Corrigenda for Transport Phenomena (2nd Edition, 3rd Printing)

(In designating line locations, "a" means "from above" and "b" means "from below")

Note: The authors wish to thank the following people who have pointed out errata to us.

Robert C. Armstrong (MIT)
Mohamed Awad (Memorial University, St. John's, Newfoundland)
Laurence A. Belfiore (Colorado State University)
Albert Co (University of Maine)
Sam Davis (Rice University)
Ole Hassager (Technical University of Denmark)
Daniel J. Klingenberg (University of Wisconsin)
Lii-ping Leu (National Taiwan University)
Man Luo (Zhejiang University)
Shih-Yuan Lu (National Tsing-Hua University)
Frans Nieuwstadt (Technical University of Delft)
Marc Ostermeier (Johns Hopkins University)
Michel Perrier (École Polytechnique de Montréal)
Carlos A. Ramirez Quiñones (University of Puerto Rico)
Thatcher W. Root (University of Wisconsin)
Todd Rose (Ricardo, Inc., Detroit Technical Center)
Jay Schieber (Illinois Institute of Technology)
Yo-han Tak (Pohang University of Science and Technology)
John E. Wagner (Tri-State University)
Lewis E. Wedgewood (University of Illinois at Chicago)
John M. Wiest (University of Alabama)
Michael C. Williams (University of Alberta)
H. Henning Winter (University of Massachusetts)

John Yin (University of Wisconsin)
De-Wei Yin (University of Wisconsin)
Note: Special thanks are due to Professor Carlos Ramirez for supplying us with a large list of corrigenda.

Page Location Reads Should Read
12 Fn 2 Mathematica, Mathematica (1687),

39 Eq 1C.2-1 In the $2^{\text {nd }}$ and 3rd lines, where the product of three integrals appears, in the first integral the u^{2} should be replaced by u_{x}^{2}, in the second integral the u^{2} should be replaced by u_{y}^{2}, and in the third integral the u^{2} should be replaced by u_{z}^{2}

1C.3(a), line $1 \quad v$
53

Prob 2B.7,
$\left(1-\kappa^{2}\right.$

u

Ex 2.3-2, line 3 can be regarded a can be regarded as

Ans to (b)

$$
h=1.0^{\prime \prime}
$$

$$
H=1.0^{\prime \prime}
$$

Fn 6
Add two more references:
F. J. Eichstadt and G. W. Swift, AIChE Journal, 12, 1179-1183 (1966); M. C. S. Chen, J. A. Lescarboura, AIChE Journal, 14, 123-127 (1968)

73 Prob 2C. 7
(c) Soln

73 Prob 2D. 1
Should include the figure that appeared on p. 52 of Dynamics of Polymeric Liquids, $1^{\text {st }}$ Edition.

81 Eq 3.3-1
$-(\nabla \cdot(\tau \cdot \mathbf{v}])$
$-(\nabla \cdot[\tau \cdot \mathbf{v}])$

Fig 3.6-1(a)
$\left(\mu V L / \pi D^{4} \bar{p}\right)$
$\left(\mu V L / D^{4} \bar{p}\right)$

Eq 3.3-1
Fn 1
S. de Groot
S. R. de Groot

The velocity profile is drawn incorrectly. It should be convex rather than concave.

