamy is the Hamiltonian
vector field of f defined by the equality

NHam;, X)=X f (18)

for any X belonging to Der(M,(C)) The Poisson bracket of two “functions”
(observables) f and g is then defined as

{f,9} = 2(Hamys, Hamy) (19)
A simple computation shows then that
{Ek, Em} = .Q(ak, 8m) =1 [Eka E’m] (20)

Therefore, in our simple version of non-commutative geometry, classical and
quantum mechanics merge into one and the same structure: the Poisson bracket
of any two matrix “functions” (observables) is equal, up to a factor that can be
chosen as the Planck constant A , to their commutator .

This simple and beautiful picture is of course somewhat perturbed in the
case of infinite-dimensional algebras for which not all the derivations are interior
and might have other representations than the commutator with an observable.

The volume element induced by the canonical Cartan-Killing metric and the
corresponding Hodge duality * can be also introduced in a classical manner. The
volume element is given by

1

5 OTNGR N NG (21)
T _

n= ( 1)!61‘11‘2...%2
Any n? — 1 -form is proportional to the volume element 7 ; the integral of such
a form will be defined as the trace of the matrix coefficient in front of n . Then
the scalar product is readily introduced for any couple of p -forms « and ( as

follows:
(0, 8) = / (o A %B) (22)

With this formalism we can generalize the notions of gauge fields if we use
the non-commutative matrix algebra as the analogue of the algebra of functions
defined on a vertical space of a principal fibre bundle. Then we will be able to
compute lagrangian densities that may be used in the variational principle pro-
ducing dynamical field equations.

We shall see in the next section how this formulation of gauge theories con-
tains besides the SU(n) gauge fields also scalar multiples in the adjoint repre-
sentation, which have the role of the Higgs fields in standard electroweak theory.

4 Non-commutative analog of Kaluza-Klein
and gauge theories

At this stage we can introduce a non-commutative analogue of Kaluza-Klein type
theory, which will lead to a generalization of gauge field theories. In ordinary
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differential geometry the fact of using a Cartesian product of two differential
manifolds, or a fibre bundle locally diffeomorphic with such a product, can be
translated into the language of the corresponding function algebras; as a matter
of fact, in the case of the Cartesian product of two manifolds, the algebra of
functions defined on it is the tensorial product of algebras of functions defined
on each of the manifolds separately.

Consider the space-time manifold V; with its algebra of smooth functions
C>(Vy). Let us define the tensor product

A =C*(Va) ® Mn(C) (23)
It can be shown (cf.[13]) that
Der(A) = [Der(C™(Va)) @ 1] @ [C*(V4) @ Der(Mn(C)] (24)

In other words, a general derivation in our tensor product algebra replacing
the algebra of smooth functions on a fibre bundle space, can be written as the
following vector field

X = X*(2)0, + ()0, (25)

with g, v =0,1,2,3; k,l =1,2,...,(n? — 1) . A general 1-form defined on such
vector fields splits naturally into four different components:

A= Ag(as)ldz“ + Aﬁ (z)Epdz" + BC (2)16™ + B (2)E,6™ (26)

The exterior differential of a 1-form A takes into account the two kinds of dif-
ferentiation; e.g. for a general matrix-valued 0-form (“function”) @ = ¢°1(z) +
@™ (x)Ey, we have

d(®) = (9,8°)dz" + (8,8™)Epdat + & C,, Fi0" (27)

The notion of covariant derivation can be introduced quite naturally by consider-
ing a free (right) hermitian module H over the algebra A. If we choose a unitary
element e in H, then any element of H can be represented as & = eB, with
B € A. Then the covariant derivative must have the following basic property:

V(@D) = (VP)D + P ® dD (28)

for arbitrary @ ¢ H, D e¢ A Now, if & = eB, we shall have
V® = (Ve)B + e ® dB, (29)

and there exists a unique element a € A'(M,,(C)) such that
Ve =e® da (30)

satisfying the hermiticity condition & = —a. The elements B and « are called
the components of the field ¢ and the connection V in the gauge e.
Let U be a unitary matrix from the algebra A. Under a change of gauge

e —eU (31)
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the components B and « transform as follows:
B—U'B ,a—U"taU + U 'dU (32)

This is the analogue of the gauge theory in the non-commutative case. When
applied to the connection 1-form (denoted now A instead of « ), these principles
lead to the following expression of the gauge field tensor ' =dA+ AN A :

F = (F),14+G}, Ey)dz* Adz” +[(D,BY)1+ (D, BJ" Eny ) da* N6' + Gy E 0F N6
where
F), = 0,A) — 0, A, (33)
represents the abelian U(1)-gauge field;
G, =0,AL —0,Ak + Cf Al AT (34)

represents the SU(2)-gauge field;

1
is the derivative of the scalar triplet BY ;
m 1 m m S T
DB = (—)(0uBy" + Cer Ay, Br) (36)

is the covariant derivative of the scalar (Higgs type) multiplet B} ; finally,
m 1 m m S T
El — (W)(CISZB}? - CserBl) (37)

represents the potential contribution of the Higgs multiplet.

Here m is the dimensional parameter (dim[m] = cm™!) introduced in order
to give the proper dimension to the 1-forms #*. The parameter m can be later
related to the characteristic mass scale of the theory. The generalized action
integral is equal - in conformity with the definition of integration on the algebra
of p-forms in the non-commutative case - to the trace of the integral over space-
time Vy of the expression F' A xF' :

Tr / (F AxF)d*z (38)

The multiplet of scalar fields B;"™ plays here the réle of the symmetry-breaking
Higgs-Kibble field, whose quartic potential appearing in the last part of the ac-
tion integrand possesses multiple local minima or maxima.

In this example, when all other fields are set equal to 0, there exist sev-
eral configurations of B;" corresponding to vacuum states representing different
gauge orbits. Indeed, it is easy to see that GJ; = 0 not only when B™ = 0, but
also for Bj" = ¢;". These two vacua can not be transformed one into another by
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means of a gauge transformation, which is a novel feature when compared with
the known classical versions of gauge theory coupled with Higgs fields.

Although this generalization of gauge theory including a non-commutative
sector of differential geometry contains naturally the gauge group SU(2) x U(1),
the Higgs multiplet arising here does not have the usually required properties, i.e.
it is not a doublet of complex scalar fields coupled in a different way to the left-
and right-handed fermions; we have instead a tensor multiplet 5] that admits
16 different vacuum configurations, most of them degenerate saddle points in
the parameter space. Also the mass spectrum of bosons appearing in the theory
is not satisfactory. Developing the bosonic fields of the model, Ag, A”j and BY ,
and linearizing the equations around the vacua given by B;" = 0 or B" = §"
respectively, we obtain on the gauge orbit B]" = 0:

- masses of Ag and Al’j equal zero,

- masses of B and B all equal to \/nm;
whereas on the gauge orbit B/™ = 6" :

- the U(1) gauge field A%y remains massless while the SU(2) - gauge field

acquires the mass v2nm ;

- the scalar multiplet B, acquires the mass v2m, and the Higgs multiplet

itself, B;" develops a mass spectrum with values 0, V2m and 2v2m .
which makes this version of unified SU(2) x U(1) theory unrealistic.

More realistic versions of non-commutative gauge models, reproducing quite
well all the properties of the electroweak interactions required by the experiment,
have been proposed by A.Connes and M.Lott [17], R. Coquereaux et al. [18], by
M.Dubois-Violette et al., [15], [16], and by J.Frohlich et al., [19]. In all these
models the non-commutative algebra of complex matrices is tensorized with a
Zs-graded algebra, which in simplest realisation can be conceived as algebra of
2 x 2 matrices that splits into two linear subspaces called “even” (corresponding
to diagonal matrices) and “odd” (corresponding to the off-diagonal matrices),
with respective grades being 0 and 1, which under matrix multiplication add up
modulo 2. The exterior derivations change the grade of an element by 1, and
satisfy the graded Leibniz rule

d(AB) = (dA)B + (—1)9redAgrad(B) g4 B (39)

This enables one to represent the connection form (interpreted as the gauge-field

potential) in the following form:
A Wt
(w7 ) (1

where the gauge fields A and Z belong to the even part of the algebra, while
the fields W+ and W~ belong to the odd part; moreover, all these fields are
themselves 2 x 2 matrix-valued 1-forms. Developing this theory around the ap-
propriately chosen vacuum configuration one can quite correctly reproduce the
mass spectrum, with the mass of neutral Z -boson % times bigger than the
mass of the charged W - boson, which corresponds to the Weinberg angle of 30°.
More details can be found in the papers cited above.
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At this point one may try to imagine what a non-commutative extension
of the General Relativity could look like 7 Since a long time there exist many
approaches in which the General Relativity was considered as a gauge theory,
with gauge group being the infinite-dimensional group of diffeomorphisms of
four-dimensional Riemannian manifolds. However, with the gauge group of this
size little could be done in matter of computation and prediction, especially on
the quantum level.

A more realistic direction consists in exploring the properties of linear approx-
imation of a more complicated final version of the theory. Recently, J. Madore
et al. in [20] have introduced the generalization of linear connections on matrix
algebras defined above. With the usual definition of covariant derivation acting
on the moving frame:

DO* = —wi @0’ (41)
Because the definition of covariant derivative requires that
D(f§) = df ® §+ f D, (42)
the covariant derivative of an arbitrary 1-form £,6¢ is
D (£a0%) = déq ® 0% — Eqw% 07
The covariant derivative along a vector field X is defined as
Dx € =ix (DE) (43)

and defines a mapping of 21 (V) on itself.
If the torsion vanishes, then one finds that

D?0* = — 2%6° (44)

where 2% = R%Vé 67 A 6% is the curvature 2-form.

The generalization of these formalism for the non-commutative case is quite
obvious. We must replace the linear space of 1-forms which span the tensor and
the exterior algebras by the corresponding right A-module of 1-forms defined
over our matrix algebra 2'(M,C)). In the basis introduced in the previous
section, 0%, k =1,2,...(n%? — 1), we had

dok = f% ck 0'0m, and  df = [0, f).
It is easy to define the linear connection with vanishing torsion:
DO" = —w", ® 6%, with W, = —%Cgtet (45)
Introducing the permutation operator o as

a(&k ® 9171) —gm ® ek’
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we can express the commutativity of the algebra C>°(My)

D(&f) = D(f¢)

by writing
D(Ef) =o(§ ®df) + (DS) f.

The last condition can be maintained in a more general case as the require-
ment imposed on the connection 1-forms. It follows then that in the case of
matrix algebras considered here, one has

D([f,6") = [f, D8"] = 0, (46)

so that all the coefficients w¥ = must be in the center of M,,(C), i.e. they are just
complex numbers, and the torsionless connection defined above becomes unique.

The metric in the space of 1-forms over M,,(C) has been already introduced
as g(0* ® ™) = gk™ € C. The fact that w’zlm) = 0 can be interpreted as the
metricity of this connection. This leads to the unique definition of the corre-
sponding curvature tensor:

1
‘Qkhnn = gcﬁ'c':;zn
These constructions have been used already in [15] and [16], and can serve as the
non-commutative extension of connexion and curvature on the tensor product
of algebras C*>°(M,) ® M,,(C).

However, the fact that all geometrically important quantities like metric,
connection and curvature coefficients, are forced to belong to the center of the
non-commutative sector make the above generalization quite trivial and therefore
unsatisfactory.

5 Minkowskian space-time as a commutative limit

In this section we shall discuss an important feature of any non-commutative ge-
ometry that contains the algebra of smooth functions on Minkowskian space-time
and is supposed to be Poincaré-invariant at least in the first orders of the defor-
mation parameter. This result has been published in 1998 (M. Dubois-Violette,
J. Madore, R. Kerner, [21]). Similar ideas have been independently developed
earlier by S. Doplicher, K. Fredenhagen and J.E. Roberts (cf. [22]).

The main idea is as follows. Suppose that the non-commutative geometry
that is supposed to describe in an adequate way the quantum version of Gen-
eral Relativity contains in its center the infinite algebra of smooth functions on
Minkowskian space-time. This infinite algebra serves as a representation space
for the infinite-dimensional representation of the Poincaré group, in particular,
the abelian group of translations, in the limit when the gravitational interaction
becomes negligible, which shall correspond to the limit x — 0, where & is pro-
portional to the gravitational coupling constant G.
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It seems natural to suppose that the Poincaré invariance remains still valid
before the limit is attained, at least in the linear approximation with respect
to the deformation parameter x. Then an important question to be answered
appears, namely, what is the dimension of the non-commutative part of the full
algebra before the limit is attained? As it is shown in the reference [21], it must be
infinite-dimensional. In other words, it is impossible to impose the full Poincaré
invariance on a tensor product of C>°(M,) with a finite non-commutative alge-
bra, as in the example with the matrix algebras considered in previous sections.
These examples can be considered only as approximations to the correct theory
of non-commutative space-time and gauge field theories.

Let us consider then a one-parameter family of associative algebras, A,
whose limit at x = O, denoted by Ay, admits a well-defined action of the
Poincaré group on it. When x — 0, one should attain as a classical limit certain
algebra, obviously containing C* (My), the algebra of smooth functions on the
Minkowskian manifold:

A,{ — ./40 D COO(M4) (47)

The one-parameter family of associative algebras, A, can be analyzed with the
help of the deformation theory developed in the well-known article by F. Bayen,
M. Flato, C. Fronsdal and A. Lichnerowicz (cf. [23]). It is supposed that all A,
coincide - as vector spaces - with a fixed vector space E. The product of any two
elements f, g in A, can be expanded as follows:

(f9) = fg + kc(f,g) + o(k2) (48)

where fg = (fg)o is the product in Ag. We also assume that there is a common
unit element 1 for all A,. The commutators of any two elements f, g in A, and
in Ao are related via the following equation:

[f,g]n:[fag]o_i“{f,g}‘f‘o(“Q) (49)

where {f,g} = i(c(f,9) — c(g, f)). The mapping (f,g) — c(f,g) is called a
normalized Hochschild 2-cocycle of Ay with values in Ay.