Fig 3.6-1 caption $\quad \theta_{B}$

$$
\theta_{b}
$$

91	1 line above Eq 3.6-30	B. 2	B. 1
94	Line 2a	Tables B. 2 and B. 6	Tables B. 4 and B. 6
97	Eq 3.7-6	$\breve{\nabla}^{2}=$	$\breve{\nabla}^{2}=l_{0}^{2} \nabla^{2}=$
98	Fn 5	surface tension in	surface tension is
102	Eq 3.7-31	$\breve{r}=$	$0 \leq \breve{r}<$
102	Eq 3.7-32	$0<\breve{r}<$	$0 \leq \breve{r}<$
102	4 lines after Eq 3.7-36	$\left.\partial \bar{v}_{j} / \partial \bar{x}_{i}\right)$	$\left(\partial \bar{u}_{j} / \partial \bar{x}_{i}\right)$
103	Eq 3.7-45	$\left(\breve{\mathscr{P}}_{0}-\breve{\mathscr{P}}_{L}\right)$	$\left(\left\langle\mathscr{\mathscr { P }}_{0}\right\rangle-\left\langle\mathscr{\mathscr { P }}_{L}\right\rangle\right)$
104	Prob 3A. 4	Fig. 3.5-1	Fig. 3.6-1
115	Line above Eq 4.1-1	Table B. 5	Table B. 6
122	Line 20a	Table 4.1-1	Table 4.2-1
124	Above Eq 4.2-8	Eq. 4.2-4	Eq. 4.2-3
124	Line above Eq 4.2-13	$C_{1}=-\frac{1}{4} v_{\infty} R^{2}$	$C_{1}=-\frac{1}{4} v_{\infty} R^{3}$

124 Eq 4.2-2
A solution has been obtained to the unsteady analog of this equation by F. Sy, J. W. Taunton, and E. N. Lightfoot, AIChE Journal, 16, 386-391 (1970).

125	Line 2a	given in Table B. 7	given in Table B. 6
131	Fn 8	Compressible	Incompressible
141	Prob 4A. 1	0.22 s	22 s
142	Prob 4B.2(a)	Eq. 4.4-1	Eq. 4.1-1
143	Eqs 4B.2-3 \& 4	v_{∞}	v_{0}
143	Prob 4B.2(d)	v_{∞}	v_{0}
150	Prob 4C.4, Ans	$w=\frac{2 \pi \kappa \kappa\left(p_{2}-p_{1}\right) \rho}{\mu \ln \left(R_{2} / R_{1}\right)}$	$w=\frac{2 \pi \kappa h\left(\mathscr{P}_{2}-\mathscr{P}_{1}\right) \rho}{\mu \ln \left(R_{2} / R_{1}\right)}$
151	Prob 4D.5(a)	Insert a sentence between the first and second sentences: "The second function also describes unsteady incompressible flows."	
151	Prob 4D.5(b)	Include a minus sign after the equals sign. Replace the second sentence by: "Here h_{3} and $\boldsymbol{\delta}_{3}$ are the scale factor and unit vector for the velocity component not shown in the table."	
151	Prob 4D.5(d)	(Eq. A.5-4)	(Eq. A.5-4) and the definition of \mathbf{A} from (a),
151	Fn 10	227-228	227-238
164	Ex 5.4-1	The reasoning given here seems to be similar to that of D. T. Wasan, C. L. Tien, and C. R. Wilke, AIChE Journal, 9, 567-569 (1963).	
167	Ex 5.5-3, line 3b	1.02×10^{-7}	1.02×10^{-6}
168	Eq 5.5-9	485	477

	Eq 5.5-10	0.0052	0.00524
	Eq 5.5-11	0.0052	0.00524
	Eq 5.5-11	95	94
185	Eq 6.3-1	$-\mathscr{P}$	$-\left(p+\rho g z-p_{0}\right)$
185	Eq 6.3-5	$-\breve{\mathscr{P}}$	$-\left(\breve{\mathscr{P}}-\breve{\mathscr{P}}_{0}\right)$
185	Eq 6.3-7	$\breve{\mathscr{P}}=\frac{\mathscr{P}}{\rho v_{\infty}^{2}} \quad \breve{\mathscr{P}}=$	$\frac{(p+\rho g z)-\left(p_{0}+\rho g 0\right)}{\rho v_{\infty}^{2}}=\frac{\breve{\mathscr{P}}-\breve{\mathscr{P}}_{0}}{\rho v_{\infty}^{2}}$
193	Prob 6A. 3	$68 \mathrm{gal} / \mathrm{min}$	$4.1 \times 10^{3} \mathrm{gal} / \mathrm{hr}$
194	Prob 6A. 8	$1.7 \times 10^{4} \mathrm{lb}_{f}$	$\begin{aligned} & 1.7 \times 10^{4} \mathrm{lb}_{f} \\ & =5.4 \times 10^{5} \text { poundals } \end{aligned}$
195	Prob 6C. 1 ans	Fig. 5.3-1	Fig. 6.3-1
208	Eq 7.5-16	$2740+85-8$	$2740+85+8$
212	Ex 7.6-3(b)	Eq. (d) of Table 7.6-1	Eq. (D) of Table 7.6-1
216	Line after Eq 7.6-45	volume rate of flow	mass rate of flow
218	Line 2b	with $\phi(N)=1$.	with $\phi(N)=1)$.
239	Fig 8.2-4	sinsoidal motion	sinusoidal motion
239	Fig 8.2-4 caption	by 39.27 .	by 39.27).
248	1 line after Eq 8.4-19	8.4-19	8.4-18