The derivation property of the commutator in A, should be maintained,
which means that

[h> (fg>l‘€]fi = ([hvf]mg)ﬁ"i_(f? [hvg]f-i)m (50)
Then, in the first order in x, we get
i(1n. .9 = cllh.119) = (. hos]) ) = Fihag) = (b fa} + (ke Fg - 61)

This implies that if h € Z(Ap), the center of the algebra Ap, then the endo-
morphism &, : 6, (f) = {h, f} is a derivation of Ay :

{nAf, 93y ={{h f} gy +{f, {hg}} (52)
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The center of the algebra Ap, denoted by Z(A), is stable under these derivations,
and therefore, it closes under the bracket {, }. This means that the Jacobi
identity valid in all associative algebras A, remains valid, at least up to the
second order in k, in Ag :

fI'OHl [fa [g7h’]l€}ﬁ+[g7 [h7f}l€]/‘é+[h? [fmg]i‘é}ﬁ :O lt fOHOWS

{fv {g7h’}1€}h}+{g?{h7f}ﬁ}ﬁ+{hﬂ{fﬂg}ﬁ}h} =0 (53)

Summarizung up, we can make the following statement:
The center of Ay, Z(Ap), is a commutative Poisson algebra with the Poisson
bracket given by
i(C(f, g) - C(ga f))
The linear mapping z — ¢, maps Z(Ap) into the Lie agebra of derivations of
Ao : 5z(f):{z>f}a for z, f € Ao
We wish to represent the non-commutative analog of real functions by Hermi-
tian elements of the extended algebra of functions. Therefore, we should impose
the following reality condition :
- all the A, are complex *-algebras, whose involutive vector spaces coin-
cide with the unique space F;
- for any f € E, also f* € FE; moreover, we assume that there exists
a unique hermitian element which is the common unit for all these algebras,
1* =1, such that

(f9)e = ("9 )x, and (1f)e=(f1)x = f

It follows that the normalized co-cycle ¢(f, g) satisfies natural condition

(c(f,9)" =clg", f7)

Thus, the set Zr(Ap of all Hermitian elements of Z(Ap forms naturally a
real Poisson algebra, and z — §, maps it into the real Lie algebra Der(Ag of all
Hermitian derivations of Aj.

Now comes the main point: the necessary realization of the Poincaré invari-
ance on these algebras. The family A, represents non-commutative extensions
of the algebra of smooth functions on space-time. Even if these algebras are
not Poincaré-invariant, we wish to recover the Poincaré-invariant physics on the
usual Minkowski space in the limit when x — 0. Therefore, we must assume that
the Poincaré group P acts via *-automorphisms on the limit algebra A :

(Aa a) - DA,a) el <A07A0) (54)

for any element (4,a) € P.

By hypothesis, the algebra Ay contains a *-subalgebra identified with the
commutative algebra of smooth functions on Minkowski space, C>°(My). The
action of P on Ay should induce the usual action of P on C*°(My) associated
with the corresponding linear transformations in Mjy.
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We shall now argue that C*°(My) can not be the whole Ayp.

Indeed, suppose that Ay = C*°(My). The, in view of the our previous sate-
ment concerning the Poisson structures, there exists a Poisson bracket on Mjy.
This Poisson bracket must be non-trivial, since we assumed that the A, are all
non-commutative.

On the other hand, we know that there does not exist a non-trivial Poincaré
invariant bracket on My. Indeed, let (f,g) — {f, g} be such a bracket. Then, in
a given coordinate patch, it can be represented analytically as

{f,9} =02"0,f0ug (55)

whare 2# = {z# | 2"} must be an anti-symmetric tensor field on My, which is
constant with respect to translations and Lorentz covariant.
However, the rotational invariance already implies that the three-vectors

E'=0% and BF =€ 0™ (i,k,1=1,2,3)

should vanish, which means that 2#¥ = 0, and therefore, also {f, g} = 0 for all
f.g € C(My).

It seems unreasonable to suppose that the Poincaré invariance is broken at
the first order in x, because at this order we expect to recover a spin-2 Poincaré-
invariant theory, coupled to other physical fields. So, if the Poincaré invariance
holds at the first order in &, it follows that the inclusion C*°(M,) C Ap must
be a strict one, i.e. the limit K — 0 of A, must contain an extra factor besides
C>°(My). Therefore, the normalized two-cocycle ¢(, ) of Ay defined by

(f9)e = fg+ K c(f, g) + o(r2) (56)

is supposed to be Poincaré-invariant, i.e. it has the property:

o (e07:9) = claan (F00an(@) 67)
which implies the invariance of the x-bracket:

[f,g]n:[f,g]*l{f,g}+0(ﬂ2) (58)

Let us consider now the elements of Ay that belong to C°>°(M,) and generate
the commutative algebra of smooth functions on My : z* € C*>°(My). By
definition, we have then

Qp,a) 2" = ATV (¥ —1aY) (59)

By choosing the origin, one can identify C*°(M,) with the Hopf algebra of
functions on the group of translations of My. Since C*°(M,) is a subalgebra of
Ayp, the algebra Ao is a bimodule over C*°(My). As a left C*°(My)-module, Ay
is isomorphic with the tensor product C>®(My) ® AJ , where A} denotes the
subalgebra of transitionally invariant elements of Ay :

A ={fealagn() =1 for al a} (60)
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In fact, Ap is isomorphic with C>®(M,) ® A} as a (C*°(My), A})-bimodule.
Thus in order to recover the complete algebraic structure of Ay, it is sufficient
to describe the right multiplication by elements of C*°(My) of the elements of
Al. The algebra A} is stable under the derivations induced by the generators of
local coordinate variables x*:

f— ad(@*)(f) = [", f]

Therefore, for any f € Al one has
frt = f — ad(z*)(f)
or, in the tensorial representation Ay = C>(My) ® A} :
frt =2 @ f —1®ad(z")(f) for any fc A}

;From this we can deduce the right multiplication of C>(M,) ® A} by the
elements of C>°(My). Let us denote by X* the four commuting derivations of
A} induced by ad(2*). The algebra A{ is invariant under the action of the
diffeomorphisms a4 ).

Let us denote by o, the homomorphism of the Lirentz group into the group
Aut(Ap) of all the *-automorphisms of AZ.

Then one can summarize the above discussion of properties of our algebra
by the following presentation of Ay :

We start with a unital *-algebra A} equipped with four commuting anti-
Hermitian derivations X* and the action A — o of the Lorentz group through
the automorphisms of A} :

afloX”:A_l V”X”oafl (61)

The entire algebra Ay is generated as a unital *-algebra by Al and the four
Hermitian elements x* which satisfy the relations:

gtz = ¥zt

and  aff=fo' + XI(f) if  fe Al (62)
The Poincaré group acts on Ag as follows:

- for a# € C*°(My) :
A0 (@) = A7 (2 — a” 1); (63)
-for fe Al :
aaw(f) = aa(f). (64)
But we have assumed before that the bracket

{£.9y=i(elf.9) elg.1)
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does not vanish identically on C°°(My). This implies that the functions ¢
defined as
= c(zh, ")

do not all vanish. On the other hand, these functions being Lorentz covariant
must belong to Af, so that we have

g a) () ="
and one has
afl (") = Aflp"/lflg” c?, (65)

so that the homomorphism of the Lorentz group into the group Aut(A} of the
*_automorphisms of A} is never trivial.

This implies in turn that AJ cannot be a finite-dimensional algebra (like
e.g. the complex matrix algebra discussed in our previous example), because
on such an algebra all automorphisms are inner, and on the other hand, it is
known that the Lorentz group has no non-trivial, finite dimensional unitary rep-
resentations. Therefore, the extra factor that is present in Ay besides the usual
infinite-dimensional algebra of functions (coordinates) on My must be also infi-
nite dimensional.

In view of previous analysis, the algebra 4 is the tensor product C* (M) ®
AIO, with the Lorentz group acting via automorphisms on AJ. Since the brackets
{a#, 2"} € Af, the algebra A] must contain as a subalgebra an algebra of func-
tions on the union of Lorentz orbits of anti-symmetric 2-tensors. The coordinates
on this algebra viewed as a manifold are just the brackets {a#,2"}. The orbits
may be labeled by the following two parameters:

a = gup gor {z*, 2P H{z", :c)‘} and 0 = €upo {2¥, 2"} {af, 2} (66)

If we want to include the definitions of time reversal and parity, we should assume
that whenever a given orbit («, 3) appears in the algebra, the orbit corresponding
to (a, —f3) should appear as well. When one has also {z*,{z”,2*}} = 0 for all
values of indeces u, v, A, then A{) is equal to the above algebra.

The simplest situation occurs when C>°(My) belongs to the center of Ag. In
this case the cocycle ¢ is antisymmetric (up to a co-boundary) on C*°(My), and
also on the center Z(Ap) itself. Then Aj is a commutative Poisson algebra, and
the family A, can be obtained by its geometric quantization.

It is not difficult to give an example of such one-parameter family of algebras,
containing the usual representation of the Poincaré algebra acting on smooth
functions (coordinates) on Mjy.

[x*, 2¥] = ikM"™
o M) = (g - L)
[x#, L] = ik M™
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[M>VJ7 MIW] — i(g’\”M“p _ g/wMu/\ + gpuMM _ g/\uMVp)
(LY M#] = i(g LF — g™ L)

[L*, L") = ikM™ (67)

where g"" denotes the Minkowskian metric diag(—1,1,1,1). It follows from the
above relations that for k # 0 the algebras A, are generated by the z*. For
any value of x there exists an action of the Poincaré group P on A, via *-
automorphisms (A, a) — a(4,q) defined as:

Q(A,a) ot = Afl,j‘ (z¥—a" 1), Q(A,q) Lt = A*IV“ LY, Q(4,a) " = Ailp“/lflc;’ I°e,

The commutation relations between the I*¥ and the L* are the relations of
the Lie algebra of SO(4,1) if & is positive, of SO(3,2) if k is negative, and of
the Poincaré algebra if x = 0. It follows that the I* and the L* generate the
corresponding enveloping algebras. The differences of the generators z# — L are
in the center Z(A,;) of A,;; therefore the algebra A,; is the tensor product of the
commutative algebra generated by the (z# — L#) and the two following Casimir
operators:

Cy = K guugox I 1" +2 g, LM LY,

Ca = 9" (epnuw LN ) (€ LN TV (68)

where €,,5, is the totally anti-seymmetric tensor with €y123 = 1. Therefore also
Ay is the tensor product of the commutative algebra generated by the (a# — L)
with the enveloping algebra of the Poincaré Lie algebra generated by the L* and
the I+V.

It must be stressed here that this Poincaré algebra is not the same as the
Poincaré algebra acting on Ag (like on the space-time variables) via the auto-
morphisms (4 4); this can be seen also by the fact that L* have the dimension
of a length. This double appearance of the Poincaré algebra may be interpreted
as the necessity to introduce matter besides the space-time itself as soon as we
penetrate in the non-commutative sector of the great algebra containing C*°(My)
as a factor.

Since our Casimirs Cy and C4 are contained in the center of A, and since
they are translationally invariant, we can impose some fixed values on them,
thus specifying even more precisely the algebras A,. Since the element Cy has
the dimension of a length squared, and the element C; that of a length to the
power four, the most natural choices amount to attribute the value x? to the
element C4, while the element C5 can be given the following three particular
values:

Z) CQ = Kj ZZ) CQ = —K, ’L’LZ) CQ =0.

All these choices lead to g,, L*L” = 0 in A). Remembering the fact that A}
has the structure of the enveloping algebra of the Poincaré Lie algebra, the last
condition is an analogue of the zero mass condition in the ususal case.
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With the value of Cy fixed in such a way that the representations found
here are all of “zero mass” and “strictly positive spin” type, which gives the
algebra A} a characteristic two-sheet structure, corresponding to the two possible
helicities, which in turn results from the fact that the Lorentz group is not simply
connected.

As a concluding remark, we would like to stress the fact that in general the
Poincaré covariance of A, is not necessary; all we need here is to ensure the
Poincaré covariance of Ay only. Another deformation of the Poincaré algebra,
called “the k-Poincaré” has been studied in a series of papers published recently
by J. Lukierski and co-authors (][24]).

Their approach is in some sense complementary to the scheme presented
above: instead of considering the action of the ezact Poincaré group on the
space-time containing a non-trivial deformation because of the supposed non-
commutative character of the coordinates, one chooses to consider the action of
a deformed Poincaré group, called the k-Poincaré, on the ordinary space-time.
It seems plausible that in the linear limit both these approaches nearly coincide.

6 Quantum spaces and quantum groups

A more radical deformation of usual behaviour of functions describing the coor-
dinates and their differentials consists in modifying the commutation relations
not only between the coordinates and their differentials, but also between the
coordinates themselves, and between the differentials as well, which would rep-
resent a very profound modification of the space-time structure. Moreover, if we
look for the transformations that would keep these new relations invariant, we
discover that such transformations can not be described by means of ordinary
groups, which therefore need to be generalized. Such new generalizations have
been introduced by V.Drinfeld, L.Faddeev and S.L.Woronowicz, ([25], [26], [27]).
and they are known under the name of “Quantum Groups”.

The litterature on this subject is very abundant; we shall cite the papers
by S.L.Woronowicz [27], as well as the papers of L.C.Biedenharn [28], J.Wess
and B.Zumino [29], L.A.Takhtajan [30], V.G.Kac [31]; the list is far from being
exhaustive, so that we shall limit ourselves to an outline of the main idea illus-
trated by a simple example.

Conformally with the spirit of quantum field theories, the most important
mathematical object to be studied is the algebra of observables, which are usually
functions of few fundamental ones. This approach can be extended to the math-
ematical study of Lie groups: indeed, we can learn almost everything concerning
group’s structure from the algebraic structure of functions (real or complex) de-
fined on it.

Consider a compact manifold G which is also a Lie group; let e denote its
unit element. The algebra A of functions defined on G has a very particular
structure, which is implemented by the following three mappings: i) for each

feA, there is an element of A ® A, denoted by Af, such that Af(z,y) = f(zy);
The mapping A :

A—ARQA (69)
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is called the coproduct. ii) There exists a natural mapping from A into C (or

R) defined by
e: f— fe) e C (70)

which is called the co-unit iii) There exists a natural mapping of A into itself:

(Sf)(x) = f(2™") (71)

which is called the antipode

It is easy to see that in the case of the algebra of functions defined on a Lie
group the co-product is non-commutative if the Lie group is non-commutative;
however, the multiplication law in the algebra A itself remains commutative as
long as we consider the functions taking their values in C or R. This particu-
lar structure of an associative commutative algebra A with the three operations
defined above, the co-product, the co-unit and the antipode is called the Hopf
algebra. Now, the natural extension that comes to mind is to abandon the pos-
tulate of the commutativity of the product in A; in this case, the structure is
named the Quantum Group. It should be stressed that a quantum group is not
a group, but a general algebra which only in the commutative case behaves as
the algebra of functions defined on a Lie group.

One of the most interesting aspects of this theory is the fact that the quantum
goups arise quite naturally as the transformations of non-commutative geome-
tries known under the name of quantum spaces introduced by Yu.Manin, J.Wess
and B.Zumino, and others. We shall illustrate how a quantum group can be con-
structed on a simple example in two dimensions called the Manin plane ([32]).

Consider two “coordinates” x and y spanning a linear space and satisfying

ry =q yx (72)
with a complex parameter q different from 1. Consider a transformation
=a x+by, yY=caz+dy. (73)
which preserves the relation xy = q yx, i.e. such that
'y =q y'a (74)

We shall suppose that the quantities a, b, ¢, d commute with the “coordinates”
x,y; the simplest realization of this requirement is achieved by assuming (disre-
garding the nature of the entries of the matrix) that the multiplication of by
a, b, etc. is tensorial, i.e. when we set by definition

¥r=ar+b®y. (75)

Then the conservation of the g-commutation relations between x and y leads to
the following rules for a, b, c and d:

1
ac=gq ca, bd=gq db, ad=da+q cb— (-)bc (76)
q
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In order to fix all possible binary relations between the coefiicients a, b, ¢ and d
we need three extra relations, which would define be, ab and cd. Such relations
can be obtained if we define the “differentials”

é-:dﬂj', W:dy, 52:07 772:0 (77)

satisfying twisted p -commutation relations
1
&n+ (E)nﬁ =0 (78)

with a new complex parameter p. Assuming that the exterior differentiation
commutes with the transformation matrix and requiring the same relations for
& and 7/, we get

be = (]%>Cb’ ab=p ba, ed=p de. (79)

With these relations the matrix algebra defined above becomes associative and
can be given the structure of a Hopf algebra as follows:

A ab) (a®a+bR®ca®b+bRd
cd)] \c®a+dQceb+dxd

The antipode S of a quantum matrix should be defined as its inverse. In order to
make such a definition operational, we need a non-commutative generalization
of the determinant of a matrix. Such a “(¢q,p )-determinant” should be defined
as the combination of parameters appearing in the transformation law for the
“elementary area element”, i.e. the exterior product of the differentials £ and n:

&'n = Dyén (80)

which yields immediately
1
D, =ad —pbc =da—(=)bc (81)
q

The determinant D, commutes with a and d, but has non-trivial commutation
relations with the off-diagonal elements a and b (in what follows, we shall omit
the subscript ¢ for the sake of simplicity) :

Db = (g)bD, De= (4yeD. (82)

p

It should also possess an inverse D~!, which in fact is a new element extending
the algebra, and satisfying

D'D=1=DD™! (83)
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Applying these identities to the commutation relations verified by D, one finds
easily that D~! commutes with a and b, and satisfies

D' = (Xyp~1p, D' = (4D e (84)
q p
It is easy to see that
AD)=D®D, AD)AD)=A1)=1®1 (85)
and
ADHY=D'eD™! (86)

The antipode of any matrix can be determined now as follows:
=1 1
S(ab)Dl( d (q)b)(d (p)b)D1 (87)
cd —qc a -p a

S(D)=D"' S(D™'=S8(D) (88)

Also

but $2? # 1. The inverse of the antipode mapping can be also defined as

s(2a) =2 () )

The algebra generated by the matrices defined above, whose entries a, b, ¢

and d satisfy the (g, p)-commutation relations is a Hopf algebra; it is denoted by
GL,4(2,C).
A differential calculus on such algebras has been developed by S.L.Woronowicz;
the notion of covariant differentiation, if it can be introduced properly, may lead
to new and rich extensions of the ideas of connections, curvatures and gauge
fields. Here we shall give an example of the realization of covariant derivation
and the curvature 2-form on the quantum plane introduced above. These results
belong to M. Dubois-Violette et al., published in ([33]).

The algebra of forms on the quantum plane is generated by four elements,
x,y,& = dr and n = dy, with the following commutation relations:

Y = qYyz,

& =q¢x, an=qur+(-1)8&, vE=qly, yn=d¢ny,
€=0, =0, né+q¢én=0

where ¢ is supposed not to be a root of unity. In (still hypothetical !) future
physcical applications the value of the parameter g is supposed to be very close to
1, and in the linear approximation can be written as 1+ . The above conditions
are of course compatible with the definitions £ = dx, 7 = dy and with the Leibniz
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rule, i.e. if we apply the operation d to the first constitutive identity xy = q yx, we
obtain a relation which is a direct consequence of the four constitutive relations
between x, y and their differentials £, 1 , and so forth.

All the relations between the variables x, y and their differentials £,  can
be written in a more uniform way using a matrix notation which introduces
the tensorial product of linear spaces spanned by both z,y and &, n variables.
Denoting = and y by 2’ and ¢ and n by £*, with i,k = 1,2, we can write

a'ad — ¢ R, 2l

a'¢l —qRY €,

gl + q R, €F ¢ (90)

The tensor product of two 2-dimensional spaces is 4-dimensional, but the indices
that are grouped two by two can be re-labeled with their values ranging from 1
to 4, and the R-matrix can be written as an ordinary 4 x 4 matrix:

g 0 00

r_ | 0(@—g )10

E=10"1 "00 (91)
0 0 0gq

If the SL,(2, C) matrix (corresponding to the case p = ¢~! in the more general

notation GL4(p,q)(2,C) introduced above) is written, with the same indices

k,l=1,2as
i ab
“k=\cd

then the invariance of the g-commutation relations with respect to the simulta-
neous transformation of the linear spaces x,y and £, n by a matrix belonging to
the quantum group SL,(2, C) amounts to the following relation:

i kol _ i j Pkl
RY,a%, a,, =aya; R, (92)

If we extend trivially the action of the differential d onto the quantum group
SLy(2,C) itself by requiring all the coefficients @’ to be constant,

daik = 07
The coaction of SL,(2, C) on the 2% and the &* can be defined then as follows:
f=d, @z, ¢=d,0m (93)

It can be found without much pain that the new variables # and 5 k satisfy the
same twisted commutation relations as formerly z* and £*.

As in the case of the matrix model of non-commutative geometry, one can
introduce a canonical 1-form by defining

0=xn—qyé&, satisfying 6% =0.
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and is invariant under the coaction of SL,(2,C) with # = 1 ® 6 and has the
following commutation relations with the variables z*, ™ :

b0 =q0z";  mo=—g2oem (94)

Up to a complex multiplicative constant this is the unique element of 2! (the
space of g-one forms) verifying the above properties.

To define covariant derivation, we must introduce first the permutation op-
erator ¢ mapping the tensor product 2'® 42! into itself. As a matter of fact,
the operator o turns out to be just the inverse of the matrix ¢ R',. We can write
it down using the explicit indices ¢, j, .. as follows:

c((®&)=q%®E  oE@n=qg'na¢,

ol =q¢'é@n—-1-¢*nes omnen)=qnen  (95)

as well as

c(l®0)=q¢%0R¢ (@) =q¢ixR0-(1-¢")IxE,

c(n®0)=q>0n, oo =qne0-(1-g*)0xn.  (96)
and also
c(0®0)=q %020
If we suppose that ¢? # —1, then the exterior algebra is obtained by dividing
the tensor algebra over 2! by the ideal generated by the three eigenvectors :

E®E nen and n®E+qER7,

corresponding to the eigenvalue ¢ 2.

The symmetric algebra of forms is obtained by dividing the tensor algebra
over £2' by the ideal generated by the eigenvector £ ® n — gn ® & corresponding
to the eigenvalue —1.

There is a unique one-parameter family of covariant derivatives compatible
with the algebraic structure of the algebra of forms defined above. It is given by

Dek =120 (97)

where the parameter [ must have the dimension of a length. From the invariance
of 0 it follows that D is invariant under the coaction of SL,(2, C). The analog
of torsion vanishes identically.

Finally, the analog of the curvature tensor can be defined here as

2 ok k k o ¢l
D*¢F=0Feo=-0"e¢ (98)
with the curvature 2-forms given by the following matrix:
2 2
O =11+ g1+ ¢t (quq:r) 99
j ( q ) q ") 2y —ay &n (99)

It vanishes for the particular values of ¢, namely, when g = +i or ¢*> = +i,
but is different from zero when ¢ = 1. The Bianchi identity is trivially satisfied.

No metric structure compatible with this structure can be introduced except
for the trivial case when ¢ = 1.
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7 Conclusion

We tried to present here a few versions of non-commutative generalizations of
differential geometry which are believed to serve - hopefully in some foreseable
future - as new mathematical tools that will help us to describe the effects
of quantum gravity. Frankly speaking, in spite of beauty and sophistication of
certain models, it is hard to share this belief.

It does not mean that our efforts should be reduced or stopped at once. “Ars
longa, vita brevis” , and there is still a lot of time ahead, especially as compared
to the cosmological scale. The overall impression might be pessimistic, but there
is always plenty of things to do.

For example, if we look at the diagram of Sect.1, we can note that besides
the “Relativistic Quantum Field Theory” there is another unexplored corner, the
“Non-Relativistic Quantum Gravity”. Maybe we should pay some more attention
to this direction, too 7 Or at least, if such a theory can not be formulated, try to
give valuable reasons why this is the unique combination of limits of fundamental
constants that can not be realized as a coherent theory 7
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Abstract. I give a review of the conceptual issues that arise in theories of quantum
cosmology. I start by emphasising some features of ordinary quantum theory that also
play a crucial role in understanding quantum cosmology. I then give motivations why
spacetime cannot be treated classically at the most fundamental level. Two important
issues in quantum cosmology — the problem of time and the role of boundary condi-
tions — are discussed at some length. Finally, I discuss how classical spacetime can be
recovered as an approximate notion. This involves the application of a semiclassical
approximation and the process of decoherence. The latter is applied to both global
degrees of freedom and primordial fluctuations in an inflationary Universe.

1 Introduction

As the title of this school indicates, a consistent quantum theory of gravity
is eventually needed to solve the fundamental cosmological questions. These
concern in particular the role of initial conditions and a deeper understanding of
processes such as inflation. The presence of the singularity theorems in general
relativity prevents the formulation of viable initial conditions in the classical
theory. Moreover, the inflationary scenario can be successfully implemented only
if the cosmological no-hair conjecture is imposed — a conjecture which heavily
relies on assumptions about the physics at sub-Planckian scales.

It is generally assumed that a quantum theory of gravity can cure these
problems. This is not a logical necessity, though, since there might exist classical
theories which could achieve the same. As will be discussed in my contribution,
however, one can put forward many arguments in favour of the quantisation of
gravity, which is why classical alternatives will not be considered here.

Although a final quantum theory of gravity is still elusive, there exist concrete
approaches which are mature enough to discuss their impact on cosmology. Here
I shall focus on conceptual, rather than technical, issues that one might expect
to play a role in any quantum theory of the gravitational field. In fact, most of
the existing approaches leave the basic structures of quantum theory, such as its
linearity, untouched.

Two aspects of quantum cosmology must be distinguished. The first is con-
cerned with the application of quantum theory to the Universe as a whole and
is independent of any particular interaction. This raises such issues as the inter-
pretation of quantum theory for closed systems, where no external measuring
agency can be assumed to exist. In particular, it must be clarified how and to
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what extent classical properties emerge. The second aspect deals with the pe-
culiarities that enter through quantum aspects of the gravitational interaction.
Since gravity is the dominant interaction on the largest scales, this is an impor-
tant issue in cosmology. Both aspects will be discussed in my contribution.

Since many features in quantum cosmology arise from the application of
standard quantum theory to the Universe as a whole, I shall start in the next
section with a dicussion of the lessons that can be learnt from ordinary quantum
theory. In particular, the central issue of the quantum-to-classical transition will
be discussed at some length. Section 3 is then devoted to full quantum cosmology:
I start with giving precise arguments why one must expect that the gravitational
field is of a quantum nature at the most fundamental level. I then discuss the
problem of time and related issues such as the Hilbert-space problem. I also
devote some space to the central question of how to impose boundary conditions
properly in quantum cosmology. The last section will then be concerned with
the emergence of a classical Universe from quantum cosmology. I demonstrate
how an approximate notion of a time parameter can be recovered from “timeless”
quantum cosmology through some semiclassical approximation. I then discuss at
length the emergence of a classical spacetime by decoherence. This is important
for both the consistency of the inflationary scenario as well as for the classicality
of primordial fluctuations which can serve as seeds for galaxy formation and
which can be observed in the anisotropy spectrum of the cosmic microwave
background.

2 Lessons from quantum theory

2.1 Superposition principle and “measurements”

The superposition principle lies at the heart of quantum theory. From a con-
ceptual point of view, it is appropriate to separate it into a kinematical and a
dynamical version (Giulini et al. 1996):

e Kinematical version: If ¥y and W, physical states, then a¥; + (¥s, where o
and [ are complex numbers, is again a physical state.

e Dynamical version: If ¥ (t) and Wa(t) are solutions of the Schrodinger equa-
tion, then oWy (t) + B¥2(t) is again a solution of the Schrédinger equation.

These features give rise to the nonseparability of quantum theory. If interactions
between systems are present, the emergence of entangled states is unavoidable.
As Schrédinger (1935) put it:

I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines
of thought. By the interaction the two representatives (or i-functions)
have become entangled. ... Another way of expressing the peculiar sit-
uation is: the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts, even though they
may be entirely separated ...
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Because of the superposition principle, quantum states which mimic classical
states (for example, by being localised), form only a tiny subset of all possible
states. Up to now, no violation of the superposition principle has been observed
in quantum-mechanical experiments, and the only question is why we observe
classical states at all. After all, one would expect the superposition principle to
have unrestricted validity, since also macroscopic objects are composed of atoms.