252	Line 1a	Eqs. 8.5-7	Eq. 8.5-7
278	Eq 9.3-19	1074	1.074
278	Eq 9.3-19	2.065×10^{-5}	2.065×10^{-4}
287	Prob 9A. 5	megabar	bar (three time
287	Prob 9A.6(b)	given in Table 9.1-4	given in Table 9.1-5
306	Fig 10.6-2	k^{01}, k^{12}, k^{23}	k_{01}, k_{12}, k_{23}
307	Fig 10.7-1	The direction of the y-axis should be reversed order to avoid having a left-handed coordinat system)	
330	Line 14a	Note that Eq. 10C. 5	Note that Eq. 10C.1-5
338	Fn 1, line 4	$(\partial p / \partial T)_{p}$	$(\partial p / \partial T)_{\rho}$
352	Line 1b	plot of Eq. 11.4-85	plot of Eq. 11.4-75
354	Eq 11.5-2	$+\bar{\rho} \mathrm{g} \bar{\beta}(T-\bar{T})$	$-\bar{\rho} \mathrm{g} \bar{\beta}(T-\bar{T})$
354	Eq 11.5-8	$(\breve{T}-\breve{T})$	$(\breve{T}-\breve{\bar{T}})$
354	Eq 11.5-9	Φ_{v}	$\breve{\Phi}_{v}$
362	Prob 11A.5, Soln (c)	$\Delta \hat{K}-86.9 \mathrm{Btu} / \mathrm{lb}_{m}$	$\Delta \hat{K}=-86.9 \mathrm{Btu} / \mathrm{lb}_{m}$
368	Eq 11B.15-1	$\phi_{y} \frac{\partial \phi_{y}}{\partial \eta}$	$\phi_{y} \frac{\partial \phi_{z}}{\partial \eta}$
374	Line 7a	one dependent	one independent

396 Line 3a, Eq no. 12A.4-1
400 Prob 12B. $9 \quad$ given in Eq. 12.2-2 given in Eq. 12.2-24
404 Eq 12D.2-4 $\quad \int_{0}^{1} X_{i}^{2} \xi d \xi \quad \int_{0}^{1} X_{i}^{2} \phi \xi d \xi$
4042 lines before Wenze Eq 12D.2-5

404 Add to fn 10 For an alternate solution to Eq. 12D.2-3, see C.-R. Huang, M. Matlosz, W.-D. Pan, and W. Snyder, Jr., AIChE Journal, 30, 833-834 (1984).

408 Eq 13.1-8
421 Prob 13D.1(b) $\quad C_{2}=\frac{7}{24}$
421 Prob 13D.1(b) fluid.
\bar{T} (cap tee with overbar)
$C_{2}=-\frac{7}{24}$
fluid in laminar developed flow.

429 Fig 14.2-1 The " 10 " on the abscissa should be 10^{0}

435 Fn 3

436 Fig 14.3-2, $3^{\text {rd }}$ entry of ordinate

445 Eq. 14.6-12
445 Fn 6
4492 lines after Eq 14.7-11

458 Table 15.3-1 fne

Alan
subscript "in" subscript "ln"
$\left.\mathrm{Nu}_{m}^{\text {free }}\right)^{3}$
(1987) E.
$T_{d}=220$
$T_{d}=220^{\circ} \mathrm{F}$

Eqs. 7.3-3 and 4
Eqs. 7.4-3 and 4

461 Line 2b
464 Line 5b
464 Line 4b

Then using Eq. 7.5-9 Then using Eq. 7.5-8
100 psi and $70 \mathrm{~F} \quad 100$ psia and 70 F
$(200 \mathrm{ft})(40 \mathrm{ft} / \mathrm{s})\left(2.61 \mathrm{ft}^{2} / \mathrm{s}\right)$

$$
(2 \mathrm{ft})(40 \mathrm{ft} / \mathrm{s})\left(2.61 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}\right)
$$

466 Table 15.5-1 fn d Eqs. 7.3-3 and 4
468 Line $4 b$ in the exit steam
$470 \quad$ Eq 15.5-23
b/UA

R

K Eq 16.2-11

K
Eqs. 7.4-3 and 4
in the exit stream
$B=b / U A$
4923 lines before R^{4}
K^{4}
4941 line after Eq 16.3-9

4992 lines after Eq 16.4-11

502 Eq 16.5-7
$A_{i}\left(\sigma T_{i}^{4}-J_{i}\right)$
$\left(\sigma T_{i}^{4}-J_{i}\right)$
504 Line 2b
505 Line 2a
540 R

Eq. 16.5-12
Example 14.5-1
$=32 \mathrm{Btu} / \mathrm{hr} \quad=33 \mathrm{Btu} / \mathrm{hr}$
505 Eq. $16 \cdot 5-18 \quad 21+32=53 \mathrm{Btu} / \mathrm{hr} \quad 16+33=49 \mathrm{Btu} / \mathrm{hr}$

505	Eq 16.5-19	$(402)^{4}$	$(492)^{4}$
505	Ex 16.5-3	Add at very end of the example: "For more realistic treatments, see Problem 22B.4 and Example 19.5-2."	
		$16.1-1$	16C.1-1

577	Prob 18B.14	where z and b are	where $c_{A s}$ is the surface concentration at $z= \pm b$, and z and b are
578	Prob 18B.15(b)	is zero	is approximately zero
586	Line 2a	Eq. C. 7	Eq. C.1-7

676 Table 22.2-1, $\quad \mathbf{J}_{A}{ }^{*}=\mathbf{N}_{A}+x_{A}\left(\mathbf{N}_{A}+\mathbf{N}_{B}\right) \quad \mathbf{J}_{A}{ }^{*}=\mathbf{N}_{A}-x_{A}\left(\mathbf{N}_{A}+\mathbf{N}_{B}\right)$ "Flux" row $\quad \mathbf{j}_{A}{ }^{*}=\mathbf{n}_{A}+\omega_{A}\left(\mathbf{n}_{A}+\mathbf{n}_{B}\right) \quad \mathbf{j}_{A}{ }^{*}=\mathbf{n}_{A}-\omega_{A}\left(\mathbf{n}_{A}+\mathbf{n}_{B}\right)$

681 Eqs 22.3-14\&15 $\check{r}, \theta, \breve{z}, \operatorname{Re}, \ldots \quad \breve{r}, \theta, \check{z} ; \operatorname{Re}, \ldots$
683 Line 6a (from Table 1.1-1) (from Table 1.1-2)
684 Eq 22.3-32 $\quad W_{A 0}\left(\bar{H}_{A 1}-\bar{H}_{A 0}\right) \quad W_{A 0}\left(\bar{H}_{A 0}-\bar{H}_{A 1}\right)$
6842 lines after
$\bar{H}_{A 1}-\bar{H}_{A 0} \quad \bar{H}_{A 0}-\bar{H}_{A 1}$
Eq 22.3-32
685 Line 10a above A commonly above. A commonly
6855 lines below result in Eq. 22.3-43 result in Eq. 22.3-42
Eq 22.3-42
$690 \quad 1$ line below 22.3-9
Eq 22.4-11
693 Line 3 in of a solute from a of a figure caption

6935 lines below Eqs. 12.4-12 and 13 Eqs. 22.4-12 and 13
Eq 22.4-40
6981 line above Eq. 11.4-11
Eq. 11.4-51
Eq 22.6-1
6991 line above
Eqs. 22.67 and 68
Eqs. 22.6-7 and 8 Eq 22.6-9