The power of the superposition principle was already noted by von Neumann
in 1932 when he tried to describe the measurement process consistently in quan-
tum terms. He considers an interaction between a system and a (macroscopic)
apparatus (cf. Giulini et al. 1996). Let the states of the measured system which
are discriminated by the apparatus be denoted by |n), then an appropriate in-
teraction Hamiltonian has the form

Hine =Y _ |n)(n|® A, . (1)

The operators An, acting on the states of the apparatus, are rather arbitrary, but
must of course depend on the “quantum number” n. Note that the measured
“observable” is dynamically defined by the system-apparatus interaction and
there is no reason to introduce it axiomatically (or as an additional concept). If
the measured system is initially in the state |n) and the device in some initial
state |®g), the evolution according to the Schrédinger equation with Hamiltonian
(1) reads

[1)|®0) — exp (~iHinit) |n)lo) = [n) exp (~idnt) |20)
= [n)|@n(1)) - (2)

The resulting apparatus states |®,(¢)) are usually called “pointer positions”. An
analogy to (2) can also be written down in classical physics. The essential new
quantum features come into play when we consider a superposition of different
eigenstates (of the measured “observable”) as initial state. The linearity of time
evolution immediately leads to

(Z cnn>> |Po) o ch‘n”@n(t» : (3)

This state does not, however, correspond to a definite measurement result —
it contains a “weird” superposition of macroscopic pointer positions! This mo-
tivated von Neumann to introduce a “collapse” of the wave function, because
he saw no other possibility to adapt the formalism to experience. There have
been only rather recently attempts to give a concrete dynamical formulation of
this collapse (see, e.g., Chap. 8 in Giulini et al. (1996)). However, none of these
collapse models has yet been experimentally confirmed. In the following I shall
review a concept that enables one to reconcile quantum theory with experience
without introducing an explicit collapse; strangely enough, it is the superposition
principle itself that leads to classical properties.
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2.2 Decoherence: Concepts, examples, experiments

The crucial observation is that macroscopic objects cannot be considered as being
isolated — they are unavoidably coupled to ubiquitous degrees of freedom of their
einvironment, leading to quantum entanglement. As will be briefly discussed in
the course of this subsection, this gives rise to classical properties for such objects
— a process known as decoherence. This was first discussed by Zeh in the seventies
and later elaborated by many authors; a comprehensive treatment is given by
Giulini et al. (1996), other reviews include Zurek (1991), Kiefer and Joos (1999),
see also the contributions to the volume Blanchard et al. (1999).

Denoting the environmental states with |&,), the interaction with system and
apparatus yields instead of (3) a superposition of the type

(Z Cn|n>> |Po)[Eo) — ch|n>|¢n>‘gn> . (4)

This is again a macroscopic superposition, involving a tremendous number of
degrees of freedom. The crucial point now is, however, that most of the environ-
mental degrees of freedom are not amenable to observation. If we ask what can
be seen when observing only system and apparatus, we need — according to the
quantum rules — to calculate the reduced density matrix p that is obtained from
(4) upon tracing out the environmental degrees of freedom.

If the environmental states are approximately orthogonal (which is the generic
case),

<€m|‘€n> ~ 5mn ) (5)

the density matrix becomes approximately diagonal in the “pointer basis”,

ps = Y leal?|n){n] © |0} (] . (6)

n

Thus, the result of this interaction is a density matrix which seems to describe
an ensemble of different outcomes n with the respective probabilities. One must
be careful in analysing its interpretation, however: This density matrix only cor-
responds to an apparent ensemble, not a genuine ensemble of quantum states.
What can safely be stated is the fact, that interference terms (non-diagonal el-
ements) are absent locally, although they are still present in the total system,
see (4). The coherence present in the initial system state in (3) can no longer
be observed; it is delocalised into the larger system. As is well known, any in-
terpretation of a superposition as an ensemble of components can be disproved
experimentally by creating interference effects. The same is true for the situa-
tion described in (3). For example, the evolution could in principle be reversed.
Needless to say that such a reversal is experimentally extremely difficult, but
the interpretation and consistency of a physical theory must not depend on our
present technical abilities. Nevertheless, one often finds explicit or implicit state-
ments to the effect that the above processes are equivalent to the collapse of the
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wave function (or even solve the measurement problem). Such statements are
certainly unfounded. What can safely be said, is that coherence between the
subspaces of the Hilbert space spanned by |n) can no longer be observed in the
system considered, if the process described by (3) is practically irreversible.

The essential implications are twofold: First, processes of the kind (3) do
happen frequently and unavoidably for all macroscopic objects. Second, these
processes are irreversible in practically all realistic situtations. In a normal mea-
surement process, the interaction and the state of the apparatus are controllable
to some extent (for example, the initial state of the apparatus is known to the ex-
perimenter). In the case of decoherence, typically the initial state is not known
in detail (a standard example is interaction with thermal radiation), but the
consequences for the local density matrix are the same: If the environment is
described by an ensemble, each member of this ensemble can act in the way
described above.

A complete treatment of realistic cases has to include the Hamiltonian gov-
erning the evolution of the system itself (as well as that of the environment).
The exact dynamics of a subsystem is hardly manageable (formally it is given by
a complicated integro-differential equation, see Chap. 7 of Giulini et al. 1996).
Nevertheless, we can find important approximate solutions in some simplifying
cases. One example is concerned with localisation through scattering processes
and will be briefly discussed in the following. My treatment will closely follow
Kiefer and Joos (1999).

Why do macroscopic objects always appear localised in space? Coherence
between macroscopically different positions is destroyed very rapidly because of
the strong influence of scattering processes. The formal description may proceed
as follows. Let |z) be the position eigenstate of a macroscopic object, and |x) the
state of the incoming particle. Following the von Neumann scheme, the scattering
of such particles off an object located at position x may be written as

2)|x) = |2 xe) = |2)Szx) S (7)

where the scattered state may conveniently be calculated by means of an ap-
propriate S-matrix. For the more general initial state of a wave packet we have
then

[ e@la - [ d gl s Q
and the reduced density matrix describing our object changes into

pla,a) = p(@)¢" (@) (XISLSalx) - (9)

These steps correspond to the general steps discussed above. Of course, a single
scattering process will usually not resolve a small distance, so in most cases the
matrix element on the right-hand side of (9) will be close to unity. But if we
add the contributions of many scattering processes, an exponential damping of
spatial coherence results:

p(z, 2’ t) = p(z,2',0) exp { —At(x — 2')*} . (10)
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The strength of this effect is described by a single parameter A which may be
called the “localisation rate” and is given by

k‘2 NUO'eff
A= —"=, 11
- ()
Here, k is the wave number of the incoming particles, Nv/V the flux, and o,
is of the order of the total cross section (for details see Joos and Zeh 1985 or
Sect. 3.2.1 and Appendix 1 in Giulini et al. 1996). Some values of A are given in
the Table.

Table 1. Localisation rate A in cm™?s~! for three sizes of “dust particles” and various

types of scattering processes (from Joos and Zeh 1985). This quantity measures how
fast interference between different positions disappears as a function of distance in the
course of time, see (10).

a=10"%m a=10"%cm a=10"%m

dust particle dust particle large molecule

Cosmic background radiation| 10° 107¢ 10712
300 K photons 10" 10'2 10°
Sunlight (on earth) 10! 10'7 10'3
Air molecules 1036 10%? 10%°
Laboratory vacuum 1073 10" 10%7

(10% particles/cm?®)

Most of the numbers in the table are quite large, showing the extremely
strong coupling of macroscopic objects, such as dust particles, to their natural
environment. Even in intergalactic space, the 3K background radiation cannot
be neglected.

In a general treatment one must combine the decohering influence of scat-
tering processes with the internal dynamics of the system. This leads to master
equations for the reduced density matrix, which can be solved explicitly in sim-
ple cases. Let me mention the example where the internal dynamics is given by
the free Hamiltonian and consider the coherence length, i.e. the non-diagonal
part of the density matrix. According to the Schrédinger equation, a free wave
packet would spread, thereby increasing its size and extending its coherence
properties over a larger region of space. Decoherence is expected to counteract
this behaviour and reduce the coherence length. This can be seen in the solu-
tion shown in Fig. 1, where the time dependence of the coherence length (the
width of the density matrix in the off-diagonal direction) is plotted for a truly
free particle (obeying a Schrodinger equation) and also for increasing strength of
decoherence. For large times the spreading of the wave packet no longer occurs
and the coherence length always decreases proportional to 1/ V/At. More details
and more complicated examples can be found in Giulini et al. (1996).
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Fig. 1. Time dependence of coherence length. It is a measure of the spatial extension
over which the object can show interference effects. Except for zero coupling (A = 0),
the coherence length always decreases for large times. From Giulini et al. (1996).

Not only the centre-of-mass position of dust particles becomes “classical” via
decoherence. The spatial structure of molecules represents another most impor-
tant example. Consider a simple model of a chiral molecule (Fig. 2).

Fig. 2. Typical structure of an optically active, chiral molecule. Both versions are
mirror-images of each other and are not connected by a proper rotation, if the four
elements are different.
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Right- and left-handed versions both have a rather well-defined spatial struc-
ture, whereas the ground state is - for symmetry reasons - a superposition of both
chiral states. These chiral configurations are usually separated by a tunneling
barrier (compare Fig. 3) which is so high that under normal circumstances tun-
neling is very improbable, as was already shown by Hund in 1929. But this
alone does not explain why chiral molecules are never found in energy eigen-
states! Only the interaction with the environment can lead to the localisation
and the emergence of a spatial structure. We shall encounter a similar case of
“symmetry breaking” in the case of quantum cosmology, see Sect. 4.2 below.

Fig. 3. Effective potential for the inversion coordinate in a model for a chiral molecule
and the two lowest-lying eigenstates. The ground state is symmetrically distributed
over the two wells. Only linear combinations of the two lowest-lying states are localised
and correspond to a classical configuration.

I want to emphasise that decoherence should not be confused with thermal-
isation, although they sometimes occur together. In general, decoherence and
relaxation have drastically different timescales — for a typical macroscopic situa-
tion decoherence is faster by forty orders of magnitude. This short decoherence
timescale leads to the impression of discontinuities, e.g. “quantum jumps”, al-
though the underlying dynamics, the Schrédinger equation, is continuous. There-
fore, to come up with a precise experimental test of decoherence, one must
spend considerable effort to bring the decoherence timescale into a regime where
it is comparable with other timescales of the system. This was achieved by a
quantum-optical experiment that was performed in Paris in 1996, see Haroche
(1998) for a review.
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What is done in this experiment? The role of the system is played by a ru-
bidium atom and its states |n) are two Rydberg states |+) and |—). This atom is
sent into a high-Q cavity and brought into interaction with an electromagnetic
field. This field plays the role of the “apparatus” and its pointer states |@,,) are
coherent states |ay) and |a_) which are correlated with the system states |+)
and |—), respectively. The atom is brought into a superposition of |+) and |—)
which it imparts on the coherent states of the electromagnetic field; the latter
is then in a superposition of |ay) and |a_), which resembles a Schrodinger-cat
state. The role of the environment is played by mirror defects and the corre-
sponding environmental states are correlated with the respective components
of the field superposition. One would thus expect that decoherence turns this
superposition locally into a mixture. The decoherence time is calculated to be
tp ~ tr/n, where tg is the relaxation time (the field-energy decay time) and 7
is the average photon number in the cavity. In the experiment tg is about 160
microseconds, and 7 & 3.3. These values enable one to monitor the process of
decoherence as a process in time.

The decay of field coherence is measured by sending a second atom with
different delay times into the cavity, playing the role of a “quantum mouse”;
interference fringes are observed through two-atom correlation signals. The ex-
perimental results are found to be in complete agreement with the theoretical
prediction. If a value of 7 &~ 10 is chosen, decoherence is already so rapid that no
coherence can be seen. This makes it obvious why decoherence for macroscopic
objects happens “instantaneously” for all practical purposes.

2.3 On the interpretation of quantum theory'

It would have been possible to study the emergence of classical properties by
decoherence already in the early days of quantum mechanics and, in fact, the
contributions of Landau, Mott, and Heisenberg at the end of the twenties can be
interpreted as a first step in this direction. Why did one not go further at that
time? One major reason was certainly the advent of the “Copenhagen doctrine”
that was sufficient to apply the formalism of quantum theory on a pragmatic
level. In addition, the imagination that objects can be isolated from their en-
vironment was so deeply rooted since the time of Galileo, that the quantitative
aspect of decoherence was largely underestimated. This quantitative aspect was
only borne out by detailed calculations, some of which I have reviewed above.
Moreover, direct experimental verification was only possible quite recently.

What are the achievements of the decoherence mechanism? Decoherence can
certainly explain why and how within quantum theory certain objects (including
fields) appear classical to “local” observers. It can, of course, not explain why
there are such local observers at all. The classical properties are defined by the
pointer basis for the object, which is distinguished by the interaction with the
environment and which is sufficiently stable in time. It is important to emphasise
that classical properties are not an a priori attribute of objects, but only come
into being through the interaction with the environment.

! This is adapted from Sect. 4 of Kiefer and Joos (1999).
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Because decoherence acts, for macroscopic systems, on an extremely short
time scale, it appears to act discontinuously, although in reality decoherence
is a smooth process. This is why “events”, “particles”, or “quantum jumps”
are observed. Only in the special arrangement of experiments, where systems
are used that lie at the border between microscopic and macroscopic, can this
smooth nature of decoherence be observed.

Since decoherence studies only employ the standard formalism of quantum
theory, all components characterising macroscopically different situations are
still present in the total quantum state which includes system and environment,
although they cannot be observed locally. Whether there is a real dynamical
“collapse” of the total state into one definite component or not (which would
lead to an Everett interpretation) is at present an undecided question. Since this
may not experimentally be decided in the near future, it has been declared a
“matter of taste” (Zeh 1997).

The most important feature of decoherence besides its ubiquity is its r-
reversible nature. Due to the interaction with the environment, the quantum
mechanical entanglement increases with time. Therefore, the local entropy for
subsystems increases, too, since information residing in correlations is locally
unobservable. A natural prerequisite for any such irreversible behaviour, most
pronounced in the Second Law of thermodynamics, is a special initial condition
of very low entropy. Penrose has demonstrated convincingly that this is due to
the extremely special nature of the big bang. Can this peculiarity be explained
in any satisfactory way? Convincing arguments have been put forward that this
can only be achieved within a quantum theory of gravity (Zeh 1999). This leads
directly into the realm of quantum cosmology which is the topic of the following
sections.

3 Quantum cosmology

3.1 Why spacetime cannot be classical

Quantum cosmology is the application of quantum theory to the Universe as
a whole. Is such a theory possible or even — as I want to argue here — needed
for consistency? In the first section I have stressed the importance of the super-
position principle and the ensuing quantum entanglement with environmental
degrees of freedom. Since the environment is in general also coupled to another
environment, this leads ultimately to the whole Universe as the only closed
quantum system in the strict sense. Therefore one must take quantum cosmol-
ogy seriously. Since gravity is the dominant interaction on the largest scales, one
faces the problem of quantising the gravitational field. In the following I shall
list some arguments that can be put forward in support of such a quantisation,
cf. Kiefer (1999):

o Singularity theorems of general relativity: Under very general conditions, the
occurrence of a singularity, and therefore the breakdown of the theory, is
unavoidable. A more fundamental theory is therefore needed to overcome
these shortcomings, and the general expectation is that this fundamental
theory is a quantum theory of gravity.
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e Initial conditions in cosmology: This is related to the singularity theorems,
since they predict the existence of a “big bang” where the known laws of
physics break down. To fully understand the evolution of our Universe, its
initial state must be amenable to a physical description.

e Unification: Apart from general relativity, all known fundamental theories
are quantum theories. It would thus seem awkward if gravity, which couples
to all other fields, should remain the only classical entity in a fundamental
description. Moreover, it seems that classical fields cannot be coupled to
quantum fields without leading to inconsistencies (Bohr-Rosenfeld type of
analysis).

o Gravity as a regulator: Many models indicate that the consistent inclusion
of gravity in a quantum framework automatically eliminates the divergences
that plague ordinary quantum field theory.

e Problem of time: In ordinary quantum theory, the presence of an external
time parameter ¢ is crucial for the interpretation of the theory: “Measure-
ments” take place at a certain time, matrix elements are evaluated at fixed
times, and the norm of the wave function is conserved in time. In general rel-
ativity, on the other hand, time as part of spacetime is a dynamical quantity.
Both concepts of time must therefore be modified at a fundamental level.
This will be discussed in some detail in the next subsection.

The task of quantising gravity has not yet been accomplished, but approaches
exist within which sensible questions can be asked. Two approaches are at the
centre of current research: Superstring theory (or M-theory) and canonical quan-
tum gravity. Superstring theory is much more ambitious and aims at a unifica-
tion of all interactions within a single quantum framework (a recent overview is
Sen 1998). Canonical quantum gravity, on the other hand, attempts to construct
a consistent, non-perturbative, quantum theory of the gravitational field on its
own. This is done through the application of standard quantisation rules to the
general theory of relativity.

The fundamental length scales that are connected with these theories are the
Planck length, I, = \/Gh/c3, or the string length, [;. It is generally assumed
that the string length is somewhat larger than the Planck length. Although not
fully established in quantitative detail, canonical quantum gravity should follow
from superstring theory for scales [ > I; > [,. One argument for this derives
directly from the kinematical nonlocality of quantum theory: Quantum effects
are not a priori restricted to certain scales. For example, the rather large mass of
a dust grain cannot by itself be used as an argument for classicality. Rather, the
process of decoherence through the environment can explain why quantum effects
are negligible for this object, see the discussion in Sect. 2.2, in particular the
quantitative aspects as they manifest themselves in the Table. Analogously, the
smallness of [, or [; cannot by itself be used to argue that quantum-gravitational
effects are small. Rather, this should be an emergent fact to be justified by
decoherence (see Sect. 4). Since for scales larger than I, or [ general relativity is
an excellent approximation, it must be clear that the canonical quantum theory
must be an excellent approximation, too. The canonical theory might or might
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not exist on a full, non-perturbative level, but it should definitely exist as an
effective theory on large scales. It seems therefore sufficient to base the following
discussion on canonical quantum gravity, although I want to emphasise that the
same conceptual issues arise in superstring theory.

Depending on the choice of the canonical variables, the canonical theory can
be subdivided into the following approaches:

o Quantum geometrodynamics: This is the traditional approach that uses the
three-dimensional metric as its configuration variable.

e Quantum connection dynamics: The configuration variable is a non-abelian
connection that has many similarities to gauge theories.

o Quantum loop dynamics: The configuration variable is the trace of a holon-
omy with respect to a loop, analogous to a Wilson loop.

There exists a connection between the last two approaches, whereas their connec-
tion to the first approach is less clear. For the above reason one should, however,
expect that a relation between all approaches exists at least on a semiclassi-
cal level. Here, I shall restrict myself to quantum geometrodynamics, since this
seems to be the most appropriate language for a discussion of the conceptual
issues. However, most of this discussion should find its pendant in the other ap-
proaches, too. A thorough discussion of these other approaches can be found in
many contributions to this volume, see also Ashtekar (1999).

3.2 Problem of time

“Quantisation” is a set of heuristic recipes which allows one to guess the structure
of the quantum theory from the underlying classical theory. In the canonical
approach, the first step is to identify the canonical variables, the configuration
and momentum variables of the classical theory. Their Poisson brackets are then
translated into quantum operators. As a well-known theorem by Groenewald
and van Hove states, such a translation is not possible for most of the other
variables.

Details of the canonical formalism for general relativity can be found in Isham
(1992), Kuchat (1992), and the references therein, and I shall give here only a
brief introduction. For the definition of the canonical momenta, a time coordi-
nate has to be distinguished. This spoils the explicit four-dimensional covariance
of general relativity — the theory is reformulated to give a formulation for the
dynamics of three-dimensional hypersurfaces. It is then not surprising that the
configuration variable is the three-dimensional metric, hqp(x), on such hypersur-
faces. The three-metric has six independent degrees of freedom. The remaining
four components of the spacetime metric play the role of non-dynamical La-
grange multipliers called lapse function, N+ (z), and shift vector, N%(z) — they
parametrise, respectively, the way in which consecutive hypersurfaces are chosen
and how the coordinates are selected on a hypersurface. The momenta canon-
ically conjugated to the three-metric, p®(x), form a tensor which is linearly
related to the second fundamental form associated with a hypersurface — speci-
fying the way in which the hypersurface is embedded into the fourth dimension.
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In the quantum theory, the canonical variables are formally turned into operators
obeying the commutation relations

[has(@), 5™ (y)] = 1h8(,63)6(. y) - (12)

In a (formal) functional Schrédinger representation, the canonical operators act
on wave functionals ¥ depending on the three-metric,

o (@) o ()] = ()P ()] (13)
PU@hon(2)] = § gy @) (14)

A central feature of canonical gravity is the existence of constraints. Because of
the four-dimensional diffeomorphism invariance of general relativity, these are
four constraints per space point, one Hamiltonian constraint,

H, W =0, (15)
and three diffeomorphism constraints,
Ho¥ =0 . (16)

The total Hamiltonian is obtained by integration?,
H= /d% (NYH, + NOH,), (17)

where N+ and N denote again lapse function and shift vector, respectively.
The constraints then enforce that the wave functional be annihilated by the
total Hamiltonian,

HY =0. (18)

The Wheeler-DeWitt equation (18) is the central equation of canonical quantum
gravity. This also holds for quantum connection dynamics and quantum loop
dynamics, although the configuration variables are different.

The Wheeler-DeWitt equation (18) possesses the remarkable property that
it does not depend on any external time parameter — the ¢ of the time-dependent
Schrodinger equation has totally disappeared, and (18) looks like a stationary
zero-energy Schrodinger equation. How can this be understood? In classical
canonical gravity, a spacetime can be represented as a “trajectory” in config-
uration space — the space of all three-metrics. Although time coordinates have
no intrinsic meaning in classical general relativity either, they can nevertheless
be used to parametrise this trajectory in an essentially arbitrary way. Since no
trajectories exist anymore in quantum theory, no spacetime exists at the most

2 In the following I shall restrict myself to closed compact spaces; otherwise, the Hamil-
tonian has to be augmented by surface terms such as the ADM energy.
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fundamental, and therefore also no time coordinates to parametrise any trajec-
tory. A simple analogy is provided by the relativistic particle: In the classical
theory there is a trajectory which can be parametrised by some essentially arbi-
trary parameter, e.g. the proper time. Reparametrisation invariance leads to one
constraint, p? + m? = 0. In the quantum theory, no trajectory exists anymore,
the wave function obeys the Klein-Gordon equation as an analogue of (18), and
any trace of a classical time parameter is lost (although, of course, for the rel-
ativistic particle the background Minkowski spacetime is present, which is not
the case for gravity).

Since the presence of an external time parameter is very important in quan-
tum mechanics — giving rise to such important notions as the unitarity of states
—, it is a priori not clear how to interpret a “timeless” equation of the form
(18), cf. Barbour (1997) and Kiefer (1997). This is called the problem of time. A
related issue is the Hilbert-space problem: What is the appropriate inner product
that encodes the probability interpretation and that is conserved in time? Before
discussing some of the options, it is very useful to first have a look at the explicit
structure of (15) and (16). Introducing the Planck mass m, = (167G)~/? and
setting i = 1, the constraint equations read

" "
1 62 -
—— Gabe m2\/E3R+Hmat} Ulha]) =0, 19

{ 2m127 b, déhabéhcd P 1 | [ b]> ( )

" 2 (S 1
—hapVe——+ H2* L [W[he]) = 0. 2
{2ha¥ogim iz | lhal) =0 (20)

The inverted commas indicate that these are formal equations and that the factor
ordering and regularisation problem have not been addressed. In these equations,
3R and v/h denote the three-dimensional Ricci scalar and the square root of the
determinant of the three-metric, respectively, and a cosmological term has not
been considered here. The quantity Ggpcqa = h=Y2(hachpa + hadhve — habhed)
plays the role of a metric in configuration space (“DeWitt metric”), and V.
denotes the covariant spatial derivative. The matter parts of the constraints,
ﬁfat and H, mat " depend on the concrete choice of matter action which we shall
not specify here. Its form can be strongly constrained from general principles
such as ultralocality (Teitelboim 1980). A tilde denotes a quantum operator in
the standard Hilbert space of matter fields, while the bra and ket notation refers
to the corresponding states.

The second equation (20) expresses the fact that the wave functional is in-
variant with respect to three-dimensional diffeomorphisms (“coordinate trans-
formations”). It is for this reason why one often writes ¥[%G], where the argu-
ment denotes the coordinate-invariant three-geometry. Since there is, however,
no explicit operator available which acts directly on W[*G], this is only a formal
representation, and in concrete discussions one has to work with (19) and (20).
It must also be remarked that this invariance holds only for diffeomorphisms
that are connected with the identity; for “large” diffeomeorphism, a so-called
f-structure may arise, similarly to the #-angle in QCD, see e.g. Kiefer (1993).
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The kinetic term in (19) exhibits an interesting structure: The DeWitt met-
ric Gp,cq has locally the signature diag(—, +, +, +, +, +), rendering the kinetic
term indefinite. Moreover, the one minus sign in the signature suggests that the
corresponding degree of freedom plays the role of an “intrinsic time” (Zeh 1999).
In general this does not, however, render (19) a hyperbolic equation, since even
after dividing out the diffeomorphisms — going to the superspace of all three-
geometries — there remains in general an infinite number of minus signs. In
the special, but interesting, case of perturbations around closed Friedmann cos-
mologies, however, one global minus sign remains, and one is left with a truly
hyperbolic equation (Giulini 1995). A Cauchy problem with respect to intrinsic
time may then be posed. The minus sign in the DeWitt metric can be associated
with the local scale part, v/h, of the three-metric.

The presence of the minus sign in the DeWitt metric has an interesting inter-
pretation: It reflects the fact that gravity is attractive (Giulini and Kiefer 1994).
This can be investigated by considering the most general class of ultralocal De-
Witt metrics which are characterised by the occurrence of some additional pa-
rameter a:

ng,cd = h71/2<hachbd + hadhbc - 2ahabhcd) ) (21)

where a = 0.5 is the value corresponding to general relativity. One finds that
there exists a critical value, a. = 1/3, such that for o < o, the DeWitt metric
would become positive definite. One also finds that for a < a. gravity would
become repulsive in the following sense: First, the second time derivative of the
total volume V = f d3zvh (for lapse equal to one) would become, for positive
three-curvature, positive instead of negative, therefore leading to an acceleration.
Second, in the coupling to matter the sign of the gravitational constant would
change. From the observed amount of helium one can infer that o must lie
between 0.4 and 0.55.

Standard quantum theory employs the mathematical structure of a Hilbert
space which is needed for the probability interpretation. Does such a structure
also exist in quantum gravity? On a kinematical level, for wave functionals which
are not yet necessarily solutions of the constraint equations, one can try to start
with the standard Schrédinger-type inner product

/Dhabw* [hap ()| [hap(x)] = (T, P)s . (22)

For wave functionals which satisfy the diffeomorphism constraints (20), this
would yield divergencies since the integration runs over all “gauge orbits”. In
the connection representation, a preferred measure exists with respect to which
the wave functionals are square integrable functions on the space of connections,
see the contributions by Ashtekar, Lewandowski, and Rovelli to this volume. The
construction is possible because the Hilbert space can be viewed as a limit of
Hilbert spaces with finitely many degrees of freedom. It leads to interesting re-
sults for the spectra of geometric operators such as the area operator. However,
no such product is known in geometrodynamics.
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Since physical wave functionals have to obey (19) and (20), it might be suffi-
cient if a Hilbert-space structure existed on the space of solutions, not necessarily
on the space of all functionals such as in (22). Since (19) has locally the form of
a Klein-Gordon equation, one might expect to use the inner product

, by 56
I/Hde b(“")Lp [Pab] Gab,cd m - m Gab,ed Ulhay) = (¥, ¥)kG -

(23)

The (formal) integration runs over a five-dimensional hypersurface at each space
point, which is spacelike with respect to the DeWitt metric. The product (23)
is invariant with respect to deformations of this hypersurface and therefore in-
dependent of “intrinsic time”.