714 Fn 6

730
Eq 23.1-17
Physical Chemistry Physical Chemistry
$X=\frac{y}{1-y}$
$Y=\frac{y}{1-y}$

733	Eq 23.1-37	This equation has also been obtained by J. B. Opfell, AIChE Journal, 24, 726-728 (1978), using thermodynamic arguments and assuming ideal mixtures.	
734	Eqs 23.1-46, 48	Negativ before expon	igns should be inserte arguments of all six als
734	Eq 23.1.48	+(0.0062	+0.00621
735	Eq 23.1-50	t (twice)	t^{\prime} (twice)
735	Eq 23.1-57	$\frac{d \rho_{2}^{\prime}}{d t}$	$\frac{d \rho_{2}^{\prime}}{d t^{\prime}}$
740	Fn (d)	Eqs. 7.3-3 and 4	Eqs. 7.4-3 and 4
742	Line 12b	Eq. 22.2-14 can be	Eq. 21.1-14 can
746	1 line after Eq 23.5-29	all of quantities	all of the quantities
746	1 line before Eq 23.5-32	23.5-3	23.5-30
746	Eq 23.5-32	$y_{2}-y_{P}$	$y_{3}-y_{P}$
748	Eq 23.5-40	$y_{n-1} U$	$y_{n+1} U$
749	1 line before Eq 23.5-47	in Fig. 15.5-9.	in Fig. 15.5-6.
756	Fn 4	36	37
760	Prob 23B.2(b)	Eq. 23.5-41	Eq. 23.5-60
760	Prob 23B.2(c)	Eq. 23.5-29	Eq. 23.5-48

761	Line 2a	containing 1.0 mole	containing 10 mole
761	Line 3a	waste of 10%	waste of 1%
794	Eq 24.6-3	$\left\langle N_{A}\right\rangle=D_{A K}^{\text {eff }} \frac{d c_{A}}{d z}$	$\left\langle N_{A}\right\rangle=-D_{A K}^{\text {eff }} \frac{d c_{A}}{d z}$
796	Eq 24.6-13	$\psi_{H 1}=\frac{1}{2}\left(1-e^{-7.48 \tau}\right)$	$\psi_{H 1}=\frac{1}{2}\left(1+e^{-7.48 \tau}\right)$

7968 lines below Eq 24.6-13

796 Line 3b
798 Eq 24.6-19
801 Prob 24C. 2
805 Line 6a
819

824 Line 2a $\frac{\partial}{\partial t}$

824 Line 2a

826 Eqs A.6-4,5,6
ρg
These equations and their equation numbers should be shifted to the right, with the equation numbers right-justified

831 Line 2 b but is is straight- but it is straight-
839 Eqs A.7-36,37 These equation numbers should be right-justified

840	Eq A.8-4	$r d r d z$	$d r d z$
841	Eq A.8-7	$\sin \theta_{0} r^{2} d r d \phi$	$\sin \theta_{0} r d r d \phi$
841	Eq A.8-8	$r^{2} d r \sin \theta d \theta$	$r d r d \theta$
859	Eq D.2-5	$=\frac{3}{2} n \mathrm{~K} T$	This should be omitted, since this expression is valid only at equilibrium; in fluid dynamics it is common practice, however, to use the local equilibrium value which is $\frac{3}{2} n \kappa T$. See (ii) on p. 334.
859	Eq D.2-4	\sum_{α} should be inserted just before the integral sign.	
860	Eq. D.4-1	$\dot{\mathbf{r}}$	$\dot{\mathbf{r}}_{\alpha}$
860	1 line above Eq D.4-2	gradients,	gradients (compare with Eq. 24.1-6 on p. 766),
876	Dim'less groups	$\begin{aligned} & \text { На ... (20.1-41) } \\ & \text { Sh ... (22.1-5) } \end{aligned}$	$\begin{aligned} & \text { Ha ... (22.5-8) } \\ & \text { Sh ... (22.1-15) } \end{aligned}$
877		Abraham, E. F.	Abraham, F. F.
877	Batchelor, G. K.	106	108
895	Middle column	Wenzel-Kramers-	Wentzel-Kramers-
Back	Cover	The labels on the axes should be interchanged.	