Similar to the situation with the relativistic particle, however, the inner prod-
uct (23) is not positive definite. For the free relativistic particle one can perform
a consistent restriction to a “positive-frequency sector” in which the analogue of
(23) is manifestly positive, provided the spacetime background and the potential
(which must be positive) are stationary, i.e., if there exists a time-like Killing
vector which also preserves the potential. Otherwise, “particle production” oc-
curs and the one-particle interpretation of the theory cannot be maintained. It
has been shown that such a restriction to “positive frequencies” is not possible
in quantum geometrodynamics (Kuchai 1992), the reason being that the Hamil-
tonian is not stationary. As I shall describe in Sect. 4, one can make, at least
for certain states in the “one-loop level” of the semiclassical approximation, a
consistent restriction to a positive-definite sector of (23).

For the relativistic particle one leaves the one-particle sector and proceeds to
a field-theoretic setting, if one has to address situations where the restriction to
positive frequencies is no longer possible. One then arrives at wave functionals
for which a Schrédinger-type of inner product can be formulated. Can one apply
a similar procedure for the Wheeler-DeWitt equation? Since quantum geometro-
dynamics is already a field theory, this would mean performing the transition
to a “third-quantised” theory in which the state in (18) is itself turned into an
operator. The formalism for such a theory is still in its infancy and will not
be presented here (see e.g. Kuchai 1992). In a sense, superstring theory can be
interpreted as providing such a framework.

All these problems could be avoided if it were possible to “solve” the con-
straints classically and make a transition to the physical degrees of freedom,
upon which the standard Schrédinger inner product could be imposed. This
would correspond to the choice of a time variable before quantisation. Formally,
one would have to perform the canonical transformation

(ha!and) — (XA,PA;(biapi) ) (24)

where A runs from 1 to 4, and ¢ runs from 1 to 2. X# and P# are the kinematical
“embedding variables”, while ¢¢ and p; are the dynamical, physical, degrees
of freedom. Unfortunately, such a reduction can only be performed in special
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situations, such as weak gravitational waves, but not in the general case, see
Isham (1992) and Kuchaf (1992). The best one can do is to choose the so-called
“York time”, but the corresponding reduction cannot be performed explicitly.
Again, only on the one-loop level of the semiclassical approximation (see Sect. 4)
can the equivalence of the Schrédinger product for the reduced variables and the
Klein-Gordon inner product for the constrained variables be shown.

The problems of time and Hilbert space are thus not yet resolved at the most
fundamental level. It is thus not clear, for example, whether (18) can sensibly be
interpreted only as an eigenvalue equation for eigenvalue zero. Thus the options
that will be discussed in the rest of my contribution are

e to study a semiclassical approximation and to aim at a consistent treatment
of conceptual issues at that level. This is done in Sect. 4. Or

e to look for sensible boundary conditions for the Wheeler-DeWitt equation
and to discuss directly solutions to this equation. This is done in the rest of
this section.

3.3 Role of boundary conditions

Boundary conditions play a different role in quantum mechanics and quantum
cosmology. In quantum mechanics (more generally, quantum field theory with
an external background), boundary conditions can be imposed with respect to
the external time parameter: Either as a condition on the wave function at a
given time, or as a condition on asymptotic states in scattering situations. On
the other hand, the Wheeler-DeWitt equation (18) is a “timeless” equation with
a Klein-Gordon type of kinetic term.

What is the role of boundary conditions in quantum cosmology? Since the
time of Newton one is accustomed to distinguish between dynamical laws and
initial conditions. However, this is not a priori clear in quantum cosmology, and
it might well be that boundary conditions are part of the dynamics. Sometimes
quantum cosmology is even called a theory of initial conditions (Hartle 1997).
Certainly, “initial” can here have two meanings: On the one hand, it can refer
to initial condition of the classical Universe. This presupposes the validity of a
semiclassical approximation (see Sect. 4) and envisages that particular solutions
of (18) could select a subclass of classical solutions in the semiclassical limit.
On the other hand, “initial” can refer to boundary conditions being imposed
directly on (18). Since (18) is fundamentally timeless, this cannot refer to any
classical time parameter but only to intrinsic variables such as “intrinsic time”.
In the following I shall briefly review some boundary conditions that have been
suggested in quantum cosmology; details and additional references can be found
in Halliwell (1991).

Let me start with the no-boundary proposal by Hartle and Hawking (1983).
This does not yield directly boundary conditions on the Wheeler-DeWitt equa-
tion, but specifies the wave function through an integral expression — through a
path integral in which only a subclass of all possible “paths” is being considered.
This subclass comprises all spacetimes that have (besides the boundary where
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the arguments of the wave function are specified) no other boundary. Since the
full quantum-gravitational path integral cannot be evaluated (probably not even
be rigorously defined), one must resort to approximations. These can be semi-
classical or minisuperspace approximations or a combination of both. It becomes
clear already in a minisuperspace approximation that integration has to be per-
formed over complex metrics to guarantee convergence. Depending on the nature
of the saddle point in a semiclassical limit, the wave function can then refer to
a classically allowed or forbidden situation.

Consider the example of a Friedmann Universe with a conformally coupled
scalar field. After an appropriate field redefinition, the Wheeler-DeWitt equation
assumes the form of an indefinite harmonic oscillator,

02 02
<W_@_a2+¢2> Y(a,¢) =0. (25)

The implementation of the no-boundary condition in this simple minisuperspace
model selects the following solutions (cf. Kiefer 1991)

2 2
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where Ky and Iy denote Bessel functions. It is interesting to note that these
solutions do not reflect the classical behaviour of the system (the classical so-
lutions are Lissajous ellipses confined to a rectangle in configuration space, see
Kiefer 1990) — Iy diverges for large arguments, while K diverges for vanishing
argument (“light cone” in configuration space). Such features cannot always be
seen in a semiclassical limit.

Another boundary condition is the so-called tunneling condition (Vilenkin
1998). It is also formulated in general terms — superspace should contain “outgo-
ing modes” only. However, as with the no-boundary proposal, a concrete discus-
sion can only be made within approximations. Typically, while the no-boundary
proposal leads to real solutions of the Wheeler-DeWitt equation, the tunneling
proposal predicts complex solutions. This is most easily seen in the semiclassi-
cal approximation (see Sect. 4), where the former predicts cos S-type of solu-
tions, while the latter predicts expiS-type of solutions. (The name “tunneling
proposal” comes from the analogy with situations such as a-decay in nuclear
physics where an outgoing wave is present after tunneling from the nucleus.) A
certain danger is connected with the word “outgoing” because it has a tempo-
ral connotation although (18) is timeless. A time parameter emerges only in a
semiclassical approximation, see the next section.

A different type of boundary condition is the SIC proposal by Conradi and
Zeh (1991). It demands that the wave function be simple for small scale factors,
i.e. that it does not depend on other degrees of freedom. The explicit expres-
sions exhibit many similarities to the no-boundary wave function, but since the
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boundary condition is directly imposed on the wave function without use of path
integrals, it is much more convenient for a discussion of models which correspond
to a classically recollapsing universe.

What are the physical applications that one could possibly use to distinguish
between the various boundary conditions? Some issues are the following:

e Probability for inflation: It is often assumed that the Universe underwent
a period of exponential expansion at an early stage (see also Sect. 4.3).
The question therefore arises whether quantum cosmology can predict how
“likely” the occurrence of inflation is. Concrete calculations address the ques-
tion of the probability distribution for the initial values of certain fields that
are responsible for inflation. Since such calculations necessarily involve the
validity of a semiclassical approximation (otherwise the notion of inflation
would not make sense), I shall give some more details in the next section.

e Primordial black-hole production: The production of primordial black holes
during an inflationary period can in principle also be used to discriminate
between boundary conditions, see e.g. Bousso and Hawking (1996).

o (Cosmological parameters: If the wave function is peaked around definite val-
ues of fundamental fields, these values may appear as “constants of Nature”
whose values can thereby be predicted. This was tentatively done for the
cosmological constant (Coleman 1988). Alternatively, the anthropic principle
may be invoked to select amongst the values allowed by the wave function.

o Arrow of time: Definite conclusions about the arrow of time in the Universe
(and the interior of black holes) can be drawn from solutions to the Wheeler-
DeWitt equation, see Kiefer and Zeh (1995).

Quantum cosmology is of course not restricted to quantum general relativity. It
may also be discussed within effective models of string theory, see e.g. Dabrowski
and Kiefer (1997), but I shall not discuss this here.

4 Emergence of a classical world

As T have reviewed in Sect. 3, there is no notion of spacetime at the full level of
quantum cosmology. This was aleady anticipated by Lemaitre (1931) who wrote:

If the world has begun with a single quantum, the notions of space and
time would altogether fail to have any meaning at the beginning ... If
this suggestion is correct, the beginning of the world happened a little
before the beginning of space and time.

It is not clear what “before” means in an atemporal situation, but it is obvious
that the emergence of the usual notion of spacetime within quantum cosmology
needs an explanation. This is done in two steps: Firstly, a semiclassical approx-
imation to quantum gravity must be performed (Sect. 4.1). This leads to the
recovery of an approximate Schrédinger equation of non-gravitational fields with
respect to the semiclassical background. Secondly, the emergence of classical
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properties must be explained (Sect. 4.2). This is achieved through the applica-
tion of the ideas presented in Sect. 2.2. A more technical review is Kiefer (1994),
see also Brout and Parentani (1999). A final subsection is devoted to the emer-
gence of classical fluctuations which can serve as seeds for the origin of structure
in the Universe.

4.1 Semiclassical approximation to quantum gravity

The starting point is the observation that there occur different scales in the
fundamental equations (19) and (20): The Planck mass m, associated with
the gravitational part, and other scales contained implicitly in H mat Even for
“grand-unified theories” the relevant particle scales are at least three orders of
magnitude smaller than m,. For this reason one can apply Born-Oppenheimer
type of techniques that are suited to the presence of different scales. In molecular
physics, the large difference between nuclear mass and electron mass leads to a
slow motion for the nuclei and the applicability of an adiabatic approximation.
A similar method is also applied in the nonrelativistic approximation to the
Klein-Gordon equation, see Kiefer and Singh (1991).

In the lowest order of the semiclassical approximation, the wave functional
appearing in (19) and (20) can be written in the form

im2S[h,
lharl) = i) (28)
where S[hg) is a purely gravitational Hamilton-Jacobi function. This is a so-
lution of the vacuum Einstein-Hamilton-Jacobi equations — the gravitational
constraints with the Hamilton-Jacobi values of momenta (gradients of S[hgs)).
Substitution of (28) into (19) and (20) leads to new equations for the state
vector of matter fields |®[hqs]) depending parametrically on the spatial metric
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It should be emphasised that on a formal level the factor ordering can be fixed
by demanding the equivalence of various quantisation schemes, see Al’tshuler and
Barvinsky (1996) and the references therein.

The conventional derivation of the Schrodinger equation from the Wheeler-
DeWitt equation consists in the assumption of small back reaction of quantum
matter on the metric background which at least heuristically allows one to dis-
card the third and the fourth terms in (29). Then one considers [#[he]) on the
solution of classical vacuum Einstein equations hqy(x,t) corresponding to the



178 Claus Kiefer

Hamilton-Jacobi function S[hqs), [D(t)) = |P[has(x,1)]). After a certain choice
of lapse and shift functions (N+, N?), this solution satisfies the canonical equa-
tions with the momentum p* = §5/6hgp, so that the quantum state |®(t))
satisfies the evolutionary equation obtained by using

o

5 120) = [ @b 57 alha) (31)

together with the truncated version of equations (29) — (30). The result is the
Schrédinger equation of quantised matter fields in the external classical gravita-
tional field,

.0 Frmat
e |<P(t)> =H |<P(t)>7 (32)

fmat — / &3z {Ni(x)ﬁrfat (x) + Na(x)sz;nat(x)} . (33)

Here, H™2% ig a matter field Hamiltonian in the Schrédinger picture, parametri-
cally depending on (generally nonstatic) metric coefficients of the curved space-
time background. In this way, the Schrodinger equation for non-gravitational
fields has been recovered from quantum gravity as an approximation.

A derivation similar to the above can already be performed within ordinary
quantum mechanics if one assumes that the total system is in a “timeless” en-
ergy eigenstate, see Briggs and Rost (1999). In fact, Mott (1931) had already
considered a time-independent Schriodinger equation for a total system consist-
ing of an a-particle and an atom. If the state of the a-particle can be described
by a plane wave (corresponding in this case to high velocities), one can make an
ansatz similar to (28) and derive a time-dependent Schrédinger equation for the
atom alone, in which time is defined by the a-particle.

In the context of quantum gravity, it is most interesting to continue the semi-
classical approximation to higher orders and to derive quantum-gravitational
correction terms to (32). This was done in Kiefer and Singh (1991) and, giv-
ing a detailed interpretation in terms of a Feynman diagrammatic language, in
Barvinsky and Kiefer (1998). I shall give a brief description of these terms and
refer the reader to Barvinsky and Kiefer (1998) for all details.

At the next order of the semiclassical expansion, one obtains corrections to
(32) which are proportional to m,?. These terms can be added to the mat-
ter Hamiltonian, leading to an effective matter Hamiltonian at this order. It
describes the back-reaction effects of quantum matter on the dynamical gravi-
tational background as well as proper quantum effects of the gravitational field
itself. Most of these terms are nonlocal in character: they contain the gravita-
tional potential generated by the back reaction of quantum matter as well as
the gravitational potential generated by the one-loop stress tensor of vacuum
gravitons. In cases where the matter energy density is much bigger than the
energy density of graviton vacuum polarisation, the dominant correction term is
given by the kinetic energy of the gravitational radiation produced by the back
reaction of quantum matter sources.
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A possible observational test of these correction terms could be provided by
the anisotropies in the cosmic microwave background (Rosales 1997). The tem-
perature fluctuations are of the order 10~ reflecting within inflationary mod-
els the ratio my/m, ~ 107, where m; denotes the mass of the scalar field
responsible for inflation (the “inflaton”). The correction terms would then be
(mr/mp)? ~ 10719 times a numerical constant, which could in principle be
large enough to be measurable with future satellite experiments such as MAP
or PLANCK.

Returning to the “one-loop order” (28) of the semiclassical approximation, it
is possible to address the issue of probability for inflation that was mentioned in
Sect. 3.3, see Barvinsky and Kamenshchik (1994). In this approximation, the in-
ner products (22) and (23) are equivalent and positive definite, see Al'tshuler and
Barvinsky (1996). They can therefore be used to calculate quantum-mechanical
probabilities in the usual sense.

To discuss this probability, the reduced density matrix for the inflaton, ¢,
should be investigated. This density matrix is calculated from the full quantum
state upon integrating out all other degrees of freedom (here called f),

prl, ) = / Df (¢, Flin(or ) (34)

where 1) denotes the quantum state (28) after the parameter ¢ from (32) has
been used.

To calculate the probability one has to set ¢’ = ¢. In earlier work, the
saddle-point approximation was only performed up to the highest, tree-level,
approximation. This yields

p(p, ) = exp[£I(p)] (35)

where I(p) = —3mj;/8V (@) and V (i) is the inflationary poential. The lower sign
corresponds to the no-boundary condition, while the upper sign corresponds to
the tunneling condition. The problem with (3) is that p is not normalisable:
mass scales bigger than m,, contribute significantly and results based on tree-
level approximations can thus not be trusted.

The situation is improved considerably if loop effects are taken into account
(Barvinsky and Kamenshchik 1994). They are incorporated by the loop effec-
tive action Ij,,p, which is calculated on De-Sitter space. In the limit of large
¢ (that is relevant for investigating normalisability) this yields in the one-loop
approximation

H
I—‘loop((P)‘H—»oo ~ ZlIn E ) (36)

where p is a renormalisation mass parameter, and Z is the anomalous scaling.
Instead of (35) one has now

p(o, ) & H () exp (£1(0) = Toop())
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This density matrix is normalisable provided Z > —1. This in turn leads to
reasonable constraints on the particle content of the theory, see Barvinsky and
Kamenshchik (1994). It turns out that the tunneling wave function (with an
appropriate particle content) can predict the occurrence of a sufficient amount
of inflation. In earlier tree-level calculations the use of an anthropic principle was
needed to get a sensible result from a non-normalisable wave function through
conditional probabilities, see e.g. Hawking and Turok (1998). This is no longer
the case here.

4.2 Decoherence in quantum cosmology?

As in ordinary quantum mechanics, the semiclassical limit is not yet sufficient
to understand classical behaviour. Since the superposition principle is also valid
in quantum gravity, quantum entanglement will easily occur, leading to super-
positions of “different spacetimes”. It is for this reason that the process of deco-
herence must be invoked to justify the emergence of a classical spacetime.

Joos (1986) gave a heuristic example within Newtonian (quantum) gravity,
in which the superposition of different metrics is suppressed by the interaction
with ordinary particles. How does decoherence work in quantum cosmology? In
particular, what constitutes system and environment in a case where nothing is
external to the Universe? The question is how to divide the degrees of freedom in
the configuration space in a sensible way. It was suggested by Zeh (1986) to treat
global degrees of freedom such as the scale factor (radius) of the Universe or an
inflaton field as “relevant” variables that are decohered by “irrelevant” variables
such as density fluctuations, gravitational waves, or other fields. Quantitative
calculations can be found, e.g., in Kiefer (1987,1992).

Denoting the “environmental” variables collectively again by f, the reduced
density matrix for e.g. the scale factor a is found in the usual way by integrating
out the f-variables,

pla,a’) = / Df U (d f)¥(a. f) . (38)

In contrast to the discussion following (34), the non-diagonal elements of the
density matrix must be calculated. The resulting terms are ultraviolet-divergent
and must therefore be regularised. This was investigated in detail for the case of
bosons (Barvinsky et al. 1999¢) and fermions (Barvinsky et al. 1999a). A crucial
point is that standard regularisation schemes, such as dimensional regularisation
or (-regularisation, do not work — they lead to Trp? = oo, since the sign in
the exponent of the Gaussian density matrix is changed from minus to plus by
regularisation. These schemes therefore spoil one of the important properties that
a density matrix must obey. This kind of problem has not been noticed before,
since these regularisation schemes had not been applied to the calculation of
reduced density matrices.

3 This and the next subsection are adapted from Kiefer (1999).
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How, then, can (38) be regularised? In Barvinsky et al. (1999a,c) we put
forward the principle that there should be no decoherence if there is no particle
creation — decoherence is an irreversible process. In particular, there should be no
decoherence for static spacetimes. This has led to the use of a certain conformal
reparametrisation for bosonic fields and a certain Bogoliubov transformation for
fermionic fields.

As a concrete example, we have calculated the reduced density matrix for a
situation where the semiclassical background is a De Sitter spacetime, a(t) =
H~'cosh(Ht), where H denotes the Hubble parameter. This is the most inter-
esting example for the early Universe, since it is generally assumed that there
happened such an exponential, “inflationary”, phase of the Universe, caused by
an effective cosmological constant. Taking various “environments”, the following
results are found for the main contribution to (the absolute value of) the deco-
herence factor, | D|, that multiplies the reduced density matrix for the “isolated”
case:

e Massless conformally-invariant field: Here,
Dl =1,

since no particle creation and therefore no decoherence effect takes place.
e Massive scalar field: Here,

3
Dl ~exp (-0 )
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and one notices increasing decoherence for increasing a.
e Gravitons: This is similar to the previous case, but the mass m is replaced
by the Hubble parameter H,

|D| ~ exp (~CH?a(a —d)?) , C >0.
o Fermions:
|D| = exp (~C'm*a*H?*(a —d')?) , C' > 0.

For high-enough mass, the decoherence effect by fermions is thus smaller
than the corresponding influence of bosons.

It becomes clear from these examples that the Universe acquires classical prop-
erties after the onset of the inflationary phase. “Before” this phase, the Universe
was in a timeless quantum state which does not possess any classical properties.
Viewed backwards, different semiclassical branches would meet and interfere to
form this timeless quantum state (Barvinsky et al. 1999b).

For these considerations it is of importance that there is a discrimination
between the various degrees of freedom. On the fundamental level of full super-
string theory, for example, such a discrimination is not possible and one would
therefore not expect any decoherence effect to occur at that level.
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In general one would expect not only one semiclassical component of the form
(28), but also many superpositions of such terms. Since (18) is a real equation,
one would in particular expect to have a superposition of (28) with its complex
conjugate. The no-boundary state in quantum cosmology has, for example, such
a form. Decoherence also acts between such semiclassical branches, although
somewhat less effective than within one branch (Barvinsky et al. 1999¢). For a
macroscopic Universe, this effect is big enough to warrant the consideration of
only one semiclassical component of the form (28). This constitutes a symmetry-
breaking effect similar to the symmetry breaking for chiral molecules: While in
the former case the symmetry with respect to complex conjugation is broken, in
the latter case one has a breaking of parity invariance (compare Figures 2 and
3 above).

It is clear that decoherence can only act if there is a peculiar, low-entropy,
state for the very early Universe. This lies at the heart of the arrow of time in
the Universe. A simple initial condition like the one in Conradi and Zeh (1991)
can in principle lead to a quantum state describing the arrow of time, see also
Zeh (1999).

4.3 Classicality of primordial fluctuations

According to the inflationary scenario of the early Universe, all structure in
the Universe (galaxies, clusters of galaxies) arises from guantum fluctuations of
scalar fields and scalar fluctuations of the metric. Because also fluctuations of
the metric are involved, this constitutes an effect of (linear) quantum gravity.

These early fluctuations manifest themselves as anisotropies in the cosmic
microwave background radiation and have been observed both by the COBE
satellite and earth-based telescopes. Certainly, these observed fluctuations are
classical stochastic quantities. How do the quantum fluctuations become classi-
cal?

It is clear that for the purpose of this discussion the global gravitational
degrees of freedom can already by considered as classical, i.e. the decoherence
process of Sect. 4.2 has already been effective. The role of the gravitational field
is then twofold: firstly, the expanding Universe influences the dynamics of the
quantum fluctuations. Secondly, linear fluctuations of the gravitational field are
themselves part of the quantum system.

The physical wavelength of a mode with wavenumber k is given by

2wa
Aphys = - (39)
Since during the inflationary expansion the Hubble parameter H remains con-
stant, the physical wavelength of the modes leaves the particle horizon, given by
H~1', at a certain stage of inflation, provided that inflation does not end before
this happens. Modes that are outside the horizon thus obey

k
— << 1. 4
aH<< (40)
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It turns out that the dynamical behaviour of these modes lies at the heart
of structure formation. These modes re-enter the horizon in the radiation-and
matter-dominated phases which take place after inflation.

For a quantitative treatment, the Schrédinger equation (32) has to be solved
for the fluctuations in the inflationary Universe. The easiest example, which
nevertheless exhibits the same features as a realistic model, is a massless scalar
field. It is, moreover, most convenient to go to Fourier space and to multiply the
corresponding variable with a. The resulting fluctuation variable is called yg,
see Kiefer and Polarski (1998) for details. Taking as a natural initial state the
“vacuum state”, the solution of the Schrédinger equation (32) for the (complex)
variables y;, reads*

1/2 ;
where
IfI> = (2k)~!(cosh 2r 4 cos 2¢ sinh 2r), (42)
F = %sin 2¢psinh 2r | (43)

and explicit expressions can be given for the time-dependent functions r and
¢. The Gaussian state (41) is nothing but a squeezed state, a state that is well
known from quantum optics. The parameters r and ¢ have the usual interpreta-
tion as squeezing parameter and squeezing angle, respectively. It turns out that
during the inflationary expansion r — oo, |F| > 1, and ¢ — 0 (meaning here a
squeezing in momentum). In this limit, the state (41) becomes also a WKB state
par excellence. As a result of this extreme squeezing, this state cannot be dis-
tinguished within the given observational capabilities from a classical stochastic
process, as thought experiments demonstrate (Kiefer and Polarski 1998, Kiefer
et al. 1998a). In the Heisenberg picture, the special properties of the state (41)
are reflected in the fact that the field operators commute at different times, i.e.

[5(t1), 9(t2)] =0 . (44)

(Kiefer et al. 1998b). In the language of quantum optics, this is the condi-
tion for a quantum-nondemolition measurement: An observable obeying (44)
can repeatedly be measured with great accuracy. It is important to note that
these properties remain valid after the modes have reentered the horizon in the
radiation-dominated phase that follows inflation (Kiefer et al. 1998a).

As is well known, squeezed states are very sensitive to interactions with other
degrees of freedom (Giulini et al. 1996). Since such interactions are unavoidably
present in the early Universe, the question arises whether they would not spoil

4 Since there is no self-interaction of the field, different modes 3. decouple, which is
why I shall suppress the index k in the following.
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the above picture. However, most interactions invoke couplings in field amplitude
space (as opposed to field momentum space) and therefore,

[Q7Hint} ~ 0 ) (45)

where ﬁmt denotes the interaction Hamiltonian. The field amplitudes therefore
become an excellent pointer basis: This basis defines the classical property, and
due to (44) this property is conserved in time. The decoherence time caused by
f{mt is very small in most cases. Employing for the sake of simplicity a linear
interaction with a coupling constant g, one finds for the decoherence time scale
(Kiefer and Polarski 1998)

)\ 1YSs
tp s ZPMS (46)
ge"

For modes that presently re-enter the horizon, one has Appys &~ 1028cm, e” s 1059
and therefore

tp ~ 1073 g7 sec . (47)

Unless g is very small, decoherence acts on a very short timescale. This conclu-
sion is enforced if higher-order interactions are taken into account. It must be
noted that the interaction of the field modes with its “environment” is an ideal
measurement — the probabilities are unchanged and the main predictions of the
inflationary scenario remain the same (which manifest themselves, for example,
in the form of the anisotropy spectrum of the cosmic microwave background).
This would not be the case, for example, if one concluded that particle number
instead of field amplitude would define the robust classical property. Realistic
models of the early Universe must of course take into account complicated non-
linear interactions, see e.g. Calzetta and Hu (1995) and Matacz (1997). Although
these models will affect the values of the decoherence timescales, the conceptual
conclusions drawn above will remain unchanged.

The results of the last two subsections give rise to the hierarchy of classicality
(Kiefer and Joos 1999): The global gravitational background degrees of freedom
are the first variables that assume classical properties. They then provide the
necessary condition for other variables to exhibit classical behaviour, such as
the primordial fluctuations discussed here. These then serve as the seeds for
the classical structure of galaxies and clusters of galaxies that are part of the
observed Universe.
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Abstract. We discuss quantum properties of the single-exterior, “geon”-type black
(and white) holes that are obtained from the Kruskal spacetime and the spinless
Banados-Teitelboim-Zanelli hole via a quotient construction that identifies the two
exterior regions. For the four-dimensional geon, the Hartle-Hawking type state of a
massless scalar field is thermal in a limited sense, but there is a discrepancy between
Lorentzian and Riemannian derivations of the geon entropy. For the three-dimensional
geon, the state induced for a free conformal scalar field on the conformal boundary is
similarly thermal in a limited sense, and the correlations in this state provide support
for the holographic hypothesis in the context of asymptotically Anti-de Sitter black
holes in string theory.

1 Introduction

In quantum field theory on the Kruskal spacetime, one way to arrive at the
thermal effects is through the observation that the spacetime has two exterior
regions separated by a bifurcate Killing horizon. A free scalar field on the Kruskal
spacetime has a vacuum state, known as the Hartle-Hawking vacuum [1,2], that is
invariant under all the continuous isometries of the spacetime [3,4]. This state is
pure, but the expectation values of operators with support in one exterior region
are thermal in the Hawking temperature [1-5]. Similar observations hold for
field theory on the nonextremal (2+1)-dimensional Baniados-Teitelboim-Zanelli
(BTZ) black hole, both with and without spin [6], and also for conformal field
theory on the conformal boundary of the BTZ hole [7-9].

In all these cases one has a vacuum state that knows about the global geom-
etry of the spacetime, in particular about the fact that the spacetime has two
exterior regions. Suppose now that we modify the spacetime in some ‘reason-
able’ fashion so that one exterior region remains as it is, and all the modification
takes place behind the Killing horizons of this exterior region. Suppose further
that the modified spacetime admits a vacuum state that is, in some reasonable
sense, a Hartle-Hawking type vacuum. Can we then, by probing the new vacuum
in the unmodified exterior region, discover that something has happened to the
spacetime behind the horizons? In particular, as the new spacetime is still a
black (and white) hole, does the new vacuum exhibit thermality, and if so, at
what temperature? In the (2+1)-dimensional case, the analogous questions can
also be raised for conformal field theory on the conformal boundary.

These lectures address the above questions for a particular modification of
the Kruskal manifold and the spinless BTZ hole: we modify the spacetimes by

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 188202, 2000.
O Springer-Verlag Berlin Heidelberg 2000
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a quotient construction that identifies the two exterior regions with each other.
For Kruskal, the resulting spacetime is referred to as the RP? geon [10,11], and
for BTZ, as the RP? geon [9]. These spacetimes are black (and white) holes,
and their only singularities are those inherited from the singularities of the two-
exterior holes.

On the RP? geon, a free scalar field has a vacuum induced from the Hartle-
Hawking vacuum on Kruskal. The vacuum is not fully thermal for static exte-
rior observers, but it appears thermal when probed with operators that do not
see certain types of correlations, such as in particular operators with support
at asymptotically late times, and the apparent temperature is then the usual
Hawking temperature. However, a naive application of Euclidean-signature path-
integral methods via saddle-point methods yields for the geon only half of the
Bekenstein-Hawking entropy of the Schwarzschild hole with the same mass.

The situation on the conformal boundary of the RP? geon is analogous. The
quotient construction from the conformal boundary of Anti-de Sitter space in-
duces on the boundary of the geon a Hartle-Hawking type vacuum that is not
fully thermal, but it appears thermal when probed with operators that do not
see certain types of correlations, and the apparent temperature is then the usual
Hawking temperature of the BTZ hole. The properties of the boundary vacuum
turn out to reflect in a surprisingly close fashion the geometry of the geon space-
time. This can be interpreted as support for the holographic hypothesis [12,13],
according to which physics in the bulk of a spacetime should be retrievable from
physics on the boundary of the spacetime. It further suggests that single-exterior
black holes can serve as a test bed for the versions of the holographic hypothesis
that arise in string theory for asymptotically Anti-de Sitter spacetimes via the
Maldacena duality conjectures [7,14-16].

The material is based on joint work [9,17] with Don Marolf, whom I would
like to thank for a truly delightful collaboration. I would also like to thank the
organizers of the Polanica Winter School for the opportunity to present the work
in a most pleasant and inspiring atmosphere.

2 Kruskal Manifold and the RP? Geon

Recall that the metric on the Kruskal manifold MZ¥ reads

exp (—L) (—dT? + dX?) +r?d2* (1)

where df2? = df? + sin? 6 dy? is the metric on the unit two-sphere, M > 0,
X2 —T? > —1, and r is determined as a function of 7' and X by

o Y x2_g2
(QM 1) eXp(QM) X1 2)
The coordinates are global, apart from the elementary singularities of the spher-

ical coordinates. M’ is manifestly spherically symmetric, and it has in addition
the Killing vector

VL.

= W(XaTJrTaX) ; (3)
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which is timelike for | X| > |T'| and spacelike for | X| < |T|. A conformal diagram
of MT | with the two-spheres suppressed, is shown in Fig. 1.

Fig. 1. Conformal diagram of the Kruskal spacetime. Each point represents a sup-
pressed S orbit of the O(3) isometry group

In each of the four quadrants of M’ one can introduce Schwarzschild co-
ordinates (t,7,6,¢) that are adapted to the isometry generated by V. In the
“right-hand-side” exterior region, X > |T|, the coordinate transformation reads

T = (ﬁ — 1) i exp(ﬁ) sinh (ﬁ) ,
X = (ﬁ - 1) v exp(ﬁ) cosh (ﬁ) ) (4)

with r > 2M and —oco < t < co. The exterior metric takes then the Schwarzschild
form

dr?
2_ _(1_ L) 2, 92002
ds ( oo dt—i—(l_L)—H‘d , (5)
2M
and VL = 9,.
Consider now on M’ the isometry
JE (T, X,0,0) — (T, -X, 71— 0,0 +7) . (6)

JE is clearly involutive, it acts properly discontinuously, it preserves the time
orientation and spatial orientation, and it commutes with the spherical symme-
try of MZ. The quotient space M¥/JL is therefore a spherically symmetric,
space and time orientable manifold. A conformal diagram of M%/J% is shown
in Fig. 2. M%/J% is an inextendible black (and white) hole spacetime, and its
only singularities are those inherited from the singularities of M. It has only
one exterior region, and its spatial topology is RP*\{point at infinity}. We refer
to MY/ J" as the RP? geon [10,11].
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Fig. 2. Conformal diagram of the RP® geon ML/JL. Each point represents a sup-
pressed orbit of the O(3) isometry group. The region X > 0 is isometric to the region
X > 0 of M*, shown in Fig. 1, and the O(3) isometry orbits in this region are two-
spheres. At X = 0, the O(3) orbits have topology RP?

The exterior region of M¥/JL is clearly isometric to an exterior region
of M. In terms of the coordinates shown in Fig. 2, the exterior region is at
X > |T|, and one can introduce in the exterior region standard Schwarzschild
coordinates by (4). As the Killing vector V¥ on M¥ changes its sign under J%,
the timelike Killing vector d; on the exterior of ML /JL can however not be con-
tinued into a globally-defined Killing vector on M* /JL. This means that not all
the constant ¢ hypersurfaces in the exterior region of M*/J¥ are equal: among
them, there is only one (in Fig. 2, the one at T' = 0) that can be extended into
a smoothly-embedded Cauchy hypersurface for ML/ JE.

The quotient construction from M to M¥ /J* can be analytically continued
to the Riemannian (i.e., positive definite) sections via the formalism of (anti-
)holomorphic involutions [18,19]. The Riemannian section of the Kruskal hole,
denoted by M, is obtained from (1) and (2) by setting T = —iT and letting T
and X take all real values [20]. The analytic continuation of J*, denoted by J,
acts on MP% by

JE (T, X,0,p) — (T,-X, 7 —0,0+7), (7)

and the Riemannian section of the RP® geon is M /JE,

On M*% we can introduce the Riemannian Schwarzschild coordinates (Z, 7, 0, ),
obtained from the Lorentzian Schwarzschild coordinates for r > 2M by ¢t = —it.
These Riemannian Schwarzschild coordinates are global, with the exception of a
coordinate singularity at the Riemannian horizon r = 2M, provided they are un-
derstood with the identification (£, 7,0, p) ~ (t+87M,r,0,¢) [20]. On ME/JE,
the Riemannian Schwarzschild coordinates need to be understood with the ad-
ditional identification (£,7,0,¢) ~ (t +4rM,r,m — 0, ¢ + m), which arises from
the action (7) of J on M%. The Killing vector 9; is global on M, and it gen-
erates an U(1) isometry group with a fixed point at the Riemannian horizon. On
MPE/JE on the other hand, 0; is global only as a line field but not as a vector
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field, and the analogous U(1) isometry does not exist. Embedding diagrams of
M and MPE/JR with the orbits of the spherical symmetry suppressed, are
shown in Figs. 3 and 4.

Fig.3. A “sock” representation of the Riemannian section M of the complexified
Kruskal manifold. The S? orbits of the O(3) isometry group are suppressed, and the re-
maining two dimensions (T, X) are shown as an isometric embedding into Euclidean R,
The isometry generated by 0; rotates the two shown dimensions

Fig. 4. A representation of the Riemannian section MZ®/J® of the complexified RP?
geon as the “front half” of the the M sock. The orbits of the O(3) isometry group
are suppressed, as in Fig. 3. The generic orbits have topology S, but those at the
“boundary” of the diagram (dashed line) have topology RP?

3 Vacua on Kruskal and on the RP? Geon

We now consider a free scalar field on the Kruskal manifold and on the RP?
geon. For concreteness, we take here the field to be massless. The situation with
a massive field is qualitatively similar [17].

Recall that the Hartle-Hawking vacuum |Ok) of a massless scalar field on the
Kruskal manifold M% can be characterized by its positive frequency properties
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along the affine parameters of the horizon generators [1,2,5], by the complex
analytic properties of the Feynman propagator upon analytic continuation to
M [1], or by the invariance under the continuous isometries of M¥* [3,4]. |0k) is
regular everywhere on M’ but it is not annihilated by the annihilation operators
associated with the future timelike Killing vectors in the exterior regions: a static
observer in an exterior region sees |0k ) as an excited state. We have the expansion

10k) = 3 fioe () (aP) ' (@) (af) 0B.x0) (8)
ik

where the Boulware vacuum |0p k) is the vacuum with respect to the timelike

Killing vectors in the exterior regions, (aff

)T are the creation operators with
respect to this Killing vector in the right-hand-side exterior region, and (aZ-L)T
are the creation operators with respect to this Killing vector in the left-hand-side
exterior region.

|0k) thus contains Boulware excitations in correlated pairs, such that one
member of the pair has support in the right-hand-side exterior and the other
member in the left-hand-side exterior. An operator with support in (say) the
right-hand-side exterior does not couple to the left-hand-side excitations, and the
expectation values of such operators in |0k ) thus look like expectation values in
a mixed state. From the detailed form of the expansion coefficients f;..., (which
we do not write out here) it is seen that this mixed state is thermal, and it has
at infinity the Hawking temperature 7' = (87M) ™"

Now, through the quotient construction from M¥ to M%/JE  |0k) induces
on MFE/JE a Hartle-Hawking type vacuum, which we denote by |0g). Again,
|0g) can be characterized by its positive frequency properties along the affine
parameters of the horizon generators, or by the complex analytic properties of
the Feynman propagator [17]. |0g) has the expansion

06) = 3 Fon (a2) () - (a2) (a2) omc) . )
ik

@\

where |0p,¢) is the Boulware vacuum in the single exterior region and (di are

the creation operators of Boulware particles in the exterior region. The indices
1 and « now label a complete set of positive frequency Boulware modes in the
single exterior region.

We see from (9) that |0g) contains Boulware excitations in correlated pairs,
but the crucial point is that both members of each pair have support in the single
exterior region. Consequently, the expectation values of arbitrary operators in
the exterior region are not thermal. However, for operators that do not contain
couplings between modes with « = 1 and a = 2, the expectation values turn
out to be thermal, with the Hawking temperature T' = (87rM)_1. One class
of operators for which this is the case are operators with, roughly speaking,
support at asymptotically late (or early) times: the reason is that an excitation
with support at asymptotically late exterior times is correlated with one with
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support at asymptotically early exterior times. Note that “early” and “late” here
mean compared with the distinguished exterior spacelike hypersurface mentioned
in Sect. 2 (in Fig. 2, the one at T'=0).

Thus, for a late-time observer in the exterior region of M’ /J¥ the state
|0c) is indistinguishable from the state |0x) on MZE. This conclusion can also be
reached by analyzing the response of a monopole particle detector, or from an
emission-absorption analysis analogous to that performed for [0k ) in [1], provided
certain technical assumptions about the falloff of the two-point functions in |Og)
hold [17].

4 Entropy of the RP?® Geon?

As explained above, for a late-time exterior observer in M’ /J¥ the state |0g)
is indistinguishable from the state |0x) on M¥%. The late-time observer can
therefore promote the classical first law of black hole mechanics [21] into a first
law of black hole thermodynamics exactly as for the Kruskal black hole [22-24].
The observer thus finds for the thermodynamic late time entropy of the geon
the usual Kruskal value 47w M2, which is one quarter of the area of the geon
black hole horizon at late times. If one views the geon as a dynamical black-hole
spacetime, with the asymptotic far-future horizon area 167w M?, this is the result
one might have expected on physical grounds.

On the other hand, the area-entropy relation for the geon is made subtle
by the fact that the horizon area is not constant along the horizon. Away from
the intersection of the past and future horizons, the horizon duly has topology
S? and area 16mwM 2, just as in Kruskal. The critical surface at the intersection
of the past and future horizons, however, has topology RP? and area 87M?2.
As it is precisely this critical surface that belongs to both the Lorentzian and
Riemannian sections of the complexified manifold, and constitutes the horizon of
the Riemannian section, one may expect that methods utilizing the Riemannian
section of the complexified manifold [20,25] produce for the geon entropy the
value 2rM?, which is one quarter of the critical surface area, and only half
of the Kruskal entropy. This indeed is the case, provided the surface terms in
the Riemannian geon action are handled in a way suggested by the quotient
construction from M to M%E/JE [17].

There are several possible physical interpretations for this disagreement be-
tween the Lorentzian and Riemannian results for the entropy. At one extreme,
it could be that the path-integral framework is simply inapplicable to the geon,
for reasons having to do with the absence of certain globally-defined symmetries.
For instance, despite the fact that the exterior region of M’ /J¥ is static, the
restriction of |0g) to this region is not. Also, the asymptotic region of MF/JE
does not have a globally-defined Killing field, and the homotopy group of any
neighborhood of infinity in M/ J% is Z4 as opposed to the trivial group. It may
well be that such an asymptotic structure does not satisfy the boundary condi-
tions that should be imposed in the path integral for the quantum gravitational
partition function.
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At another extreme, it could be that the path-integral framework is applicable
to the geon, and our way of applying it is correct, but the resulting entropy is
physically distinct from the subjective thermodynamic entropy associated with
the late-time exterior observer. If this is the case, the physical interpretation of
the path-integral entropy might be in the quantum statistics in the whole exterior
region, and one might anticipate this entropy to arise from tracing over degrees
of freedom that are in some sense unobservable. It would thus be interesting
to see see whether any state-counting calculation for the geon entropy would
produce agreement with the path-integral result.

5 AdSj, the Spinless Nonextremal BTZ Hole,
and the RP? Geon

We now turn to 241 spacetime dimensions. In this section we review how the
spinless nonextremal BTZ hole and the RP? geon arise as quotient spaces of the
three-dimensional Anti-de Sitter space, and how this quotient construction can
be extended to the conformal boundaries.

5.1 AdSsj, its Covering Space, and the Conformal Boundary

Recall that the three-dimensional Anti-de Sitter space (AdSs) can be defined as
the hyperboloid

~1=—(TY (1% + (X)) + (X?)* (10)
in R%2 with the metric
ds? = —(dT")? — (dT?)* + (dXV)? + (dXx?)* . (11)

We have here normalized the Gaussian curvature of AdSs to —1. This embedding
representation makes transparent the fact that AdSs is a maximally symmetric
space with the isometry group O(2,2).

For understanding the structure of the infinity, we introduce the coordinates
(t, p,6) by [26]

14 p? 14 p?
T1:1+p2(:ost, T2:1+p281nt,
—p —p
2 2
X! = 1—/)2(:059, X? = 1—p2SiH9. (12)
—p —p
